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Abstract

Many important processes in cells are controlled by exiiaee signals which are
caused by many different chemical signals from their surding. Cells have the
capability to react to signal transduction in an appropriaty, such as activate the
response of intracellular molecules, which is mainly goeer by proteins reacting

with each other.

Intracellular signalling networks are mainly based on kesmand phosphatases, en-
zymes which control phosphorylation and dephosphorylatioother enzymes in the

cellular surrounding to the nucleus.

In this thesis we present mathematical models for negagiedldack signal transduc-
tion processes. Signal transduction pathways are ofteipeeg with negative feed-
backs. Negative feedback loops are important componeatsetthibit oscillations
in concentrations of the substances involved, both tenflgosad spatially. These
feedbacks constitute a major research for targeted thesrapicancer treatment, drug
action and cause cross-activation of other pathways. fqedty, we investigate sys-
tematically how the negative feedback structure of theadifansduction network can
transmit information despite noise in protein levels. lis thesis, we consider mathe-

matical models of the Hes1, Hes1-Stat3 and p53-Mdm2 pathway

In chapter 3, we have undertaken a detailed study of thequswork done in the field.

viii



Building on this previous work, we derive mathematical medgystems of partial dif-
ferential equations) to capture the evolution in space and of the key variables in
the Hesl1 and p53-Mdm2 systems. Computational simulatibow as to show that
our reaction-diffusion models are able to produce sustiiseillations both spatially
and temporally. The simulations of our models also allowausdiculate a diffusion
coefficient range for the variables in each mRNA and protasmyell as ranges for
other key parameters of the models. Also, we have carriegdioutlations under dif-
ferent conditions such as considering a time delay in theeprdiffusion process from
nucleus to the cytoplasm, varying the thickness of the musaleembrane which slows
down diffusion in a cell. Our results have extended and gdizexd previous work in

this area.

All the mathematical models in this thesis use the numeacalysis of nonlinear
partial differential equations and computational simolag to obtain insight into the
underlying biological systems. The systems of nonlineatigdaifferential equations
were solved numerically using one of the MATLAB, COMSOL anRDME software

packages.



Publications

1. M. Sturrock, A. Hellander, S. Aldakheel, L. Petzold, MIAChaplain. (2013)
The role of dimerisation and nuclear transport in the Hesfegegulatory net-

work. Bull. Math. Biol.DOI 10.1007/s11538-013-9842-5



Chapter 1

Introduction

Signal transduction plays a vital role in many intraceltydeocesses such as eukaryotic
chemotaxis, polarity generation, cell division. The cotiecalisation of transcription
factors is vitally important for the proper functioning ofamy intracellular signalling
pathways. Experimental data has shown that many pathwdybiegscillations in
concentrations of the substances involved, both tempoeald spatially. Negative
feedback loops are important components of these osoilisitiproviding fine regula-
tion for the factors involved. Negative feedback loops oalfihg the concentrations
of key intracellular proteins are prevalent in a diversegeaf important cellular pro-
cesses. Mathematical models can help us to better undetstse interactions. In this

thesis we consider mathematical models of two such pathvi#gsl and p53-Mdm2.
The chapters of the thesis are organised as follows:

Chapter 2 is a biological overview of the cell cycle and io&iéular signal transduc-
tion pathways, in particular, negative feedback systen& dim of this chapter is to

give some basic information of the main components of thiecgele, the important



processes of transcription and translation, a descrigtfsome important transcrip-
tion factors (p53, STAT3, Hesl and the interactions amoegihtumour suppressor

genes and cancer.

In chapter 3, we present a literature review of the modeltihg number of specific
intracellular and intercellular processes in time. Oneo$efforts has dealt with mod-
eling the fundamental regulatory activity of the cell, cofied at the level of enzymes
and genes. Also the models discuss the significance of a®ril motion in relation
to the organization of cellular processes in time, the feelof cellular signaling
processes using theoretical methods for analysing the@rme of stable oscillations
and the arrangement of control interactions by computeulsitions. In addition, we
review the models which analyse the spatio-temporal intenas within a cell using
spatio-temporal models of genetic control by includindudifon in the cytoplasm and

time delays.

Another set of modelling efforts has focussed on the Heswaré&t These studied
the modelling of transcriptional negative feedback loopd the dynamics of Hes1
oscillations considering the transcription factors andvetd that reaction-diffusion
models of the hes1 system are able to produce sustainethtsns both spatially and
temporally. Also, we review some models of the STAT pathway analyse the signal

transduction performed by the various STAT proteins.

Other studies have examined spatial effects in signallinigivhad been hitherto stud-
ied only in purely temporal settings: these include studiespatial effects in the
oscillating system of p53-Mdm2 and exploring the mechasisinDNA-damage re-
sponse to p53 and their possible relevance to apoptosis.laBhaet of modelling
efforts has focussed on studying the equilibrium statef(aegative feedback systems

and investigated the existence of Hopf bifurcations fohssystems

We will consider intracellular negative feedback loopscsipeally those involving



transcription factors, critical contributors to cellulfomeostasis and, when dysfunc-
tional, to disease processes. Most previous mathematiodkls examining intra-
cellular negative feedback systems have taken a simplifpdoach using ordinary
differential equations (ODESs) and have not considered iffierent spatial structures
within a cell. Such ODE models have used delays to accounthiprocesses of
transcription, translation and transport within the cibwever, in this thesis, we con-
sider modelling the spatial interactions explicitly, usipartial differential equation
(PDE) models, with the knowledge that the localisation afaia proteins is critical
for normal cellular functioning. As such, we consider matlgical models of two
such pathways - the Hes1 and p53-Mdm2 systems. Buildingengars mathematical
modelling approaches, we derive systems of partial diffigaé& equations to capture
the evolution in space and time of the variables in the Haai3Sand p53- Mdm2
systems. Therefore, in Chapter 4, we begin by consideriimggle example of a feed-
back inhibition system, namely that of Hes1 mRNA and Heslegmo We present a
mathematical model of this system, showing how our moddtbuwin previous work
to reflect the biology in greater depth and present our coatiumal simulation re-
sults.Theoretical studies have shown that network timaydedlue to the processes of
transcription and translation and protein dimerisati@nlay regulators of the dynam-
ics of the Hes1 feedback loop. Also, we present the P53-Mdmataematical model
of this system, showing how our model builds on previous work

Then in Chapter 5, we expand the study of the Hes1l ODE systenoibsecrating
the spatio-temporal dynamic model by building the PDE modéleoretical studies
have shown how diffusion might play a role in modulating deefing the response.
The results are based on numerical and analytical work, ssmich is detailed in
the Appendix. we conclude with a synthesis of the results. haisthat the protein
Stat3 plays a central role in maintaining the segmentatiockand include the Stat3

negative feedback loop in our model. We show that the Hesillaigis depend on



cyclic changes in the phosphorylation of the protein Stsit8;e phosphorylated Stat3
(pStat3) increases the degradation rate of Hes1. Our eetie®tat3-Hes1l model sys-
tem has been studied under different conditions such agwgitye nuclear membrane
thickness, including noise in the diffusion term, considigrsome spatial “holes” in

the cytoplasm and the affect of convection on the model syste

In chapter 6, we consider the p53-Mdm2 system, where |@tadis of proteins is of

particular importance since it has implications for canéayain we develop a mathe-
matical model and show that network time delays due to thegsses of transcription
and translation of the dynamics of the p53-Mdm2 feedbactegysre very important.
Alsowe studiy P53-Mdm2 model system under different coodg such as varying

the nuclear membrane thickness and including noise in thesgin term.

Through computational simulations in chapter 5 and 6, wevstiat our reaction-

diffusion models are able to produce sustained oscillatlwoth spatially and tempo-
rally, accurately reflecting experimental evidence andhading previous models. The
simulations of our models also allow us to calculate a diffagoefficient range for the
variables in each mRNA and protein system, as well as ramgedtier key parameters

of the models, where sustained oscillations are observed.

In the final chapter of the thesis, chapter 7, we conclude avitiscussion of our results

and an indication of future work in this area.



Chapter 2

Biological Background

2.1 Introduction

In this chapter, the biology of signal transduction and titeacellular network would
be reviewed . The focus points would involve the biology o tiell cycle, the im-
portant processes of transcription and translation, tleeafdranscription factors (p53,
Stat3, Hesl and the interactions among them), tumour sspm®and cancer. The

concept of negative feedback systems would be introduced.

2.2 Signal Transduction.

Effective control of cellular behaviors has serious imafions in the study of bio-
logical processes and disease. The living cell can be viesea complex system of
interacting networks. These networks can be roughly dd/idéo three types, signal

transduction, metabolic networks and regulatory networks



All organisms have the dynamic ability to coordinate conyetheir activities with en-
vironmental changes. The function of communicating with é&mvironment is called
signal transduction which is achieved through a number tfvays that receive and
process signals originating from the external environméoim other cells within

the organism and also from different regions within the Jjgluan Petak and Kopper.

2006).

signal transduction depends on molecular circuits. Theskecular circuits detect,
amplify, and integrate diverse external signals to geraegponses. Signal transduc-
tion occurs when an extracellular signalling molecule bitmithe cell surface where
receptor activate as sequence of the passive diffusioredighnd through the plasma
membrane . In turn, this receptor trigger intracellular ecoles creating a response
inside the cell when the ligands pass through the nuclearbrame into the nucleus,

enabling gene transcription and protein synthesis.

There are four stages in this process:

1- Membrane receptors transfer information from the emwitent to the cell’s inte-
rior. A few nonpolar signal molecules are able to diffusetigh the cell membranes
and, hence, enter the cell, they can bind to proteins thextaot directly with DNA and
modulate gene transcription. Thus, a chemical signal etitercell and directly alters
gene expression patterns. However, most signal molectég®a large and too polar
to pass through the membrane. Thus, the molecules infamatust be transmitted
across the cell membrane (often referred to as the ligartipwi the molecules them-
selves entering the cell. The interaction of the ligand &ed&ceptor alters the tertiary
or quaternary structure of the receptor, including theaicgtlular domain. The infor-

mation embodied by the presence of the ligand, often caledotimary messenger

.B_QLQJB}I\_ZO_QZ).




2— Changes in the concentration of small molecules called®@k messengers, that
relay information from the receptor-ligand complex. The a$ second messengers
has several consequences on the cell. they can influenceegpression and other
processes after they diffuse to the nucleus, also amplifggdfieantly in the genera-

tion of second messengers. Thus, a low concentration oakigthe environment can

yield a large intracellular signal and response (Berg JMP200

The regulation of gene expression is achieved through geregulatory systems
structured by networks of interactions between DNA, RNAteins and small molecules
where the majority of those molecules are proteins. It issmand understood that

the processes of transcription and translation controlléliel of gene expression

lam-Nazki and Krishnan 2012). As most genetic regulatoegworks of interest

involve many components connected through interlockirgjtpe and negative feed-

back loops|(Davids 05; DeJong 2002). Gene regulatdvyanks have an impor-

tant role in every process of life, including cell differextiton, metabolism, the cell

cycle and signal transductio‘n (Karlebach and Shamir.|2008)

3— Protein phosphorylation is a common means of informatamsfer. Many second
messengers elicit responses by activating protein kind$es protein kinase and oth-

ers are the link that transduces changes in the concemisaifdree second messengers

into changes in the covalent structures of proteins (Bet ).

4— The signal is terminated. Protein phosphatases are odleamiem for the termi-

nation of a signaling process. After a signaling processh®en initiated and the
information has been transduced to affect other cellulacgsses, the signaling pro-
cesses must be terminated. Without such termination, losléstheir responsiveness

to new signals. Moreover, signaling processes that faikttebminated properly may

lead to uncontrolled cell growth and the possibility of canpropagation.(Berg JM
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2002).

2.3

M Ligand

Extracellular Space 4 4 Receptor

Cytosol \
\

Phosphorylation Cascade

Second messengers

v

Signaling end point
(e.g. transcription factor)

Figure 2.1: A schematic diagram of a simplified transduction signal peti

Transcription and Translation

The process of creating RNA from DNA is callé@nscription During transcription,

an RNA polymerase (enzyme) binds to a specific region of DNéwkmas a promoter

and reads the DNA sequence resulting in an antiparallel Rikhd (complementary)

which has Uracil (U) instead of Thymine (T) in the template &Nhe new strand of

RNA is called messenger RNA (mRNA). The process of transonpcan be divided

into 5 stages: pre-initiation, initiation, promoter claace, elongation and termina-

tion (Solomon et &l. 2007). In eukaryotes, RNA polymerase mat recognize the



promoter sequence directly. Instead, transcription fagforoteins) mediate the bind-

ing of RNA polymerase. So after certain transcription fegtoind to the promoter,

the RNA polymerase binds to the promo R All of these
events occurs in thaucleus Mature mRNA molecules are transported to the cyto-
plasm wherdranslationtake place. Translation is the process of transforming mRNA
(produced by transcription) to produce protein by the rdms. Once the ribosome

complex (rRNA and proteins) bind to a specific region of mRNA atart to scan the

MRNA, each nucleotide of mMRNA is translated to one amino é8idyer and Lubert

2002) (see Figure 2.2).

Transcription RNA

J
s

- transcripes DNA to RNA il

DNA

Trapscription Factors
-help RNARolymerase bind to DNA F 3

i
P

~— PremRNA
TranSIation -RNA is transported out of the Nucleus

for translation.

Protein

Ribosome subunit

Figure 2.2: A schematic diagram of transcription and translation. RN#lymerase bind
to gene promoter and begins to scan DNA sequence to generatplementary RNA-in the
nucleus. The mRNA is then transported to the cytoplasm wit@somes binds and read
through to produce protein.



2.4 Transcription Factors

Transcription factors (TFs) are proteins that bind to a gjgddNA sequence in order
to increase or decrease mRNA production. They might funclone or in a complex

as an activator or repressor.

2.4.1 Hes1-STAT3 interactions

The Hairy and Enhancer of Split homologue 1 protein (HesH) tisanscription fac-
tor that belongs to the family of basic helix-loop-helix (bH) Transcriptional sup-

pressors. Hes proteins consist of three evolutionarilyseored domains: the bHLH,

Orange, and WRPW domains (Dawson et al. 1995). In generapksins suppress

transcription. The Hesl protein plays crucial roles in coliihg the proliferation of

neuronal, endocrine, T-lymphocyte progenitor cells dydevelopment and differen-

tiation (Kamakura et ;LI. 2004).

It has been found that Hes1 can repress its own expressiongihdirect binding to

its own promoter (i.e. a negative feedback loop (cf. FiguB).2Activation of Hes1
promoter leads to the production of both Hes1 mRNA and pmotdihe latter then
binds to a DNA sequence on the Hes1 promoter and represségjeiee expression.
Due to the instability of both Hes1 mRNA and Hes1 proteinytbesapper after re-
pression. Degradation of Hes1 protein relieves negatit@egluation, permitting the

2011)

(a}}

next round of Hes1 expression (Kobayashi and Kageyam

Signal transducers and activators of transcription pnstésTATS) are a family of la-
tent cytoplasmic transcription factors that are activatedesponse to extracellular

stimuli. They were first discovered in interferon (IFN) réaped gene transcription,

specifically Stat 1 and Stat2 (Schindler et al. 992b). Todags STAT members have

10



Hes1 protein Hes1 mRNA

@ >m\ I

STAT3 protein Hes1 gene

Figure 2.3: Schematic diagram showing that the basic Hes1 negativéoéakdoop is driven
externally by cyclic changes in the level of phosphoryléééat3 (pStat3), which regulates the
degradation rate of Hes1 protein.

been identified in mammalian cells: Statl, Stat2, Stat34S&iat5a, Statbb and Stat6,

ranging in size from 750-850 amino acids.

Stat3 was initially identified as the acute-phase respaaderf (APRF), activated by
interleukin-6, (IL-6). It was further shown that Stat3 a&ation occurred in the cyto-
plasm, that Stat3 phosphorylation was essential and th#? 8inds to IL-6 response

elements of various acute-phase protein genes (e.g. ghazimacroglobulin, fibrino-

gen, and alphal-acid glycoprotein genes) (Wegenka let @8)19

In response to growth factors, cytokines and tyrosine kieaSTATs are phosphory-
lated and form homo-dimers that translocate from the cyplto the nucleus to act
as transcription activators. In normal cells, activatidrS®AT3 is transient, because
of proteins that act as negative regulators such as suppsescytokine signalling,
(SOCS), but in cancer cells STAT3 is constitutively actvht STAT3 is activated
in many human cancers and plays an important role in theadidiv of genes en-

coding apoptosis inhibitors, cell-cycle regulators ashaslinducers of angiogenesis

(Jing and Tweardy 2005).

11



Stat3, the cytoplasmic transcription factor is activatgdhe JAK2 ( Janus Kinase 2
gene provides instructions for making protein that prormabe growth and division
of cells ) and the phosphration process to be translocatt#tetaucleus and acts like
transcriptional factor in the nucleus. The main step of pinccess is shown in Figure
[2.4. Where the inactive JAK are attached to the cytoplasminain cytokine recep-
tors. Then, the cytokine molecule bind to association abkiyte receptors this leading
to activate JAKs which cause phosphorylation of tyrosirsgd@es in cytoplasmic pro-
teins of the receptors. After that, the phosphotyrosinepieres one the receptors
bind to STAT proteins this lead to phosphorylates STAT prate Then, it dissociate
from the receptor and the binds to one other. The STAT dimgrates to the nucleus
then bind to the promoter region of cytokine responsive gemere it is activate gene

transcription.

It has been demonstrated that both active Notch and notebtefs (Hes1 and Hesb5)
are involved in STAT3 activation. Hes1 and Hes5 proteinsl binJAK2 and STAT3,

facilitating the formation of the JAK2-STAT3 complex and AB phosphorylation

activation (Kamakura et 04). Research papers presehe first evidence for

crosstalk between two major signal transduction pathwegs;h-Hes and JAK-STAT 3-
Hes1 and other Hes protein expression induced by the dotivaf Notch receptors.

Hes proteins bind to STAT3 directly inducing phosphorgati

The Notch signaling pathway regulates cell differentiaty the intercellular commu-
nication between cells. Notch protein spans the cell mengvath part of it inside
and part outside. Ligand transmembrane proteins, binditiget extracellular domain,

induce proteolytic cleavage and release of the intra@elldbmain, which enters the

cell nucleus to modify gene expression (Oswald F 2001).

12
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Figure 2.4: Schematic diagram showing the Cytokine signaling and thiwating of STAT
transcription.

In early stage, the development of the nervous system pesquoneural genes such as
Ngn2 which induces the expression of Notch ligands such &slikel (DLL1) which
activate Notch signaling in neighboring cells forming thetdh domain (NICD). Then,
Notch domain move from the transmembrane region to the nsackhere it forms
NICD complex then induces expression of the basic heliyHbelix factors Hes1 and

Hes5which repress expression of proneural genes and Ng&sidk.

Microarray analysis with cultured fibroblasts identifiee #ignal transducer, the acti-
vator of transcription (Stat3) and the suppressor of cytelsignaling (Socs3) system
as novel oscillators. Janus kinase activates Stat3 by pbogation, and phosphory-
lated Stat3 (Stat3-P) forms a dimer that enters the nucledisietivates expression of

target genes such as Socs3. Socs3 in turn inhibits phodphionyof Stat3, forming a

13



negative feedback loop. This negative feedback loop irglaseillations in the forma-
tion of Stat3-P and in the expression of Socs3[Fig 2.5. Eapgcstat3-P and Socs3
oscillations are coupled with Hes1 oscillation as shownFiy [2.5 ). Stat3-Socs3
oscillations also inhibits Hes1 oscillation. suggestihgttthe Stat3-Socs3 pathway
regulates oscillatory expression of Hes1 in the developargous system. Hes1 is re-
quired for phosphorylation of Stat3, suggesting that Hessdllations and Stat3-Socs3
oscillations depend on each ot ichi _v;@ﬁé)’.

