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Abstract

Many important processes in cells are controlled by extracellular signals which are

caused by many different chemical signals from their surrounding. Cells have the

capability to react to signal transduction in an appropriate way, such as activate the

response of intracellular molecules, which is mainly governed by proteins reacting

with each other.

Intracellular signalling networks are mainly based on kinases and phosphatases, en-

zymes which control phosphorylation and dephosphorylation of other enzymes in the

cellular surrounding to the nucleus.

In this thesis we present mathematical models for negative feedback signal transduc-

tion processes. Signal transduction pathways are often equipped with negative feed-

backs. Negative feedback loops are important components that exhibit oscillations

in concentrations of the substances involved, both temporally and spatially. These

feedbacks constitute a major research for targeted therapies in cancer treatment, drug

action and cause cross-activation of other pathways. Specifically, we investigate sys-

tematically how the negative feedback structure of the signal transduction network can

transmit information despite noise in protein levels. In this thesis, we consider mathe-

matical models of the Hes1, Hes1-Stat3 and p53-Mdm2 pathways.

In chapter 3, we have undertaken a detailed study of the previous work done in the field.
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Building on this previous work, we derive mathematical models (systems of partial dif-

ferential equations) to capture the evolution in space and time of the key variables in

the Hes1 and p53-Mdm2 systems. Computational simulations allow us to show that

our reaction-diffusion models are able to produce sustained oscillations both spatially

and temporally. The simulations of our models also allow us to calculate a diffusion

coefficient range for the variables in each mRNA and protein,as well as ranges for

other key parameters of the models. Also, we have carried outsimulations under dif-

ferent conditions such as considering a time delay in the protein diffusion process from

nucleus to the cytoplasm, varying the thickness of the nucleus membrane which slows

down diffusion in a cell. Our results have extended and generalized previous work in

this area.

All the mathematical models in this thesis use the numericalanalysis of nonlinear

partial differential equations and computational simulations to obtain insight into the

underlying biological systems. The systems of nonlinear partial differential equations

were solved numerically using one of the MATLAB, COMSOL and URDME software

packages.
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Chapter 1

Introduction

Signal transduction plays a vital role in many intracellular processes such as eukaryotic

chemotaxis, polarity generation, cell division. The correct localisation of transcription

factors is vitally important for the proper functioning of many intracellular signalling

pathways. Experimental data has shown that many pathways exhibit oscillations in

concentrations of the substances involved, both temporally and spatially. Negative

feedback loops are important components of these oscillations, providing fine regula-

tion for the factors involved. Negative feedback loops controlling the concentrations

of key intracellular proteins are prevalent in a diverse range of important cellular pro-

cesses. Mathematical models can help us to better understand these interactions. In this

thesis we consider mathematical models of two such pathways: Hes1 and p53-Mdm2.

The chapters of the thesis are organised as follows:

Chapter 2 is a biological overview of the cell cycle and intracellular signal transduc-

tion pathways, in particular, negative feedback systems. The aim of this chapter is to

give some basic information of the main components of the cell cycle, the important
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processes of transcription and translation, a descriptionof some important transcrip-

tion factors (p53, STAT3, Hes1 and the interactions among them), tumour suppressor

genes and cancer.

In chapter 3, we present a literature review of the modellingof a number of specific

intracellular and intercellular processes in time. One setof efforts has dealt with mod-

eling the fundamental regulatory activity of the cell, controlled at the level of enzymes

and genes. Also the models discuss the significance of oscillatory motion in relation

to the organization of cellular processes in time, the feedback of cellular signaling

processes using theoretical methods for analysing the occurrence of stable oscillations

and the arrangement of control interactions by computer simulations. In addition, we

review the models which analyse the spatio-temporal interactions within a cell using

spatio-temporal models of genetic control by including diffusion in the cytoplasm and

time delays.

Another set of modelling efforts has focussed on the Hes1 network. These studied

the modelling of transcriptional negative feedback loops and the dynamics of Hes1

oscillations considering the transcription factors and showed that reaction-diffusion

models of the hes1 system are able to produce sustained oscillations both spatially and

temporally. Also, we review some models of the STAT pathway and analyse the signal

transduction performed by the various STAT proteins.

Other studies have examined spatial effects in signalling which had been hitherto stud-

ied only in purely temporal settings: these include studiesof spatial effects in the

oscillating system of p53-Mdm2 and exploring the mechanisms of DNA-damage re-

sponse to p53 and their possible relevance to apoptosis. Thelast set of modelling

efforts has focussed on studying the equilibrium state(s) of negative feedback systems

and investigated the existence of Hopf bifurcations for such systems

We will consider intracellular negative feedback loops specifically those involving
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transcription factors, critical contributors to cellularhomeostasis and, when dysfunc-

tional, to disease processes. Most previous mathematical models examining intra-

cellular negative feedback systems have taken a simplified approach using ordinary

differential equations (ODEs) and have not considered the different spatial structures

within a cell. Such ODE models have used delays to account forthe processes of

transcription, translation and transport within the cell.However, in this thesis, we con-

sider modelling the spatial interactions explicitly, using partial differential equation

(PDE) models, with the knowledge that the localisation of certain proteins is critical

for normal cellular functioning. As such, we consider mathematical models of two

such pathways - the Hes1 and p53-Mdm2 systems. Building on previous mathematical

modelling approaches, we derive systems of partial differential equations to capture

the evolution in space and time of the variables in the Hes1-Stat3 and p53- Mdm2

systems. Therefore, in Chapter 4, we begin by considering a simple example of a feed-

back inhibition system, namely that of Hes1 mRNA and Hes1 protein. We present a

mathematical model of this system, showing how our model builds on previous work

to reflect the biology in greater depth and present our computational simulation re-

sults.Theoretical studies have shown that network time delays due to the processes of

transcription and translation and protein dimerisation are key regulators of the dynam-

ics of the Hes1 feedback loop. Also, we present the P53-Mdm2 amathematical model

of this system, showing how our model builds on previous work.

Then in Chapter 5, we expand the study of the Hes1 ODE system byconsecrating

the spatio-temporal dynamic model by building the PDE model. Theoretical studies

have shown how diffusion might play a role in modulating or affecting the response.

The results are based on numerical and analytical work, someof which is detailed in

the Appendix. we conclude with a synthesis of the results. W show that the protein

Stat3 plays a central role in maintaining the segmentation clock and include the Stat3

negative feedback loop in our model. We show that the Hes1 oscillations depend on
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cyclic changes in the phosphorylation of the protein Stat3,since phosphorylated Stat3

(pStat3) increases the degradation rate of Hes1. Our extended Stat3-Hes1 model sys-

tem has been studied under different conditions such as varying the nuclear membrane

thickness, including noise in the diffusion term, considering some spatial “holes” in

the cytoplasm and the affect of convection on the model system.

In chapter 6, we consider the p53-Mdm2 system, where localisation of proteins is of

particular importance since it has implications for cancer. Again we develop a mathe-

matical model and show that network time delays due to the processes of transcription

and translation of the dynamics of the p53-Mdm2 feedback system are very important.

Alsowe studiy P53-Mdm2 model system under different conditions such as varying

the nuclear membrane thickness and including noise in the diffusion term.

Through computational simulations in chapter 5 and 6, we show that our reaction-

diffusion models are able to produce sustained oscillations both spatially and tempo-

rally, accurately reflecting experimental evidence and advancing previous models. The

simulations of our models also allow us to calculate a diffusion coefficient range for the

variables in each mRNA and protein system, as well as ranges for other key parameters

of the models, where sustained oscillations are observed.

In the final chapter of the thesis, chapter 7, we conclude witha discussion of our results

and an indication of future work in this area.
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Chapter 2

Biological Background

2.1 Introduction

In this chapter, the biology of signal transduction and the intracellular network would

be reviewed . The focus points would involve the biology of the cell cycle, the im-

portant processes of transcription and translation, the role of transcription factors (p53,

Stat3, Hes1 and the interactions among them), tumour suppressors and cancer. The

concept of negative feedback systems would be introduced.

2.2 Signal Transduction.

Effective control of cellular behaviors has serious implications in the study of bio-

logical processes and disease. The living cell can be viewedas a complex system of

interacting networks. These networks can be roughly divided into three types, signal

transduction, metabolic networks and regulatory networks.
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All organisms have the dynamic ability to coordinate constantly their activities with en-

vironmental changes. The function of communicating with the environment is called

signal transduction which is achieved through a number of pathways that receive and

process signals originating from the external environment, from other cells within

the organism and also from different regions within the cell(Istvan Petak and Kopper.

2006).

signal transduction depends on molecular circuits. These molecular circuits detect,

amplify, and integrate diverse external signals to generate responses. Signal transduc-

tion occurs when an extracellular signalling molecule binds to the cell surface where

receptor activate as sequence of the passive diffusion of the ligand through the plasma

membrane . In turn, this receptor trigger intracellular molecules creating a response

inside the cell when the ligands pass through the nuclear membrane into the nucleus,

enabling gene transcription and protein synthesis.

There are four stages in this process:

1– Membrane receptors transfer information from the environment to the cell’s inte-

rior. A few nonpolar signal molecules are able to diffuse through the cell membranes

and, hence, enter the cell, they can bind to proteins that interact directly with DNA and

modulate gene transcription. Thus, a chemical signal enters the cell and directly alters

gene expression patterns. However, most signal molecules are too large and too polar

to pass through the membrane. Thus, the molecules information must be transmitted

across the cell membrane (often referred to as the ligand) without the molecules them-

selves entering the cell. The interaction of the ligand and the receptor alters the tertiary

or quaternary structure of the receptor, including the intracellular domain. The infor-

mation embodied by the presence of the ligand, often called the primary messenger

(Berg JM 2002).

6



2– Changes in the concentration of small molecules called Second messengers, that

relay information from the receptor-ligand complex. The use of second messengers

has several consequences on the cell. they can influence geneexpression and other

processes after they diffuse to the nucleus, also amplified significantly in the genera-

tion of second messengers. Thus, a low concentration of signal in the environment can

yield a large intracellular signal and response (Berg JM 2002).

The regulation of gene expression is achieved through genetic regulatory systems

structured by networks of interactions between DNA, RNA, proteins and small molecules

where the majority of those molecules are proteins. It is known and understood that

the processes of transcription and translation control thelevel of gene expression

(Alam-Nazki and Krishnan 2012). As most genetic regulatorynetworks of interest

involve many components connected through interlocking positive and negative feed-

back loops (Davidson 2005; DeJong 2002). Gene regulatory networks have an impor-

tant role in every process of life, including cell differentiation, metabolism, the cell

cycle and signal transduction (Karlebach and Shamir. 2008).

3– Protein phosphorylation is a common means of informationtransfer. Many second

messengers elicit responses by activating protein kinases. This protein kinase and oth-

ers are the link that transduces changes in the concentrations of free second messengers

into changes in the covalent structures of proteins (Berg JM2002).

4– The signal is terminated. Protein phosphatases are one mechanism for the termi-

nation of a signaling process. After a signaling process hasbeen initiated and the

information has been transduced to affect other cellular processes, the signaling pro-

cesses must be terminated. Without such termination, cellslose their responsiveness

to new signals. Moreover, signaling processes that fail to be terminated properly may

lead to uncontrolled cell growth and the possibility of cancer propagation (Berg JM
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2002).

Figure 2.1: A schematic diagram of a simplified transduction signal pathway.

2.3 Transcription and Translation

The process of creating RNA from DNA is calledtranscription. During transcription,

an RNA polymerase (enzyme) binds to a specific region of DNA known as a promoter

and reads the DNA sequence resulting in an antiparallel RNA strand (complementary)

which has Uracil (U) instead of Thymine (T) in the template DNA. The new strand of

RNA is called messenger RNA (mRNA). The process of transcription can be divided

into 5 stages: pre-initiation, initiation, promoter clearance, elongation and termina-

tion (Solomon et al. 2007). In eukaryotes, RNA polymerase can not recognize the
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promoter sequence directly. Instead, transcription factors (proteins) mediate the bind-

ing of RNA polymerase. So after certain transcription factors bind to the promoter,

the RNA polymerase binds to the promoter (Ouhammouch et al. 2003). All of these

events occurs in thenucleus. Mature mRNA molecules are transported to the cyto-

plasm wheretranslationtake place. Translation is the process of transforming mRNA

(produced by transcription) to produce protein by the ribosome. Once the ribosome

complex (rRNA and proteins) bind to a specific region of mRNA and start to scan the

mRNA, each nucleotide of mRNA is translated to one amino acid(Stryer and Lubert

2002) (see Figure 2.2).

Figure 2.2: A schematic diagram of transcription and translation. RNA polymerase bind
to gene promoter and begins to scan DNA sequence to generate complementary RNA-in the
nucleus. The mRNA is then transported to the cytoplasm whereribosomes binds and read
through to produce protein.
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2.4 Transcription Factors

Transcription factors (TFs) are proteins that bind to a specific DNA sequence in order

to increase or decrease mRNA production. They might function alone or in a complex

as an activator or repressor.

2.4.1 Hes1–STAT3 interactions

The Hairy and Enhancer of Split homologue 1 protein (Hes1) isa transcription fac-

tor that belongs to the family of basic helix-loop-helix (bHLH) Transcriptional sup-

pressors. Hes proteins consist of three evolutionarily conserved domains: the bHLH,

Orange, and WRPW domains (Dawson et al. 1995). In general Hesproteins suppress

transcription. The Hes1 protein plays crucial roles in controlling the proliferation of

neuronal, endocrine, T-lymphocyte progenitor cells during development and differen-

tiation (Kamakura et al. 2004).

It has been found that Hes1 can repress its own expression through direct binding to

its own promoter (i.e. a negative feedback loop (cf. Figure 2.3). Activation of Hes1

promoter leads to the production of both Hes1 mRNA and protein. The latter then

binds to a DNA sequence on the Hes1 promoter and represses Hes1 gene expression.

Due to the instability of both Hes1 mRNA and Hes1 protein, they disapper after re-

pression. Degradation of Hes1 protein relieves negative autoregluation, permitting the

next round of Hes1 expression (Kobayashi and Kageyama 2011).

Signal transducers and activators of transcription proteins (STATs) are a family of la-

tent cytoplasmic transcription factors that are activatedin response to extracellular

stimuli. They were first discovered in interferon (IFN) regulated gene transcription,

specifically Stat 1 and Stat2 (Schindler et al. 992b). Today seven STAT members have
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Figure 2.3: Schematic diagram showing that the basic Hes1 negative feedback loop is driven
externally by cyclic changes in the level of phosphorylatedStat3 (pStat3), which regulates the
degradation rate of Hes1 protein.

been identified in mammalian cells: Stat1, Stat2, Stat3, Stat4, Stat5a, Stat5b and Stat6,

ranging in size from 750-850 amino acids.

Stat3 was initially identified as the acute-phase response factor (APRF), activated by

interleukin-6, (IL-6). It was further shown that Stat3 activation occurred in the cyto-

plasm, that Stat3 phosphorylation was essential and that Stat3 binds to IL-6 response

elements of various acute-phase protein genes (e.g., the alpha2-macroglobulin, fibrino-

gen, and alpha1-acid glycoprotein genes) (Wegenka et al. 1993).

In response to growth factors, cytokines and tyrosine kinases, STATs are phosphory-

lated and form homo-dimers that translocate from the cytoplasm to the nucleus to act

as transcription activators. In normal cells, activation of STAT3 is transient, because

of proteins that act as negative regulators such as suppressors of cytokine signalling,

(SOCS), but in cancer cells STAT3 is constitutively activated. STAT3 is activated

in many human cancers and plays an important role in the activation of genes en-

coding apoptosis inhibitors, cell-cycle regulators as well as inducers of angiogenesis

(Jing and Tweardy 2005).
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Stat3, the cytoplasmic transcription factor is activated by the JAK2 ( Janus Kinase 2

gene provides instructions for making protein that promotes the growth and division

of cells ) and the phosphration process to be translocated tothe nucleus and acts like

transcriptional factor in the nucleus. The main step of thisprocess is shown in Figure

2.4. Where the inactive JAK are attached to the cytoplasmic domain cytokine recep-

tors. Then, the cytokine molecule bind to association of cytokine receptors this leading

to activate JAKs which cause phosphorylation of tyrosine residues in cytoplasmic pro-

teins of the receptors. After that, the phosphotyrosine complexes one the receptors

bind to STAT proteins this lead to phosphorylates STAT proteins. Then, it dissociate

from the receptor and the binds to one other. The STAT dimer migrates to the nucleus

then bind to the promoter region of cytokine responsive genewhere it is activate gene

transcription.

It has been demonstrated that both active Notch and notch effectors (Hes1 and Hes5)

are involved in STAT3 activation. Hes1 and Hes5 proteins bind to JAK2 and STAT3,

facilitating the formation of the JAK2-STAT3 complex and STAT3 phosphorylation

activation (Kamakura et al. 2004). Research papers presented the first evidence for

crosstalk between two major signal transduction pathways,Notch-Hes and JAK-STAT3-

Hes1 and other Hes protein expression induced by the activation of Notch receptors.

Hes proteins bind to STAT3 directly inducing phosphorylation.

The Notch signaling pathway regulates cell differentiation by the intercellular commu-

nication between cells. Notch protein spans the cell membrane with part of it inside

and part outside. Ligand transmembrane proteins, binding to the extracellular domain,

induce proteolytic cleavage and release of the intracellular domain, which enters the

cell nucleus to modify gene expression (Oswald F 2001).
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Figure 2.4: Schematic diagram showing the Cytokine signaling and the activating of STAT
transcription.

In early stage, the development of the nervous system produces proneural genes such as

Ngn2 which induces the expression of Notch ligands such as Deltalike1 (DLL1) which

activate Notch signaling in neighboring cells forming the Notch domain (NICD). Then,

Notch domain move from the transmembrane region to the nucleus where it forms

NICD complex then induces expression of the basic helix-loop-helix factors Hes1 and

Hes5which repress expression of proneural genes and Notch ligands.

Microarray analysis with cultured fibroblasts identified the signal transducer, the acti-

vator of transcription (Stat3) and the suppressor of cytokine signaling (Socs3) system

as novel oscillators. Janus kinase activates Stat3 by phosphorylation, and phosphory-

lated Stat3 (Stat3-P) forms a dimer that enters the nucleus and activates expression of

target genes such as Socs3. Socs3 in turn inhibits phosphorylation of Stat3, forming a
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negative feedback loop. This negative feedback loop induces oscillations in the forma-

tion of Stat3-P and in the expression of Socs3 Fig 2.5. Especially, Stat3-P and Socs3

oscillations are coupled with Hes1 oscillation as shown in (Fig 2.5 ). Stat3-Socs3

oscillations also inhibits Hes1 oscillation. suggesting that the Stat3-Socs3 pathway

regulates oscillatory expression of Hes1 in the developingnervous system. Hes1 is re-

quired for phosphorylation of Stat3, suggesting that Hes1 oscillations and Stat3-Socs3

oscillations depend on each other (Ryoichiro and Imayoshi 2008).

Figure 2.5: Schematic diagram showing the oscillator network in neuralprogenitors. Hes1
expression oscillates owing to negative feedback. Formation of phosphorylated (-p) Stat3 and
expression of Socs3 also oscillate owing to negative feedback. Hes1 oscillation and Stat3-
Socs3 oscillations seem to depend on each other. Hes1 oscillation then induces Ngn2 and DII1
oscillations, which in turn activate Notch signaling in neighboring cells.

Hes1 expression is downregulated during early G1 phase, where, Hes1 is also known to

promote G1 phase progression by downregulating cyclin-dependent kinase inhibitors.

Thus, Hes1 both promotes and inhibits the cell cycle. Hes1 oscillation is required

for efficient cell proliferation and differentiation of neural progenitors. The negative

feedback loop of Hes1 was proposed by Yoshiura et al. (2007).The negative feedback

is driven by the level of phosphorylated Stat3 which in turn causes Hes1 degradation.

Using mouse fibroblasts after serum stimulation, the results of Yoshiura et al. (2007)
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showed that in the absence of STAT3 signalling, Hes1 proteinis stabilized. Conversely,

when p-Stat3 formation is constitutively up-regulated, Hes1 protein is abolished. The

latter observation would support the existence of a negative feedback loop of Hes1-

STAT3 (Yoshiura et al. 2007).

2.4.2 p53–Mdm2 interactions

p53 is a tumour suppressor protein that plays a crucial role in the regulation of cell cy-

cle, apoptosis, senescence and DNA repair (Fridman and Lowe2003; Vousden and Lu

2002). Mutant p53 genes cause approximately 50% of human cancers (Hainaut and Hollstein

2000; Feki and Irminger-Finger 2004). The progression of the cell cycle phases are

monitored at certain check points via intracellular negative signals to make sure that

a cell replicates without mistakes. If, however, an error occurs during cell replication,

the regulatory proteins are activated (O’Connell and Cimprich 2005). p53 activation

results in cell cycle arrest at G1 or G2, by stimulating some inhibitory protein such

as CKI (Lozano and Zambetti 2005). However, if DNA damage is irreparable, p53

stimulates programmed cell death (apoptosis) (Hengartner2000).

The murine double minute oncogene expressed protein, Mdm2,is an important nega-

tive regulator of the p53 protein. It has been found that mutated p53 in many cancers

is accompanied by an over-expression of Mdm2 protein (Kussie et al. 1996). In nor-

mal conditions, the Mdm2 protein concentration is very low.There are 3 mechanisms

by which Mdm2 inhibits p53 (Vassilev et al. 2004). First, Mdm2 can bind to the p53

transactivation domain, preventing p53 to activate genes expressing proteins for DNA

repair or directing it to apoptosis. Second, Mdm2 is involved in exporting p53 from the

cell nucleus. Moreover, Mdm2 may attach to p53 as ubiquitin results upon p53 degra-

dation. After DNA damage, p53 is activated by protein kinases which phosphorylate

p53. Phosphorylation of the p53 protein prevents the Mdm2-p53 complex formation
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and p53 concentration builds up in the cell. Once the damage is repaired, phosphoryla-

tion of p53 by protein kinases stops and the Mdm2-p53 complexis reformed (Li et al.

2003).

Figure 2.6: Schematic diagram showing mechanisms of cellular stress, e.g., DNA damage,
telomere erosion, hypoxia, or oncogene expression, which can activate the p53 response path-
way. The p53-Mdm2 autoregulatory feedback loop governs thelevel of p53. Over-expression of
Mdm2 in human cancer, e.g., gene amplification of Mdm2, targets p53 for ubiquitin-dependent
proteolytic degradation to disable the p53 network.

