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Abstract 

Shallow embankment slopes are commonly used to support elements of 

transport infrastructure in seismic regions.  In this thesis, the seismic 

performance of such slopes in non-liquefiable granular soils has been 

investigated and an extensive programme of centrifuge testing was conducted 

to quantify the improvements to seismic slope performance which can be 

achieved by installing a row of discretely spaced vertical precast concrete 

piles. This study focussed on permanent movement and dynamic response at 

different positions within the slope, especially at the crest, which would form 

key inputs into the aseismic design of supported infrastructure.  In contrast to 

previous studies, the evolution of this behaviour under multiple sequential 

strong ground motions is studied through dynamic centrifuge modelling, 

analytical (sliding-block) and numerical (Finite Element) models. This thesis 

makes three major contributions.  

Firstly, an improved sliding-block (‘Newmark’) approach is developed 

for estimating permanent deformations of unreinforced slopes during 

preliminary design phases, in which the formulation of the yield acceleration 

is fully strain-dependent, incorporating the effects of both material 

hardening/softening and geometric hardening (re-grading). This is supported 

by the development of numerical (Finite Element) models which can 

additionally predict the settlement profile at the crest of the slope and also the 

dynamic ground motions at this point, for detailed seismic design were also 

developed.  It is shown that these new models considerably outperform 

existing state-of-the art models which do not incorporate the geometric 

changes for the case of an earthquake on a virgin slope.  It is further shown 

that only the improved models can correctly capture the behaviour under 

further earthquakes (e.g. strong aftershocks) and therefore can be used to 

determine the whole-life performance of a slope under a suite of 

representative ground motions that the slope may see during its design life, 

and allow improved estimates of the seismic performance of slopes beyond 

their design life. The finite element models can accurately replicate the 

settlement profile at the crest (important for highway or rail infrastructure) 

and quantify the dynamic motions which would be input to supported 

structures, though these were generally over-predicted.  

Secondly, the principles of physical modelling have been used to 

produce realistically damageable model piles using a new model reinforced 
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concrete (both a designed section specifically detailed to carry the bending 

moments induced by the slipping soil mass and a nominally reinforced 

section with low moment capacity). This was used to investigate how piles 

can stabilise slopes under earthquake events and how the permanent 

deformation and the dynamic response of stabilised slope are strongly 

influenced by the pile spacing (S/B) especially at the minimum pile spacing 

(i.e. S/B=3.5). This is consistent with previous suggestions made for the 

optimal S/B ratio for encouraging soil arching between piles at maximum 

spacing both under monotonic conditions, and for numerical investigations of 

the seismic problem.  These were supported by further centrifuge tests on 

conventional ‘elastic’ piles which were instrumented to measure seismic soil-

pile interaction. The importance of reinforcement detailing was also 

highlighted, with the nominally reinforced section yielding early in the 

earthquake; the damaged piles subsequently only offer a small (though 

measureable) reduction in seismic slope performance compared to the 

unreinforced case. It was demonstrated that both permanent deformations at 

the slope crest (e.g. settlement) and dynamic ground motions at the crest can 

be significantly reduced as pile spacing reduced. 

Finally, a coupled P-y and elastic continuum approach for modelling 

soil-pile interaction has been used to develop a Newmark procedure 

applicable for pile-reinforced slopes. It was observed that the single pile 

resistance is mobilising at beginning of the earthquake’s time and it is 

strongly influenced by pile stiffness properties, pile spacing and the depth of 

the slip surface. It was observed also that the depth of the slip surface and pile 

spacing (S/B) play an important role in the determination of the permanent 

deformation of the slope. The results show great agreement to centrifuge test 

data in term of the permanent deformation (settlement at the crest of the 

slope) with slight differences between the measured (centrifuge) and 

calculated (this procedure) maximum bending moments. 
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Notations and abbreviations 

   Cross sectional area of concrete section 

     Acceleration reduction factor 

   Cross sectional area of steel section 

  Ground acceleration 

   Centrifuge acceleration 

   Underlying bedrock peak acceleration 

      Slip acceleration 

  Width of soil model 

  Width of section 

   Cyanoacrylate adhesive 

   Stiffness-proportional Rayleigh damping coefficient 

   Mass-proportional Rayleigh damping coefficient 

   Effective cohesion parameter 

   Uniformity Coefficient  

   Coefficient of curvature 

   Longitudinal bar diameter 

    Data acquisition system 

    Equivalent pile diameter  

    Particle diameter at which 10%  passing soil 

    Particle diameter at which 30%  passing soil 

    Particle diameter at which 60%  passing soil 

  Slope parallel slip 

   Instantaneous slip of unstable soil 

   Young’s modulus of concrete 

     Tangent stiffness for oedometer 

   Young’s modulus of steel 

    Unloading/reloading stiffness 
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   Pile bending stiffness 

          Pre-earthquake bending stiffness 

      Residual bending stiffness 

    Secant stiffness in drained triaxial test 

   Natural void ratio 

     Maximum void ratio 

     Minimum void ratio 

   Factor of safety 

     
 The compressive strength of concrete for 100x100mm cube 

     
 The compressive strength of concrete for 150x150mm cube 

  
 
 The concrete compressive strength 

    Concrete compressive 

   Rupture modulus 

   Natural frequency 

   Yield strength for concrete 

  Shear modulus 

   Average shear modulus 

   Small strain modulus 

  
   

 Small strain stiffness 

   Specific gravity 

  Gravity acceleration 

  Slope height above toe 

      Congleton silica sand 

   Relative density 

   Earth pressure at rest condition 

   Active earth pressure 

  Initial subgrade reaction 

   Un-cracked depth 



VIII 

 

   Pseudo-static seismic horizontal acceleration (g) 

    Yield acceleration (g) 

   Passive earth pressure 

  Length of soil model 

   Critical length of pile 

   Instantaneous slope plane length 

     Linear variable differential transformer 

  Soil mass 

     Maximum induced moment in the pile 

   Plastic moment resistance 

     Normalised residual moment capacity 

     Ultimate pile moment capacity 

   Pre-earthquake measured moment capacity 

  Power law index for stress level dependency of stiffness 

    Coating of Neoprene rubber 

  Single pile resistance 

   Force multiplier 

   Ultimate soil resistance 

     Reference stress ( = 100 kPa) 

    Peak ground acceleration (at soil surface) 

    Soil-pile interaction 

    Particle size distribution 

  Radius of centrifuge to the base of the model 

   Ratio of deviatoric failure stress to asymptotic limiting 

deviator stress 

  Effective radius of centrifuge    

   Stress reduction coefficient 

  Soil factor (Eurocode 8) 
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     Spectral reduction factor 

   Topographic amplification factor 

    Pile spacing ratio 

T Natural period 

  Shear band thickness 

  Pore water pressure 

   Flexural shear capacity 

     Yield acceleration reduction factor 

   Lateral pile displacement 

   Reinforced crest settlement 

   Unreinforced crest settlement 

  Depth of slip plane 

   Ultimate displacement 

   Yield displacement 

  Inclination angle of the container to keep the resultant 

acceleration perpendicular to the model 

  Slope angle 

  Angular distortion 

   Initial slope angle (pre-earthquake) 

   Soil unit weight 

   Dry unit weight 

     Saturated unit weight 

  Interface friction angle 

   Strain of concrete 

   Strain of steel 

      Shear strain at peak state 

      Shear strain at critical state 

  Modular ratio for concrete section 
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 Curvature 

  Displacement ductility 

    Poisson ratio (unload/reload) 

     Viscous damping ration 

  Soil density 

   Homogeneity factor 

   Normal effective stress 

         Applied shear stress 

     Shear strength 

   Ground acceleration 

   
  Critical effective angle of friction 

   
  (Secant) Peak angle of friction 

   Effective angle of dilation 

  Angular velocity 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XI 

 

Table of Contents 

Chapter One ................................................................................................................. 1 

Introduction .................................................................................................................. 1 
1.1 Preface .................................................................................................................. 1 
1.2 Types of landslides and slopes failure ................................................................. 5 
1.3 Statement of problem ........................................................................................... 8 
1.4 Aim and objectives .............................................................................................. 9 

1.5 Structure of thesis .............................................................................................. 10 

 

Chapter Two ............................................................................................................... 12 
Literature Review ...................................................................................................... 12 

2.1 Introduction ........................................................................................................ 12 

2.2 Slope stability analysis ....................................................................................... 15 

2.2.1 Static slope stability analysis ...................................................................... 15 

2.2.2 Seismic slope stability analysis ................................................................... 20 
2.3 Prediction of seismic slope slip .......................................................................... 26 

2.3.1 Newmark sliding block analysis ................................................................. 26 
2.3.2 Effect of soil constitutive properties ........................................................... 29 

2.3.3 Post-earthquake slope deformation ............................................................. 31 
2.5 Pile stabilised slopes .......................................................................................... 34 

2.5.1 Effect of pile row position .......................................................................... 36 
2.5.2 Effect of pile row spacing ........................................................................... 38 
2.5.3 Effect of relative soil & pile properties ....................................................... 39 

2.6 Laterally loaded piles ......................................................................................... 40 
2.6.1 ‘Active’ and ‘passive’ piles ........................................................................ 40 

2.6.2 Ultimate lateral pressure on individual piles .............................................. 42 
2.6.3 Ultimate lateral pressure on piles in a row .................................................. 43 

2.6.4 Mobilised forces within actively-loaded piles ............................................ 45 
2.6.5 Mobilised forces within passively-loaded piles .......................................... 54 

2.7 Arching in pile-reinforced slopes ....................................................................... 57 

2.8 Dynamic soil behaviour ..................................................................................... 63 
2.8.1 Overview ..................................................................................................... 63 

2.8.2 Factors influencing shear modulus for sand ............................................... 65 
2.8.3 Factors influencing damping ratio for sands ............................................... 68 

2.9 Dynamic response amplification in slopes ........................................................ 71 

2.10 Summary .......................................................................................................... 75 

 

Chapter Three ............................................................................................................ 77 
Physical modelling methodology .............................................................................. 77 

3.1 Introduction ........................................................................................................ 77 

3.2 Principles of centrifuge testing .......................................................................... 77 
3.3  Beam centrifuge and earthquake simulator (EQS) ........................................... 80 

3.4 Centrifuge modelling considerations ................................................................. 82 
3.4.1  Particle size ................................................................................................ 82 

3.4.2  Radial distortion ......................................................................................... 82 
3.4.3  Angular distortion ...................................................................................... 83 
3.4.4  Gravitational distortion .............................................................................. 84 

3.5 Soil properties and preparation .......................................................................... 84 



XII 

 

3.5.1  Soil (HST95 sand) ...................................................................................... 84 

3.5.2  Soil preparation techniques ........................................................................ 86 
3.5.3  Equivalent Shear Beam (ESB) container ................................................... 87 

3.6 Instrumentation .................................................................................................. 88 
3.6.1  MEMS Accelerometers .............................................................................. 88 

3.6.2  Strain gauges .............................................................................................. 89 
3.6.3 Linear Variable Differential Transformers (LVDTs) ................................. 91 
3.6.4 Data acquisition .......................................................................................... 91 

3.7  Model reinforced concrete piles ........................................................................ 93 
3.7.1  Introduction to pile modelling approach .................................................... 93 

3.7.2  Micro-concrete ........................................................................................... 94 
3.7.3  Micro reinforcing steel ............................................................................... 96 
3.7.4 Design and construction of RC piles .......................................................... 98 
3.7.5  Bending tests of RC piles ......................................................................... 100 

3.8  Model ‘elastic’ (instrumented) piles ............................................................... 107 

3.9  Model ‘weak RC’ pile ..................................................................................... 110 
3.10 Soil and interface shear properties ................................................................. 111 

3.11 Pile installation ............................................................................................... 114 
3.12 Input ground motions ..................................................................................... 115 

3.13 Centrifuge testing programme ....................................................................... 116 
3.14 Summary ........................................................................................................ 117 

 

Chapter four ............................................................................................................. 119 

Development of analytical tools for determining seismic performance of 

unreinforced slopes .................................................................................................. 119 
4.1 Introduction ...................................................................................................... 119 

4.2 Development of an improved sliding block method ........................................ 120 
4.3 Centrifuge modelling ....................................................................................... 125 

4.3.1 Modelling details ...................................................................................... 125 

4.3.2 Summary of testing programme ................................................................ 127 

4.4 Determination of seismic slip mechanism of tested slope ............................... 128 
4.5 Validation of sliding-block model ................................................................... 129 
4.6 Performance during earthquake ‘storms’ (many aftershocks) ......................... 135 

4.7 Arias intensity and yield acceleration .............................................................. 137 
4.8 Implications of findings for a seismic design .................................................. 139 

4.9 Summary .......................................................................................................... 140 

 

Chapter five .............................................................................................................. 141 

Development of FEM-based tools for determining seismic performance of 

unreinforced slopes .................................................................................................. 141 

5.1 Introduction ...................................................................................................... 141 
5.2 Constitutive modelling ..................................................................................... 142 

5.2.1  Overview .................................................................................................. 142 
5.2.2 Strength parameters .................................................................................. 144 
5.2.3  Stiffness parameters ................................................................................. 145 
5.2.4  Other parameters and comments .............................................................. 148 

5.3  Validation against centrifuge test data ............................................................ 150 

5.3.1 Modelling considerations .......................................................................... 150 
5.3.2  Prediction of soil accelerations ................................................................ 151 

5.3.3  Acceleration response spectra at crest ..................................................... 158 



XIII 

 

5.3.4 Replication of dynamic soil behaviour ..................................................... 160 

5.3.5  Prediction of permanent deformations ..................................................... 165 
5.4  Comparison of FEM with sliding block models ............................................. 167 
5.5 Summary .......................................................................................................... 171 

 

Chapter Six ............................................................................................................... 171 
Centrifuge modelling of the seismic performance of pile-reinforced slopes ...... 171 

6.1 Introduction ...................................................................................................... 171 
6.2 Model preparation and test procedures ............................................................ 171 
6.3 Performance of slopes reinforced with elastic piles ........................................ 174 

6.3.1 Permanent slope deformations .................................................................. 175 
S/B = 14 (AA12) ................................................................................................ 175 
S/B = 7 (AA13) .................................................................................................. 176 
S/B = 4. 7 (AA14) .............................................................................................. 177 
S/B = 3.5 (AA15) ............................................................................................... 178 

6.3.2 Effect of pile spacing on induced pile bending moments ......................... 179 
6.3.3 Dynamic response ..................................................................................... 182 

6.3.4 Summary of slope performance improvements ........................................ 183 
6.4  Performance of RC pile-reinforced slopes (AA04-AA07) ............................. 184 

6.4.1 Permanent slope deformations .................................................................. 185 
6.4.2 Dynamic response ..................................................................................... 186 

6.4.3 Degradation of the residual capacity of RC piles (AA04-AA07) ............. 188 
6.5 Assessment of RC pile-reinforced slope performance during aftershocks 

(AA08-AA011). ......................................................................................................... 192 

6.5.1 Permanent slope deformations .................................................................. 192 
6.5.2 Dynamic response ..................................................................................... 194 

6.5.3 Degradation of the residual capacity of RC piles (AA08-AA11) ............. 196 
6.6 Effects of non-linearity of pile response on slope performance ...................... 198 

6.6.1 Permanent slope deformations .................................................................. 198 

6.6.2 Dynamic response ..................................................................................... 200 

6.7 Effects of pile detailing and performance of a slope with seismically damaged 

piles ............................................................................................................................ 205 
6.8 Summary .......................................................................................................... 208 

 

Chapter seven ........................................................................................................... 210 

Seismic performance of pile-reinforced cohesionless slopes: Development of 

sliding block procedure ........................................................................................... 210 
7.1 Introduction ...................................................................................................... 210 

7.2  Sliding block procedure for pile-reinforced slopes ......................................... 210 
7.2.1  Formulation .............................................................................................. 210 

7.2.2  Assumptions and simplifications ............................................................. 213 
7.3 Soil-pile interaction (SPI) model ..................................................................... 214 

7.3.1 Soil-pile interaction in slipping soil .......................................................... 215 
7.3.2 Soil-pile interaction instable soil .............................................................. 216 
7.3.3  Combined SPI model and spacing effects (pile ‘shadowing’) ................. 218 
7.3.4  Determination of operative shear modulus .............................................. 219 
7.3.5  Final SPI model for parameters used in the centrifuge tests .................... 222 

7.3.6 Determination of bending moment profile in piles ................................... 223 
7.4 Validation of Newmark method against centrifuge data ................................. 224 

7.4.1 Analysis procedure .................................................................................... 224 



XIV 

 

7.4.2 ‘Non-effective pile spacing’ results .......................................................... 226 

7.4.3 ‘Effective pile spacing’ results .................................................................. 229 
7.4.4 Summary of model performance: crest settlement ................................... 233 
7.4.5 Summary of model performance: pile bending moments ......................... 235 

7.5 A priori determination of zslip ........................................................................... 238 

7.6 Summary .......................................................................................................... 242 

 

Chapter eight ............................................................................................................ 244 
Conclusions, remarks and   recommendations for further research .................. 244 

8.1 Overview .......................................................................................................... 244 

8.2 Improved Newmark procedure for unreinforced slopes .................................. 244 
8.3 Finite Element modelling of unreinforced slopes ............................................ 245 
8.4 Centrifuge modelling of pile-reinforced slopes ............................................... 246 
8.5 Improved Newmark procedure - pile-reinforced slopes .................................. 248 
8.5 Suggestions for further research ...................................................................... 249 

References .............................................................................................................. 252 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XV 

 

List of Figures 

Figure (1- 1): Cross section of slope failure during Wenchuan Earthquake in china 

(Yin, 2009) ..................................................................................................................... 1 
Figure (1- 2): Landsliding during the recent large earthquakes in Japan 2011 

(www.geogonline.org.uk) .............................................................................................. 2 
Figure (1- 3): Landslide observation by USGS team (USGS webpage) ....................... 2 
Figure (1- 4): Landslide due to EI-Salvador earthquake, 2001 (USGS) ........................ 3 

Figure (1- 5): Maximum epicentral distance for different kinds of landslides (Keefer, 

1984) .............................................................................................................................. 4 
Figure (1- 6): Area affected by landslides for earthquakes of different (Keefer, 1984) 4 
Figure (1- 7): The main types of Slope failure; (a) Rotational Slip; (b) Translational 

slip .................................................................................................................................. 6 

Figure (1- 8): Slope failure modes (redrawing from USGS factsheet) .......................... 7 

Figure (1- 9): Statement of problem .............................................................................. 8 

 

Figure (2- 1): Forces acting on slopes (Murthy, 2003) ................................................ 13 
Figure (2- 2): Slope movement stages (Leroueil et al., 1996) ..................................... 14 
Figure (2- 3): Stress-displacement curve at constant normal ....................................... 14 

Figure (2- 4): Mohr-Coulomb failure envelope ........................................................... 16 
Figure (2- 5): Types of failure mechanism; (A) planar failure; (B) Circular failure; .. 16 

Figure (2- 6): Failure mechanism and free-body equilibrium diagram for infinite 

slope. ............................................................................................................................ 17 
Figure (2- 7): analysis of slices method (redrawn from Duncan ................................. 19 

Figure (2- 8): Forces acting on Bishop’s slice. ............................................................ 20 
Figure (2- 9): Forces acting within an infinite slope. ................................................... 22 

Figure (2- 10): Principles of yield acceleration determination .................................... 22 
Figure (2- 11): Slip surface path example. Note that different surfaces encounter the 

first soil layer boundary at three different points near B but the differences are too 

small to be seen (Ding, 2006) ...................................................................................... 25 

Figure (2- 12): (a) and (b) Comparison of slip surfaces of four-layer slope given by 

the new procedure and that obtained by Zolfaghari et al. (2005) using a genetic 

algorithm approach (Ding, 2006) ................................................................................. 26 

Figure (2- 13): Newmark technique (a) block sliding on inclined plane; .................... 27 
Figure (2- 14): Demonstration of classical Newmark analysis algorithm ................... 29 
Figure (2- 15): Shear softening behaviour; (a) shear force-displacement; (b) yield 

acceleration degradation (Matasovic and Kavasanjian, 1997) .................................... 30 
Figure (2- 16): Comparison between classical and modified Newmark Procedure 

(Matasovic and Kavasanjian, 1997) ............................................................................. 31 
Figure (2- 17): Sliding block model used for the assessment of post-seismic 

displacements (after Ambraseys and Srbulov, 1995) .................................................. 32 

Figure (2- 18): Geometry changes and mass transfer in a three-block system with 

straight initial ground surface (AD). New ground surface = A'F''H'E''E'J'D' (After 

Chlimintzas, 2003) ....................................................................................................... 33 
Figure (2- 19): Forces on stabilising piles and slope ................................................... 36 

Figure (2- 20): Location of pile in the slope-factor of safety relationship ................... 38 
Figure (2- 21): (a) Shear force and (b) bending moment distribution within laterally 

loaded piles (Martin and Chen, 2005) .......................................................................... 40 
Figure (2- 22): Laterally loaded pile; (a) Passive pile loading; ................................... 41 



XVI 

 

Figure (2- 23): the differences between p-δ and p-y for a drained soil strength .......... 41 

Figure (2- 24): Soil-pile displacement under lateral loading (Bransby, 1996) ............ 43 
Figure (2- 25): State of plastic deformation in the ground just around piles ............... 44 
Figure (2- 26): Lateral pile responses influence factors in Case of Constant Soil 

Modulus (after Poulos, 1971) ...................................................................................... 46 

Figure (2- 27): illustration of Winkler spring methods for laterally loaded piles. ....... 48 
Figure (2- 28): wedge failure mechanism in sand; and (b) P-y curve for sand (After 

Reese et al., 1974) ........................................................................................................ 51 
Figure (2- 29): Dimensionless parameters for ultimate soil resistance calculations 

(Reese et al., 1974) ....................................................................................................... 52 

Figure (2- 30): Initial subgrade reaction and dimensioless parameters to determine the 

ultimate soil resistance (API, 2000) ............................................................................. 54 
Figure (2- 31): Typical failure mechanisms observed for piles with different 

embedded lengths (Poulos, 1995) ................................................................................ 55 
Figure (2- 32): Failure models for: (a) rigid piles, (b) with plastic hinges (Viggiani, 

1981) ............................................................................................................................ 56 
Figure (2- 33): Load-deflection definition ................................................................... 57 

Figure (2- 34): Arching effects observed (after Adachi et al., 1989) .......................... 58 
Figure (2- 35): Load-displacement curves for the piles at different spacing (after 

Adachi et al., 1989) ...................................................................................................... 58 
Figure (2- 36): Model kaolin slope (after Hayward et al, 2000) .................................. 59 

Figure (2- 37): Effects of pile spacing on pile-head loads acting on the top 2 m of pile 

in prototype scale (after Hayward et al, 2000) ............................................................. 59 
Figure (2- 38): Finite element model of slope-pile system (After Liang and Zeng, 

2002) ............................................................................................................................ 60 
Figure (2- 39): Pile spacing effect on generated loads on between piles (After Liang 

and Zeng, 2002) ........................................................................................................... 61 
Figure (2- 40): Configuration finite difference model ................................................. 61 
Figure (2- 41): Rotations of principal stress direction in granular soil between piles 

(Chen and Martin, 2002) .............................................................................................. 62 

Figure (2- 42): Soil-pile configuration for Wang and Yen, 1974 ................................ 62 
Figure (2- 43): Pile spacing-head pile load relationship .............................................. 63 
Figure (2- 44): Variation of normalised shear modulus with shear strain for.............. 66 

Figure (2- 45): Shear moduli of sand at many various factors (based on Hardin and 

Drnevich, 1972 equations) ........................................................................................... 67 

Figure (2- 46): Variation of normalised shear modulus with shear strain ................... 68 
Figure (2- 47): Damping ratio of sand at many various factors (after ......................... 69 
Figure (2- 48): confining pressure effects on damping ratio for (a) saturated sand and 

(b) dry sand. (after Hardin and Drnevich, 1972) ......................................................... 70 
Figure (2- 49): Damping ratio for sand (Seed et al., 1984) .......................................... 70 

Figure (2- 50): Amplification of the input motion at different position within ........... 72 
Figure (2- 51): Amplification of the input motion at different positions within a pile 

reinforced slope (Yu-yuzhen et al., 2010) ................................................................... 73 
Figure (2- 52): Dimension of the studied dam and; (b) the typical boundary condition 

(After Meen and Hsien, 2009) ..................................................................................... 74 
Figure (2- 53): Dynamic magnification factor (After Meen and Hsien, 2009)............ 75 

 

Figure (3- 1): Basic principal of centrifuge testing of reduced scale models .............. 78 
Figure (3- 2): University of Dundee geotechnical centrifuge. ..................................... 81 
Figure (3- 3): EQS. ...................................................................................................... 81 



XVII 

 

Figure (3- 4): Definition of radii for determining radial distortion of stress field. ...... 83 

Figure (3- 5): Definition of angular distortion (Knappett, 2010) ................................. 84 
Figure (3- 6): Particle size distribution for HST95 silica sand .................................... 85 
Figure (3- 7): Slot pluviator with cross section (inset) for preparing all centrifuge 

models (image: Lauder, 2010) ..................................................................................... 86 

Figure (3- 8): Relationship between slot width and relative density ........................... 87 
Figure (3- 9): Dry density-relative density relationship (after Lauder, 2010) ............. 87 
Figure (3- 10): ESB container used in the tests (Bertalot, 2012) ................................. 88 
Figure (3- 11): iMEMS accelerometer ......................................................................... 89 
Figure (3- 12): (a) TML strain gauge, (b) adhesive and coating ................................. 90 

Figure (3- 13): Calibration of strain gauge pairs ......................................................... 90 
Figure (3- 14): Linear variable differential transformers (LVDT) .............................. 91 
Figure (3- 15): Displacement-output voltage relationship for LVDT ......................... 91 
Figure (3- 16): (a) Data acquisition system and shaker controller; (b)  Strain gauge 

junction box (left) and general purpose (voltage) junction box (right)........................ 92 

Figure (3- 17): Data acquisition programme, showing results from a typical test ...... 93 
Figure (3- 18): Use of HST95 sand as a geometrically scaled coarse aggregate 

(Knappett et al. 2010) .................................................................................................. 95 
Figure (3- 19): Stress-strain relationship for model longitudinal reinforcement ......... 97 

Figure (3- 20): Stress-strain relationship for model shear reinforcement .................... 97 
Figure (3- 21): Piles casting procedures ...................................................................... 98 

Figure (3- 22): Model RC pile section (all dimensions shown at model scale). .......... 99 
Figure (3- 23): Four-point bending test ..................................................................... 100 
Figure (3- 24): Moment-curvature relationships for model pile sections .................. 101 

Figure (3- 25): Figure (3-25): (a) Shear and (b) bending failures observed during 

model .......................................................................................................................... 101 

Figure (3- 26): Transformed section method ............................................................. 102 

Figure (3- 27): Definitions of    and   (After Pam et al. 2001) ......... 104 

Figure (3- 28): Example of determination of yield and ultimate deformations ......... 104 
Figure (3- 29): Elastic pile, showing instrumentation ............................................... 108 
Figure (3- 30): Instrumented elastic piles .................................................................. 109 

Figure (3- 31): Non-instrumented (‘dummy’) aluminium piles ................................ 109 
Figure (3- 32): model pile bending test (as a cantilever) ........................................... 110 

Figure (3- 33): Typical bending moment-curvature relationship for the ................... 110 
Figure (3- 34): Shear box schematic, (a) soil-soil testing; and (b) soil-pile .............. 111 

Figure (3- 35): Shear strength envelopes. .................................................................. 112 
Figure (3- 36): Shear stress-normal stress relationship for (a) soil-soil; ................... 113 
Figure (3- 37): Vertical displacement-Horizontal displacement for HST95 ............. 113 
Figure (3- 38): Perforated wooden jigs and resulting installed piles (s = 4.67B shown)

 .................................................................................................................................... 114 

Figure (3- 39): Input ground motions in the time domain: (a) Chi-Chi; (b) Kobe; (c) 

stepped sine burst. ...................................................................................................... 116 

Figure (3- 40): Input ground motions in the frequency domain: (a) Chi-Chi; ........... 116 
Figure (3- 41): Centrifuge testing programme. .......................................................... 118 
 

Figure (4- 1): Forces acting within an infinite slope .................................................. 121 
Figure (4- 2): Newmark sliding block procedure, incorporating strain-softening ..... 123 

Figure (4- 3): New incremental slope re-grading mechanism ................................... 124 
Figure (4- 4): Centrifuge test layout, 1:2 slope, dimensions in m at prototype ......... 127 
Figure (4- 5): Failure mechanism for 1:2 slope computed from DLO for ................. 128 



XVIII 

 

Figure (4- 6): Failure mechanism for 1:2 slope computed from DLO for ................. 129 

Figure (4- 7): Soil test data from direct shear apparatus (DSA) ................................ 130 
Figure (4- 8): Application of new sliding block model showing key features (Chi-Chi 

EQ1, test AA01) ......................................................................................................... 131 
Figure (4- 9): Application of new sliding block model showing key features (Sine 

burst motion, test AA03) ............................................................................................ 131 
Figure (4- 10): Comparison of predicted cumulative crest settlements (with and 

without re-grading) with centrifuge test measurements: test AA01 (Chi-Chi) .......... 132 
Figure (4- 11): Comparison of predicted cumulative crest settlements (with and 

without re-grading) with centrifuge test measurements: test AA02 (Kobe) .............. 133 

Figure (4- 12): Instantaneous settlement measurements and predictions, showing 

reduced displacement with increasing strong shaking due to geometric hardening (re-

grading) ...................................................................................................................... 134 
Figure (4- 13): Comparison of predicted crest settlements (with and without re-

grading) with centrifuge test measurements: test AA03 (stepped sine burst) ........... 135 

Figure (4- 14): Comparison of predicted cumulative crest settlements (with and 

without re-grading) with centrifuge test measurements: test AA17 (Kobe) .............. 136 

Figure (4- 15): Instantaneous settlement measurements and predictions, showing 

reduced displacement with increasing strong shaking due to geometric hardening 

(AA17) ....................................................................................................................... 136 
Figure (4- 16): (a) Yield acceleration variation with earthquake No. ........................ 137 

Figure (4- 17): Yield acceleration reduction VS arias intensity ratio ........................ 138 
 

Figure (5- 1): DSA (shearbox) test data used in the soil-specific calibration of the 

 .............................................................. 145 
Figure (5- 2): FE mesh used in simulating oedometer tests, showing boundary 

conditions (after Caucis, 2012) .................................................................................. 146 
Figure (5- 3): Comparison of one-dimensional compression curves for loose and 

dense samples: (a) using Brinkgreve et al. (2010) parameters; (b) using HST95 (soil-

specific) parameters.  (Data from Caucis 2012). ....................................................... 147 

Figure (5- 4): Small strain stiffness (Go) as a function of relative density ................ 148 
Figure (5- 5): Simulation of centrifuge tests: (a) centrifuge model layout and location 

of ‘virtual’ instruments in numerical models; (b) FE mesh, showing boundary 

conditions ................................................................................................................... 151 
Figure (5- 6): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA01: time domain (top) and frequency domain (bottom). . 152 
Figure (5- 7): Comparison of measured and predicted accelerations at and behind 

slope crest during test AA01: time domain (top) and frequency domain (bottom). .. 153 

Figure (5- 8): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA02: time domain (top) and frequency domain (bottom). . 154 

Figure (5- 9): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA02: time domain (top) and frequency domain (bottom). . 154 

Figure (5- 10): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA03: time domain (top) and frequency domain (bottom). . 155 
Figure (5- 11): Comparison of measured and predicted accelerations at and behind the 

slope crest during test AA03: time domain (top) and frequency domain (bottom). .. 156 
Figure (5- 12): Comparison of measured topographic amplification with Eurocode 8 

recommendations ....................................................................................................... 157 
Figure (5- 13): Effect of repeated strong shaking on acceleration response spectra at 

the top of the slope (spectra are plotted for typical 5% structural damping) ............. 158 



XIX 

 

Figure (5- 14): Measured (centrifuge), predicted (FEM) and design (EC8) response 

spectra at the top of the slope (instrument 5) for 5% structural damping (a) Chi-Chi 

(AA01); (b) Kobe (AA02) ......................................................................................... 159 
Figure (5- 15): Hysteretic shear stress-shear strain relationship ................................ 160 
Figure (5- 16): Determination of shear modulus at different points during the 

earthquake – centrifuge data, test (AA01). ................................................................ 162 
Figure (5- 17): Scatter in dynamic soil response loops (AA01). ............................... 162 
Figure (5- 18): Degradation curve based on Chi-Chi earthquake data ...................... 163 
Figure (5- 19): Degradation curve based on Kobe earthquake data .......................... 163 
Figure (5- 20): Damping ratio for Chi-Chi earthquake data ...................................... 164 

Figure (5- 21): Damping ratio for Kobe earthquake data .......................................... 164 
Figure (5- 22): Comparison of permanent crest settlements from FEM and centrifuge 

modelling: (a) test AA01; (b) test AA02. .................................................................. 166 
Figure (5- 23): Comparison of slope profile after EQ4 as predicted by FEM and as 

measured in the centrifuge, test AA01. ...................................................................... 167 

Figure (5- 24): Comparison of FEM and sliding-block crest settlement predictions 

with centrifuge observations (a) test AA01; (b) test AA02 ....................................... 168 

Figure (5- 25): Comparison of accumulated shear strain at the end of EQ4 (test AA01) 

with failure mechanism assumed in analytical model. .............................................. 169 

Figure (5- 26): Accuracy of ‘existing’ models, compared to those proposed in 

Chapters four and five (‘improved’ models) for predicting permanent crest settlement.