\’ DI )

/ Signal

f »?K NICD
JAK-p B HfS1D

l — Ngn2

( STAT— STlAT-p !
Socs3 Dilt
\_ JAK_STAT Signal / \_Notch Signal )

Figure 2.5: Schematic diagram showing the oscillator network in negraigenitors. Hesl
expression oscillates owing to negative feedback. Foonaif phosphorylated (-p) Stat3 and
expression of Socs3 also oscillate owing to negative fesdbélesl oscillation and Stat3-
Socs3 oscillations seem to depend on each other. Heslatiscilthen induces Ngn2 and DII1
oscillations, which in turn activate Notch signaling in geboring cells.

Hes1 expressionis downregulated during early G1 phasegwHes1 is also known to
promote G1 phase progression by downregulating cycliredéent kinase inhibitors.
Thus, Hes1 both promotes and inhibits the cell cycle. Heglllagon is required

for efficient cell proliferation and differentiation of neal progenitors. The negative

feedback loop of Hes1 was proposed by Yoshiuralet al. (200%) .negative feedback

is driven by the level of phosphorylated Stat3 which in tuanges Hes1 degradation.

Using mouse fibroblasts after serum stimulation, the resfltYoshiura et al. (2007)

14



showed that in the absence of STAT3 signalling, Hes1 pragestabilized. Conversely,
when p-Stat3 formation is constitutively up-regulatedsHerotein is abolished. The

latter observation would support the existence of a negdéedback loop of Hes1-

STAT3 (Yoshiura et al. 2007).

2.4.2 p53-Mdmz2 interactions

p53 is a tumour suppressor protein that plays a crucial nallea regulation of cell cy-

cle, apoptosis, senescence and DNA repair (Fridman and M Vousden and Lu

2002). Mutant p53 genes cause approximately 50% of humarech(]:IainauLa.nﬂ_I:IQIlsk

2000; Feki and Irminger-Finger 2004). The progression efdall cycle phases are

monitored at certain check points via intracellular negasignals to make sure that

a cell replicates without mistakes. If, however, an erraruss during cell replication,

the regulatory proteins are activate ' iooP005). p53 activation

results in cell cycle arrest at G1 or G2, by stimulating sontehitory protein such

as CKI (Lozano and Zambetti 2005). However, if DNA damagerigparable, p53

stimulates programmed cell death (apoptosis) (Heng ).

The murine double minute oncogene expressed protein, Mdna2, important nega-

tive regulator of the p53 protein. It has been found that tedt@53 in many cancers

is accompanied by an over-expression of Mdm2 protei al. 6). In nor-

mal conditions, the Mdm2 protein concentration is very ldere are 3 mechanisms

by which Mdm?2 inhibits p53 (Vassilev etlal. 2004). First, MAman bind to the p53

transactivation domain, preventing p53 to activate gerpgsessing proteins for DNA
repair or directing it to apoptosis. Second, Mdm2 is invdlireexporting p53 from the
cell nucleus. Moreover, Mdm2 may attach to p53 as ubiquésultts upon p53 degra-
dation. After DNA damage, p53 is activated by protein kirsagtich phosphorylate
p53. Phosphorylation of the p53 protein prevents the MdB2-gmplex formation
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and p53 concentration builds up in the cell. Once the dansagpaired, phosphoryla-
;LI ;; zl.

tion of p53 by protein kinases stops and the Mdm2-p53 comiplesformed
2003).

Cellular Stress

Cancer Normal

Mdm2 — P53 — Mim2

Cell Cycle Arrest Apoptosis Senescence

Figure 2.6: Schematic diagram showing mechanisms of cellular stregs, BNA damage,
telomere erosion, hypoxia, or oncogene expression, wiantactivate the p53 response path-
way. The p53-Mdm2 autoregulatory feedback loop governketted of p53. Over-expression of
Mdm2 in human cancer, e.g., gene amplification of Mdm2, tang&3 for ubiquitin-dependent
proteolytic degradation to disable the p53 network.

2.4.3 Tumour suppressors (inhibitors)

Tumour suppressor genes encode proteins which protestfomth cancer. There are
two families of genes: the cip/kip family and INK4a/ARF. Bagroups prevent the
progression of the cell cycle and the formation of tumoursr &ample, p21, p27
and p57 are members of the cip/kip family. They can bind tdiyedk complexes
causing them to be inactivated, and hence, preventing thé@®a from leaving the
G1 phase of the cell cycle. The p161NK4a protein belongsadhiK4a/ARF family.
This protein binds to CDK4 and arrests the cell in the G1 plo@iiee cell cycle.
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2.5 The Cell Cycle

The cell cycle is a critical regulator of the processes off petdliferation and growth

as well as of cell division after DNA damage. The cell cycleoaderves to protect the

cell from DNA damage (Schwartz and Shah 2005).

Cell division is a very important process in all living orgams. During the division
of a cell, DNA replication and cell growth also take place ts@re correct division.
These cells divide once in approximately every 24 hours afidiivision properly lasts
for only about an hour. However, this duration of cell cyc® wary from organism to
organism and also from cell type to cell type.

The cell cycle is divided into two basic phases, Interphasstihg phase) is the phase
between two successive M phases where it lasts more than B8 duration of cell
cycle and M Phase (Mitosis phase) which is representing liase@when the actual

cell division or mitosis occurs.

The interphase is the time during which the cell is prepafanglivision by undergo-
ing both cell growth and DNA replication in an orderly manriers divided into three
further phases. First, G1 phase (Gap 1) G1 phase correspotigsinterval between
mitosis and initiation of DNA replication. During G1 phadetcell is metabolically
active and continuously grows but does not replicate its DNAen, S phase (Synthe-
sis) or synthesis phase marks the period during which DNAh®&gis or replication
takes place. During this time the amount of DNA per cell desblHowever, there
IS no increase in the chromosome number, so the number oimdsames at S will
remains the same number of the chromosome in phase G1. yiG&lphase (Gap
2) During the G2 phase, proteins are synthesised in preparfat mitosis while cell
growth continues.

Some cells exhibit division because they have been lossadt i injury or cell death,
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they exit G1 phase to enter an inactive stage called quiestage (GO0) of the cell cy-

cle. Cells in this stage remain metabolically active butartgler proliferate.

M phase is the most dramatic period of the cell cycle. The sistbas been divided
into four stages of nuclear division. First, Prophase whgckhe first stage of mi-

tosis follows the S and G2 phases of interphase where new Dbl&gules formed.

In the prophase, the proteinaceous components of the delplegm help to attache
the two chromatids together to form compact mitotic chroomoss. Cells at the end
of prophase, do not show golgi complexes, endoplasmiculetic, nucleolus and the
nuclear envelope. Then, Metaphase where the completaadjsation of the nuclear
envelope marks the start of the second phase of mitosiselteerachromosomes are
spread through the cytoplasm of the cell, and the condemsatichromosomes is com-
pleted. At this stage, chromosome is made up of two sistenchtids, which are held
together by the centromere. Hence, the metaphase is olasadtby all the chromo-
somes coming to lie at the equator with one chromatid of eaotncosome connected
by its kinetochore to spindle fibres from one pole and itseesishromatid connected
by its kinetochore to spindle fibres from the opposite poléeithat, Anaphase, At
the onset of phase, each chromosome arranged at the metgyduiasis splited simul-

taneously and the two daughter chromatids begin their miggréqowards the two op-

posite poles. Where each chromosome moves away from théoegliplate. Finally,

Telophase, At the beginning of the final stage of mitosis, tedophase, the chromo-
somes that have reached their respective poles decondehkesa their individuality.

Also, Nuclear envelope assembles around the chromososteidand golgi complex

and ER reform.

The timing and order of cell cycle events are monitored dudell cycle checkpoints

that occur at the G1/S phase boundary, in S phase, and dbarga/M phases. These
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checkpoints ensure that critical events in a particulaspha the cell cycle are com-
pleted before a new phase is initiated, thereby preveniiagdrmation of genetically
abnormal cells. Cell cycle progression can be blocked aktbheckpoints in response
to the status of both the intracellular and extracellulair@emment. Damaged cells are
eliminated through the process of apoptosis. Thus as argtgsses through the cell
cycle, it must determine whether to complete cell divisimest growth to repair cel-
lular damage, or undergo apoptosis if the damage is tooseéwdre repaired or if the

cell is incapable of repairing the DNA. It is at the checkpsitihat the cell determines

which of these options is suitable (King and Cidlowski 1998)

Two types of protein are considered to be the most cruciallaégry molecules of the
cell cycle: cyclins and cyclin-dependent kinases (CDK)ey hontrol switching from
G1lto S or G2to M. Cdk itself adds phosphate to a variety ofgangtfor the activation
or inactivation protein in question which in turn coordiesientry into the next phase.
In response to extracellular signals (e.g. growth factasglin D activates expression
of cyclin E protein which binds to cdk2 leading the cell to rmdvom G1 to S-phase.
Cyclin B binds to cdk1 allowing the cell to transition from @&2M-phase. Once the

nuclear envelope breaks down, the cyclin B-cdk complex imesoinactivated and the

cell exits M-phase_(Robbins etial. 2004). Targeting CDKs Ml@acapitulate cell cy-

cle checkpoints that would necessarily limit a tumor cdiléity to cycle, and this may

then facilitate the induction of apoptosi 5).

During cell division a number of important cell cycle prateiare synthesized period-
ically dependent on transcription. Often the function ahtr suppressors like p53 is
to arrest cell division and to send a damaged cell into aigtd he group is working

on identifying transcriptional targets of p53. Therebyytldkscovered new signaling

pathways leading to cell cycle arrest and apoptosis (Kavegmeulen and Bockstaele
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2003).

This great interest in apoptosis is due to the recognitiab thany diseases involve
too much apoptosis or too little apoptosis. Many toxins ateiocellular stresses can
also trigger apoptosis. Apoptosis is associated with angdisset of biochemical and

physical changes involving the cytoplasm, nucleus andnpdasiembrane. Early in

apoptosis, the cells round up, losing contact with theighkors, and shrink (Lawen

2003).

Apoptosis and proliferation are intimately coupled. Sore#-cycle progression is
regulated by positive and negative signals where the celecaegulators can influ-
ence both cell division and programmed cell death. A peréecirol of cell divi-
sion is important for avoiding the development of cancer.e Tihkage of cell cy-
cle and apoptosis has been recognized for c-Myc, p53, pRb, ReA, PKC, Bcl-
2, NF«B, CDK, cyclins and CKI. A direct link between cell cycle angoptosis
may be supposed from the fact that a number of similar moggicdl features exist

between mitosis and apoptosis. Mitosis and apoptosis sitargnon morphologi-

cal features such as cell shrinkage, chromatin condemsatid membrane blebbing
Lé 2

(Katrien Vermeulen and BQkata‘ D03).

20



G1/S Checkpoint

M/G1 Checkpoint

Mitosis DNA Synthesis
( Ctoplasmic Division ) DNA replication
Mitosis
( Nuclear Division )

G2/M Checkpoint

Figure 2.7: Schematic diagram of the cell cycle. M = Mitosis, G1 = Gap 1,6Gap2, S =
Synthesis.

2.5.1 Cancer

The term “cancer” is actually a broad group of diseases whiely be described as
out-of-control cell growth Cancer cells divide and grow uncontrollably. There are two
types of tumours — benign tumours and malignant tumours.emgm tumours, the
appearance of cells is often quite normal, but they divideemrapidly than normal.
Benign tumours do not invade neighbouring tissues and dteadtto metastasis (the
spread of a tumour from one organ to other non-adjacent ergaifhese tumours

usually do not grow beyond 1+2n? due to the lack of oxygen and nutrients.

On the other hand, malignant tumours, or cancers, displayliferthreatening phe-

nomena — angiogenesis and metastasis. Angiogenesis isesptay which the tumour
cells induce blood vessels to provide them with the requinetients needed for tu-
mour expansion. Metastasis is the process of the growthevelabment of secondary

tumours at distant locations in the host to the primary tumou
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A recent seminal paper identified six key aspects of canaak known as “hall-
marks”, which distinguish it from normal cells/tissue itwiag: self-sufficiency in
growth signals, limitless replicative potential, evasimiapoptosis, tissue invasion

and metastasis, insensitivity to growth-inhibitory silgnand sustained angiogenesis

Hanahan and Weinberg 2000). The recent advancements aercgenomics has

made it clear that different transcriptional factors suslp&3, statl and hesl, have
unique roles in tumour development and suppression. Sodsslplity to use these

factors as biomarkers, tumour suppressors and gene thagapys for cancer manage-
ment is attracting the attention of scientists and climsiaHowever, these therapies
are still in their early stages of development. Hence, ferdbvelopment of compre-

hensive cancer management and anticancer therapiesea tnaterstanding of these
transcriptional factors is required. The studies on p5&1sand hesl in the present
thesis aims to provide a better understanding of the relslip between cancer and

normal cells.
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Chapter 3

Mathematical Modelling of Negative

Feedback Systems

In this chapter we review some of the work done in the thecaethodelling of neg-
ative feedback systems (e.g. Hesl, p53-Mdm2) and otheramistudies. Most of
the dynamic models which represent the fundamental regylattivity of the cell are
controlled at the level of the gene and proteins. It is imgatrto understand the cellu-
lar organization and the dynamic activity of the moleculamntcol processes involved
in these feedback systems and gene regulatory networks somcentration levels in

such systems are known to undergo oscillatory behaviour.

3.1 Ordinary Differential Equation Models

Perhaps the first theoretical investigation into such cailalar regulatory networks

was that of Goodwini (1965) who studied the type of periodibav&our which can
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arise in model systems incorporating the essential cofgadlires of enzymatic regu-
latory processes and discussed the significance of oscillatotion in relation to the

organization of cellular processes in time.

The mode of Goodwin (1965) considered the interactions éetwenzymey; and

their mMRNAX; in a negative feedback loop which lead to set of equationeribésg

the dynamic of this system as follows:

ax ai b
dt — A+kY
dy

d_tl aiXi — i

The above system of equations 1,2, 3... define Wha]I_G_O_O_dﬂ n (1965) termed a non-
linear biochemical oscillator. As result of this Wo\m,_G_m'uj 1965) reported that the

majority of enzymes in a cell are being synthesised at anyioreeand their synthesis

and activity are regulated by negative feedback contratgsses.

Goodwin (1965) also described the interactions in somadgetiular processes where
one molecular species has a repressive effect on anotherfeHuback systems was

represented mathematically by the following system of &qoa:

dx a1 b
dt ArtkiYifkioYo L
dyy
1 g X —
at a1Xy—B1
dx az b
dt  ApthkoYitkeYo °
dy,
“2 _ goXo—
It axXo — B

The result of this study showed that the cell employs noedirinteractions between
control circuits to achieve the organization of biocherhgracesses in a temporal do-

main, where the behaviour of the oscillations is completaligerent and the slower
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oscillation is driven by the faster one.

In this paper,_Goodwin (1965) also investigated a specadscbf oscillations of neg-

ative feedback control processes in the more general typgstém where damping,
oscillations and limit cycle are expected. The system of&gus which was studied

was the following:

dxl ag
= — b1 X
dt AL +KiZp b1 Xy
dy;
— = X1 — B1Y-
at X1 — BV
dz;
— Y1 —nZ
It i —azy

These equations consider for the first time the concept afyddiie to the diffusion of
molecules, the concept of “precursors” and the notion of tabwic sequence. From
these studies the oscillatory behaviour which is expeatdukbta very important dy-
namic feature of cellular control processes were prediatetiit was shown that the

oscillations can arise at different levels of cellular argation.

Griffithl (1968a) observed that the theoretical method falgsing the circumstances

for occurrence of stable oscillations and the arrangemkeaobwtrol interactions was
computational simulations. He considered the Goodwin 319®65) model given
schematically byt + mR= GRy, whereR = Repressor, combining with a ge@e The

proportion of timeG is active is given byp = H% where the parameten — oo,

Griffith used standard techniques to examine the statiop@ints of the systenM/ =
E' = 0) and their (linear) stability, and the analysis showed tere are no limit cycles.

He also studied the three variable case giveMgy= BEo, Eo = yPy, aByPo(1+Fy")
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= 1. He reported that the absence of limit cycles in the twaaldes case should still
hold, whilst in three variable case, it would be surprisihbnit cycles appeared for

very low values oimn.

In a second paper, Griffith (1968b) discussed equationdasita those discussed in

Part I. He considere® + ml = Glm wherel is a so-called inducer for metabolife
The time for which the gen@ is active is given byP = L’ﬁ—’&q whereK = equilibrium

constant.

Once again he is carrying out a linear stability analysisefdteady-states of the sys-

tems, the same general behaviour to the previous model vezsvaal.

Freeman((2000) observed that the intercellular commubpitébat regulates cell fate

during animal development must be precisely controlledvimicadangerous errors.
Both positive and negative feedback loops play vital roteslynamic regulation of
developmental signalling. In this paper, he analysed timptgal control of signalling,
and spatial control by feedback. He also analysed the iatiegr of feedback events
in pattern formation. It was observed that positive and hegdeedback can estab-
lish left—right asymmetry. It was reported that while positfeedback can contribute
distinct signals, negative feedback can restrict the ligamge. He also reported that

negative feedback generates stability.

Ciliberto et al. (2005) observed that oscillations caneafiem a combination of pos-

itive and negative feedbacks or from a long negative feed bamp alone. In their
study they developed a mathematical model of p53 oscitlatlzased on positive and

negative feedback in the p53 / Mdm2 network. According tortieelel, the system
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reacts to DNA damage by moving from a stable steady stateaim&mion of stable

limit cycles.

They observed certain points in their model as follows:
1. p53/Mdm2 network responds to environmental stress ssigamma irradiation by

generation of pulses of p53. The oscillations produceca®ed with increasing stress.

2. In their model p53 level is kept low by degradation indubgadMidm?2. The simu-

lated DNA damage by increasing Mdm2 degradation in nucleus.

3. They also inferred that the model can be used to formuhabeeikperiments that
might discriminate whether oscillations are based on megé&tedback look alone or

on a combination of positive and negative feedback loops.

G_eia;Za.LQLsky_el_Jil (2006) studied oscillations in the-p&8n2 system considering

negative and positive feedbacks and the mechanism of atswils of p53-Mdm2, the

variability in p53 pulses and the potential function of pS®itiations there. The au-

thors also studied the dynamics of the p53-Mdm2 feedbagkiloandividual cells.

Zhan l.[(2007) made an analytical report exploring tleehlanisms of DNA-

Damage Response to p53 pulses and their possible relevaapeptosis. They con-

structed models at protein level, with the following asstions:

1. Transcriptional regulation is replaced by regulatiorresponding to protein syn-
thesis using a Hill function given by

H(x) = % with Transcription Factor [TF] x. They formulated models combining
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positive and negative feedback loops. They compared thardis of the following

models using

2ur

G(u,v,q,r) =
(g (V—u+vg+ur)+/(v—u+vg+ur)2—4aur(r—u)

2. Heaviside function with

They evaluated the DNA damage and degradation rate coastsintg

d(DNAdamagg
dt

ki, = Kg,(1-+DNAAdvantagg

J J
kisa = Kds3+ kgss.G[(Mdm2*, 6, —— 2

P(53%)’ P(53*)]

where,(Mdn2*) = (MdM2p,c) andP(53") = [P53]

P53) d(MdM2eyt)
dt

Using the above three equations, the models were orgamia;aes’/cihua@(ct ,

d(Mdm2nue)
d

for the given steady state values. They generalised thelrnb@éiberto et al.

2005). They observed that in contrast to the jumping of p&tar values between

steady-state and robust oscillatory state, the modelsopempby them reflected that
the onset of oscillations is difficult. They observed tha thodel is consistent with

experimental observation and p53 phosphorylation.

Bose and Ghosh (2007) have given an overview of their stuzhethe p53 — Mdn2
network and the associated pathways from a systems biokrgpective. They discuss

a number of key predictions, related to some specific aspéasll-cycle arrest and
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cell death, which could be tested in experiments. They dsstihe mathematical mod-
els developed by them to study the p53-mediated cell cyckstaand apoptosis. We
discuss briefly the major results obtained and point out texgderimental relevance.
They considered the cell-cycle arrest, as the cell-cycigxample of a dynamical

system in which events unfold as a function of time.