2.4.3 Tumour suppressors (inhibitors)

Tumour suppressor genes encode proteins which protect cells from cancer. There are

two families of genes: the cip/kip family and INK4a/ARF. Both groups prevent the

progression of the cell cycle and the formation of tumours. For example, p21, p27

and p57 are members of the cip/kip family. They can bind to cyclin-cdk complexes

causing them to be inactivated, and hence, preventing the cell from from leaving the

G1 phase of the cell cycle. The p161NK4a protein belongs to the INK4a/ARF family.

This protein binds to CDK4 and arrests the cell in the G1 phaseof the cell cycle.
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2.5 The Cell Cycle

The cell cycle is a critical regulator of the processes of cell proliferation and growth

as well as of cell division after DNA damage. The cell cycle also serves to protect the

cell from DNA damage (Schwartz and Shah 2005).

Cell division is a very important process in all living organisms. During the division

of a cell, DNA replication and cell growth also take place to ensure correct division.

These cells divide once in approximately every 24 hours and cell division properly lasts

for only about an hour. However, this duration of cell cycle can vary from organism to

organism and also from cell type to cell type.

The cell cycle is divided into two basic phases, Interphase (resting phase) is the phase

between two successive M phases where it lasts more than 95% of the duration of cell

cycle and M Phase (Mitosis phase) which is representing the phase when the actual

cell division or mitosis occurs.

The interphase is the time during which the cell is preparingfor division by undergo-

ing both cell growth and DNA replication in an orderly manner. It is divided into three

further phases. First, G1 phase (Gap 1) G1 phase correspondsto the interval between

mitosis and initiation of DNA replication. During G1 phase the cell is metabolically

active and continuously grows but does not replicate its DNA. Then, S phase (Synthe-

sis) or synthesis phase marks the period during which DNA synthesis or replication

takes place. During this time the amount of DNA per cell doubles. However, there

is no increase in the chromosome number, so the number of chromosomes at S will

remains the same number of the chromosome in phase G1. Finally, G2 phase (Gap

2) During the G2 phase, proteins are synthesised in preparation for mitosis while cell

growth continues.

Some cells exhibit division because they have been lost as result of injury or cell death,
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they exit G1 phase to enter an inactive stage called quiescent stage (G0) of the cell cy-

cle. Cells in this stage remain metabolically active but no longer proliferate.

M phase is the most dramatic period of the cell cycle. The mitosis has been divided

into four stages of nuclear division. First, Prophase whichis the first stage of mi-

tosis follows the S and G2 phases of interphase where new DNA molecules formed.

In the prophase, the proteinaceous components of the cell cytoplasm help to attache

the two chromatids together to form compact mitotic chromosomes. Cells at the end

of prophase, do not show golgi complexes, endoplasmic reticulum, nucleolus and the

nuclear envelope. Then, Metaphase where the complete disintegration of the nuclear

envelope marks the start of the second phase of mitosis, hence the chromosomes are

spread through the cytoplasm of the cell, and the condensation of chromosomes is com-

pleted. At this stage, chromosome is made up of two sister chromatids, which are held

together by the centromere. Hence, the metaphase is characterised by all the chromo-

somes coming to lie at the equator with one chromatid of each chromosome connected

by its kinetochore to spindle fibres from one pole and its sister chromatid connected

by its kinetochore to spindle fibres from the opposite pole. After that, Anaphase, At

the onset of phase, each chromosome arranged at the metaphase plate is splited simul-

taneously and the two daughter chromatids begin their migration towards the two op-

posite poles. Where each chromosome moves away from the equatorial plate. Finally,

Telophase, At the beginning of the final stage of mitosis, i.e., telophase, the chromo-

somes that have reached their respective poles decondense and lose their individuality.

Also, Nuclear envelope assembles around the chromosome clusters and golgi complex

and ER reform.

The timing and order of cell cycle events are monitored during cell cycle checkpoints

that occur at the G1/S phase boundary, in S phase, and during the G2/M phases. These
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checkpoints ensure that critical events in a particular phase of the cell cycle are com-

pleted before a new phase is initiated, thereby preventing the formation of genetically

abnormal cells. Cell cycle progression can be blocked at these checkpoints in response

to the status of both the intracellular and extracellular environment. Damaged cells are

eliminated through the process of apoptosis. Thus as a cell progresses through the cell

cycle, it must determine whether to complete cell division,arrest growth to repair cel-

lular damage, or undergo apoptosis if the damage is too severe to be repaired or if the

cell is incapable of repairing the DNA. It is at the checkpoints that the cell determines

which of these options is suitable (King and Cidlowski 1998).

Two types of protein are considered to be the most crucial regulatory molecules of the

cell cycle: cyclins and cyclin-dependent kinases (CDK). They control switching from

G1 to S or G2 to M. Cdk itself adds phosphate to a variety of proteins for the activation

or inactivation protein in question which in turn coordinates entry into the next phase.

In response to extracellular signals (e.g. growth factors), cyclin D activates expression

of cyclin E protein which binds to cdk2 leading the cell to move from G1 to S-phase.

Cyclin B binds to cdk1 allowing the cell to transition from G2to M-phase. Once the

nuclear envelope breaks down, the cyclin B-cdk complex becomes inactivated and the

cell exits M-phase (Robbins et al. 2004). Targeting CDKs would recapitulate cell cy-

cle checkpoints that would necessarily limit a tumor cells ability to cycle, and this may

then facilitate the induction of apoptosis (Schwartz and Shah 2005).

During cell division a number of important cell cycle proteins are synthesized period-

ically dependent on transcription. Often the function of tumor suppressors like p53 is

to arrest cell division and to send a damaged cell into apoptosis. The group is working

on identifying transcriptional targets of p53. Thereby they discovered new signaling

pathways leading to cell cycle arrest and apoptosis (Katrien Vermeulen and Bockstaele
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2003).

This great interest in apoptosis is due to the recognition that many diseases involve

too much apoptosis or too little apoptosis. Many toxins and other cellular stresses can

also trigger apoptosis. Apoptosis is associated with a distinct set of biochemical and

physical changes involving the cytoplasm, nucleus and plasma membrane. Early in

apoptosis, the cells round up, losing contact with their neighbors, and shrink (Lawen

2003).

Apoptosis and proliferation are intimately coupled. Some cell-cycle progression is

regulated by positive and negative signals where the cell cycle regulators can influ-

ence both cell division and programmed cell death. A perfectcontrol of cell divi-

sion is important for avoiding the development of cancer. The linkage of cell cy-

cle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-

2, NF-κB, CDK, cyclins and CKI. A direct link between cell cycle and apoptosis

may be supposed from the fact that a number of similar morphological features exist

between mitosis and apoptosis. Mitosis and apoptosis sharecommon morphologi-

cal features such as cell shrinkage, chromatin condensation and membrane blebbing

(Katrien Vermeulen and Bockstaele 2003).
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Figure 2.7: Schematic diagram of the cell cycle. M = Mitosis, G1 = Gap 1, G2= Gap2, S =
Synthesis.

2.5.1 Cancer

The term “cancer” is actually a broad group of diseases whichmay be described as

out-of-control cell growth. Cancer cells divide and grow uncontrollably. There are two

types of tumours – benign tumours and malignant tumours. In benign tumours, the

appearance of cells is often quite normal, but they divide more rapidly than normal.

Benign tumours do not invade neighbouring tissues and do notlead to metastasis (the

spread of a tumour from one organ to other non-adjacent organs.). These tumours

usually do not grow beyond 1-2mm3 due to the lack of oxygen and nutrients.

On the other hand, malignant tumours, or cancers, display two life-threatening phe-

nomena – angiogenesis and metastasis. Angiogenesis is a process by which the tumour

cells induce blood vessels to provide them with the requirednutrients needed for tu-

mour expansion. Metastasis is the process of the growth and development of secondary

tumours at distant locations in the host to the primary tumour.
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A recent seminal paper identified six key aspects of cancer, now known as “hall-

marks”, which distinguish it from normal cells/tissue involving: self-sufficiency in

growth signals, limitless replicative potential, evasionof apoptosis, tissue invasion

and metastasis, insensitivity to growth-inhibitory signals and sustained angiogenesis

(Hanahan and Weinberg 2000). The recent advancements in cancer genomics has

made it clear that different transcriptional factors such as p53, stat1 and hes1, have

unique roles in tumour development and suppression. So the possibility to use these

factors as biomarkers, tumour suppressors and gene therapyagents for cancer manage-

ment is attracting the attention of scientists and clinicians. However, these therapies

are still in their early stages of development. Hence, for the development of compre-

hensive cancer management and anticancer therapies, a better understanding of these

transcriptional factors is required. The studies on p53, stat1 and hes1 in the present

thesis aims to provide a better understanding of the relationship between cancer and

normal cells.
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Chapter 3

Mathematical Modelling of Negative

Feedback Systems

In this chapter we review some of the work done in the theoretical modelling of neg-

ative feedback systems (e.g. Hes1, p53-Mdm2) and other relevant studies. Most of

the dynamic models which represent the fundamental regulatory activity of the cell are

controlled at the level of the gene and proteins. It is important to understand the cellu-

lar organization and the dynamic activity of the molecular control processes involved

in these feedback systems and gene regulatory networks since concentration levels in

such systems are known to undergo oscillatory behaviour.

3.1 Ordinary Differential Equation Models

Perhaps the first theoretical investigation into such intracellular regulatory networks

was that of Goodwin (1965) who studied the type of periodic behaviour which can
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arise in model systems incorporating the essential controlfeatures of enzymatic regu-

latory processes and discussed the significance of oscillatory motion in relation to the

organization of cellular processes in time.

The mode of Goodwin (1965) considered the interactions between enzymesYi and

their mRNAXi in a negative feedback loop which lead to set of equations describing

the dynamic of this system as follows:

dXi

dt
=

αi

Ai +kiYi
−bi

dYi

dt
= αiXi −βi

The above system of equationsi = 1,2,3... define what Goodwin (1965) termed a non-

linear biochemical oscillator. As result of this work, Goodwin (1965) reported that the

majority of enzymes in a cell are being synthesised at any onetime and their synthesis

and activity are regulated by negative feedback control processes.

Goodwin (1965) also described the interactions in some intracellular processes where

one molecular species has a repressive effect on another. This feedback systems was

represented mathematically by the following system of equations:

dX1

dt
=

α1

A1+k11Y1+k12Y2
−b1

dY1

dt
= α1X1−β1

dX2

dt
=

α2

A2+k21Y1+k22Y2
−b2

dY2

dt
= α2X2−β2

The result of this study showed that the cell employs non-linear interactions between

control circuits to achieve the organization of biochemical processes in a temporal do-

main, where the behaviour of the oscillations is completelycoherent and the slower
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oscillation is driven by the faster one.

In this paper, Goodwin (1965) also investigated a special class of oscillations of neg-

ative feedback control processes in the more general type ofsystem where damping,

oscillations and limit cycle are expected. The system of equations which was studied

was the following:

dX1

dt
=

α1

A1+k1Z1
−b1X1

dY1

dt
= µ1X1−β1Y1

dZ1

dt
= γ1Y1−δ1Z1

These equations consider for the first time the concept of delay due to the diffusion of

molecules, the concept of “precursors” and the notion of a metabolic sequence. From

these studies the oscillatory behaviour which is expected to be a very important dy-

namic feature of cellular control processes were predictedand it was shown that the

oscillations can arise at different levels of cellular organization.

Griffith (1968a) observed that the theoretical method for analysing the circumstances

for occurrence of stable oscillations and the arrangement of control interactions was

computational simulations. He considered the Goodwin (1963, 1965) model given

schematically byG+mR= GRm whereR= Repressor, combining with a geneG. The

proportion of timeG is active is given by,p= 1
1+kxm , where the parameterm→ ∞.

Griffith used standard techniques to examine the stationarypoints of the system (M
′

=

E
′

= 0) and their (linear) stability, and the analysis showed that were are no limit cycles.

He also studied the three variable case given byM0 = βE0, E0 = γP0, αβγP0(1+Pm
0 )
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= 1. He reported that the absence of limit cycles in the two variables case should still

hold, whilst in three variable case, it would be surprising if limit cycles appeared for

very low values ofm.

In a second paper, Griffith (1968b) discussed equations similar to those discussed in

Part I. He consideredG+mI = GIm whereI is a so-called inducer for metaboliteP.

The time for which the geneG is active is given by,P= Kxm

1+kxm , whereK = equilibrium

constant.

Once again he is carrying out a linear stability analysis of the steady-states of the sys-

tems, the same general behaviour to the previous model was observed.

Freeman (2000) observed that the intercellular communication that regulates cell fate

during animal development must be precisely controlled to avoid dangerous errors.

Both positive and negative feedback loops play vital roles in dynamic regulation of

developmental signalling. In this paper, he analysed the temporal control of signalling,

and spatial control by feedback. He also analysed the integration of feedback events

in pattern formation. It was observed that positive and negative feedback can estab-

lish left–right asymmetry. It was reported that while positive feedback can contribute

distinct signals, negative feedback can restrict the ligand range. He also reported that

negative feedback generates stability.

Ciliberto et al. (2005) observed that oscillations can arise from a combination of pos-

itive and negative feedbacks or from a long negative feed back loop alone. In their

study they developed a mathematical model of p53 oscillations based on positive and

negative feedback in the p53 / Mdm2 network. According to themodel, the system
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reacts to DNA damage by moving from a stable steady state intoa region of stable

limit cycles.

They observed certain points in their model as follows:

1. p53/Mdm2 network responds to environmental stress such as gamma irradiation by

generation of pulses of p53. The oscillations produced increased with increasing stress.

2. In their model p53 level is kept low by degradation inducedby Mdm2. The simu-

lated DNA damage by increasing Mdm2 degradation in nucleus.

3. They also inferred that the model can be used to formulate two experiments that

might discriminate whether oscillations are based on negative feedback look alone or

on a combination of positive and negative feedback loops.

Geva-Zatorsky et al. (2006) studied oscillations in the p53-Mdm2 system considering

negative and positive feedbacks and the mechanism of oscillations of p53-Mdm2, the

variability in p53 pulses and the potential function of p53 oscillations there. The au-

thors also studied the dynamics of the p53-Mdm2 feedback loop in individual cells.

Zhang et al. (2007) made an analytical report exploring the mechanisms of DNA-

Damage Response to p53 pulses and their possible relevance to apoptosis. They con-

structed models at protein level, with the following assumptions:

1. Transcriptional regulation is replaced by regulation corresponding to protein syn-

thesis using a Hill function given by

H(x) = xn

Jn+xn , with Transcription Factor [TF] =x. They formulated models combining
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positive and negative feedback loops. They compared the dynamics of the following

models using

G(u,v,q, r) =
2ur

(v−u+v.q+u.r)+
√
(v−u+v.q+u.r)2−4u.r(r −u)

2. Heaviside function with

H(x) =





1,x> 0

0,x≤ 0

They evaluated the DNA damage and degradation rate constants using

d(DNAdamage)
dt

= −krepair.H(DNAAdvantage)

kd2 = kd2(1+DNAAdvantage)

kd53 = kd53+kd53.G[(Mdm2∗,θ ,
J1

P(53∗)
,

J2

P(53∗)
]

where,(Mdm2∗) = (MdM2nuc) andP(53∗) = [P53]

Using the above three equations, the models were organised to evaluated(P53)
dt , d(MdM2cyt)

dt ,

d(Mdm2nuc)
dt for the given steady state values. They generalised the model of Ciliberto et al.

(2005). They observed that in contrast to the jumping of parameter values between

steady-state and robust oscillatory state, the models proposed by them reflected that

the onset of oscillations is difficult. They observed that the model is consistent with

experimental observation and p53 phosphorylation.

Bose and Ghosh (2007) have given an overview of their studieson thep53−Mdm2

network and the associated pathways from a systems biology perspective. They discuss

a number of key predictions, related to some specific aspectsof cell-cycle arrest and
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cell death, which could be tested in experiments. They describe the mathematical mod-

els developed by them to study the p53-mediated cell cycle arrest and apoptosis. We

discuss briefly the major results obtained and point out their experimental relevance.

They considered the cell-cycle arrest, as the cell-cycle isan example of a dynamical

system in which events unfold as a function of time.

They inferred that there is a marked difference in the apoptotic response of cancer cells

with normal Mdm2 expression and Mdm2 over-expression when treated with nutlin, an

inhibitor of the p53-Mdm2 interaction. They also inferred that low levels of caspase-3

cannot bring about cell death. The amount of p21, the transcription of which is acti-

vated by p53, appears to be a crucial factor in determining the cell fate.

Zeiser et al. (2007) described a model for the Hes1 oscillator considering the transcrip-

tion factor for a single binding site described by

2X =
kd

k−d
X2

X2+B0 =
k1

k−1
B1

with k1, k−1 being association and dissociation constants respectively. They attempted

to estimate the Hill coefficient in the switch of a Hes1 oscillator and suggested a model

of the autoregulative network. They used the Goodwin systemand found sustained

oscillations.
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Puszynski et al. (2009) designed model for crosstalk between p53 and the NF-κB sys-

tem and anti-apoptotic functions of NF-κB combining their stochastic models of NF-

κB and p53 system. Their main assumption wasIαBα andA20 transcription rates are

proportional to b1
b1+p53pm

, wherepm is the amount of active nuclear p53.

3.2 Delay Differential Equation Models

Monk (2003) reported oscillatory expression of Hes1, p53, NF-κB driven by tran-

scriptional time delays. Representing Hes1 mRNA by M(t) andHes1 protein by P(t),

he considered the system:

dM
dt

= αmG[P(t)− τ]−µmM(t)

dP
dt

= αpM(t)−µpP(t)

whereµm, µp = rate of degradation of mRNA and Hes1,αm = basal rate of transcript

initiation and

G[P(t − τ] = 1
1+(P(t−τ)/P0)n

, whereP0 = concentration of Hes1. He also assumed the

following:

(1) The translation is non-saturating; (2) movement of Hes1between the cytoplasm

and nucleus is neglected and (3) the delay takes a discrete valueτ.

Bernard et al. (2006) studied transcriptional feedback loops and the role of Gro/TLE1

in Hes1 Oscillations, inspired by the experiments on oscillatory dynamics due to Hes1,
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p53 and NF-KB. They studied the effects of Hes1 factor. They considered the model

of Jensen et al, Monk and Lewis which is describing the cellular concentration of Hes1

mRNA representing the cellular concentration of Hes1 protein. They also considered

an additional influencing factor namely, the Gro/TLE1 protein, activated through Hes1-

induced hyper-phosphorylation.

Momiji and Monk (2008) developed a more detailed model of theHes1 circuit of

Monk (2003), incorporating nucleo–cytoplasmic transport. They showed that differ-

ential protein stability can increase the amplitude of Hes1oscillations but that the

resulting expression profiles do not fully match experimental data. They considered

the delay differential equation system.

They observed that the models represent Hes1 auto-repressive feedback loop in a sim-

ple manner representing transcription, translation repression and degradation repre-

sented mathematically as if they take place in a single spatially homogeneous cellular

compartment. In order to consider additional known bio-chemical processes, they ob-

served their model of the Hes1 network incorporates the key features of Hes1 dynam-

ics, although it does not take into account the interaction of Hes1 with other biochem-

ical species. They also studied the external driving of Hes1oscillations by STAT2

phosphorylation. They considered the model of Yoshiura et al. (2007) and extended

the model to study a three component Hes1 Model.

Nikol’skii and Vasilenko (2000) analyse the signal transduction performed by proteins

of the STAT (Signal transducer and activators of transcription) family. They observed

that the STAT Protein activator develops in two steps - first there occur phosphoryla-

tion of tyrosine, then that of serine also located in the C-terminal part of the molecule.
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They reported that unlike other short-lived transcriptionfactors, STAT proteins have

a long half-life. It is also reported that the activated STATmolecules are inactivated

by Cytokines and growth factors that activate STAT Proteins. They concluded that the

main feature allowing proteins of the STAT family to be united into single group was

their combination of two functions - the signal and transcriptional ones. The participa-

tion of the signal transduction demonstrate once more interconnection of all cellular

process.

Bar-Or et al. (2000) reported the generation of oscillations by the p53-Mdm2 feedback

loop. Assuming that the p53 concentration obeys the kineticequation:

d(P53)
dt

= sourcep53− p53(t)Mdm2(t)degradation(t)−dP53P53(t)

wheresourcep53 = synthesis rate of p53 protein and the last term reflectingMdm2

independent mechanism for kinetics governing the Mdm2 concentration was given by

d(Mdm2)
dt

= p1+ p2max
I(t)m

kn
m+ I(t)n −dMdm2.Mdm2(t)

where I is the Intermediary given by,

d(I)
dt

= activityp53(t)−kdelayI(t)

whereactivity = Gsignal(t)
1+C2Mdm2P53, where the activating signal was given by,d(signal)

dt =

−repair.signal(t).

Using the model, they reported consistency with computer simulations and observed
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that a delay in p53-dependent induction of Mdm2 is a pre-requisite for oscillatory be-

haviour and the length of delay determines period of oscillations.

Mihalas et al. (2006) studied the following system:

x
′

1(t) = 1−b1x1(t)

y
′

1(t) = x1(t)− (a1+a12y2(t − τ))y1(t)

x
′

2(t) = f (y1(t − τ))−b2x2(t)

y
′

2(t) = x2(t)− (a2+a21y1(t − τ))y2(t)

where f : R→ R, the Hill function, is given by

f (x) =
xn

a+xn

n∈ N+, a> 0, and all parameters are less than or equal to 1.

They studied the equilibrium state of the system and investigated the existence of Hopf

bifurcation for the system using time delay and analysed thedirection of Hopf bifur-

cation by normal form theory.

Sturm and Weber (2008) discuss the use of generic methods to reduce the questions on

the existence of Hopf bifurcations in parameterized polynomial vector fields to quanti-

fier elimination problems over the reals combined with simplification techniques avail-

able in REDLOG. Using generic methods to reduce the Hopf bifurcation problem to

a quantifier, elimination available in REDLOG, one can construct most of the results
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given in the literature within less than a minute of computation time.

Shi-Wei et al. (2007) propose a statistical signal responsemodel to describe the dif-

ferent oscillatory behaviour in a biological network motif, exploiting the non-linear

dynamics in the negative feedback loop. The delay is chosen as a bifurcation model,

the existence of Hopf bifurcation and the stability of the periodic solutions of the model

equations with the centre manifold theorem and the normal form they are discussed. It

is studied that there is a periodic solution born in a Hopf bifurcation beyond a critical

time delay and this bifurcation phenomenon may be importantto elucidate the mecha-

nism of oscillatory activities in regulatory biological networks.