 .................................................................................................................................... 170 
 

Figure (6- 1): Centrifuge model layout, with instrumented elastic piles shown, 

dimensions in m prototype scale (mm model scale in brackets). .............................. 172 
Figure (6- 2): Elastic and RC piles. ........................................................................... 173 

Figure (6- 3): Slope performance at s/B = 14 compared to unreinforced case: (a) crest 

settlements; (b) angular distortion at crest; (c) maximum pile bending moments (at 3.5 

m below ground surface); (d) input motion at instrument 8. ..................................... 175 

Figure (6- 4): Slope performance at s/B = 7 compared to unreinforced case: (a) crest 

settlements; (b) angular distortion at crest; (c) maximum pile bending moments (at 3.5 

m below ground surface); (d) input motion at instrument 8. ..................................... 176 
Figure (6- 5): Slope performance at s/B = 4.67 compared to unreinforced case: (a) 

crest settlements; (b) angular distortion at crest; (c) maximum pile bending moments 

(at 3.5 m below ground surface); (d) input motion at instrument 8. .......................... 177 

Figure (6- 6): Slope performance at s/B = 4.7 (Kobe) compared to unreinforced case: 

(a) crest settlements; (b) angular distortion at crest; (c) maximum pile bending 

moments (at 3.5 m below ground surface); (d) input motion at instrument 8. .......... 178 

Figure (6- 7): Slope performance at s/B = 3.5 compared to unreinforced case: (a) crest 

settlements; (b) angular distortion at crest; (c) maximum pile bending moments (at 3.5 

m below ground surface); (d) input motion at instrument 8. ..................................... 179 
Figure (6- 8): Post-earthquake permanent bending moments along the .................... 180 

Figure (6- 9): Post-earthquake permanent bending moments along the .................... 181 
Figure (6- 10): Spectral acceleration for elastic models; (a) after EQ1; (b) after EQ 4.

 .................................................................................................................................... 182 
Figure (6- 11): Reduction in crest settlement and acceleration due to pile 

reinforcement as a function of normalised pile spacing: (a) in EQ1; (b) in EQ4 ...... 184 

Figure (6- 12): Crest settlement (AA04-AA07). ........................................................ 185 
Figure (6- 13): Acceleration for selected points in the slope before and after slope 

stabilisation (tests AA01 and AA07) ......................................................................... 186 



XX 

 

Figure (6- 14): Amplification reduction factor as a function of S/B. ........................ 187 

Figure (6- 15): Normalised acceleration response spectra (ARS) ............................. 187 
Figure (6- 16): Spectral reduction factor (Sred) ........................................................ 188 
Figure (6- 17): Residual moment capacity for RC piles following 1 earthquake ...... 189 
Figure (6- 18): Residual moment capacity for RC piles following 1 earthquake ...... 190 

Figure (6- 19): Residual moment capacity for RC piles following 1 earthquake ...... 190 
Figure (6- 20): Residual moment capacity for RC piles following 1 earthquake ...... 191 
Figure (6- 21): Residual moment capacity and expected maximum induced moments 

(tests AA04-AA07) .................................................................................................... 191 
Figure (6- 22): Crest settlement for (AA08-AA11). .................................................. 192 

Figure (6- 23): Accumulated crest settlement as a function of S/B. .......................... 193 
Figure (6- 24): Crest settlement reduction factor as a function of S/B. ..................... 193 
Figure (6- 25): Aftershocks effects on crest settlement for different pile spacing .... 194 
Figure (6- 26): Normalised spectral acceleration in g/ag, (a) after EQ 1; ................. 195 
Figure (6- 27): Spectral reduction factor; (a) after EQ 1; (b) after EQ4 .................... 196 

Figure (6- 28): Residual moment capacity of RC piles (After AA08) ...................... 196 
Figure (6- 29): Residual moment capacity of RC piles (After AA09) ...................... 197 

Figure (6- 30): Residual moment capacity of RC piles (After AA10) ...................... 197 
Figure (6- 31): Residual moment capacity of RC piles (After AA11) ...................... 197 

Figure (6- 32): Residual moment capacity and expected maximum induced moments 

(AA04-AA11) ............................................................................................................ 198 

Figure (6- 33): Comparison of crest settlements for slopes with elastic and RC piles: 

(a) EQ1; (b) EQ4. ....................................................................................................... 199 
Figure (6- 34): ARS after EQ1 for: (a) S/B=14; (b) S/B=7; (c) S/B=4.67; (d) S/B=3.5

 .................................................................................................................................... 200 
Figure (6- 35): ARS after EQ4 for: (a) S/B=14; (b) S/B=7; (c) S/B=4.67;  (d) S/B=3.5

 .................................................................................................................................... 201 
Figure (6- 36): Reduction in residual moment capacity in RC piles following a single 

earthquake and resulting effectiveness of pile reinforcement (EQ1) ......................... 202 

Figure (6- 37): Reduction in residual moment capacity in RC piles following four 

earthquakes and resulting effectiveness of pile reinforcement in EQ4 ...................... 203 
Figure (6- 38): Residual bending properties of RC piles following kinematic loading

 .................................................................................................................................... 204 

Figure (6- 39): Moment capacity for weak section. ................................................... 205 
Figure (6- 40): Effect of RC section detailing on crest settlements during EQ1. ...... 207 

Figure (6- 41): Photographs showing pile damage around the location of maximum 

bending moment: (a) after four successive earthquakes (test AA18); (b) after a single 

earthquake (test AA19). ............................................................................................. 208 

 

Figure (7- 1): slip mechanism in pile reinforced slope; (a) overall configuration; (b) 

forces acting on a pile stabilised slipping soil element .............................................. 211 
Figure (7- 2): Modelling approach. ............................................................................ 215 

Figure (7- 3): API P-y coefficients as function of
' . ................................................ 216 

Figure (7- 4): Definition of parameters used in model for stable soil ....................... 217 
Figure (7- 5): Relationship between p-multiplier and pile spacing. .......................... 219 

Figure (7- 6): Variation of the shear stress, shear strain and shear modulus: (a) at 2.75 

m depth, (b) at 4.50 m depth, (c) at 6.25 m depth. ..................................................... 220 
Figure (7- 7): Actual and average shear modulus. ..................................................... 222 
Figure (7- 8): Calculated SPI curves for centrifuge test conditions. .......................... 223 



XXI 

 

Figure (7- 9): Generalised bending moment curves for piles resisting an infinite slip.

 .................................................................................................................................... 224 
Figure (7- 10): Effect of pile resistance and geometric hardening on slope behaviour; 

(a) time-crest settlement; (b) time-yield acceleration ................................................ 225 
Figure (7- 11): Predicted and measured peak bending moment (S/B=14) ................ 226 

Figure (7- 12): Validation for test AA12 (S/B = 14): (a) Predicted and measured crest 

settlement; (b) variation of yield acceleration. .......................................................... 227 
Figure (7- 13): Predicted and measured peak bending moment (S/B=7) .................. 228 
Figure (7- 14): Validation for test AA13 (S/B = 7): (a) Predicted and measured crest 

settlement; (b) variation of yield acceleration. .......................................................... 228 

Figure (7- 15): Predicted and measured peak bending moment (S/B=4.67) ............. 229 
Figure (7- 16): Validation for test AA14 (S/B = 4.67): (a) Predicted and measured 

crest settlement; (b) variation of yield acceleration ................................................... 230 
Figure (7- 17): Predicted and measured peak bending moment (S/B=3.5) ............... 231 
Figure (7- 18): Validation for test AA15 (S/B = 3.5): (a) Predicted and measured crest 

settlement; (b) variation of yield acceleration. .......................................................... 231 
Figure (7- 19): Predicted and measured peak bending moment for Kobe model 

(S/B=4.67) .................................................................................................................. 232 
Figure (7- 20): Validation for test AA16 (S/B = 4.67): (a) Predicted and measured 

crest settlement; (b) variation of yield acceleration. .................................................. 232 
Figure (7- 21): Predicted and measured crest settlement: (a) accumulated and (b) 

instantaneous .............................................................................................................. 233 
Figure (7- 22): predicted and measured crest settlement for AA10 and AA16 

(S/B=4.67): (a) accumulated and (b) instantaneous ................................................... 234 

Figure (7- 23): Predicted and measured bending moments along piles, end of EQ1. 235 
Figure (7- 24): moment distribution along pile for Chi-Chi and Kobe models (s/B = 

4.67) ........................................................................................................................... 236 
Figure (7- 25): Generalised bending moment curves for piles resisting an infinite slip

 .................................................................................................................................... 237 

Figure (7- 26): Predicted and measured bending moments along piles, end of EQ1. 237 

Figure (7- 27): Soil angle of friction as a function of depth ...................................... 239 
Figure (7- 28): Failure mechanisms for piled-slope computed from DLO for seismic 

case ............................................................................................................................. 240 

Figure (7- 29): Depth of slip surface .......................................................................... 241 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XXII 

 

List of tables 

Table (2- 1): Summary of elastic solutions of laterally loaded piles with constant soil 

modulus with depth (Poulos, 1971). ............................................................................ 45 
Table (2- 2): Definitions and dimensions used in laterally loaded piles analysis ........ 49 
Table (2- 3): Initial stiffness for sand (Reese et al., 1974) .......................................... 52 
 

Table (3- 1): Scaling laws for centrifuge testing (Schofield, 1981 and Kutter, 1994) 79 

Table (3- 2): Physical properties of HST95 silica sand ............................................... 85 
Table (3- 3): Compression test results for micro concrete (all results in MPa). .......... 96 
Table (3- 4): Strength and stiffness properties of model reinforcement. ..................... 97 
Table (3- 5): Four-point bending test results. ............................................................ 106 
Table (3- 6): Properties of RC model piles. ............................................................... 106 

 

Table (4- 1): Static slope stability data ...................................................................... 126 

Table (4- 2): Summary of centrifuge models tested .................................................. 127 
Table (4- 3): Dynamic slope stability data ................................................................. 128 
 

Table (5- 1): DSA test data for HST95 silica sand .................................................... 145 

Table (5- 2): Summary of constitutive parameters for nominal relative density of ID = 

55% ............................................................................................................................ 149 

Table (5- 3): Summary of centrifuge configurations ................................................. 151 
 

Table (6- 1): Summary of centrifuge models tested .................................................. 173 

Table (6- 2): Summary of pile bending properties (values at prototype scale).......... 206 
Table (6- 3): Effect of pile design on seismic slope performance (s/B = 7.0) ........... 207 

 

Table (7- 1): Static and dynamic slope stability data ................................................. 242 



Chapter 1                                                                                                          Introduction 

1 

 

Chapter One 

Introduction 

1.1 Preface 

Earthquakes are natural disasters that engineers should take into consideration in the 

design criteria of any infrastructure project more than any other disaster in seismic 

areas.  Many landslides caused by earthquakes have been observed in the world such 

as in China (Wenchuan earthquake 2008), Taiwan (Chi-Chi earthquake 1999) and in 

Japan (Niigata earthquake 2005), Figures (1-1) and (1-2) whereas more than 5000 

people were died and 300,000 became homeless after a very short earthquake (20 sec 

only) in Kobe 1995. Also, the largest earthquake in March 2011 in Japan causes many 

landslides (www.geogonline.org.uk) (Figures 1-2 and 1-3). 

  

 

 

Figure (1- 1): Cross section of slope failure during Wenchuan Earthquake in china 

(Yin, 2009) 
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Figure (1- 2): Landsliding during the recent large earthquakes in Japan 2011 

(www.geogonline.org.uk) 

 

 

Figure (1- 3): Landslide observation by USGS team (USGS webpage) 

 

In some of these earthquakes, villages have been buried under soil due to slope 

failure. An example of such a big landslide occurred on 13 of January 2001 when an 

earthquake triggered more than 500 landslides across EI-Salvador. As many as 500 

people were buried and one hundred thousand houses were fully destroyed under the 

collapsed soil and sudden landslide (Jibson and Corne, 2001). Figure (1-4) shows how 

the landslide buried tens of houses of the village. 
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Figure (1- 4): Landslide due to EI-Salvador earthquake, 2001 (USGS) 

 

Earthquake-induced landslides have caused a massive amount of damage in the world 

and these landslides, many times, have been responsible for more damage than the 

combined effects of all other seismic hazards. Billions of dollars have been lost 

because of earthquake damage during the last few decades.  More than 50% of the 

total cost of damage was caused by landslides in the 1964 Alaska earthquake (Wilson 

and Keefer, 1985). Kobayashi (1981) showed that more than half of the fatalities due 

to earthquakes in Japan between 1964 and 1980 were caused by landslides.  

Investigation of seismic slope stability can be classified as one of the most important 

activities for geotechnical earthquake engineers (Kramer, 1996).  Keefer (1984) 

suggested that the landslide type depends on the distance of the slope to the fault and 

the epicentre of the earthquake (Figure 1-5) and that the area affected by earthquake-

induced landsliding also increases with increasing earthquake magnitude Figure (1-6) 
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Figure (1- 5): Maximum epicentral distance for different kinds of landslides (Keefer, 

1984) 

 

Figure (1- 6): Area affected by landslides for earthquakes of different (Keefer, 1984) 

 

Slope remediation using piles has become an increasingly common technique around 

the world over the last two decades to reduce soil movement in the down slope 

direction.  The lateral forces applied to the pile face generate bending moment along it 
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and lead to pile head displacement.  Bending of the piles will not prevent the slope 

from moving, but it will reduce the size of these movements and potentially prevent a 

sudden collapse, provided that the piles do not fail structurally under the induced 

bending moments.  

Due to the development of centrifuge techniques in the last two decades, many 

physical studies of slope problems have been conducted to study the seismic 

performance of slopes (and soil-pile interaction as a special case) and other related 

problems resulting from earthquakes in general (e.g Yu-Zhen et al., 2008). There is 

still not enough understanding of the problems of slope failure during real earthquakes 

because many of the previous researchers (e.g. Ng et al., 2004; Madabhushi et al., 

2002; and Hayashi et al., 1998) used harmonic waves as input motions with a constant 

frequency and amplitude. This research aims to address these issues by studying the 

performance of unreinforced and pile-reinforced slopes using centrifuge modelling, 

applying predominantly real-earthquake motions, and realistically modelling the 

structural behaviour of the piles. 

1.2 Types of landslides and slopes failure 

‘Landslide’ is a term that refers to any sudden movement of a soil mass downward 

whether the soil is clayey, sandy, silty or rocky or a combination of them.  Most slope 

failures occur in mountainous regions, but also occur as cut and fill failure (e.g. in the 

case of highways, building excavations and electrical pylons).  Landslides occur also 

when there is a weak zone that separates weak surface material from more stable 

strata underlying it.  In the United Kingdom in 1966, a flow slide from a colliery spoil 

tip travelled down the valley side directly above the village of Aberfan in Wales at an 

average speed of about 16 km/hour and destroyed a primary school and led to death 

144 pupils in addition to five of their teachers.  Many major landslides in the world 

occurred during the last century, for example: London highway landslide in 1970, San 

Luis dam slide 1981, Olmsted dam Land slide in Ohio 1988 and Panama Canal 

Landslides in 1986 (Duncan and Wright, 2005).  

There are two major kinds of slope failure, rotational failure and translational failure 

which are explained below: 
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-Rotational slide: in this type of slide, the soil mass movement occurs rotationally 

about a point representing the centre of an arc; see Figure (1-7a).  This type is also 

known as a deep slide and is most widely seen in cohesive soils.  

-Translational slide: this is a slide in which the soil mass moves as a planar surface 

parallel to the slope surface with little or no rotation; see Figure (1-7b). 

 

 

Figure (1- 7): The main types of Slope failure; (a) Rotational Slip; (b) Translational 

slip 

 

There are also other types of slope failure, including Creep failure, toppling, rock fall, 

debris flow and lateral spreading. All these types of failure are shown in Figure (1-8) 

and can be summarized below: 

(a) 
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Figure (1- 8): Slope failure modes (redrawing from USGS factsheet) 

- Falls: Due to sudden movement and geological changes and erosion, rocks and 

boulders may fall from steep slopes. Falls may also be induced by gravity, 

mechanical weathering and water dissipation into clefts. 

- Topples: Occur due to the action of gravity or forces exerted by adjacent units of 

soil or by water in cracks. 

- Flows: there are many categories of flows such as debris flow, debris avalanche, 

earth flow and creep. 

- Lateral spreads: Usually occur in very gentle slopes or near-flat terrain due to 

soil liquefaction. 
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1.3 Statement of problem 

Slope stabilisation methods are varied and dependent on many factors including the 

angle of the slope, soil material type and variation of water table during seasons, 

amongst others.  Installing piles in a sloping soil mass is a frequently used technique 

under non-seismic conditions.  Use of a single row of piles to resist slope failure due 

to seismic shaking is shown schematically in Figure (1-9).  Many important factors 

should be taken into account by geotechnical engineers, namely: (1) the size of the 

piles and their structural detailing/properties; (2) spacing between piles (max. spacing 

between piles for best soil arching at minimum cost); (3) embedded pile length into 

the stable soil; (4) location of piles with respect to the slope toe or crest; (5) the forces 

affecting the piles due to the moving mass so that the structural design of piles can 

meet the capacity requirements. 

 

 

Figure (1- 9): Statement of problem 

In seismic geotechnical problems, most of the previous studies of pile stabilization of 

slopes do not provide full understanding due to many of the idealizing assumptions 

made by previous researchers. The analysis of seismic pile-reinforced slope behaviour 

including the kinematic forcing from the slipping soil mass and the resistance of the 

stable soil is still uncertain due to the small amount of experimental data or field 

studies. Thus, there is still a lack of understanding of the mechanism of soil-pile 
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interaction under earthquake shaking. For the reasons mentioned above, geotechnical 

centrifuge modelling will be used to study the seismic performance of pile-reinforced 

slopes using different models and cases under real earthquake motions and cyclic 

motion. 

1.4 Aim and objectives 

The main aims of this thesis are: (i) to investigate the dynamic behaviour of 

cohesionless slopes under earthquake events, and develop new approaches for 

predicting this behaviour; (ii) to investigate the seismic performance of pile-

reinforced slope systems and (iii) to develop analytical tools for predicting the 

performance of pile-reinforced slope systems.   

The following objectives were achieved to attain the above aims:  

1- Dynamic geotechnical centrifuge modelling was used to investigate non-

remediated and pile-remediated cohesionless slopes at different pile spacing;  

2- A new reinforced cementitious model material is used to cast damageable pile 

model elements for use in centrifuge testing;  

3- Finite element procedures have been developed for predicting the full dynamic 

behaviour of unreinforced slopes.  These methods were validated against the 

centrifuge test data;  

4- An analytical solution based on the Newmark sliding block method has been 

developed to quantify permanent slope movements under earthquake shaking. 

The method can take into account the variation of soil strength due to strain 

softening and hardening, geometric changes to the slope with slip (re-grading) 

and soil pile interaction due to a row of discretely spaced piles.  The method 

can also be used to estimate the bending moments in the piles for subsequent 

structural design/detailing.   
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1.5 Structure of thesis 

This thesis is presented in eight chapters, and each chapter is described in the 

following sections: 

Chapter 2: The thesis starts with a literature review.  This will focus on summarising 

previous research in the areas of dynamic slope stability analysis, methods of seismic 

analysis of slopes, pile behaviour when used to stabilise slopes under monotonic and 

dynamic loads, laterally loaded pile behaviour and at the end of the literature review 

some information concerning the dynamic response of cohesionless soils. 

Chapter 3: The bulk of the research work in this thesis is conducted using 

geotechnical centrifuge techniques and physical modelling principles. Chapter 3 

describes the experimental methods used in this work and explains the principles of 

centrifuge testing and scaling laws.  The design and fabrication of the novel pile 

models is described along with details of the characterisation tests conducted on the 

pile models.  The soil properties and instrumentation used are also explained in detail.  

The results and discussion of the dynamic centrifuge tests are contained within 

Chapters 4, 5 and 6. 

Chapter 4: This chapter considers unreinforced cohesionless slopes.  The results of 

the first three dynamic centrifuge tests are included here.  An analytical solution based 

on the Newmark method was improved to determine the permanent seismic slope 

movements and the results are validated against the centrifuge test results.  

Chapter 5: This chapter follows on from Chapter 4, presenting 2D Finite Element 

modelling of the seismic performance of unreinforced cohesionless slopes.  

Constitutive modelling of the dynamic behaviour of sands is also included and the 

results are validated against the centrifuge test data reported in Chapter 4. 

Chapter 6: Presents the results from the remaining dynamic centrifuge tests modelling 

pile-reinforced cohesionless slopes with different pile spacing ratios (S/B) with both 

elastic instrumented piles to investigate the dynamic soil-pile interaction (SPI), and 

using new damageable model reinforced-concrete (RC) piles.  A further damageable 

RC pile section was tested (with nominal steel reinforcement) to demonstrate how the 
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designed pile capacity against bending is important if the piles are to be effective in 

improving slope performance during earthquakes.   

Chapter 7: A significant development of the modified Newmark procedure developed 

in Chapter Four is made to incorporate non-linear soil pile interaction within the 

formulation of the yield acceleration. This new method is validated against the 

centrifuge tests results of the instrumented piles from Chapter 6. 

Chapter 8 The results of the work are summarised and suggestions for future work are 

made.   
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Chapter Two 

Literature Review 

2.1 Introduction 

Slope failures can be classified as one of the major causes of damage and losses in 

earthquakes.  In October, 2004 in Japan, a strong earthquake (M=6.8) hit the middle 

of Niigata and led to many landslides and structural collapses. More recently, the 

1999 Chi-Chi earthquake (M=7.3) triggered more than 10,000 landslides of various 

types in the steep mountainous terrain of Central Taiwan, throughout an area of 

approximately 11,000 km
2
 (Khazai and Sitar, 2004). Understanding the failure 

mechanism of slopes during earthquakes is therefore important for reducing damage 

and loss of life in future earthquakes, and could lead to the development of mitigation 

techniques for improving seismic slope performance.  

Earthen slopes are of two main types: (i) naturally formed and (ii) man-made.  Natural 

slopes are formed by environmental processes, such as slopes in hilly areas.  

Examples of man-made slopes include embankments constructed for railway lines, 

roads and canals and earth dams.  Slopes can also generally be classified by their 

failure mode, typically as either ‘finite’ (also termed ‘rotational’ or ‘short’) or 

‘infinite’ (also termed ‘translational’ or ‘long’) slopes.  In this thesis, term infinite 

slope is used to designate a slope.  

The important factors that can cause instability in slopes under static conditions (after 

Murthy, 2003) and lead to failure are: (1) gravitational force; (2) hydraulic force due 

to seepage; (3) erosion of the surface of the slope due to flowing water; (4) the sudden 

lowering of water adjacent to the slope (‘drawdown’) and (5) additional inertia loads 

due to earthquakes.  Figure (2-1) shows schematically these common forces and 

causes of slope failure.  It should be noted that in the case of earthquakes, adverse 

seepage effects (e.g. liquefaction) can also be generated, and the resistive strength of 

the soil may be reduced due to the dynamic behaviour of the soil (including 

liquefaction).   

 



Chapter 2                                                                                                 Literature review 

13 

 

 

 

Figure (2- 1): Forces acting on slopes (Murthy, 2003) 

 

The analysis of slope movement and deformation can be considered one of the most 

important steps to understand slope failure (Terzaghi, 1950).  Leroueil et al. (1996) 

classified the failure process of slopes into four main stages:  (1) pre-failure, (2) post-

failure stage, (3) occasional reactivation and (4) active failure.  Figure (2-2) shows 

these main stages.  Skempton (1985) showed that the third and fourth stages start 

when the shear band has completely developed and the soil material is sliding at the 

critical or residual strength as shown in Figure (2-3).  The slope’s failure point 

(dividing stages 1 and 2) occurs when the soil material just exceeds its peak shear 

strength, leading to a large drop in shear strength to critical or residual shear strength 

(Massey, 2010). 
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Figure (2- 2): Slope movement stages (Leroueil et al., 1996) 

 

 

Figure (2- 3): Stress-displacement curve at constant normal effective stress 

(Skempton, 1985) 

 

The effect of earthquake shaking is normally to increase the inertial loading and 

reduce the resistive strength of the soil transiently, resulting in soil slip during 

shaking.  When earthquake shaking stops, the resistive strength will usually recover 

and the additional inertial forces are no longer acting, so that slope deformation ceases 

and it becomes stable again.  However, in the case of undisturbed soils with low 

residual strengths, the earthquake may cause reduction in strength which result in the 

slope being statically unstable and suffering stage (4) deformations post-earthquake 

(Ambraseys and Srbulov, 1995).   
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Kramer (1996) classified the instability of the slope due to earthquake-induced 

dynamic loads into two main kinds, either ‘inertial instability’, in which the slope is 

deformed due to the additional destabilising dynamic earthquake stresses (with the 

soil strength unaffected).  The second type is ‘weakening instability’, where the 

earthquake–induced stresses lead to instability of the soil due to a significant 

reduction in the soil strength.   

2.2 Slope stability analysis 

The stability of slopes depends on many parameters including the type of soil, failure 

mechanism, variation of water table within the slope and surcharge loads from 

structures near the slope.  Slope stability considers the ratio of available strength to 

applied forces, defining the triggering of slope failure.   

2.2.1 Static slope stability analysis  

Two dimensional slope stability analyses are widely used by geotechnical engineers.  

Most slope stability analysis methods are based on principles of limit equilibrium 

employing the same definition of the factor of safety, which is defined as the ratio 

between the available shear strength ( ) to the applied shear stress ( applied ): 

 

                                                        
applied

FS



                                                      (2-1) 

 

This factor of safety represents the factor by which the shear strength must be reduced 

so that the reduced strength is just in equilibrium with the shear stress applied (Duncan 

and Wright, 2005).  By the Mohr Coulomb criterion, the applied shear that will cause 

failure (factor of safety less than 1.0) can be represented as: 

 

                                           
FS

uc
applied

'' tan)( 



                                               (2-2) 

where    and    are the apparent cohesion and angle of internal friction of the soil,   

is the total normal stress on the shear plane, and u is the pore pressure, also on the slip 

plane (Figure 2-4).   
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Figure (2- 4): Mohr-Coulomb failure envelope 

 

The factor of safety is calculated by assuming different slip surface positions and 

calculating the value of FS for each (Duncan and Wright, 2005).  Figure (2-5) shows 

some of the most well-known types of slope failure mechanism.  The ‘critical slip 

surface’ refers to the slip surface giving the minimum factor of safety which 

represents the most likely slip surface.  

 

 

Figure (2- 5): Types of failure mechanism; (A) planar failure; (B) Circular failure; 

(C) multi-planar failure; (D)  non-uniform failure (Re-drawn from Kramer, 1996) 

 

 

When the factor of safety is less than one, a section of the slope will slide along the 

failure surface and only come to rest again at a place where the new stresses do not 

exceed the available strength, due to the change of the geometry and soil properties 

during the sliding process.  It is therefore obvious that a factor of safety less than one 

cannot be permitted under static conditions.  A value of FS = 1.5 is the minimum 

value generally considered by geotechnical engineers for long term loading conditions 
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(Kramer, 1996).  The following subsections describe some of the most popular slope 

stability analysis methods. 

2.2.1.1. Infinite slope method 

In this procedure, the slope is assumed to be of infinite length and width and the soil 

is sliding as a block, parallel to the slope surface.  From free-body equilibrium 

diagram in Figure (2-6) the equilibrium equation at limit state (Equation 2.1) can be 

defined as: 

 

 

Figure (2- 6): Failure mechanism and free-body equilibrium diagram for infinite 

slope. 

 

sinWS                                                    (2-3) 

 

cosWN                                                    (2-4) 

 

where   is the angle of the slope and W is the weight of the soil block, which for 

block of unit depth, is equal to: 

 

                                                           cosLzW                                                  (2-5) 

 

where   is the total unit weight of the soil, L  is the length along the slip plane 

between the two ends of the block and z is the vertical depth of the shear plane.  By 

combining Equations (2-2) – (2-5), the factor of safety can be written in terms of 

effective stresses as:  
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In cohesionless soil, and in terms of drained conditions (c′ = 0, u = 0), the computed 

value of FS by the infinite slope procedure is independent of the depth z of the slip 

surface: 

                                                           




tan

tan 
FS                                                  (2-7) 

 

This type of analysis is more appropriate for cohesionless slopes as the critical slip 

surface tends to be very shallow, and because of the independence of FS on the depth 

of the slip surface.   

2.2.1.2. Slices method  

The failure surface in this method is assumed to be a circular arc with centre O and 

radius r. The soil body above the proposed slip surface is divided by vertical planes to 

form many slices with a constant width b as shown in Figure (2-7).  For each slice, the 

angle of the base line of the slice, measured from the horizontal line, is   and the 

height of the centre of mass of the slice is h.  The factor of safety can be defined as 

before as the ratio between the available shear strength ( ) along the whole length of 

the slip plane to the sum of the applied shear stresses ( app ).  The forces acting on 

each slice are detailed below: 

- Total weight of the slice: bhW  . 

- Normal force on the base of slice, per metre length of slope: LN .   . (Two 

components form this force, namely the effective normal force, LN ''  , and 

the boundary water force, LuU . .  UNN  ' ).   

- The shear force on the base of the slice: . 

- The normal forces on the two sides E1 and E2. 

- The shear forces on the two sides, X1 and X2. 

 

This is a statically indeterminate problem, and to obtain a solution, an assumption 

must be made regarding the inter-slice forces E and X.  
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Figure (2- 7): analysis of slices method (redrawn from Duncan  

and Wright, 2005) 

 

By taking moments about point O, sum of shear forces multiplied by radii from O 

along the slip failure surface AC should be equal to the moment generated by the 

weight of the soil body above the slip surface, thus, for any slice: 

 

                                                    sin. Wr                                              (2-8) 

 

And by substitution the above forces acting on each slice, the factor of safety will be: 
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                                      (2-10) 

   

where Lt is the total length of arc AC.   

 

2.2.1.3. Bishop’s Method 

The assumption in this method is that the inter-slice forces acting on the two sides of 

each slice are horizontal (i.e. the shear stress between the two slices is neglected). 

Therefore, the normal forces (weight of slices and the components of the normal and 

shear stresses acting on the base of the slice) satisfy equilibrium as shown in Figure 

(2-8).   
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Figure (2- 8): Forces acting on Bishop’s slice. 

 

By Bishop’s method, the Factor of safety becomes: 

 

  















sin

tansin
cos

tan)cos(cos
'

''

W

FS

ulWlc

FS                                   (2-11) 

 

The Bishop’s method is accurate when pore water pressures are high (Duncan and 

Wright, 2005). 

 

2.2.2 Seismic slope stability analysis 

In seismic slope stability analysis, the extension to the static analysis approaches 

described previously is known as pseudo-static slope stability analysis.  In this 

method a constant horizontal acceleration is applied to the whole slope. In pseudo 

static analysis, the vertical components of earthquake accelerations are neglected.  A 

factor of safety can be defined in the same way as for the static case.  However, a 

better parameter to describe the seismic safety of a slope is the critical or yield 

acceleration (khy).  The yield acceleration is defined as the acceleration that, when 

applied to the mass between the slip and the slope surfaces, produces a state of 

primary failure along that surface.  If the applied acceleration (earthquake 

acceleration) is larger than the yield acceleration of the slope, then the mass of slope 

soil will move along the slip surface.  This principle underpins Newmark’s method for 

determining seismic slip/deformation, as will be discussed in Section 2.3.1 

(Newmark’s Rankine lecture).  It can be noted that the factor of safety (or yield 
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acceleration) is evaluated for a given slip surface while the minimum factor of safety 

(or yield acceleration) is a characteristic of the slope.   