They inferred that there is a marked difference in the agaptesponse of cancer cells
with normal Mdm2 expression and Mdm2 over-expression wiestéd with nutlin, an
inhibitor of the p53-Mdm2 interaction. They also inferréwt low levels of caspase-3
cannot bring about cell death. The amount of p21, the trgstgan of which is acti-

vated by p53, appears to be a crucial factor in determiniagétl fate.

Zeiser et a‘l. (2007) described a model for the Hes1 osailtatosidering the transcrip-

tion factor for a single binding site described by

Ky
2X = —X
k4 2
k
Xo+By = ——B;
K 1

with kq, k_; being association and dissociation constants respectiVieey attempted
to estimate the Hill coefficient in the switch of a Hes1 ostdl and suggested a model
of the autoregulative network. They used the Goodwin systathfound sustained

oscillations.
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Puszynski et all (2009) designed model for crosstalk betyw&8 and the NFB sys-

tem and anti-apoptotic functions of NEB combining their stochastic models of NF-

kB and p53 system. Their main assumption Wg8, andAyq transcription rates are

by

proportional t BT P53,

, Wherepn, is the amount of active nuclear p53.

3.2 Delay Differential Equation Models

Monk (2003) reported oscillatory expression of Hes1, p5B;K8 driven by tran-

scriptional time delays. Representing Hes1 mRNA by M(t) Bied1 protein by P(t),

he considered the system:

‘2_'\:' = amGIP(t) — 7] — pM(t)

dP

wherem, Up = rate of degradation of mRNA and Hesd,, = basal rate of transcript
initiation and

G[P(t—r1] = er)/Po)”’ wherePRy = concentration of Hes1l. He also assumed the
following:

(1) The translation is non-saturating; (2) movement of Hestlveen the cytoplasm

and nucleus is neglected and (3) the delay takes a discieena

Bernard et al. (2006) studied transcriptional feedbackscand the role of Gro/TLE1

in Hes1 Oscillations, inspired by the experiments on cstwtly dynamics due to Hesl1,
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p53 and NF-KB. They studied the effects of Hes1 factor. Thmysalered the model
of Jensen et al, Monk and Lewis which is describing the callobncentration of Hes1
MRNA representing the cellular concentration of Hes1 pnot€hey also considered
an additional influencing factor namely, the Gro/TLE1 photactivated through Hes1-

induced hyper-phosphorylation.

Momiji and Monk (2008) developed a more detailed model of ltes1 circuit of

Monk (2003), incorporating nucleo—cytoplasmic transpdiey showed that differ-

ential protein stability can increase the amplitude of Hestillations but that the
resulting expression profiles do not fully match experimmédata. They considered

the delay differential equation system.

They observed that the models represent Hes1 auto-regrdéesidback loop in a sim-
ple manner representing transcription, translation sepo® and degradation repre-
sented mathematically as if they take place in a singlealhatiomogeneous cellular
compartment. In order to consider additional known biorstwal processes, they ob-
served their model of the Hes1 network incorporates the &atufes of Hes1 dynam-
ics, although it does not take into account the interactiddes1 with other biochem-

ical species. They also studied the external driving of Hesdillations by STAT2

phosphorylation. They considered the model of Yoshiurd. edﬁﬂg[’) and extended

the model to study a three component Hes1 Model.

Nikol'skii and Vasilenko (2000) analyse the signal transitan performed by proteins

of the STAT (Signal transducer and activators of transinptfamily. They observed
that the STAT Protein activator develops in two steps - flisté occur phosphoryla-

tion of tyrosine, then that of serine also located in the ateal part of the molecule.
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They reported that unlike other short-lived transcriptiactors, STAT proteins have
a long half-life. It is also reported that the activated STA®lecules are inactivated
by Cytokines and growth factors that activate STAT Proteifigey concluded that the
main feature allowing proteins of the STAT family to be udiiato single group was
their combination of two functions - the signal and transtioinal ones. The participa-
tion of the signal transduction demonstrate once more suagenection of all cellular

process.

Bar-Or et al.|(2000) reported the generation of oscillatibythe p53-Mdm2 feedback

loop. Assuming that the p53 concentration obeys the kireefiation:

d(P53)
dt

= sourcg53— p53(t)Mdn2(t)degradatiorit) — dP53P53(t)

wheresourcg53 = synthesis rate of p5S3 protein and the last term refledddgn2

independent mechanism for kinetics governing the Mdm2 eotmation was given by

w = pl+ p2max%—dl\/|d”2-l\/ld”ﬂ(t)
where | is the Intermediary given by,
d(l) -
= activity3(t) - keeia (1)
Gsignalt) ignal)

whereactivity = T7C,MdmePs3! where the activating signal was given By;5— =

—repair.signal(t).

Using the model, they reported consistency with computaukitions and observed
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that a delay in p53-dependent induction of Mdm?2 is a pre-isgigufor oscillatory be-

haviour and the length of delay determines period of osmites.

M. (2006) studied the following system:

t) = 1—bix(t)
t) = x(t) — (a+awya(t —1))yi(t)
t) = f(ya(t—1))—baxa(t)

t) = Xo(t) — (az+anyi(t—1))y2(t)

wheref : R— R, the Hill function, is given by

Xn
a+xn

f)

ne N*t, a> 0, and all parameters are less than or equal to 1.

They studied the equilibrium state of the system and ingastd the existence of Hopf

bifurcation for the system using time delay and analysedlittextion of Hopf bifur-

cation by normal form theory.

Sturm and Weber (2008) discuss the use of generic methodduece the questions on

the existence of Hopf bifurcations in parameterized pofgiad vector fields to quanti-
fier elimination problems over the reals combined with sifigaltion techniques avail-
able in REDLOG. Using generic methods to reduce the Hopfrt#iion problem to

a quantifier, elimination available in REDLOG, one can cargtmost of the results
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given in the literature within less than a minute of compotatime.

Shi-Wei et al. [(2007) propose a statistical signal responsdel to describe the dif-

ferent oscillatory behaviour in a biological network moeploiting the non-linear
dynamics in the negative feedback loop. The delay is chosenkafurcation model,
the existence of Hopf bifurcation and the stability of theipeic solutions of the model
eqguations with the centre manifold theorem and the nornmai tbey are discussed. It
is studied that there is a periodic solution born in a Hop@itwétion beyond a critical
time delay and this bifurcation phenomenon may be impottaelucidate the mecha-

nism of oscillatory activities in regulatory biologicaltmerks.

In this study, exploiting an auto-regulatory negative fesak loop, a statistical model
of the p53—-Mdm2 negative feedback system, with the aim ofrit@ag the different
dynamical oscillatory behaviour of protein levels - bothndividual and at population

cells in a self-consistent way. This is elucidated throdghdquations:

% — AX(t)+BX(t—1)+F

A = (-ap(l-rop)M—pup—ap(l-rp)P

Itis assumed that under normal conditions, the amount ofypdt@in in the cell is kept
low by the genetic metric in Mdm2 and p53 itself. When cellsexposed to damaging
agents, it increases suddenly and this is followed by a dasohevents, through the

modification of the binding properties of Mdm2.

Thus the authors state that:
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(i) The p53 and Mdm?2 leave their basal levBI®) andM(0) and increase, with p53
followed by Mdm2.

(ii) After some time, due to negative feedback mechanismedses its own along with
the level of Mdm2 and enter a stationary leypt,M*).

(iii) When the signal is completely resolved, the p53-Mdm@g returns to the normal

case and the levels of p53 and Mdm?2 to their basal values.

3.3 Partial Differential Equation Models

Building on the model of Mahaffy and Fao (1984), Busen h 1985)

considered a class of models based on the theory of Jacob aned\genetic repres-
sion for control of biosynthesis and pathways in cells)udahg both spatial diffusion

and time delays. Based on Goodwin's assumptions, they deresi the following

system:
du;t(t) = f(vl(t)—b1U1(t)+al/aw[UZ(Xl(t)_ula)]dS*’
d‘gt(t) — —byvi(t) +a / S Nl (t) ~Va()]dS,
0U20(;<,t) = D1Auz(xat) — btz (xat)
and
0V20(;<7t) = DaAvy(x1t) — boup(xgt) +Couz (X),
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wherex € w, with boundary conditions,

dUzd(;(,t) = —Bl[UZ(Xlt — Ult]
and
dva(x.t) ]
ot = —B [Vz(X]_t) —V]_('[)DzAVz(Xlt) — szz(X]_t) + Couxt (X),

dup(Xx,t) B (3V2(x,t)_0
ot N ot

with the constant®; = Kinetic Rates of decay; = rates of transfeD; = Diffusion

CoefficientsCy = production rate of repressor;

vi(t),uz(x) = Delayed concentrations having discrete delays or a biged delay,

given by,

Zi = /_(: Zi(t+0)dn (6)

with f?r dn(6) = 1. AlsoB, andp; are Fick's Law constants.

They obtained Differential Equation with one delays désog well mixed compart-
ment system. From the above equations, they reduced theampartment diffusion
model to a system of delay differential equations. Theyl#istaed that the model re-

duces to a well mixed two compartment model when the Diffitisiends toco.

Brown and Kholodenka (1999) first estimated the relativadyestate gradient for a
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protein located exclusively on the cell membrane. They mepothat the absolute
concentration and gradients depend on kinase activityy Thacluded that if the ki-
nase and phosphatase of a protein are spatially separasedeih then large spatial
gradients of the phospho-protein are inevitable, whichilmmrtant implications in

cell-signalling.

Rangamani and Iven_naJr_(l( 06) analysed the spatio-tempepadsentations of dy-
namic cellular phenomena and how these models can be useudi¢ostand biolog-
ical specificity in functional response. They studied thedi interaction networks.
They observed that if the reaction is an enzyme catalysedioea where there is no
change in the enzyme, the rate of reaction can be formulaied Michaelis—-Menten
Kinetics. They analysed chemical kinetics using ODEs an&#Berived from the

biochemical reaction system:

A+B=C

where the rate of the forward reactiorkgA|[B] and the rate of the backward reaction

= ko[C]. Net reaction rate = forward rate - backward rate.

They studied the temporal dynamics of the system by anajybi@ system of ODEs
and further they analysed the spatio-temporal dynamica tiee system of reaction—
diffusion equations. For estimating the diffusion coeéfitis of the various species,

they considered the Stokes’ and the Wilke—Chang.
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G_QLdQD_el_a‘I. (2009) reported the Spatio-Temporal ModglohP53-Mdm2 Oscilla-

tory system, investigating the spatial effects. Their ighahodel accounts for both
negative feedback and transcriptional delay. Considep®8 and Mdm2 with the
six kinetic interactions namely: (1) basal p53 synthed¥ Mdm2 independent p53
degradation, (3) Mdm2-mediated P53 elimination, (4) ba&&-independent Mdm2
synthesis, (5) p53-induced Mdm2 synthesis and (6) Mdm2adkgion.

rrock [.1(2011) derived systems of partial diffel@ntquations to capture the

evolution in space and time of the variables in the Hesl argiNd@m2 systems.
Through computational simulations they show that theictiea-diffusion models are
able to produce sustained oscillations both spatially emgpbrally, accurately reflect-
ing experimental evidence and advancing previous modefge simulations of our
models also allow us to calculate a diffusion coefficienggeafor the variables in each
MRNA and protein system, as well as ranges for other key peteasof the models,
where sustained oscillations are observed. Finally, byogtxpg the explicitly spatial
nature of the partial differential equations,they margpelimathematically the spatial
location of the ribosomes, thus controlling where the pnst@are synthesized within
the cytoplasm. The results of their simulations predict pineal distance outside the
nucleus where protein synthesis should take place in codggrerate sustained oscil-

lations.

They inferred that the simulation results of our models ld®monstrated the existence
of oscillatory dynamics in negative feedback systems bathdlatively simple (Hes1)
and more complex (p53-Mdmz2) pathways and have been ablects fon reactions
occurring both in the cell nucleus and in the cytoplasm. Tlaghnadvantage of using
systems of PDEs to model intracellular reactions is thaPDEs enable spatial effects

to be examined explicitly.
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Cangiani and Natalin| (2010) had earlier considered a sgatnhporal model for pro-

tein transport along microtubules, but not applied to negdeedback systems. This

work was extended by Sturrock et al. (2012) to account foretifect of the nuclear

membrane, active transport and cell shape on the obsereéldsns.

Shymko and Glass (1974) studied spatial switching with twealised but chemically

coupled catalytic sites and analysed the dependence ofitgtalb the steady state.

They considered the following equations:

WV F (W) -DYPy=Gy)AN)

wherey(r,t) is the vector of concentrations. The dependence foihgsis of chemical

species was found through

b+ (gy+06)"

fa(@) = T+ (g+o)n

whereb < 1. They showed that the qualitative dynamics of chemicalesys with a
spatially heterogeneous catalyst depends in a fundameayadn the relative locations

of the catalytic sites.
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3.4 Analytical and Stochastic Models

Finally we note that recently there has been some work domtémpting to solve
models of a canonical gene regulatory network — the “sgifassing gene” (i.e. the

Hes1 system) — using analytical techniques. Several p&yeesadopted a stochastic

approach and constructed a so-called “Master Equatiorsifoin systems (Hornos et al.

2005;/Ramos et al. 2011; Grima etlal. 2012; Miekisz and S 3) governing

the probabilitiesfi(n,t), i = 0,1 (gene off or on) that there areprotein molecules in
the system at timé and the gene (DNA) is in the state Using generating function
technigues exact analytical solutions have been foundheosteady-state problem and
also the time-dependent problem, providing informatiothatotal number of protein
molecules in the system. However, we note that such modelsigily theoretical and
rather abstract, treating the distinct processes of trgotem and translation as one,

and ignoring all spatial effects.

3.5 Summary

Since the seminal work fGoodwi\n_(g)GS) there have been mpapgrs on gene regu-
latory networks (intracellular negative feedback sysfema®pting a range of different
modelling approaches and using different mathematichhigaies — ordinary differen-
tial equations, delay (ordinary) differential equationslaome with partial differential

equations.

For the remainder of this thesis, we will use systems of gladifferential equations
to model in an explicitly spatial way several key gene retpuianetworks which have

been implicated in cancer —in particular, the Hes1 systedrttag p53-Mdm2 system.
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Chapter 4

A Spatio-temporal Mathematical

Model of the Hes1 and p53-Mdm?2

Gene Regulatory Networks

4.1 A Spatio-Temporal Mathematical Model of the Hes1

System

4.1.1 Introduction

In this chapter we give an overview of a novel mode

by Stkretcal.

(201

) which

developed the original model of Monk (2003). We will subsewfly extend this model

in chapter 5 and chapter 6 for Hes1 dimerization, stat3 a@d\d&m?2.

The Hes1 system is one of the most investigated feedbadbiiiam systems involving
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the transcription factoHairy Enhancer of Split {Hes1) (Monk 2003). Hesl tran-

scription factor is a protein that is encoded by the Hes1 gemea member of the
Hes family of proteins which are basic helix-loop-helix (bH)-type transcriptional
repressors that possess the bHLH domain in the N-termiganmdor DNA binding.

Hesl1 has been shown to influence of nervous and digestiversysiartially through
the Notch signalling pathway by repressing bHLH activatdignce, it is a primary

target of Notch signalling and regulates many biologica&rgs by negatively regulat-

ing transcription of tissue-specific transcription fa k .1994).

HES1 also plays an important role in the Notch signallinghpaty, (Shimojo et &

2008). In the absence of Notch signalling, Hes1 expressiamhibited. After Notch
signals have been processed within the cell, the plasma naaleleases the in-
tracellular domain of Notch, which moves to the nucleus whérassociates with
RBPJ forming a complex that lead to activates Hes1 expnessidotch signalling

activates Hes1 expression where HES1 has been shown to Koty ligands such

DIl1, Jaggedl (Jagl), and Neurogenin-2 (Ngn2) (Kageﬂamﬁ 19

Also, Hesl can repress its own production by directly bigdio N-box target se-
qguences in its own promoter and represses the transcrigititoes1 mRNA, thus form-
ing a negative feedback loop, which produces oscillationdlés1l gene expression.
The interaction of the Hesl system is similar to the genexammple of a negative
feedback loop with variable X and Y (see Figlrel4.1). An iaseein X causes Y to
increase, which in turn results in the inhibition of X. Aft&rbegins to decrease Y
levels will diminish, and this allows X to increase againeTkpetition of this process
produces oscillations in X and Y. Figure 4.2 shows that Heitws the same process
to produce oscillations, where Hes1 protein is produced églifhRNA and then goes

on to inhibit its own mMRNA and so forth, with the result thag thystem oscillates with
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period of around 120 minutes. Hesl oscillations are imporfiar the maintenance

and proliferation of neural stem cells under the control ofd signallingl(Baek et

2006).

Figure 4.1: A generic negative feedback loop.

4.2 A Mathematical Model of the Hes1 System

Mathematical modelling of intracellular regulatory syatehas developed since it be-

gan in 1965 with the work of Goodwi 65). Monk (2003) was finst to consider
biological data to develop a mathematical model of the Hgsies. The basic re-
action kinetics for this system modelled using ordinaryeddntial equations are as

follows:

d[M] a
W = T'\[A—g])h_uM[M] (4.1)
I oM e (4.2)

where [M] and [P] are the concentrations of Hes1 mRNA and Hes1 protein, respec
tively.

The first term on the right hand side of Eq.(4.1) is a Hill fuastwhich decreases as
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the protein concentration increases, modelling reprasgjothe Hes1 protein. The
parameteny is the rate of transcript initiation in the absence of Hegitgin andp is
the concentration of Hes1 ards a Hill coefficient. The second term represents the

natural degradation of the Hes1 mRNA with parameikgr

The first term on the right hand side of Equation (4.2) is theHgrotein production
term from translation of Hes1 mRNA with parametgs and the second term repre-

sents Hes1 protein degradation with paramgter

A standard mathematical analysis shows that two-compomeiels with negative

feedback cannot have stable self-sustained oscillaJMslaLd_ej_a 2006). In order

~

to model the intracellular processes, Monk (2003) intredie time-delay to equations

(4.1), (4.2) to account for the processes of transcriptimwhtaanslation, and obtained
sustained oscillations.
The two-compartment model for Hes1-mRNA self-repressitth Wime-delay can be

written as a system of delay differential equations (DDES):

d[M] am

dt 1+(M)h_“M[M] (4.3)
p

% = ap[M(t—1p)] — Hp[P] (4.4)

wherety andtp are the transcriptional and translational delays, respaygt
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Figure 4.2: A schematic diagram of the Hes1 gene regulatory networkl h#RNA is tran-

scribed in the nucleus. It is then exported to the cytoplasmravtranslation into Hes1 protein
occurs. hesl mRNA is then inhibited in the nucleus by its owteip. This is one of the
simplest examples of a negative feedback loop.

A Time Delay Model

We here turn our attention to time delay in the transcripéiod translation processes.
Many physiological systems which operate by feedback nréshes have time de-
lays occurring during the main process of receiving thecéfésd the physiological
response. Therefore a time delay is a natural occurrencéodbe finite transmission

speed of matter, energy and information (Yutaka and Shiil.

Atime delay exists in the Hes1 system if any of the processade the cell take longer
than others. For example, a time delay could exist in the mR@&Ascription or in the

protein translation or it could be in both.

We rewrite the system of equations (4.1), (4.2) considettiegime delay first caused

by the delay in mRNA transcription, then by the delay in piotgegradation and
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finally by both interaction, transcription and productidimen we will study the system
numerically using the parameter values in Table 1 to shovetieet of the time delay

on the oscillations.

Table 4.1: List of parameter values

Parameters Values

am 1

ap 1
Hm 0.1
Hp 1

™M 20

p 20

h 5

p 1

For a delay caused in the protein production by the mRNA, endyitoplasm which
may coursed by the interaction of the Hes1 with other inthalea proses such as the
activation of JAK-STAT interaction or by the activating Nbtsignalling.