In this study, exploiting an auto-regulatory negative feedback loop, a statistical model

of the p53–Mdm2 negative feedback system, with the aim of describing the different

dynamical oscillatory behaviour of protein levels - both inindividual and at population

cells in a self-consistent way. This is elucidated through the equations:

d(Xt)
dt

= AX(t)+BX(t− τ)+F

A = (−α p(1− r0p)M−µ p−α p(1− rp)P

It is assumed that under normal conditions, the amount of p53protein in the cell is kept

low by the genetic metric in Mdm2 and p53 itself. When cells are exposed to damaging

agents, it increases suddenly and this is followed by a cascade of events, through the

modification of the binding properties of Mdm2.

Thus the authors state that:
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(i) The p53 and Mdm2 leave their basal levelsP(0) andM(0) and increase, with p53

followed by Mdm2.

(ii) After some time, due to negative feedback mechanism decreases its own along with

the level of Mdm2 and enter a stationary level(p∗,M∗).

(iii) When the signal is completely resolved, the p53-Mdm2 loop returns to the normal

case and the levels of p53 and Mdm2 to their basal values.

3.3 Partial Differential Equation Models

Building on the model of Mahaffy and Pao (1984), Busenberg and Mahaffy (1985)

considered a class of models based on the theory of Jacob and Maned (genetic repres-

sion for control of biosynthesis and pathways in cells) including both spatial diffusion

and time delays. Based on Goodwin’s assumptions, they considered the following

system:

du1(t)
dt

= f (v1(t)−b1u1(t)+a1

∫

−∂ω
[u2(x1(t)−u1(t)]dSω

dv1(t)
dt

= −b2v1(t)+a2

∫

−∂ω
[V2(x1(t)−V1(t)]dSω

∂u2(x, t)
∂ t

= D1∆u2(x1t)−b1u2(x1t)

and

∂v2(x, t)
∂ t

= D2∆v2(x1t)−b2u2(x1t)+C0u2t(x),
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wherex∈ ω, with boundary conditions,

∂u2(x, t)
∂ t

= −β1[u2(x1t −u1t]

and

∂v2(x, t)
∂ t

= −β ∗[v2(x1t)−v1(t)D2∆v2(x1t)−b2u2(x1t)+C0u2t(x),

∂u2(x, t)
∂ t

=
∂v2(x, t)

∂ t
= 0

with the constantsbi = Kinetic Rates of decay,ai = rates of transfer,Di = Diffusion

Coefficients,C0 = production rate of repressor;

v1(t),u2(x) = Delayed concentrations having discrete delays or a distributed delay,

given by,

Zit =
∫ 0

−r
Zi(t +θ)dη(θ)

with
∫ 0
−r dη(θ) = 1. Alsoβ1 andβ ∗

1 are Fick’s Law constants.

They obtained Differential Equation with one delays describing well mixed compart-

ment system. From the above equations, they reduced the two compartment diffusion

model to a system of delay differential equations. They established that the model re-

duces to a well mixed two compartment model when the Diffusivity tends to∞.

Brown and Kholodenko (1999) first estimated the relative steady state gradient for a
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protein located exclusively on the cell membrane. They reported that the absolute

concentration and gradients depend on kinase activity. They concluded that if the ki-

nase and phosphatase of a protein are spatially separated ina cell, then large spatial

gradients of the phospho-protein are inevitable, which hasimportant implications in

cell-signalling.

Rangamani and Iyengar (2006) analysed the spatio-temporalrepresentations of dy-

namic cellular phenomena and how these models can be used to understand biolog-

ical specificity in functional response. They studied the direct interaction networks.

They observed that if the reaction is an enzyme catalysed reaction, where there is no

change in the enzyme, the rate of reaction can be formulated using Michaelis–Menten

Kinetics. They analysed chemical kinetics using ODEs and PDEs derived from the

biochemical reaction system:

A+B⇋
k1
k2

C

where the rate of the forward reaction =k1[A][B] and the rate of the backward reaction

= k2[C]. Net reaction rate = forward rate - backward rate.

They studied the temporal dynamics of the system by analysing the system of ODEs

and further they analysed the spatio-temporal dynamics from the system of reaction–

diffusion equations. For estimating the diffusion coefficients of the various species,

they considered the Stokes’ and the Wilke–Chang.
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Gordon et al. (2009) reported the Spatio-Temporal Modelling of P53-Mdm2 Oscilla-

tory system, investigating the spatial effects. Their spatial model accounts for both

negative feedback and transcriptional delay. Consideringp53 and Mdm2 with the

six kinetic interactions namely: (1) basal p53 synthesis, (2) Mdm2 independent p53

degradation, (3) Mdm2-mediated P53 elimination, (4) basalp53-independent Mdm2

synthesis, (5) p53-induced Mdm2 synthesis and (6) Mdm2 degradation.

Sturrock et al. (2011) derived systems of partial differential equations to capture the

evolution in space and time of the variables in the Hes1 and p53-Mdm2 systems.

Through computational simulations they show that their reaction-diffusion models are

able to produce sustained oscillations both spatially and temporally, accurately reflect-

ing experimental evidence and advancing previous models. The simulations of our

models also allow us to calculate a diffusion coefficient range for the variables in each

mRNA and protein system, as well as ranges for other key parameters of the models,

where sustained oscillations are observed. Finally, by exploiting the explicitly spatial

nature of the partial differential equations,they manipulate mathematically the spatial

location of the ribosomes, thus controlling where the proteins are synthesized within

the cytoplasm. The results of their simulations predict an optimal distance outside the

nucleus where protein synthesis should take place in order to generate sustained oscil-

lations.

They inferred that the simulation results of our models havedemonstrated the existence

of oscillatory dynamics in negative feedback systems both for relatively simple (Hes1)

and more complex (p53-Mdm2) pathways and have been able to focus on reactions

occurring both in the cell nucleus and in the cytoplasm. The main advantage of using

systems of PDEs to model intracellular reactions is that thePDEs enable spatial effects

to be examined explicitly.
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Cangiani and Natalini (2010) had earlier considered a spatio-temporal model for pro-

tein transport along microtubules, but not applied to negative feedback systems. This

work was extended by Sturrock et al. (2012) to account for theeffect of the nuclear

membrane, active transport and cell shape on the observed oscillations.

Shymko and Glass (1974) studied spatial switching with two localised but chemically

coupled catalytic sites and analysed the dependence of stability of the steady state.

They considered the following equations:

∂ψ
∂ t

+F(ψ)−D▽2 ψ = G(ψ)∆(r)

whereψ(r,t) is the vector of concentrations. The dependence for synthesis of chemical

species was found through

fA(ψ) =
b+(ψ +θ)n

1+(ψ +θ)n

whereb < 1. They showed that the qualitative dynamics of chemical systems with a

spatially heterogeneous catalyst depends in a fundamentalway on the relative locations

of the catalytic sites.
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3.4 Analytical and Stochastic Models

Finally we note that recently there has been some work done inattempting to solve

models of a canonical gene regulatory network – the “self-repressing gene” (i.e. the

Hes1 system) – using analytical techniques. Several papershave adopted a stochastic

approach and constructed a so-called “Master Equation” forsuch systems (Hornos et al.

2005; Ramos et al. 2011; Grima et al. 2012; Miekisz and Szyma´nska 2013) governing

the probabilitiesfi(n, t), i = 0,1 (gene off or on) that there aren protein molecules in

the system at timet and the gene (DNA) is in the statei. Using generating function

techniques exact analytical solutions have been found for the steady-state problem and

also the time-dependent problem, providing information onthe total number of protein

molecules in the system. However, we note that such models are highly theoretical and

rather abstract, treating the distinct processes of transcription and translation as one,

and ignoring all spatial effects.

3.5 Summary

Since the seminal work of Goodwin (1965) there have been manypapers on gene regu-

latory networks (intracellular negative feedback systems) adopting a range of different

modelling approaches and using different mathematical techniques – ordinary differen-

tial equations, delay (ordinary) differential equations and some with partial differential

equations.

For the remainder of this thesis, we will use systems of partial differential equations

to model in an explicitly spatial way several key gene regulatory networks which have

been implicated in cancer – in particular, the Hes1 system and the p53-Mdm2 system.
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Chapter 4

A Spatio-temporal Mathematical

Model of the Hes1 and p53-Mdm2

Gene Regulatory Networks

4.1 A Spatio-Temporal Mathematical Model of the Hes1

System

4.1.1 Introduction

In this chapter we give an overview of a novel model by Sturrock et al. (2011) which

developed the original model of Monk (2003). We will subsequently extend this model

in chapter 5 and chapter 6 for Hes1 dimerization, stat3 and p53-Mdm2.

The Hes1 system is one of the most investigated feedback inhibition systems involving
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the transcription factorHairy Enhancer of Split 1(Hes1) (Monk 2003). Hes1 tran-

scription factor is a protein that is encoded by the Hes1 geneand a member of the

Hes family of proteins which are basic helix-loop-helix (bHLH)-type transcriptional

repressors that possess the bHLH domain in the N-terminal region for DNA binding.

Hes1 has been shown to influence of nervous and digestive systems partially through

the Notch signalling pathway by repressing bHLH activators. Hence, it is a primary

target of Notch signalling and regulates many biological events by negatively regulat-

ing transcription of tissue-specific transcription factor(Ohsako et al. 1994).

HES1 also plays an important role in the Notch signalling pathway, (Shimojo et al.

2008). In the absence of Notch signalling, Hes1 expression is inhibited. After Notch

signals have been processed within the cell, the plasma membrane releases the in-

tracellular domain of Notch, which moves to the nucleus where it associates with

RBPJ forming a complex that lead to activates Hes1 expression. Notch signalling

activates Hes1 expression where HES1 has been shown to target Notch ligands such

Dll1, Jagged1 (Jag1), and Neurogenin-2 (Ngn2) (Kageyama 1999).

Also, Hes1 can repress its own production by directly binding to N-box target se-

quences in its own promoter and represses the transcriptionof hes1 mRNA, thus form-

ing a negative feedback loop, which produces oscillations in Hes1 gene expression.

The interaction of the Hes1 system is similar to the generic example of a negative

feedback loop with variable X and Y (see Figure 4.1). An increase in X causes Y to

increase, which in turn results in the inhibition of X. AfterX begins to decrease Y

levels will diminish, and this allows X to increase again. The repetition of this process

produces oscillations in X and Y. Figure 4.2 shows that Hes1 follows the same process

to produce oscillations, where Hes1 protein is produced by Hes1mRNA and then goes

on to inhibit its own mRNA and so forth, with the result that the system oscillates with
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period of around 120 minutes. Hes1 oscillations are important for the maintenance

and proliferation of neural stem cells under the control of Notch signalling (Baek et al.

2006).

Figure 4.1: A generic negative feedback loop.

4.2 A Mathematical Model of the Hes1 System

Mathematical modelling of intracellular regulatory systems has developed since it be-

gan in 1965 with the work of Goodwin (1965). Monk (2003) was the first to consider

biological data to develop a mathematical model of the Hes1 system. The basic re-

action kinetics for this system modelled using ordinary differential equations are as

follows:

d[M]

dt
=

αM

1+( [P]p̂ )h
−µM[M] (4.1)

d[P]
dt

= αP[M]−µP[P] (4.2)

where[M] and [P] are the concentrations of Hes1 mRNA and Hes1 protein, respec-

tively.

The first term on the right hand side of Eq.(4.1) is a Hill function which decreases as
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the protein concentration increases, modelling repression by the Hes1 protein. The

parameterαM is the rate of transcript initiation in the absence of Hes1 protein andp̂ is

the concentration of Hes1 andh is a Hill coefficient. The second term represents the

natural degradation of the Hes1 mRNA with parameterµM.

The first term on the right hand side of Equation (4.2) is the Hes1 protein production

term from translation of Hes1 mRNA with parameterαP and the second term repre-

sents Hes1 protein degradation with parameterµP.

A standard mathematical analysis shows that two-componentmodels with negative

feedback cannot have stable self-sustained oscillations (Bernard et al. 2006). In order

to model the intracellular processes, Monk (2003) introduced a time-delay to equations

(4.1), (4.2) to account for the processes of transcription and translation, and obtained

sustained oscillations.

The two-compartment model for Hes1-mRNA self-repression with time-delay can be

written as a system of delay differential equations (DDEs):

d[M]

dt
=

αM

1+( [P(t−τM)]
p̂ )h

−µM [M] (4.3)

d[P]
dt

= αP[M(t− τP)]−µP[P] (4.4)

whereτM andτP are the transcriptional and translational delays, respectively.
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Figure 4.2: A schematic diagram of the Hes1 gene regulatory network. hes1 mRNA is tran-
scribed in the nucleus. It is then exported to the cytoplasm where translation into Hes1 protein
occurs. hes1 mRNA is then inhibited in the nucleus by its own protein. This is one of the
simplest examples of a negative feedback loop.

A Time Delay Model

We here turn our attention to time delay in the transcriptionand translation processes.

Many physiological systems which operate by feedback mechanisms have time de-

lays occurring during the main process of receiving the effect and the physiological

response. Therefore a time delay is a natural occurrence dueto the finite transmission

speed of matter, energy and information (Yutaka and Shinji 2011).

A time delay exists in the Hes1 system if any of the processes inside the cell take longer

than others. For example, a time delay could exist in the mRNAtranscription or in the

protein translation or it could be in both.

We rewrite the system of equations (4.1), (4.2) consideringthe time delay first caused

by the delay in mRNA transcription, then by the delay in protein degradation and
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finally by both interaction, transcription and production.Then we will study the system

numerically using the parameter values in Table 1 to show theeffect of the time delay

on the oscillations.

Table 4.1: List of parameter values

Parameters Values
αM 1
αP 1
µM 0.1
µP 1
τM 20
τP 20
h 5
p̂ 1

For a delay caused in the protein production by the mRNA, in the cytoplasm which

may coursed by the interaction of the Hes1 with other intracellular proses such as the

activation of JAK-STAT interaction or by the activating Notch signalling.

To study the delay in protein production, equations (4.1), (4.2) become:

d[M]

dt
=

αM

1+(
[P]
p̂ )h

−µM [M] (4.5)

d[P]
dt

= αP[M(t− τP)]−µP[P] (4.6)

If the delay was in the mRNA transcription then we have the following equations:

d[M]

dt
=

αM

1+(
[P(t−τM)]

p̂ )h
−µM [M] (4.7)

d[P]
dt

= αP[M]−µP[P] (4.8)
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Figure 4.3: Plot of Hes1 mRNA (red) and Hes1 protein (blue) concentrations against time with
delay parameterτ = 20. Computational simulation of the model with delay in Hes1 protein
production, system of equations (4.5),(4.6). Oscillations are observed in the concentrations of
both hes1 mRNA and HES1 protein.

Finally, if the delay was a result of both processes of mRNA transcription and protein

production, the equations are as follows:

d[M]

dt
=

αM

1+(
[P(t−τM)]

p̂ )h
−µM [M] (4.9)

d[P]
dt

= αP[M(t− τP)]−µP[P] (4.10)

We solve the systems of equations numerically using the parameter values in Table 1

and, as expected, we obtain oscillations in both hes1 mRNA and Hes1 protein levels.

Figures 4.3, 4.4 and 4.5 show the oscillation of the concentrations of Hes1 mRNA and

Hes1 protein vary over time. By comparing Figures 4.3, 4.4 and 4.5, we see that os-

cillatory dynamics are sustained steady and the delay does not caused big different on

the oscillation. However, mRNA transcription delay has slightly delay on the protein

production in Fig 4.4 comparing to the delay caused by the protein production itself
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Figure 4.4: Plot of Hes1 mRNA (red) and Hes1 protein (blue) concentrations against time
with delay parameterτ = 20. Computational simulation of the model with delay in hes1 mRNA
transcription, system of equations(4.7),(4.8). Oscillations are observed in the concentrations
of both hes1 mRNA and HES1 protein.

in Fig 4.3, while Fig 4.5 shows the oscillation takes more time for the mRNA and the

protein to shift between the cytoplasm and the nucleus.

4.3 The Hes1 Spatio-temporal Mathematical Model

We now extend the previous models and consider spatial interactions within the cell as

shown in Figure 4.6. We consider the nucleus and cytoplasm astwo spatial compart-

ments separated by the nuclear membrane (in all subsequent analysis and models, zero

flux boundary conditions are imposed on all species at the cell membrane). Also, we

couple the reaction kinetics from ODE model (4.1), (4.2) with diffusion to model the

protein and mRNA transport within the cell.

Hes1 transcription occurs in the nucleus to produce hes1 mRNA which then transfers
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Figure 4.5: Plot of Hes1 mRNA (red) and Hes1 protein (blue) concentrations against time
with delay parameterτ = 20. Computational simulation of the model with delay in both hes1
mRNA transcription and Hes1 protein production, system of equations(4.9,4.10). Oscillations
are observed in the concentrations of both hes1 mRNA and HES1protein.

to the cytoplasm where Hes1 protein synthesis occurs. We assume that the mechanism

governing the spatial movement of the mRNA and the protein between the nucleus and

the cytoplasm is diffusion.

The system of equations of the spatio-temporal evolution ofhes1 mRNA and Hes1

protein is now:

∂ [Mn]

∂ t
= DMn∇2[Mn]+

αM

1+(
[Pn]
p̂ )h

−µM[Mn], (4.11)

∂ [Mc]

∂ t
= DMc∇

2[Mc]−µM[Mc], (4.12)

∂ [Pc]

∂ t
= DPc∇

2[Pc]+αP[Mc]−µP[Pc], (4.13)

∂ [Pn]

∂ t
= DPn∇2[Pn]−µP[Pn], (4.14)
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where[Mn] ,[Mc], [Pn] and[Pc] are the concentration of the nuclear and the cytoplasmic

hes1 mRNA and the nuclear and the cytoplasmic Hes1 protein respectively. [Di] de-

note the diffusion coefficients for each species.

Figure 4.6: Schematic diagram showing how the spatial interactions between hes1 mRNA
and Hes1 protein are modelled. hes1 mRNA is produced in the nucleus (transcription), then
exported across the nuclear membrane into the cytoplasm where it is translated into protein,
i.e., transcription occurs exclusively in the nucleus and translation/synthesis occurs exclusively
in the cytoplasm. Hes1 protein is then imported back across the nuclear membrane to the
nucleus where it inhibits the production of its own mRNA, i.e., a negative feedback loop exists.

Continuity of flux boundary conditions across the nuclear membrane allow import and

export of hes1 mRNA and Hes1 protein, while zero flux boundaryconditions at the

outer cell membrane ensure that all molecules remain withinthe cell.
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DMn

∂ [Mn]

∂n
= DMc

∂ [Mc]

∂n
and [Mn] = [Mc] at the nuclearmembrane(4.15)

DPn

∂ [Pn]

∂n
= DPc

∂ [Pc]

∂n
and [Pn] = [Pc] at the nuclearmembrane (4.16)

∂ [Mc]

∂n
= 0, at the cell membrane (4.17)

∂ [Pc]

∂n
= 0, at the cell membrane (4.18)

Equations (4.11)–(4.14) represent a system of reaction-diffusion equations modelling

the spatio-temporal evolution of the Hes1 system. The same reaction kinetics from

the ODE model (4.1), (4.2) are retained but are now also coupled with diffusion to

model explicitly protein and mRNA transport within a cell, i.e., molecules move from

the nucleus to the cytoplasm and cytoplasm to nucleus acrossthe nuclear membrane.

The PDE system reflects the reality that mRNA is transcribed from DNA exclusively

in the nucleus and that protein is translated from mRNA exclusively in the cytoplasm,

i.e., there are production terms only for [Mn] (in Eq. (4.11)) and [Pc] (in Eq. (4.13)).

Finally, we make the assumption that the translation of proteins from mRNA in the

cytoplasm occurs some distance away from the nucleus and outside the endoplasmic

reticulum (ER), since proteins produced in the ER are mainlyeither exported to the

exterior of the cell or transported to other membrane structures such as the Golgi ap-

paratus, lysosomes and endosomes(Alberts et al. 1994), (?).

In order to model this, we modify Equation (4.13) as follows:

∂ [Pc]

∂ t
= DPc∇

2[Pc]+H1(x,y)αP[Mc]−µP[Pc] (4.19)
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whereH1(x,y) is a Heaviside function localising the protein production whose specific

form will be given after the nondimensionalisation of the system. TheH1(x,y) func-

tion takes the is value zero (0) in a region just outside the nucleus, meaning there is no

protein synthesis in this ER region. In a region further awayfrom the nucleus (outside

the ER) the function takes the value one (1), in the region of the cytoplasm where we

assume the translation of protein occurs.

We nondimensionalise Equations (4.11), (4.12), (4.14) and(4.19) with scaling vari-

ables as follows (see Appendix A):

[Mn] =
[Mn]

m0
, [Mc] =

[Mc]

m0
, [Pn] =

[Pn]

p0
, [Pc] =

[Pc]

p0

t =
t
τ
, X =

x
L
, Y =

y
L

(4.20)

where[m0] ,[p0] are reference concentration,τ is reference time, and L is a reference

length. Using this scaling Equations (4.11), (4.12), (4.14) and (4.19) become:

∂ [Mn]

∂ t
= D∗

Mn
∇2[Mn]+

α∗
M

1+(p∗[Pn])h
−µ∗

M[Mn] (4.21)

∂ [Mc]

∂ t
= D∗

Mc
∇2[Mc]−µ∗

M[Mc] (4.22)

∂ [Pc]

∂ t
= DPc∇

2[Pc]+H1(x,y)αP[Mc]−µP[Pc] (4.23)

∂ [Pn]

∂ t
= D∗

Pn
∇2[Pn]−µ∗

P[Pn] (4.24)

where
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D∗
Mn

=
τDMn

L2 , D∗
Mc

=
τDMc

L2 , D∗
Pn
=

τDPn

L2 , D∗
Pc
=

τDPc

L2

α∗
M =

ταM

m0
, α∗

P =
ταP

p0

µ∗
M = τµM , µ∗

P = τµP , p∗ =
p0

p̂
(4.25)

and

H1(x,y) =





0, if x2

2 +y2 ≤ 0.25,

1, if x2

2 +y2 > 0.25.

We apply zero initial conditions, zero-flux boundary condition at the cell membrane

and flux continuity boundary conditions across the nucleus membrane:

[Mn] = [Mc] = [Pn] = [Pc] = 0, at t = 0 (4.26)

D∗
Mn

∂ [Mn]

∂n
= D∗

Mc

∂ [Mc]

∂n
and [Mn] = [Mc] at the nuclearmembrane(4.27)

D∗
Pn

∂ [Pn]

∂n
= D∗

Pc

∂ [Pc]

∂n
and [Pn] = [Pc] at the nuclearmembrane (4.28)

∂ [Mc]

∂n
= 0, at the cell membrane (4.29)

∂ [Pc]

∂n
= 0, at the cell membrane (4.30)
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Due to a lack of experimental data, we take reference concentrations to be[m0]=0.05µM

and [p0]=1µM. Figures 4.7, 4.8 show the computational simulation results of Equa-

tions (4.21)-(4.24), where oscillations in concentrations are observed with a period of

oscillation of approximately 200 time units. Knowing that the period of oscillation of

Hes1 is approximately 2hours (Hirata et al. 2003) we can estimate the reference time

τ as follows: 200τ =2 h which meansτ= 36 s.