Any vertical component of earthquake acceleration can be easily accommodated by 

simply changing the unit weight of materials to take care of the additional vertical 

acceleration, then finding the horizontal critical acceleration for the modified unit 

weight and then the resulting critical acceleration can be adjusted for the modified 

unit weight. If case of excess pore pressure in the slope, the unit weight of water 

should also be modified accordingly. 

 

2.2.2.1. Infinite slope method 

The horizontal yield acceleration of a shallow translational (infinite) slip can be 

determined using standard limit equilibrium techniques, incorporating a pseudo static 

acceleration component due to the seismic ground motion (see Figure 2-9).  For a slip 

plane at depth z beneath the slope surface, the applied downslope shear stress is 

 

                         
 2coscossin zkz happlied                          (2-12) 

where the first term relates to the static shear stress due to the ground slope, and the 

second term relates to the additional peak dynamic shear stress induced by the 

earthquake.  The shear strength of the soil along the slip plane, assuming that the soil 

can be idealised as a Mohr-coulomb at failure is given by: 
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The soil yields when τapplied = τult.  The value of kh at which this occurs (the yield 

acceleration, khy) can be determined from Equations (2-12) and (2-13) as: 
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Figure (2- 9): Forces acting within an infinite slope. 

 

2.2.2.2. Slices method  

Kim and Sitar (2004) determined the yield acceleration for rotational slip failures.  

This procedure is based on the principles of slices method, previously described in 

Section 2.2.1.2).  The concept of this method is that the slipping mass is divided into 

many vertical slices of equal width (b) as shown in Figure (2-10).  By analysing the 

forces acting on every slice (forces perpendicular to and along the slip surface and the 

weight of each slice) and ensuring that equilibrium is maintained over the whole set of 

slices, the yield acceleration khy can be determined:  

 

Figure (2- 10): Principles of yield acceleration determination  

(Kim and Sitar, 2004) 
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Many trials must be made changing the position of slip surface to determine the 

critical (lowest) value of the yield acceleration.  

Terzaghi (1950) suggested that the pseudostatic inertia forces act through the centre of 

gravity of each slice when using the slice procedure.  However, this is not true 

because the acceleration is not constant within the soil mass when the shear plane is 

deep below the surface of the slope.  Seed (1979) studied the effect of the position of 

the pseudostatic force on the factor of safety of an earth dam.  He found that changing 

the position of the pseudo static force from the center of gravity of the slice to the 

bottom reduces the factor of safety from 1.32 to 1.21 for a ground motion having a 

PGA of 0.1g.  According to many dynamic analyses reported for different earth dams 

(i.e., Seed, 1979; Okamoto, 1984; Meen and Hsien, 2009) the peak acceleration is 

magnified from the bottom of the dam to the top.  Thus, the location of the seismic 

force resultant should be above the center of the gravity of the slice in the case of 

translational slip surface (Makdisi and Seed, 1978). Makdisi and Seed (1978) also 

suggested that the computed factor of safety provides an indication of the possible 

magnitude of seismically induced displacement.  However, pseudostatic analysis is 

not perfect because in many cases seismic factors of safety have been calculated well 

above 1.0 for many embankment dams that later failed during earthquakes, such as the 

Sheffield Dam and many tailings dams (Kramer, 1996).  

Ding (2006) presented a procedure to determine the critical slip surface based on 

pseudostatic analysis within the limit equilibrium framework. The procedure was 

extensively validated by a series of simulations performed using the Imperial College 

Finite Element Program with an elastic perfectly plastic Mohr-Coulomb model.  In 

these simulations different strength parameters and initial stress fields were assumed 

to check the independency of these conditions.  Good agreement was achieved 



Chapter 2                                                                                                 Literature review 

24 

 

between the proposed procedure and finite element analysis, in terms of the critical 

acceleration, the critical slip surface and the stress distribution along the critical slip 

surface, both for homogenous and non-homogenous slopes. 

Deng (2006) used stress acceptability as a prerequisite to derive a system of nonlinear 

equations to determine the slip surface slice by slice upward.  He used an iterative 

approach to overcome the divergence near the corner point of the slope and a slip-path 

approach is employed to account for the variety of potential failures at the boundaries 

of different soil layers. In the homogeneous cases without pore water pressures, the 

shows that the equations can be expressed analytically; however for inhomogeneous 

slopes or when pore water pressures are considered, he shows that the equations can 

only be solved numerically.  For homogenous slopes, the method is summarised 

below (Deng, 2006): 

(1) A possible slip surface is selected from experience and the associated yield 

acceleration for that surface is found using an established stability analysis 

method, e.g. Sarma (1973) or Sarma (1979).  The initially assumed slip 

surface may not be acceptable in terms of stress and kinematical acceptability.   

(2) A starting point is picked from the slope surface and the yield acceleration 

found in step (1) is used as an initial approximation of the yield acceleration. 

(3) A slip surface path is designated. 

(4) A slip surface is defined slice by slice. The increment Δx in the horizontal 

direction along with the two inclination angles of the two sides defines the 

geometry of a standard slice.  Each slice is then solved separately using 

special algorithm.   

(5) Comparing the yield accelerations obtained from different slip surface paths, 

the slip surface path with the minimum acceptable yield acceleration was 

selected. 

(6) Steps (2) to (5) are repeated for different starting points.  From the second 

loop, the yield acceleration obtained from the previous loop can be used as the 

initial approximation of the critical acceleration. 

 

Deng (2006) shows that by repeating steps (2) to (5), every starting point on the slope 

surface can be analysed and then the slip surface and associated yield acceleration can 

be determined for each starting point.  Another possible option he explained to obtain 
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the critical slip surface is that the starting point can be generated randomly within the 

possible area for starting points. Provided that the number of random points is large 

enough, the minimum value of the yield accelerations is close to the statistical global 

minimum.  

Figure (2-11) shows an example from Deng’s procedure where three slip surface 

paths are designated for inhomogeneous soil with three layers and three different sets 

of properties.  The first one was defined as when the slip surface encounters the first 

soil layer interface; it was clearly shown that slip surface was developed along the 

interface and then carried on.  The second one was defined as that when the slip 

surface crosses the first soil layer interface but develops along the second soil layer 

interface.  The third one was defined as that when the slip surface crosses all the soil 

layer interfaces.  Figure (2-12) shows the comparison between the Zolfagari et al., 

(2005) approach based on genetic algorithms and the new procedure proposed by 

Ding (2006). 

 

 

Figure (2- 11): Slip surface path example. Note that different surfaces encounter the 

first soil layer boundary at three different points near B but the differences are too 

small to be seen (Ding, 2006) 
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Figure (2- 12): Comparison of slip surfaces of four-layer slope given by the new 

procedure and that obtained by Zolfaghari et al. (2005) using a genetic algorithm 

approach for (a) horizontal layers and (b) inclined layers (Ding, 2006) 

2.3 Prediction of seismic slope slip 

2.3.1 Newmark sliding block analysis 

This method was originally proposed by Newmark (1965) and can be used to estimate 

the amount of movement that a slope will undergo under earthquake shaking.  The 

Newmark sliding block approach provides a better way of investigating the likely 

hazard imposed to a slope than a pseudo-static analysis for many reasons (Ding, 

2006).  Firstly, damage assessment in-situ is usually based on measureable induced 

movement, thus, factor of safety and the yield acceleration cannot be directly 

measured in-situ – it can only be said that the yield acceleration has been exceeded.  
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Secondly, the varyiation of the factor of safety below unity during earthquake 

shaking, especially during strong earthquakes, may not lead to severe displacements 

with the displacement at the end of the earthquake being extremely small, while the 

final factor of safety may be above unity.  Finally, depending on the nature and 

requirements of a specific earth-structure, different displacement limits may be 

regarded as acceptable; and by employing a Newmark sliding block method of 

analysis, specific tolerances for each particular situation can be employed.  Failure 

and damage can be easily quantified within a model using displacements; such 

quantities provide a much more comprehensive representation of the real case than 

does that use of the critical acceleration or factor of safety alone.  

The method is based on the concept that the potential failure mass will be accelerated 

by an unbalanced force if the inertial forces acting on exceed the available resisting 

force (i.e. FS < 1.0). 

 

 

Figure (2- 13): Newmark technique (a) block sliding on inclined plane; (b) real slope 

sliding 

 

The block shown in Figure (2-13a) is statically stable at a certain inclined plane. 

Under horizontal acceleration ground motion ga  (neglecting the vertical horizontal 

acceleration), the horizontal force driving slip will be governed Wkh  as shown in 

Figure (2-13a). The dynamic factor of safety at this case will be: 
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It can be noticed that with zero hk  coefficient, the factor of safety reduces to that for 

an infinite slope (slide block) under static conditions (i.e. Equation (2-7)).  The yield 

acceleration is found as in Section 2.2.2 by setting FS = 1.0.  For the case of the 

sliding block, slipping in the downslope direction, this is given by 

 

ggka hy )tan(                                        (2-19) 

 

while for a real slope (e.g. Figure 2-13b) the yield acceleration is calculated using the 

methods described in Section 2.2.2.2.  For idealised homogeneous cases, charts of 

yield acceleration, such as those by Prater (1979) and Lighrhall, (1979), have been 

developed, similar to those used to derive the stability charts for the factor of safety.  

The single block procedure is directly applicable in cases of planar translational 

failures (using Newmark's formulation) or circular rotational failures (Sarma, 1981).    

The slope becomes unstable when the driving forces exceed the resisting forces of the 

slope mass which results in a net acceleration acting on the slipping mass, causing this 

mass to slip downhill (Newmark, 1965).  The soil mass continues to slip until the 

inertial forces have been removed or until the net acceleration acting on the mass has 

slowed it to rest.  Further sliding will occur if the ground acceleration exceeds the 

yield acceleration in subsequent cycles.  Newmark slip displacement is determined by 

double integrating the regions of the input motion record which lie above the yield 

acceleration, as illustrated in Figure (2-14). Many methods can be used to do this 

integration, some rigorous and others simplified (e.g. Chang et al., 1984, Makdisi and 

Seed, 1978, Newmark, 1965).  



Chapter 2                                                                                                 Literature review 

29 

 

 

Figure (2- 14): Demonstration of classical Newmark analysis algorithm (Wilson and 

Keefer, 1983) 

  

The selection of the input ground motion is critically important for two main reasons.  

Firstly, sensitivity of the earthquake causing slope displacement to the value of the 

yield acceleration (i.e. small changes in yield acceleration lead to large variation in 

slope displacement, due to lots of cycles having similar peak accelerations).  

Secondly, great variation in slope displacements will occur due to any acceleration 

pulse amplitudes distribution variation between different ground motions and the 

directionality of the motion (Kramer, 1996).  Following the Newmark method, charts 

have been developed by calculating the cumulative displacement for large sets of 

earthquake records. These charts include those by Wilson and Keefer, (1983) and 

Bray and Rathje, (1998). 

 

2.3.2 Effect of soil constitutive properties 

In the original development of the sliding block method, (Newmark, 1965), the 

assumption of a constant shear strength along the slip surface was made, resulting in 
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the implicit assumption of a constant yield acceleration throughout an earthquake, 

which may not always be appropriate.  Newmark suggested that modification of the 

method to account for cyclic degradation of the shear strength, i.e. degradation of the 

yield acceleration, might be justified. However, this suggestion has been largely 

ignored by the geotechnical communities. Therefore, it is not strange that this 

procedure is not found in most routine implementations of Newmark analysis.   

Matasovic et al. (1997) used a yield acceleration evaluated from residual and large 

deformation shear strength parameters to account for strength degradation due to 

shearing.   This modification considered a tri-linear model for degradation of yield 

acceleration as a function of displacement. In this model, shown in Figure (2-15), it 

was assumed that degradation of the initial value of yield acceleration, ky1, starts when 

the calculated permanent horizontal displacement coincides with peak shear strength 

(displacement, δ1).  After reaching the maximum force, the yield acceleration 

degrades linearly with increasing displacement until the ultimate “residual” yield 

acceleration, ky2 , is reached at a second displacement, δ2 corresponding to residual 

strength.   

 

 

Figure (2- 15): Shear softening behaviour; (a) shear force-displacement; (b) yield 

acceleration degradation (Matasovic et al., 1997) 

 

Figure (2-16) illustrates how the degrading yield acceleration model shown in Figure 

(2-15) impacts the results of a Newmark deformation analysis.  Analyses performed 

by Matasovic et al. (1997) support the logical inference that cumulative displacement 

calculated with the degradation model illustrated in Figure (2-16) is consistently lower 
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than the cumulative displacement calculated by the classical Newmark procedure with 

a constant yield acceleration based upon residual strength parameters. 

 

Figure (2- 16): Comparison between classical and modified Newmark’s procedure 

(Matasovic et al., 1997) 

 

2.3.3 Post-earthquake slope deformation 

In addition to co-seismic deformation, as described in the previous sections, 

(Ambraseys and Srbulov, 1995) recognised that in many cases of natural and man-

made slopes, slope deformation may be defined by three consequent stages.  The first 

stage relates to the co-seismic slip described previously, where the seismic inertia 

forces lead to the creation of a failure surface or re-activate an existing slip surface, in 

either case resulting in permanent displacement of the slope.   

In the second stage, which comes directly after the earthquake, the downslope 

displacement will continue towards the slope toe due to insufficient shear strength on 

the slip surface to maintain static equilibrium.  In this stage, gravity works as the 

driving force, while the resisting force depends on the strength available on the slip 
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surface generated during the first stage, the resistance offered by the toe and the rate 

of strength regain on the slip plane (e.g. due to excess pore pressure dissipation).  In 

the final stage, creep, consolidation and hydrostatic forces may be generated because 

cracks produced by the earthquake may fill with water, resulting in further movement. 

Ambraseys and Srbulov (1995) calculated the displacements in the post-seismic stage, 

immediately after the earthquake, by employing a two-block sliding model.  It 

simulates the motion of a slide that can be approximated by two planar shear surfaces 

with minimal internal disruption. In this stage movements will begin with a static 

factor of safety less than unity, and a section of the slope will move under gravity (but 

no seismic inertia forces) to a new position of equilibrium.  In this procedure, it is 

assumed that the slope has a finite length and that the mass slips on a surface 

produced by the earthquake during the first stage.  It is also assumed that the slip 

surface consists of two slip planes: one of length L with a depth h parallel to the slope 

and inclined to the horizontal at an angle β, and a second plane of initial length b, 

which is inclined at an angle   (Figure 2-17). This is a model of two continuous 

blocks, free to slide on two plane surfaces, separated by an inter-slice plane at an 

angle β to the horizontal. This model takes into account the internal deformations and 

uses the concept of mass transfer between blocks. 

 

Figure (2- 17): Sliding block model used for the assessment of post-seismic 

displacements (after Ambraseys and Srbulov, 1995) 
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Chlimintzas (2003) further developed the method of Ambraseys and Srbulov (1995) 

by taking into account the seismic sliding of the slope during the earthquake event. 

The Ambraseys and Srbulov method was limited to two blocks; only the post-seismic 

movements were analysed, simplified geometry was used to represent the failure 

mechanism and it does not clearly consider a geometry transformation rule during 

sliding.  Thus, Chlimintzas, (2003) developed a more general multi-block dynamic 

model which was based on Ambraseys and Srbulov (1995).  A failure mechanism 

must be observed for the application of the multi-block dynamic model and if the 

slope starts to move, the failure mechanism has to be kinematically acceptable. The 

main geometry changes that are accommodated by the model are: firstly, the mass is 

transferring from one slice to another; secondly, it results in changes of the cohesion 

forces due to variations in inter-slice boundaries. The mass transfer and internal 

deformation that result from the displacement of the slope can be thought of as 

constituting a geometry transformation. Figure (2-18) shows the transformation 

mechanism that is used in the model to produce the deformed geometry. 

 

 

 

Figure (2- 18): Geometry changes and mass transfer in a three-block system with 

straight initial ground surface (AD). New ground surface = A'F''H'E''E'J'D' (After 

Chlimintzas, 2003) 
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2.5 Pile stabilised slopes 

Perry (1989) recommended that the slope must be constructed at a slope angle 

between (1v:5h – 1v:2h) without any remediation by piles or other techniques. But for 

steeper slopes, stabilising techniques should be used.  Piles are one of the most widely 

used foundation elements in geotechnical design and widely used by geotechnical 

engineers to stabilise slopes against environmental effects.  Improved slope 

performance during/after earthquakes is particularly important where the sloping 

ground is part of an embankment or cutting adjacent to transport infrastructure such as 

roads and railways.   

The main advantage of using deep foundations (piles) in slope stabilisation is to utilise 

the bending response of the pile to stabilise the sliding mass by making use of the 

significant resistance available in stronger stable strata, thereby increasing the 

resistance available, increasing FS and yield acceleration and reducing the downslope 

movements.  These are normally installed as a discretely-spaced pile row running 

along the slope at a centre-to-centre spacing, S, passing through the unstable slipping 

soil mass to be anchored in the underlying stable soil.  Ground movements generate 

relative soil-pile movement, which in turn leads to lateral soil pressures developing 

along the piles, inducing bending moment at different depths. If these bending 

moments are large enough, structural damage and/or failure may occur.  As a result 

the piles must be designed to resist the lateral shear forces and moments due to the 

soil pressures generated by the lateral ground movements.  

In general, there are two main objectives when designing piled slope reinforcement.  

The first is to find the characteristics and features of the piles such as diameter, length 

of pile, location, spacing between them and the necessary embedded length in order to 

achieve the desired slope improvement with the least construction cost.  The second is 

that the internal moments and shear forces (in the seismic case) of the piles within a 

slope must be determined to design a suitable structural capacity into the piles.  The 

most commonly used approach to achieve these two objectives involves analysing the 

slope (geotechnically) and the piles (structurally) separately.  The piles add an 

additional resistance force to the slope sliding mass (increasing the factor of safety for 

the pile-slope system) as demonstrated by Ito et al. (1981); Reese et al. (1992); 

Hassiotis et al. (1997), amongst others.  They additionally provide soil arching in the 
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slope ( increasing the factor of safety due to decreasing of driving stress of the pile-

slope system (Liang, 2002). 

Wassel Al Bodour (2010) showed a simple schematic model of a pile reinforced slope 

as shown below: 
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Where: 

ceresisF tan : Resistance force 

drivingF : Driving force 

archingdrivingF )( : Additional driving force due to arching effect 

pileceresisF )( tan : Additional resistance forced due to pile resistance 

Equations (2-20) and (2-21) above are appropriate to infinite slope procedures, i.e. the 

slope is assumed to extend to infinity in all directions and sliding is assumed to occur 

along a plane parallel to the face of the slope (translation failure for cohesionless 

soils). In rotational failures, the shape of the slip surface is usually circular (or close to 

it).  Thus, it is more appropriate to find the factor of safety using the moment of forces 

around the point of rotation:  

 

                                                        (2-22) 

 

Equation (2-22) is generally applicable for reinforced or unreinforced slopes.  

Addition of stabilising piles to remediate the slope adds an additional resistance 

moment obtained from the pile shear force at the pile tip and bending moment in the 

pile at the depth the sliding surface as shown equation and Figure (2-19). 
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where:  

iF         Safety factor of un-stabilised slope. 

F       Increase in safety factor of slope when reinforced with piles. 

RM       Resisting moment 

DM       Driving moment. 

crM      Bending moment at critical surface. 

crV        Shear force at critical surface. 

headV    Shear force at pile head. 

 

 
 

Figure (2- 19): Forces on stabilising piles and slope 

 

2.5.1 Effect of pile row position 

Much research has been conducted to investigate the best position of slope stabilising 

piles within a slope.  Actually, this depends on many variables incuding: type of slope 

soil, failure surface shape and any surcharge loads for any infrastructure located near 

the cerst of the slope. The earth pressures acting on the piles come from the soil 

movements and the generated bending moments within the piles will change with 

position within the slope.  Placing piles near the toe of the slope is widely used in case 

of landslides to cover all of the expected sliding mass.  This will not prevent any 
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failure near the crest of the slope, especially in steeper slopes.  While placing of the 

piles near the crest of the slope will prevent or reduce potential failures at the crest, 

this could push the failure behined the piles at the crest, leading to damage of any 

structures near the toe of the slope.  From this discussion, it seams that locating the 

piles between the toe and the crest may be more appropriate to stabilise slopes.   

Ausilio et al., (2001) used an upper–bound plasticity method to determine the best 

place to position piles in a slope (under static conditions).  It was found that piles near 

the toe of the slope gave improved remediation (higher factor of safety).  Lee et al., 

(1995) observed that piles near toe and crest of slope gave optimum results. However, 

the placement of piles in the middle of the slope has given best stabilisation results in 

other studies using the finite element method (Wei and Cheng, 2009; Won et al., 

2005; Ellis et al., 2010).   

Madden (2008) used micro concrete piles modelled in a miniature geotechnical 

centrifuge to study pile-reinforced slope behaviour of steep cohesive slopes.  Different 

pile spacing and pile positions were used in this study.  It was found that when the 

spacing was reduced between the piles row and moved towards the toe of the slope, 

the improvement in stability increased especially when the row is installed along the 

toe of the slope.  However, the middle of the slope was found to be almost as 

effective.  Cai and Ugai (2000), used the finite element method to analyse a 10 m high 

slope to investigate the best position for piles to give the greatest stabilising effect on 

the slope.  Their study showed that the maximum measured factor of safety (by 

reducing the soil strength parameters until slope failure occurred) was observed when 

the piles were placed exactly at the middle length of the slope (X/L = 0.5) where X is 

the distance from the toe to the pile position while L is the total horizontal length of 

the slope. This finding has been compared with measured factors of safety based on 

limit equilibrium slope stability analysis principles using Ito and Matsui (1975) as 

shown in Figure (2-20).     
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Figure (2- 20): Location of pile in the slope-factor of safety relationship  

(after Cai and Ugai, 2001) 

2.5.2 Effect of pile row spacing 

The second design criteria when designing slope-stabilising piles is to determine the 

maximum pile spacing that can be used to give effective soil arching.  For piles at 

wider spacing, no arching will be developed between piles and flow of soil between 

piles will occur.  If the piles are installed closer together (low S) then the earth 

pressures from the unstable soil mass will continue to arch between the piles, but 

below the maximum value, the additional piles will not necessarily provide greater 

reduction in slope displacements.  Many factors affect the maximum pile spacing 

including: soil properties, type of failure surface and stiffness and diameter of the 

selected piles.  The ultimate bending capacity of the piles is also one of the main 

important factors in pile-slope system (discussed in greater detail in Section 2.6).  

The diameter of piles and the spacing between them must be taken into account in the 

pile-reinforced slope design in order to minimize the flow of soil between them.  

Many previous studies have been conducted to better understand the positioning 

(spacing) of the piles for optimal improvement of a slope’s performance.  Numerically 

and analytically, Ito and Matsui, (1975); Ito et al (1982); Wang and Chen 1974 and 

Bransby and Springman (1999) amongst others investigated the detailed stress 

conditions and failure mechanisms around a row of piles to understand how the 

kinematic loading and onset of arching is affected by pile spacing.  Most of this 

existing research suggests that the spacing between piles in a row should not be more 

than five times the pile diameter as beyond this spacing, interaction between any two 

adjacent piles is small, and there is no interaction between adjacent piles once the 

spacing is greater than 8D (Carder, 2009). This has recently been refined by 
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centrifuge modelling under monotonic loading conditions by Ellis et al. (2010), who 

proposed a simple means of estimating the maximum spacing for effective 

reinforcement (i.e. the value beyond which arching would not occur between 

individual piles):   

ap
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.max

                                 (2-24) 

 

where S is the pile spacing (centre to centre), d is the pile diameter, pK  is the passive 

earth pressure coefficient, and aK  is the active earth pressure coefficient.   

Hayward et al. (2000) tested a pile-reinforced clayey slope using geotechnical 

centrifuge modelling.  It was noted that at a spacing of 6.3D, the slope failed, while no 

failure occurred for the other models (spacing = 4.2D and 3.2D). 

In terms of using piles to stabilise slopes against seismic actions, Kourkoulis et al. 

(2011) studied the effect of pile spacing on slope behaviour during earthquakes using 

the Finite Element Method.  This work demonstrated that when the normalised pile 

spacing, S/B (where B is the diameter of the pile), was less than 4, soil arching 

between piles will be generated, while for S/B > 5 the piles will behave as single piles 

(no soil-arching). 

 

2.5.3 Effect of relative soil & pile properties 

Martin and Chen, (2005) used a displacement-based method within the FLAC Finite 

Difference program to evaluate the response of piles in embankment slopes acting in a 

translational failure mode, induced by a weak soil layer beneath the embankment. The 

study showed that the maximum shear force developed at the bottom of the weak 

layer, while the maximum bending moment developed towards the top of the stable 

layer as shown in Figure (2-21).  The study of pile bending stiffness on the quantity 

and the location of the pile deflection was also investigated. This was done by 

increasing and decreasing the pile bending stiffness by changing the pile element 

diameter. When the pile bending stiffness was ten times higher than the primary 

studied case (i.e. 10EpIp), the pile deflection was larger than the soil movement and 

this was consistent with what was observed by Polous (1995) (i.e. intermediate mode 
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failure). In contrast, decreasing of the bending stiffness to (0.1EpIp) gave pile 

deflections close to the soil movement (short pile mode). These observations can be 

attributed to the higher shear forces and bending moment which were observed in the 

stable layer of the higher bending stiffness model.  

 

 

Figure (2- 21): (a) Shear force and (b) bending moment distribution within laterally 

loaded piles (Martin and Chen, 2005) 

2.6 Laterally loaded piles 

2.6.1 ‘Active’ and ‘passive’ piles 

Piles which carry lateral loads may be classified as either passive piles (where earth 

pressure acts along the pile length due to relative soil-pile movement, such as in a 

pile-reinforced slope) or active piles whereas the piles are pushed into the soil (loaded 

at the top such as in, for example, a highway bridge). Figure (2-22) shows these two 

cases of lateral loading of a pile. 
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Figure (2- 22): Laterally loaded pile; (a) Passive pile loading; (b) Active pile loading 

 

For passive piles, the relative displacement between any two adjacent piles and the 

displacement of the pile itself is used to observed the P-δ curve (δ being the relative 

soil-pile displacement and P is the loading pressure along the pile) while for active 

piles, the pile displacement itself is used to observed the P-y curve (y is pile 

displacement).  Chen and Martin (2002) showed that the p-δ curves are stiffer from P-

y curves and the arching phenomenon is more effective in passively loaded piles (i.e. 

Figure 2-23). 

 

 
Figure (2- 23): the differences between p-δ and p-y for drained soil strength  

(After Chen and Martine 2002) 
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In the case of passive piles, relative soil pile movement generates internal forces in the 

piles, which depend on many variables including the amount of relative displacement, 

soil properties, relative soil-pile stiffness and pile spacing.  If the piles do not fail, 

increasing of the movements during an earthquake will lead to increasing of earth 

pressure acting on each pile to a certain limit, the ultimate soil pressure, beyond which 

the soil will yield around the pile, and there will be no further increase in internal 

forces.   

 

2.6.2 Ultimate lateral pressure on individual piles 

The maximum lateral pressure induced by mass slope movement that can act along 

the piles is given by the ultimate pile-soil capacity.  After this point, the soil starts to 

slip plastically between piles.  Randolph and Houlsby (1984) showed that this 

ultimate load for a single pile in cohesive soils at depth, where a flow failure 

mechanism dominates is given by: 

dCNP upu ..                                                (2-25) 

 

where pN  varies between 9.14 for smooth piles to 11.9 for rough piles and d is the 

pile diameter.  The lateral pressure coefficient pN  is suggested to reduce to less than 

half value ( pN =2.8-4) in the failing zone near the surface of the soil due to a wedge 

type mechanism forming instead (Viggiani, 1981):   

 

9)1.(2 
d

z
N p                                            (2-26) 

where: z  is soil depth and d is the pile diameter.   

For cohesionless soil, Broms (1964) assumed that the ultimate lateral resistance is 

equal to three times the Rankine passive earth pressure.  Thus, at any depth below the 

ground surface, the soil resistance per unit length can be determined from the 

equation: 

pvu KbP ...3 '                                                 (2-27) 
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where b  is the pile width or diameter, pK  is the Rankine passive earth pressure 

coefficient: 

                                  )
2

45(tan2 
pK                                (2-28)  

and v   is the overburden pressure at depth z.  Barton (1982) used centrifuge test 

results to propose a variation of lateral pressure with depth given by: 

 

  dKP vpu ..
'2                       (2-29) 

Comparing Equations (2-27) and (2-29), Kp  3 for most cohesionless soils, so that the 

two equations would give approximately the same limiting pressure.   

 

2.6.3 Ultimate lateral pressure on piles in a row 

Bransby (1996) described the pile-soil displacement under lateral kinematic loading 

(pile-reinforced slope) as shown in Figure (2-24).  Under lateral loads, the pile will be 

displacing relative to its initial position by (δp). The soil in the midway between the 

two adjacent piles will be displaced by a value of (δs). From the equivalent pile-soil 

displacement (δeq) for the same swept area (A1 = A2), the total displacement of the 

system is (δ = δeq – δp).  Bransby and Springman (1999) subsequently showed that 

there is a little variation of the ultimate earth pressure acting on the piles over a range 

of spacing when the piles are in a row in cohesive soil.   

 

Figure (2- 24): Soil-pile displacement under lateral loading (Bransby, 1996) 
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Greater variation is observed with spacing in cohesionless soils (Chen and Martin, 

2002).  Chen and Poulos (1997) studied passively loaded piles in sand and they 

showed that the ultimate pressure decreases with reducing pile spacing.  Similar 

behaviour was observed by Liang and Zeng (2002) using the Finite Element Method. 

Ito and Matsui (1975) considered a general soil strength model (Mohr-Coulomb yield 

criterion) as shown in Figure (2-25).  Assuming that the soil yields around the piles in 

this way gives the maximum pressures that the piles must be able to carry if they are 

not to break. Whether this can be provided will depend on the structural capacity of 

the piles. 

 

 

Figure (2- 25): State of plastic deformation in the ground just around piles  

(Ito and Matsui, 1975) 

 

The planes EB and E’B’ in Figure (2-25) are assumed to be principle stress planes (Ito 

and Matsui, 1975); this assumption is incorrect because the two planes are not 

perpendicular on another.  Thus, De Beer and Carpentier (1977) assumed corrected 

principal stress directions and resolved the solution to determine the pile loading and 

they found that there large differences to the Ito and Matsui calculated values 

especially for drained soils.   
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2.6.4 Mobilised forces within actively-loaded piles 

2.6.4.1. Elastic continuum approach 

Laterally loaded piles analysis was started at the beginning of the 1960s using the 

boundary element methods.  Some of the presented solutions for both free-head and 

fixed-head pile response are presented by Poulos (1974).  Some of these solutions are 

based on constant soil shear modulus with depth, while others based on linear 

variation in soil modulus with depth (i.e. Banerjee and Davies 1978); these are 

summarised in Table (2-1) and Figure (2-26). 

 

 

Table (2- 1): Summary of elastic solutions of laterally loaded piles with constant soil 

modulus with depth (Poulos, 1971). 

Pile response Free-head pile Fixed-head pile 

Pile-head displacement (U) 
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From Figure (2-31) From Figure (2-31) 
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Figure (2- 26): Lateral pile responses influence factors in Case of Constant Soil 

Modulus (after Poulos, 1971) 

In Table (2-1) and Figure (2-28): 

                                                 4LE

IE
K

s

pp
R                                           (2-30) 

where 

RK , the pile flexibility factors. 

D is the pile diameter. 

pE  is the modulus of elasticity of piles. 

Es  is soil modulus. 

H  is the applied horizontal force at ground level. 

pI  is moment of inertia of pile. 
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UHI , UMI , HI , MI and UFI  are dimensionless influence of factors. 

L  is the pile length 

M is the moment of ground level. 

Vs  is the Poisson’s ratio. 