To study the delay in protein production, equations (442X become:

d[M] a
90— oMt ) - elP (4.6)

If the delay was in the mRNA transcription then we have thifoing equations:

d[M] o am

at 1+(M)h_““"['\"] (4.7)
p

% = ap[M] — e [P] (4.8)
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Figure 4.3: Plot of Hes1 mRNA (red) and Hes1 protein (blue) concentnatiagainst time with
delay parameter = 20. Computational simulation of the model with delay in Hesdtgin
production, system of equations (4.5),(4.6). Oscillatiare observed in the concentrations of
both hes1 mMRNA and HES1 protein.

Finally, if the delay was a result of both processes of mRN#scription and protein

production, the equations are as follows:

d[M] o am

dt 1+(M)h_““"“\"] (4.9)
p

% = ap[M(t—1p)] — pip[P] (4.10)

We solve the systems of equations numerically using thenpetex values in Table 1
and, as expected, we obtain oscillations in both hes1 mRNAHes1 protein levels.
Figured 4.8, 4]4 arld 4.5 show the oscillation of the coneéiotis of Hes1 mRNA and
Hes1 protein vary over time. By comparing Figures #.3] 4448, we see that os-
cillatory dynamics are sustained steady and the delay dutesansed big different on
the oscillation. However, mRNA transcription delay haglsily delay on the protein

production in Fig 44 comparing to the delay caused by théeprgroduction itself
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Figure 4.4: Plot of Hes1 mRNA (red) and Hesl protein (blue) concentnatiagainst time
with delay parameter = 20. Computational simulation of the model with delay in hesINAR
transcription, system of equations(4.7),(4.8). Osdiblas are observed in the concentrations
of both hes1 mRNA and HES1 protein.

in Fig[4.3, while Fig'4.b shows the oscillation takes morestifor the mRNA and the

protein to shift between the cytoplasm and the nucleus.

4.3 The Hesl Spatio-temporal Mathematical Model

We now extend the previous models and consider spatiabictiens within the cell as
shown in Figuré 4]6. We consider the nucleus and cytoplasmwaspatial compart-
ments separated by the nuclear membrane (in all subsequaysis and models, zero
flux boundary conditions are imposed on all species at tHermhbrane). Also, we
couple the reaction kinetics from ODE model (4.1), (4.2)wdiffusion to model the

protein and mRNA transport within the cell.

Hes1 transcription occurs in the nucleus to produce hes1AWRNch then transfers
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Figure 4.5: Plot of Hes1 mRNA (red) and Hesl protein (blue) concentnatiagainst time
with delay parameter = 20. Computational simulation of the model with delay in botshe
MRNA transcription and Hes1 protein production, systengof@ons(4.9,4.10). Oscillations
are observed in the concentrations of both hes1 mRNA and IHESdin.

to the cytoplasm where Hes1 protein synthesis occurs. Werasthat the mechanism
governing the spatial movement of the mRNA and the proteiwéen the nucleus and

the cytoplasm is diffusion.

The system of equations of the spatio-temporal evolutiohesfl mMRNA and Hesl

protein is now:

‘9[(';1'”] - DMnDZ[Mn]-I-#'EA%ﬂ)h—MM[Mn]v (4.11)
0[(!9\?0] — Dw,T2Md] — pu[Md, (4.12)
‘9[;‘?] = Dp,[2[R]+apMd — pp[P, (4.13)
d([;:n] — Dp 2Py — [P, (4.14)
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where[Mp] ,[M¢], [Pn] and[P;] are the concentration of the nuclear and the cytoplasmic
hesl mRNA and the nuclear and the cytoplasmic Hes1 protepectively. [D;] de-

note the diffusion coefficients for each species.

oM,
a

Dy, VM| + — — (M)

T a[M,]

= Dy, VA [M,)] — pm[M,]

m ot
a[P”j 72[ P ()R O m 1 P s
at = I_)_DHVZ._P,J - _l'l-}'u nJ W] = DJ’,V-R‘ +(_”;HL“ - #P}Pt

Nucleus

Cytoplasm

Figure 4.6: Schematic diagram showing how the spatial interactionsvbeh hesl mRNA
and Hes1 protein are modelled. hesl mRNA is produced in tbkeunsi (transcription), then
exported across the nuclear membrane into the cytoplasnmewhis translated into protein,
i.e., transcription occurs exclusively in the nucleus aadslation/synthesis occurs exclusively
in the cytoplasm. Hes1 protein is then imported back acrbssnuclear membrane to the
nucleus where it inhibits the production of its own mRNA, aaegative feedback loop exists.

Continuity of flux boundary conditions across the nucleambene allow import and
export of hes1 mMRNA and Hes1 protein, while zero flux boundanyditions at the

outer cell membrane ensure that all molecules remain witigrcell.
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DMnag\f]”] = DMCag\ﬂc] and[Mp] = [M(] at the nuclearmembrang4.15)
Dp, dg::‘] = Dp, dg:f] and [R,] = [P¢] at the nuclearmembrane (4.16)
% = 0, at the cell membrane (4.17)
% = 0, at the cell membrane (4.18)

Equations (4.11)—(4.14) represent a system of reactiffnstbn equations modelling
the spatio-temporal evolution of the Hesl1 system. The saaetion kinetics from
the ODE model (4.1), (4.2) are retained but are now also esupiith diffusion to
model explicitly protein and mRNA transport within a celk., molecules move from
the nucleus to the cytoplasm and cytoplasm to nucleus atiregsuclear membrane.
The PDE system reflects the reality that mRNA is transcrilbeohfDNA exclusively
in the nucleus and that protein is translated from mRNA esigkly in the cytoplasm,
I.e., there are production terms only fov{] (in Eq. (4.11)) andF] (in Eqg. (4.13)).
Finally, we make the assumption that the translation ofgingtfrom mRNA in the
cytoplasm occurs some distance away from the nucleus asteuhe endoplasmic
reticulum (ER), since proteins produced in the ER are magitlyer exported to the

exterior of the cell or transported to other membrane stinestsuch as the Golgi ap-

paratus, lysosomes and endosomes(Alberts et all 1994), (

In order to model this, we modify Equation (4.13) as follows:

0[R]
ot

= Dp,0%[Pe] + Ha(xy) ap[Mc] — pp[R] (4.19)
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whereH1(x,y) is a Heaviside function localising the protein productidmose specific
form will be given after the nondimensionalisation of thesteyn. TheH;(x,y) func-
tion takes the is value zero (0) in a region just outside thebeus, meaning there is no
protein synthesis in this ER region. In a region further afvayn the nucleus (outside
the ER) the function takes the value one (1), in the regiomefcytoplasm where we

assume the translation of protein occurs.

We nondimensionalise Equations (4.11), (4.12), (4.14) @ntB) with scaling vari-

ables as follows (see Appendix A):

o Mal o M) = [R5 [R
Mr] = ™ M= Rl = R =
_ — X = Yy

where[myg] ,[po] are reference concentrationjs reference time, and L is a reference

length. Using this scaling Equations (4.11), (4.12), (#drd (4.19) become:

0_n * ™A 1 v * (NA

[al\g] = MnDZ[Mn]'i'ﬁ_“M[MH] (4.21)
0 — D}y T M .22
O DrD?R] + Hu(ky)aeMd - elR (4.23)
Ol — DR DR - P (4.24)

where
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and

TDMn x TDMC _ TDPn _ TDPC
L2 Mc — L2 Ph— L2 Pe — 2

TaMm % Tap

M p=—

mp ’ Po

T, U5 = THp , P° = %" (4.25)

0, if¥+y2<0.25

Hi(%,y) = %2
1,  if%+y>>025

We apply zero initial conditions, zero-flux boundary cormafitat the cell membrane

and flux continuity boundary conditions across the nucleambrane:

*

My

5, 220
0[Mc|

on
0[Pc|

on

Mp] = [M¢] = [Pn] =[Pe] =0, att=0

(4.26)

D*&AC% and [Mp] = [M¢] at the nuclearmembrand4.27)
s 9Pl o ndPa) = [P at th | b 4.28
R g AN [Pn] = [P¢] at the nuclearmembrane (4.28)

0, at the cell membrane (4.29)

0, at the cell membrane (4.30)
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Due to a lack of experimental data, we take reference coratenis to bémy|=0.05uM
and[po|=1uM. Figured4Jr["4]18 show the computational simulation resafitEqua-
tions (4.21)-(4.24), where oscillations in concentrasiane observed with a period of

oscillation of approximately 200 time units. Knowing thietperiod of oscillation of

Hesl is approximately 2hours (Hirata etlal. 2003) we camedé the reference time

T as follows: 20@ =2 h which meang= 36 s.

To obtain the value of the variablewe used 2-dimensional cell domain with length of
30uM to represents both the nucleus and cytoplasm where theusutdes a major axis
of length 0.8 units and minor axis of length 0.5 units and tyte@@asm has a major
axis of length 3 units and a minor axis of length 2 units. Hemlce non-dimensional

cell width is equal to 3 L = 3QM so, the reference length L=u®.

Parameter Estimation

The following parameter values were used in our simulatafrtte non-dimensional

Hes1 system:

R ot S o C R o -
Mn— MC_ Pn— PC—7.5><10

ay=1,ap=2,h=5 p =1, yuy =pp=0.03 (4.31)

From (4.19) and (4.25) we calculate the dimensional paranvaiues as follows:
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LD,
Dy, = % = 2.08x 10 enfs?
s0:Dy, = D, =Dp, =Dp, =2.08x 10 tenfs?
ay = 139x10°Ms ! ap=111s"

Uy = Hp=833x10"%t h=5, pg=1x10"°M

We carried out a number of simulations on the Hes1 system J44224) to obtain the
range of diffusion coefficients for which we observe ostitlas (all other parameters
remain unchanged). The system exhibits oscillations whemtRNA and the protein
diffusion coefficients have a value in the rangé7x 1011 to 9.72x 10 cn?s L.
We have also calculated a range of mMRNA degradation ratég: x110~%to 1.17 x
10-3s71, protein degradation ratesd# x 10~“ to 1.06 x 10~3s~1 and Hill coefficients

h > 4 for which the system exhibits oscillations.

4.3.1 Computational Simulation Results

We solve the system (4.21)-(4.24) numerically using COMSEIMLAB package
which uses the finite element technique. Triangular bagmehts and Lagrange
quadratic basis functions along with a backward Euler tatepping method for in-

tegrating the equations were used in all simulations.

Figure[4.Y shows the total concentrations of hes1 mRNA argd peotein over time
in the nuclear compartment, while Figlrel4.8 shows the tmtatentrations in the cy-

toplasm.
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Figure 4.7: Plot of the concentrations of hesl mMRNA (red) and Hesl prdtaue) in the
nucleus over time. The period of oscillations is approxehaf20 min
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Figure 4.8: Plot of the concentrations of hesl mRNA (red) and Hesl prqtelue) in the
cytoplasm over time. The period of oscillations is appratety 120 min

The plots presented in Figuries 4.9 and #.10 show how the hB&Anand Hes1 pro-
tein concentrations vary spatially as well as temporallghimithe cell. The mRNA is
produced inside the nucleus andtby 60 min has started to cross the nuclear mem-
brane to enter the cytoplasm (Figlre]4.9). In the cytopldsmiRNA is translated
into protein, which then diffuses back into the nucleus apiesses the production of
its own mRNAt = 120min. The mRNA concentration has clearly depleted by120

min, reflecting the period of the temporal oscillation seefigures 4.7, 418. As can
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Figure 4.9: Plots showing the spatio-temporal evolution of hesl mRN&eatration within
the cell from times t=0 to 480 min at 60 min intervals. The @nition oscillates in both
time and space. Parameter values as per (25).

be seen from Figure_4.110, there is a delay in the rise of pratencentration after
t = 0 as it takes time for the mRNA to be produced and exportedeaytoplasm. By
t = 60 min the protein levels have clearly risen in the cytoplasm have reached the
nucleus. Att = 120 min the protein concentration has decreased signiljcate to

the inhibition of MRNA transcription by the protein.

57



50 100 150

Figure 4.10: Plots showing the spatio-temporal evolution of Hes1 proteincentration within
the cell from times t=0 to 480 min. The concentration ostélain both time and space. Pa-
rameter values as per (25).

4.4 A Spatio-Temporal Mathematical Model of the P53-
Mdm2 System

4.4.1 Introduction

p53 is known as protein 53 or tumour protein 53 (on accourntisahilecular weight).
The p53 gene was identified in 1979 by Arnold Levine, Davidé.and Lloyd Old, but
in 1989 it found its role in the cell as a tumour suppressoregémane and Crawford
1979). It plays an important role in multicellular organsmhere it is a transcription

factor that regulates the cell cycle, functions as a tumoppeessor and is involved in
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preventing cancer. Mutations that inactivate p53 funchiame been detected in more

than 50% of human cancers (Bennett et al. 1999).

In normal unstressed cells the concentration level angigctf p53 are low, whereas
the concentration of p53 increases and is negatively reggila response to stress sig-

nals such as DNA damage due to Mdm2 induced degradation.

The regulation of the p53 protein by mdmz2 goes through foacsssive phases of the
standard eukaryotic cell cycle including, mitosis (M phagapl (G1 phase), synthesis

(S phase) and gap2 (G2 phase). There are several nuclegingriot/olved in the regu-

lation of DNA replication during the cell growt 1994). The p53 tumour

suppressor protein is one of the most important nucleaep®tnvolved in growth

arrest, apoptosis and DNA repair (Melino et al. 2003). Immalrunstressed cells, the

levels of p53 protein are sustained at low levels via intiwaavith other protein such
as MDM2 (murine double minute 2). Once the levels of p53 pnoiecreases, for
example after DNA damage, it acts as a transcription fagtdycing the expression

of several genes such as Bax (apoptosis inducer), p21 WARithvinduces growth

arrest|(Freedman and Levine 1998). Upon several typesesdsss, the p53 pathway

has been divided into five stages, the stress signals whislatecp53 pathway, detec-
tion and interpretation of the upstream signals by the epstrmediators, interaction
of p53 with several proteins which lead to its stabilitynsariptional activation and

protein-protein interactions and the final outcome, groartest , apoptosis or DNA

repair (Levine et al. 2006). As mentioned previously, inmal conditions, the level

of p53 protein is down-regulated through its interactiothwndm?2 protein which en-

hances p53 degradation in the cytoplasm or via a p53-mdm3lesnm the nucleus,

preventing p53 to activate transcription (Thut et al. 1993pecifically, p53 protein

utilizes its NH2-terminal domain to activate its own tramgtton. The mdm2 binds to
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this region blocking this ability (Lu and Levine 1995). Thelm2 protein has the abil-

ity to shuttle between the nucleus and cytoplasm due to the $&guence (Roth et/al.

1998). Its activity is essential for shuttling p53 to theapiasm for degradation by

cytoplasmic proteasomes. Figlre 4.11 summarizes regolafithe p53 by the mdm2
in normal cells. The ability of mdm2 protein to shuttle p58rfr the nucleus to the
cytoplasm was proposed by Freedman and Levin, (1998). Itea haodel, mdmz2,
p53,CRM1,and RanGTP form a ternary complex in the nuclegsrEi4.12. This trig-
gers transportation of the complex through the nuclear pmtee cytoplasm where

p53 protein is degraded while the mdm2 protein is returnétdemucleus.

Following DNA damage, p53 protein is stabilized and acedas a transcription fac-
tor that induces expression of several genes. It has beearddrated that after DNA
damage, the ability of mdm2 to down-regulate p53 either egrddation or by form-

ing a complex to prevent transcription were lost althougihHevels of mdm2 were

observed|(Landers etlal. 1997).

The tumour suppressor protein p53 has been observed in avartey of human

cancers. Loss of p53 gene from chromosome 17 was reporteeiverad cancers

Vogelstein et al. 1988). Another study showed that the p&8egcontains point mu-

tations in the lung cancer (Takahashi et al. 1989). The ivetadn of p53 could be

caused in several ways: mutation occurrence found in 50%ufam cancers. Some
viruses such as SV40, HPV or adenoviruses encode protehstiibit p53 protein.

In both cases of inflammatory breast cancer and neuroblastitva accumulation of
p53 protein in the cytoplasm was reported. The accumulafiomdm?2 protein in some

types of cancers was observed.
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D. Reversal cell cycle reentry
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i block MDM-p53 complex
i lower MDM2 level
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Figure 4.11: A model of the regulation of the p53 protein by the mdm2 pmotéh) To pre-
vent p53 transcription in the nucleus, mdmz2 binds to p53gimotutilizing RanGTP-dependent
pathway, mdm2 shuttle p53 from nucleus to cytoplasm foradiegion by proteasomes. (B)
After DNA damage, mdm2 becomes inactive via blocking pS&2rmebmplex formation, lower
mdm2 levels and blocking mdm2 nuclear transportation. &3 gmains active as transcrip-
tion factor and tumour suppression in the nucleus in orderdose growth arrest or apoptosis.
(D) After the DNA is repaired mdm2 become active again, feang its function as autoregu-
latory protein controlling p53 in the nucleus (Adapted fréneedman and Levine, 1999).

&,
P53
&

Cytoplasm

Nucleus :

Figure 4.12: A model for the transportation of p53 from the nucleus to fieasm by mdm2.
It is believed that mdm2, p53, CRM1 and RanGTP form compkexttigger transportation

of p53 to the cytoplasm. The mdm2 then is separated from p&3sameturned the nucleus
(Adapted from Freedman and Levine, 1998)
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4.5 Mathematical Modelling of the p53-Mdm2 System

Mdm2 functionally interacts with many proteins involvedtire control of cell prolif-
eration and survival. Mdm2 acts as a direct negative regulaif p53. This occurs
through two main mechanisms: first, transcriptional atitiveof p53; second, target-

ing p53 for modification and degradation (Manfredi 2010).

The basic interaction between p53 and Mdm2 creates a nedatdback which is

shown in the schematic digram in Figlre 4.13.

Figure 4.13: A schematic representation of the p53-Mdm2 model.

We begin by looking at the fundamental reaction kineticshefd¢ystem. Denoting the

concentrations of p53, Mdm2 and Mdm2 mRNA [, [M] and[Mm], respectively,
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the ODE system below is formulated to capture the interastidepicted in Figure

4.13:

d[P] [M]hl

dt B‘(“”(m»H (4.32)
dMm [P]h2

at a+rl(m)—€0['\/‘m] (4.33)
% = VIMm —p[M] (4.34)

where[P], [Mm] and[M] are the concentration of p53, Mdm2 mRNA and Mdmz2 pro-

tein, respectively.

The first ODE equation (4.32) for p53 hsas a production term of p53 followed by
a natural degradation term of rgtie andv a degradation term of Mdm2. The second
ODE (4.33) for Mdm2 mRNA, has a production rate followed by a production
term of p53, and finallyp degradation rate. The final ODE (4.34) is for the Mdm2
protein, which hay a production rate of Mdm2 mRNA arngl a degradation rateM

andp are activation thresholds, and h1 and h2 are Hill coeffisient

Table 4.2: Parameters value

Parameters Values| Parameters Values
B 10 u 0.00025
% 64 a 0.00235
n 40 [0)] 0.8
y 01 P 3
A 0.05 B 1.066
hl 1 h2 50
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We are going the study the system (4.32), (4.33) and (4.3#enigally using the pa-

rameter values in Table (4.2) to show the oscillations oktstem.

scaled concentration
N

O 1 1 1
0 5 10 15

time

20

Figure 4.14: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (gre@mcentrations
against time with no delay. Computational simulation of thedel with parameter values in

Table (4.2).

Figurel4.14 shows the simulation of the p53-Mdm2 model witteotime delay.

4.5.1 A Model with Time Delay

A time delay exists in the system if any of the processes enthé cell take longer

than others. For example, a time delay could exist in thegprdtanscription or in the

MRNA translation or it could be in both. As before with the Hegste
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added a delay to account for transcript elongation, sgligimocessing and export.

FollowingIMonk (2003), we rewrite the equation system (4,82.33) and (4.34) con-

sidering the time delay firstly caused by the delay in mRNAgiption, then by the
delay in protein degradation and finally by both of the delaysen we are going the

study the system numerically using the parameter valueabte®.2 to show the effect

of the time delay on the system.