To obtain the value of the variableL we used 2-dimensional cell domain with length of

30µM to represents both the nucleus and cytoplasm where the nucleus has a major axis

of length 0.8 units and minor axis of length 0.5 units and the cytoplasm has a major

axis of length 3 units and a minor axis of length 2 units. Hence, the non-dimensional

cell width is equal to 3 L = 30µM so, the reference length L=10µM.

Parameter Estimation

The following parameter values were used in our simulationsof the non-dimensional

Hes1 system:

D∗
Mn

= D∗
Mc

= D∗
Pn
= D∗

Pc
= 7.5×10−4

α∗
M = 1 , α∗

P = 2 , h= 5 , p∗ = 1 , µ∗
M = µ∗

P = 0.03 (4.31)

From (4.19) and (4.25) we calculate the dimensional parameter values as follows:
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DMn =
L2D∗

Mn

τ
= 2.08×10−11cm2s−1

so: DMn = DMc = DPn = DPc = 2.08×10−11cm2s−1

αM = 1.39×10−9Ms−1, αP = 1.11s−1

µM = µP = 8.33×10−4s−1, h= 5, p0 = 1×10−6M

We carried out a number of simulations on the Hes1 system (4.21)-(4.24) to obtain the

range of diffusion coefficients for which we observe oscillations (all other parameters

remain unchanged). The system exhibits oscillations when the mRNA and the protein

diffusion coefficients have a value in the range 1.67×10−11 to 9.72×10−11cm2s−1.

We have also calculated a range of mRNA degradation rates: 1.67×10−4to 1.17×

10−3s−1, protein degradation rates 1.94×10−4 to 1.06×10−3s−1 and Hill coefficients

h≥ 4 for which the system exhibits oscillations.

4.3.1 Computational Simulation Results

We solve the system (4.21)-(4.24) numerically using COMSOL/FEMLAB package

which uses the finite element technique. Triangular basis elements and Lagrange

quadratic basis functions along with a backward Euler time-stepping method for in-

tegrating the equations were used in all simulations.

Figure 4.7 shows the total concentrations of hes1 mRNA and Hes1 protein over time

in the nuclear compartment, while Figure 4.8 shows the totalconcentrations in the cy-

toplasm.
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Figure 4.7: Plot of the concentrations of hes1 mRNA (red) and Hes1 protein (blue) in the
nucleus over time. The period of oscillations is approximately 120 min

Figure 4.8: Plot of the concentrations of hes1 mRNA (red) and Hes1 protein (blue) in the
cytoplasm over time. The period of oscillations is approximately 120 min

The plots presented in Figures 4.9 and 4.10 show how the hes1 mRNA and Hes1 pro-

tein concentrations vary spatially as well as temporally within the cell. The mRNA is

produced inside the nucleus and byt = 60 min has started to cross the nuclear mem-

brane to enter the cytoplasm (Figure 4.9). In the cytoplasm the mRNA is translated

into protein, which then diffuses back into the nucleus and represses the production of

its own mRNAt = 120min. The mRNA concentration has clearly depleted byt = 120

min, reflecting the period of the temporal oscillation seen in Figures 4.7, 4.8. As can
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Figure 4.9: Plots showing the spatio-temporal evolution of hes1 mRNA concentration within
the cell from times t=0 to 480 min at 60 min intervals. The concentration oscillates in both
time and space. Parameter values as per (25).

be seen from Figure 4.10, there is a delay in the rise of protein concentration after

t = 0 as it takes time for the mRNA to be produced and exported to the cytoplasm. By

t = 60 min the protein levels have clearly risen in the cytoplasmand have reached the

nucleus. Att = 120 min the protein concentration has decreased significantly, due to

the inhibition of mRNA transcription by the protein.
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Figure 4.10: Plots showing the spatio-temporal evolution of Hes1 protein concentration within
the cell from times t=0 to 480 min. The concentration oscillates in both time and space. Pa-
rameter values as per (25).

4.4 A Spatio-Temporal Mathematical Model of the P53-

Mdm2 System

4.4.1 Introduction

p53 is known as protein 53 or tumour protein 53 (on account of its molecular weight).

The p53 gene was identified in 1979 by Arnold Levine, David Lane and Lloyd Old, but

in 1989 it found its role in the cell as a tumour suppressor gene (Lane and Crawford

1979). It plays an important role in multicellular organisms where it is a transcription

factor that regulates the cell cycle, functions as a tumour suppressor and is involved in
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preventing cancer. Mutations that inactivate p53 functionhave been detected in more

than 50% of human cancers (Bennett et al. 1999).

In normal unstressed cells the concentration level and activity of p53 are low, whereas

the concentration of p53 increases and is negatively regulated in response to stress sig-

nals such as DNA damage due to Mdm2 induced degradation.

The regulation of the p53 protein by mdm2 goes through four successive phases of the

standard eukaryotic cell cycle including, mitosis (M phase), gap1 (G1 phase), synthesis

(S phase) and gap2 (G2 phase). There are several nuclear proteins involved in the regu-

lation of DNA replication during the cell growth (Alberts etal. 1994). The p53 tumour

suppressor protein is one of the most important nuclear proteins involved in growth

arrest, apoptosis and DNA repair (Melino et al. 2003). In normal unstressed cells, the

levels of p53 protein are sustained at low levels via interaction with other protein such

as MDM2 (murine double minute 2). Once the levels of p53 protein increases, for

example after DNA damage, it acts as a transcription factor,inducing the expression

of several genes such as Bax (apoptosis inducer), p21 WAF1, which induces growth

arrest (Freedman and Levine 1998). Upon several types of stresses, the p53 pathway

has been divided into five stages, the stress signals which activate p53 pathway, detec-

tion and interpretation of the upstream signals by the upstream mediators, interaction

of p53 with several proteins which lead to its stability, transcriptional activation and

protein-protein interactions and the final outcome, growtharrest , apoptosis or DNA

repair (Levine et al. 2006). As mentioned previously, in normal conditions, the level

of p53 protein is down-regulated through its interaction with mdm2 protein which en-

hances p53 degradation in the cytoplasm or via a p53-mdm2 complex in the nucleus,

preventing p53 to activate transcription (Thut et al. 1997). Specifically, p53 protein

utilizes its NH2-terminal domain to activate its own transcription. The mdm2 binds to
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this region blocking this ability (Lu and Levine 1995). The mdm2 protein has the abil-

ity to shuttle between the nucleus and cytoplasm due to the NES sequence (Roth et al.

1998). Its activity is essential for shuttling p53 to the cytoplasm for degradation by

cytoplasmic proteasomes. Figure 4.11 summarizes regulation of the p53 by the mdm2

in normal cells. The ability of mdm2 protein to shuttle p53 from the nucleus to the

cytoplasm was proposed by Freedman and Levin, (1998). In a later model, mdm2,

p53,CRM1,and RanGTP form a ternary complex in the nucleus Figure 4.12. This trig-

gers transportation of the complex through the nuclear poreto the cytoplasm where

p53 protein is degraded while the mdm2 protein is returned tothe nucleus.

Following DNA damage, p53 protein is stabilized and activated as a transcription fac-

tor that induces expression of several genes. It has been demonstrated that after DNA

damage, the ability of mdm2 to down-regulate p53 either via degradation or by form-

ing a complex to prevent transcription were lost although high levels of mdm2 were

observed (Landers et al. 1997).

The tumour suppressor protein p53 has been observed in a widevariety of human

cancers. Loss of p53 gene from chromosome 17 was reported in several cancers

(Vogelstein et al. 1988). Another study showed that the p53 gene contains point mu-

tations in the lung cancer (Takahashi et al. 1989). The inactivation of p53 could be

caused in several ways: mutation occurrence found in 50% of human cancers. Some

viruses such as SV40, HPV or adenoviruses encode proteins that inhibit p53 protein.

In both cases of inflammatory breast cancer and neuroblastoma, the accumulation of

p53 protein in the cytoplasm was reported. The accumulationof mdm2 protein in some

types of cancers was observed.
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Figure 4.11: A model of the regulation of the p53 protein by the mdm2 protein. (A) To pre-
vent p53 transcription in the nucleus, mdm2 binds to p53 protein. utilizing RanGTP-dependent
pathway, mdm2 shuttle p53 from nucleus to cytoplasm for degradation by proteasomes. (B)
After DNA damage, mdm2 becomes inactive via blocking p53-mdm2 complex formation, lower
mdm2 levels and blocking mdm2 nuclear transportation. (C) p53 remains active as transcrip-
tion factor and tumour suppression in the nucleus in order tocause growth arrest or apoptosis.
(D) After the DNA is repaired mdm2 become active again, practicing its function as autoregu-
latory protein controlling p53 in the nucleus (Adapted fromFreedman and Levine, 1999).

Figure 4.12: A model for the transportation of p53 from the nucleus to the cytoplasm by mdm2.
It is believed that mdm2, p53, CRM1 and RanGTP form complex that trigger transportation
of p53 to the cytoplasm. The mdm2 then is separated from p53 and is returned the nucleus
(Adapted from Freedman and Levine, 1998)
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4.5 Mathematical Modelling of the p53-Mdm2 System

Mdm2 functionally interacts with many proteins involved inthe control of cell prolif-

eration and survival. Mdm2 acts as a direct negative regulation of p53. This occurs

through two main mechanisms: first, transcriptional activation of p53; second, target-

ing p53 for modification and degradation (Manfredi 2010).

The basic interaction between p53 and Mdm2 creates a negative feedback which is

shown in the schematic digram in Figure 4.13.

Figure 4.13: A schematic representation of the p53-Mdm2 model.

We begin by looking at the fundamental reaction kinetics of the system. Denoting the

concentrations of p53, Mdm2 and Mdm2 mRNA by[p], [M] and [Mm], respectively,
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the ODE system below is formulated to capture the interactions depicted in Figure

4.13:

d[P]
dt

= β − (µ +ν(
[M]h1

M̂h1+[M]h1
))[P] (4.32)

d[Mm]

dt
= α +η(

[P]h2

P̂h2+[P]h2
)−φ [Mm] (4.33)

d[M]

dt
= γ[Mm]−ρ [M] (4.34)

where[P], [Mm] and[M] are the concentration of p53, Mdm2 mRNA and Mdm2 pro-

tein, respectively.

The first ODE equation (4.32) for p53 hasβ as a production term of p53 followed by

a natural degradation term of rateµ, andν a degradation term of Mdm2. The second

ODE (4.33) for Mdm2 mRNA, has a production rateα, followed byη a production

term of p53, and finallyφ degradation rate. The final ODE (4.34) is for the Mdm2

protein, which hasγ a production rate of Mdm2 mRNA andρ a degradation rate.̂M

and p̂ are activation thresholds, and h1 and h2 are Hill coefficients.

Table 4.2: Parameters value

Parameters Values Parameters Values
β 10 µ 0.00025
ν 64 α 0.00235
η 40 φ 0.8
γ 01 ρ 3
A 0.05 B 1.066
h1 1 h2 50
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We are going the study the system (4.32), (4.33) and (4.34) numerically using the pa-

rameter values in Table (4.2) to show the oscillations of thesystem.
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Figure 4.14: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (green) concentrations
against time with no delay. Computational simulation of themodel with parameter values in
Table (4.2).

Figure 4.14 shows the simulation of the p53-Mdm2 model without a time delay.

4.5.1 A Model with Time Delay

A time delay exists in the system if any of the processes inside the cell take longer

than others. For example, a time delay could exist in the protein transcription or in the

mRNA translation or it could be in both. As before with the Hes1 system, Monk (2003)
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added a delay to account for transcript elongation, splicing, processing and export.

Following Monk (2003), we rewrite the equation system (4.32), (4.33) and (4.34) con-

sidering the time delay firstly caused by the delay in mRNA transcription, then by the

delay in protein degradation and finally by both of the delays. Then we are going the

study the system numerically using the parameter values in Table 4.2 to show the effect

of the time delay on the system.

If the delay is associated with p53, equations (4.11), (4.12) and (4.13) become:

d[P]
dt

= β − (µ +ν(
[M]h1

M̂h1+[M]h1
))[P] (4.35)

d[Mm]

dt
= α +η(

[P(t− τ)]h2

P̂h2+[P(t − τ)]h2
)−φ [Mm] (4.36)

d[M]

∂dt
= γ[Mm]−ρ [M] (4.37)

If the delay was in the Mdm2 mRNA transcription then we would have the following

equations:

d[P]
dt

= β − (µ +ν(
[M]h1

M̂h1+[M]h1
))[P] (4.38)

d[Mm]

dt
= α +η(

[P]h2

P̂h2+[P]h2
)−φ [Mm] (4.39)

d[M]

∂dt
= γ[Mm(t− τ)]−ρ [M] (4.40)

If the delay was associated with the Mdm2 protein then we would have the following

equations:

65



Figure 4.15: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (green) concentrations
against time with tau = 5. Computational simulation of the model with delay in p53 protein
degradation. System of equations (4.35), (4.36) and (4.37)with parameters values in Table
(4.2).

d[P]
dt

= β − (µ +ν(
[M(t− τ)]h1

M̂h1+[M(t− τ)]h1
))[P] (4.41)

d[Mm]

dt
= α +η(

[P]h2

P̂h2+[P]h2
)−φ [Mm] (4.42)

d[M]

∂dt
= γ[Mm]−ρ [M] (4.43)

We solve the systems of equations numerically using the parameter values in Table 4.2.

As expected, we obtain oscillations from the negative feedback system.

It is clear that the concentrations of the variables reach higher levels compared with

the result of the oscillation in Fig 4.14. Figure 4.15 shows the result of the equations

66



Figure 4.16: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (green) concentrations
against time with delayτ = 5. Computational simulation of the model with delay in Mdm2
mRNA degradation. System of equations (4.38), (4.39) and (4.40) with parameters value in
Table (4.2).

(4.35), (4.36) and (4.37) when we consider the time delay through the p53 degradation

process. Mdm2 mRNA takes more time to diffuse between the twodomains (nucleus,

cytoplasm) thus its concentration is higher than the concentration of the other compo-

nents.

Figure 4.16 shows the result of the equations (4.38), (4.39)and (4.40) when we con-

sider the time delay through the Mdm2 mRNA degradation process. p53 takes more

time to diffuse between the two domains thus its concentration is higher than the con-

centration of the other components whereas the Mdm2 mRNA diffuses faster.

In Figure 4.17, the result of the equations (4.41), (4.42) and (4.43) simulation when we
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Figure 4.17: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (green) concentrations
against time with delayτ = 5. Computational simulation of the model with delay in Mdm2
protein degradation System of equations (4.41), (4.42) and(4.43) with parameter values in
Table (4.2).

consider the time delay through the Mdm2 protein degradation process are given. It

shows the Mdm2 protein diffusion is following the p53 diffusion while it is not in other

figure. So adding the time delay has quickened the Mdm2 protein shuttle between the

nucleus and the cytoplasm.
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Chapter 5

A Spatio-temporal Mathematical

Model of the Hes1 System

Incorporating Dimerization

The chapter can be broadly organized into three parts. In thefirst part of this chapter

we extend the ODE model analysed in (Momiji and Monk 2008) by building the PDE

model for Hes1 dimeraization system and run the simulation for the model. Then, in

the second part, we present the ODE model of Stat3 and extend the model by consid-

ering diffusion (i.e. a PDE model) and run the simulation of the model. Finally we

analysed the impact of the Stat3 PDE model on the Hes1 PDE model in the first part

and examined the effects on the model such as varying nuclearmembrane thickness,

adding diffusion noise, and adding convection (modelling molecular transport along

microtubules) to the model.
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5.1 Introduction

We start this chapter by developing the previous model to include the effect of Hes1

dimeraization. In order to do this, we first consider the delay ODE model of Momiji

and Monk (2008).

Oscillations in molecular species concentration levels are the sign of complex genetic

regulatory network involving a negative feedback loop. it plays an important role in

wide rang of cellular phenomena. Many of the biological processes involve transcrip-

tional oscillations which depends on a segmentation clock to organise transcriptional

oscillations in complex networks of interactions (Momiji and Monk 2008). The oscil-

latory expression of Hes1 has been shown to be involved in thesegmentation clock.

The model in Equations (4.1) and (4.2) in chapter 4 encodes the Hes1 feedback loop in

simple manner, representing only transcription, translation and degradation. However,

there are several other important biochemical processes involved in the Hes1 feedback

loop. Momiji and Monk (2008) used experimental biological data to develop a more

detailed Hes1 model to generate protein oscillation. Momiji and Monk (2008) consider

seven biochemical prosses such as transcription, translation, repression, degradation,

protein shuttling and protein dimerisation.

Figure 5.1 represents schematically the mass action kinetics for the main processes in-

volved in the more complex Hes1 feedback circuit as it is presented in Momiji and Monk

(2008).

We sumraize the intracelullar processes involved in the Hes1 feedback loop.
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Figure 5.1: Schematic diagram illustrating the more detailed biochemical processes associ-
ated with the Hes1 feedback network.

(1) Transcription: the hes1 gene is transcribed in the nucleus to produce nascent

hes1 mRNA, which is then spliced and processes prior to export from the nu-

cleus. This linear elongation process involves a time delay(Mahaffy and Pao

1984).

(2) Nuclear export of mRNA: mature mRNA is transported out ofthe nucleus to the

cytoplasm.

(3) Translation: hes1 mRNA is translated to produce monomeric Hes1 protein molecules.
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Table 5.1: List of parameters values used the model of Momiji and Monk (2008)

Parameters Values
µ1 0.03
µ2 0.03
µ3 0.3
µ4 0.03
µ5 0.03
k1 10
k2 1
k3 10
k4 0.01
k5 0.001
k6 10
k7 0
τ1 14
τ2 2
n 5
p0 1250

(4) Protein dimerisation: two Hes1 protein monomers can bind to form a Hes1 ho-

modimer.

(5) Nucleo-cytoplasmic shuttling: Hes1 dimers can shuttlebetween the cytoplasm

and the nucleus.

(6) Transcriptional repression: Hes1 dimers bind to specific sequences in the pro-

moter region of the hes1 gene, resulting in a reduction in therate of hes1 tran-

scription (Takebayashi et al. 1994).

(7) Degradation: both hes1 mRNA and Hes1 protein are unstable, having half lives

of around 20–25 min (Hirata et al. 2003).

Momiji and Monk (2008) build a simple model using the mass action kinetics to rep-

resent the circuit mathematically by a five-variable systemas follows:
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d[y1]

dt
= −(µ1+k2)[y1]+k1[

1
1+( p

p0
)n ][[y5](t− τ1)] (5.1)

d[y2]

dt
= −µ2[y2]+k2[y1] (5.2)

d[y3]

dt
= −µ3[y3]+k3[y2](t− τ2)−2k4[y3]

2+2k5[y4] (5.3)

d[y4]

dt
= −(µ4+k5+k6)[y4]+k4[y3]

2+k7[y5] (5.4)

d[y5]

dt
= −(µ5+k7)[y5]+k6[y4] (5.5)

wherey1-y5 represent the concentrations of mRNA in the nucleus, mRNA inthe cyto-

plasm, Hes1 monomer in the cytoplasm, Hes1 dimer in the cytoplasm, and Hes1 dimer

in the nucleus, respectively.µ1-µ5 are the linear degradation rates of the corresponding

components;k1-k7 are rates of mRNA production, mRNA export, protein production,

dimerisation, dimer dissociation, protein import, and protein export, respectively;τ1

andτ2 are the time delays in transcription and translation.

Then, Momiji and Monk (2008) solve the five equation system using the parameter

listed in Table (5.1) to prove that the model have sustained oscillation solution with a

period of 120min.

5.2 The Spatio-temporal Model

We now extend the above model and consider spatial interactions within the cell:
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Figure 5.2: Representative oscillatory profiles of Hes1 mRNA and Hes1 protein resulting from
a simulation of the model using the parameters listed in Table 5.1.
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Figure 5.3: Plot showing the limit cycle obtained from the 5-variable model.
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∂ [y1n]

∂ t
= Dy1n∇2[y1n]−µ1[y1n]+k1

[
1

(1+α[y4n])n

]
, (5.6)

∂ [y1c]

∂ t
= Dy1c∇

2[y1c]−µ1[y1c], (5.7)

∂ [y3c]

∂ t
= Dy3c∇

2[y3c]−µ3[y3c]+k3[y1c]−2k4[y3c]
2, (5.8)

∂ [y4c]

∂ t
= Dy4c∇

2[y4c]−µ4[y4c]+k4[y3c]
2, (5.9)

∂ [y4n]

∂ t
= Dy4n∇2[y4n]−µ4[y4n], (5.10)

where,y1n, y1c, y3c, y4c andy4n represent Hes1 mRNA in the nucleus, mRNA in the

cytoplasm, Hes1 monomer in the cytoplasm, Hes1 dimer in the cytoplasm and Hes1

dimer in the nucleus respectively.µ1, µ3 and µ4 are the liner degradation of Hes1

mRNA, Hes1 monemar and Hes1 dimer respectively. Also,k1, k3, k4 andα are the

rate of mRNA production hes1 protein production, dimer formation and Hes1 protein

production respectively.

As previously the continuity of flux boundary conditions forthe nucleus membrane

allow import and export of mRNA and the protein and zero flux boundary condition at

the cytoplasm membrane to ensure that all molecules remain within the cell membrane

i.e.
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Dy1n

∂ [y1n]

∂n
= Dy1c

∂ [y1c]

∂n
and [y1n] = [y1c] at the nuclear membrane(5.11)

Dy3c

∂ [y3c]

∂n
= 0 and [y3c] = 0 at the nuclear membrane (5.12)

Dy4n

∂ [y4n]

∂n
= Dy4c

∂ [y4c]

∂n
and [y4n] = [y4c] at the nuclear membrane(5.13)

∂ [y1c]

∂n
= 0, at the cell membrane (5.14)

∂ [y3c]

∂n
= 0, at the cell membrane (5.15)

∂ [y4c]

∂n
= 0, at the cell membrane (5.16)

Equations (5.6)–(5.10) represent a system of reaction-diffusion equations modelling

the spatio-temporal evolution of the more detailed Hes1 system. The same reaction

kinetics from the ODE model of Momiji and Monk (2008) are retained but are now

also coupled with diffusion to model explicitly protein andmRNA transport within a

cell, i.e., molecules move from the nucleus to the cytoplasmand cytoplasm to nucleus

across the nuclear membrane. The PDE system reflects the reality that mRNA is tran-

scribed from DNA exclusively in the nucleus and that proteinis translated from mRNA

exclusively in the cytoplasm. Finally, we make the assumption that the dimerization

of proteins in the cytoplasm occurs some distance away from the nucleus and it takes

more time for the Hes1 dimer protein to shuttle to the nucleus.