The continuity of the soil is taken into account in the analysis procedure of this 

method.  In determining Es, Poulos, (1995) provided a simplified lateral pile response 

analysis in which suggestions of appropriate elastic Young’s modulii of the soil were 

made.  It was shown that the lateral piles’ response depends significantly on the soil 

elastic modulus and pile-soil pressure (which depends on the relative stiffness 

between the piles and the soil).  The soil elastic moduli suggested were, for cohesive 

soil: 

                                                            us CE .                                                   (2-31)   

where: 

         sE  :  Soil elastic modulus 

 : Rigidity index between 150-400, depending on the relative pile-soil stiffness 

(Banerjee and Davies, 1978, Decourt, 1991, Poulos and Davis, 1980) 

 

For cohesionless soil: 

 

                                                           zNE hs .                                                  (2-32) 

where according to (Decourt, 1991): 

Nh
:   1.5 MPa/m      for saturated loose sand 

Nh
:  5 MPa/m         for saturated medium dense sand  

Nh
 : 12.5 MPa/m    for saturated dense sand  

z : soil depth 

The nonlinearity of the soil behaviour, especially under large strains, is not considered 

in this method.  Thus, this method is valid for small strain deformations only due to its 

simplicity. The elasto-plastic soil behaviour is incorporated into account, the soil 

yielding, by modified the boundary element method. The lateral pressure along pile is 

specified and limited for each element and the calculated soil-pile pressure should not 

exceed these limitations (i.e.Spillers and Stoll, 1964). Poulos (1971) followed some of 

these principles to investigate the effects of soil yielding on the response of laterally 



Chapter 2                                                                                                 Literature review 

48 

 

loaded piles in different soil pressure along the pile-depth. The yield of the soil, 

variation in soil modulus and layered soil has been widely taken into account in 

modified boundary element analysis. However, analysis methods that summarised 

above are suitable for static problems only and they needs a lot of work experimental 

data to be applicable to work under dynamic loads. 

 

2.6.4.2 Winkler method and P-y method 

Winkler (1867) represented a laterally loaded pile as a beam in elastic soil with the 

soil represented as a series of elastic springs. The idea of this method is illustrated 

schematically in Figure (2-27). 

 
Figure (2- 27): illustration of Winkler spring methods for laterally loaded piles. 

 

The information required for analysing laterally loaded piles using this method are 

summarised in Table (2-2).  The method is also known as the subgrade reaction 

method.  The subgrade reaction term referred to indicates the pressure or soil reaction 

per unit length of pile, p, induced for unit deflection of the pile, y.  The ratio between 

p and y is called the modulus of subgrade reaction: 

                                                 
y

p
k                                           (2-33) 
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Terzaghi (1955) showed that the modulus of subgrade reaction considered being 

independent of pile diameter while others observed that the soil resistance is 

significantly effects with increasing of pile diameter. (i.e. Carter, 1984 and Liang, 

1988). 

 

Table (2- 2): Definitions and dimensions used in laterally loaded piles analysis 

Description Symbol Definition Dimension  

Soil resistance per unit length  p  F/L 

Pile deflection y  L 

Pile diameter D  L 

Spring spacing L  L 

Spring force F LpF  *  F 

Soil pressure P  P Dp /  F/L
2
 

Modulus of subgrade reaction K 
y

p
K   F/L

2
 

Soil spring stiffness Ks LK
y

F
Ks   F/L 

Coefficient of subgrade 

reaction 

k 
D

K

y

P
k   F/L

3
 

 

According to this concept, the lateral pile analysis is represented by a fourth-order 

differential equation: 

0
4

4

 ky
dz

yd
IE pp                                      (2-34) 

where pE  the modulus of elasticity of the pile, pI  is the moment of inertia of the pile 

section and z is the depth.  By using a constant modulus of subgrade reaction with 

depth, the analytical solution can be obtained.  The finite difference method can be 

used to solve the problem where the subgrade reaction varies with depth. 

Vesic (1961) estimated the modulus of subgrade reaction from the soil shear modulus 

and pile bending stiffness as: 
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where sE  soil modulus,   Poisson’s ratio of the soil, D  pile diameter and ppIE  

the bending stiffness of the pile. 

To overcome some of the limitations of the original Winkler model, non-linear 

springs can be used, with properties that vary with depth.  This is widely known as the 

p-y method.  Full scale lateral loads tests results conducted at different ranges of pile 

diameters in-situ have been used to obtain pile deflection-soil resistance relationships, 

i.e., the P-y curve (e.g. Reese et al., 1974 for sands and Matlock, 1970 for soft clays).    

 

2.6.4.3 p-y curves in sand 

Results of in-situ tests of 0.6m embedded piles within the Mustang Island sand and 

flexible driven embedded piles in submerged dense fine sand of Cox et al. (1974) 

were used by Reese et al. (1974) to determine P-y curves in sand.  He observed that 

the P-y curve relationship is non-linear and can be approximated by three straight 

lines covering three regions which can then be connected by a parabolic curve. In this 

procedure, the initial modulus of subgrade reaction and the ultimate soil resistance are 

estimated using relative densities (Reese et al., 1974).  For small deflection (linear 

variation of soil modulus, Es with deflection), the initial line of the curve is governing. 

Thus, the first portion is observed at a small load level.  The ultimate soil resistance 

can be determined by the wedge failure mechanism theory near the ground surface 

and flow failure model below the ground surface (as outlined in Section 2.6.2).  The 

wedge failure mechanism is shown schematically in Figure (2-28a) and a typical 

normalised P-y curve for sand is shown in Figure (2-28b). 
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Figure (2- 28): wedge failure mechanism in sand; and (b) P-y curve for sand (After 

Reese et al., 1974) 
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The total lateral force can be determined by using the minimum values given by the 

two equations below: 
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And 
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At both 
80
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D
ym  , and for static or dynamic problems, up  and mp  

respectively can be calculated using the equations below: 

 

                                                    ucycliccyclicu pAp                                           (2-39) 

                                                   ucycliccyclicm pBp                                        (2-40) 
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Where cyclicA  and cyclicB  are dimensionless parameters to calculated the ultimate 

soil; resistance and can be determined from Figure (2-29). 

 
 

Figure (2- 29): Dimensionless parameters for ultimate soil resistance calculations 

(Reese et al., 1974)  

The initial straight line of the p-y curve in the first portion can be calculated by: 

                                                             zykp py                                                 (2-41) 

where pyk  can be determined from Table (2-3). 

 

Table (2- 3): Initial stiffness for sand (Reese et al., 1974) 

State of sand Loose sand Medium sand Dense sand 

(based on relative density) o30  o3630   
o36  

pyk  above water table (kN/m
3
) 6800 24400 61000 

pyk  below water table (kN/m
3
) 5400 16300 34000 

 

The parabolic curve to connect the two straight lines at points m and u can be 

calculated using the parabolic equation: 

                                                             nCyp
1

                                                 (2-42) 
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Finally, the point k can be determined by the equation: 
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O’Neill and Murchison (1983) developed a new set of P-y curves which were later 

approved by the American Petroleum Institute (API) to estimate the load-deflection 

relationship (p-y curve) in sands.  The P-y curve in sandy soil was simplified using a 

hyperbolic tangent function to represent the shape of the relationship.   
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.
tanh..                                       (2-44) 

where p is the soil resistance which is given as the reaction force per unit length 

acting on the pile, pu is the ultimate soil resistance which is given as a point of 

maximum soil resistance, y is the lateral relative soil-pile deflection, A is a 

modification factor for cyclic loading (= 0.9), k is the initial modulus of subgrade 

reaction and z is the depth of failure zone.  The ultimate lateral capacity pu is 

calculated as the lower of: 

                                                  zDCzCpu .)...( 21          for shallow depth       (2-45) 

                                                      zDCpu 3              for deep depth            (2-46) 

where D is the pile diameter (width here) and   is the effective unit weight of soil.  

The initial subgrade reaction (k) can be determined as a function of the angle of 

friction also from the Figure (2-32a), while coefficients C1, C2 and C3 can also be 

calculated as a function of the angle of internal friction (API recommended practice, 

2000) from Figure (2-30b). 
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Figure (2- 30): Initial subgrade reaction and dimensioless parameters to determine the 

ultimate soil resistance (API, 2000) 

2.6.5 Mobilised forces within passively-loaded piles 

Piles used to remediate slopes will be subjected to lateral load in the direction of the 

slope due to the relative soil pile movement, as described previously. Two major 

considerations should be taken into account in the design of laterally loaded piles, 

namely lateral pile head displacement and the maximum bending moment in the pile 

(Tandjiria et al 2000). 

The slip surface in the slope may be either shallow or deep. Recent studies have 

shown that the maximum bending moment is generated below the slip surface while 

the maximum shear force occurs at the slip surface.  For these reasons, the piles 

should be embedded to a suitable depth below the slip surface to prevent or reduce the 

overall sliding of the pile through the soil mass and to make the pile as a restrained 

element against the movement.  Figure (2-31) shows the failure mode for different 

slip depth-pile length ratios (Poulos, 1995). 

 



Chapter 2                                                                                                 Literature review 

55 

 

 

Figure (2- 31): Typical failure mechanisms observed for piles with different 

embedded lengths (Poulos, 1995) 

The mobilised soil pressures also depend on the relative soil-pile stiffness.  The piles 

which stabilise a sliding slope may be idealised as rigid or flexible. (Viggiani, 1981).  

The term ‘rigid’ refers to a pile which is very stiff compared to the soil and generally 

having a moment of resistance much bigger than the maximum bending moment 

induced. The term ‘flexible’ refers to piles which are likely to bend appreciably as the 

soil deforms and which have a moment of resistance near the value of maximum 

bending moment induced within the pile. Models of failure and induced forces and 

bending moments for rigid and flexible piles are shown in Figure (2-32). 
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Figure (2- 32): Failure models for: (a) rigid piles, (b) with plastic hinges (Viggiani, 

1981) 

It is generally assumed for laterally loaded piles that there is no bending moment 

along the piles before soil movement due to slope failure, with the initial distribution 

of stresses assumed to be uniform around pile (Figure 2-33a).  As the soil starts to 

move due to slope failure, a soil pressure on the upslope face of pile is induced and 

the distribution of this pressure will be just on upslope face along the pile (Figure 2-

33b).  The soil pressures acting on the pile can be determined using the p-y method 

where the p-y curves have soil displacements included within the moving soil as part 

of the relative displacement.  Once the soil reactions have been determined, the shear 

force distribution can be obtained by integration of the soil reactions along the length 

of the piles; further integration can then give the bending moments, rotations and 

displacements.   
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Figure (2- 33): schematic conceptual of load-deflection definition 

2.7 Arching in pile-reinforced slopes 

According to the published ASCE Glossary of terms and definitions in soil mechanics 

in 1958, arching refers to the transfer of stresses from yielding regions of the soil 

mass to an adjacent less yielding or restrained region of the soil mass. Many variables 

effect this phenomenon including: soil strength, elastic modulus and displacement.   

Much previous research has been conducted for different types of soil and 

circumstances to investigate and observe the arching mechanism within piled slope 

systems.  Adachi et al. (1989) used circular and square cross sectional pile models 

made from aluminium, distributed in a horizontal arrangement in a loose sandy slope 

with 30
o
 angle of friction as shown in Figure (2-34).  A moving plate at one end of the 

model was used to provide soil movement.  Strain gauges were glued along the piles 

to measure the load during soil movement Different pile spacing were used in this 

study. They found that the arching shape between piles was observed to be 

approximately semi-triangular in the plane of movement as shown in Figure (2-34).  

The loading acting on the piles was also observed to increase with increased pile 

spacing and this effect was 15% larger for square piles compared with circular piles as 

shown in Figure (2-35).  
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Figure (2- 34): Arching effects observed (after Adachi et al., 1989) 

 

 

Figure (2- 35): Load-displacement curves for the piles at different spacing (after 

Adachi et al., 1989) 

Kaolin model slopes stabilised by piles at different pile spacing ratios (3, 4 and 6 

times the pile diameter) were tested using centrifuge modelling by Hayward et al. 

(2000) as shown in Figure (2-36).  Strain gauges were glued along the piles to 

measure bending moment while two cameras were installed, one observing the glass 

side face of the soil container and the other mounted above the slope, both for 

displacement tracking.  Hayward et al. (2000) observed that about 2m of the length of 

pile (measured from the top) was loaded uniformly due to downslope movement.  The 

distribution of the pressure along the loaded portion was calculated by differentiating 

the measure bending moment. It was also observed that the calculated pressure was 

less than the limitations suggested by Broms (1964) and Fleming (2009); this was 



Chapter 2                                                                                                 Literature review 

59 

 

attributed to the absence of a stiff strata underling the slope body leading to slope-pile 

movement towards the toe of the slope. The effect of pile spacing on the pressures on 

the piles is shown in Figure (2-37). 

 

 

 

Figure (2- 36): Model kaolin slope (after Hayward et al, 2000) 

 

 

Figure (2- 37): Effects of pile spacing on pile-head loads acting on the top 2 m of pile 

in prototype scale (after Hayward et al, 2000) 

Many numerical models have also previously been implemented to investigate the 

arching mechanism.  Liang and Zeng (2002) used the experiments of Bosscher and 

Gray (1986) and Adachi et al (1989) and by using two dimensional Finite Element 
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principles to study this behaviour as shown in Figure (2-38).  Elastic-perfectly plastic 

soil behaviour was modelled and the piles were assumed to be rigid. A triangular 

prescribed displacement was applied between the two piles to simulate the soil 

arching. The results are summarised in Figure (2-39).  They also concluded that the 

square pile gives more effective of arching compared to the circular section.   

 

 

Figure (2- 38): Finite element model of slope-pile system (After Liang and Zeng, 

2002) 
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Figure (2- 39): Pile spacing effect on generated loads on between piles (After Liang 

and Zeng, 2002) 

 

Chen and Martin (2002) used the Finite difference method to study the arching 

behaviour within pile-slope systems as shown in Figure (2-40).  A fixed displacement 

at opposite boundaries of the models and the piles remain fixed in position (In 

contrast of Liang and Zeng, 2002 model).  A semi-circular shape for the arching effect 

is indicated upslope of the piles based on the rotation of the principal stresses as 

shown in Figure (2-41).    

 

 

 

Figure (2- 40): Configuration finite difference model  

(Chen and Martin, 2002) 
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Figure (2- 41): Rotations of principal stress direction in granular soil between piles 

(Chen and Martin, 2002) 

Wang and Yen (1974) studied the behaviour of an infinite slope stabilised by circular 

piles and sliding above a strong underlying stratum, with the piles at different pile 

spacing.  As shown in Figure (2-42a), the shear bands were assumed to be generated 

either side of the piles and these shear bands transfer the stresses from the yielded soil 

between the piles to the un-yielded soil adjacent to it and then to the piles themselves.  

Figure (2-43) shows the effect of pile spacing on calculated loads along the first four 

meters of the piles’ length.  

 

 

Figure (2- 42): Soil-pile configuration for Wang and Yen, 1974 
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Figure (2- 43): Pile spacing-head pile load relationship  

(after Wang and Yen, 1974) 

 

As it seen in Figure (2-43), pile-spacing up to 11 times the diameter gives some soil 

arching.   

2.8 Dynamic soil behaviour 

2.8.1 Overview 

The dynamic seismic response of cohesionless soils has been widely studied in 

previous research, both to understand the mechanism of cyclic loading under 

earthquakes and to develop analytical procedures for evaluating the response of soil 

deposits and structures under these seismic loads.  In general, the seismic response of 

soil can be described by the shear modulus (G) and damping (D) characteristics for 

the soil deposits under cyclic loading conditions.  This can be done by using the 

equivalent linear analysis method in which the shear modus and damping ratio are 

dependent on the magnitude of the shear strain developed in the soil deposits. 

The maximum shear modulus can be determined using the general formula proposed 

by a lot of researchers (i.e. Hardin and Drnevich, 1972; Iwasaki et al., 1976; Ishibashi, 

1993) amongst others: 

 

                                    
m

oefKG
'

).().(                                            (2-47) 
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where )(K  is a decreasing function of the cyclic shear strain amplitude,  , being 

unity at very small strain (for Gmax calculations); 
'

o   isotropic effective stress and m: 

exponent of isotropic effective stress.  Hardin and Black (1968) presented a 

relationship to calculate the initial shear modulus (Go) at zero shear strain level 

(Maximum shear modulus) and the degradation of this shear modulus (G) with 

increasing of the strain level as a ratio from the Max shear modulus (
oG

G ) using the 

equation: 
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Where: maxG  is in kPa; e is void ratio and v   is the principles affective stress in kPa. 

The equation above is more applicable for sand with round-grained particles. For 

angular grained sand particles is more applicable to use the equation: 
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The shear modulus as a function of strain can then be calculated from the relationship: 
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where, r  the reference strain is given by: 
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where: 

oK : coefficient of lateral earth pressure. 

'
o : vertical effective stress. 

'c , 
' : static strength parameters in term of effective stress. 
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The damping ratio can be also calculated as a function of the strain by: 
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  (2-53) 

 

Where maxD  is the maximum damping ratio (at very large strain) and can be 

estimated by: 

    NBD 10max log5.1    (2-54) 

 

Where B a factor is equal to 33 for dry sand and 28 for saturated sand, and N is the 

number of cycles of loading. 

 

2.8.2 Factors influencing shear modulus for sand 

Hardin and Drnevich (1972) showed that there are many factors affecting the shear 

modulus during seismic loading, including confining pressure, shear strain amplitude, 

void ratio and relative density.  Seed and Idriss (1970) proposed a convenient 

relationship between the shear modulus and confining pressure: 

 

      
'

..82.218 okG    (2-55) 

where k  is the shear modulus coefficient, having a maximum value at very low shear 

strain levels ( 410 ).  They also plotted the measured shear modulus at any shear strain 

level, G normalised by the maximum shear modulus, G0 with the shear strain as 

shown in Figure (2-44). 
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Figure (2- 44): Variation of normalised shear modulus with shear strain for sand (after 

Seed and Idress, 1970) 

 

Figure (2-45) shows how the shear strength parameter ' , effective vertical stress 
'

v

, and lateral earth pressure oK  affect the shear modulus coefficient, k , based on the 

equations proposed by Hardin and Drnevich (1972).  From Figure (2-47), three 

important points can be summarised: 

1- At high shear strain level (
310 ), shear modulus coefficient is slightly 

influenced by the vertical stress, but not affected by lateral pressure oK , 

strength parameter 
'  and void ratio e. 

2- For intermediate shear strain ( 35 1010    ), there are slight influences on 

shear modulus coefficient, k , from vertical stress, effective angle of friction, 

'  and lateral earth pressure, oK , but it is strongly influenced by void ratio e. 

3- At low shear strain (
510 ), the shear modulus coefficient is influenced 

strongly by void ratio. 

These points suggest that the shear modulus coefficient is in general strongly 

influenced by the void ratio (i.e. relative density) and the shear strain level.   
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Figure (2- 45): Shear moduli of sand at many various factors (based on Hardin and 

Drnevich, 1972 equations) 

 

Iwasaki et al. (1976) provided support for the results of Hardin and Drnevich (1972) 

in that the normalised shear modulus of sand is influenced slightly by the confining 

pressure.  This is shown in Figures (2-46).   
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Figure (2- 46): Variation of normalised shear modulus with shear strain  

for sand (after Iwasaki et al., 1976) 

 

2.8.3 Factors influencing damping ratio for sands 

As for shear modulus, Hardin and Drnevich (1972) also concluded that the damping 

ratio of sand is influenced strongly by shear strain,  and effective mean principal 

stress, 
'

v  , while slightly influenced by lateral earth pressure, Ko, void ration, e, 

angle of friction, 
'  and degree of saturation, S.  They concluded also that the number 

of cycles does not significantly affect damping by determining the damping for the 

first 5 cycles and then the number of cycles from 5 to 30.  Figure (2-47) show the 

effects of various factors on the damping ratio for sand. 
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Figure (2- 47): Damping ratio of sand at many various factors (after  

Hardin and Drnevich, 1972 equations) 

 

It can be seen from Figure (2-48) that the main factor affecting the damping ratio is 

the vertical confining stress 
'
v  for both saturated and dry sand.  The damping ratio is 

strongly influenced by the confining pressure especially at shallow depth (low stress) 

in dry sand (scattered points data in Figure (2-48b)) while the average line for all the 

test data (solid line) can be consider convenient for many practical purpose. 
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Figure (2- 48): confining pressure effects on damping ratio for (a) saturated sand and 

(b) dry sand. (after Hardin and Drnevich, 1972) 

 

Figure (2-49) shows many calculated sets of damping data from many studies for 

sand.  For practical purposes, if the damping ratio is calculated at shear strain level 

between 0.1 to 0.5, then the values of damping for other strain levels can be 

approximately determined by plotting a line through the data parallel to the solid line 

in Figure (2-49).  

 

 

 
Figure (2- 49): Damping ratio for sand (Seed et al., 1984) 
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2.9 Dynamic response amplification in slopes 

One of the main reasons of damage close to slopes due to earthquakes is the 

amplification of the soil response at the crest of the slopes.  Dynamic amplification 

can be defined simply as the ratio between the response acceleration at any position in 

the slope and the input ground acceleration.  Often, the term dynamic amplification is 

used to refer to the effect in level ground (at the ground surface), with an additional 

term, topographic amplification, being used to describe the amplification due to the 

slope geometry (i.e. the response at the slope crest divided by the ground surface 

response in the free-field).  Many studies have been conducted on different kinds of 

soil slopes to investigate dynamic amplification within the slope. These studies were 

either using principles of physical modelling (e.g. Yu-yuzhen et al., 2008; Yu-yuzhen 

et al., 2010; Brennan and Madabhushi, 2009) or by using finite elements and 

numerical simulation (i.e. Kourkoulis et al., 2011; Paolucci et al., 1999; Bouckonalas 

and Papadimitriou, 2005).  In most of the previous studies, the response of the soil at 

the crest of the slope is larger than at any other position within the slope.  Yu et al., 

2004 showed that the amplification tendency is consistent with the physical results 

from Ng et al, 2004 by testing sandy slope using centrifuge technique.  

Yu-yuzhen et al (2008) investigated the dynamic performance of a 37
o
 dry sandy 

slope using a series of geotechnical centrifuge models excited by historically recorded 

earthquake motions (El-Centro earthquake).  They observed that the different 

frequency contents of the input motions (A1 in Figure 2-50) were amplified to 

different degrees.  It can be seen also that the acceleration response was amplified by 

approximately 1.6 (A1 = 0.25g at the substrata of the model and A7 = 0.7g near the 

slope) while this ratio arrived to about 2 comparing with the A8 = 0.35g at the same 

height in the model away from the slope.   
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Figure (2- 50): Amplification of the input motion at different position within  

the slope (Yu-yuzhen et al., 2008) 

 

Yu-yuzhen et al., 2010 observed the dynamic response for pile-reinforced slopes with 

a similar configuration as the slope described above, but with a small difference in the 

slope angle (38.5
o
) under the same previous earthquake motion (smaller peak acc., 

0.18g).  They observed (Figure 2-51) that the amplification were reduced to 

approximately 1.2 (A1 = 0.18g at the model substrata and A7 = 0.21g) and they 

attributed this to the stabilising effect that the piles had in restraining the response of 

the soil surrounding the piles. 
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Figure (2- 51): Amplification of the input motion at different positions within a pile 

reinforced slope (Yu-yuzhen et al., 2010) 

 

Davis and West (1973) investigated the topographical effect on the amplification of 

the transmitted seismic waves from the base to the top of mountains by studying three 

different mountains. He found also that the movements at the crest of the mountains 

were amplified significantly compared to any other parts of the mountains.  Havenith 

et al. (2003) pointed out that the amplification in the wave in the dynamic soil 

response analysis is the main reasons of the gravitational movement during the 

earthquake in the north-eastern Tien Shan Mountain and they observed that a strong 

amplification was occurred at the top of the slope. 

Paollucci et al. (1999) used a numerical simulation of the seismic response of Mt. 

Ushibara mountain site using a 3D digital evaluation model. These results were 

compared with analysis results from the records of several moderate earthquakes at 

the Matsuzaki local array, operated by the Public Works Research Institute (PWRI) of 

Japan, using five of the accelerograph stations which are located near Mt. Ushibara 

hill. Theoretical predictions of topographic amplification of ground motion using a 
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homogeneous 3D model underestimated the observed amplification by about 50% 

whereas the amplification at the top of the hill reached to 30-40%. 

Bouckovalas and Papadimitriou (2005) explored the effect of the slope geometry, 

predominant excitation frequency and duration, as well as of the dynamic soil 

properties on the seismic response of the slope by using numerical analysis based on 

the finite difference method. Among the main conclusions of this study is that the 

amplification at the crest of the slope and de-amplification near the toe have been 

observed. The peak values of topographic aggravation factors for horizontal ground 

accelerations behind the crest were found to vary between (1.2-1.5). 

Meen and Hsien, (2009) used a finite difference programme, FLAC
2D

 for modelling 

non-linear systems to investigate the seismic response of the Renyitan Dam in Taiwan 

and by using time-acceleration histories of the Chi-Chi earthquake as an input motion. 

The dam dimension and typical boundary condition used in FLAC programme are 

shown in Figure (2-52).  

 

Figure (2- 52): Dimension of the studied dam and; (b) the typical boundary condition 

(After Meen and Hsien, 2009) 

They found that during the earthquake shaking, the acceleration at the base of the dam 

foot was magnified approximately 2.13 when the wave reached to the top of the crest. 

The relationship between the computed magnification (amplification) factors at three 

depths of the core of the dam and the height of the dam for two diierent water table 
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level are shown in Figure (2-53). In general, the level of the storage water tables did 

not have any influences in the magnification factor of the core of the dam. 

 

 

Figure (2- 53): Dynamic magnification factor (After Meen and Hsien, 2009) 

 

2.10 Summary  

The review of the literature has revealed the following points: 

1- The slope failure mechanism for cohesionless slopes, both under static and 

seismic conditions appears to be well understood. 

2- The Newmark sliding block method, combined with a suitably determined 

yield acceleration, appears to be very useful for predicting seismic slip and 

quantifying seismic damage.   

3- Pile-reinforced slopes have been widely used and researched under static and 

dynamic conditions, whereas a little centrifuge tests have been done to 

investigate how pile elements behave to stabilise slopes under dynamic loads 

(earthquakes). 

4- Many methods have been presented to analyse (passive) laterally loaded piles 

for static problems and under seismic loads, but there is still much uncertainty 

regarding piles behaviour under kinematic seismic loads.   
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The subsequent chapters of this thesis report a series of dynamic centrifuge tests to 

overcome the issues described above, supported by appropriate numerical and 

analytical modelling to develop practically useful design and analysis techniques.  

The investigation includes determining how pile spacing affects the dynamic 

geotechnical performance of a slope, and the confirmation of appropriate maximum 

normalised spacing for optimum reinforcing effect.  Secondly, there are potential 

economic benefits of being able to use appropriately reinforced precast concrete 

sections over (more conventional) steel tubular piles.  If the piles designed to not 

exceed yield, pile behaviour could justifiably be assumed to be elastic; however it is 

not clear whether a potentially damageable concrete section with more complex 

dynamic behaviour can be treated in the same way.  Finally, existing Newmark 

methods will be developed based on the centrifuge test results to provide an easy-to-

use design tool for quantifying seismic damage to slopes, and assessing the 

improvement provided by pile reinforcement.   
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Chapter Three 

Physical modelling methodology 

3.1 Introduction 

Geotechnical centrifuges are more widely used than before in the world, especially in 

the UK, United States, and Japan to study the static and dynamic performance of civil 

engineering infrastructures. Due to the nonlinear mechanical behaviour of soil (stress-

strain dependency), use of a geotechnical centrifuge allows the gravitational 

acceleration (and therefore effective stresses) within the model to be increased by the 

same factor as the stresses are reduced by using a small scale model.  The result is that 

the stresses within a small scale model in the centrifuge are identical to those at 

corresponding points within the full-scale prototype.   

This chapter will introduce the principles of centrifuge modelling, and describe the 

modelling procedures used in the subsequent chapters of this thesis.  This includes the 

development and detailed characterisation of novel model reinforced concrete piles 

that are realistically damageable.   

3.2 Principles of centrifuge testing 

Model tests in geotechnical engineering problems are usually conducted at a scale of 

(1:N) where N is the scaling factor. The use of small scale (1-g) models is usually 

limiting in geotechnical engineering as the behaviour of soil depends on effective 

stress and these are N times smaller in a 1:N scale model Wood, 2004). To retain the 

correct prototype behaviour of soils (i.e. the model’s stress and strain conditions are 

the same), a centrifuge can be used to increase the strength of the g-field (by a factor 

N) to offset the reductions in stress due to the reduced size.  Figure (3-1) shows a full-

size block of soil (in-situ case) and a 1:N scale model of the same soil mass under 

enhanced gravity (Ng). In the in-situ/full-scale case (Figure 3-1a), the calculated 

vertical (total) stress, σ, at the bottom of the soil mass and vertical strain, ε, across the 

soil mass are: 
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In a centrifuge (Figure 3-1b) applying Ng to a model with all dimensions reduced by 

N (and therefore having mass reduced by N
3
), the stresses and strains are: 

                                                                                               (3-3) 

                                                                                                              (3-4) 

Thus, the stress and strain in the centrifuge is equivalent to that in the full scale 

prototype. 

 

Figure (3- 1): Basic principal of centrifuge testing of reduced scale models 

 

In centrifuge testing, enhanced acceleration is applied to the soil model by spinning 

the model in the centrifuge in a horizontal plane at a prescribed angular velocity at a 

centrifuge radius (r). The acceleration a model experiences in the radial direction is 

then: 

                                                          
2* .ra                                                        (3-5) 
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where  is the angular velocity of the centrifuge.  However, there is additionally a 

component of acceleration acting vertically towards the ground (Earth’s gravity).  As 

such, the resultant acceleration acting on the model is: 

                                                   
2222 )( gra                                               (3-6) 

For a 1:N scale model, the angular velocity is selected such that: 

      gNa .   (3-7) 

Once this acceleration field has been achieved, the model represents an equivalent 

full-scale prototype, and its model scale properties can be related to the equivalent 

prototype scale values via well-established scaling laws.  Typical scaling laws 

between parameters in the model and equivalent prototype (full-scale parameters) are 

tabulated in Table (3-1). 

 

Table (3- 1): Scaling laws for centrifuge testing (Schofield, 1981 and Kutter, 1994) 

Parameter 
Scaling law:  

Model/Prototype 
Dimensions 

General Scaling Laws   

Length 1/N L 

Area 1/N
2
 L

2
 

Volume  1/N
3
 L

3
 

Density 1 M/L
3
 

Mass 1/N
3
 M 

Stress 1 M/LT
2
 

Strain 1 - 

Force 1/N
2
 ML/T

2
 

Bending Moment 1/N
3
 ML

2
/T

2
 

Seepage velocity 1/N L/T 

Time (Consolidation) 1/N
2
 T 

For dynamic events   

Time (Dynamic) 1/N T 

Time (Seepage) 1/N
2
 T 

Frequency N 1/T 

Displacement 1/N L 

Velocity 1 L/T 

Acceleration N L/T
2
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3.3  Beam centrifuge and earthquake simulator (EQS) 

The centrifuge modelling described in the subsequent chapters was conducted using 

the geotechnical centrifuge at University of Dundee. The centrifuge is a C67-2 

machine, built by Actidyn, France. The machine consists of a 7m diameter rotating 

arm equipped with a swinging platform/basket that can carry a payload of up to 1500 

kg with platform dimension of 0.8m x 1m x 1m to a maximum acceleration of 100g 

with a speed range of 38 – 208rpm. 

The beam centrifuge operates with a balanced counterweight at the other end of the 

arm to the swinging platform.  Centrifuge models are usually prepared outside of the 

centrifuge basket, and then transferred carefully to the platform using a crane. The 

model instruments are monitored using a 64-channel data acquisition system with 

continuous in-flight surface observation provided by a digital video camera.  The 

instruments are logged locally onto on-board PC mounted at the centre of the arm; 

this and the video streams are networked over a 10/100 Ethernet LAN (using PCI 

Network cards) via a 1GBit Fibre-optic communications slip ring to allows control 

and monitoring from a separate room.  

Horizontal ground motion (‘shaking’) of the model container during flight is applied 

to models using a servo-hydraulic earthquake simulator, also built by Actidyn, that 

can carry a 400 kg model (including container) with exterior dimensions of 0.8 m × 

0.4 m × 0.6 m.  The frequency response of this system covers the range 40-400 Hz. 

This EQS allows users to select the earthquake frequency, magnitude and duration if 

harmonic motions are to be used.  The EQS can also simulate recorded earthquake 

time histories once they have been band-pass filtered to ensure frequency content (at 

model scale) in the range of 40-300 Hz.  Figure (3-2) shows the Dundee geotechnical 

centrifuge with the EQS attached, while Figure (3-3) shows the shaker in greater 

detail.  Further information on the EQS capabilities and performance can be found in 

Brennan et al. (2014).   
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Figure (3- 2): University of Dundee geotechnical centrifuge. 