If the delay is associated with p53, equations (4.11), (dabd (4.13) become:

d[P] B [M]hl

dt B_<“+V<m))[P] (4.35)
d[Mm]| B [p(t_-[)]hz

it~ G ) MM (4.36)
d[M]

Sat = YMm—pM] (4.37)

If the delay was in the Mdm2 mRNA transcription then we wouddvér the following

equations:

[M]hl

dat B_(“+V(m))[P] (4.38)
dMm| [P)h2
ot - O e ) MM (4.39)
dM]

Sar = VIMm(t—1)] - p[M] (4.40)

If the delay was associated with the Mdm2 protein then we dibalve the following

equations:

65



a0

S0F .

40t

301

20F

scaled concentration

10

B0 100

time

Figure 4.15: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (gre@mcentrations

against time with tau = 5. Computational simulation of thed®bwith delay in p53 protein
degradation. System of equations (4.35), (4.36) and (48fF) parameters values in Table
(4.2).

dPl _ . M(t—1)]"

R G v vy el (4.41)
dMm (P2

a “+”<W)—¢[Mm] (4.42)
dM]

Sdt = YMm —pM] (4.43)

We solve the systems of equations numerically using thenpetex values in Table 4.2.

As expected, we obtain oscillations from the negative faelllsystem.

It is clear that the concentrations of the variables reaghdr levels compared with

the result of the oscillation in Fig 4.114. Figure 4.15 sholes tesult of the equations
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Figure 4.16: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (gre@mcentrations
against time with delay = 5. Computational simulation of the model with delay in Mdm2
MRNA degradation. System of equations (4.38), (4.39) ad@)4vith parameters value in
Table (4.2).

(4.35), (4.36) and (4.37) when we consider the time delaguin the p53 degradation
process. Mdm2 mRNA takes more time to diffuse between thedioynains (nucleus,
cytoplasm) thus its concentration is higher than the camagaon of the other compo-

nents.

Figure[4.16 shows the result of the equations (4.38), (4a88)(4.40) when we con-
sider the time delay through the Mdm2 mRNA degradation mec@53 takes more
time to diffuse between the two domains thus its concewinas higher than the con-

centration of the other components whereas the Mdm2 mRNAss#§ faster.

In Figure[4.17, the result of the equations (4.41), (4.48)@M3) simulation when we
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Figure 4.17: Plot of p53 (red), Mdm2 mRNA (blue) and Mdm2 protein (gre@mcentrations
against time with delay = 5. Computational simulation of the model with delay in Mdm2
protein degradation System of equations (4.41), (4.42) @mi3) with parameter values in
Table (4.2).

consider the time delay through the Mdm2 protein degradgiiocess are given. It
shows the Mdm2 protein diffusion is following the p53 diffois while it is not in other
figure. So adding the time delay has quickened the Mdm2 pretauttle between the

nucleus and the cytoplasm.
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Chapter 5

A Spatio-temporal Mathematical

Model of the Hesl System

Incorporating Dimerization

The chapter can be broadly organized into three parts. Ifirstgart of this chapter

we extend the ODE model analysed

2008) tjding the PDE

model for Hes1 dimeraization system and run the simulatoriife model. Then, in

the second part, we present the ODE model of Stat3 and extendadel by consid-

ering diffusion (i.e. a PDE model) and run the simulationted model. Finally we

analysed the impact of the Stat3 PDE model on the Hes1 PDEInmodee first part

and examined the effects on the model such as varying nutiearbrane thickness,

adding diffusion noise, and adding convection (modellinglenular transport along

microtubules) to the model.
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5.1 Introduction

We start this chapter by developing the previous model tludecthe effect of Hesl
dimeraization. In order to do this, we first consider the y€MdDE model of Momiji

and Monk (2008).

Oscillations in molecular species concentration levedsthe sign of complex genetic
regulatory network involving a negative feedback loop. léys an important role in
wide rang of cellular phenomena. Many of the biological ps®es involve transcrip-

tional oscillations which depends on a segmentation cloakr¢anise transcriptional

oscillations in complex networks of interactions (MomijicaMonk 2008). The oscil-

latory expression of Hes1 has been shown to be involved isggmentation clock.

The model in Equations (4.1) and (4.2) in chapter 4 encodebl#s1 feedback loop in
simple manner, representing only transcription, trarmtednd degradation. However,

there are several other important biochemical processeb/ad in the Hes1 feedback

loop. IMomiji and Monk [(2008) used experimental biologicatalto develop a more

detailed Hes1 model to generate protein oscillation. Moamg Monk (2008) consider
seven biochemical prosses such as transcription, tréorslaepression, degradation,

protein shuttling and protein dimerisation.

Figure[5.1 represents schematically the mass action kst the main processes in-

volved in the more complex Hes1 feedback circuit as it isgmésd ir; k

2008).

We sumraize the intracelullar processes involved in thel Hesdback loop.
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Nucleus

a(y4, p0, n)

Cytoplasm

Figure 5.1: Schematic diagram illustrating the more detailed biocheahprocesses associ-
ated with the Hes1 feedback network.

(1) Transcription: the hesl gene is transcribed in the mscte produce nascent

hesl mRNA, which is then spliced and processes prior to ¢xpon the nu-

cleus. This linear elongation process involves a time d (o]

1984).

(2) Nuclear export of MRNA: mature mRNA is transported outhef nucleus to the

cytoplasm.

(3) Translation: hesl mRNA is translated to produce monaniesl protein molecules.
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Table 5.1: List of parameters values used the modél_oI_MQmiiLand_Mbﬂ@ﬂ

Parameters Values
T 0.03
U2 0.03
U3 0.3
Ha 0.03
Us 0.03
k1l 10
k2 1
k3 10
k4 0.01
k5 0.001
k6 10
k7 0
1 14
T2 2

n 5
Po 1250

(4) Protein dimerisation: two Hes1 protein monomers caul binform a Hes1 ho-

modimer.

(5) Nucleo-cytoplasmic shuttling: Hesl dimers can shuideveen the cytoplasm

and the nucleus.

(6) Transcriptional repression: Hesl dimers bind to spesiiquences in the pro-

moter region of the hesl1 gene, resulting in a reduction irrdke of hesl tran-

scription (Takebayashi et al. 1994).

(7) Degradation: both hesl mRNA and Hes1 protein are uresthbling half lives

of around 20-25 min (Hirata etlal. 2003).

Momiji and Monk (2008) build a simple model using the massasckinetics to rep-

resent the circuit mathematically by a five-variable sysésnfollows:
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T = kbl b bl ) 5.
D~ iy el 52
D = ey thollt - 1) - 2y 2l (53)
D (b ko) v+l + Kl 5.4
D~ (gt )bl + e 55

wherey;-ys represent the concentrations of mMRNA in the nucleus, mRNAercyto-
plasm, Hes1 monomer in the cytoplasm, Hes1 dimer in the tadap and Hes1 dimer

in the nucleus, respectively; - s are the linear degradation rates of the corresponding
componentski-k; are rates of mMRNA production, mRNA export, protein producti
dimerisation, dimer dissociation, protein import, andtpno export, respectivelyr;

andt, are the time delays in transcription and translation.

Then,MQmﬂLaDdJMQDL (2008) solve the five equation systenmgishe parameter

listed in Table (5.1) to prove that the model have sustairsedlation solution with a

period of 120min.

5.2 The Spatio-temporal Model

We now extend the above model and consider spatial interectwithin the cell:
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Figure 5.2: Representative oscillatory profiles of Hes1 mRNA and Hestejorresulting from
a simulation of the model using the parameters listed ing&hbl.
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Figure 5.3: Plot showing the limit cycle obtained from the 5-variabledalo
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5[;/?] = Dy, I[yan] — palyan] + ke {(1+a—1[y4n])”] : (5.6)
d[gtld = Dy, Plysc] — palyac). (5.7)
d[gf o Dys, 02lyac] — Halyac] + KalYac] — 2Ka[yac]®, (5.8)
% = Dy, D2[Yac] — HalYac] + Kalyac]?, (5.9)
% = Dy, 0[Yan] — Halyan), (5.10)

where,yin, Yic, Yac, Yac andyan represent Hes1 mRNA in the nucleus, mRNA in the
cytoplasm, Hes1 monomer in the cytoplasm, Hesl dimer in yl@ptasm and Hesl
dimer in the nucleus respectively;, us and py are the liner degradation of Hesl
MRNA, Hes1 monemar and Hes1 dimer respectively. Akspks, ks anda are the
rate of mMRNA production hes1 protein production, dimer fation and Hes1 protein

production respectively.

As previously the continuity of flux boundary conditions the nucleus membrane
allow import and export of mMRNA and the protein and zero fluxiiary condition at
the cytoplasm membrane to ensure that all molecules remtimhe cell membrane

i.e.
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V%!
DYln [ann] = Dch

d[Yac

on

Dys. = Oandys]
0Yac]

on
dya
DY4n E}nn] - DY4c
2[y1c]
on
olyac]
on
0[Yac|
on

on

d[y1c]

and [y1n] = [y1c] at the nuclear membrang5.11)

= 0 at the nuclear membrane (5.12)

and ysn] = [yac] at the nuclear membrang5.13)

= 0, at the cell membrane
= 0, at the cell membrane

= 0, at the cell membrane

(5.14)
(5.15)

(5.16)

Equations (5.6)—(5.10) represent a system of reactidngiiin equations modelling

the spatio-temporal evolution of the more detailed Hesiesys The same reaction

kinetics from the ODE model

f Momiji and Mo

K (2

08) are et but are now

also coupled with diffusion to model explicitly protein antRNA transport within a

cell, i.e., molecules move from the nucleus to the cytoplaathcytoplasm to nucleus

across the nuclear membrane. The PDE system reflects titg that mRNA is tran-

scribed from DNA exclusively in the nucleus and that proteinanslated from mRNA

exclusively in the cytoplasm. Finally, we make the assuampthat the dimerization

of proteins in the cytoplasm occurs some distance away frmmuticleus and it takes

more time for the Hes1 dimer protein to shuttle to the nucleus

dlyac]
ot

= Dy, 0?lyad —

Hzlysc] + ksH1(X,Y)[yac] — 2Kalyac]®  (5.17)

whereH;(x,y) is a function localising the protein production whose sfieérm will

be given after the nondimensionalisation of the system.
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We nondimensionalise Equations (5.6), (5.7), (5.9), (bab@ (5.18) with scaling vari-

ables as follows (see appendix C):

Yidl = [y”‘] i = [y“] A= [y“’d il = [ SHVAR [y“"] il 5 1)
t = ?,x :E,Y =2 (5.19)

wherelyp] is reference concentration,is reference time, and L is a reference length.

Using this scaling Equations (5.6), (5.7), (5.9), (5.10) én18) become:

0[;/::]* = Dj, O?[yan]* — pi[ym]* + ki <m) (5.20)
‘”,Ztli]* = Dy, D?yac]” — i [yac]* (5.21)
a[gff]* = Dy, D?[yac]* — 13 [yac]* + KsH1(X,Y) [Vac]* — 2K3[yac]*  (5.22)
a[gf:]* = Dy, D*[yac]" — 1z Vac] * + Kilyac] ™ (5.23)
d%/;;:]* = Dy, O?[yan]* — Uz [yan]* (5.24)
where
éDy’in'VO = Dy, éDY’{c'Yo =Dy, s éDy’écyo Dy,
éDyZn-yo = Dy, éDYZC'YO =Dy,.. ayo=0a"
TU = My, TH3= W3, THs= iy
Ty—tl = ki, tks=k3, Tyoka =g (5.25)
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and

1, ifx2+y?2>0.3,
Hl(X7 y) -
0, ifx*+y?<0.3.

We apply zero initial conditions, zero-flux boundary coratis at the cell membrane

and flux continuity boundary conditions across the nucleambrane:

Yin]" = [Yan]" = [Yic]" = [yac]" = [ya]" =0, att =0 (5.26)
Dijlnﬁ[;lr?]* = D§lca[glrf]* and [y1n]* = [yac]™ at the nuclear membrafte27)
D%ﬁgﬁ]* = D%ﬁ%ﬁv and [ysn]* = [yac]” at the nuclear membrafte28)
Df,lcﬁ[;lr‘;]* = 0andy;c]* = 0at the nuclear membrane (5.29)

0[;/1:] = 0, at the cell membrane (5.30)
a[;?;::] = 0, at the cell membrane (5.31)
0[;/4::;]* = 0, at the cell membrane (5.32)

We take reference concentrations to[fag=1uM. Figures 5.2, 5.3 show the simula-
tions results of Equations (5.20)—(5.24). It was recodhiesthat a period of oscillation

was approximately 225 time units. Hence, knowing that th#opeof oscillation of

Hes1 is approximately 2h (Hirata etlal. 2003), we have theregice tima as follows:

2251 = 2h which meang= 32s (see appendix C).
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To obtain the value of the variable L, we used 2-dimensioathhath length of 3uM

to represents both the nucleus and cytoplasm where theusubbs a major axis of
length 0.8 units and minor axis of length 0.5 units and thegl@sm has a major axis
of length 3 units and a minor axis of length 2 units. Hence nive-dimensional cell

width is equal to 3 L = 32IM so, the reference length L=u®.

Parameter Estimation

The following parameter values were used in our simulatafrtbe non-dimensional

Hesl system:

* o *
Dyln o Dch

Ui = Uz =p; =0.03

e L o S T o —4
_DY3c_Dy4n_DY4c_7'5X1O

a* = 1,n"=5 (5.33)

From 4.57 and 4.65 we calculate the dimensional parameligevésee appendix C):

Dy: = @ =2.34x 10 Henfs™

Dy: = Dy, =Dy, = Dy,s = Dy, =2.34x 10 Henfs™!
U1 = Uz3=Ugp=94X 104571

ki = ks=kqs=156x10"*

a = 1Ms i (5.34)
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5.2.1 Computational Simulation Results

Once again we solved PDE system (5.20)—(5.24) numericalhyguhe finite element
software COMSOL (Triangular basis elements and Lagrangdmic basis functions
along with a backward Euler time-stepping method for ireéigg the equations were
used in all simulations). Figuife 5.4 shows the total comegions of hesl mMRNA,
Hes1 protein dimers and Hes1 protein over time in the cysmplavhile Figurd 5J5
shows the total concentrations in the nucleus over timeh Bets of results show os-
cillatory dynamics of the Hes1 system. The plots presemtédtigs.[5.6 and 517 show
how the hesl mMRNA and protein concentrations vary spatsdlyell as temporally
within the cell. The mRNA is produced inside the nucleus ant50 min has started
to cross the nuclear membrane to enter the cytoplasm[(F. IB. the cytoplasm the
MRNA is translated into protein, then two Hes1 protein moambind to form a Hes1
dimer which then diffuses back into the nucleus and repsabseproduction of its own
MRNA (t=250 min). The mRNA concentration has clearly degadby t=120 min, re-

flecting the period of the temporal oscillation seen in Ag4.[5.5.
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Figure 5.4: Plot of the concentrations of Hes1 mMRNA (red), the Hes1 jpralieners (blue) and
Hes1 protein (green) in the cytoplasm over time. The perioolsoillations is approximately
120 min
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Figure 5.5: Plot of the concentrations of hesl mRNA (red) and Hes1 prdtgieen) in the
nucleus over time. The period of oscillations is approxghal 20 min

5.3 External driving of Hes1 oscillation by Stat3 Phos-

phorylation

5.3.1 The Stat3 System

Stat3 (Signal Transducer and Activator of transcriptiangimember of STATs pro-
teins that mediate cellular responses to different cytekiand growth factors. The
activation of STATs by tyrosine phosphorylation cytokiresgrowth factors bind to
the cell receptors. Once tyrosine phosphorylated, two STWwhomers form dimers.

The dimers then translocate to the nucleus and bind to speedion of the target

gene |(Smithgall et ¢ 00). Stat3 protein regulates g&peession involved in cell

proliferation, survival and self-renewal (Walker et al120.

It was shown in previous study that formation of Stat3-P bited in the absence
of Hes1, suggesting that Stat3-Socs3 oscillations and Bledllation depend on each
other. So, Hes proteins bind to JAK2 and Stat3 resulting af3thosphorylation and

activation. Phosphorylated Stat3 was detected only in ¢ls expressing Hes1, but
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Figure 5.6: Plots showing the spatio-temporal evolution of hesl mRN&@&atration within
the cell from times t = 0 to 450 min at 50 min intervals. The @mration oscillates in both
time and space. Parameter values as per (5.33).
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Figure 5.7: Plots showing the spatio-temporal evolution of Hes1 Proteincentration within
the cell from times t = 0 to 450 min at 50 min intervals. The @nmration oscillates in both
time and space. Parameter values as per (5.33).



not the surrounding cells where Hesl1 expression markedheases the level of ty-

rosine phosphorylation of endogenous Stat3. Suppress$idesi expression reduces

Stat3 phosphorylation (Kamakura et al. 2004). It has beendohat Hes1 represses its

own expression by binding to its own promoter. Also, phosplated Stat3 (Stat3-P)

induces suppression of cytokine signaling 3 (Socs3) esmersSocs3 inhibits phos-

phorylation of Stat3 and negatively regulates it, formingemative feedback loop.

Thus, the Stat-Socs pathway is regulated by its own negi&@dback loop, in a sim-

ilar manner to Hes1 (Yoshiura et/al. 2007). Interestingmibition of Stat3-Socs3

oscillations blocks Hes1 oscillation, suggesting that®Bt&ocs3 signalling regulates

oscillatory versus persistent Hes1 expressi
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Figure 5.8: Schematic diagram showing the similarity between the inegétedback loops in
the Hes1 and Stat3 systems.

5.3.2 The Stat3 Mathematical Model

To formulate the mathematical model of the intracellulgutatory system of the Stat3
negative feedback loop, we follow the same steps as in pus@ections when deriving

the model of the Hes1 system. We suggest that Stat3 osoyllaipression plays a

central role in maintaining the segmentation clock. Staf8esses the transcription of
its own gene through direct binding to regulatory sequeirctds Stat3 promoter. The

basic interactions of this system (see HigJ] 5.8[and|5.18)3%$trotein is produced by

Stat3 mMRNA and then goes on to inhibit its own mMRNA and so fostith the result

that the system oscillates with a period of around 120 min.

The equations governing the concentrations of Stat3 mRNApaatein respectively

are:
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Figure 5.9: Schematic diagram showing the constitutive activationtaf3Sby the cytokine
receptor JAK which phosphorylates Stat3, which is then dized and translocated to the
nucleus where it regulates gene expression. Stat3 siggalli phosphorylation-regulated by
SOCS3.

dSm asm

at ~ Ti(spRyn HsmM (5.35)
ds

—dtp = aspSm— UspSP (5.36)

where [Sm] and [Sp] are the concentration of Stat3 mRNA aat33irotein, respec-

tively.

The first term on the right hand side of Eq.(5.35) is a Hill fuoc which decreases
as the protein concentration increases, modelling rejoresy the Stat3 protein. The
parametensyis the rate of transcript initiation in the absence of Stat8in andpg

is the concentration of Stat3 ands a Hill coefficient. The second term represents the

natural degradation of the Stat3 mRNA with parameigs
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Figure 5.10: A schematic representation of the Stat3 model

The first term on the right hand side of Eq.(5.36) is Stat3gingproduction term from
translation of Stat3 mRNA with parametek and the second term represents Stat3

protein degradation with parametes

We now extend the above ODE models and consider spatiahetiens within the
cell. As previously, we consider the nucleus and cytoplastwa distinct spatial com-
partments and the cytoplasm enclosed within the outer osthiomane. Transcription
occurs exclusively in the nucleus and protein synthesisrscexclusively in the cyto-
plasm.We assume that the main mechanism governing thalpatwement of mMRNA
and protein between the nucleus and cytoplasm is diffufemoting by [Smn], [Smc]
and [Spn], [Spc] the concentrations of nuclear and cytopia$tat3 mRNA and nu-

clear and cytoplasmic Stat3 protein, respectively, theesyf equations describing
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the spatio-temporal evolution of Stat3 mRNA and Stat3 pnatencentrations is now

02—:“‘ - DSrthZSmrFﬁ—HSmsmn (5.37)
02—{“ — Dsm0°Sm — psrSme, (5.38)
aj_tﬁ — Dsp0?Sp -+ dsSM — s SR (5.39)
aj—tp‘ = Dsp0°Sph— HspSh. (5.40)

We apply zero initial conditions, zero-flux boundary cormafitat the cell membrane

and flux continuity boundary conditions across the nucleembrane:

Dthﬁ[j:M = DSmﬁ[j:H and [Smy| = [Sm at the nuclearmembrane
Dsmﬁ[ﬁsnp‘] = Dsp;a[ﬁsnm and [Sp,]| = [Sp] at the nuclearmembrane
0[3:%] = 0, at the cell membrane
5[{;&] = 0, at the cell membrane (5.41)

5.3.3 Computational Simulation Results

As in the case of the Hes1 system, we solved the PDE systeif){&30) numerically
using the parameter values in table (5.2). [Figb.11 showsotiaé concentrations of
Stat3 mRNA and Stat3 protein over time in the nuclear compamt, while Fig 5.1P

shows the total concentrations in the cytoplasm. Both datssoilts show oscillatory

88



dynamics of the Stat3 system.