∂ [y3c]

∂ t
= Dy3c∇

2[y3c]−µ3[y3c]+k3H1(x,y)[y1c]−2k4[y3c]
2 (5.17)

whereH1(x,y) is a function localising the protein production whose specific form will

be given after the nondimensionalisation of the system.
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We nondimensionalise Equations (5.6), (5.7), (5.9), (5.10) and (5.18) with scaling vari-

ables as follows (see appendix C):

[y∗1n] =
[y1n]

y0
, [y∗1c] =

[y1c]

y0
, [y∗3c] =

[y3c]

y0
, [y∗4n] =

[y4n]

y0
, [y∗4c] =

[y4c]

y0
(5.18)

t∗ =
t
τ
,X∗ =

x
L
,Y∗ =

y
L

(5.19)

where[y0] is reference concentration,τ is reference time, and L is a reference length.

Using this scaling Equations (5.6), (5.7), (5.9), (5.10) and (5.18) become:

∂ [y1n]
∗

∂ t∗
= D∗

y1n
∇2[y1n]

∗−µ∗
1 [y1n]

∗+k∗1

(
1

1+α∗[y4n]∗

)
(5.20)

∂ [y1c]
∗

∂ t∗
= D∗

y1c
∇2[y1c]

∗−µ∗
1 [y1c]

∗ (5.21)

∂ [y3c]
∗

∂ t∗
= D∗

y3c
∇2[y3c]

∗−µ∗
3 [y3c]

∗+k∗3H1(x,y)[y1c]
∗−2k∗4[y3c]

∗2 (5.22)

∂ [y4c]
∗

∂ t∗
= D∗

y4c
∇2[y4c]

∗−µ∗
4 [y4c]

∗+k∗4[y3c]
∗2 (5.23)

∂ [y4n]
∗

∂ t∗
= D∗

y4n
∇2[y4n]

∗−µ∗
4 [y4n]

∗ (5.24)

where

τ
L2Dy∗1n·y0 = D∗

y1n
,

τ
L2Dy∗1c·y0 = D∗

y1c
,

τ
L2Dy∗3c·y0 = D∗

y3c

τ
L2Dy∗4n·y0 = D∗

y4n
,

τ
L2Dy∗4c·y0 = D∗

y4c
, αy0 = α∗

τµ1 = µ∗
1 , τµ3 = µ∗

3 , τµ4 = µ∗
4

τk1

y0
= k∗1 , τk3 = k∗3 , τy0k4 = k∗4 (5.25)
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and

H1(x,y) =





1, if x2+y2 > 0.3,

0, if x2+y2 < 0.3.

We apply zero initial conditions, zero-flux boundary conditions at the cell membrane

and flux continuity boundary conditions across the nucleus membrane:

[y1n]
∗ = [y4n]

∗ = [y1c]
∗ = [y3c]

∗ = [y4c]
∗ = 0, at t = 0 (5.26)

D∗
y1n

∂ [y1n]
∗

∂n
= D∗

y1c

∂ [y1c]
∗

∂n
and [y1n]

∗ = [y1c]
∗ at the nuclear membrane(5.27)

D∗
y4n

∂ [y4n]
∗

∂n
= D∗

y4c

∂ [y4c]
∗

∂n
and [y4n]

∗ = [y4c]
∗ at the nuclear membrane(5.28)

D∗
y1c

∂ [y1c]
∗

∂n
= 0 and [y1c]

∗ = 0 at the nuclear membrane (5.29)

∂ [y1c]
∗

∂n
= 0, at the cell membrane (5.30)

∂ [y3c]
∗

∂n
= 0, at the cell membrane (5.31)

∂ [y4c]
∗

∂n
= 0, at the cell membrane (5.32)

We take reference concentrations to be[y0]=1µM. Figures 5.2, 5.3 show the simula-

tions results of Equations (5.20)–(5.24). It was recognisable that a period of oscillation

was approximately 225 time units. Hence, knowing that the period of oscillation of

Hes1 is approximately 2h (Hirata et al. 2003), we have the reference timeτ as follows:

225τ = 2h which meansτ= 32s (see appendix C).
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To obtain the value of the variable L, we used 2-dimensional cell with length of 30µM

to represents both the nucleus and cytoplasm where the nucleus has a major axis of

length 0.8 units and minor axis of length 0.5 units and the cytoplasm has a major axis

of length 3 units and a minor axis of length 2 units. Hence, thenon-dimensional cell

width is equal to 3 L = 30µM so, the reference length L=10µM.

Parameter Estimation

The following parameter values were used in our simulationsof the non-dimensional

Hes1 system:

D∗
y1n

= D∗
y1c

= D∗
y3c

= D∗
y4n

= D∗
y4c

= 7.5×10−4

µ∗
1 = µ∗

3 = µ∗
4 = 0.03

k∗1 = k∗3 = k∗4 = 5

α∗ = 1 , n∗ = 5 (5.33)

From 4.57 and 4.65 we calculate the dimensional parameter values (see appendix C):

Dy∗n =
L2D∗

yn

τ
= 2.34×10−11cm2s−1

Dy∗1n
= Dy1c∗ = Dy3c∗ = Dy4n∗ = Dy4c∗ = 2.34×10−11cm2s−1

µ1 = µ3 = µ4 = 9.4×10−4s−1

k1 = k3 = k4 = 1.56×10−4

α = 1Ms−1. (5.34)
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5.2.1 Computational Simulation Results

Once again we solved PDE system (5.20)–(5.24) numerically using the finite element

software COMSOL (Triangular basis elements and Lagrange quadratic basis functions

along with a backward Euler time-stepping method for integrating the equations were

used in all simulations). Figure 5.4 shows the total concentrations of hes1 mRNA,

Hes1 protein dimers and Hes1 protein over time in the cytoplasm, while Figure 5.5

shows the total concentrations in the nucleus over time. Both sets of results show os-

cillatory dynamics of the Hes1 system. The plots presented in Figs. 5.6 and 5.7 show

how the hes1 mRNA and protein concentrations vary spatiallyas well as temporally

within the cell. The mRNA is produced inside the nucleus and by t = 50 min has started

to cross the nuclear membrane to enter the cytoplasm (Fig. 5.6). In the cytoplasm the

mRNA is translated into protein, then two Hes1 protein monomers bind to form a Hes1

dimer which then diffuses back into the nucleus and represses the production of its own

mRNA (t=250 min). The mRNA concentration has clearly depleted by t=120 min, re-

flecting the period of the temporal oscillation seen in Figs.5.4, 5.5.

Figure 5.4: Plot of the concentrations of Hes1 mRNA (red), the Hes1 protein dimers (blue) and
Hes1 protein (green) in the cytoplasm over time. The period of oscillations is approximately
120 min
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Figure 5.5: Plot of the concentrations of hes1 mRNA (red) and Hes1 protein (green) in the
nucleus over time. The period of oscillations is approximately 120 min

5.3 External driving of Hes1 oscillation by Stat3 Phos-

phorylation

5.3.1 The Stat3 System

Stat3 (Signal Transducer and Activator of transcription) is a member of STATs pro-

teins that mediate cellular responses to different cytokines and growth factors. The

activation of STATs by tyrosine phosphorylation cytokinesor growth factors bind to

the cell receptors. Once tyrosine phosphorylated, two STATmonomers form dimers.

The dimers then translocate to the nucleus and bind to specific region of the target

gene (Smithgall et al. 2000). Stat3 protein regulates gene expression involved in cell

proliferation, survival and self-renewal (Walker et al. 2011).

It was shown in previous study that formation of Stat3-P is inhibited in the absence

of Hes1, suggesting that Stat3-Socs3 oscillations and Hes1oscillation depend on each

other. So, Hes proteins bind to JAK2 and Stat3 resulting of Stat3 phosphorylation and

activation. Phosphorylated Stat3 was detected only in the cells expressing Hes1, but
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Figure 5.6: Plots showing the spatio-temporal evolution of hes1 mRNA concentration within
the cell from times t = 0 to 450 min at 50 min intervals. The concentration oscillates in both
time and space. Parameter values as per (5.33).
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Figure 5.7: Plots showing the spatio-temporal evolution of Hes1 Protein concentration within
the cell from times t = 0 to 450 min at 50 min intervals. The concentration oscillates in both
time and space. Parameter values as per (5.33).
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not the surrounding cells where Hes1 expression markedly increases the level of ty-

rosine phosphorylation of endogenous Stat3. Suppression of Hes1 expression reduces

Stat3 phosphorylation (Kamakura et al. 2004). It has been found that Hes1 represses its

own expression by binding to its own promoter. Also, phosphorylated Stat3 (Stat3-P)

induces suppression of cytokine signaling 3 (Socs3) expression, Socs3 inhibits phos-

phorylation of Stat3 and negatively regulates it, forming anegative feedback loop.

Thus, the Stat-Socs pathway is regulated by its own negativefeedback loop, in a sim-

ilar manner to Hes1 (Yoshiura et al. 2007). Interestingly, inhibition of Stat3-Socs3

oscillations blocks Hes1 oscillation, suggesting that Stat3- Socs3 signalling regulates

oscillatory versus persistent Hes1 expression (Yoshiura et al. 2007) (see Fig 5.9).
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Figure 5.8: Schematic diagram showing the similarity between the negative feedback loops in
the Hes1 and Stat3 systems.

5.3.2 The Stat3 Mathematical Model

To formulate the mathematical model of the intracellular regulatory system of the Stat3

negative feedback loop, we follow the same steps as in previous sections when deriving

the model of the Hes1 system. We suggest that Stat3 oscillatory expression plays a

central role in maintaining the segmentation clock. Stat3 represses the transcription of

its own gene through direct binding to regulatory sequencesin the Stat3 promoter. The

basic interactions of this system (see Fig. 5.8 and 5.10), Stat3 protein is produced by

Stat3 mRNA and then goes on to inhibit its own mRNA and so forth, with the result

that the system oscillates with a period of around 120 min.

The equations governing the concentrations of Stat3 mRNA and protein respectively

are:
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Figure 5.9: Schematic diagram showing the constitutive activation of Stat3 by the cytokine
receptor JAK which phosphorylates Stat3, which is then dimerized and translocated to the
nucleus where it regulates gene expression. Stat3 signalling is phosphorylation-regulated by
SOCS3.

dSm
dt

=
αSm

1+(Sp/P0)n −µSmSm, (5.35)

dSp
dt

= αSpSmc−µSpSp, (5.36)

where [Sm] and [Sp] are the concentration of Stat3 mRNA and Stat3 protein, respec-

tively.

The first term on the right hand side of Eq.(5.35) is a Hill function which decreases

as the protein concentration increases, modelling repression by the Stat3 protein. The

parameterαSm is the rate of transcript initiation in the absence of Stat3 protein andp0

is the concentration of Stat3 andn is a Hill coefficient. The second term represents the

natural degradation of the Stat3 mRNA with parameterµSm.
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Figure 5.10: A schematic representation of the Stat3 model

The first term on the right hand side of Eq.(5.36) is Stat3 protein production term from

translation of Stat3 mRNA with parameterαSp and the second term represents Stat3

protein degradation with parameterµSp.

We now extend the above ODE models and consider spatial interactions within the

cell. As previously, we consider the nucleus and cytoplasm as two distinct spatial com-

partments and the cytoplasm enclosed within the outer cell membrane. Transcription

occurs exclusively in the nucleus and protein synthesis occurs exclusively in the cyto-

plasm.We assume that the main mechanism governing the spatial movement of mRNA

and protein between the nucleus and cytoplasm is diffusion.Denoting by [Smn], [Smc]

and [Spn], [Spc] the concentrations of nuclear and cytoplasmic Stat3 mRNA and nu-

clear and cytoplasmic Stat3 protein, respectively, the system of equations describing
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the spatio-temporal evolution of Stat3 mRNA and Stat3 protein concentrations is now

∂Smn

∂ t
= DSmn∇2Smn+

αSm

1+(Sp/P0)n −µSmSmn, (5.37)

∂Smc

∂ t
= DSmc∇

2Smc−µSmSmc, (5.38)

∂Spc

∂ t
= DSpc∇

2Spc+αSpSmc−µSpSpc, (5.39)

∂Spn

∂ t
= DSpn∇2Spn−µSpSpn. (5.40)

We apply zero initial conditions, zero-flux boundary condition at the cell membrane

and flux continuity boundary conditions across the nucleus membrane:

DSmn

∂ [Smn]

∂n
= DSmc

∂ [Smc]

∂n
and [Smn] = [Smc] at the nuclearmembrane

DSpn
∂ [Spn]

∂n
= DSpc

∂ [Spc]

∂n
and [Spn] = [Spc] at the nuclearmembrane

∂ [Smc]

∂n
= 0, at the cell membrane

∂ [Spc]

∂n
= 0, at the cell membrane (5.41)

5.3.3 Computational Simulation Results

As in the case of the Hes1 system, we solved the PDE system (5.37)-(5.40) numerically

using the parameter values in table (5.2). Fig 5.11 shows thetotal concentrations of

Stat3 mRNA and Stat3 protein over time in the nuclear compartment, while Fig 5.12

shows the total concentrations in the cytoplasm. Both sets of results show oscillatory
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dynamics of the Stat3 system.

Table 5.2: Parameters value used in the computational simulations of the PDE model

Parameters Values
µ1 0.03
µ2 0.03
α1 1
α2 1
n 5
p0 1

Figure 5.11: Plot of the concentration of Stat3 mRNA (red) and Stat3 protein (blue) in the
nucleus over time.

5.4 A Model of the Hes1-Stat3 system

As result of the study of the post translation oscillation ofStat3 phosphorylation and its

negative feedback loop which revealed a potential mechanism underlying the depen-

dency of Hes1 oscillation on the Stat3 phosphorylation oscillations, Momiji and Monk

(2008) incorporated these new features to study a Hes1 modelwhich is based around

two components, then formulated a new ODE model including Hes1 dimerisation and
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Figure 5.12: Plot of the concentration of Stat3 mRNA (red) and Stat3 protein (blue) in the
cytoplasm over time.

time delays.

In this section we formulate the model in a different way while still incorporating the

time delay and Hes1 dimerisation.
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∂y∗1n

∂ t∗
= D∗

y1n
∇2y∗1n−µ∗

1y∗1n+k∗1

(
1

(1+α1∗y∗4n)
n1

)

∂y∗1c

∂ t∗
= D∗

y1c
∇2y∗1c−µ∗

1y∗1c

∂y∗3c

∂ t∗
= D∗

y3c
∇2y∗3c−µ∗

3y∗3c+k∗3H1(x,y)y
∗
1c−2k∗4y∗2

3c

∂y∗4c

∂ t∗
= D∗

y4c
∇2y∗4c−µ∗

4y∗4c+k∗4y∗2
3c

∂y∗4n

∂ t∗
= D∗

y4n
∇2y∗4n−µ∗

4y∗4n

∂y5n

∂ t
= Dy5n∇2y5n+

α5
1+(y6n/P0)n2 −µ5y5n

∂y5c

∂ t
= Dy5c∇

2y5c−µ5y5c

∂y6c

∂ t
= Dy6c∇

2y6c+α6y6c−µ6y6c

∂y6n

∂ t
= Dy6n∇2y6n−µ6y6n (5.42)

Where,y1n, y1c, y3c, y4c, y4n, y5n, y5c, y6n andy6c represent Hes1 mRNA in the nu-

cleus, mRNA in the cytoplasm, Hes1 monomer in the cytoplasm,Hes1 dimer in the

cytoplasm, Hes1 dimer in the nucleus, Stat3 mRNA in the nucleus and Stat3 protein in

the cytoplasm, respectively.µ∗
1 , µ∗

3 andµ∗
4 are the liner degradation of Hes1 mRNA,

Hes1 monomer and Hes1 dimer respectively. Also,k∗1, k∗3, andk∗4 are the rate of mRNA

production, hes1 protein production and dimer formation rate, respectively. Alsoα∗
1,

α∗
5 , α∗

6 andn the prouduction of Hes1 mRNA in apsent of Hes1 protein, the rate of

Stat3 mRNA transcript, Stat3 protein production term and a Hill coefficient, respec-

tively.

Momiji and Monk (2008) showed a 120 min period oscillation inthe level of phos-

phorylation of the Stat3 protein which was shown to be necessary for the observed
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Table 5.3: Parameters value

Parameters Values Parameters Values
p0 1 k1 2
µ1 0.03 k3 5
µ3 0.03 k4 2
µ4 0.03 α1 7
µ5 0.03 α5 1
µ6 0.03 α6 1
n1 2 n5 5

transcriptional Hes1 oscillations. Oscillation of Stat3 phosphorylation is driven by a

negative feedback loop involving Stat3 and Socs3 oscillation, and Hes1 oscillations

depend on the Stat3 phosphorylation oscillations (Yoshiura et al. 2007).

We ran numerical simulations of the Hes1-Stat3 system modelusing the parameter

values in table (5.3) to examine if there is any affect of eachsystem on the other’s

oscillation when it does not have any time-dependent effects.

Figure 5.13 shows that Stat3 negative feedback oscillates and does not show any effect

caused by the Hes1 negative feedback while the Hes1 oscillations disappear. So Stat3

oscillations block the Hes1 oscillations. It is clear that Hes1 oscillations run normally

to prove that Stat3-Socs3 oscillations inhibit the Hes1 oscillations.

In the previous dimerisation model, the Hes1 dimers have a lower degradation rate than

Hes1 monomers. Momiji and Monk (2008) assumed that Stat3 hasan equivalent effect

on the degradation of both monomeric and dimeric forms of Hes1 and so they set the

time dependent Hes1 protein degradation rate to observe theeffect of oscillatory Stat3

on Hes1:
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µp = µ 8
p+dµpsin(

2πt
T

) (5.43)

whereµp is the decay rate of the protein and T is the period of Stat3 oscillation (120

min).

This functional form for the time dependence of the Hes1 protein degradation rate

was chosen to observe the effect of oscillatory Stat3 on Hes1, and plays the role of

a periodic forcing term in the equations describing Hes1 regulation. Therefore, we

modify our system by writing the Hes1 protein degradation rate µ3 ,µ4 as suggested

by Momiji and Monk (2008).

We assume that the degradation rate of Hes1 protein dimersµ3 have a lower degrada-

tion rate than Hes1 monomersµ4. Furthermore, we assume that Stat3 has an equivalent

effect on the degradation of both monomeric and dimeric forms of Hes1. We therefore

set the time-dependent Hes1 protein degradation rates to be:

µ3 = µ 8
3+dµ3sin(

2πt
T

) (5.44)

µ4 = µ 8
4+dµ4sin(

2πt
T

) (5.45)
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The equations for Hes1 and Stat3 are now:

∂y∗1n

∂ t∗
= D∗

y1n
∇2y∗1n−µ∗

1y∗1n+k∗1

(
1

(1+α1∗y∗4n)
n1

)

∂y∗1c

∂ t∗
= D∗

y1c
∇2y∗1c−µ∗

1y∗1c

∂y∗3c

∂ t∗
= D∗

y3c
∇2y∗3c− (µ 8

3+dµ3sin(
2πt
T

))y∗3c+k∗3H1(x,y)y
∗
1c−2k∗4y∗2

3c

∂y∗4c

∂ t∗
= D∗

y4c
∇2y∗4c− (µ 8

4+dµ4sin(
2πt
T

))y∗4c+k∗4y∗2
3c

∂y∗4n

∂ t∗
= D∗

y4n
∇2y∗4n− (µ 8

4+dµ4sin(
2πt
T

))y∗4n

∂y5n

∂ t
= Dy5n∇2y5n+

α5
1+(y6n/P0)n2 −µ5y5n

∂y5c

∂ t
= Dy5c∇

2y5c−µ5y5c

∂y6c

∂ t
= Dy6c∇

2y6c+α6y6c−µ6y6c

∂y6n

∂ t
= Dy6n∇2y6n−µ6y6n (5.46)

5.4.1 Numerical Simulations

We apply zero initial conditions, zero-flux boundary condition at the cell membrane

and flux continuity boundary conditions across the nucleus membrane:
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Dy1n

∂ [y1n]

∂n
= Dy1c

∂ [y1c]

∂n
and [y1n] = [y1c] at the nuclear membrane

Dy3c

∂ [y3c]

∂n
= 0 and [y3c] = 0 at the nuclear membrane

Dy4n

∂ [y4n]

∂n
= Dy4c

∂ [y4c]

∂n
and [y4n] = [y4c] at the nuclear membrane

Dy5n

∂ [y5n]

∂n
= Dy5c

∂ [y5c]

∂n
and [y5n] = [y5c] at the nuclear membrane

Dy6n

∂ [y6n]

∂n
= Dy6c

∂ [y6c]

∂n
and [y6n] = [y6c] at the nuclear membrane

∂ [y1c]

∂n
= 0, at the cell membrane

∂ [y3c]

∂n
= 0, at the cell membrane

∂ [y4c]

∂n
= 0, at the cell membrane

∂ [y5c]

∂n
= 0, at the cell membrane

∂ [y6c]

∂n
= 0, at the cell membrane (5.47)

Fig 5.14 shows the results from a numerical simulation of theequation (5.45) when we

make the value of Hes1 dimer and monomer degradation rate a function of time.

In an extension to their original, basic model, Momiji and Monk (2008) considered the

parametersµ3 andµ4 as functions of Stat3 concentration. Arguing that Stat3 oscillated,

they then simply made these parameters depend on time in a sinusoidal manner as

follows:
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µ∗ = µ 8
∗+dµ∗sin(

2πt
T

)

= 0.03+dµ∗sin(
2πt
T

)

(5.48)

with parameter values taken from the work of Yoshiura et al. (2007),dµp=1.1,µp=1.6

andµ 8
p=1.9.