 

 
 

Figure (3- 3): EQS. 
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3.4 Centrifuge modelling considerations 

3.4.1  Particle size  

The most basic requirement when selecting soils for centrifuge testing is that there are 

a sufficient number of particles across the dimensions of a model so that the soil can 

be considered as a continuum.  It is not reasonable to scale down the particle size of 

soil according to the scaling law for length because the reduction of the soil particle 

size leads to a change in the mechanical properties of soil. For example, the silica 

sand which is used in this study (see Section 3.5.1) has a mean particle size D50 = 0.12 

mm – this would be modelled by very fine particles soil (D50 = 0.0024 at 1:50 scale 

and 50g) which are within the range for clays. Ovensen (1979) studied the effects of 

particle size on circular footings using dry sand in a series of geotechnical centrifuge 

tests. It was observed that the size effect could be ignored when the footing radius was 

> 15D50.  For piles in the same study, the minimum diameter of the pile was found to 

be between 20-40D50. In this study, square piles of size 10 × 10 mm at model scale 

are used within a 1:50 scale model, which is more than 83 times D50. Therefore, there 

should be no undesirable size effects due to particle size.   

3.4.2  Radial distortion 

Because the gravitational acceleration (g) in prototype scale is effectively constant at 

any point in soil strata (due to the ratio of soil depth to radius of the Earth being 

small), thus, vertical stress varies linearly with depth (z) throughout the soil strata 

according to the equation: 

                                              gzzv                                                 (3-8) 

In a centrifuge model, the variation in the vertical stress across the model is nonlinear 

as the change in radius to the centre of rotation is significant compared to the radius of 

the arm.  Stewart (1989) showed that the vertical stress variation depends on the 

differences of the square between the radius (measured from the centre of the 

centrifuge axis to the top of the model) and the radius to any point (z) in the model 

according to the equation: 
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Where 1r is the radius from the axis of rotation of the centrifuge to the top of the 

model while 2r  is measured to the depth z in model (i.e. Figure 3-4).  Knappett (2010) 

shows that this effect can be minimised by keeping the model height small relative to 

the radius of centrifuge (model height < R/10), where R is the radius measured to the 

base of the container.  In the centrifuge testing described herein, the largest model 

depth used was 280 mm which satisfies this requirement in the Dundee centrifuge 

where R = 3.5 m.   

 

 

Figure (3- 4): Definition of radii for determining radial distortion of stress field. 

 

3.4.3  Angular distortion 

In situ, points of constant vertical stress (same depth under the ground surface) lie on 

horizontal planes and they have approximately the same distance to the centre of the 

Earth’s rotation. In the centrifuge, this is not true due to the finite radius of the 

spinning (Knappett, 2010). To keep the studied problem as rectilinear in prototype 

scale, the surface of the model needs to have circular loci (concave up surface). The 

angle between the horizontal plain and to the end point in which the effective radius is 

the same (see figure 3-6) called angular distortion. This angular distortion should not 

reaches to the maximum value of: 

 

                                                         r

b

.2
                                                        (3-10) 

where b, container width here while r, effective radius of centrifuge. In this thesis, the 

angular distortion is ignored due to its small value (2.4
o
). 
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Figure (3- 5): Definition of angular distortion (Knappett, 2010) 

 

3.4.4  Gravitational distortion 

Gravitational distortion can occur if the model is rotates in flight so that its surface is 

held exactly perpendicular to the arm.  Under these circumstances, the resultant 

acceleration (Equation 3-6) is not perpendicular to the surface of the model.  This is 

termed gravitational distortion.  However, for centrifuges with a free-swinging 

platform such as that at the University of Dundee, the model will automatically take 

up a position in flight such that the resultant acceleration is normal to the model 

surface, and hence there is no gravitational distortion.   

3.5 Soil properties and preparation 

3.5.1  Soil (HST95 sand) 

HST95 Congleton silica sand will be used in the centrifuge tests with properties 

shown in table (3-2). This sand has been used by earlier researchers to study structural 

settlement due to liquefaction phenomena. Lauder (2011) determined the minimum 

and maximum void ratio of this sand in accordance with (BS, 1990). These minimum 

and maximum void ratio values for sand are very important in calculation of relative 

density. This sand is very fine and uniformly graded as shown by the particle size 
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distribution (PSD) in Figure (3-6) and was used in a medium state in all centrifuge 

models.  

Soil properties in shear are presented in detail in Section 3.8.   

Table (3- 2): Physical properties of HST95 silica sand 

The physical  property The value 

Specific Gravity (Gs) 2.63 

Shape Rounded 

D10 0.09 

D30 0.12 

D60 0.17 

Cu 1.9 

Cz 1.06 

Optimum dry density (kN/m
3
) 15.35 

Maximum dry density (kN/m
3
) 17.58 

Minimum dry density (kN/m
3
) 14.59 

Maximum void ratio (emax) 0.769 

Minimum void ratio (emin) 0.467 

 

 

Figure (3- 6): Particle size distribution for HST95 silica sand 
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3.5.2  Soil preparation techniques 

All centrifuge models described in this thesis were air pluviated to 55% nominal 

relative density (this value is chosen for seeing bigger slope failure under earthquakes 

but not loose as many aftershocks would be conducted).  A slot pluviator was used to 

prepare all the centrifuge models as shown in Figure (3-7). This pluviator has been 

widely used by many geotechnical researchers at Univerity of Dundee (e.g. Lauder, 

2011; Bertalot, 2013). The width of the pluviator was 540 mm along the slot and this 

was so enough to cover the full width of the container during the pluviation process.  

The hopper rests on a linear guide frame by four wheels which allow it to be moved 

by hand along the length of the model container as an approximately constant speed 

(height kept constant as it gave best uniform density for slope).  The slot width can be 

changed to vary the relative density by moving the two plates shown in Figure (3-7, 

inset) up or down the inclined sides of the container.  It is very difficult to control 

relative density exactly by pluviation, so calibration tests were conducted in a known 

volume box to determine the flow rate (slot width) and drop height required to 

achieve satisfactory results.  From Figure (3-8) it can be seen that approximately 3mm 

slot width gives a density around 55% with no further change in relative density for 

any slot width greater than this. 

 

 

Figure (3- 7): Slot pluviator with cross section (inset) for preparing all centrifuge 

models (image: Lauder, 2011) 
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Figure (3- 8): Relationship between slot width and relative density 

 

Figure (3-9) shows the relationship between the relative density and soil dry density. 

It can be seen that the 55% relative density is corresponding to approximately 16 

kN/m
3
 dry density. This value was a reference for all centrifuge tests. 

 

 

Figure (3- 9): Dry density-relative density relationship (after Lauder, 2011) 

 

3.5.3  Equivalent Shear Beam (ESB) container  

An ESB (Equivalent Shear Beam) container exists at the University of Dundee which 

is fabricated from aluminium alloy in six rings with sandwich rubber layers to give 

the equivalent dynamic shear stiffness as the adjacent soil and satisfy the other key 

boundary conditions described by Schofield and Zeng (1992).  
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The design of this container is described in Bertalote, 2013. The container has internal 

dimensions of 669 mm (length), 279 mm (width) and 338 mm (height). The container 

is shown in Figure (3-10). 

Uniform slope conditions were modelled across the slope width within the container.  

Taylor (1994) and Khoo et al. (1994) observed that plane strain models should be 

wide enough to minimise the effect of side friction from the container walls on the 

deformation behaviour of the slope.  This can be achieved through a minimum 

container width to model height ratio.  Davies (1981) suggested that this value should 

ideally be around 1.0; in the used container in this study, the ratio between the 

container width to the slope height was approximately 0.86 which is very close to 1.0. 

Properties of both frames and rubber layers were used to compute the lateral 

deflection (bulging) due to gravitational or static forces is also computed. It was 

approximately 0.89 and this value consistent with the measured maximum value for 

saturated losses sand, 0.4mm (Betalote, 2013).    

   

Figure (3- 10): ESB container used in the tests (Bertalot, 2013) 

3.6 Instrumentation 

3.6.1  MEMS Accelerometers 

Miniature iMEMS (ADXL78) accelerometers manufactured by Analog devices Inc. 

were used to measure accelerations within the centrifuge models. This product is a 

single-axis accelerometer and can measure both dynamic acceleration (vibration) and 

static acceleration (gravity).  The instrument measures acceleration with a full scale 

range of g70  with sensitivity between (25 – 28) mV/g and has dimensions of 5 × 5 × 
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2.5 mm.  A typical transducer and geometry are shown in Figure (3-11).  The 

accelerometers were calibrated relative to gravity by measuring the output voltage 

when aligned in opposite directions parallel to the gravitational acceleration of the 

earth (-1g and +1g). The average of the two orientations gave the calibration factor.  

Because the ADXL78 accelerometer is very small and delicate, they were attached 

using cyanoacrylate adhesive (‘super glue’) to a 20mm diameter circular PVC disk 

and then coated by a plastic-dip flexible emulsion.  The purpose of the disk was to 

keep the transducer in a horizontal plan during placement within the soil models, 

increase the movement sensitivity during earthquake shaking through better coupling 

with the surrounding soil, and to make them waterproof with neutral buoyancy for use 

in saturated (liquefaction tests).  

  

 

Figure (3- 11): iMEMS accelerometer 

3.6.2  Strain gauges 

FLA- strain gauges manufactured by Tokyo Sokki Kenkyujo Co. (Japan), having a 

gauge resistance of 3.0120  Ohm were used to instrument some of the model piles 

(discussed further in Section 3.8).  The gauge length and width of these instruments 

were 1 mm and 1.3 mm respectively while the backing length and width were 5 mm 

and 2.5 mm respectively.  The strain gauges were fixed along 6063-T6 Aluminium 

alloy piles using cyanoacrylate adhesive (type CN).  The time required to bond these 

gauges is extremely short and handling is very easy – the curing time under normal 

conditions is 20 – 60 s.  They were then coated by Neoprene rubber N-1 type 

protective coating material which also made them waterproof.  The strain gauges and 

its accessories are shown in Figure (3-12).   
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All of the strain gauges were wired in pairs to constitute half-bridges so as to measure 

bending moment along piles during and after seismic shaking.  The strain gauges were 

calibrated by testing the instrumented pile as a cantilever beam under known applied 

bending loads and measuring the output voltage.  The gauges were interfaced to the 

centrifuge PC running a LabVIEW script for data logging via a special junction box 

which multiplexes the information from the different channels.  A solid copper wire 

manufactured by Vishay Precision Group was used for wiring the strain gauges 

together and connecting them to the junction box.  A linear relationship was obtained 

(Figure 3-13) between known moment in Nm at model scale and measured output 

voltage for each strain gauge pair.  

 

 

Figure (3- 12): (a) TML strain gauge, (b) adhesive and coating 

 

Figure (3- 13): Calibration of strain gauge pairs 
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3.6.3 Linear Variable Differential Transformers (LVDTs) 

LVDTs fabricated by RDP electronics Ltd. (Series DC to DC) have been obtained 

with lowest range 5.12  and linearity 1.0 .  These LVDTs were calibrated by 

applying known downward and upward movements in increments of 5 mm and 

measuring the corresponding output voltage. The slope of the relationship between the 

displacement and the corresponding output voltage provides the calibration factor. 

Figure (3-14) shows this type of LVDT while Figure (3-15) shows a typical voltage-

displacement relationship obtained from the calibration. 

 

 

Figure (3- 14): Linear variable differential transformers (LVDT) 

 

Figure (3- 15): Displacement-output voltage relationship for LVDT 

3.6.4 Data acquisition 

The data acquisition system consisted of a number of components which are shown in 

Figure (3-16).  A power supply unit (1) steps-down the on-board centrifuge power 

supply to provide 5V or 10V DC supply as required.  This power is sent to the 

junction boxes (2) where it is distributed across the various channels to the 
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instruments.  Output voltages are collected from the signal lines and routed to a bank 

of signal conditioners which can apply individually controllable gains to each 

channel.  Once processed, the signals are sent the on-board PC via four 16 channel 

PCI data acquisition cards. This “Host PC” has 3 PCI slots for installation of these 

cards with one serial port, one parallel port and two USB ports which can be used for 

data transfer. The logging is performed by means of four Adlink NuDAQ 2204 high 

frequency data acquisition board, A/C conversion (Bertalote, 2013). These are 

accessed using a LabVIEW routine originally developed by Bertalot (2013), which 

monitors the data, applies user-defined calibration factors and saves the data locally to 

a solid-state hard disk as both calibrated and un-calibrated (raw voltage) data.   

 

 

(a)  

 

(b) 

Figure (3- 16): (a) Data acquisition system and shaker controller; (b)  Strain gauge 

junction box (left) and general purpose (voltage) junction box (right) 

 

(4) PC 

(1) Power supply 

(3) Signal conditioners 

(2) Junction 

boxes 
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The LabVIEW routine incorporates a manual trigger which is activated immediately 

prior to firing the earthquake.  This records 10 s of data at a sampling frequency of 2 

kHz.  As the earthquake motions used in this work were no longer than 1 s in model 

scale, the pre- and post-earthquake data outside the earthquake was deleted via a post-

processing routine.  Once the 10 s of data had been collected, it was automatically 

displayed on the screen of a PC within the centrifuge control room in calibrated units 

allowing for immediate review and decision making about the application of further 

earthquakes.  A typical output following and earthquake event is shown in Figure (3-

17).   

 

 

Figure (3- 17): Data acquisition programme, showing results from a typical test 

3.7  Model reinforced concrete piles 

3.7.1  Introduction to pile modelling approach 

Two types of pile models were used in this study.  The first model (‘RC pile’) was 

made from a recently developed set of materials and procedures for producing a 

reinforced micro-concrete which can replicate damage realistically.  The second type 
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of pile was fabricated from aluminium alloy and strain gauged and is hereafter termed 

‘elastic pile’.  This type was used to measure the bending moment mobilised along the 

pile due to slope mass movement.  The RC piles were designed (and tested) first, such 

that the elastic pile models could be designed to have (as closely as possible) the same 

bending stiffness, EI to give similar soil-pile interaction during the tests, prior to 

yield.  In this way, the two pile models would be considered to be nominally the same 

within the elastic range.  However, due to their construction, the RC piles are able to 

realistically simulate damage (i.e. they have similar shear and moment capacities at 

prototype scale as real reinforced concrete), and can also sustain changes in residual 

mechanical properties due to fatigue effects.  The former characteristic has been 

demonstrated for generic reinforced concrete elements at highly reduced scale by 

Knappett et al. (2011).  The work described herein represents the first use of this 

novel ‘micro reinforced concrete’ within a full boundary value problem in the 

centrifuge. The remainder of Section 3.7 details the development, construction and 

characterisation of the RC piles; the elastic piles will be described in Section 3.8.   

3.7.2  Micro-concrete 

The capacity and the bending stiffness of a model reinforced concrete pile is affected 

by scaling of the quasi-brittle fracturing process which affects the tensile strength of 

the concrete component, resulting in a scale effect (Litle and Paparoni, 1966). 

According to this concept, the model piles should be fabricated from a carefully 

selected brittle material for the concrete component to give the same elastic bending 

strength at prototype scale as full scale reinforced concrete material (Knappett et al., 

2011). Higgins (2007), Gilhooly (2008), Mcdonnel (2008) and Madden (2008) 

developed new cementitious mortars based on casting and surgical plaster, mixed with 

sand and water, to create a micro-concrete mix which replicates conventional concrete 

at typical centrifuge scaling factors. This micro-concrete mix consists of a surgical 

plaster (as a binder instead of cement), HST95 Congleton silica sand (representing 

scaled coarse aggregate at prototype scale – see Figure 3.18) and water. The use of a 

geometrically scaled aggregate component is important as crack size and propagation 

are strongly correlated to the particle size of the aggregate (Madden, 2008).  The 

component materials are mixed together in the same percentage by mass (1:1:1) 

following a procedure defined by Higgins (2007). O'Reilly (2009) measured the 

compressive strength of various micro-concrete mixtures using a set of standard 100 × 
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100 mm cube tests.  It was found that the compressive strength of ‘Mix 1’ concrete, 

which was used in the work presented in this thesis, could reach up to 30 MPa using 

casting plaster in the ratios given above, which represents similar compressive 

strength as typical grades of concrete commonly used in piles (this is essential, 

considering the scaling laws on stress in Table 3-1).  To check these compressive 

strength values, Five further 100 x 100 mm cubes have been cast as part of this work 

and a further set of four 150 x 300 mm cylinders cast for the same purpose. All of the 

samples were left for 28 days of air curing (laboratory temperature between 20 – 30 

C
o
).  The compressive strength results were correlated to 150 x 150 mm cubic strength 

(
150cf ) and cylinder strength ( cf  ) using the relationships presented by (Mansur and 

Islam, 2001): 

                                                69.391.0
100150
 cc ff                                        (3-11) 

                                                26.69.0
100
 cc ff                                            (3-12) 

These results showed that the average compressive strength was approximately 25 

MPa.  Table (3-3) presents the test results in detail.  The estimated cylinder strengths 

evaluated from the cube test data by Equation (3-12) are compared with the direct 

cylinder tests in Table (3-3) where only small differences were observed, 

demonstrating consistency across the different types of test.  

 

 

Figure (3- 18): Use of HST95 sand as a geometrically scaled coarse aggregate 

(Knappett et al. 2011) 
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Table (3- 3): Compression test results for micro concrete (all results in MPa). 

Test No. 100cf  
150cf  cf   

cf   

(Cylinder test) 

1 21.4 23.1 13.0 16.0 

2 25.4 26.7 16.6 15.2 

3 23.3 24.8 14.7 14.9 

4 22.6 24.2 14.1 15.4 

5 24.5 25.9 15.8 - 

Mean 23.5 25.0 14.9 15.4 

 

3.7.3  Micro reinforcing steel 

Stainless steel wire from Ormiston Ltd. in UK was used as model scale reinforcing 

steel.  Wire 0.6 mm in diameter was used in the pile model as longitudinal 

reinforcement, representing a bar of 30 mm diameter at prototype scale (1:50). 

Smaller 0.25 mm diameter model reinforcement was used to model shear 

reinforcement (representing 12.5 mm bar at prototype scale).  The ultimate tensile 

stress and yield stress of the wires were provided by the supplier (Ormiston Ltd); 

however, these values were verified by tensile tests conducted in the geotechnical 

laboratory using the Instron 1196 loading frame, due to their importance in defining 

the moment capacity of the model pile.  

Test results for the longitudinal and shear model reinforcement are shown in Figures 

(3-19) and (3-20), respectively.  It was noted that the stress-strain relationship and 

wire strength are similar to the properties of full scale reinforcing bars at prototype 

scale.  Knappett et al., (2011) defined the yield strength ( yf ) at 0.2% permanent 

strain.  The average yield strength so calculated was 461 MPa for longitudinal model 

reinforcement and 455 MPa for shear model reinforcement. Table (3-4) shows the 

summarised results of the wire strength tests.  Higgins (2007) and others explained the 

importance of roughness of the wires for good mechanical bond between the steel 

wire and micro-concrete mix, mimicking the ribbing on full scale reinforcing steel.  

Because of the small size of the model wires, ribbing is not practical, so very fast 

drying epoxy resin mixed with HST95 silica sand was used to give a rough coat to 

achieve very good bonding (Knappett et al., 2011). 
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Figure (3- 19): Stress-strain relationship for model longitudinal reinforcement 

 
Figure (3- 20): Stress-strain relationship for model shear reinforcement 

 

Table (3- 4): Strength and stiffness properties of model reinforcement. 

Longitudinal Model Reinforcement 

Test No. Yield Strength 

(MPa) 

Ultimate Strength 

(MPa) 

Young’s Modulus 

(GPa) 

1 473 951 197 

2 451 885 187 

3 459 920 191 

4 460 916 192 

Mean 461 918 192 

Shear Model Reinforcement 

Test No. Yield Strength 

(MPa) 

Ultimate Strength 

(MPa) 

Young’s Modulus 

(GPa) 

1 529 611 212 

2 429 651 170 

3 407 638 195 

Mean 455 631 190 
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3.7.4 Design and construction of RC piles 

The piles were designed to represent a 0.5 × 0.5 m square cross section pile of 10 m 

length (dimensions at prototype scale). The square cross section dimensions of the 

model piles (at a scaling factor of 1:50) are therefore 10 × 10 mm and 200mm in 

length. An aluminium alloy formwork was designed and fabricated for casting the 

piles, including holding the reinforcement in place. Only square piles are used in this 

thesis. The same procedure that was developed by Knappett et al. (2011) was used to 

mix the micro-concrete and cast the piles as shown in Figure (3-21).  In addition to the 

reinforced pile models, some unreinforced beams were also cast for determination of 

the modulus of rupture (tensile strength in bending).   

 

 

Figure (3- 21): Piles casting procedures 
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Figure (3-22) shows the reinforcement and cross sectional details for the RC pile 

model.  This consisted of three roughened steel wires on the upslope side of the pile to 

carry the tensile stresses induced by downslope soil movement and two smooth steel 

wires on the downslope side with low pull-out capacities, which were used principally 

in fixing the shear reinforcement. The section can thus be considered to behave as a 

singly-reinforced concrete beam. 

 

 

Figure (3- 22): Model RC pile section (all dimensions shown at model scale). 
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3.7.5  Bending tests of RC piles 

3.7.5.1  Procedures 

After casting of the model piles, they were left for 28 days to cure before standard 

four-point bending tests were conducted.  Unreinforced models (consisting of just the 

micro-concrete) were tested to determine the rupture modulus for the model concrete. 

Many further model piles were tested having a maximum singly-reinforced section 

can be used (As/Ac = 0.85%, where As is the cross-sectional area of the steel and Ac the 

cross-sectional area of the concrete) and different reinforcing wire distributions in the 

pile section (changing of the spacing between model bars). Flexural shear strength and 

bending moment can be determined by conducting standard four-point bending tests 

on specimens as shown in Figure (3-23).   

 

 

Figure (3- 23): Four-point bending test 

 

Six specimens of the model RC piles used in the centrifuge tests were tested in four-

point bending, three in which the transverse shear forces were applied in the 

downslope direction, and three with the forces applied in the upslope direction.  This 

allowed the bending behaviour to be fully constructed for bi-directional loading of the 

reinforced section.  The resulting average moment curvature behaviour is shown in 

Figure (3-24).  In this figure, positive bending moment denotes that the upslope 

reinforcement is in tension (i.e. the case when the soil is moving downslope).  By 

testing some additional piles without shear reinforcement, it was possible to show that 
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the shear reinforcement was essential for obtaining bending failure rather than flexural 

shear failure (Figure 3-25). 

 

Figure (3- 24): Moment-curvature relationships for model pile sections 

 

 

Figure (3- 25): Figure (3-25): (a) Shear and (b) bending failures observed during 

model 
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3.7.5.2  Bending stiffness, EI 

The initial gradient of the moment-curvature relationship in Figure (3-24) gave the 

bending stiffness (EI = 50 MNm
2
 at prototype scale). These results can be compared 

with the bending properties at prototype scale from a theoretical transformed cracked 

section, as described below (see Figure 3-26). 

 

 
Figure (3- 26): Transformed section method 

 

The basic concept of transformed section theory is that the section of steel and 

concrete is transformed into a homogenous section of concrete by replacing the actual 

steel area by an equivalent concrete area.  Two conditions must be satisfied: the first 

is compatibility (  =  ) where c and s  are the longitudinal strains in the concrete and 

steel respectively; the second condition is equilibrium (i.e. the force in transformed 

concrete section = force in actual steel section) leading to the equivalent area of steel 

sc AA .  , where cs EE  (called the modular ratio) and Es and Ec are the Young’s 

modulii for steel and concrete, respectively.  Concrete Young’s modulus cE  was 

estimated after Kong and Evans (1987) as 25 GPa (for concrete of fc100 = 30 MPa). 

The bending stiffness of the transformed cracked section is then determined using: 

 )}.(.
3

).(
{ 2

2

kddA
kdb

EEI sc     (3-13) 

Additional tests were conducted for two different bar spacing (small and large) having 

the same As to check the best spacing for the reinforcement in the pile models for the 

centrifuge testing.  Further tests were also conducted with and without coating the 

shear reinforcement with the epoxy/sand mixture to determine the effect of this 

roughness on the beam behaviour.  Results of four-point bending tests were compared 

with the value resulting from the Equation (3-13) which gave EI = 47.7 MNm
2
.  All 

the results are shown in Table (3-5).   
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3.7.5.3  Capacity 

The theoretical ultimate moment capacity (i.e. bending failure) can be determined 

using a similar cracked-section theory (i.e. by summation of ultimate moment 

contributions from the steel and concrete).  Bazant and Yu (2005), determined the 

flexural shear capacity of singly–reinforced beams by considering a large database of 

tests, resulting in Equation (3-14): 
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where  

d:  the effective depth to the reinforcement of section  

a: the shear span  

'
cf : the cylinder concrete crushing strength  

od : empirical constant based on concrete strength and determined by equation 3-15: 
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3.7.5.4  Ductility 

Ductility is a term that refers to the ability of a material to deform permanently in a 

stable/ductile way at yield.  Brittle materials, such as the model concrete, lack 

ductility, and fracture rather easily.  By adding reinforcing steel the beam can be made 

reasonably ductile. 

In general, the displacement ductility can be defined as the ratio of the deflection of 

the beam in the middle under a four-point bending test when the load has dropped to 

85% of the ultimate value ( atfailuremax ) to the deflection of the beam in the middle 

at yield ( y ), (Pam et al., 2001): 

                                                                                           (3-16) 

Due to difficulties in determining the yield point directly, the method used to estimate 

the yield displacement in this study is shown schematically in Figure (3-27). This may 
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occur for many reasons such as nonlinear behaviour of the material or the longitudinal 

bars being at different depths in a reinforced concrete section and therefore reaching 

yield at different deformations (Park, 1988). The deflection at yield and maximum 

deflection can be determined from elastic stiffness taken as a secant stiffness at 75% 

of the ultimate load from the load –deflection curve; the intersection of this line with 

the maximum load horizontal line gives the yield deflection ( y ) as shown both in 

Figure (3-27), and as applied to an example test from this research (Figure 3-28).  

 

 

Figure (3- 27): Definitions of    and   (After Pam et al. 2001) 

 

 

Figure (3- 28): Example of determination of yield and ultimate deformations 

Values have been calculated for all tests showing ductile behaviour using the method 

described above and these values are compared with theoretical values for equivalent 

full scale concrete beams of the same design using the curvature ductility relationship 

presented by Maghsoudi and Sharifi (2009): 
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Where:  ' = 0   (singly reinforced section) 

             
bd

As    (reinforcement ratio) 

             1  (stress block depth coefficient) 

            1 =1 (coefficient defining the average stress of the equivalent rectangular 

stress block and it is defined as the ratio between the height of the 

stress block and neutral axes at ultimate state) 

            c  assumed = 0.003  (Knappett et al., 2011) 

 

The results showed good agreement between theoretical and experimental values, 

with a theoretical value of ductility for this section of  = 2.07.   

3.7.5.5  Modulus of rupture 

For determining the modulus of rupture for the model concrete from four-point 

bending tests of unreinforced, Knappett et. al (2011) state that: 

 

 2

2

bh

LV
f ult
r    (3-19) 

where ultV  is the shear load at which rupture (failure) occurs.  

3.7.5.6  Summary of results 

Table (3-5) shows all four-bending tests results for all different reinforced models.  

Based on these results, it was observed that bar spacing and shear reinforcement 

roughness had a significant effect on moment capacity, and so roughened shear 

reinforcement and large bar spacing were used in the centrifuge model piles.  A 

summary of the model pile properties is given in Table (3-6). 
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Table (3- 5): Four-point bending test results. 

Group (details) 
Test 
No. 

Ultimate 
Moment 
(kN.m) 

Load at shear 
failure 
(kN) 

Ductility 
Bending 
Stiffness  
MNm

2
 

No shear 
reinforcement (small 

bar space) 

1 160 53 5.3 60 

2 168 56.25 - 41 

No shear 
reinforcement (large 

bar space) 

1 176.5 58.75 2.7 54 

2 173 57.5 - 61 

3 157 52.5 - 52 

With smooth shear 
reinforcement 

(small bar space) 

1 210 70 3 54 

2 195 65 - 53 
With rough shear 

reinforcement  
(small bar space) 

1 221 73.75 2.05 55.5 

2 218 72.5 - 62 
With rough shear 

reinforcement 
(large bar space) 

1 225 75 - 59 

2 237 76.25 4.8 56 
Theoretical values  256 79.4 2.07 47.7 

 

Table (3- 6): Properties of RC model piles. 

Parameter Symbol 
Value 

(model) 

Value 

(prototype) 

Pile size (square) B  10 mm 0.5 m 

Longitudinal bar diameter dD  0.6 mm 30 mm 

Reinforcement ratio 

c

s

A

A
 

0.85 % 0.85 % 

Steel yield strength 

   (0.2% proof strain) 
yf  341 MPa 341 MPa 

Steel Young’s Modulud sE  179 GPa 179 GPa 

Concrete compressive strength cuf  24.95 MPa 24.95 MPa  

Concrete rupture modulus rf  2.54 MPa 2.54 MPa 

Concrete elastic Modulus cE  9.4 GPa 9.4 GPa 

Pile bending stiffness EI  7.8 N.m
2
    49 MN.m

2
 

Pile moment capacity ultM  1.86 N.m   233 kN.m 

Shear load at failure ultV  30.5 N 76.25 kN 
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3.8  Model ‘elastic’ (instrumented) piles 

As explained at the start of Section 3.7, an ‘elastic’ analogue of the model RC piles 

was also created, which was designed to mimic the elastic behaviour of the RC piles, 

but (i) be stronger, (ii) have more truly linear behaviour in the elastic range and (iii) 

be instrumented to measure pile bending moments.   

The ‘elastic’ piles were modelled using 6063-T6 Aluminium-alloy with E = 68 GPa 

and this was machined to give a central plate with dimensions of 5.2 mm in the 

direction of slope movement and 10 mm perpendicular to this, as shown in Figure (3-

29).  The purpose of these dimensions was to achieve a bending stiffness, EI, 

equivalent to the bending stiffness of the RC piles (Table 3-6).  However, as the 

section was much stronger than the model concrete piles, strain gauges could be 

attached to these piles.  The strain gauges were fixed along the length of the pile in 

pairs to measure bending strains within the pile at six locations, as shown in Figure 

(3-29).  The strain gauges are distributed over the pile length so that the first is at 

10mm from the pile head, below the inclined slope surface, and the rest of the strain 

gauges are evenly spaced over the pile embedded length. The preparation of these 

instruments is described in Section 3.6.2.   

Once instrumented, silicon was used to protect the gauges and to ‘fill-out’ the pile to 

exterior dimensions of 10 × 10 mm, without having a significant effect on increasing 

EI.  The piles were subsequently coated in HST95 sand using epoxy resin to give a 

similar rough (soil-soil) interface to that of the RC-soil interface (Knappett et al., 

2011).  It should be noted that at the bottom of the pile, the aluminium-alloy covers 

the whole cross-section of the pile to act as a driving shoe, protecting the composite 

construction during pile installation.   

At prototype scale, the concrete piles have a relatively rough surface, and so to 

simulate this (and therefore the soil-pile interaction) in the elastic piles they were 

covered by a thin aluminium sleeve before being coated by a mixture of epoxy resin 

and HST95 sand.   

In addition to two instrumented piles, six further non-instrumented ‘dummy’ piles 

were made having the same construction as described above.  This was necessary as at 

the closest pile spacing considered in the centrifuge tests, eight piles were required to 
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cover the whole slope.  Figures (3-30) and (3-31) summarise the construction process 

of the elastic piles described in this section. 

 

 

Figure (3- 29): Elastic pile, showing instrumentation 
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Figure (3- 30): Instrumented elastic piles 

 

 
 

Figure (3- 31): Non-instrumented (‘dummy’) aluminium piles 

The elastic model pile was tested as a cantilever to determine the bending stiffness, 

yield and ultimate bending moment as shown in Figure (3-32). A typical bending 

moment-curvature relationship is shown in Figure (3-33) which shows a good match 

to the stiffness (EI) of the model RC piles from Table (3-6).   
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Figure (3- 32): model pile bending test (as a cantilever) 

 

 

Figure (3- 33): Typical bending moment-curvature relationship for the ‘elastic’ model 

pile 

3.9  Model ‘weak RC’ pile 

Other RC model piles were made for use in further centrifuge tests (see section 6-7). 