Table 5.2: Parameters value used in the computational simulations@PDE model

Parameters Values
U1 0.03
U 0.03
ap 1
ar 1
n 5
Po 1
C7
S6fl
©
20
S 4
5 L\
SHIVAY W NN
2V VIV YAV Y
K1 \JTUTVY \
00 200 400 600 800 1000
Time (min)

Figure 5.11: Plot of the concentration of Stat3 mMRNA (red) and Stat3 profielue) in the
nucleus over time.

5.4 A Model of the Hes1-Stat3 system

As result of the study of the post translation oscillatiostdt3 phosphorylation and its

negative feedback loop which revealed a potential mechanisderlying the depen-

dency of Hes1 oscillation on the Stat3 phosphorylationlagicins, Momiji and Mon

2008) incorporated these new features to study a Hes1 naddeh is based around

two components, then formulated a new ODE model includinglHBmerisation and
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Figure 5.12: Plot of the concentration of Stat3 mRNA (red) and Stat3 profielue) in the
cytoplasm over time.

time delays.

In this section we formulate the model in a different way wlstill incorporating the

time delay and Hes1 dimerisation.
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Min D}, [Pyiy— ivin ki (W)

Mhe — by, Dyic— HiYie

Mo — D, Y v+ KGHAGY)Yio -~ 2665

Ve — D, e v+ iy

Win ;i HiYin

a;/fn = DysnDZYSn‘i‘m—HSYSn

0ng = Dy, 0%Ysc — UsYsc

dgfc = Dy, 0%ec + 0BYsc — HoYec

ﬁgfn = Dyg,0%Yen — HeYen (5.42)

Where,Y1in, Yic: Yaer Yac: Yan: Ysn: Yse, Yen @ndyec represent Hesl mRNA in the nu-
cleus, mRNA in the cytoplasm, Hes1 monomer in the cytoplasesl dimer in the
cytoplasm, Hes1 dimer in the nucleus, Stat3 mRNA in the uscéand Stat3 protein in
the cytoplasm, respectively;, u; andyy, are the liner degradation of Hes1 mRNA,
Hes1 monomer and Hes1 dimer respectively. Akgoks, andkj are the rate of mMRNA
production, hes1 protein production and dimer formatide,reespectively. Alsa;,
az, ag andn the prouduction of Hes1 mRNA in apsent of Hes1 protein, the o
Stat3 mRNA transcript, Stat3 protein production term andiladdefficient, respec-

tively.

Momiji and Monk (2008) showed a 120 min period oscillationtle level of phos-

phorylation of the Stat3 protein which was shown to be neugskor the observed
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Table 5.3: Parameters value

Parameters Values| Parameters Values
Po 1 k1l 2
[T 0.03 k3 5
Us 0.03 k4 2
Ha 0.03 ag 7
Hs 0.03 (01 1
He 0.03 (03} 1
nl 2 n5 5

transcriptional Hes1 oscillations. Oscillation of Stat®pphorylation is driven by a

negative feedback loop involving Stat3 and Socs3 osalatand Hes1 oscillations

depend on the Stat3 phosphorylation oscillati(ms_(io_dma‘ 2007).

We ran numerical simulations of the Hes1-Stat3 system muosiel the parameter

values in table (5.3) to examine if there is any affect of esg$tem on the other’s

oscillation when it does not have any time-dependent effect

Figure[5.1B shows that Stat3 negative feedback oscilla@slaes not show any effect
caused by the Hes1 negative feedback while the Hes1 osmiadisappear. So Stat3
oscillations block the Hes1 oscillations. It is clear tha&sH oscillations run normally

to prove that Stat3-Socs3 oscillations inhibit the Hes1llasions.

In the previous dimerisation model, the Hes1 dimers havevarldegradation rate than

Hes1l monomers. Momiji and MQLk (2008) assumed that Statamasguivalent effect

on the degradation of both monomeric and dimeric forms oflHe® so they set the

time dependent Hes1 protein degradation rate to obsenedfdat of oscillatory Stat3

on Hes1:
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__2mt
Hp = Il\p'i‘dﬂps'n(?) (5.43)
wherepp, is the decay rate of the protein and T is the period of Stat8laon (120

min).

This functional form for the time dependence of the Heslemotlegradation rate
was chosen to observe the effect of oscillatory Stat3 on Hasd plays the role of
a periodic forcing term in the equations describing Hesllagn. Therefore, we

modify our system by writing the Hes1 protein degradatide 8 ,u4 as suggested

byMomiji and Monk (2008).

We assume that the degradation rate of Hes1 protein digpf&rave a lower degrada-
tion rate than Hes1 monomeug. Furthermore, we assume that Stat3 has an equivalent
effect on the degradation of both monomeric and dimeric foofiHes1. We therefore

set the time-dependent Hes1 protein degradation rates to be

_omt
M3 = p3+dpssin(

=) (5.44)
_omt
Ha = Hy+dpasin(—) (5.45)
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The equations for Hes1 and Stat3 are now:

Wi Dy, Dyin— Hivin ki (le;;)l>

e _ 0j, Ui bivi

(Zéc = Dy, 075 — (u3+dussln(2 ))Yac +K3H1(X Y)Yic — 2KaYse

%ﬁc = D, 0%V — (u4+du4sm(2 ))Yac +Kaysc

Win D, TPy (b -+ ctasin ) i,

- DVsnD%“*#W‘“”S”

0;/t50 = Dyg,0%sc — Hsysc

agfc — Dy, I%Yec + 06Ysc — HoYsc

a;fn = Dy, 0%en — HeYen (5.46)

5.4.1 Numerical Simulations

We apply zero initial conditions, zero-flux boundary corafitat the cell membrane

and flux continuity boundary conditions across the nucleambrane:
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Dylna%/rl]”] Dylcag/rl]c] and [y1n] = [y1] at the nuclear membrane
Dys. agﬁc] 0 and [ysc] = 0 at the nuclear membrane
Dy4na%/:]”] Dy4ca£;/4°] and [yan] = [y4] at the nuclear membrane
y5nag2”] DYSCaB/‘SC] and [ysn] = [ysc| at the nuclear membrane
yGnaBﬁ”] Dy(scagﬁd and [yen] = [Yec| at the nuclear membrane

% 0, at the cell membrane

% 0, at the cell membrane

% 0, at the cell membrane

% 0, at the cell membrane

% 0, at the cell membrane

(5.47)

Fig[5.14 shows the results from a numerical simulation oEipeation (5.45) when we

make the value of Hes1 dimer and monomer degradation ratecéidn of time.

In an extension to their original, basic moc

200

) considered the

parametergiz andpy as functions of Stat3 concentration. Arguing that Stat3lased,

they then simply made these parameters depend on time irugsogial manner as

follows:
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. 2m
Hs = ul—i—du*sm(?)
= O.O3+du*sin(2?m)

(5.48)

with parameter values taken from the work of Yoshiura et240{),dup=1.1, up=1.6

andu},=1.9.

We now modify our system to make the paramegessand ps explicitly depend on

Stat3 concentration (details given in Appendix A) and hetreemodified equations

for Hes1 and Stat3 are:

9Y1n
ot*

9Y1c
ot*
Y3
ot*
Yy
ot*
9an
ot*
ay5n
ot
ay50
ot
9Yec
ot
9Yen
ot

1
D* DZ TS Kk
Yin Y{n ulﬁn‘i' 1 <(1+al*y;in)”1>

D}, 0?ic — K1 Yic

D}, 12Y3c — (13 + (—0.004+0.00348 Yec)yi + KsHi (%, Y)Yie — 2KGy32
D;,. 0%Vic — (U3 + (—0.004+0.00348+ e )i + Kiysa

D5, 0%Yin — (1} + (—0.004+ 0.00348+ Yec)Yan

Dys, Dz3/5n + — Hs5Y5n

o
1+ (Yen/Po)"?
Dys. D2y50 — HsYsc

Dye. DZVGC + a6Yec — UsYec

Dyg, 1%Yen — HeYen (5.49)

Alternative equations for Hesl and Stat3 where the paramgteand L, explicitly
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depend on Stat3 concentration (details given in Appendiara)

9Y1n
ot*

9Y1c
ot*
93
ot*
0Yje
ot*
Yin
ot*
9Ysn
ot
0Ysc
ot
ayﬁc
ot
9Yen
ot

D;mDZﬁn - Uikﬁn + ki (

D}, 0%Vic — HiYic

1
(1+ al*yjm)m)

D, [2y5e — (K3 + (—0.015+ 0.00463+ o)y + KsH1 (X, Y)Yic — 2Kiy52

D}, (%Vie — (1 + (—0.015+0.00463+ yec)yie + Kiyi2

D*

Yan

Dy5n DZYSn +

Dys. D2y50 — HsYsc

o
1+ (Y6n/P0>n2

Dy, 0%Yec + a6yec — HeYec

Dy, 0%Yen — HeYen

— HsY5n

Table 5.4: Parameters value

0%V — (MY + (—0.015+ 0.00463+ Yec)Yin

Parameters Values | Parameters Values
D 75x10*% a 1
H1 0.03 (03 1
U3 0.03 Og 1
Ha 0.03 k]_ 2
Us 0.03 k3 5
Us 0.03 ka 2
dus 0.015 Ny 2
duy 0.015 Ns 5
T 200 Po 1
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5.5 Modelling Different Intracellular Phenomena

In this section we solve model (5.46) numerically to obthia $simulation result of the
system with some modifications representing possible datia@ar phenomena that
could affect the spatio-temporal dynamics of the model. \i& Ghange the model
system to take account of the effect of adding noise to tHesidn in the cell and

examine the effect on the oscillations of the model.

Most physical systems which respond to the concentratiom sifjnalling molecule
will exhibit noise due to the random movement of the molestbffusion) and vari-
ability in the processes of transcription and translatiBecent large scale surveys of
noise suggested that the noise in most protein levels camterstood in terms of
the components of noise that derive from the translationRNA into protein, or the

components that arise from noise in the transcription amplagiation of the mRNA

itself (Gasper 2008).

To understand the effect that noise had on the oscillatibtieeantracellular network,
we add Gaussian Noise to our system by modifying the diffusioefficient in the
Hes1-Stat3 System (5.45) i.& = D +sin(0.01xt + awgn(sin(0.01xt), 25)) /5000
(For the simulation result see Flg. 5117).

We now consider a second change of the model system to exémeiedect of adding
a nuclear membrane with zero flux boundary condition in thiedoenain to the oscil-
lation of the model. A nuclear membrane is the double lipldy®r membrane called

the inner membrane and the outer membrane which surrouedgttetic material and

divides the cell into two compartments (Martin 2010). Dgrihe intracellular signal

transaction the nucleus membrane control the diffusiomftbe cytoplasm through
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the nucleus pore complex (NPC) to the nucleus and from thkeasito the cytoplasm

Weis 2003).

When the molecule binds to the surface of the outer membtaramidiffuse through
the nuclear pore and then diffuses into the inner membrahe.whole process takes
time which depends on the size of the molecule itself and e of the nuclear

pore. Hence, larger molecules, such as proteins, will siffionore slowly than smaller

molecules, such as mMRNA rrock [.2011).

To show the effect of the nuclear membrane on the oscillatadrihe Hes1-Stat3 sys-
tem, we consider the nuclear membrane to be of thickddgsgich is also the depth

of the NPC of the nucleus membrane) in the system of equatt46). The nuclear

membrane thickness has been estimated to be approxim&@yml(Sturrock et al.

2011). Also, we assume that diffusion across it is slowen ihahe cytoplasm or nu-

cleus, with protein diffusion slower than mRNA diffusionrass the membrane. We
simply chooséDr, = Djj /5 andDy = Djj /15 for the nuclear membrane diffusion for
MRNA for Hes1 and Stat3 and protein for Hes1 and Stat3, réispic(for the simu-
lation result see Fid. 5.18).

Finally we replace the previous continuity of flux boundaonditions with the fol-

lowing boundary conditions which considers the nuclear frame thickness:
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Dva=5n = d
olylc] _ Dya([yle] — [y1n])
Ve Ton T d
D d [YBC] _ D)/»’»([y?’c] - [)Bn])
on d
D 0[y4n| _ Dy4([y1n] — [Y4c))
Yoo on d
0lyA] _ Dya([ylc] — [y4n])
Y&7Ton d
D Olydn] _ Dys([y5n] — [yil)
Yo on d
dly5c] _ Dys(ly5c] — [yln))
oeon d
D.. 96 Dye([yln] — [y&c])
Yen ™ on d
Dyﬁcﬁg:c] _ Dyﬁ([y]-c(]j [Y6n]) (5.51)

The boundary conditions (5.51) describe the flux across tlceear membrane. This
flux can be thought of as a permeability coefficient (definetthasliffusion coefficient
of the species in the nuclear membrane divided by the meratthackness) multiplied

by the concentration difference of the species across tbleocytoplasmic boundary.

Next, we alter the composition of the cell cytoplasm to exathe effect of introduc-
ing some regions in the cytoplasm where molecular moveinangport is inhibited

for some reason and examine its effect on the oscillatiomiseomodel.

Finally we modify the model system to examine the effect olenolar convection
on the oscillations of the model. To achieve this, we consaative transport of the
proteins which is very important to shift the transcripabfactor quickly from the cy-

toplasm to the nucleus. Active transport of the proteinstEachieved by attachment
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to microtubules in the cytoplasm. The microtubules (MTg) laollow cylindrical fila-
ments. During most of the life of the cell (interphase), th&\are organized within

the cytoplasm as an aster originating from a microtubul@zing center (MTOC)

located in the proximity of the nucleus (Cangiani and Nai&D10).

The role of MTs is that of enhancing intracellular traffioffin The size of macro-
molecules and intracellular organelles limits their dsffun speed to the cytoplasm, so
MTs resort with active transport in order to reach theirgafgcation. Active transport
is not essential to trafficking processes. Rather it mustelea sis a way to improve
their efficiency. Active transport along the MTs is achiew®wdbinding to a motor

protein, which possesses a mechanism for moving along that\Wirspeed of about

0.5ums" (Sturrock et al\i@] 2).

We shall model active transport of the transcription fadtessl as always being di-
rected towards the nucleus. We do this by adding a convetgramto the cytoplasmic

Hes1 equation in equation system (5.45), which becomes:

0y ; _ont
S = Dy — (Hy+dssin( =)y

+ kayi. — O (alyad]) — 2Kiy5e, (5.52)

where—[1- (alysc]) is active transport andis the convective velocity given by

—ax —ay

a: 2
[\/x2+y2 ¢x2+y2]

(5.53)

and the parametexis the convection speed.
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We run the simulation for the system of equations (5.46) &82) while we still

considering the nuclear membrane effects.

Fig (5.17) shows the effect of adding a noise to the diffugion= D + sin(0.01t +
awandsin(0.01t), 25) /5000), whereD = 0.00075). The plot shows that all the vari-
ables of the model (Hes1 mRNA, Hes1 protein dimer, Hes1 pro&at3 mRNA and
Stat3 protein) have oscillations. By comparing the resafisy (5.18) to the original
simulation fig (5.14), we note the diffusion noise affects doncentration level of the
variables in the cytoplasm and causes some delay in thestiffilbetween the nucleus
and the cytoplasm. This result is similar to simulationshaf system when we add a
nuclear membrane with widtthand zero flux boundary condition in fig (5.18) where

the molecules take a longer time to move between the two péatite domain.

In figs. (5.19) and (5.20) we consider the cell with a nucleantbrane. However
we also added some holes in the cytoplasm in fig (5.19) anddenesl convection
(i.e. motion along microtubules) in fig (5.20). In both figsinge have oscillations but
in fig(5.19) the diffusion between the two domains still hias same delay while in
fig (5.20) convection helps to move the molecules faster detwhe nucleus and the

cytoplasm.
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Figure 5.13: Plots showing numerical solution of model (5.45) over tiRaght figs show the
nucleus oscillation and the left figs show the cytoplasmllatons. The red lines represent
the Hesl mRNA (yl1), the blue lines represent the Hesl prdigier (y3), the green lines

represent the Hes1 protein (y4), the black lines repredemtStat3 mRNA (y5), and the purple
lines represent the Stat3 protein (y6).
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Figure 5.14: Plots showing numerical solution of model (5.45) over tiffige red lines repre-
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Figure 5.15: Plots showing numerical solution of model (5.45) over tifftee red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hetdipimer (y3), the green lines
represent the Hesl protein (y4), the black lines repredenStat3 mRNA (y5), and the purple
lines represent the Stat3 protein (y6). The Figure showseffext of remapping the value of
protein degradation rate in the model (5.45) with the nevuegbresent in eq.(5.47)
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Figure 5.16: Plots showing numerical solution of model (5.45) over tifftee red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hetdipimer (y3), the green lines
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lines represent the Stat3 protein (y6). The Fig show theidferemapping the value of protein
degradation rate in the model (5.45) with the new value preseeq. (5.48).
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purple lines represent the Stat3 protein (y6). The plotswstie effect of modifying the diffusion
D by adding white Gaussian noisefPawng and using it in the model (5.45).
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Figure 5.20: Plots showing Numerical solution of model (5.46) over tiftee red lines repre-
sent the Hes1 mRNA (y1), the blue lines represent the Hetdippimer (y3), the green lines
represent the Hes1 protein (y4), the black lines repredemiStat3mRNA (y5), and the purple
lines represent the Stat3 protein (y6). The model (5.46)vghe effect of convection
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Chapter 6

Modelling the p53—-Mdm2 System

6.1 A Spatio-Temporal Model of the p53-Mdm2 Sys-

tem

In this chapter we extend the previous model of the p53-Mdys2esn and consider
spatial interactions within the cell as shown in figure (3.ibXhapter 4. We consider
nucleus and cytoplasm domains as two spatial compartmep#sated by the nuclear
membrane and the cytoplasm has zero flux boundary conditithntiae out side cell
membrane. Also, we couple the reaction kinetics from ODE eh¢432), (4.33) and
(4.34) in chapter 4, with diffusion to model the protein anBNA transport within the

cell.

p53 transcription takes place in the nucleus to produce @8RAthen transfers to the
cytoplasm where the p53 protein synthesis occurs and the pasoess goes with the
Mdm2 protein and Mdm2 mRNA. Then, we assume that the mecdmegserning the

spatial movement of the mRNA and the protein between theeng@nd the cytoplasm
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is diffusion.

Therefore, we now consider the spatial interactions eitjyli@llowing for diffusion

within the cell, and arrive at the following system of PDEs:

O[R]

0[P

where [Py], [Pe], [Mmy], [Mmg], [Mp] and[M¢] are the concentrations of the nuclear and

[Mc] hl
Mhi + [Mc] hi

)[R

Dp, O2[Pe] + Ha(x, y)B — (1 + V(

hl
Dp, 2[R — (1 + V(#[]M]hl

[Pn] h2
ph2 + [Pn] h2

)P

D, 2 [Mmy] + a + 1 ) — @[Mmy)]

Diim D2 [Mmg] — @[Mmy]

DMCDZ[MC] + Hl(X, y) V[M rnC] - p[MC]

Dw—n0?[Mn] — p[Mn]

(6.1)

(6.2)

(6.3)

(6.4)
(6.5)

(6.6)

the cytoplasmic p53, the nuclear and the cytoplasmic Mdm2ImRBnd the nuclear

and the cytoplasmic Mdm2 protein respectivgly;] denote the diffusion coefficients

for each species.