We now modify our system to make the parametersµ3 andµ4 explicitly depend on

Stat3 concentration (details given in Appendix A) and hencethe modified equations

for Hes1 and Stat3 are:

∂y∗1n

∂ t∗
= D∗

y1n
∇2y∗1n−µ∗

1y∗1n+k∗1

(
1

(1+α1∗y∗4n)
n1

)

∂y∗1c

∂ t∗
= D∗

y1c
∇2y∗1c−µ∗

1y∗1c

∂y∗3c

∂ t∗
= D∗

y3c
∇2y∗3c− (µ 8

3+(−0.004+0.00348∗y6c)y
∗
3c+k∗3H1(x,y)y

∗
1c−2k∗4y∗2

3c

∂y∗4c

∂ t∗
= D∗

y4c
∇2y∗4c− (µ 8

4+(−0.004+0.00348∗y6c)y
∗
4c+k∗4y∗2

3c

∂y∗4n

∂ t∗
= D∗

y4n
∇2y∗4n− (µ 8

4+(−0.004+0.00348∗y6c)y
∗
4n

∂y5n

∂ t
= Dy5n∇2y5n+

α5
1+(y6n/P0)n2 −µ5y5n

∂y5c

∂ t
= Dy5c∇

2y5c−µ5y5c

∂y6c

∂ t
= Dy6c∇

2y6c+α6y6c−µ6y6c

∂y6n

∂ t
= Dy6n∇2y6n−µ6y6n (5.49)

Alternative equations for Hes1 and Stat3 where the parameters µ3 and µ4 explicitly

96



depend on Stat3 concentration (details given in Appendix A)are:

∂y∗1n

∂ t∗
= D∗

y1n
∇2y∗1n−µ∗

1y∗1n+k∗1

(
1

(1+α1∗y∗4n)
n1

)

∂y∗1c

∂ t∗
= D∗

y1c
∇2y∗1c−µ∗

1y∗1c

∂y∗3c

∂ t∗
= D∗

y3c
∇2y∗3c− (µ 8

3+(−0.015+0.00463∗y6c)y
∗
3c+k∗3H1(x,y)y

∗
1c−2k∗4y∗2

3c

∂y∗4c

∂ t∗
= D∗

y4c
∇2y∗4c− (µ 8

4+(−0.015+0.00463∗y6c)y
∗
4c+k∗4y∗2

3c

∂y∗4n

∂ t∗
= D∗

y4n
∇2y∗4n− (µ 8

4+(−0.015+0.00463∗y6c)y
∗
4n

∂y5n

∂ t
= Dy5n∇2y5n+

α5
1+(y6n/P0)n2 −µ5y5n

∂y5c

∂ t
= Dy5c∇

2y5c−µ5y5c

∂y6c

∂ t
= Dy6c∇

2y6c+α6y6c−µ6y6c

∂y6n

∂ t
= Dy6n∇2y6n−µ6y6n (5.50)

Table 5.4: Parameters value

Parameters Values Parameters Values
D 7.5×10−4 α1 1
µ1 0.03 α5 1
µ3 0.03 α6 1
µ4 0.03 k1 2
µ5 0.03 k3 5
µ6 0.03 k4 2

dµ3 0.015 n1 2
dµ4 0.015 n5 5
T 200 p0 1
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5.5 Modelling Different Intracellular Phenomena

In this section we solve model (5.46) numerically to obtain the simulation result of the

system with some modifications representing possible intracellular phenomena that

could affect the spatio-temporal dynamics of the model. We first change the model

system to take account of the effect of adding noise to the diffusion in the cell and

examine the effect on the oscillations of the model.

Most physical systems which respond to the concentration ofa signalling molecule

will exhibit noise due to the random movement of the molecules (diffusion) and vari-

ability in the processes of transcription and translation.Recent large scale surveys of

noise suggested that the noise in most protein levels can be understood in terms of

the components of noise that derive from the translation of mRNA into protein, or the

components that arise from noise in the transcription and degradation of the mRNA

itself (Gasper 2008).

To understand the effect that noise had on the oscillations of the intracellular network,

we add Gaussian Noise to our system by modifying the diffusion coefficient in the

Hes1-Stat3 System (5.45) i.e.D = D+ sin(0.01∗ t +awgn(sin(0.01∗ t),25))/5000)

(For the simulation result see Fig. 5.17).

We now consider a second change of the model system to examinethe effect of adding

a nuclear membrane with zero flux boundary condition in the cell domain to the oscil-

lation of the model. A nuclear membrane is the double lipid bilayer membrane called

the inner membrane and the outer membrane which surrounds the genetic material and

divides the cell into two compartments (Martin 2010). During the intracellular signal

transaction the nucleus membrane control the diffusion from the cytoplasm through
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the nucleus pore complex (NPC) to the nucleus and from the nucleus to the cytoplasm

(Weis 2003).

When the molecule binds to the surface of the outer membrane it can diffuse through

the nuclear pore and then diffuses into the inner membrane. The whole process takes

time which depends on the size of the molecule itself and the size of the nuclear

pore. Hence, larger molecules, such as proteins, will diffuse more slowly than smaller

molecules, such as mRNA (Sturrock et al. 2011).

To show the effect of the nuclear membrane on the oscillations of the Hes1-Stat3 sys-

tem, we consider the nuclear membrane to be of thicknessd (which is also the depth

of the NPC of the nucleus membrane) in the system of equations(5.46). The nuclear

membrane thickness has been estimated to be approximately 100nm (Sturrock et al.

2011). Also, we assume that diffusion across it is slower than in the cytoplasm or nu-

cleus, with protein diffusion slower than mRNA diffusion across the membrane. We

simply chooseDm = Di j/5 andDp = Di j/15 for the nuclear membrane diffusion for

mRNA for Hes1 and Stat3 and protein for Hes1 and Stat3, respectively (for the simu-

lation result see Fig. 5.18).

Finally we replace the previous continuity of flux boundary conditions with the fol-

lowing boundary conditions which considers the nuclear membrane thickness:
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Dy1n

∂ [y1n]

∂n
=

Dy1([y1n]− [y1c])

d

Dy1c

∂ [y1c]

∂n
=

Dy1([y1c]− [y1n])

d

Dy3c

∂ [y3c]

∂n
=

Dy3([y3c]− [y3n])

d

Dy4n

∂ [y4n]

∂n
=

Dy4([y1n]− [y4c])

d

Dy4c

∂ [y4c]

∂n
=

Dy4([y1c]− [y4n])

d

Dy5n

∂ [y5n]

∂n
=

Dy5([y5n]− [y1c])

d

Dy5c

∂ [y5c]

∂n
=

Dy5([y5c]− [y1n])

d

Dy6n

∂ [y6n]

∂n
=

Dy6([y1n]− [y6c])

d

Dy6c

∂ [y6c]

∂n
=

Dy6([y1c]− [y6n])

d
(5.51)

The boundary conditions (5.51) describe the flux across the nuclear membrane. This

flux can be thought of as a permeability coefficient (defined asthe diffusion coefficient

of the species in the nuclear membrane divided by the membrane thickness) multiplied

by the concentration difference of the species across the nucleocytoplasmic boundary.

Next, we alter the composition of the cell cytoplasm to examine the effect of introduc-

ing some regions in the cytoplasm where molecular movement/transport is inhibited

for some reason and examine its effect on the oscillations ofthe model.

Finally we modify the model system to examine the effect of molecular convection

on the oscillations of the model. To achieve this, we consider active transport of the

proteins which is very important to shift the transcriptional factor quickly from the cy-

toplasm to the nucleus. Active transport of the proteins canbe achieved by attachment
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to microtubules in the cytoplasm. The microtubules (MTs) are hollow cylindrical fila-

ments. During most of the life of the cell (interphase), the MTs are organized within

the cytoplasm as an aster originating from a microtubule organizing center (MTOC)

located in the proximity of the nucleus (Cangiani and Natalini 2010).

The role of MTs is that of enhancing intracellular trafficking. The size of macro-

molecules and intracellular organelles limits their diffusion speed to the cytoplasm, so

MTs resort with active transport in order to reach their target location. Active transport

is not essential to trafficking processes. Rather it must be seen as a way to improve

their efficiency. Active transport along the MTs is achievedby binding to a motor

protein, which possesses a mechanism for moving along the MTat a speed of about

0.5µms1 (Sturrock et al. 2012).

We shall model active transport of the transcription factorHes1 as always being di-

rected towards the nucleus. We do this by adding a convectionterm to the cytoplasmic

Hes1 equation in equation system (5.45), which becomes:

∂y∗3c

∂ t∗
= D∗

y3c
∇2y∗3c− (µ 8

3+dµ3sin(
2πt
T

))y∗3c

+ k∗3y∗1c−∇ · (a[y3c])−2k∗4y∗2
3c, (5.52)

where−∇ · (a[y3c]) is active transport anda is the convective velocity given by

a= [
−ax√
x2+y2

,
−ay√
x2+y2

] (5.53)

and the parametera is the convection speed.
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We run the simulation for the system of equations (5.46) and (5.52) while we still

considering the nuclear membrane effects.

Fig (5.17) shows the effect of adding a noise to the diffusion(D = D+ sin(0.01t +

awang(sin(0.01t),25)/5000), whereD = 0.00075). The plot shows that all the vari-

ables of the model (Hes1 mRNA, Hes1 protein dimer, Hes1 protein, Stat3 mRNA and

Stat3 protein) have oscillations. By comparing the resultsof fig (5.18) to the original

simulation fig (5.14), we note the diffusion noise affects the concentration level of the

variables in the cytoplasm and causes some delay in the diffusion between the nucleus

and the cytoplasm. This result is similar to simulations of the system when we add a

nuclear membrane with widthd and zero flux boundary condition in fig (5.18) where

the molecules take a longer time to move between the two partsof the domain.

In figs. (5.19) and (5.20) we consider the cell with a nuclear membrane. However

we also added some holes in the cytoplasm in fig (5.19) and considered convection

(i.e. motion along microtubules) in fig (5.20). In both figures we have oscillations but

in fig(5.19) the diffusion between the two domains still has the same delay while in

fig (5.20) convection helps to move the molecules faster between the nucleus and the

cytoplasm.
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Figure 5.13: Plots showing numerical solution of model (5.45) over time.Right figs show the
nucleus oscillation and the left figs show the cytoplasm oscillations. The red lines represent
the Hes1 mRNA (y1), the blue lines represent the Hes1 proteindimer (y3), the green lines
represent the Hes1 protein (y4), the black lines represent the Stat3 mRNA (y5), and the purple
lines represent the Stat3 protein (y6).
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Figure 5.14: Plots showing numerical solution of model (5.45) over time.The red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hes1 protein dimer (y3), the green lines
represent the Hes1 protein (y4), the black lines represent the Stat3 mRNA (y5), and the purple
lines represent the Stat3 protein (y6).
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Figure 5.15: Plots showing numerical solution of model (5.45) over time.The red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hes1 protein dimer (y3), the green lines
represent the Hes1 protein (y4), the black lines represent the Stat3 mRNA (y5), and the purple
lines represent the Stat3 protein (y6). The Figure shows theeffect of remapping the value of
protein degradation rate in the model (5.45) with the new value present in eq.(5.47)
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Figure 5.16: Plots showing numerical solution of model (5.45) over time.The red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hes1 protein dimer (y3), the green lines
represent the Hes1 protein (y4), the black lines represent the Stat3 mRNA (y5), and the purple
lines represent the Stat3 protein (y6). The Fig show the affect of remapping the value of protein
degradation rate in the model (5.45) with the new value present in eq. (5.48).
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Figure 5.17: Plots showing n umerical solution of model (5.45) over time.The red lines
represent the Hes1 mRNA (y1), the blue lines represent the Hes1 protein dimer (y3), the green
lines represent the Hes1 protein (y4), the black lines represent the Stat3 mRNA (y5), and the
purple lines represent the Stat3 protein (y6). The plots show the effect of modifying the diffusion
D by adding white Gaussian noise D+awng and using it in the model (5.45).

107



Figure 5.18: Plots showing Numerical solution of model (5.45) over time which is consider
the Nucleus membrane. The red lines represent the Hes1 mRNA (y1), the blue lines represent
the Hes1 protein dimer (y3), the green lines represent the Hes1 protein (y4), the black lines
represent the Stat3mRNA (y5), and the purple lines represent the Stat3 protein (y6).
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Figure 5.19: Plots showing Numerical solution of model (5.45) over time.The red lines repre-
sent the Hes1mRNA (y1), the blue lines represent the Hes1 protein dimer (y3), the green lines
represent the Hes1 protein (y4), the black lines represent the Stat3mRNA (y5), and the purple
lines represent the Stat3 protein (y6). The Fig show the affect of making some hole with zero
flux boundary condition in the cytoplasm.
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Figure 5.20: Plots showing Numerical solution of model (5.46) over time.The red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hes1 protein dimer (y3), the green lines
represent the Hes1 protein (y4), the black lines represent the Stat3mRNA (y5), and the purple
lines represent the Stat3 protein (y6). The model (5.46) show the effect of convection
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Chapter 6

Modelling the p53–Mdm2 System

6.1 A Spatio-Temporal Model of the p53-Mdm2 Sys-

tem

In this chapter we extend the previous model of the p53-Mdm2 system and consider

spatial interactions within the cell as shown in figure (4.13) in chapter 4. We consider

nucleus and cytoplasm domains as two spatial compartments separated by the nuclear

membrane and the cytoplasm has zero flux boundary condition with the out side cell

membrane. Also, we couple the reaction kinetics from ODE model (4.32), (4.33) and

(4.34) in chapter 4, with diffusion to model the protein and mRNA transport within the

cell.

p53 transcription takes place in the nucleus to produce p53 mRNA then transfers to the

cytoplasm where the p53 protein synthesis occurs and the same process goes with the

Mdm2 protein and Mdm2 mRNA. Then, we assume that the mechanism governing the

spatial movement of the mRNA and the protein between the nucleus and the cytoplasm
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is diffusion.

Therefore, we now consider the spatial interactions explicitly, allowing for diffusion

within the cell, and arrive at the following system of PDEs:

∂ [Pc]

∂ t
= DPc∇

2[Pc]+H2(x,y)β − (µ +ν(
[Mc]

h1

M̂h1+[Mc]h1
))[Pc] (6.1)

∂ [Pn]

∂ t
= DPn∇2[Pn]− (µ +ν(

[Mn]
h1

M̂h1+[Mn]h1
))[Pn] (6.2)

∂ [Mmn]

∂ t
= DMmn∇2[Mmn]+α +η(

[Pn]
h2

P̂h2+[Pn]h2
)−φ [Mmn] (6.3)

∂ [Mmc]

∂ t
= DMmc∇

2[Mmc]−φ [Mmc] (6.4)

∂ [Mc]

∂ t
= DMc∇

2[Mc]+H1(x,y)γ[Mmc]−ρ [Mc] (6.5)

∂ [Mn]

∂ t
= DM−n∇2[Mn]−ρ [Mn] (6.6)

where ,[Pn], [Pc], [Mmn], [Mmc], [Mn] and[Mc] are the concentrations of the nuclear and

the cytoplasmic p53, the nuclear and the cytoplasmic Mdm2 mRNA and the nuclear

and the cytoplasmic Mdm2 protein respectively.[Di] denote the diffusion coefficients

for each species.

To model the transportation of both mRNA and the protein within the cell, we coupled

the ODE model (4.32), (4.33) and (4.34) with diffusion whichenables us to model

the molecules moving from the nucleus to the cytoplasm and from the cytoplasm to

the nucleus across the nuclear membrane. Eqs.(6.1)-(6.6) represent a PDE system
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of reaction-diffusion equations modelling the spatio-temporal evolution of the p53-

Mdm2 system.H1(x,y) andH2(x,y) are functions localising the protein production

whose specific form will be given after the nondimensionalisation of the system.

We consider the continuity of flux boundary conditions for the nuclear membrane to

allow import and export of mRNA and the protein, and zero flux boundary conditions at

the cytoplasm membrane to ensure that all molecules remain within the cell membrane.

DPn

∂ [Pn]

∂n
= DPc

∂ [Pc]

∂n
and [Pn] = [Pc] at the nuclearmembrane (6.7)

DMmn

∂ [Mmn]

∂n
= DMmc

∂ [Mmc]

∂n
and [Mmn] = [Mmc] at the nuclearmembrane(6.8)

DMn

∂ [Mn]

∂n
= DMc

∂ [Mc]

∂n
and [Mn] = [Mc] at the nuclearmembrane (6.9)

∂ [Pc]

∂n
= 0, at the cell membrane (6.10)

∂ [Mmc]

∂n
= 0, at the cell membrane (6.11)

∂ [Mc]

∂n
= 0, at the cell membrane (6.12)

wheren is a unit normal.

We nondimensionalise Eqs. (6.1)-(6.6) with appropriate reference values as follows

(see Appendix D):
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[Pn] =
[Pn]

p0
, [Pc] =

[Pc]

p0
, [Mmn] =

[Mmn]

mm0
, [Mmc] =

[Mmc]

mm0

Mn] =
[Mn]

m0
, [Mc] =

[Mc]

m0

t =
t
τ
, X =

x
L
, Y =

y
L

(6.13)

where[p0] , [mm0] and[m0] are reference concentrations,τ is reference time, andL is

a reference length (10µm as with the Hes1 system). Using this scaling Eq. (6.1)-(6.6)

become:

∂ [Pc]

∂ t
= D∗

Pc∇
2[Pc]+H2(x,y)β ∗− (µ∗+ν∗(

[Mc]
h1

M∗+[Mc]h1
))[Pc] (6.14)

∂ [Pn]

∂ t
= D∗

Pn
∇2[Pn]− (µ∗+ν∗(

[Mn]
h1

M∗+[Mn]h1
))[Pn] (6.15)

∂ [Mmn]

∂ t
= D∗

Mmn
∇2[Mmn]+α∗+η∗(

[Pn]
h2

P∗+[Pn]h2
)−φ∗[Mmn] (6.16)

∂ [Mmc]

∂ t
= D∗

Mmc
∇2[Mmc]−φ∗[Mmc] (6.17)

∂ [Mc]

∂ t
= D∗

Mc
∇2[Mc]+H1(x,y)γ∗[Mmc]−ρ∗[Mc] (6.18)

∂ [Mn]

∂ t
= D∗

Mn
∇2[Mn]−ρ∗[Mn] (6.19)
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where

D∗
Pn

=
τDPn

L2 , D∗
Pc
=

τDPc

L2

D∗
Mmn

=
τDMmn

L2 , D∗
Mmc

=
τDMmc

L2

D∗
Mn

=
τDMn

L2 , D∗
Mc

=
τDMc

L2

M∗ =
M̂mh1

[Mm0]h1 , P∗ =
p̂h2

[P0]h2

β ∗ =
τβ
p0

, η∗ =
τη

mm0
µ∗ = τµ , ν∗ = τν

φ∗ = τφ , γ∗ =
τγ[Mm0]

m0
, α∗ =

τα
mm0

ρ∗ = τρ (6.20)

and

H1(x,y) =





0 if x2

2 +y2 ≤ 0.25,

1 if x2

2 +y2 > 0.25.

and

H2(x,y) =





0 if x2

2 +y2 ≤ 0.25,

1 if 0.25< x2

2 +y2 < 0.375,

0 if x2

2 +y2 ≥ 0.375,

The functionH1(x,y) is such that in a region close to the nucleus (representing the

location of the ER), the function is zero, meaning there is noprotein synthesis in this

region. In a region further away from the nucleus (outside the ER) the function takes

the value of one, modelling the translation of protein in this region of the cytoplasm.

The functionH2(x,y) is such that in a region close to the nucleus the function is zero,

meaning there is no protein synthesis here. However, it is now assumed that the func-

tion takes the value of one in an annular region outside of theER (again modelling

the translation of protein). An annular region is chosen because we assume p53 is pro-

duced at a constant rate in the cytoplasm. This prevents p53 from being produced close

to the plasma membrane, where mRNA is unlikely to reach in sufficient quantities. The
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Figure 6.1: Schematic diagram showing the regions where the two functions H1(x,y) and
H2(x,y) are non-zero. The blue region of the cytoplasm depicts wherewe allow constant protein
synthesis to occur, i.e., this represents the rectangular function H2(x,y). The blue and red
regions together depict where we allow protein translationvia mRNA, i.e., this represents the
function H1(x,y). In the white region representing the ER and nucleus, no protein synthesis
takes place.

two functions are illustrated graphically in Fig 6.1.

We apply zero initial conditions, zero-flux boundary conditions at the cell membrane

and flux continuity boundary conditions across the nuclear membrane:

[Pn] = [Pc] = [Mmn] = [Mmc] = [Mn] = [Mc] = 0, at t = 0 (6.21)
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D∗
Pn

∂ [Pn]

∂n
= D∗

Pc

∂ [Pc]

∂n
and [Pn] = [Pc] at the nuclearmembrane (6.22)

D∗
Mmn

∂ [Mmn]

∂n
= D∗

Mmc

∂ [Mmc]

∂n
and [Mmn] = [Mmc] at the nuclearmembrane(6.23)

D∗
Mn

∂ [Mn]

∂n
= D∗

Mc

∂ [Mc]

∂n
and [Mn] = [Mc] at the nuclearmembrane (6.24)

∂ [Pc]

∂n
= 0, at the cell membrane (6.25)

∂ [Mmc]

∂n
= 0, at the cell membrane (6.26)

∂ [Mc]

∂n
= 0, at the cell membrane (6.27)

We take reference concentrations to be[P0] = 0.05,µM and estimated reference con-

centrations for[Mm0]=0.05µM and[M0]=2µM. Ma et al. (2005). Fig (6.1), (6.2) show

the simulations of Eqs.(6.14)-(6.19). It was noticed that the period of oscillation was

approximately 400 time units. Hence, knowing that the period of oscillation of p53

is approximately 3h Monk (2003), as result of this, we have the reference timeτ as

follows: 400τ = 3 h which meanτ= 27 s.

Parameter estimation

The following parameter values were used in our simulationsof the non-dimensional

p53-Mdm2 system:
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D∗
Pc

= D∗
Pn
= D∗

Mmc
= D∗

Mmn
= D∗

Mc
= D∗

Mn
= 9×10−4

β ∗ = 0.5 , µ∗ = 0.003, ν∗ = 1 , α∗ = 0.0175

η∗ = 1 , φ∗ = 0.0175. , γ∗ = 0.5 , ρ∗ = 0.025

h1 = 2 , h2= 4 , M∗ = 16 , P∗ = 5 (6.28)

By using (6.20) and (6.28) to estimate the parameter values of the dimensional p53-

Mdm2 model (6.1)-(6.6).

DPc = DPn = DMmc = DMmn = DMc = DMn = 3.33×10−11cm2s−1

β = 9.26×10−3Ms−1 , µ = 1.11×10−4s−1

ν = 0.04s−1 , α = 3.24×10−11Ms−1

η = 1.85×10−9Ms−1 , φ = 6.48×10−4s−1

γ = 0.74s−1 , ρ = 9.26×10−4s−1

M̂ = 8×10−6M , P̂= 7.48×10−7M

h1 = 2 , h2= 4 (6.29)

6.2 Computational Simulation Results

Once again we solved the PDE system (6.14)(6.19) numerically using the finite ele-

ment package COMSOL/FEMLAB (with the same basis elements and basis functions

and time-stepping as previously). For all our simulations we used a 2-dimensional cell

domain of two ellipses to represent the nucleus and cytoplasm to show the oscillatory

118



dynamics results of the P53-Mdm2 system.