The same overall cross sectional model was used as discussed in section 3-7, but only 

nominal longitudinal smooth steel wires (at the corners of the section) were used 

instead of the roughened (well-bonded) wire explained before. The idea of using this 

section (hereafter referred to as ‘damageable section’) is to investigate how the 
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detailing requirements for laterally loaded piles (slope stabilising piles here) are 

important to provide adequate resistance to the moving soil due to slope failure 

(details of this will come later in chapter 6). These models were made after 

observations of the results of the designed section after the seventeenth centrifuge test 

(test AA17 – no damage was observed after all these centrifuge tests). Two additional 

models were created to observe the stabilised slope performance with damaged piles 

and to inspect the failure model after earthquake (i.e. AA18 and AA19).        

3.10 Soil and interface shear properties 

Direct shear box tests are widely used in geotechnical engineering to determine the 

shear characteristics of soil. In this thesis, a standard 60 × 60 mm direct shear 

apparatus was used to determine the peak and critical state shear strength of the soil 

used in the centrifuge testing, as well as the interface shear strength between the sandy 

soil and the pile materials (Figure 3-34a and b, respectively). All testing was 

conducted at low and high normal stress levels (between 2.77 kPa to 200 kPa) for 

both soil-soil and soil-pile interface characteristics. The low confining stresses were 

used as the slope used in all of the testing was expected to fail as a shallow 

translational slip.  Data at conventional low stress levels was already available from 

previous studies (summarised in Al-Defae et al., 2013).  With the exception of the low 

stress levels, all of the tests were otherwise performed in accordance with 

(ASTMD3080-72Standard, 2000).  Medium dense sand, at 55% relative density, was 

pluviated into the shear box using the same pluviator used in centrifuge model 

preparation, before the shear box was then transferred to the testing frame.   

 

 

Figure (3- 34): Shear box schematic, (a) soil-soil testing; and (b) soil-pile interface 

properties 



 Chapter 3                                                       Physical modelling and centrifuge tests 

112 

 

To verify the interface properties of the reinforced concrete (RC) piles model, 

interface shear testing was conducted, where the bottom half of the apparatus 

contained a slab of the model micro-concrete cast within a formwork having a similar 

surface roughness to that used in casting the model piles (Figure 3-34b).  The Mohr-

Coulomb strength envelope for this data is shown in Figure 3-35, along with soil-soil 

shear data calculated using the same apparatus and reported elsewhere (Al-Defae et 

al., 2013). The peak and the residual or critical angles of internal friction were 

approximately 38
o
 and 32

o
 respectively HST95 sand at 55% relative density.  The 

peak and critical interface friction angles between the soil and the micro concrete are 

33
o
 and 27

o
 respectively. It can be seen that the properties of the model concrete – soil 

interface can be summarised as δ’/φ’ ≈ 0.85 at both peak and critical state, where δ’ is 

the interface friction angle and φ’ is the soil friction angle.  This suggests that the 

model concrete is close to being rough (the elastic piles are fully rough, δ’/φ’ ≈ 1.00, 

as the interface is sand-sand).   

 

 

Figure (3- 35): Shear strength envelopes. 

 

Figure (3-36) shows the shear stress mobilisation with slip displacement for both soil-

soil and soil-pile interface tests at low normal stress levels, respectively, while Figure 

(3-37) shows the vertical -horizontal displacement relationships for soil-soil interface 

only, demonstrating that the soil has a very dilative response at the low stress levels 

tested, and that this is gradually suppressed with increasing confining effective stress. 
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Figure (3- 36): Shear stress-normal stress relationship for (a) soil-soil; and (b) soil-

pile interface 

 

 
 

Figure (3- 37): Vertical displacement-Horizontal displacement for HST95 silica sand 

at medium state (Dr = 55%) 
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3.11 Pile installation 

In order to install the piles at a regular spacing (so as not to bias failure away from the 

centreline of the box where the measurements were made) and to maintain verticality, 

a pair of perforated wooden jigs were fabricated as shown in Figure (3-38), for each 

pile spacing configuration tested.  These were placed across the ESB container as 

shown and the piles were pushed through these by hand once the model had been 

loaded onto the EQS.  The holes were of dimensions 12 × 12 mm (i.e. 1 mm from 

each side bigger than the pile size) to prevent any damage or wedging of the piles 

during installation.   

 

    

Figure (3- 38): Perforated wooden jigs and resulting installed piles (s = 4.67B shown) 
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3.12 Input ground motions 

Earthquake ground motions recorded in previous events were downloaded from the 

PEER (Pacific Earthquake Engineering Research) NGA database.  Most of the models 

were subjected to a horizontal strong ground motion recorded during the Mw = 7.6 

Chi-Chi Earthquake in 1999 (Station TCU072, PGA = 0.41-g), while in some models, 

a second motion was used which was recorded at the Nishi-Akashi recording station 

in the Mw = 6.9 Kobe earthquake in 1995 (PGA = 0.43-g).  These motions had 

approximately the same peak acceleration, but different characteristics in the time and 

frequency domains as shown in Figure (3-39a and b) and Figure (3-40a and b).  Both 

records were recorded in ground with Vs > 450 m/s, representing shaking from stiffer 

layers beneath the soil profile tested, such that any site amplification occurs solely due 

to the soil layer tested in the model.  The former motion was used as the Chi-Chi 

earthquake caused a particularly high number of slope failures (Khazai and Sitar, 

2004) and is strongly directional (in these tests, the stronger shaking was directed in 

the downslope direction which is represented by positive values of acceleration).  The 

latter motion is well known to be particularly destructive to civil engineering 

infrastructure having a broad frequency band below 3 Hz.  The demand motions were 

band-pass filtered between 0.8 – 8 Hz (40 – 400 Hz at model scale) using a zero 

phase-shift digital filter to remove components of the signal which were out-with the 

range that could be accurately controlled by the EQS.   

In one centrifuge test (AA03) a stepped sine burst, having a predominant frequency of 

1 Hz was used to induce an harmonic response within the slope.  The time- and 

frequency-domain characteristics of this motion are shown in Figures (3-39c) and (3-

40 c), from which it can be seen that higher harmonic components are kept to a 

minimum, giving a very good replication of a purely sinusoidal motion.  The burst 

was ‘stepped’ in terms of its peak magnitude, having a number of cycles at an initial 

magnitude approximately equal to the historical motions described above; after this, 

additional cycles were input at a much stronger level (0.7g) to verify how the 

behaviour of the slope (e.g. topographic amplification) would change under extreme 

shaking (where the induced stress-strain response would be different).   
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Figure (3- 39): Input ground motions in the time domain: (a) Chi-Chi; (b) Kobe; (c) 

stepped sine burst. 

 

Figure (3- 40): Input ground motions in the frequency domain: (a) Chi-Chi; (b) Kobe; 

(c) stepped sine burst. 

 

3.13 Centrifuge testing programme 

A total of nineteen centrifuge tests were conducted on a 28
o
 (≈ 1:2) cohesionless slope 

without and with stabilisation by one of two kinds of pile model.  The centrifuge tests 

were classified to five groups.  The first group contained four non-reinforced slopes 

under three input motions (Chi-Chi, Kobe and stepped sine burst).  These tests are 

described in detail in Chapter 4 and the results are discussed in Chapters 4 and 5. 

Sinusoidal wave is used once during this study (only for unreinforced slope in group 

one) only to compare the dynamic response of the slope under both wide range of 

frequencies (real motion) and single frequency (sinusoidal) whereas Chi-Chi motion 
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is used in all reinforced slopes at different pile spacing and some tests were conducted 

under Kobe motion to verify the results and to investigate how the frequencies 

characteristic effect on dynamic response and also to calculate the acceleration 

response spectra.  The second group consisted of four models reinforced with RC 

piles under a single Chi-Chi earthquake while the third group was the same as the 

second group, but was subjected to four Chi-Chi motions in succession (e.g. an initial 

strong earthquake, followed by strong aftershocks).  The fourth group consisted of 

five tests containing ‘elastic’ instrumented piles and subjected to multiple successive 

strong earthquakes.  The first four tests used four Chi-Chi motions, while the last test 

used twelve Kobe motions.  Finally, the last group contained two tests, both of them 

reinforced by a weak section RC pile, with one subjected to a single Chi-Chi motion 

while the other was identical but subjected to four Chi-Chi motions.  Figure (3-41) 

shows the centrifuge test programme schematically.  The last four groups of tests are 

described in detail in Chapter 6.  The elastic pile test (group four) data are also 

discussed in Chapter 7.   

In the case of the RC piles, the mechanical (bending) properties of the piles were 

determined following testing and careful exhumation.  This was to determine whether 

there was any degradation in properties due to shaking in both a single string motion, 

and after a series of strong motions (e.g. an earthquake ‘storm’).  The data from these 

post-shaking tests is presented in Chapter 6.   

3.14 Summary 

In this chapter, the model materials, procedures and equipment used in the centrifuge 

testing programme have been described and characterised.  It has also been shown 

that it was possible to develop two model piles having the same or very similar 

principal elastic soil-pile interaction properties (same exterior dimensions, bending 

stiffness, and interface friction) but with different strength characteristics (one a 

damageable RC section and the other an elastic section which would be unlikely to 

fail in the centrifuge tests due to its high moment capacity).  This means that the 

(instrumented) elastic piles can be used to investigate the detailed seismic soil-pile 

interaction, while the RC piles demonstrate whether a purely elastic response is likely 
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to be achieved when the material model is more representative of the behaviour of 

reinforced concrete.   

 

 

 
Figure (3- 41): Centrifuge testing programme.
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Chapter four 

Development of analytical tools for 

determining seismic performance of 

unreinforced slopes 
Contents of this chapter have been published as:   

Al-Defae, A.H., Caucis, K. and Knappett, J.A. (2013).  Aftershocks and the whole-life performance of 

granular slopes.  Géotechnique .63(14): 1230-1244.   

4.1 Introduction 

Shallow embankment slopes are commonly used to support elements of transport 

infrastructure in seismic regions to allow changes in gradient and damage to this type 

of infrastructure could inhibit the movement of emergency services and rebuilding in 

the aftermath of an earthquake.  While the infrastructure generally supported on such 

constructions is relatively light (low bearing pressure) and flexible, significant 

damage can be caused due to large permanent seismic slip within the slope.  Recent 

periods of seismic activity in Japan and New Zealand (2011-2012) have additionally 

demonstrated that civil engineering infrastructure may be subjected to a number of 

successive strong ground motions within a short period (‘short’ here meaning that 

there has been insufficient time to complete remediation or reinstatement of damage 

caused by earlier ground shaking).  This means that there is a need to understand the 

behaviour of seismically-damaged infrastructure under further ground shaking.  This 

feature is not currently incorporated into existing sliding-block methods.   

In this Chapter, the seismic performance of such slopes in non-liquefiable granular 

soils is considered, focussing on permanent movements and dynamic motion at the 

crest, which would form key inputs into the aseismic design of supported 

infrastructure.  In contrast to previous studies, the evolution of this behaviour under 

multiple sequential strong ground motions is studied through dynamic centrifuge 

modelling, and an improved sliding-block (‘Newmark’) approach is developed for 

estimating permanent deformations during preliminary design phases.  In this 

improved method, the formulation of the yield acceleration is fully strain-dependent, 
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incorporating the effects of both material hardening/softening and geometric 

hardening (re-grading).  It is shown that this new model considerably outperforms 

existing state-of-the art models (Newmark, 1965; Matasovic and Kavasanjian, 1997) 

which do not incorporate the geometric changes for the case of an earthquake on a 

virgin slope.   

The ability of the new model to fully incorporate the seismic strain history of the soil 

(seismic memory) within the formulation, means that they may also be used to 

determine the whole-life performance of a slope under a suite of representative 

ground motions that the slope may see during its design life, and therefore, potentially 

allow improved estimates of the seismic performance of slopes beyond their design 

life.  The simplicity of the sliding-block model, which requires no specialist software, 

means that it can be used to undertake rapid parametric analyses (such as may be 

necessary during the early stages of design or in the immediate aftermath of an 

earthquake) or used within a probabilistic Performance-Based Earthquake 

Engineering framework (PBEE) if desired. 

Chapter five will extend this work by detailing the development of numerical (Finite 

Element) models which can additionally predict the settlement profile at the crest of 

the slope and also the dynamic ground motions at this point, for detailed seismic 

design stages.   

4.2 Development of an improved sliding block method 

The horizontal yield acceleration of a shallow translational (infinite) slip can be 

determined using standard limit equilibrium techniques, incorporating a pseudo static 

acceleration component representing the seismic ground motion (Figure 4-1).  For a 

slip plane at depth z beneath the slope surface, the applied downslope shear stress is 

 

           2coscossin zkz happlied                         (4-1) 

 

where the first term relates to the static shear stress due to the ground slope, and the 

second term relates to the additional peak dynamic shear stress induced by the 
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earthquake.  The shear strength of the soil along the slip plane, assuming that the soil 

can be idealised as a Tresca material at failure, is given by: 
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                     (4-2) 

The soil yields when τapplied = τult.  The value of khy at which this occurs (the yield 

acceleration, khy) can be determined from Equations (4-1) and (4-2) as: 
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Figure (4- 1): Forces acting within an infinite slope 

 

In a standard Newmark analysis, when the horizontal component of the ground 

acceleration (a) exceeds khy in the downslope direction, the slope will start to 

accelerate under the slip acceleration aslip = a – khy.  This acceleration is numerically 

integrated with respect to time to obtain slip velocity, which is then itself integrated to 

obtain slip displacement.  Once a < khy, the sliding block will begin to decelerate (as 

aslip < 0) until the slip velocity reaches zero, at which point the block comes to rest 

until aslip is again positive.  This procedure has been described in greater detail in 

Chapter two.  
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In a dry cohesionless soil, c = 0, u = 0 and γz cancels in Equation (4-3), i.e. khy is 

independent of the depth of the slip plane (so long as it continues to be parallel to the 

slope surface).  Equation (4-3) therefore simplifies to: 

                          









tansincos

sintancos
hyk                                (4-4) 

The equation (4-4) is to calculate the yield acceleration in the downslope direction. By 

checking the yield acceleration at the opposite direction (i.e. upslope direction by 

changing the additional peak dynamic shear stress induced by the earthquake to the 

opposite direction) to investigate whether measured yield acceleration in upslope 

direction is affected by negative acceleration of the seismic ground motion. Equation 

(4-5) shows the yield acceleration in opposite direction. 
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The yield accelerationin upslope direction was measured in case of critical state of 

soil strength (around 1.73g) and this suggest there is no movement for the soil in 

upslope direction due to negative acceleration as the PGA values of the input motions 

does not reach to the measured yield acceleration.      

In both Equation (4-4) and (4-5) the only parameters affecting khy are the slope angle 

β (geometric) and the soil friction angle   (constitutive).  In a standard analysis, both 

β and   are constant.  In reality, however, the soil may be strain softening, in which 

case   will depend on the magnitude of the shear strain (εs) on the slip plane and the 

density of the soil, reducing from the peak value ( peak ) to the critical state value ( cr ) 

which is applicable at large shear strain.  Matasovic et al. (1997) presented a 

simplified model for this which was described in Chapter two.  Figure (4-2) shows 

this strain softening behaviour. If crpeak   , the model reduces to the standard case of 

a strain softening material.  To incorporate this behaviour into an analysis, the value 

of khy at a particular time step is calculated based on the current permanent downslope 

displacement, computed in the previous time step, divided by the thickness of the 

shear plane to obtain an estimate of the shear strain.  For small to moderate 

earthquakes whose peak ground acceleration magnitude is close to khy (and which will 
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therefore have only a limited amount of slip), strain softening behaviour can have a 

dramatic effect on computed slope displacements, with khy potentially changing 

continuously throughout the earthquake as  changes.  In larger earthquakes, where a 

single large cycle causes sufficient slip/strain to reach critical state conditions, then 

the strain softening model is likely to predict only a marginally smaller slip compared 

to a standard (strain-hardening) analysis using a constant cr  .  

 

 

Figure (4- 2): Newmark sliding block procedure, incorporating strain-softening 

 

The slope angle β will also change during an analysis, as slip will cause settlement at 

the crest and accumulation of material at the toe, i.e. the slope will become shallower 

(re-grading).  A simplified model for this geometric effect is developed in this chapter 

and is shown in Figure (4-3).  Figure (4-3a) shows the kinematically admissible 

failure mechanism assumed for an increment of sliding; in which infinite sliding is the 

predominant component.  This leads to settlement of the material at the slope crest 

and a translation of the position of the toe.  Provided that β is relatively small (such 

that the slope is long compared to its height), the equilibrium of this mechanism will 

be well approximated by infinite slope theory (i.e. Equations (4-3) or (4-4) will 

adequately describe khy).  It is assumed that any volumetric change in the material in 

the sliding block is negligible to simplify the analysis (the settlement are important as 

it may causes change in geometry). From Figure (4-3b), the instantaneous slope angle 

βi+1 can be determined from: 
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where Hi is the height of the slope at the previous time step.  For the initial time step, 

do = 0, Hi = H and βi = βo. 

 

 

Figure (4- 3): New incremental slope re-grading mechanism 

 

It should be noted that the deformations in Figure (4-3b) are shown at exaggerated 

scale for clarity.  The slope angle can therefore be recalculated at each time step to 

account for the re-grading of the slope based on the increment of slip occurring in the 

previous time step, as   was previously to account for strain-softening.  The yield 

acceleration will thus be fully strain-dependent.  This method assumes that once the 

slope has been deformed to a new, smaller value of β, the failure mechanism will 

continue to be of the infinite type, with a new slip surface forming parallel to the new 

slope surface.  It also assumes that the strain-dependent effects on β and   are 

independent to simplify the calculations – in reality, this latter assumption may not be 

true as the changing angle of a softened slip plane (i.e. with ''
cs  ) may push at least 

part of it into previously undisturbed soil.  If this effect and the effects of strain 

softening are significant, it is expected that the model will overestimate movements; 

however, this would be conservative for use in analysis and design.  It should also be 
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noted that the model as formulated can be used even for the case of large total slope 

movements (such as may accrue during a series of strong aftershocks) as the 

displacement increment in each individual time step will remain small, and therefore 

the instantaneous failure mechanism will be represented by Figure (4-3a) for small 

displacements.   

From the form of Equation (4-5) it is clear that β can only ever reduce during an 

earthquake, resulting in an increase of khy from Equation (4-3) or (4-4), i.e. the slope 

will geometrically harden during an earthquake, and the slip in a subsequent 

(identical) earthquake will be less than that occurring in the original.  The behaviour 

of a seismically damaged slope during a subsequent earthquake can therefore be 

determined by starting from the initial conditions (amount of slip, accumulated strain, 

re-graded slope angle and current friction angle) obtained at the end of the previous 

ground motion.   

4.3 Centrifuge modelling 

4.3.1 Modelling details 

To validate the improved yield acceleration and sliding block model developed in the 

previous section, dynamic centrifuge testing was conducted using the 3.5 m diameter 

beam centrifuge and servo-hydraulic earthquake simulator at the University of 

Dundee, which was described in chapter three.  Three models were flown representing 

identical 1:2 slopes (βo ≈ 28°) at 1:50 scale in dry sand (HST95 silica sand, also 

described in Chapter 3) at 50-g.  A 1:2 slope was selected to ensure that the soil was 

statically stable, but with a sufficiently low factor of safety (and therefore low khy) to 

ensure that large slip displacements would be generated during strong ground motion 

such that the analytical model could be validated to large displacements.  All 

subsequent dimensions and properties are given at prototype scale at 50-g, unless 

otherwise stated.   

The arrangement and instrumentation of the slope models is shown in Figure (4-4).  

The slopes were prepared at a relative density of Dr = 55 – 60% (the range accounts 

for the accuracy in being able to measure and replicate Dr), 8 m tall from toe to crest 

and were underlain by a further 6 m of sand at the same relative density.  Details of 
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the basic soil properties, instrumentation and container were described previously in 

Chapter 3.   

A check of the static stability of this slope was conducted using Equations (4-1) and 

(4-2), with kh = 0 with the result expressed as a factor of safety (FS). 

                                 








tan

tan 


applied

ultFS                                         (4-7)

 

This was also verified using the Discontinuity Layout Optimisation (DLO) technique 

(Smith and Gilbert, 2007), with the calculations carried out using LimitState: GEO, 

V2.0. It is a general purpose software program which is designed to rapidly analyse 

the ultimate limit state (or ‘collapse state’) for a wide variety of geotechnical 

problems.  The factors of safety were determined for both peak (40°) and critical state 

(32°) friction angles (see Section 4.5), and the results are summarised in Table (4-1).   

Table (4- 1): Static slope stability data 

 Static stability parameters 

Soil strength F (Eq. 4-6) F (DLO) 

φ' = 32° 1.17 1.20 

φ' = 40° 1.56 1.61 
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Figure (4- 4): Centrifuge test layout, 1:2 slope; dimensions in m at prototype scale 

(values in brackets in mm at model scale) 
 

4.3.2 Summary of testing programme 

Details of the model tests are summarised in Table (4-2).  All ground motions were 

initially calibrated on a dummy model identical to that shown in Figure (4-4), but 

without instrumentation, to train the programmable logic controller within the 

earthquake simulator to achieve a faithful and repeatable replication of the demand 

motions.  As a result, the ground motions applied in each successive earthquake are 

felt to be as close to identical as could realistically be achieved in practice.  

Table (4- 2): Summary of centrifuge models tested 

Test ID β (°) Dr (%) Input motion (no.) Peak input acceleration (g) 

AA01 28 56 Chi-Chi, 1999 (4) 0.41 

AA02 28 59 Kobe, 1995 (4) 0.43 

AA03 28 57 Stepped sine (1) 0.4/0.7 
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4.4 Determination of seismic slip mechanism of tested slope 

To confirm that the infinite slip mechanism assumed in the analytical model is valid 

for the slopes tested in the centrifuge, DLO was also used to obtain a minimum upper-

bound mechanism for the actual limited geometry of the centrifuge model under 

earthquake shaking.  DLO calculations were carried out using LimitState:GEO, v2.0.  

Seismic loadings may be modelled in this software using the pseudo-static method by 

specifying horizontal and vertical accelerations. Figure (4-5) shows the failure 

mechanism for the cohesionless centrifuge test slope using the same soil strength 

properties for HST95 silica sand as used in the determination of FS in Section. 4.3.1.   

 

 

Figure (4- 5): Failure mechanism for 1:2 slope computed from DLO for seismic case 

The yield acceleration was also determined using Equation (4-4).  All of the 

calculations were conducted for friction angles of 32° and 40°as before, representing 

the critical state and peak friction angles of the sand at the approximate depth of the 

shear plane, respectively (see following section).  The results are summarised in Table 

(4-3).   

 

Table (4- 3): Dynamic slope stability data 

  Dynamic stability parameters 

Soil strength khy (Eq. 4-4) khy (Eq. 4-4) khy (DLO) in 

downslope direction 

φ' = 32° 0.07g 1.73 0.07g 

φ' = 40° 0.21g 2.46 0.22g 
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4.5 Validation of sliding-block model 

Visual observations from the centrifuge tests (by using colour sand columns) 

suggested that the 1:2 slopes tested failed in a shallow translational mechanism 

consistent with that shown in Figure (4-6).   

 

Figure (4- 6): Failure mechanism for 1:2 slope computed from DLO for seismic case 

 

Before predictions could be made of the displacement observed in the centrifuge tests, 

shear box testing was conducted on samples of dry sand prepared to the same relative 

density as in the centrifuge tests using a standard 60 × 60 mm direct shear apparatus 

(DSA) to obtain φ'pk and φ'cs.  These tests were conducted at a range of effective 

confining stresses representing those within the top 1 m of the soil, as the shear plane 

depth was predicted to be at approximately 0.5 m depth from Figure (4-5) via the 

DLO technique and from Figure (4-6) from the centrifuge test results.  The test data is 

shown in Figure (4-7), from which φ'pk = 40°, φ'cs = 32°, εs,pk = 3.5% and εs,cs = 

7.5%.  The shear band thickness (required for converting slip displacement in the 

sliding-block model into an approximate shear strain) was estimated at t = 16D50 = 

2.4 mm based on a range of previous studies (Muhlhaus and Vardoulakis, 1987; Oda 

and Kazama, 1998; Muir Wood, 2002, amongst others). The calculations were 

conducted at prototype scale and so the shear strain was estimated using 50t = 120 

mm to model the correct ratio between the slope geometry and the grain size within 

the model.  For application to a true field case where the grains are smaller compared 

to the overall size of the slope, the true shear band thickness should be used instead.  

For the tests presented herein, changing the shear band thickness from 120 mm to 2.4 

mm resulted in less than 1% change in crest settlement (the actual value varied 

slightly with the input motion considered) confirming that the grain size scaling effect 

is negligible and that centrifuge modelling is therefore an appropriate technique for 

modelling slope failure problems in coarse-grained soil. A similar conclusion was 
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reached by Anastasopoulos et al. (2007) for fault rupture (shear band) propagation 

through the same sand.   

 

 

Figure (4- 7): Soil test data from direct shear apparatus (DSA) 

 

Using these constitutive parameters, sliding-block analyses were conducted for each 

of the centrifuge tests (for all four earthquakes in the cases of tests AA01 and AA02).  

Simulations were conducted using the ‘bedrock’ input motion, this being taken from 

the bottom-most accelerometer in the models – instrument 8 in Figure (4-4) – so that 

the motion was that actually seen by the slope after any losses due to the shear 

transfer through the shaking table and into the model container.  In slopes with deep 

rotational failure surfaces, e.g. in municipal solid waste or steep cohesive slopes, the 

dynamic behaviour of the material within the sliding block may be significant (e.g. 

Rathje and Bray, 1999); this was not the case for the extremely shallow translational 

slips which occurred within the cohesionless slopes tested herein.  Figure (4-8) shows 

the effect of the geometric re-grading (change in β) using the first earthquake of test 

AA01 as an example.  Only the positive (downslope) accelerations have been shown 

for clarity (i.e no possibility for upslope movement due to negative acceleration).  No 

downslope slip occurs until the ground motion exceeds the yield acceleration based on 

the peak strength.  Once the ground motion exceeds this value however, and the slope 

begins to slip, the shear strain rapidly accrues resulting in softening to critical state 

conditions after the first large pulse.  Motion of the slope also causes re-grading 

(geometric hardening) and the yield acceleration can subsequently be seen to increase 

non-linearly throughout the remainder of the earthquake, leading to reduced slip 
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velocities (and hence reduced permanent slip) compared to the case with no geometric 

hardening.   

 

Figure (4- 8): Application of new sliding block model showing key features (Chi-Chi 

EQ1, test AA01) 

Figure (4-9) shows the re-grading mechanism for the harmonic motion (test AA03). 

Because most of acceleration cycles values are above the yield acceleration of the 

slope, thus, the re-grading mechanism is very clear and the yield acceleration was 

increased sharply (above even the original peak value) due to slope re-grading.    

 

Figure (4- 9): Application of new sliding block model showing key features (Sine 

burst motion, test AA03) 
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Figures (4-10) and (4-11) show the results of simulations of cumulative crest 

displacement both with (SS + RG) and without (SS) re-grading with the centrifuge 

test data, for tests AA01 and AA02 respectively.  It can be seen that in each case, the 

improved model presented in this chapter (SS + RG) tracks the settlement at the crest 

of the slope much more closely than the model which only incorporates the 

constitutive effect (SS).  These latter models increasingly diverge from the measured 

values with further strong shaking, as they always start with the initial (steeper) slope 

geometry and therefore over-predict the slip.  If the input motions were identical, the 

slip in each subsequent earthquake would be identical for the case of no re-grading 

(though the movements in the first earthquake may be slightly smaller due to the 

strain-softening effect). Figure (4-12) shows the instantaneous slip occurring in each 

earthquake for tests AA01 and AA02, both as measured, and as predicted using 

sliding-block models.  From these figures, it can be seen that the motions were not 

identical in each test as the SS models show differing amounts of slip; however, it is 

clear that without re-grading, the sliding block model cannot capture the decay in 

slope movement as the slope geometrically hardens.  Also shown in this figure are the 

results of simulations conducted with re-grading but without strain-softening (RG 

only).  In these simulations, a constant value of φ' = φ'cs was used.   

 

 

Figure (4- 10): Comparison of predicted cumulative crest settlements (with and 

without re-grading) with centrifuge test measurements: test AA01 (Chi-Chi) 
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Figure (4- 11): Comparison of predicted cumulative crest settlements (with and 

without re-grading) with centrifuge test measurements: test AA02 (Kobe) 

 

Figure (4-12) suggests that for large earthquake motions such as those reported here, 

the strain-dependency of β, rather than φ' is of greatest importance for the accurate 

prediction of permanent slip.  It should be noted that the improved models are not 

perfect and in each case over-predict the measured movements, as suggested earlier; 

however, this would be conservative in design.  As the slope re-grades, the new 

position of the slip plane may cause it to pass at least partially through undisturbed 

soil, thereby leading to an enhanced average friction angle along the slip-plane.  As 

this is not accounted for in the analytical model, this may explain the over prediction. 
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Figure (4- 12): Instantaneous settlement measurements and predictions, showing 

reduced displacement with increasing strong shaking due to geometric hardening (re-

grading) 

 

The sliding-block models are compared to the centrifuge test data for the harmonic 

excitation (test AA03) in Figure (4-13).  As with tests AA01 and AA02, including the 

geometric hardening effects produces a better prediction than the method which only 

incorporates strain-softening.  However, comparing Figure (4-13) with Figures (4-10) 

and (4-11) shows that the predictions for harmonic shaking are much poorer (225% 

over-prediction for test AA03, compared to 139% in test AA01 (EQ1) and 134% in 

test AA02 (EQ1)).  The reasons for this are not clear, but it suggests that in this case, 

the predicted yield acceleration was too low, suggesting a change in mechanism.  
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Figure (4- 13): Comparison of predicted crest settlements (with and without re-

grading) with centrifuge test measurements: test AA03 (stepped sine burst) 

4.6 Performance during earthquake ‘storms’ (many aftershocks) 

A fourth centrifuge test (AA17) was subsequently conducted on the same 

cohesionless slope under 12 successive Kobe motions to observe whether the new 

method could be used to continue to predict the slope slip over a much more extreme 

seismic history, which may represent a ‘storm’ of strong earthquakes occurring in 

rapid succession (as occurred in the 2011 Tohoku earthquake).  As can be seen in 

Figure (4-14), the measured crest settlement from the centrifuge test was extremely 

close to the predicted crest settlement from the modified procedure after the fourth 

earthquake. This congruence in the two values continues to the end of the eighth 

quake, and the performance continues to be good even to the twelfth earthquake.  In 

contrast, the calculated crest settlement using the strain softening (SS) model (existing 

state-of-the-art) gives excessive over-prediction which only gets worse with 

successive earthquakes. The rate of increase of the yield acceleration also decreases 

with further shaking due to slope re-grading after each earthquake.  
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Figure (4- 14): Comparison of predicted cumulative crest settlements (with and 

without re-grading) with centrifuge test measurements: test AA17 (Kobe) 

 

It can be seen in Figure (4-15) from the instantaneous settlements that there is some 

degradation in slip for the standard SS model, suggesting that the later earthquakes 

were not replicated quite as strongly over such a long sequence.  However, they 

consistently over-predict the movements in each case and only the new model, 

including re-grading, is able to predict the hardening correctly.   

 

Figure (4- 15): Instantaneous settlement measurements and predictions, showing 

reduced displacement with increasing strong shaking due to geometric hardening 

(AA17) 
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4.7 Arias intensity and yield acceleration 

As explained before, the strain softening and re-grading leads to a significant increase 

in the yield acceleration of the slope after each aftershock. It can be seen from figure 

(4-16) how the yield accelerations were changed after each earthquake. The yield 

acceleration for the studied slope before the earthquakes was calculated as mentioned 

before and it was (0.213g). For test AA01 (Chi-Chi model), the yield acceleration 

reduced during the earthquake after development of strain softening to 0.07g for Chi-

Chi and was increased to 0.137g at the end of EQ1 due to geometric hardening or re-

grading. In test AA02 (Kobe model), the yield acceleration dropped to the same 

values 0.07g (same strain-softening characteristics) while it was increased to 0.124g 

which is less than of AA01 model. The same ratio between motions in tests  AA01 

and AA02 were observed after second, third and the last earthquake as shown in 

figure (4-16).     

 

Figure (4- 16): (a) Yield acceleration variation with earthquake No. 