To model the transportation of both mRNA and the protein wwithe cell, we coupled

the ODE model (4.32), (4.33) and (4.34) with diffusion whiehables us to model

the molecules moving from the nucleus to the cytoplasm amah fihe cytoplasm to

the nucleus across the nuclear membrane. EQs.(6.1)-@6@sent a PDE system
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of reaction-diffusion equations modelling the spatiojemal evolution of the p53-
Mdm2 system.H;(x,y) andHax(x,y) are functions localising the protein production

whose specific form will be given after the nondimensioraien of the system.

We consider the continuity of flux boundary conditions foe tiuclear membrane to
allow import and export of mMRNA and the protein, and zero flandary conditions at

the cytoplasm membrane to ensure that all molecules rem#imvhe cell membrane.

P, a([;:‘] Dpcda[zc] and [Py = [P] at the nuclearmembrane (6.7)
Mnha[l\ﬁ/l:h] M%a[Mm] and [Mmy] = [Mm¢] at the nuclearmembi(@n@)
Mnag\ﬂn] = DMcﬁ[ﬁl\ﬂc] and [M;] = [M] at the nuclearmembrane  (6.9)
0([;:]0] = 0, at the cell membrane (6.10)
a[l\ﬁ/l:]c] = 0, at the cell membrane (6.11)
0%‘:] = 0, at the cell membrane (6.12)

wheren is a unit normal.

We nondimensionalise Eqgs. (6.1)-(6.6) with appropriaterence values as follows

(see Appendix D):
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LR R MM o My
P - e =y - S g -
W = g =
. t o X o Y
t= o X=2,7=" (6.13)

where[pg| , [mmp] and[mp] are reference concentratiorsis reference time, and is

a reference length (10m as with the Hes1 system). Using this scaling Eq. (6.1)-(6.6)

become:
R _ DECDZ[ﬁc]+H2(X,Y)B*—(H*+V*(%))[§] (6.14)
g Danmz[m—wwv*(%mm (6.15)
‘”T] - DKMDZ[W]+a*+n*(P*Erﬁn€:,—j]h2)—¢*[m] (6.16)
0['\;:”‘:] = Dm0 [Mmg] — ¢ [Mmy] (6.17)
0{;”?1 — D} RV + Ha (x,y)y* M) — p* (Mg (6.18)
‘9[(';"?] = D}y, 0?My] - p* V] (6.19)
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where

. ™Dp, . T1Dp
T2 R
Mm, T T2 » Dim, = L2
% TDMn % TDMC
M, — L2 ) Me — L2
e Mot
[Mmo]hl ’ [po]hz
= — = —U'=TU,V =TV
B % n mm)u u
and
%) 0 ifX+y2<025
1XY) = .
1 if¥+y*>025
and

0 if¥+y2<025
Hax9)={ 1 if0.25<% +y2<0.375
0 if¥+y¥>0375

The functionH1(x,y) is such that in a region close to the nucleus (representiag th
location of the ER), the function is zero, meaning there ipraiein synthesis in this
region. In a region further away from the nucleus (outsigeER) the function takes
the value of one, modelling the translation of protein irstteégion of the cytoplasm.
The functionHz(x,y) is such that in a region close to the nucleus the functionns, ze
meaning there is no protein synthesis here. However, itusassumed that the func-
tion takes the value of one in an annular region outside oEtRegagain modelling
the translation of protein). An annular region is choseralbbse we assume p53 is pro-
duced at a constant rate in the cytoplasm. This preventsrpB8leing produced close

to the plasma membrane, where mRNA is unlikely to reach ificseimt quantities. The
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Figure 6.1: Schematic diagram showing the regions where the two fumtid (x,y) and
Hz(x,y) are non-zero. The blue region of the cytoplasm depicts wher@low constant protein
synthesis to occur, i.e., this represents the rectangulaction H(x,y). The blue and red
regions together depict where we allow protein translatidea MRNA, i.e., this represents the
function H(x,y). In the white region representing the ER and nucleus, noepragynthesis
takes place.

two functions are illustrated graphically in Fig6.1.

We apply zero initial conditions, zero-flux boundary coradis at the cell membrane

and flux continuity boundary conditions across the nucleamirane:

[Pn] = [Pc] = [Mmy] = [Mm¢] = [Mn] = [mc] =0,att=0 (6.21)
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5 aﬁ] b, da[?] and [P,] = [P] at the nuclearmembrane  (6.22)
Kmha“\;i@ KA%%@ and [Mmy] = [Mm] at the nuclearmemli§6a2@)
ﬁna%] *,(Acﬁgw?] and [M;] = [M¢] at the nuclearmembrane (6.24)
%?] 0, at the cell membrane (6.25)
d[l\(;l?] 0, at the cell membrane (6.26)
dg\/l?] — 0, at the cell membrane (6.27)

We take reference concentrations to[Bg = 0.05, uM and estimated reference con-

centrations fofMmy)=0.05uM and[Mp|=2uM. |Ma et al. (;O_OJS). Fig (6.1), (6.2) show

the simulations of Eqs.(6.14)-(6.19). It was noticed that period of oscillation was

approximately 400 time units. Hence, knowing that the geoboscillation of p53

is approximately 3h Monk (2003), as result of this, we haweréference time as

follows: 400r = 3 h which mearr= 27 s.

Parameter estimation

The following parameter values were used in our simulatadritee non-dimensional

p53-Mdm2 system:
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k. = Dp =Djm = Diam, = D, =Dy, =9x 1074
B* = 05, pu*=0003, vi=1, a*=0.0175
n* = 1, ¢"=0.0175, y*=0.5, p*=0.025

hlT = 2, h2=4,M*=16, P*=5 (6.28)

By using (6.20) and (6.28) to estimate the parameter valtidseadimensional p53-
Mdm2 model (6.1)-(6.6).

Dp, = Dp = Dmm = DMm, = Dm, = D, = 3.33x 10 tlenfs?
B = 926x10°Mst, u=111x10"s"!
v = 004s !, a=324x101mst
n = 185x10°Ms !, ¢=6.48x10"%?
y = 07451 p=926x10"%s"1

8x10°°M , P=7.48x10'M

<)
I

hiT = 2,h2=4 (6.29)

6.2 Computational Simulation Results

Once again we solved the PDE system (6.14)(6.19) numeariaalhg the finite ele-
ment package COMSOL/FEMLAB (with the same basis elemerddasis functions
and time-stepping as previously). For all our simulatioesused a 2-dimensional cell

domain of two ellipses to represent the nucleus and cytoptasshow the oscillatory
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dynamics results of the P53-Mdm2 system.

Figs. (6.1) and (6.2) show the concentrations of p53 and MadntBe nucleus and
cytoplasm. We can see from these p53 simulations that the AnGiXcentration is
higher in the nucleus compared to the protein concentraiiothe cytoplasm. while,
Mdm2 mRNA concentrations higher in the cytoplasm and Mdn@ein is higher in

the nucleus.
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Figure 6.2: Plots showing the concentrations of p53 (blue), Mdm2 mRM&e(g and Mdm2
(red) in the cytoplasm. The period of oscillations is apjmately 180 min. Parameter values
as per (60).

Figs. (6.3), (6.4), and (6.5) show how the dynamics of the-lsiBn2 system (evolve
in space as well as time) vary spatially throughout the ogdr the period of the oscil-

lations in figures (6.1) and (6.2).

In Fig (6.3), we see that p53 has accumulated in the cytoplsundt = 50, then

begins to diffuse across the nucleus membrane enteringutieus byt = 100 while
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Figure 6.3: Plots showing the concentrations of p53 (blue), Mdm2 mRN&e(® and Mdm2
(red) in the nucleus. The period of oscillations is apprcatiely 180 min. Parameter values as
per (60).

the Mdm2 mRNA in Fig (6.4) shows in the nucleus at the same vitnere the Mdm2
binds to the p53 to prevent p53 transcription.tAt 150 the Mdm2 shuttles p53 from
the nucleus to the cytoplasm for degradation, Fig(6.5). iByet400 the level of p53
begins to increase again in the cytoplasm. Figs. (6.4)) &hbw the plots of Mdm2
concentration over time. In Fig (6.5) the Mdm2 protein isquroed betweeh= 100
tot = 250 min, the same time as the Mdm2 mRNA is exported from théensand

translation occurs in the cytoplasm.

In order to investigate the influence of spatial effects, aeied out number of simula-
tions on system (6.14)-(6.19), where we consider varyieghitkness of the nuclear
membrane, varying the values of the diffusion coefficieritsa8, Mdm2 protein and
Mdm2 mRNA, while all other parameters remaining unchangeti adding noise to

the diffusion coefficients.
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Figure 6.4: Plots showing the spatio-temporal evolution of p53 prowmancentration within
the cell from times t = 0 to 450 min. The concentration ostain both time and space.
Parameter values as per (60).

6.3 Model extension incorporating the effect of the nu-

clear membrane

We now examine the effect of adding a nuclear membrane with thex boundary
condition in the cell domain to the oscillation of the mod&huclear membrane is the
double lipid bilayer membrane called the inner membranecater membrane which
surrounds the genetic material and divides the cell into tempartments (Martin
2010). During the intracellular signal transaction theleac membrane controls the
diffusion from the cytoplasm through the nuclear pore cargNPC) to the nucleus

and from the nucleus to the cytoplasm (Weis 2003).
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Figure 6.5: Plots showing the spatio-temporal evolution of Mdm2 mRN#entration within
the cell from times t = 0 to 450 min. The concentration ostain both time and space.
Parameter values as per (60).

When the molecule binds to the surface of the outer membtaramidiffuse through
the nuclear pore and then diffuses into the inner membrahe.whole process takes
time which depends on the size of the molecule itself and e of the nuclear
pore. Hence, larger molecules, such as proteins, will siffonore slowly than smaller

molecules, such as mMRNA (Sturrock et al. 2011).

To show the effect of the nuclear membrane on the oscillatodrthe p53-Mdm2 sys-
tem, we consider some additional points such as introdueitigcknessl to the nu-

clear membrane (which is also the depth of the NPC of the aucteembrane) to
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Figure 6.6: Plots showing the spatio-temporal evolution of Mdm2 proteincentration within
the cell from times t = 0 to 450 min. The concentration ostéiain both time and space.
Parameter values as per (60).

equations (6.14)-(6.19). The nuclear membrane thicknassbken estimated to be
approximately 100nm_(Sturrock et/al. 2011). Also, we asstimaediffusion across it
is slower than in the cytoplasm or nucleus, with proteinudifbn slower than mRNA
diffusion across the membrane. We simply choDge= Dj; /5 andDy = D;jj /15 for
the nuclear membrane diffusion for mMRNA for p53 and Mdm?2 arodgan for p53 and
Mdm2, respectively. Finally we replace the previous cantinof flux boundary con-
dition at the nuclear membrane with the following boundamdition which considers

the nuclear membrane thickness:
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D J[P53,] Dps3([P53] — [P53])
P& on d
D 0[P53;] Dps3([P53;] — [P534])
P& on d
D d[Mdm2my] Dmdnem([Mdm2my,| — [Mdm2m))
Mdmem =" 5n d
D d[Mdn2my] Dmdnem([Mdm2mg] — [Mdm2my))
Mdmeme =5 d
a[Mdern] DMdmZ([MdmZn] - [l\/ldch])
Dudre, on d
DMdmZC a[M;nerC] DMdmZ([Mdrn(ZjC] - [Mdnﬂn]) (630)

The boundary conditions (6.30) describe the flux across tlceear membrane. This

flux can be thought of as a permeability coefficient (definetthasliffusion coefficient

of the species in the nuclear membrane divided by the merabhéckness) multiplied

by the concentration difference of the species across tbleocytoplasmic boundary.

We ran the numerical simulation of the model system twice, ftrst one with no

change in the diffusion values (see Eigl6.7), while the seédigure shows the effects

of nuclear membrane and the diffusion of the variables saai®d are not equal (see

Figurel6.8).

The simulation result of Fig_6.7 and Hig 6.8 show clearly that nuclear membrane

thickness could stop the diffusion of molecules betweenlzeparts of the domain,

the nucleus and the cytoplasm.
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6.4 Modelling the effects of noise on the system

Most physical systems which respond to the concentratioa sifjnalling molecule
will exhibit noise due to the random movement of moleculafysion) and delays
in the processes of transcription and translation. Re@gelscale surveys of noise
suggested that the noise in most protein levels can be unddrs terms of the com-
ponents of noise that derive from the translation of mRNA iptotein, or the com-

ponents that arise from noise in the transcription and diegi@n of the mRNA itself

Gasper 2008).

To understand the effect that noise coused to the oscitlatiche intracellular net-
work, we add Gaussian Noise to the simulation code by madifthe diffusion coeffi-
cients in the p53-Mdm2 System (6.14)-(6.19te= D +sin(0.01«t +awgn(sin(0.01x
t),25))/5000.

We ran the numerical simulation of the model system twicestkith no change in the
diffusion values (see FIg 8.9), and second showing thetsffe#fd¢he nuclear membrane

and the diffusion coefficients of the variables not equade (Biguré 6.10 ).

By comparing the simulation result of the p53-Mdm2 systeniuding noise in the

molecular diffusion to the result of the main model systerB3@§ we see clearly how
the noise caused the component concentration in the cgtogiareach a higher value
than in the nucleus where are the concentration is lower tt@goncentration in the

main model results, shown in Hig.6.2 dnd| 6.3.
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Figure 6.7: Plots showing numerical simulation of model (6.14)-(6.4®r time. The red lines
represent the p53 (y1), the blue lines represent the Mdm2Ar(RR), the green lines represent
the Mdm2 protein (y3). The Fig shows the effect of considahe different nucleus membrane
thickness d values ( d=0.01, d=0.1, d=1), whereas the difuor the variables is equal.
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Figure 6.8: Plots showing numerical simulation of model (6.14)-(6.4®9r time. The red lines
represent the p53 (y1), the blue lines represent the Mdm2Ar(RR), the green lines represent
the Mdm2 protein (y3). The Fig show the effect of considettiegdifferent nucleus membrane
thickness d values (d=0.01, d=0.1, d=1), whereas the ddfu$or the variables varies and is
not equal.
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Figure 6.9: Plots showing numerical simulation of model (6.14)-(6.@9&r time. The black
lines represent the p53 (y1), the blue lines represent then®IchRNA (y2), the green lines
represent the Mdm2 protein (y3). The Fig show the effect dfifying the diffusion coefficient
D by adding additive white Gaussian noise D+awng. The difusor all variables is equal
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Figure 6.10: Plots showing numerical simulation of model (6.14)-(6.6@¢r time. The black
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represent the Mdm2 protein (y3). The Fig show the effect dfifying the diffusion D by
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129



Chapter 7

Conclusions and Future Work

We conclude this thesis with a brief summary of the major {soamd some possible
avenues of future exploration. Of course, this is by no meahaustive, and we refer

the reader to the appropriate chapters for a more detaitzmhat

In the framework of this thesis we have studied the correatiaidocalisation of tran-
scription factors where it is vitally important for the peagfunctioning of many intra-
cellular signalling pathways. Also we have showed that tiegdeedback loops are
important components of many intracellular signal tramsidn processes. In this the-
sis we have built on previous mathematical modelling apgres, and we have derived
systems of partial differential equations to capture thawgion in space and time of
the variables in the two pathways of the Hes1 and p53-Mdm@bfeek loops (gene
regulatory networks, GRN).

In the first model, we examined a detailed model of the Hesfiesysincorporating
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a number of basic biochemical processes neglected in pewwmdels using a com-

bination of mathematical analysis and numerical simutatidVe developed and ex-

-

tended the Hes1 model system ’008) byaipiartial differen-
tial equations (PDES) in order to be able to model the aspéatsracellular signalling
pathways. Also, we showed that Hes1 oscillations are indapgendent on a post-
translational oscillation in the phosphorylation stateha protein Stat3. Oscillations
in the level of pStat3 provide an extrinsic driving force hetHes1 auto-regulatory

network, by regulating the degradation rate of Hes1 prM|. 2007). We

have developed an extended model of the pStat3-driven Hesdork by incorporat-

ing transcriptional delay and Hesl dimerisation. Howesenulation of the driven
network shows that the Hes1 network can respond to pStaiftatisns by generating

oscillations in Hes1 mMRNA and Hes1 protein without the is@bn of transcriptional

delay iqshmmﬁJLZQJ?).

The second model discussed in this thesis is a mathematariIof the p53-Mdm2
pathway where we use a system of PDEs to model the aspecisttiaisellular sig-
nalling pathway. The simulation results of our models desti@ted the existence of
oscillatory dynamics in negative feedback systems for & ddm2 pathways and
have been able to focus on reactions occurring both in th@geleus and in the cyto-

plasm.

In both the Hes1 and p53-Mdm2 systems, we varied the diffusaefficients of the
MRNAs and proteins and found a range of values for thesestliifLcoefficients where
the system exhibits oscillatory dynamics. By varying th#udion coefficients of
the molecules, we can vary the flux rates across the nuclearbna@e (equivalent
to varying nuclear import and export rates), thus grantireatgr control and allow-
ing a much more in depth analysis of the systems. Similartseswere obtained by
varying the mRNA degradation rates, protein degradatitesrand Hill coefficients,

further demonstrating that the oscillations are robusat@meter changes. Exploiting
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the explicitly spatial nature of PDEs, we were also able toimaate mathematically
the location of the ribosomes, thus controlling where th&tgins were synthesized
within the cytoplasm. For both the Hes1 and the p53-Mdm2esyst we carried out

a number of numerical simulations where we investigatedeffect of varying the
two functionsH1(x,y) andHx(X,y), controlling constant protein synthesis and protein
translation via mRNA in the cytoplasm, respectively. Fothbmodel systems, the
simulation results revealed an optimum distance outsidentitleus for protein pro-

duction for which sustained (undamped) oscillations ajésamplitude were observed.

Future work arising from this thesis could extend the curreadels by considering

the active transport of proteins and mRNA within the cell aschanisms of move-

ment in addition to diffusion (Cangiani and Natalini 201@ne could also model the

nuclear membrane in more detail and take into account itknless. This would al-
low one to model differences in the rate of transport of mRMA& arotein across the
nuclear membrane more accurately. Additional complexitie post-transcriptional
MRNA and post-translational protein modifications coulsbabe examined. Future
models with the developments just noted, would enable usiltaldwn into the fun-

damental differences between cancer cells and normal céisan exemplar, using
the p53-Mdm2 pathway we would be able to model the effectsftefrdnt therapeutic

approaches, including the temporal and spatial distamstiof targeted disruption of

p53 or Mdm?2 interactions by non-genotoxic mechanisms.