Figs. (6.1) and (6.2) show the concentrations of p53 and Mdm2in the nucleus and

cytoplasm. We can see from these p53 simulations that the mRNA concentration is

higher in the nucleus compared to the protein concentrations in the cytoplasm. while,

Mdm2 mRNA concentrations higher in the cytoplasm and Mdm2 protein is higher in

the nucleus.

Figure 6.2: Plots showing the concentrations of p53 (blue), Mdm2 mRNA (green) and Mdm2
(red) in the cytoplasm. The period of oscillations is approximately 180 min. Parameter values
as per (60).

Figs. (6.3), (6.4), and (6.5) show how the dynamics of the p53-Mdm2 system (evolve

in space as well as time) vary spatially throughout the cell over the period of the oscil-

lations in figures (6.1) and (6.2).

In Fig (6.3), we see that p53 has accumulated in the cytoplasmaroundt = 50, then

begins to diffuse across the nucleus membrane entering the nucleus byt = 100 while
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Figure 6.3: Plots showing the concentrations of p53 (blue), Mdm2 mRNA (green) and Mdm2
(red) in the nucleus. The period of oscillations is approximately 180 min. Parameter values as
per (60).

the Mdm2 mRNA in Fig (6.4) shows in the nucleus at the same timewhere the Mdm2

binds to the p53 to prevent p53 transcription. Att = 150 the Mdm2 shuttles p53 from

the nucleus to the cytoplasm for degradation, Fig(6.5). By time 400 the level of p53

begins to increase again in the cytoplasm. Figs. (6.4), (6.5) show the plots of Mdm2

concentration over time. In Fig (6.5) the Mdm2 protein is produced betweent = 100

to t = 250 min, the same time as the Mdm2 mRNA is exported from the nucleus and

translation occurs in the cytoplasm.

In order to investigate the influence of spatial effects, we carried out number of simula-

tions on system (6.14)-(6.19), where we consider varying the thickness of the nuclear

membrane, varying the values of the diffusion coefficients of p53, Mdm2 protein and

Mdm2 mRNA, while all other parameters remaining unchanged and adding noise to

the diffusion coefficients.
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Figure 6.4: Plots showing the spatio-temporal evolution of p53 proteinconcentration within
the cell from times t = 0 to 450 min. The concentration oscillates in both time and space.
Parameter values as per (60).

6.3 Model extension incorporating the effect of the nu-

clear membrane

We now examine the effect of adding a nuclear membrane with zero flux boundary

condition in the cell domain to the oscillation of the model.A nuclear membrane is the

double lipid bilayer membrane called the inner membrane andouter membrane which

surrounds the genetic material and divides the cell into twocompartments (Martin

2010). During the intracellular signal transaction the nuclear membrane controls the

diffusion from the cytoplasm through the nuclear pore complex (NPC) to the nucleus

and from the nucleus to the cytoplasm (Weis 2003).
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Figure 6.5: Plots showing the spatio-temporal evolution of Mdm2 mRNA concentration within
the cell from times t = 0 to 450 min. The concentration oscillates in both time and space.
Parameter values as per (60).

When the molecule binds to the surface of the outer membrane it can diffuse through

the nuclear pore and then diffuses into the inner membrane. The whole process takes

time which depends on the size of the molecule itself and the size of the nuclear

pore. Hence, larger molecules, such as proteins, will diffuse more slowly than smaller

molecules, such as mRNA (Sturrock et al. 2011).

To show the effect of the nuclear membrane on the oscillations of the p53-Mdm2 sys-

tem, we consider some additional points such as introducinga thicknessd to the nu-

clear membrane (which is also the depth of the NPC of the nuclear membrane) to
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Figure 6.6: Plots showing the spatio-temporal evolution of Mdm2 protein concentration within
the cell from times t = 0 to 450 min. The concentration oscillates in both time and space.
Parameter values as per (60).

equations (6.14)-(6.19). The nuclear membrane thickness has been estimated to be

approximately 100nm (Sturrock et al. 2011). Also, we assumethat diffusion across it

is slower than in the cytoplasm or nucleus, with protein diffusion slower than mRNA

diffusion across the membrane. We simply chooseDm = Di j/5 andDp = Di j/15 for

the nuclear membrane diffusion for mRNA for p53 and Mdm2 and protein for p53 and

Mdm2, respectively. Finally we replace the previous continuity of flux boundary con-

dition at the nuclear membrane with the following boundary condition which considers

the nuclear membrane thickness:
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DP53n

∂ [P53n]

∂n
=

DP53([P53n]− [P53c])

d

DP53c

∂ [P53c]

∂n
=

DP53([P53c]− [P53n])

d

DMdm2mn

∂ [Mdm2mn]

∂n
=

DMdm2m([Mdm2mn]− [Mdm2mc])

d

DMdm2mc

∂ [Mdm2mc]

∂n
=

DMdm2m([Mdm2mc]− [Mdm2mn])

d

DMdm2n

∂ [Mdm2n]

∂n
=

DMdm2([Mdm2n]− [Mdm2c])

d

DMdm2c

∂ [Mdm2c]

∂n
=

DMdm2([Mdm2c]− [Mdm2n])

d
(6.30)

The boundary conditions (6.30) describe the flux across the nuclear membrane. This

flux can be thought of as a permeability coefficient (defined asthe diffusion coefficient

of the species in the nuclear membrane divided by the membrane thickness) multiplied

by the concentration difference of the species across the nucleocytoplasmic boundary.

We ran the numerical simulation of the model system twice, the first one with no

change in the diffusion values (see Fig 6.7), while the second figure shows the effects

of nuclear membrane and the diffusion of the variables varies and are not equal (see

Figure 6.8).

The simulation result of Fig 6.7 and Fig 6.8 show clearly thatthe nuclear membrane

thickness could stop the diffusion of molecules between thetwo parts of the domain,

the nucleus and the cytoplasm.
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6.4 Modelling the effects of noise on the system

Most physical systems which respond to the concentration ofa signalling molecule

will exhibit noise due to the random movement of molecules (diffusion) and delays

in the processes of transcription and translation. Recent large scale surveys of noise

suggested that the noise in most protein levels can be understood in terms of the com-

ponents of noise that derive from the translation of mRNA into protein, or the com-

ponents that arise from noise in the transcription and degradation of the mRNA itself

(Gasper 2008).

To understand the effect that noise coused to the oscillation of the intracellular net-

work, we add Gaussian Noise to the simulation code by modifying the diffusion coeffi-

cients in the p53-Mdm2 System (6.14)-(6.19) toD=D+sin(0.01∗t+awgn(sin(0.01∗

t),25))/5000.

We ran the numerical simulation of the model system twice. First with no change in the

diffusion values (see Fig 6.9), and second showing the effects of the nuclear membrane

and the diffusion coefficients of the variables not equal. (see Figure 6.10 ).

By comparing the simulation result of the p53-Mdm2 system including noise in the

molecular diffusion to the result of the main model system (6.30), we see clearly how

the noise caused the component concentration in the cytoplasm to reach a higher value

than in the nucleus where are the concentration is lower thanthe concentration in the

main model results, shown in Fig.6.2 and 6.3.
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Figure 6.7: Plots showing numerical simulation of model (6.14)-(6.19)over time. The red lines
represent the p53 (y1), the blue lines represent the Mdm2 mRNA (y2), the green lines represent
the Mdm2 protein (y3). The Fig shows the effect of considering the different nucleus membrane
thickness d values ( d=0.01, d=0.1, d=1 ), whereas the diffusion for the variables is equal.
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Figure 6.8: Plots showing numerical simulation of model (6.14)-(6.19)over time. The red lines
represent the p53 (y1), the blue lines represent the Mdm2 mRNA (y2), the green lines represent
the Mdm2 protein (y3). The Fig show the effect of consideringthe different nucleus membrane
thickness d values ( d=0.01, d=0.1, d=1 ), whereas the diffusion for the variables varies and is
not equal.
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Figure 6.9: Plots showing numerical simulation of model (6.14)-(6.19)over time. The black
lines represent the p53 (y1), the blue lines represent the Mdm2 mRNA (y2), the green lines
represent the Mdm2 protein (y3). The Fig show the effect of modifying the diffusion coefficient
D by adding additive white Gaussian noise D+awng. The diffusion for all variables is equal
and the nuclear membrane thickness = 0.01

128



0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

time

sc
al

ed
 c

on
ce

nt
ra

tio
n

Cytoplasm

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

time

sc
al

ed
 c

on
ce

nt
ra

tio
n

Nucleus

Figure 6.10: Plots showing numerical simulation of model (6.14)-(6.19)over time. The black
lines represent the p53 (y1), the blue lines represent the Mdm2 mRNA (y2), the green lines
represent the Mdm2 protein (y3). The Fig show the effect of modifying the diffusion D by
adding additive white Gaussian noise D+awng. The diffusionfor the variables varies and is
not equal and the nucleus membrane thickness = 0.01
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Chapter 7

Conclusions and Future Work

We conclude this thesis with a brief summary of the major points and some possible

avenues of future exploration. Of course, this is by no meansexhaustive, and we refer

the reader to the appropriate chapters for a more detailed account.

In the framework of this thesis we have studied the correct spatial localisation of tran-

scription factors where it is vitally important for the proper functioning of many intra-

cellular signalling pathways. Also we have showed that negative feedback loops are

important components of many intracellular signal transduction processes. In this the-

sis we have built on previous mathematical modelling approaches, and we have derived

systems of partial differential equations to capture the evolution in space and time of

the variables in the two pathways of the Hes1 and p53-Mdm2 feedback loops (gene

regulatory networks, GRN).

In the first model, we examined a detailed model of the Hes1 system, incorporating
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a number of basic biochemical processes neglected in previous models using a com-

bination of mathematical analysis and numerical simulation. We developed and ex-

tended the Hes1 model system of Momiji and Monk (2008) by using partial differen-

tial equations (PDEs) in order to be able to model the aspectsof intracellular signalling

pathways. Also, we showed that Hes1 oscillations are in factdependent on a post-

translational oscillation in the phosphorylation state ofthe protein Stat3. Oscillations

in the level of pStat3 provide an extrinsic driving force to the Hes1 auto-regulatory

network, by regulating the degradation rate of Hes1 protein(Yoshiura et al. 2007). We

have developed an extended model of the pStat3-driven Hes1 network by incorporat-

ing transcriptional delay and Hes1 dimerisation. However,simulation of the driven

network shows that the Hes1 network can respond to pStat3 oscillations by generating

oscillations in Hes1 mRNA and Hes1 protein without the inclusion of transcriptional

delay (Yoshiura et al. 2007).

The second model discussed in this thesis is a mathematical model of the p53-Mdm2

pathway where we use a system of PDEs to model the aspects thisintracellular sig-

nalling pathway. The simulation results of our models demonstrated the existence of

oscillatory dynamics in negative feedback systems for the p53-Mdm2 pathways and

have been able to focus on reactions occurring both in the cell nucleus and in the cyto-

plasm.

In both the Hes1 and p53-Mdm2 systems, we varied the diffusion coefficients of the

mRNAs and proteins and found a range of values for these diffusion coefficients where

the system exhibits oscillatory dynamics. By varying the diffusion coefficients of

the molecules, we can vary the flux rates across the nuclear membrane (equivalent

to varying nuclear import and export rates), thus granting greater control and allow-

ing a much more in depth analysis of the systems. Similar results were obtained by

varying the mRNA degradation rates, protein degradation rates and Hill coefficients,

further demonstrating that the oscillations are robust to parameter changes. Exploiting
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the explicitly spatial nature of PDEs, we were also able to manipulate mathematically

the location of the ribosomes, thus controlling where the proteins were synthesized

within the cytoplasm. For both the Hes1 and the p53-Mdm2 systems, we carried out

a number of numerical simulations where we investigated theeffect of varying the

two functionsH1(x,y) andH2(x,y), controlling constant protein synthesis and protein

translation via mRNA in the cytoplasm, respectively. For both model systems, the

simulation results revealed an optimum distance outside the nucleus for protein pro-

duction for which sustained (undamped) oscillations of large amplitude were observed.

Future work arising from this thesis could extend the current models by considering

the active transport of proteins and mRNA within the cell as mechanisms of move-

ment in addition to diffusion (Cangiani and Natalini 2010).One could also model the

nuclear membrane in more detail and take into account its thickness. This would al-

low one to model differences in the rate of transport of mRNA and protein across the

nuclear membrane more accurately. Additional complexities of post-transcriptional

mRNA and post-translational protein modifications could also be examined. Future

models with the developments just noted, would enable us to drill down into the fun-

damental differences between cancer cells and normal cells. As an exemplar, using

the p53-Mdm2 pathway we would be able to model the effects of different therapeutic

approaches, including the temporal and spatial distributions of targeted disruption of

p53 or Mdm2 interactions by non-genotoxic mechanisms.

Finally, one could consider extending the Hes1 GRN in some detail using the spa-

tial stochastic models in various ways. In particular, one could investigate nuclear

transport in more detail and begin to account for the ran-cycle. Many transcription fac-

tors are known to be actively transported towards the nucleus along microtubules and

this aspect of intracellular molecular transport should beinvestigated in more detail
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(Lomakin and Nadezhdina 2010). One should also conduct a global sensitivity anal-

ysis of the model using data clustering techniques. One may also consider cell-cell

communication in future work to see if this acts to stabiliseand synchronise oscilla-

tory behaviour as Masamizu et al. (2006) found. Naturally, our approach is readily

applicable to many other pathways and future work should also investigate the intri-

cacies of the p53-Mdm2 negative feedback loop in more detailand perhaps consider

pathway cross-talk e.g. interactions with other gene regulatory networks such as the

NF-κB pathway.
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Appendix

Appendix A

The Non-Dimensional Hes1 System:

∂ [Mn]

∂ t
= DMn∇2[Mn]+

αM

1+(
[Pn]
p̂ )h

−µM [Mn]

∂ [Mc]

∂ t
= DMc∇

2[Mc]−µM[Mc]

∂ [Pc]

∂ t
= DPc∇

2[Pc]+αP[Mc]−µP[Pc]

∂ [Pn]

∂ t
= DPn∇2[Pn]−µP[Pn] (7.1)

Nondimensionalisation: Reference concentrations:m0, p0

Reference time:τ (the period of oscillation in the Hes1 system)

Reference length:L (0.4 times the length of a cell)
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Normalising variables in terms of appropriate reference parameters:

[Mn] = [Mn]m0 , [Mc] = [Mc]m0

t = tτ , x= LX , y= LY (7.2)

Nondimensionalise the 5 equations using the scaling variables:

first equation:

∂ [Mn]

∂ t
= DMn∇2[Mn]+

αM

1+( [Pn]
p̂ )h

−µM[Mn]

∂ [Mn]

∂ t
=

∂m0·[Mn]

∂ t
= m0

[Mn]

∂ t
·

∂ t
∂ t

=
m0

τ
·

∂ [Mn]

∂ t
(7.3)

DMn∇2[Mn] = DMn·m0

(
∂ 2m0 · [Mn]

∂x2 +
∂ 2m0 · [Mn]

∂y2

)

= DMn·m0


 ∂

∂x

(
∂m0 · [Mn]

∂x

)
+

∂
∂y

(
∂m0 · [Mn]

∂y

)


= DMn·m0



(

∂
∂X

·
∂X
∂x

)(
∂m0 · [Mn]

∂X
·

∂X
∂x

)
+

(
∂

∂Y
·

∂Y
∂y

)(
∂m0 · [Mn]

∂Y
·

∂Y
∂y

)


= DMn·m0



(

∂
∂X

·
1
L

)(
∂m0 · [Mn]

∂X
·
1
L

)
+

(
∂

∂Y
·
1
L

)(
∂m0 · [Mn]

∂Y
·
1
L

)


= DMn·m0


m0

L2

(
∂ 2[Mn]

∂X
2

)
+

m0

L2

(
∂ 2[Mn]

∂Y
2

)


= DMn·m0

m0

L2 ·

(
∂ 2

∂X
2 +

∂ 2

∂Y
2

)
· [Mn]

=
m0

L2 DMn·m0
∇2[Mn] (7.4)

(
[Pn]

p̂
)h = (

p0[Pn]

p̂
)h , [Mn] = [Mn]m0 (7.5)
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So the equation has the new form:

m0

τ
·

∂ [Mn]

∂ t
=

m0

L2 DMn·m0
∇2[Mn]+

αM

1+(
p0[Pn]

p̂ )h
−µM·[Mn]

∂ [Mn]

∂ t
=

τ
L2DMn·m0

∇2[Mn]+
τ

m0

αM

1+( p0[Pn]
p̂ )h

−
τµM·

m0
[Mn] (7.6)

Where

τ
L2DMn·m0

= D∗

Mn
,

τµM·

m0
= µ∗

M ,
ταM

m0
= α∗

M , p∗ =
p0

p̂
(7.7)

Also similarly:

D∗
Mc

=
τ
L2DMc·m0

, D∗
Pn
=

τ
L2DPn·p0

, D∗
Pc
=

τ
L2DPc·p0

µ∗
P =

τµP·

p0
, α∗

P =
ταP

p0
(7.8)

The following parameter values were used in our simulationsof the non-dimensional

Hes1 system:

D∗
Mn

= D∗
Mc

= D∗
Pn
= D∗

Pc
= 7.5×10−4

α∗
M = 1 , α∗

P = 2 , h= 5 , p∗ = 1 , µ∗
M = µ∗

P = 0.03 (7.9)

∂
(
[Mn]m0

)

∂ (tτ)
=

DMn

L2 ∇2[Mn]m0+
αM

1+(
[Pn]p0

p̂ )h
−µM [Mn]m0

∂
(
[Mc]m0

)

∂ (tτ)
=

DMc

L2 ∇2[Mc]m0−µM[Mc]m0

∂
(
[Pc]p0

)

∂ (tτ)
=

DPc

L2 ∇2[Pc]p0+αP[Mc]−µP[Pc]p0

∂
(
[Pn]p0

)

∂ (tτ)
=

DPn

L2 ∇2[Pn]p0−µP[Pn]p0 (7.10)
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∂ [Mn]

∂ t
=

(
τDMn

L2

)
∇2[Mn]+

(
ταM
m0

)

1+(
[Pn]p0

p̂ )h
− (τµM) [Mn]

∂ [Mc]

∂ t
=

(
τDMc

L2

)
∇2[Mc]− (τµM) [Mc]

∂ [Pc]

∂ t
=

(
τDPc

L2

)
∇2[Pc]+

(
τm0αP

p0

)
[Mc]− (τµP) [Pc]

∂ [Pn]

∂ t
=

(
τDPn

L2

)
∇2[Pn]− (τµP) [Pn] (7.11)

∂ [Mn]

∂ t
= D∗

Mn
∇2[Mn]+

α∗
M

1+(p∗[Pn])h
−µ∗

M[Mn]

∂ [Mc]

∂ t
= D∗

Mc
∇2[Mc]−µ∗

M[Mc]

∂ [Pc]

∂ t
= D∗

Pc
∇2[Pc]+α∗

P[Mc]−µ∗
P[Pc]

∂ [Pn]

∂ t
= D∗

Pn
∇2[Pn]−µ∗

P[Pn] (7.12)

Where

D∗
Mn

=
τDMn

L2 , D∗
Mc

=
τDMc

L2 , D∗
Pn
=

τDPn

L2 , D∗
Pc
=

τDPc

L2

α∗
M =

ταM

[m0]
, α∗

P =
τ[m0]αP

[p0]

µ∗
M = τµM , µ∗

P = τµP , p∗ =
p0

p̂
(7.13)

As a first approximation we assume all diffusion coefficientsare equal.
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Calculating the effective diffusion coefficient, D:

L = 10µm

= 10×10−6m

= 10×10−4cm (7.14)

200τ = 2hrs

τ =
7200s
200

= 36s (7.15)

D∗ =
τD
L2

D =
L2D∗

τ

=
10×10×

(
10−6

)2
m2×D∗

τ

=
10×10×

(
10−4

)2
cm2×D∗

τ

=
100×10−8cm2×D∗

τ

=
1×10−6cm2×7.5×10−4

36s

= 2.0833333333×10−11cm2s−1 (7.16)
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Calculating the transcription rateαM.

m0 = 0.05µm

τ = 36s

α∗
M =

ταM

m0

αM =
m0α∗

M

τ

=
0.05×10−6M×1

36s

= 1.388888889×10−9ms−1 (7.17)

Calculating the repression threshold,p̂:

p∗ =
p0

p̂

p̂ =
p0

p∗

=
1×10−6m

1

= 1×10−6m (7.18)

Calculating the degradation rate of hes1 mRNA,µM :

τ = 36s

µ∗
M = τµM

µM =
µ∗

M

τ

=
0.03
36s

= 8.3333333×10−4s−1 (7.19)
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Calculating the translation rate,αP:

m0 = 0.05µm

p0 = 1µm

τ = 36s

α∗
P =

τ[m0]αP

[p0]

αP =
α∗

P[p0]

τ[m0]

=
2×1×10−6m

0.05×10−6m×36s

= 1.11111111111s−1 (7.20)

Calculating the degradation rate of Hes1 protein,µP:

τ = 36s

µ∗
P = τµP

µP =
µ∗

P

τ

=
0.03
36s

= 8.3333333×10−4s−1 (7.21)

Appendix B

Functional Dependence of the Parametersµ3 and µ4 on Stat3 Concentration

In this section we provide details of how we modified the parametersµ3 and µ4 to

have them explicitly depend on the concentration of Stat3. This was done to match

the model extension of Momiji and Monk (2008) where the two parametersµ3 andµ4
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were oscillatory values over time.

Figure 7.1: Plot of the total concentration of Stat3 showing the maximumand minimum values
which are used to modify the parametersµ3 andµ4.