       

It is well known that the stability of the slopes and the seismic displacement due to 

earthquakes are not dependent only on the time-acceleration histories, but the 

duration, mode shape and frequencies of the accelerations (Seed, 1979). Thus, a better 

way of characterising the earthquake motion may be by measuring the intensity of 

shaking through the Arias Intensity. It has been previously felt to be strongly reliable 

to describe earthquake shaking particularly for the case of landslides and slope 

failures. It is defined as the time-integral of the square of the ground acceleration as 

shown in equation (4-8): 

http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Ground_acceleration
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where a is the acceleration in (m/sec
2
), g is the round acceleration (9.81 m/s

2
). The 

Arias intensity has been calculated for all unreinforced tests (AA01, AA02 and 

AA17). In figure (4-17), the calculated yield acceleration reduction factors at the end 

of each earthquake were plotted for AA01, AA02 and AA17 against the accumulated 

calculated arias intensity.  It should be noted that the yield acceleration for the slope is 

return to the original value (before earthquake) at the end of the fourth earthquake. 

 

Figure (4- 17): Yield acceleration reduction as a function of Arias Intensity 

      

The yield acceleration factor is the ratio between the yield acceleration after each 

earthquake to the original (pre-softened) yield acceleration for the slope. Maximum 

reduction in the yield accelerations was observed after the first earthquake (64% for 

AA01 and 58 % for AA02 respectively) due to strain softening in the first earthquake. 

It is particularly noticeable that the behaviour appears to be independent of the input 

motion (so long as this is described by Arias Intensity), suggesting that it is a unique 

function of the slope geometry and soil properties.   

 



Chapter 4             Development of analytical tools for determining seismic performance of unreinforced slopes 

139 

 

4.8 Implications of findings for a seismic design 

The development of a fully strain-dependent model for the yield acceleration (i.e. 

where all of the parameters in Equation (4-4) are a function of strain) means that khy 

has a seismic memory as it incorporates strain history for a given slope.  This has two 

clear benefits for aseismic design.  Firstly, improved probabilistic predictions of 

damage and economic loss within a PBEE design framework (Kramer, 2008) can be 

made.  At present, such models determine the performance of an engineered system 

under a design basis earthquake (DBE) which is statistically described based on local 

seismological data and modelling.  It is clear from the centrifuge test observations 

presented earlier that seismic history has an important effect on performance – a slope 

which does not see the DBE until late in its design life, after being subjected to a 

significant number of smaller-moderate strength earthquakes will have a reduced 

response under the DBE, compared to the same slope which sees the DBE as its first 

event.  Use of the new fully strain-dependent khy model is numerically only 

marginally less efficient than existing sliding-block techniques, and so could 

straightforwardly be incorporated into PBEE utilising Monte-Carlo simulation to 

produce probabilistic estimates of whole-life damage and loss under predicted suites 

of future earthquake motions over the design life of the slope.   

The second major benefit is that once the slope has been constructed, the effects of 

any earthquakes which occur can be simulated based on locally-recorded ground 

motions.  Having initially conducted analyses under the DBE when designing the 

slope, the performance under the DBE can then be re-evaluated after any smaller 

event (‘pre-shock’) to produce an improved prediction.  The predicted displacements 

under the small events can also be validated against measured response (e.g. from 

topographic surveying to determine slip in the pre-shocks) to back-calculate and 

empirically improve the values of the parameters in the model, further improving the 

subsequent prediction under the DBE.  This information may be useful for re-

evaluating insurance premiums to ensure that sufficient funds will be available to 

repair seismic damage.  The use of a sliding block analysis with seismic memory in 

this way means that as the slope ages, predictions of its subsequent performance and 

damage susceptibility improve and mean that the potential continued use of the 
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structure at the end of its design life can be more reliably determined based on the 

existing condition of the slope, incorporating its seismic history until that point.   

Clearly the sliding-block techniques developed herein are limited in their ability to 

fully describe the seismic hazard posed to slopes which may support infrastructure at 

the crest.  For structures located at the slope crest it is important to also understand the 

amplification or attenuation of ground motion within the slope such that the dynamic 

response can be determined (either via time-history or spectral methods).  However, 

transport infrastructure, such as roads or railways, is likely to be more affected by the 

distribution of settlement back from the crest (and the associated angular distortion).  

Chapter 5 will develop Finite Element modelling procedures, validated against the 

centrifuge test results, which can be used to estimate the permanent and dynamic 

response at all points within the slope.  Nonetheless, the simple siding block technique 

developed in this paper will be useful in preliminary design for comparative 

evaluation and screening of different design options in terms of the magnitude of the 

permanent movements at the slope crest (within a PBEE framework if desired).  More 

sophisticated (and computationally less-efficient) FE modelling can then be applied 

for a more detailed analysis of the final design options selected. 

4.9 Summary 

Development of an analytical procedure to investigate the seismic displacement of  

slopes under strong earthquakes and many aftershocks has been presented in this 

chapter. The modified analytical procedure’s results have been compared with 

centrifuge tests results for 1:2 cohesionless slopes and existing procedures. The 

summary of what has been observed in this chapter is explained below: 

 

1. The yield acceleration of the 1:2 cohesionless slopes is independent of the 

depth of the slip surface but dependent on both angle of internal friction and 

the angle of the slope variation during the earthquake time. 

2. As the slope starts slipping due to an earthquake event (the ground motion 

acceleration exceeds the yield acceleration of the slope), the soil strength 

reduces from the peak state to the critical state due to strain softening 

behaviour. The results shows that the subsequent seismic slope displacements 
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are not significantly influenced by the strain softening in large earthquakes 

while it is strongly influenced by geometric hardening (re-grading), which has 

been added in the new model. 

3. The modified Newmark’s procedure to calculate the seismic displacement of 

the cohesionless slope (with hardening or re-grading) showed a much 

improved match to centrifuge results while the models without re-grading 

showed very poor predictive ability. 

 

 



Chapter 5        Development of FEM-based tools for determining seismic performance of unreinforced slopes 

141 

 

Chapter five 

Development of FEM-based tools for 

determining seismic performance of 

unreinforced slopes 
Contents of this chapter have been published as:   

Al-Defae, A.H., Caucis, K. and Knappett, J.A. (2013).  Aftershocks and the whole-life performance of 

granular slopes.  Géotechnique .63(14): 1230-1244.   

5.1 Introduction 

In chapter four, improved analytical tools, based on the Newmark sliding block 

method, were developed for predicting the seismic slip and resultant crest settlement 

in shallow granular slopes.  By incorporating the changes in slope geometry as a 

function of slip, a fully-strain-dependent yield acceleration was determined.  By 

incorporating strain history (‘seismic memory’) in this way, the model was shown to 

be accurate to large displacements through validation against dynamic centrifuge test 

data, allowing the effects of aftershocks or other sequences of multiple seismic events 

to be modelled (e.g. to determine the whole-life performance of the slope).  While 

such analytical tools are useful for parametric/comparative study, particularly in 

preliminary design, they are not able to predict the dynamic ground motions or 

settlement distribution (angular distortion) behind the slope crest, both of which will 

have a controlling influence on the design of any infrastructure supported at the top of 

the slope.  

In this paper, fully-dynamic numerical modelling using the Finite Element Method 

(FEM) will be applied to the problem, with the aim of producing a single analysis in 

the time domain which captures both the dynamic vibration effects and the permanent 

slope deformations. PLAXIS 2D v9.0 is the software used for conducting the 

analyses.  The cross-section utilised for the numerical model, dynamic input motions, 

and material parameters are the same as those used in the centrifuge models. These 

Finite Element models are validated against the centrifuge test data from the tests 

described in Chapter four, with particular attention paid to the specification of the 
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model parameters using routine site investigation data. Existing non-linear soil 

constitutive models will be used which encapsulate the strain history (‘seismic 

memory’) of the soil.  Emphasis will be placed on the efficient parameterisation of 

such a model, using previously published correlations based on databases of element 

test data (which require only relative density as an input), and through the use of 

routine laboratory test data to produce improved soil-specific calibrations.  The ability 

to realistically model soil response, without requiring an excessive number of 

empirical parameters derived from non-standard tests, will allow the FEM procedures 

developed to be used in routine geotechnical practice for conducting detailed analyses 

of candidate slope designs arising from use of the analytical models from Chapter 

four. 

5.2 Constitutive modelling 

5.2.1  Overview 

An elasto-plastic soil model with isotropic hardening (Shanz et al 1999) is used, in 

which the elastic behaviour incorporates strain-dependent stiffness variation following 

the model proposed by Hardin and Drnevich (1972), as modified by Santos and 

Correia (2001): 

                           

7.0,

0
385.01

1

s

s
G

G






                         (5-1) 

Plastic failure is modelled using a cap-type yield surface combined with the Mohr-

Coulomb failure criterion.  This model is included in the PLAXIS finite element suite 

as the ‘Hardening Soil model with small-strain stiffness’.  While this model captures 

only strain-hardening (and not strain softening behaviour), it was shown in Chapter 4 

that the effect of strain softening on slope movement is small when the earthquake is 

strong enough to induce significant slip, as in the motions used in the centrifuge 

testing.  The selection of appropriate soil strength (peak or critical state friction 

angles) will be further discussed later in this section.   

The model requires thirteen input parameters: unit weights under saturated and dry 

conditions; three measureable effective stress strength parameters φ'pk, c' and  ' (angle 
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of dilation) for use in the Mohr-Coulomb failure criterion; six measurable stiffness 

parameters (which are stress-dependent) describing (i) the response to deviatoric 

loading (E50), (ii) compressive loading (Eoed), (iii and iv) unload/reload cycles (Eur, 

νur), (v) small strain stiffness (G0) and (vi) a shear strain for describing the shape of 

the G-εs relationship (εs,0.7, i.e. the shear strain at which G/G0 is 70%); finally, two 

empirical parameters Rf and m, the former of which controls the deviatoric stress at 

failure and the latter the variation of the stiffness parameters with effective confining 

stress: 
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where E* may be either E50, Eur or G0, E
ref

 is the value of the parameter at a reference 

stress of pref and K0 = 1 - sinφ'.  A reference pressure of pref = 100 kPa is used 

throughout the remainder of this chapter.  Although the model has a number of input 

parameters, it should be noted that all except Rf and m can be measured in some form 

through routine laboratory testing.   

In the first set of FEM simulations which will be described in the subsequent sections, 

the correlations between the input parameters and relative density for coarse-grained 

soils presented by Brinkgreve et al. (2010) were used.  Use of these parameters 

required no additional soil testing and all of the constitutive parameters can be defined 

using relative density, ID, alone (which was uniform for the centrifuge model slopes).  

Use of this model represented the case in practice where no detailed laboratory test 

data is available, but where relative density can be determined from SPT tests or a 

CPT profile (e.g. as outlined in Knappett and Craig, 2012).   

A second set of simulations was then conducted in which the key strength and 

stiffness parameters were calibrated for the soil used in the centrifuge tests using 

laboratory test data, the stiffness parameters being important in modelling the 

dynamic effects, shear-wave propagation and the strength properties controlling the 

permanent deformations.  This model is termed ‘HST95’.  A large amount of shear 

box test data had already been published in a range of previous studies for the HST95 

sand used (Lauder 2011; Bransby et al., 2012) and others have been conducted as part 
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of this research (Figure 5-1); this data was used to derive soil-specific strength 

parameters, supplemented with oedometer tests to determine soil-specific stiffness 

parameters.  In practice, it would only be necessary to undertake tests appropriate for 

the in-situ soil states (e.g. density in this case); however, in this chapter a range of test 

data were collated/obtained for reconstituted samples covering the full range of 

relative densities such that a more complete model could be developed for use in 

future simulations of physical test results at the University of Dundee.   

5.2.2 Strength parameters 

Figure (5-1) shows a summary of shear box data from a total of 38 tests conducted 

over a range of confining normal effective stresses between 5 – 200 kPa, as 

summarised in Table (5-1).  Figure (5-1a) shows shear stress measurements at critical 

state (when volumetric change had stopped), indicating that the critical state friction 

angle is φ'cs = 32°.  Figure (5-1b) shows the secant peak friction angles measured over 

the stress ranges considered.  Stress-independent values were determined by straight 

line fits to the peak strength data, as φ'pk is stress-independent within the constitutive 

model.  Focussing on the datapoints below ID = 80% gave: 

 

2920'  Dpk I        (degree)              (5-4) 

Dilation angles are also shown in this figure; the straight-line fit for this data was 

found to be: 

425'  DI               (degree)               (5-5) 

These simple linear fits to φ'pk and  ' satisfy the dilatancy relationship given by 

Bolton (1986) and predict the value of φ'cs = 32 with an error of < 1% either using this 

relationship, or that by Rowe (1962) which is incorporated within the constitutive 

model formulation.   

While the strength properties given by Equations (5-4) and (5-5) match the element 

test data well, their use within a strain-hardening model would imply that the peak 

strength is appropriate to the analysis.  It has been demonstrated in Chapter 4 that for 

large strain slope problems, the permanent deformations are governed by the critical 
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state strength.  Hence in modelling the centrifuge tests, φ'pk = φ'cs = 32° and  ' = 0° 

were used.   

 

 

Figure (5- 1): DSA (shear box) test data used in the soil-specific calibration of the 

constitutive model: (a) φ'cs; (b) φ'pk and ' ' 

Table (5- 1): DSA test data for HST95 silica sand 

Source ID (%) No. of tests Effective normal stresses (kPa) 

Lauder (2011) 17 

40 

75 

8 

6 

4 

5, 8, 11, 16, 30, 35, 70, 125 

16, 30, 55, 100, 135, 150 

11, 16, 30, 70 

Bransby et al. (2012) 9 

41 

93 

5 

5 

5 

10, 25, 50, 100, 200 

15, 35, 55, 100, 150 

10, 25, 50, 100, 180 

This study 55 5 5, 8, 13, 16, 25 

 

5.2.3  Stiffness parameters 

Oedometer test data for dry HST 95 sand were reported by Caucis (2012).  These 

were conducted on dry samples of sand prepared by air pluviation within a 

Clockhouse Engineering Ltd J550 oedometer (sample height = 19 mm; sample 

diameter = 76 mm) at a range of relative densities between ID = 5 – 83%.  The tests 

were conducted up to an effective stress of 600 kPa and included 3 unload-reload 

cycles (200 – 100 – 200; 400 – 200 – 400; 600 – 400 – 600 kPa) to ensure that Eur was 

well calibrated (this parameter is likely to important during cyclic (seismic) loading.  

The model parameters for PLAXIS were determined from virtual oedometer tests, 
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also by Caucis (2012), starting with the parameters suggested by Brinkgreve et al 

(2010) and modifying them as necessary to achieve a reasonable fit to the data.  

Figure (5-2) shows the axisymmetric model geometry and boundary conditions 

employed.  To develop a complete density-dependent model ( i.e.to capture both 

densification and loosening of the soil) in this chapter, calibrated parameters were 

determined for loose and dense samples from which linear interpolations were made 

as a function of relative density as presented by Brinkgreve et al. (2010).  The 

interpolated parameters were subsequently checked against further tests at 

intermediate densities. 

 

 

Figure (5- 2): FE mesh used in simulating oedometer tests, showing boundary 

conditions (after Caucis, 2012) 

 

Figure (5-3a) shows a comparison of some results for the Brinkgreve et al. (2010) 

model which under-predict stiffness in dense sand and dramatically over-predict 

stiffness in loose sand.  Figure (5-3b) shows the markedly improved results using 

fitted values of Eoed, E50, Eur and m.  To reduce the number of independent parameters 

E50 = 1.25Eoed and Eur = 3Eoed was assumed, so that Eoed could be used to simulate the 

strain magnitude correctly, and m used to control the shape of the stress-strain curve.  

E50 = Eoed was proposed by Brinkgreve et al. (2010), but this is not exactly true from 

comparison of Equations (5-2) and (5-3); the value of 1.25 ensured that there were no 

unrealistic values of Ko implied in denser soils, and the analyses appeared to be 
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relatively insensitive to this assumption at lower densities.  Following iteration, the 

best-fit stiffness parameters were determined to be: 

   22.2025  D
ref
oed IE              (Mpa)                   (5-6) 

   DIm 1.06.0                                        (5-7) 

 

Figure (5- 3): Comparison of one-dimensional compression curves for loose and 

dense samples: (a) using Brinkgreve et al. (2010) parameters; (b) using HST95 (soil-

specific) parameters.  (Data from Caucis 2012). 

   

It should be noted that the proposed calibration for m (Equation 5-7) gives a power-

law exponent for stress-dependency which is between 0.5 – 0.6 at all densities.  This 

is consistent with previous studies, e.g. Lo Presti et al., (1998), while maintaining the 

negative correlation between the two parameters noted by Brinkgreve et al. (2010).   

As neither of the aforementioned tests measure small strain parameters, Go was 

estimated using the relationship based on void ratio (e) proposed by Hardin and 

Drnevich (1972): 
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)97.2(
33

2

 (Mpa)                 (5-8) 

for pref = 100 kPa.  Equation (5-8) can be linearised ignoring terms of order e
2
 and 

above; expressing e in terms of relative density with the values of emax and emin in 

chapter four then gives: 

 

        80.8850  D
ref
o IG     (Mpa)                 (5-9) 

as shown in Figure (5-4).  The shear strain parameter εs,0.7 was assumed to increase 

linearly from 0.01% at ID = 20% to 0.02% at ID = 80%, i.e. 

 

  67.07.17.0,  Ds I            )10( 4x              (5-10) 

 

 

Figure (5- 4): Small strain stiffness (Go) as a function of relative density 

 

5.2.4  Other parameters and comments 

Of the remaining parameters, the default value of Rf = 0.9 was used and the unit 

weight parameters were determined from standard relationships as a function of 

relative density and linearised, giving: 
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5.143  Ddry I      )/( 3mkN                (5-11) 

    8.188.1  Dsat I    )/( 3mkN                                (5-12) 

The particular choice of DSA and oedometer tests for determining the parameters as 

described was guided by available test data.  Triaxial test data could equally be used 

to determine both strength and stiffness data by simulating triaxial compression on a 

virtual test sample using FEM in a similar way to that described for the oedometer 

tests.  For the nominal relative density of ID = 55% used in the centrifuge tests, values 

of the parameters for both the Brinkgreve et al. method (requiring only relative 

density) and HST95 models (utilising routine laboratory test data) are summarised in 

Table (5-2).  Damping will be discussed later in the chapter.  

  

Table (5- 2): Summary of constitutive parameters for nominal relative density of ID = 

55% 

Parameter Brinkgreve et al. (2010) HST95 (this chapter) 

φ'pk 34.9° 32° 
1
 

 ' 4.9° 0° 
2
 

c' 0.3 kPa 0.3 kPa 

ref
oedE  33 MPa 34 MPa 

ref
E50  33 MPa 42.5 MPa 

ref
urE  99 MPa 102 MPa 

νur 0.2 0.2 

m 0.53 0.55 

ref
oG  97.4 MPa 116.3 MPa 

εs,0.7 0.015% 0.016% 

γdry 17.2 kN/m
3
 16.2 kN/m

3
 

Rf 0.93 0.9 

1
 40° from Equation (5-4) 

                        
2
 9.8° from Equation (5-5) 
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5.3  Validation against centrifuge test data 

5.3.1 Modelling considerations 

The 1:2 slopes tested in chapter 4 were modelled in plane strain with the mesh and 

boundary conditions shown in Figure (5-5).  Figure (5-5a) shows the model layout in 

the centrifuge tests (Figure (4-4) in Chapter four, repeated here for ease of reference).  

In the FEM, the dimensions of the model domain were extended laterally and 

combined with non-reflecting boundary elements to better represent the semi-infinite 

soil conditions, i.e. boundary deformations at the location of the centrifuge container 

wall which are controlled by the dynamic deformation of the adjacent soil. This 

boundary condition can also be modelled by horizontal node-to-node ties between the 

two vertical boundaries in case of a symmetrical model including the width of the soil 

tested in the centrifuge. Compared to this alternative, the method used has a higher 

element requirement for the same mesh density, but allows information to 

subsequently be collected for points far from the crest and toe of the slope (though 

these are not reported here).  A dynamic ground displacement was applied along the 

bottom-edge of the FE model, shown by the repeating arrows in Figure (5-5b).  For 

validating the constitutive model described previously for seismic analysis, the input 

motion applied to the model was that measured at instrument 8 in the centrifuge 

model, i.e. the motion that the slope in the centrifuge actually saw, accounting for any 

losses between the shaking table, container and soil.  The motions were input as 

ground displacements, determined by high-pass filtering and integration of the 

accelerometer records; filtering before integration to obtain velocity, and again, before 

integrating velocity to obtain displacement ensures that there is no permanent 

‘wander’ due to any offset in the accelerometer recordings or integration of random 

noise within the signal.  Displacement data was extracted from the FE models at the 

locations of the instruments in the centrifuge tests shown in Figure (5-5a).  At points 1 

– 15, accelerations were subsequently determined from double-differentiation of the 

displacements.  For ease of reference, details of the centrifuge models and the seismic 

motions applied are provided in Table (5-3) (data from Chapter four).   
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Figure (5- 5): Simulation of centrifuge tests: (a) centrifuge model layout and location 

of ‘virtual’ instruments in numerical models; (b) FE mesh, showing boundary 

conditions 

 
Table (5- 3): Summary of centrifuge configurations 

Test ID β (°) ID (%) Input motion (no.) 

AA01 28.2 56 Chi-Chi, 1999 (4) 

AA02 28.2 59 Kobe, 1995 (4) 

AA03 28.2 57 Stepped sine (1) 

 

5.3.2  Prediction of soil accelerations 

Figure (5-6) shows a comparison of the measured and simulated acceleration at the 

toe of the slope (instrument 14) and at the mid-height of the slope (instrument 6) in 

the first earthquake of test AA01 (Chi-Chi motion) in both the time and frequency 

domains. In this figure (and subsequent figures in this section) three cases are 

considered: (i) Use of Brinkgreve et al. (2010) constitutive parameters; (ii) use of 

HST95 parameters and (iii) use of HST95 parameters with additional Rayleigh 

damping.  The constitutive model implicitly includes material hysteretic damping 

within its formulation; however, these models generally over-predicted accelerations.  

The Rayleigh damping formulation allows additional mass and/or stiffness 

proportional (modal, frequency dependent) damping (ςadd) to be included: 
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where ςadd is the additional equivalent viscous damping ratio, and fn is the natural 

frequency of modes within the soil. Many models with different Rayleigh damping 

parameters were conducted for use in case (iii), but the best results were found using 

values of α = 0.0005 and β = 0.005 were selected, and the justification for these will 

be explained later.   

 

Figure (5- 6): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA01: time domain (top) and frequency domain (bottom). 

 

At point 14 or at the toe of the slope (Figure 5-6), the match between the centrifuge 

test and FEM is good for all models considered, both in the time and frequency 

domains, though the models without the additional Rayleigh damping slightly over-

predict the peak acceleration values in some of the cycles. At point 6, very good 

results were obtained for case (iii) where the additional Rayleigh damping reduced the 

frequencies above (3 Hz) compared to cases (i) and (ii), bringing them closer to those 

measured in the centrifuge.     

Figure (5-7) shows similar plots at the crest of the slope (instrument 5) and behind the 

crest of the slope (instrumented 1), representing a more stringent test of the 

capabilities of the numerical model.  This would be of significant interest for being 
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able to determine the input motion to any (infra-) structure located at the crest of the 

slope.  For both cases (i) and (ii) without any additional damping, significant over-

prediction of acceleration is observed.  From Figure (5-7), it is clear that this arises 

due to increased amplification of the higher frequency components (above 3 Hz).  The 

Rayleigh damping parameters reported earlier give damping that is predominantly 

stiffness-proportional, such that the motions at higher frequencies would be more 

significantly damped, without over-damping the lower frequencies where the match 

was good.  Case (iii) in Figure (5-7) shows a markedly improved prediction of the 

acceleration time history at this point, due to reduced contribution of the higher 

frequency modes.   

 

Figure (5- 7): Comparison of measured and predicted accelerations at and behind 

slope crest during test AA01: time domain (top) and frequency domain (bottom). 

 

A similar result was found for simulations of test AA02 (Kobe motion) as shown in 

Figure (5-8) and Figure (5-9). As can be seen, the selected Rayleigh damping 

parameters (α and β) again damped the frequencies above (3 Hz) for the points near 

the slope surface and amplified the frequencies below this value near the base of the 

slope.  The match at the base is not surprising given that the shear wave has only 

propagated a short distance at this point, and has not yet interacted with the slope. By 
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comparing Figures (5-6) – (5-9), the constitutive model appears to work well 

independent of the input motion.   

 

Figure (5- 8): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA02: time domain (top) and frequency domain (bottom). 

 

Figure (5- 9): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA02: time domain (top) and frequency domain (bottom). 
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The harmonic motion from test AA03 was also used as an input motion. The 

comparison with the centrifuge data for all of the previously mentioned points (at the 

toe of the slope, at the mid-height of the slope, at the crest of the slope and behind the 

crest of the slope) are shown in Figure (5-10) and Figure (5-11) respectively. It can be 

seen from these two figures how the Rayleigh damping is again important especially 

for the points near the crest of the slope (where larger amplification is expected). 

 

 

Figure (5- 10): Comparison of measured and predicted accelerations at slope toe and 

mid-height during test AA03: time domain (top) and frequency domain (bottom). 
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Figure (5- 11): Comparison of measured and predicted accelerations at and behind the 

slope crest during test AA03: time domain (top) and frequency domain (bottom). 

   

Topographic amplification factors are often used to quantify the effects of the slope 

on the propagation of the ground motion.  Figure 5-12 shows the amplification factors 

on peak acceleration at the crest of the slope (instrument 5), i.e. the ratio of crest peak 

acceleration to the peak value of the input motion for both AA01 and AA02.  This 

amplification factor clearly contains two distinct effects: the site effect (in essence a 

material property effect, due to the dynamic properties of the soil) and a topographic 

effect (a geometric effect due to the ground surface profile). Because the boundaries 

of the centrifuge model are too close to assume free field conditions are reached, thus 

only finite model is used to derive the topographic amplification factor, dividing the 

acceleration at the crest with the one far from it, at the free field.  Also shown in 

Figure (5-12) are recommended values from Eurocode 8, Part 5 (EC8:5; BSI, 2005b).  

In EC8:5, the ground motion at the surface (e.g. for use in constructing response 

spectra) is calculated using: 

 

gT aSSPGA ..                        (5-14) 
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where ag is the peak acceleration in the underlying bedrock (input motion in the 

centrifuge tests), S is the ‘soil factor’ describing the site effect (= 1.4 for the soil in 

this study, classified as Ground type E using Eurocode 8, Part 1 (EC8:1; BSI, 2005a)) 

and ST is the topographic amplification factor ( ≥ 1.2 for shallow slopes).  The overall 

amplification factor is then = gaPGA/ . Based on EC8, the overall amplification within 

the centrifuge test would be predicted to be between 1.2 – 1.7, which would be 

conservative when compared to the centrifuge observations (overall amplification ≈ 

1.3) for the two motions considered.  Ashford et al. (1997) and Bouckovalas and 

Papadimitiou (2005) have conducted detailed numerical studies based on harmonic 

ground shaking and have demonstrated that the topographic amplification is 

dependent on the ratio of slope height to wavelength and position from the crest.  In 

light of this, the centrifuge tests of Brennan and Madabhushi (2009) are a useful 

comparison to the test data in this chapter, as they considered a slope of similar 

(though not identical) height, slope angle and sand.  Their results support the value of 

1.3 measured in tests AA01 and AA02. 

 

Figure (5- 12): Comparison of measured dynamic amplification with Eurocode 8 

recommendations 

 

Figure (5-12) shows that the Eurocode recommendations give an excellent prediction 

of PGA when both the site and topographic effects are taken into account.  It further 

shows that this parameter appears to be insensitive to the effects of multiple strong 

earthquakes (i.e. this parameter does not evolve as the slope progressively deforms).   
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5.3.3  Acceleration response spectra at crest 

The hazard posed to infrastructure at the crest is more usefully represented by a 

response spectra, rather than a topographic amplification factor, which represents the 

spectral response at a period T = 0 s only. Figure (5-13) shows a comparison of 

predicted crest spectra for 5% nominal structural damping from FEM and measured 

data from the centrifuge tests, including also design spectra based on EC8 for context. 

Spectra determined from the recorded accelerations in the centrifuge at instrument 5 

are shown for both Kobe and Chi-Chi motions for the first (EQ1) and last (EQ4) 

earthquakes.  Figure (5-14) confirms the result from Figure (5-12) in that the spectral 

magnitudes appear to be relatively insensitive to repeated strong earthquake shaking.  

Figure (5-13) also suggests that there is a range of natural period (approximately 

between 0.4 to 1.0 s) over which the FEM may substantially under-predict the 

response compared to the centrifuge data (this is particularly noticeable for test 

AA02).  This range could be used as a simple screening tool to identify key pieces of 

infrastructure atop slopes which may be more vulnerable to seismic damage than 

FEM would suggest, and to which extra consideration should be paid in design.  

Figure (5-12) and (5-13), when considered together, also suggest that the topographic 

amplification factor ST in EC8 may not be independent of natural period as assumed 

in the code, but increases from a value of ST = 1.2 at low periods to ST ≈ 2.1 by 0.3 s, 

reducing back to 1.2 beyond 0.6 s. 

 

Figure (5- 13): Effect of repeated strong shaking on acceleration response spectra at 

the top of the slope (spectra are plotted for typical 5% structural damping) 
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Figure (5-14) also shows a comparison of predicted crest spectra from FEM, 

recommended curves from EC8 and measured data from the centrifuge tests for both 

tests AA01 and AA02.  For the cases including Rayleigh damping (HST95, case iii), a 

very good match to the centrifuge data are obtained, though there is a tendency for the 

response to be slightly under-predicted for periods above 0.5 s. Use of the other 

constitutive models results in a much more significant under-prediction of response 

above 0.5 s, and over-prediction below this.  It is clear that care should be taken in 

interpreting the hazard to supported infrastructure from analyses using FEM, and that 

this will be significantly dependent on the natural period of the supported structure.   

 

 

Figure (5- 14): Measured (centrifuge), predicted (FEM) and design (EC8) response 

spectra at the top of the slope (instrument 5) for 5% structural damping (a) Chi-Chi 

(AA01); (b) Kobe (AA02) 
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5.3.4 Replication of dynamic soil behaviour 

Sections 5.3.2 and 5.3.3 have suggested that the inherent hysteretic damping within 

the constitutive model may be too low.  In this section, shear modulus degradation 

and damping ratio will be compared as observed in both the centrifuge tests and FE 

models.  

The dynamic shear modulus, G, can be calculated as a secant line to the maximum 

values of a stress-strain hysteretic loop, as shown schematically in Figure (5-15), 

while damping is proportional to the area inside the hysteretic loop. Thus, shear 

modulus and damping ratio are dependent on the variation of the shear strain in the 

soil deposit during dynamic loading. 

 

 

Figure (5- 15): Hysteretic shear stress-shear strain relationship 

The degradation curve (shear modulus-shear strain relationship) and viscous damping 

ratio (damping-shear strain relationship) were determined based on the data from 

centrifuge tests AA01 and AA02.  The recorded data from the accelerometers within 

the slope (those in the column below the crest of the slope) were used to calculate the 

shear modulus (G) and viscous damping (D). The FE data at the homologous points 

was similarly analysed.   

The shear stress and shear strain were calculated from the accelerometers column 

below the crest of the slope using a second-order estimate (three accelerometers) 

following the method outlined by Brennan et al. (2006).  The resulting values 
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represent the soil response at the mid-depth of the accelerometers.  The shear stresses 

in this method are determined following Zeghal and Elgamal (1994): 
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where z  is the shear stress at depth z, z1 – z3 are the depths of the accelerometers, a1 

– a3 are the corresponding accelerations and   is the soil density. 

The shear strain was calculated from the displacement data which were obtained from 

double integration of the recorded time-acceleration histories using a band-pass filter 

in MATLAB before integrating each time. Thus, the computed shear strain is more 

reasonable at the mid.-point between the accelerometers: 
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Where d1 – d3 are the displacements at the three accelerometer locations. 

As mentioned before, the shear modulus represents the secant line of the maximum 

and minimum shear stress and the maximum and minimum shear strain loop. So, after 

calculation of the dynamic shear stress and shear strain time histories, the shear 

modulus was calculated as a ratio between the difference of the maximum and the 

minimum shear stress to the difference of the maximum and minimum shear strain. 

This value is represented as a dashed line in figure (5-16) below.     
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Figure (5- 16): Determination of shear modulus at different points during the 

earthquake – centrifuge data, test (AA01). 

 

Figure (5-16) demonstrates reducing shear modulus (lower gradient) as the cyclic 

shear strain range increases.  Figure (5-17) shows similar behaviour over much larger 

windows of the data, demonstrating that scatter is to be expected in the determined 

response.   