Finally, one could consider extending the Hesl GRN in somntaildesing the spa-
tial stochastic models in various ways. In particular, onald investigate nuclear
transport in more detail and begin to account for the rarlecyany transcription fac-
tors are known to be actively transported towards the ngadong microtubules and

this aspect of intracellular molecular transport shouldrivestigated in more detail
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Lomakin and Nadezhdina 2010). One should also conductlzabkensitivity anal-
ysis of the model using data clustering techniques. One rsayansider cell-cell

communication in future work to see if this acts to stabiksel synchronise oscilla-

tory behaviour as Masamizu et al. (2006) found. Naturally, @pproach is readily

applicable to many other pathways and future work should imgestigate the intri-
cacies of the p53-Mdm2 negative feedback loop in more datallperhaps consider

pathway cross-talk e.g. interactions with other gene eguy networks such as the

NF-kB pathway.
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Appendix

Appendix A

The Non-Dimensional Hes1 System:

a
O M)

D, 0%[Mp] +
1+ ()R

-c>ﬁ <

D, 0% [Me] — ki [M]
Dp,0%[Pe] + ap[Mc| — tip|Pe]

Dp, 0([Pa] — [Py (7.1)

Nondimensionalisation: Reference concentration®; p0

Reference timer (the period of oscillation in the Hes1 system)

Reference length: (0.4 times the length of a cell)
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Normalising variables in terms of appropriate referencaipeters:

Mn] = [Ma]mo, [Mc] = [Mc]mg

t = fr,x=LX,y=LY (7.2)

Nondimensionalise the 5 equations using the scaling Viasab

first equation:

ot - DMn[| [M 1+(%)h_UM[Mn]
oM _ moMy _  [My ot _my o[V 73
ot ot ot ot T ot '
2?my- M 8%mg- (M,
DM = Dy, | g+ o
o (o (om0 (omo
Mo | gy ox ay ay

_ D g 0X\ (dmg-[Mn] 90X o oY)\ [omo-[My] oY
- o (ox ox J\ T ox Tax) T\ovay )\ oy oy
_ Mo~ [Vn] |

= 2 O%m, V) (7.4)

)M, [Mn] = [Mn]mg (7.5)




So the equation has the new form:

My J[My] Mo 2 O o
T ot L2 Mo 1+ ( po[r:’n} )h
oMy T o T (o (Y TUM. ——
— = — Dy .. 0M — — — M 7.6
ot L2~ Mnmo [ n]+mol+(po[fn])h mo [Mn] (7.6)
p
Where
T * THm. * Tam * * Po
2 Mp-mg My, Mo Hm Mo av, P ﬁ ( )
Also similarly:
* T * T * T
Dvie = 12PWemo > Pr = 2P » Pr = PR
* TUp. * Tap
= —  ap=— 7.8
Hp Po P Do (7.8)

The following parameter values were used in our simulatafrtte non-dimensional

Hesl system:

v, = Dy, =Dp, =Dp, =7.5x10"*

ay=1,ap=2,h=5 p" =1, yuy =pp=0.03 (7.9)
0 ([M_n]nb) o DMn 2 am VIR
g 1z - Mimot 11 (Bl ~ Hua[Mnjmo
2 ([M¢ _
(g (f]TBnO) = L'\;C DZ[MC] Mo — pm[Mc]mo
2 ([P _
g(f]:))o) = [izc O?[Pe] po + atp[Mc] — p1p[Pe] po
d ([P _ _
59[ (f]TI;)O) [l)_Zn DZ[Pn] Po — Hp[Pn] Po (7.10)
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d[a'\gn] - (T[L);An) 0% [Mn)] + 15(?‘:%20) — (THm) [My]

d['\gC] _ (T[L)g/lc) DZ[WC] . (TUM) [Wc]

T = (TR o () i ()

d? - (T|[_)2Pn) O[Pr] — (Tue) [P (7.11)

0[My] 217 ay e
= Dy DAMy] A+ —M M
O] Dy 2 iV
o[P: . L
P DR+ apMd - IR
O~ Dy - IR (7.12)
Where
% - TDMn  _ 'l'D|\/|C . 'l'Dpn . 'l'DpC
Mn — L2 Mc — L2 Pn— L2 Pe — [ 2
* ram * T[mo]orp
ay = ——,0p=
M (mo] > [po]
v = TuM,uézwp,p*:%’ (7.13)

As a first approximation we assume all diffusion coefficiaares equal.
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Calculating the effective diffusion coefficient, D:

D*
_ L%D*

200r

= 10um
= 10x10%m
= 10x 10 %cm (7.14)
= 2hrs
72005
= 236 7.15
200 (7.15)

D
L2

2
10x 10 % (10—6) m2 x D*
T
2
10x 10 % (10*4) cn? x D*

T
100x 10 8cn? x D*

T
1x108cmx75%x104

36s
2.0833333333 10 enfs? (7.16)
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Calculating the transcription ratey.

mp = 0.05um
T = 36s
. Tam
o —_
M mo
ay = o0
T

~ 0.05x10°Mx1

- 36s

— 1.38888888% 10 'ms* (7.17)

Calculating the repression threshof,

* Po
= p
Po
p*
1x 10 %m
1

= 1x10°m (7.18)

©)
Il

Calculating the degradation rate of hesl MR,

T = 36s
Py = THwm
_ Hm
Hv = T
_ 003
~ 36s
— 8.3333333« 104! (7.19)
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Calculating the translation ratep:

mp = 0.05um
Po = 1pm
T = 36s
ak = T[moap
[Po
ap — ap[po)
T[mo)
. 2x1x10°m
~ 0.05x 10 5mx 36s
= 1111111111141 (7.20)

Calculating the degradation rate of Hes1 protgist,

T = 36s
Up = THp
_ M
P = =
_ 003
~ 36s
— 8.3333333« 104! (7.21)

Appendix B

Functional Dependence of the Parametergs and 4 on Stat3 Concentration

In this section we provide details of how we modified the patarsus and iy to

have them explicitly depend on the concentration of Staii3is Was done to match

the model extension of Momiji and Monk (2008) where the twoapaetergus and s
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were oscillatory values over time.

Inteqral of Concentration, y& [moljm] over subdamain 1

malfm]

et
o
=
E

(i

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Figure 7.1: Plot of the total concentration of Stat3 showing the maxinamehminimum values
which are used to modify the parametgrsand L.

Stat3

141 M

AVAVA

0.015

5.475 g U

Figure 7.2: Plot of the Stat3 concentration use to map to the parameigend Ly

We made the parameteus andp, functions of Stat3 concentration (i.e. to ensure both
parameters varied over time in an oscillatory manner as @8 Soncentration, but to

also ensure they remained positive) via a simple mapping|s\s:
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[5.475141] —» [-0.0150.015

U = a+bxSta3
0.015 = a+bx141
—0.015 = a+bx5475
0.03 = 8.625«b
b = 0.00348
a = -0034 (7.22)

So

U = a+bxye
= —0.034+0.00348 ys:

U = 0.03—0.034+0.00348 ys
—  —0.004-+0.00348+ Y5,

(7.23)

Stat3

141

0.02

NAVAVA

5.475

Figure 7.3: Plot of the Stat3 concentration use to map to the parameigend Ly

Once again we made the paramefesandy, functions of Stat3 concentration (i.e. to
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ensure both parameters varied over time in an oscillatory@aas per Stat3 concen-

tration, but to also ensure they remained positive) via gkrmapping as follows:

[5.475141] — [-0.02,0.02]

g = a+bxSta3
0.02 = a+bx141
—002 = a+bx5475
0.04 = 8.625xb
b = 0.00463
a = -0.045 (7.24)

So

U = a+bxys
= —0.045+ 0.00463 ygc

U = 0.03—0.045+0.00463+ yg:
= —0.015+0.00463« Yygc

(7.25)
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Appendix C

The Non-Dimensional Hes1 System Extended model:

’3[53”] = Dy, T2lyan] — palyan] +ka {ﬁ}

6[gt1c] = Dy, Iyac] — pa[yac]

% = Dy, 0?lyac] — HalYac] + Kalyac] — 2Kalyac]?

5[;/;@ — Dy, I[yac] — Halyac] + Kalyac]®

0%/;1”] = Dy, ?[Yan] — Ha[Yan) (7.26)

scaling variables:

_ Y Ve o Ve o Yo Yao
y;n - YO 7y:tC yO 7y§C yO ,yfln yO 7YZC yO
T

Y

2 yr=Y (7.27)
L L
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So:

0 Yin
ot
0 Yin
ot

DYln DZyln

Dy, DZ)/1n — M

9Y0-Y1n _

oy, Oot*

k
Yin + 1[1+Y4n]

or _ Yo ¥

ot 9
0%o-Vin  0%o-
Dy’{n~yo< Yo yin + Yo yin)

t Jt 1 oJt*

dy?

d (9Yo Yin d (0Yo-Y1n
D(f?_X( ox >+W< oy ))

Yo
|_2

Yo oY1,

T

ot*
9Yin

ot*
9Y1n
ot*

2
Dyg.< o 4
L oX*

2
Dyin yOD ﬁ-n

Yo

*

yln

- L2 Dy?lin ‘Yo

2
- L2 Dy?lin ‘Yo yin

OXTN (0Yo-Yin
ox oX*

Yo azyin
)+5(52))

02
Y*2> ﬁn

TH1.
Yo Yo Uin

zﬁn M1 Y:{n <
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0 yin_ulyin"‘kl <

oOX* N
ox

01\ (v 1), (0
L ox* L oY*

oY*

L

1

)

1+ ayo-yjm

1

)

(v o)

dyo-y’{n 1

aY*

kg
Sl R

1

1+a* y4n

)

oY*

[)>

(7.29)

dYo- y’{n ‘ oY*
ay

(7.28)



Yo 9Y1n
T ot*

Yo 9Y3c
T Ot*
Yo 93
T Ot*
Y0 9Yze
T Ot*
Yo 9Yan
T Ot*

9Y1n
ot*

Y1
ot
%ac
ot
0Yac
ot
0Yan
ot

9Y1n
ot*

Y1
ot
Y30
ot
0Yac
ot
%Yan
ot

|_2

Yo

L2 Dyin yoUl an

Yo
L2 Dyic ‘Yo u YZIC B

Yo
|_2

Yo
L2 Dyiic yoU YZC

Dygc yOD f'_;,c

Yo
L2 DYZn yoU y‘k‘n

T
pr’{nyoDZy:{n - T“ﬂf{n

T

Dy*4c ‘Yo u yZC
T

2
- )’1n[| Yin
2
- ych ﬁ-c
* 2
- DYSCD YEC o

* 2
- DY4cD Yac —

2
;An ﬁn B

Yk _|_ ;
YoH1Y1n + K1 1+ yoay;,

YOIJ1Y{C
H3Y§C + kSﬁc - 2|<4Y§C
YolaYac + YoKayse

— YolaYan

Tk]_ 1
T | Toveav
Yo \ 1+Yoayy,

T
L2 Dy’{c~yo Dzy;c - TIJMC

p Dy’§C~yoDZY§C — TH3Yac + Tkay1e — 2Ty0k4)f§§

TU4Yye + Ty0k4Y§c

L2 Dy}‘m-yo Dzyfln — THaYan

1
U1 Yin + <1+T*y*4n>

H1Yic
H3Y3e + Kayic — 2Ky5
UgYac + kZY:f;g

HaYan
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Where,

T
L2 Dy’{n Yo
T
F DyZn ‘Yo
THy
T k1
Yo

T T

* Mk -

DYln ) FDY{C'YO - Dch "2
T

* J—

Dy4n ) prZCVO -

D

R
YacYo = DYSC

*

D;k’4c ; AYo=0a
Pi, TH3= g, THa = [iy

ki, Thks = k3, Tyoka =k (7.33)

The following parameter values were used in our simulatadritie non-dimensional

Hes1 system:

* * * * * —4
Dy1n Dy, = Dy, = Dy,, = Dy, = 7.5x 10
T M3 = Hy =0.03
ki ki=k;=5
ar 1,n"=5 (7.34)
As a first approximation we assume all diffusion coefficieares equal.
Calculating the effective diffusion coefficient, D:
L = 10um
= 10x10 °m
= 10x 10 %cm (7.35)
2251 = 2hrs
7200
= ——= 7.
T o8 32s (7.36)

147



D* =

_ L°D*

D

|_2

2
10x 10x (1cr‘5> M2 x D*
T
2
10 10x (1cr4> cn? x D*

T
100x 10 8cn? x D*

T
1x10%cm? x7.5%x 104

32s
2.34375x 10 Yenfst (7.37)

Calculating the degradation rates, i3 and iy

H1

= 325

= 94x10%71t (7.38)
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Calculating the production rates,, ks andks

Ty
Yo
k1

Yo
k1

K3

Ki , Tka =Kz, Tyoka =kj

yoki _
T T Vo

Imu

Yok

T
1x5

3251

1.56x 10 17!
ks

T

1x5

3251

1.56x 10 1s7!
Kz

Yo

1x5

3251
1.56x 10 1s1

YoO
a*

Yo
ims? (7.39)
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Appendix D

The Non-Dimensional P53-Mdm2 System:

dlxd [Mg™

FT DPCDZ[PC]+B—(IJ+V(W))[Pc] (7.40)
hl
0 DanZ[Pn]—(uij(#W))[Pn] (7.41)
h2
2 = Pum MM o () —gMm (742
2T = Dy P7Mimy - My (7.43)
a[(';f‘:] = D [P[Mc] +y[Mm] — p[M(] (7.44)
Ol — Dy n?(Mi] -~ pIM] (7.45)

Where [P , [P] , [Mmy] ,[Mm] , [My] and [M¢] are the concentration of the nu-
clear and the cytoplasmic P53, the nuclear and the cytoptddaim2 mRNA and the
nuclear and the cytoplasmic Mdm2 protein respecti{lydenote the diffusion coef-

ficients for each species.

We nondimensionalise equations with appropriate refereatues as follows:

5 . Pl Rl g MM o [Mimy]
P = % , [Pe] = po,[an]— p— ,[Mmc]_imm)
W = g = e
- t — X o Yy
= [ X=1.Y=1 (7.46)

Where[po| , [mmp] andny] are reference concentrationis reference time, andis a
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reference length (10mas with Hes1 system).

d[r] _ d[P] at* po 0[P
ot 9t ot 1 ot
9%po-Pn  0%po-P
2 0 n 0 n
N o

_ oo |9 (%P0 [P} 9 (9po[Pn]
— TPebo | gx ox ay oy
_ oo [ (29X (9po-[Pn] X\ (0 OY) (dPo:[Pn] O
TP | | 9X Ox X dx oY oy Y  dy
_ b (9 XY (9Por [P 1) (9 1) (dPo[Pn] 1
TPkl \gX L X L Y L Y L

po ( 9% [Pn] po [ 9% [Pn]
= Derpy ?( PG T2 o072

Po 02 02 .
= Dpn.pop'<ﬁ+ﬁ Pn

Po =
— ?Dﬁn.pomzpn (7.47)
As well:

OR]  po 9[P] d[R] po 9[Pn]
o T otr ot T otr -

oMm]  mmy 9 [Mm] 0[Mrrh]_mm).f9[|\/|rrh}

ot T ot ot T ot*
oo ot odtr ot 1 ot '
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0[P
ot

Po 9 [Pn]

T

ot*

9 [Pn]

ot*

9 [Pn]

ot*

9 [Pn]

ot*

= Dp,0%P] — (L + V(=
T 25
= 2Py pIPn— (TH+ (TV)(

'[ —
= 20 P — (T + (TV)(

= Dipn.DZIBn — (1" +v(

[MC] hl
ML+ [M] )P

([M¢]mo)™ B
it (o) (PR

(Mmoo
1 (g ()
[MC] hl
(M)hl + [M]

Mc hl .
st ) (P

Dp, 0[Py + B — (U + v(

Po 5

120, po 7P+ B — (1 +v(
T
L2

— T
Dﬁn.pODZPc‘F %B - (TH + (TV)(

éDﬁn.poljzﬁC—i_éB_(T“—i_(Tv)( ) ([Re])

D, 0P+ B — (1" +V'( (7.49)

hl
[Mn[]M ]hl))[Pn]

([M¢]mo)™

Mh1 4
Po

MhL + ([Mc]mg)nt

(7.50)
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JMmy] 12
ﬁ = DanDZ[an]+C¥+rl(§h2[P][Pn]h2>_(p[Mrrh]
mmy 0 Mma] mm =}
T ot* T2 Divim, mrrbDZ W‘n} +a+'7(Ahz(io([pn][%hz])hz)_qK[M]mnb)
mmy 9 [Mmy] T - h2
N T Dy 2 [MTh] + T ,7( (Po[Pn]) ) 1M
0 [Mity] B (ol
L N T h2
ot* 2 Dan.mm)DZ (Mg + mm)a + me)n( <5>[hlznlr“3]h2> — T[Mmy]
dMmy h2 ’ n
o D 02 [Mimy] + +n*(pmz[£7][ﬁ]h2)— O[Mmy] (7.51)
4
d[M
[0tmc |~ Dy 0%Mm - gMmy
mi 17} [m} mmy
T ot* - L2 DMer mm)D2 [Mmc] —¢( [W‘c] mny)
9 [Mm] ,
o |_2DMmcmrmD [Mmc] — 79 [Mm]
a[m} _ * 2 ——
st = Dm0 [Mme] — ¢ [Mm] (7.52)
5
Mg X
5t = DM Mc]+y[Mmd] — p[Mc]
mp 0 [Mc] Mo
T o ?Dmrmmz[ ¢| + Y([Mme]mmy) — p([Mc|my)
4 WC} _ T 2 7 T .
st = 120w Me] + o y(Mmejmim) — - p((Mlo)
d Wc} T _
ot* = pocm)DZ [Mc} + %V[m] — 1p[M(]
9 [Mc] . _
oo = Dy 07 [Mc] +y [Mmy] — p*[M] (7.53)
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where

*
P

*

My

*
Mn

M*

= Dy, .07 [Mn] + v [Mmy] — p*[My) (7.54)
TDPn * TDPC

L2 0 RT 2
TDan * TDMI’T};

L2 > Dim, = L2
TDMn * TDMC

L2 > "M 2

vt
[Mmg]hl [Po]2
BT \
— = — =T ,V =TV

Po f mm)“ H

TyMmg] . Ta

9,y =—"-—,0=—Tp =T 7.55
R M. P =P (7.55)

The following parameter values were used in our simulatafrtte non-dimensional

P53-Mdm2 system:
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k. = Dp =Djm = Diam, = D, =Dy, =9x 1074
B* = 05, pu*=0003, vi=1, a*=0.0175
n* = 1, ¢"=0.0175, y*=0.5, p*=0.025

hlT = 2, h2=4,M*=16, P*=5 (7.56)

Calculating the effective diffusion coefficient, D:

L = 10um
— 10x10 °m

= 10x 10 *cm (7.57)

400r = 3hrs

1080
00 =27 (7.58)
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D*

D
L2
L2D*
T
2
10% 10 (10—6) 2 x D*
T
2
10% 10 (10—4) cn? x D*

T
100x 10 8cn? x D*
T
1x 10 %cm? x9x 104
27s

0.33333333< 10 %nPs?

3.3333333< 10 Mends?

Calculating the production rate of P53,

Po

0.05um = py = 0.05x 10 °M
27s
T
poB
PoB*
T

0.05x 10 %M x 0.5
27s

0.000925939< 10 *Ms1

9.25939x 10 19Mms1
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Calculating the degradation rate of P38,

peo= T
_ K
=7
~0.003
- 27s
= 1.11x10%s? (7.61)

Calculating the degradation rate of P53 dependent on Mdme@ectrationy:

vi = TV
V*
vV = —
T
_l
- 27s

= 0.03703704 1

= 0.04s71! (7.62)

Calculating the natural transcription rate of Mdm2 mRNA,

mnmp = 0.05um

. Ta
a = —
mmny
m ES
a = Moa
T
0.05x 10 %M x 0.0175

27s
— 0.00003241x 10 %Mms?
= 3.241x10 *Mms?t (7.63)

Calculating the enhanced natural transcription rate of [MdnRNA dependent on the
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concentration of P53;:

mimp

0.05um
mn
mmy
mmyn*
T
0.05x 10°°M x 1

27s
0.00185185< 10 %Ms 1

1.85x 10 °Ms* (7.64)

Calculating the natural degradation rate of Mdm2 mRRgA,

0.0175
27s

= 0.00064815 1

= 6.4815x 10 %s7? (7.65)

Calculating the translation rate of Mdmg,

mimp

0.05um

2um

Tymny
Mo

moy*

™mny
0.5x2x10°5Mm

0.05x 10-8M x 27s

0.740s1 (7.66)
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Calculating the natural degradation rate of Mdp2,

p* = 1p
_ P

p= T
0025
- 27s

— 0.00092593 1

— 0.2593x 10 %s?! (7.67)

Calculating the activation threshold of P53 degradatiqredelent on Mdmm :
M :

My = 2um
hy = 2
Yo %Z
M = {/M*xmg
M = ,/16x (2um)2
— 8x10°%uMm (7.68)

Calculating the activation threshold for transcriptiondddm2 mRNA dependent on
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P53P53: P :

Po

P*

0

160

(7.69)
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