Figure 7.2: Plot of the Stat3 concentration use to map to the parametersµ3 andµ4

We made the parametersµ3 andµ4 functions of Stat3 concentration (i.e. to ensure both

parameters varied over time in an oscillatory manner as per Stat3 concentration, but to

also ensure they remained positive) via a simple mapping as follows:
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[5.475,14.1] −→ [−0.015,0.015]

µ = a+b∗Stat3

0.015 = a+b∗14.1

−0.015 = a+b∗5.475

0.03 = 8.625∗b

b = 0.00348

a = −0.034 (7.22)

So

µ = a+b∗y6c

= −0.034+0.00348∗y6c

µ = 0.03−0.034+0.00348∗y6c

= −0.004+0.00348∗y6c

(7.23)

Figure 7.3: Plot of the Stat3 concentration use to map to the parametersµ3 andµ4

Once again we made the parametersµ3 andµ4 functions of Stat3 concentration (i.e. to
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ensure both parameters varied over time in an oscillatory manner as per Stat3 concen-

tration, but to also ensure they remained positive) via a simple mapping as follows:

[5.475,14.1] −→ [−0.02,0.02]

µ = a+b∗Stat3

0.02 = a+b∗14.1

−0.02 = a+b∗5.475

0.04 = 8.625∗b

b = 0.00463

a = −0.045 (7.24)

So

µ = a+b∗y6c

= −0.045+0.00463∗y6c

µ = 0.03−0.045+0.00463∗y6c

= −0.015+0.00463∗y6c

(7.25)
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Appendix C

The Non-Dimensional Hes1 System Extended model:

∂ [y1n]

∂ t
= Dy1n∇2[y1n]−µ1[y1n]+k1

[
1

(1+[y4n])n

]

∂ [y1c]

∂ t
= Dy1c∇

2[y1c]−µ1[y1c]

∂ [y3c]

∂ t
= Dy3c∇

2[y3c]−µ3[y3c]+k3[y1c]−2k4[y3c]
2

∂ [y4c]

∂ t
= Dy4c∇

2[y4c]−µ4[y4c]+k4[y3c]
2

∂ [y4n]

∂ t
= Dy4n∇2[y4n]−µ4[y4n] (7.26)

scaling variables:

y∗1n =
y1n

y0
, y∗1c =

y1c

y0
, y∗3c =

y3c

y0
, y∗4n =

y4n

y0
, y∗4c =

y4c

y0

t∗ =
t
τ
, X∗ =

x
L
, Y∗ =

y
L

(7.27)
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So:

∂y1n

∂ t
= Dy1n∇2y1n−µ1y1n+k1[

1
1+y4n

]

∂y1n

∂ t
=

∂y0·y∗1n

∂ t
= y0

∂y∗1n

∂ t∗
·

∂ t∗

∂ t
=

y0

τ
·

∂y∗1n

∂ t∗

Dy1n∇2y1n = Dy∗1n·y0

(
∂ 2y0 ·y∗1n

∂x2 +
∂ 2y0 ·y∗1n

∂y2

)

= D

(
∂
∂x

(
∂y0 ·y∗1n

∂x

)
+

∂
∂y

(
∂y0 ·y∗1n

∂y

))

= Dy∗1n·y0

((
∂

∂X∗
·

∂X∗

∂x

)(
∂y0 ·y∗1n

∂X∗
·

∂X∗

∂x

)
+

(
∂

∂Y∗
·

∂Y∗

∂y

)(
∂y0 ·y∗1n

∂Y∗
·

∂Y∗

∂y

))

= Dy∗1n·y0

((
∂

∂X∗
·
1
L

)(
∂y0 ·y∗1n

∂x∗
·
1
L

)
+

(
∂

∂Y∗
·
1
L

)(
∂y0 ·y∗1n

∂Y∗
·
1
L

))

= D


y0

L2

(
∂ 2y∗1n

∂X∗2

)
+

y0

L2

(
∂ 2y∗1n

∂Y∗2

)


= D
y0

L2 ·

(
∂ 2

∂X∗2 +
∂ 2

∂Y∗2

)
·y∗1n

=
y0

L2Dy∗1n·y0∇2y∗1n (7.28)

y0

τ
·

∂y∗1n

∂ t∗
=

y0

L2Dy∗1n·y0∇2y∗1n−µ1·y
∗
1n+k1

(
1

1+αy0 ·y∗4n

)

∂y∗1n

∂ t∗
=

τ
L2Dy∗1n·y0∇2y∗1n−

τµ1·

y0
y∗1n+

τk1

y0

(
1

1+αy0 ·y∗4n

)

∂y∗1n

∂ t∗
= D∗

y1n
∇2y∗1n−µ∗

1y∗1n+k∗1

(
1

1+α∗y∗4n

)
(7.29)
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y0

τ
∂y∗1n

∂ t∗
=

y0

L2Dy∗1n·y0∇2y∗1n−y0µ1y∗1n+k1

(
1

1+y0αy∗4n

)

y0

τ
∂y∗1c

∂ t∗
=

y0

L2Dy∗1c·y0∇2y∗1c−y0µ1y∗1c

y0

τ
∂y∗3c

∂ t∗
=

y0

L2Dy∗3c·y0∇2y∗3c−µ3y∗3c+k3y∗1c−2k4y∗2
3c

y0

τ
∂y∗4c

∂ t∗
=

y0

L2Dy∗4c·y0∇2y∗4c−y0µ4y∗4c+y2
0k4y∗2

3c

y0

τ
∂y∗4n

∂ t∗
=

y0

L2Dy∗4n·y0∇2y∗4n−y0µ4y∗4n (7.30)

∂y∗1n

∂ t∗
=

τ
L2Dy∗1n·y0∇2y∗1n− τµ1y∗1n+

τk1

y0

(
1

1+y0αy∗4n

)

∂y∗1c

∂ t∗
=

τ
L2Dy∗1c·y0∇2y∗1c− τµ1y∗1c

∂y∗3c

∂ t∗
=

τ
L2Dy∗3c·y0∇2y∗3c− τµ3y∗3c+ τk3y∗1c−2τy0k4y∗2

3c

∂y∗4c

∂ t∗
=

τ
L2Dy∗4c·y0∇2y∗4c− τµ4y∗4c+ τy0k4y∗2

3c

∂y∗4n

∂ t∗
=

τ
L2Dy∗4n·y0∇2y∗4n− τµ4y∗4n (7.31)

∂y∗1n

∂ t∗
= D∗

y1n
∇2y∗1n−µ∗

1y∗1n+k∗1

(
1

1+α∗y∗4n

)

∂y∗1c

∂ t∗
= D∗

y1c
∇2y∗1c−µ∗

1y∗1c

∂y∗3c

∂ t∗
= D∗

y3c
∇2y∗3c−µ∗

3y∗3c+k∗3y∗1c−2k∗4y∗2
3c

∂y∗4c

∂ t∗
= D∗

y4c
∇2y∗4c−µ∗

4y∗4c+k∗4y∗2
3c

∂y∗4n

∂ t∗
= D∗

y4n
∇2y∗4n−µ∗

4y∗4n (7.32)
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Where,

τ
L2Dy∗1n·y0 = D∗

y1n
,

τ
L2Dy∗1c·y0 = D∗

y1c
,

τ
L2Dy∗3c·y0 = D∗

y3c

τ
L2Dy∗4n·y0 = D∗

y4n
,

τ
L2Dy∗4c·y0 = D∗

y4c
, αy0 = α∗

τµ1 = µ∗
1 , τµ3 = µ∗

3 , τµ4 = µ∗
4

τk1

y0
= k∗1 , τk3 = k∗3 , τy0k4 = k∗4 (7.33)

The following parameter values were used in our simulationsof the non-dimensional

Hes1 system:

D∗
y1n

= D∗
y1c

= D∗
y3c

= D∗
y4n

= D∗
y4c

= 7.5×10−4

µ∗
1 = µ∗

3 = µ∗
4 = 0.03

k∗1 = k∗3 = k∗4 = 5

α∗ = 1 , n∗ = 5 (7.34)

As a first approximation we assume all diffusion coefficientsare equal.

Calculating the effective diffusion coefficient, D:

L = 10µm

= 10×10−6m

= 10×10−4cm (7.35)

225τ = 2hrs

τ =
7200s
225

= 32s (7.36)
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D∗ =
τD
L2

D =
L2D∗

τ

=
10×10×

(
10−6

)2
m2×D∗

τ

=
10×10×

(
10−4

)2
cm2×D∗

τ

=
100×10−8cm2×D∗

τ

=
1×10−6cm2×7.5×10−4

32s

= 2.34375×10−11cm2s−1 (7.37)

Calculating the degradation rates,µ1,µ3 andµ4

µ1 = µ3 = µ4

τ = 32s

µ∗ = τµ

µ =
µ∗

τ

=
0.03
32s

= 9.4×10−4s−1 (7.38)
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Calculating the production rates,k1,k3 andk4

τk1

y0
= k∗1 , τk3 = k∗3 , τy0k4 = k∗4

k1 =
y0k∗1

τ
, k3 =

k∗3
τ

, k4 =
k∗4

τy0

y0 = 1mµ

k1 =
y0k∗1

τ

=
1×5
32s−1

= 1.56×10−1s−1

k3 =
k∗3
τ

=
1×5
32s−1

= 1.56×10−1s−1

k4 =
k∗4

τy0

=
1×5
32s−1

= 1.56×10−1s−1

α∗ = y0α

α =
α∗

y0

= 1ms−1 (7.39)

149



Appendix D

The Non-Dimensional P53-Mdm2 System:

∂ [Pc]

∂ t
= DPc∇

2[Pc]+β − (µ +ν(
[Mc]

h1

M̂h1+[Mc]h1
))[Pc] (7.40)

∂ [Pn]

∂ t
= DPn∇2[Pn]− (µ +ν(

[Mn]
h1

M̂h1+[Mn]h1
))[Pn] (7.41)

∂ [Mmn]

∂ t
= DMmn∇2[Mmn]+α +η(

[Pn]
h2

P̂h2+[Pn]h2
)−φ [Mmn] (7.42)

∂ [Mmc]

∂ t
= DMmc∇

2[Mmc]−φ [Mmc] (7.43)

∂ [Mc]

∂ t
= DMc∇

2[Mc]+ γ[Mmc]−ρ [Mc] (7.44)

∂ [Mn]

∂ t
= DM−n∇2[Mn]−ρ [Mn] (7.45)

Where ,[Pn] , [Pc] , [Mmn] ,[Mmc] , [Mn] and [Mc] are the concentration of the nu-

clear and the cytoplasmic P53, the nuclear and the cytoplasmic Mdm2 mRNA and the

nuclear and the cytoplasmic Mdm2 protein respectively.[Di] denote the diffusion coef-

ficients for each species.

We nondimensionalise equations with appropriate reference values as follows:

[Pn] =
[Pn]

p0
, [Pc] =

[Pc]

p0
, [Mmn] =

[Mmn]

mm0
, [Mmc] =

[Mmc]

mm0

Mn] =
[Mn]

m0
, [Mc] =

[Mc]

m0

t =
t
τ
, X =

x
L
, Y =

y
L

(7.46)

Where[p0] , [mm0] andm0] are reference concentration,τ is reference time, andL is a
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reference length (10µmas with Hes1 system).

∂ [Pc]

∂ t
= p0

∂
[
Pc
]

∂ t∗
·

∂ t∗

∂ t
=

p0

τ
·

∂
[
Pc
]

∂ t∗

DPn∇2Pn = DPn·p0

(
∂ 2p0 ·Pn

∂x2 +
∂ 2p0 ·Pn

∂y2

)

= DPn·p0


 ∂

∂x

(
∂ p0 ·

[
Pn
]

∂x

)
+

∂
∂y

(
∂ p0 ·

[
Pn
]

∂y

)


= DPn·p0



(

∂
∂X

·
∂X
∂x

)(
∂ p0 ·

[
Pn
]

∂X
·

∂X
∂x

)
+

(
∂

∂Y
·

∂Y
∂y

)(
∂ p0 ·

[
Pn
]

∂Y
·

∂Y
∂y

)


= DPn·p0



(

∂
∂X

·
1
L

)(
∂ p0 ·

[
Pn
]

∂X
·
1
L

)
+

(
∂

∂Y
·
1
L

)(
∂ p0 ·

[
Pn
]

∂Y
·
1
L

)


= DPn·p0


 p0

L2

(
∂ 2
[
Pn
]

∂X
2

)
+

p0

L2

(
∂ 2
[
Pn
]

∂Y
2

)


= DPn·p0

p0

L2 ·

(
∂ 2

∂X
2 +

∂ 2

∂Y
2

)
·Pn

=
p0

L2DPn·p0
∇2Pn (7.47)

As well:

∂ [Pc]

∂ t
=

p0

τ
·

∂
[
Pc
]

∂ t∗
,
∂ [Pn]

∂ t
=

p0

τ
·

∂
[
Pn
]

∂ t∗

∂ [Mmc]

∂ t
=

mm0

τ
·

∂
[
Mmc

]

∂ t∗
,
∂ [Mmn]

∂ t
=

mm0

τ
·

∂
[
Mmn

]

∂ t∗

∂ [Mc]

∂ t
=

m0

τ
·

∂
[
Mc
]

∂ t∗
,
∂ [Mn]

∂ t
=

m0

τ
·

∂
[
Mn
]

∂ t∗
(7.48)
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1

∂ [Pc]

∂ t
= DPc∇

2[Pc]+β − (µ +ν(
[Mc]

h1

M̂h1+[Mc]h1
))[Pc]

p0

τ
·

∂
[
Pc
]

∂ t∗
=

p0

L2DPc·p0
∇2Pc+β − (µ +ν(

([Mc]m0)
h1

M̂h1+([Mc]m0)h1
))([Pc]p0)

∂
[
Pc
]

∂ t∗
=

τ
L2DPn·p0

∇2Pc+
τ
p0

β − (τµ +(τν)(
([Mc]m0)

h1

M̂h1+([Mc]m0)h1
))([Pc])

∂
[
Pc
]

∂ t∗
=

τ
L2DPn·p0

∇2Pc+
τ
p0

β − (τµ +(τν)(
[Mc]

h1

(
M̂
m0

)h1
+[Mc]h1

))([Pc])

∂
[
Pc
]

∂ t∗
= D∗

Pn·
∇2Pc+β ∗− (µ∗+ν∗(

[Mc]
h1

M∗h1+[Mc]h1
))([Pc]) (7.49)

2

∂ [Pn]

∂ t
= DPn∇2[Pn]− (µ +ν(

[Mn]
h1

M̂h1+[Mn]h1
))[Pn]

p0

τ
·

∂
[
Pn
]

∂ t∗
=

p0

L2DPn·p0
∇2Pn− (µ +ν(

([Mc]m0)
h1

M̂h1+([Mc]m0)h1
))([Pn]p0)

∂
[
Pn
]

∂ t∗
=

τ
L2DPn·p0

∇2Pn− (τµ +(τν)(
([Mc]m0)

h1

M̂h1+([Mc]m0)h1
))([Pn])

∂
[
Pn
]

∂ t∗
=

τ
L2DPn·p0

∇2Pn− (τµ +(τν)(
[Mc]

h1

(
M̂
m0

)h1
+[Mc]h1

))([Pn])

∂
[
Pn
]

∂ t∗
= D∗

Pn·
∇2Pn− (µ∗+ν∗(

[Mc]
h1

M∗h1+[Mc]h1
))([Pn]) (7.50)
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3

∂ [Mmn]

∂ t
= DMmn∇2[Mmn]+α +η(

[Pn]
h2

P̂h2+[Pn]h2
)−φ [Mmn]

mm0

τ
·

∂
[
Mmn

]

∂ t∗
=

mm0

L2 DMmn·mm0
∇2[Mmn

]
+α +η(

(p0[Pn])
h2

P̂h2+(p0[Pn])h2
)−φ([Mmn]mm0)

mm0

τ
·

∂
[
Mmn

]

∂ t∗
=

τ
L2DMmn·mm0

∇2[Mmn
]
+

τ
mm0

α +
τ

mm0
η(

(p0[Pn])
h2

P̂h2+(p0[Pn])h2
)− τφ [Mmn]

∂
[
Mmn

]

∂ t∗
=

τ
L2DMmn·mm0

∇2[Mmn
]
+

τ
mm0

α +
τ

mm0
η(

[Pn]
h2

(
P̂
p0

)h2
+[Pn]h2

)− τφ [Mmn]

∂
[
Mmn

]

∂ t∗
= D∗

Mmn·
∇2[Mmn

]
+α∗+η ∗ (

[Pn]
h2

p∗h2+[Pn]h2
)− τφ [Mmn] (7.51)

4

∂ [Mmc]

∂ t
= DMmc∇

2[Mmc]−φ [Mmc]

mm0

τ
·

∂
[
Mmc

]

∂ t∗
=

mm0

L2 DMmc·mm0
∇2[Mmc

]
−φ(

[
Mmc

]
mm0)

∂
[
Mmc

]

∂ t∗
=

τ
L2DMmc·mm0

∇2[Mmc
]
− τφ

[
Mmc

]

∂
[
Mmc

]

∂ t∗
= D∗

Mmc·
∇2[Mmc

]
−φ∗

[
Mmc

]
(7.52)

5

∂ [Mc]

∂ t
= DMc∇

2[Mc]+ γ[Mmc]−ρ [Mc]

m0

τ
·

∂
[
Mc
]

∂ t∗
=

m0

L2 DMc·m0
∇2[Mc

]
+ γ([Mmc]mm0)−ρ([Mc]m0)

∂
[
Mc
]

∂ t∗
=

τ
L2DMc·m0

∇2[Mc
]
+

τ
m0

γ([Mmc]mm0)−
τ

m0
ρ([Mc]m0)

∂
[
Mc
]

∂ t∗
=

τ
L2DMc·m0

∇2[Mc
]
+

τmm0

m0
γ[Mmc]− τρ [Mc]

∂
[
Mc
]

∂ t∗
= D∗

Mc·
∇2[Mc

]
+ γ∗[Mmc]−ρ∗[Mc] (7.53)
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6

∂ [Mn]

∂ t
= DM−n∇2[Mn]−ρ [Mn]

m0

τ
·

∂
[
Mn
]

∂ t∗
=

m0

L2 DMn·m0
∇2[Mn

]
−ρ([Mn]m0)

∂
[
Mn
]

∂ t∗
=

τ
L2DMn·m0

∇2[Mn
]
−

τ
m0

ρ([Mn]m0)

∂
[
Mn
]

∂ t∗
=

τ
L2DMn·m0

∇2[Mn
]
− τρ [Mn]

∂
[
Mn
]

∂ t∗
= D∗

Mn·
∇2[Mn

]
+ γ∗[Mmn]−ρ∗[Mn] (7.54)

where

D∗
Pn

=
τDPn

L2 , D∗
Pc
=

τDPc

L2

D∗
Mmn

=
τDMmn

L2 , D∗
Mmc

=
τDMmc

L2

D∗
Mn

=
τDMn

L2 , D∗
Mc

=
τDMc

L2

M∗ =
M̂mh1

[Mm0]h1 , P∗ =
p̂h2

[P0]h2

β ∗ =
τβ
p0

, η∗ =
τη

mm0
µ∗ = τµ , ν∗ = τν

φ∗ = τφ , γ∗ =
τγ[Mm0]

m0
, α∗ =

τα
mm0

ρ∗ = τρ (7.55)

The following parameter values were used in our simulationsof the non-dimensional

P53-Mdm2 system:
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D∗
Pc

= D∗
Pn
= D∗

Mmc
= D∗

Mmn
= D∗

Mc
= D∗

Mn
= 9×10−4

β ∗ = 0.5 , µ∗ = 0.003, ν∗ = 1 , α∗ = 0.0175

η∗ = 1 , φ∗ = 0.0175. , γ∗ = 0.5 , ρ∗ = 0.025

h1 = 2 , h2= 4 , M∗ = 16 , P∗ = 5 (7.56)

Calculating the effective diffusion coefficient, D:

L = 10µm

= 10×10−6m

= 10×10−4cm (7.57)

400τ = 3hrs

τ =
10800s

400
= 27s (7.58)
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D∗ =
τD
L2

D =
L2D∗

τ

=
10×10×

(
10−6

)2
m2×D∗

τ

=
10×10×

(
10−4

)2
cm2×D∗

τ

=
100×10−8cm2×D∗

τ

=
1×10−6cm2×9×10−4

27s

= 0.33333333×10−10cm2s−1

= 3.3333333×10−11cm2s−1 (7.59)

Calculating the production rate of P53,β :

p0 = 0.05µm=⇒ p0 = 0.05×10−6M

τ = 27s

β ∗ =
τ
p0

β

β =
p0β ∗

τ

=
0.05×10−6M×0.5

27s

= 0.000925939×10−6Ms−1

= 9.25939×10−10Ms−1 (7.60)
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Calculating the degradation rate of P53,µ:

µ∗ = τµ

µ =
µ∗

τ

=
0.003
27s

= 1.11×10−4s−1 (7.61)

Calculating the degradation rate of P53 dependent on Mdm2 concentration,ν:

ν∗ = τν

ν =
ν∗

τ

=
1

27s

= 0.03703704s−1

= 0.04s−1 (7.62)

Calculating the natural transcription rate of Mdm2 mRNA,α:

mm0 = 0.05µm

α∗ =
τα

mm0

α =
mm0α∗

τ

=
0.05×10−6M×0.0175

27s

= 0.00003241×10−6Ms−1

= 3.241×10−11Ms−1 (7.63)

Calculating the enhanced natural transcription rate of Mdm2 mRNA dependent on the
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concentration of P53,η:

mm0 = 0.05µm

η∗ =
τη

mm0

η =
mm0η∗

τ

=
0.05×10−6M×1

27s

= 0.00185185×10−6Ms−1

= 1.85×10−9Ms−1 (7.64)

Calculating the natural degradation rate of Mdm2 mRNA,φ :

φ∗ = τφ

φ =
φ∗

τ

=
0.0175

27s

= 0.00064815s−1

= 6.4815×10−4s−1 (7.65)

Calculating the translation rate of Mdm2,γ:

mm0 = 0.05µm

m0 = 2µm

γ∗ =
τγmm0

m0

γ =
m0γ∗

τmm0

=
0.5×2×10−6M

0.05×10−6M×27s

= 0.740s−1 (7.66)
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Calculating the natural degradation rate of Mdm2,ρ

ρ∗ = τρ

ρ =
ρ∗

τ

=
0.025
27s

= 0.00092593s−1

= 9.2593×10−4s−1 (7.67)

Calculating the activation threshold of P53 degradation dependent on Mdm2,̂Mdm2 :

M̂ :

m0 = 2µm

h1 = 2

M∗ =
M̂

m2
0

2

M̂ =
√

M∗×m2
0

M̂ =
√

16× (2µm)2

= 8×10−6µM (7.68)

Calculating the activation threshold for transcription ofMdm2 mRNA dependent on
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P53,̂P53 : P̂ :

p0 = 0.5µm

h2 = 4

P∗ =
P̂

p4
0

4

P̂ = 4
√

P∗× p4
0

= 4
√

5× (0.5µm)4

= 0.74×10−7µM (7.69)
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