 

 

Figure (5- 17): Scatter in dynamic soil response loops (AA01). 
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Having determined shear modulus values from the centrifuge and FEM data, the shear 

modulus ratio (G/G0) was calculated according to the estimated initial shear modulus 

by the empirical equation given by Hardin and Drnevich (1972), previously given as 

Equation (5-8).  These values were then plotted against the cyclic shear strain 

amplitude.  This data, along with previously suggested design degradation curves are 

shown in Figures (5-18) and (5-19).  The shear modulus degradation curves from the 

centrifuge data were higher than for the FE data for both Chi-Chi and Kobe motions. 

However, both methods generally give a reasonable comparison with Hardin and 

Drenvich (1972), Ishibashi and Zhang, (1993) and Santos and Correia, (2001). 

 

 

Figure (5- 18): Degradation curve based on Chi-Chi earthquake data 

 

Figure (5- 19): Degradation curve based on Kobe earthquake data 



Chapter 5        Development of FEM-based tools for determining seismic performance of unreinforced slopes 

164 

 

The damping ratio was estimated from the calculation of the area inside the stress-

strain loop after Brennan et al., (2006): 
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Figures (5-20) and (5-21) show the damping–shear strain relationship for case (ii) 

properties (i.e. no additional Rayleigh damping).  It can be seen from these two 

figures that the implicit hysteretic damping in the constitutive model is lower than that 

observed in the centrifuge tests.  This explains why additional Rayleigh damping was 

required to fully match the dynamic response within the soil.   

 

Figure (5- 20): Damping ratio for Chi-Chi earthquake data 

 

Figure (5- 21): Damping ratio for Kobe earthquake data 
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5.3.5  Prediction of permanent deformations 

Figure (5-22) shows the permanent crest settlements across the four earthquakes as 

predicted by FEM (all three cases are shown) and as measured in the centrifuge.  It is 

clear that for both suites of earthquake motions, use of the Brinkgreve et al. (2010) 

parameters hugely over-predicts settlement at the crest.  This would lead to significant 

over-prediction of the risk posed to the slope and hence, potentially, uneconomic 

design.  In contrast, use of the HST95 parameters (either case) give a much better 

prediction, though it should be noted that inclusion of the additional damping, which 

was beneficial for modelling the dynamic behaviour accurately, results in an under-

prediction of permanent deformation (which is unsafe).  The Brinkgreve et al. (2010) 

parameters were initially expected to be useful for cases where there is extremely 

limited site investigation data – however the implication of Figure (5-22) is that it is 

always important to obtain high-quality laboratory (or in-situ) test data to achieve an 

accurate prediction of movement.  It is likely that the additional cost of this additional 

investigation would be significantly offset if a lower amount of remediation/repair 

would be required.  When considered alongside the dynamic performance discussed 

in the previous sections, it is clear that neither case (ii) or case (iii) can give 

consistently better performance of both dynamic and permanent movements 

simultaneously; this would appear to suggest that the additional Rayleigh damping 

may not be a material characteristic, but may be masking an effect of the sloping 

ground geometry in which wave reflection at the sloping ground surface is not 

modelled correctly within the FE model.  
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Figure (5- 22): Comparison of permanent crest settlements from FEM and centrifuge 

modelling: (a) test AA01; (b) test AA02. 

  

Figure (5-23) shows a comparison (drawn to scale) of the ground surface profile 

measured at the end of the centrifuge test (a negligible amount of movement was 

recorded during spin-down), and as predicted at the end of the last earthquake (EQ4) 

from the FE model (case ii) for test AA01.  It can be seen that the numerical model 

captures the deformed shape of the slope well, particularly the angular distortion at 

the crest which is likely to be of greatest significance for supported infrastructure.  A 

similar result was obtained for test AA02. 
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Figure (5- 23): Comparison of slope profile after EQ4 as predicted by FEM and as 

measured in the centrifuge, test AA01. 

5.4  Comparison of FEM with sliding block models 

In chapter four, an improved sliding block model was developed for estimating the 

magnitude of crest settlement.  These predictions are compared to those from the 

FEM (case ii) reported in this chapter in Figure (5-24).  In all cases the FEM gives a 

lower prediction than the sliding block model.  The FEM predictions are closer to the 

centrifuge observations for test AA01 (Figure 5-24a), but do not appear to capture the 

gradual reduction in movement after the first earthquake as well in the case of test 

AA02 (Figure 5-24b).  Figure (5-25) shows a plot of the accumulated shear strain 

within the FE simulation of test AA01 (case ii) at the end of EQ4, overlaid onto which 

are the estimated shear band locations under the initial conditions and for the re-

graded slope angle at the end of EQ4 form the sliding block model.  These suggest 

that the failure mechanism in both types of analysis are similar (shallow translational 

sliding), though there is a much deeper zone of distributed shear strain within the FE 

model.  This allows for the prediction of the settlement profile back from the crest that 

was shown in Figure (5-23).  Although the sliding block model outperforms the FE 

model in terms of the overall magnitude of the settlements, the real advantage of the 

FEM is that it is able to also estimate the settlement profile (angular distortion) at the 
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crest and quantify the dynamic motions within the soil, which the sliding block model 

cannot do.  

 

 

Figure (5- 24): Comparison of FEM and sliding-block crest settlement predictions 

with centrifuge observations (a) test AA01; (b) test AA02 
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Figure (5- 25): Comparison of accumulated shear strain at the end of EQ4 (test AA01) 

with failure mechanism assumed in analytical model; (b) total volumetric strain. 

 

Figure (5-26) presents a summary of the predictive ability of the FEM methods 

described in this part and the sliding block models reported in Chapter four for 

determining permanent settlements due to earthquake shaking.  These have been 

grouped into ‘existing’ models, representing the current state-of-the-art, namely 

sliding block with strain-softening and FEM using the previously-published 

parameters of Brinkgreve et al. (2010); and ‘improved’ models, consisting of the fully 

strain-dependent sliding block model developed in Chapter four (strain-softening and 

geometric hardening) and the laboratory-test calibrated FEM developed in this 

chapter.  While the improved models are not perfect, they give a better prediction of 

the response under the initial earthquake on virgin soil and are subsequently able to 

give a reasonable prediction of behaviour even after a number of previous strong 

earthquakes during which significant deformation has accrued.  Both existing models 
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over-predict settlements in the first earthquake and then get progressively worse with 

further shaking, as they are unable to correctly capture the effect of the previous 

seismic history on the slope.  In the case of the sliding block model this is associated 

with incorrect description of the deformed slope geometry (see Chapter 4); in the case 

of the FEM, the existing (Brinkgreve) constitutive parameters do not appear to 

correctly capture the strain history or mechanical response.   

 

 
Figure (5- 26): Accuracy of ‘existing’ models, compared to those proposed in 

Chapters four and five (‘improved’ models) for predicting permanent crest settlement. 

 

The development of the ‘improved’ analytical tools in Chapters four and five, provide 

a means of quantifying the response of shallow cohesionless slopes under multiple 

successive earthquakes.  These tools will allow civil engineers to obtain a better 

estimate of the hazard associated with aftershocks and lead to new approaches to 

seismic design and asset management in which whole-life performance can be 

considered (as outlined in Chapter four).   
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5.5 Summary 

Centrifuge and finite element models for the seismic performance of 1:2 cohesionless 

slopes under dynamic loads have been presented in this Chapter.  The significant 

results are summarised below: 

1. Seismic displacement results from plane-strain finite element models (using 

Plaxis 2D) using the input parameters presented by Brinkgreve et al., (2010) 

based on relative density were over predicted compared to results from 

centrifuge tests for both real earthquake motions (AA01 and AA02) whereas 

better results were observed for sinusoidal wave model (AA03). 

2. Using soil-specific parameters derived from routine laboratory test data gives 

a significant improvement of permanent seismic displacements.  In terms of 

the dynamic motions, these model parameters showed amplification for all 

frequencies below 3 Hz and these were identical with centrifuge tests.  These 

parameters significantly outperform existing correlations.  This highlights the 

importance of specifying a suitably detailed site investigation.   

3. Additional Rayleigh damping was required to attenuate response above 3 Hz 

and provide an extremely close replication of the dynamic motions within the 

soil.   

4. Shear modulus and damping at a wide range of engineering shear strain were 

calculated for both centrifuge and finite element models. By using the HST95 

model, the shear modulus was well replicated while the damping results 

especially at a medium shear strain range were lower than those of the 

centrifuge tests. 

5. The developed constitutive model does not capture soil softening during 

successive earthquakes. This didn’t let surprising as the computed settlement 

in chapter 4 is slightly influenced by strain softening in large earthquake 

events.      

The FE models, which are more computationally complex than the sliding block 

models of Chapter four, are complimentary to these, being useful in the later stages of 

detailed design.  
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Chapter Six 

Centrifuge modelling of the seismic 

performance of pile-reinforced slopes 
 
Contents of this chapter have been submitted for review as:   

Al-Defae, A.H. and Knappett, J.A. (2013).  Centrifuge modelling of the seismic performance of pile-
reinforced slopes.  J. Geoetech. and Geonv. Engng. (Accepted). 

          Al-Defae, A.H. and Knappett, J.A. (2014).  Stiffness matching of model reinforced concrete for centrifuge 

modelling of soil-structure interaction.  8th Inter Conf. of Phys. Model. In Geot. (8th ICPMG 2014). 

(accepted). 

6.1 Introduction 

In this chapter, an extensive programme of geotechnical centrifuge testing is 

described to investigate the performance of pile-reinforced cohesionless slopes during 

earthquakes.  This will build on the tests on unreinforced slopes described in Chapter 

4 and will use these previous tests as unreinforced benchmarks.  Elastic pile models 

will firstly be used to investigate the fundamental behaviour in terms of the permanent 

post-earthquake and co-seismic dynamic motions within the slope.  The effects of pile 

spacing on this performance and the performance in strong aftershocks will also be 

investigated.   

Model reinforced concrete piles, described in Chapter 3 are then used to demonstrate 

how the performance of the slope changes when the piles are no longer linearly 

elastic, and will also highlight the importance of appropriately detailing the 

reinforcement to resist the downslope kinematic loads, rather than relying on a 

nominally reinforced pile.   

6.2 Model preparation and test procedures 

A total of fifteen 1:50 scale centrifuge model slopes were tested during the main 

programme of work reported in this chapter.  The dimensions of the slope in each 

model were identical to those described in Chapter 4, which were 8 m tall from toe to 

crest, having a slope angle of 28° ( ≈ 1:2) and were underlain by a further 6 m of sand 
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prepared to the same state, as shown schematically in Figure (6-1).  One of the tests 

from Chapter 4 (test AA01) is used as an unreinforced benchmark in this chapter.  

 

 

Figure (6- 1): Centrifuge model layout, with instrumented elastic piles shown, 

dimensions in m prototype scale (mm model scale in brackets). 

 

During pluviation, the soil was instrumented with ten accelerometers within the slope 

and two external Linear Variable Differential Transformers (LVDT’s) measuring 

settlement at and behind the crest of the slope along the centreline of the model.  This 

instrumentation is shown in Figure (6-1). 

After preparation of the model slopes, the ESB container was installed onto the 

centrifuge and model piles, representing a B × B square cross-section (B = 500 mm at 

prototype scale), were pushed vertically into the model at 1-g in a discretely-spaced 

row midway between the toe and crest of the slope.  Guide frames, as described in 

Chapter 3, were used to do this which ensured that the piles remained vertical and the 

pile centre-to-centre spacing (S) was accurate.  Initially, two different types of model 

piles were tested, namely (i) an ‘elastic’ model (Two of these piles were instrumented 

with strain gauge pairs to measure bending response as described in chapter three) and 

(ii) a damageable model reinforced concrete model (hereafter denoted ‘RC’ pile) 

using the new micro reinforced concrete described in Chapter 3. The properties and 
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construction of these model piles are fully described in detail in Chapter 3. Figure (6-

2) shows both the RC pile and elastic pile models after model preparation and loading 

onto the centrifuge. 

 

Figure (6- 2): Elastic and RC piles. 

 

Table (6-1) lists the pile types and normalised pile spacing (S/B) used in each model.  

The closest spacing tested was S/B = 3.5 as it proved impossible to push the RC piles 

in at closer spacing without damaging them (due to the stress enhancement within the 

soil from installation of the adjacent piles, coupled with the high dilation within the 

soil at low effective stress). 

Table (6- 1): Summary of centrifuge models tested 

 Test ID 
ID 

(%) 
Pile type S/B 

No. of 
earthquakes 

AA01 56 Unreinforced - 4 

AA17* 57 Unreinforced - 12 

AA12 58 Elastic 14.0 4 

AA13 60 Elastic 7.0 4 

AA14 57 Elastic 4.7 4 

AA15 59 Elastic 3.5 4 

AA16* 58 Elastic 4.7 12 

AA04 56 RC 14.0 1 

AA05 57 RC 7.0 1 

AA06 60 RC 4.7 1 

AA07 57 RC 3.5 1 

AA08 56 RC 14.0 4 

AA09 59 RC 7.0 4 

AA10 57 RC 4.7 4 

AA11 55 RC 3.5 4 

          *Kobe input motion for this test 
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Most models were subjected to four nominally identical earthquakes.  The same input 

motions which were earlier described in Chapter 4 were used for all models.  All 

models except AA16 and AA17 were subjected to the Mw = 7.6 Chi-Chi Earthquake 

in 1999.  The Mw = 6.7 Kobe earthquake from 1995 was used for models AA16 and 

AA17.  By using successive earthquakes the behaviour of the models under strong 

aftershocks could be observed, as in Chapter 4.  Four of the models with RC piles 

(AA04 – AA07) were subjected to just a single motion, so that changes to the residual 

properties of the RC piles post-shaking could be determined after both a single 

earthquake and multiple earthquakes.   

6.3 Performance of slopes reinforced with elastic piles 

In this section, the behaviour of the elastic pile tests (AA12 – AA16) will be 

considered to investigate seismic soil-pile interaction and the resulting improvements 

to seismic slope performance through the inclusion of a discretely spaced row of 

vertical piles.  These can be considered an example of the case where the piles have 

been suitably designed structurally so as not to become damaged in any way.  The 

validity of this assumption, for the case where the piles have properties which are 

more representative of real concrete piles, will be considered in Section 6.4.  The key 

indicators of slope performance considered herein are the crest settlement and angular 

distortion between the two LVDTs (these two parameters would be indicative of the 

damage induced in infrastructure such as railway lines or highways sitting at the crest 

of the slope) and the peak ground accelerations and response spectra at instrument 5 

in Figure 6-1 (the latter being indicative of the dynamic response of structures located 

at the crest of the slope).  

Figures 6-3 to 6-7 show the crest settlement (throughout this chapter, this term refers 

to the LVDT closest to the crest in Figure 6-1) and angular distortion developed in all 

cases of the pile spacing tested (starting from S/B = 14 to S/B = 3.5), compared to 

values at the same locations in the unreinforced test (AA01 or AA02).  The maximum 

bending moment and input motion (at instrument 8) are also shown in each of these 

Figures.   
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6.3.1 Permanent slope deformations 

S/B = 14 (AA12) 

The maximum pile spacing was used in this test (Figure 6-3). As observed in Chapter 

4 for unreinforced slopes, the pile reinforced slope appears to harden as it deforms, 

with subsequent earthquakes of equal magnitude resulting in smaller deformations.  

This may be attributed to the geometrical hardening effect noted in Chapter 3 as the 

slope re-grades itself to be less steep as it deforms.  

 

Figure (6- 3): Slope performance at S/B = 14 compared to unreinforced case: (a) crest 

settlements; (b) angular distortion at crest; (c) maximum pile bending moments (at 3.5 

m below ground surface); (d) input motion at instrument 8. 

 

At S/B = 14, very little improvement in the crest settlement is observed, and in the 

first earthquake, this may be considered negligible. As shown in Figure (6-3c), the 

variation in the maximum bending moment appears to be proportional to the crest 

settlement characteristics of the slope. Thus, the bending movement is increasing 

rapidly with increasing of soil displacement of the slope during shaking and then 

remains constant once shaking has stopped. Subsequent earthquakes only increase the 

bending moment by a small amount.  This can be attributed to the soil yielding around 
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the piles at the end of the first earthquake so that there is subsequently continuing 

slope movement with a negligible increase in bending moments along piles The 

measured maximum bending moment at this pile spacing was approximately 94 kNm 

(approximately 41% of the static capacity).  

S/B = 7 (AA13) 

As the pile spacing decreases, significant reductions in permanent slope movements 

and angular distortion compared to the unreinforced case (and with S/B = 14) are 

observed, particularly in subsequent strong shaking (e.g. strong aftershocks) as shown 

in Figure (6-4). 

 

 

Figure (6- 4): Slope performance at S/B = 7 compared to unreinforced case: (a) crest 

settlements; (b) angular distortion at crest; (c) maximum pile bending moments (at 3.5 

m below ground surface); (d) input motion at instrument 8. 

 

The maximum induced bending moment across all of tests was observed at this pile 

spacing. This can be attributed to the increasing of soil pressure along piles during the 

earthquake, perhaps due to a change in mechanism from local soil flow around the 

piles, to one in which the soil arches across the gap between piles. In the first 
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earthquake (EQ1), the reduction in permanent deformation can again be correlated 

with the mobilisation of soil-pile interaction as the piles bend in response to the 

kinematic loading. 

S/B = 4. 7 (AA14) 

Further reduction of pile spacing leads to more significant reduction in crest 

settlement and angular distortion, as shown in Figure (6-5). Compared to S/B = 7, a 

small reduction of the maximum induced bending moment is observed (from 147 

kNm at S/B = 7 to 137 kNm at this pile spacing). This reduction in bending moment 

actually is likely due to a reduction of soil pressure on the piles as they become closer 

together and individually support less of the soil mass (i.e. increase in the overlap 

between wedge type mechanism mobilised behind the upslope face of the piles).  The 

induced bending moments increase very little with subsequent aftershocks, again 

implying that the soil-pile reaction had reached a maximum following EQ1.   

 

 

Figure (6- 5): Slope performance at S/B = 4.67 compared to unreinforced case: (a) 

crest settlements; (b) angular distortion at crest; (c) maximum pile bending moments 

(at 3.5 m below ground surface); (d) input motion at instrument 8. 

Similar results were observed for the other test at S/B = 4.67 (test AA16 using the 

Kobe input motion), which are shown in Figure 6-6.  Comparing the performance to 



Chapter 6                          Centrifuge modelling of the seismic performance of pile-reinforced slopes 

178 

 

that during the Chi-Chi earthquake, the induced bending moments are slightly smaller 

following EQ1, but subsequently reach similar values by the end of EQ4.  This is 

consistent with the permanent bending moments being principally due to the 

permanent slip, which is similar in the two pile-reinforced cases.   

 

 

Figure (6- 6): Slope performance at S/B = 4.67 (Kobe) compared to unreinforced case: 

(a) crest settlements; (b) angular distortion at crest; (c) maximum pile bending 

moments (at 3.5 m below ground surface); (d) input motion at instrument 8. 

S/B = 3.5 (AA15) 

The minimum pile spacing used in this thesis is S/B = 3.5. As the pile spacing 

decreased, more significant reductions in permanent slope movements and angular 

distortion were observed, particularly in subsequent strong shaking (e.g. strong 

aftershocks) as shown in Figure (6-7a).  At this spacing the maximum improvement to 

the deformation of the slope was observed, and the bending moments carried by the 

piles continued to reduce as a smaller amount of soil was supported by each pile.   
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Figure (6- 7): Slope performance at S/B = 3.5 compared to unreinforced case: (a) crest 

settlements; (b) angular distortion at crest; (c) maximum pile bending moments (at 3.5 

m below ground surface); (d) input motion at instrument 8. 

 

6.3.2 Effect of pile spacing on induced pile bending moments 

Although the principal consideration in designing a pile-reinforcement scheme for a 

slope should always be the improvement to the slope’s performance, it is also 

necessary to consider the bending moments which are induced in the pile, to ensure 

that they are appropriately detailed. Points of measured maximum bending moments  

were connected using smooth curves lines.  Figure (6-8) shows the post-earthquake 

bending moments along the length of the instrumented piles after each earthquake in 

each of the elastic tests.  
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Figure (6- 8): Post-earthquake permanent bending moments along the  

instrumented pile in the elastic pile tests. 

 

 The following behaviour can be observed from Figure (6-8): 

1. In all four tests the maximum bending moment occurs at between 3 – 4 m 

below the ground surface;  

2. This maximum bending moment is mainly induced by the initial earthquake; 

further shaking at the same magnitude does not change the shape of the 

bending moment distribution and only increases their magnitude by a small 

amount; 

3. As the pile spacing increases from S/B = 3.5, the piles carry increasing 

amounts of moment despite their effect on slope performance reducing 

(Figures 6-3 – 6-7).  This suggests that they are still having some combined 

effect on restraining the soil mass, but that the configuration is suboptimal; By 

S/B = 14.0, the piles are carrying less moment than at S/B = 7.0, presumably as 
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any load transfer/arching effects have completely broken down and the 

moments are induced due to a local flow-around mechanism. 

4. Pile fixity depth is increasing with increasing pile spacing.   

Figure (6-8) also suggests that when used in a discretely spaced row, the moment 

capacity (i.e. the amount of longitudinal reinforcement) could be reduced towards the 

top and bottom of the piles, potentially saving material within the pile. 

Figure (6-9) compares tests AA16 and AA14, having the same S/B = 4.7, but subject 

to different input motions. Approximately 80% of the measured bending moment at 

the end of the last earthquake for AA14 (Chi-Chi model) was after the first earthquake 

(110 kNm after the first earthquake and 138 kNm after the last earthquake). In test 

AA16 (Kobe model), approximately 62% of the total induced bending moment at the 

end of all aftershocks was after the first earthquake (92 kNm after the first earthquake 

and 149 kNm after the last earthquake). However, despite the differences in 

magnitude and the different characteristics of the two input motions, the shapes of the 

bending moment distributions are similar.   

 

Figure (6- 9): Post-earthquake permanent bending moments along the instrumented 

for S/B=4.67 (AA14 and AA16) 
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6.3.3 Dynamic response 

In addition to reducing permanent movements (e.g. settlement and angular distortion) 

pile-reinforcement may also reduce the seismic shaking demand on any structures 

located at the crest.  Spectral accelerations for 5% nominal structural damping ratio 

were therefore determined at the crest of the slope (i.e. ccc. No.5 data in figure 6.1) 

for the elastic pile tests (AA12-AA16) for comparison with those for an unreinforced 

slope, and are shown in Figure (6-10).  These acceleration response spectra (ARS) 

have here been normalised by the peak ground acceleration at the bedrock of the slope 

(accelerometer 8 in Figure 6-1). 

As seen from Figure (6-10), the stabilising piles reduced the response spectral 

acceleration at the crest of the slope in all cases and attenuated the motion across the 

entire frequency range.  It can clearly be seen that the amount of attenuation increases 

as the piles are brought closer together.  The attenuation was also more pronounced in 

the later earthquakes (aftershocks).   

 

Figure (6- 10): Spectral acceleration for elastic models; (a) after EQ1; (b) after EQ 4. 
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6.3.4 Summary of slope performance improvements 

Figure (6-11) summarises the effects of the elastic piles on the seismic slope 

performance in terms of the post-earthquake permanent movements (settlements and 

angular distortions) and the magnitude of the dynamic motions (i.e. Sred), all at the 

slope crest.  The effect on accelerations has also been plotted as a ratio of peak 

accelerations at instrument 5 (Ared) to that input, for comparison with the values of 

Sred (the ratio between the normalised ARS at any S/B to the normalised ARS of 

unreinforced case).  As expected, the improvement offered by the piles increases as 

the piles are spaced closer together.  At S/B = 3.5, the permanent movements are 

reduced by approximately 35%, while the dynamic motions are reduced in magnitude 

by approximately 20%.  It is not surprising that the permanent movements are reduced 

to a larger degree – considering the slope deformations in a Newmarkian way, the 

piles would be expected both to increase the yield acceleration and reduce the induced 

accelerations by Sred. 

Maximum S/B ratios recommended for piled slopes to ensure that arching is taking 

place between piles have been recommended by Ellis et al. (2010) for static 

conditions and Kourkoulis et al. (2011) for dynamic conditions.  The latter suggests 

S/B ≤ 4 based on finite element modelling, while the former suggests the following 

simple expression, based only on the soil friction angle (via coefficients of active and 

passive lateral earth pressure, Ka and Kp respectively): 
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                         (6-1) 

Based on the data shown in Figure (4-7) the friction angle of the soil will be between 

32
o
 – 38

o
 depending on whether the soil strains are large (critical state) or small (peak 

state).  To be certain that the pile reinforcement will be as effective as possible it 

would be prudent to use the lower critical state friction angle, resulting in S/B ≤ 3.6.  

This is approximately the same as the closest spacing reported herein at which the 

maximum improvement was observed.  If arching is then acting fully at this point, it 

would suggest that there would be no further benefit of bringing the piles closer 

together; however, it was not possible to confirm this during the testing due to the 

practical difficulties in installing the piles closer than S/B = 3.5.  It is therefore 

provisionally suggested that Equation (6-1) may be useful in specifying the required 
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spacing between piles to achieve the maximum improvement in slope performance at 

the minimum cost.   

 

Figure (6- 11): Reduction in crest settlement and acceleration due to pile 

reinforcement as a function of normalised pile spacing: (a) in EQ1; (b) in EQ4 

6.4  Performance of RC pile-reinforced slopes (AA04-AA07) 

Now that the performance of pile-reinforced slopes has been presented for the 

idealised case of a purely elastic pile, Section (6.4) will describe how the performance 

of the slope differs when the piles have more realistic properties.  After each of the 

RC pile tests, the piles were carefully exhumed to check for damage.  If no damage 

was found, the piles were tested under four-point bending to determine the residual 
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moment capacity and bending stiffness of the section, following the cycles of cyclic 

loading imparted during the centrifuge test.   

6.4.1 Permanent slope deformations 

The seismic crest settlement was measured at the crest of the slope using LVDTs as 

mentioned before.  Figure (6-12a) shows that the seismic crest settlement decreases 

with decreasing spacing ratio S/B. Figure (6-12b) shows these settlements normalised 

by the crest settlement for the non-reinforced slope (AA01) to obtain a settlement 

reduction factor.  At the closest spacing tested, the settlement has been reduced to 

66% of the value in the unreinforced slope.  At the largest spacing (AA04, S/B=14) 

there is only a very small difference compared to the non-reinforced slope case and 

this can be attributed to the soil moving between the piles with no discernible arching 

effect.   

 

 

Figure (6- 12): Crest settlement (AA04-AA07). 
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6.4.2 Dynamic response 

The effects of the piles on the accelerations within the slope were described both as a 

soil amplification factor (ratio of peak accelerations) and in terms of acceleration 

response spectra.  The former is shown in Figure (6-13) for the installation of piles at 

S/B = 3.5, where the acceleration response is reduced to approximately 83% (0.62g at 

the crest for the non-reinforced slope case, AA01, to 0.52g for S/B = 3.5, AA07). 

 

 

Figure (6- 13): Acceleration for selected points in the slope before and after slope 

stabilisation (tests AA01 and AA07) 

 

To compare changes in peak acceleration ratio, an amplification reduction factor was 

defined, representing the ratio between the dynamic amplification factors from input 

to crest for each piled case to that of the unreinforced slope.  This is shown in Figure 

(6-14).   
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Figure (6- 14): Amplification reduction factor as a function of S/B. 

 

ARS, using the instrument at the crest of the slope, as before, is shown in Figure (6-

15).  From this figure, the dynamic amplification factor for a particular case can be 

calculated at zero periods as it represents the peak acceleration at the crest normalised 

by the input peak ground acceleration for each case.  

 

 

Figure (6- 15): Normalised acceleration response spectra (ARS) 

By dividing the reinforced-case spectral ordinates by those for the unreinforced slope, 

a spectral reduction factor (Sred) can be determined as a function of the period of the 

system of interest: 
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Where (T) is the period; ARS(T) is the normalised spectral acceleration for each case; 

01)( AATARS  is the normalised spectral acceleration for non-reinforced slope. This is 

shown in Figure (6-16), based on the data shown in Figure (6-15).  Although there is 

some variation in the magnitude of Sred with period, it would seem a reasonable first 

approximation to take Sred as a constant for multiplying the ARS of an unreinforced 

slope, in the same way that site-effect (ground motion amplification) and topographic 

amplification factors are routinely accounted for in spectra determination.  The 

apparent constancy of Sred is potentially a very useful and powerful result as it 

suggests that the effect of the addition of the piles could be approximated from an 

analysis of an unreinforced slope (perhaps conducted using a simple 2-D/plane-strain 

finite element model, such as that validated in Chapter 5), and accounting for the 

effects of the piles using a simple global reduction factor.   

 

Figure (6- 16): Spectral reduction factor (Sred) 

 

6.4.3 Degradation of the residual capacity of RC piles (AA04-AA07) 

No damages were visually observed in any of the RC piles in the single earthquake 

tests (AA04-AA07). At first glance, this appears obvious, as the induced bending 

moments from the slipping soil, measured in the elastic pile tests, were less than the 

ultimate capacity of the ‘designed’ RC piles, and similar moments should be expected 

in the RC piles as the bending stiffness is almost identical. However, this does not tell 
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the whole story as due to their damageable nature, the moment capacity of the RC 

piles can change (reduce) during shaking.   

The residual moment capacities for the RC piles used in each centrifuge test (AA04-

AA07) were determined using four-point bending tests. As was expected, the residual 

ultimate capacities were less than the moment capacity measured (My) before the tests 

(on unused RC piles) and this can be attributed to microstructural damage in the 

model concrete and wire bond, induced by the strong cyclic loading, as is also 

observed for real concrete piles (Erdem, 2012).   

Figure (6-17) shows the residual moment capacity for the two RC piles used in test 

AA04 (S/B=14). The average moment capacity of 208 kNm is lower than the average 

value of the pre-earthquake tests (233 kNm, Section 3.7.5.1). 

 

 

Figure (6- 17): Residual moment capacity for RC piles following 1 earthquake at S/B 

= 14 (AA04) 

 

It was observed in Section 6.3.1 that the bending moments induced in the piles 

increased as S/B was reduced to 7.0.  In Figure (6-18) it can be seen that cycles of 

loading around a larger average moment led to increased deterioration in the residual 

capacity of the piles.  The repeatability of the measurements is also notable from this 

figure.   
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Figure (6- 18): Residual moment capacity for RC piles following 1 earthquake at S/B 

= 7.0 (AA05) 

Further decreases in spacing ratio (increasing the number of piles per row) reduced 

total soil pressures induced by the earthquake and the consequent bending moments 

induced in the piles. The residual moment capacity of the piles from test AA06 (S/B = 

4.7) was therefore higher than at S/B = 7.0, as shown in Figure (6-19), and higher still 

following test AA07 (S/B = 3.5) as shown in Figure (6-20).   

 

 

Figure (6- 19): Residual moment capacity for RC piles following 1 earthquake at S/B 

= 4.7 (AA06) 
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Figure (6- 20): Residual moment capacity for RC piles following 1 earthquake at S/B 

= 3.5 (AA07) 

Figure (6-21) shows the residual moment capacity after each centrifuge test.  Also 

shown in this figure are the measured maximum induced moments after EQ1 from the 

elastic pile tests.  This suggests why no damage was observed in the RC piles tested in 

AA04 – AA07.   

 

 

Figure (6- 21): Residual moment capacity and expected maximum induced moments 

(tests AA04-AA07) 
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6.5 Assessment of RC pile-reinforced slope performance during 

aftershocks (AA08-AA011). 

In this group of centrifuge tests, the tests described in Section 6.4 were essentially 

repeated, but with four earthquake motions applied.  This allows assessment of how 

the permanent movements, dynamic response and pile-behaviour/properties are 

influenced by aftershocks. All models were tested under strong four successive Chi-

Chi earthquake motions (AA08-AA12).  

6.5.1 Permanent slope deformations 

The settlement at the crest of the slope was measured at the end of each earthquake 

and was accumulated as in Chapters 4 and 5.  Figure (6-22) shows how the spacing 

ratio (S/B) for the pile row affects the cumulative settlement time histories, while 

Figure (6-23) shows directly the effect of S/B on post-earthquake accumulated crest 

settlement.  Figure (6-22) suggest that initially strong reductions in movement in the 

initial earthquake are not necessarily followed by improved instantaneous 

performance in aftershocks, though in all cases the cumulative settlement was lower 

following the installation of the piles.  As observed in the previously reported tests 

(Sections 6.3.1 and 6.4.1), S/B = 3.5 gives optimal geotechnical performance (Figure 

6-23), with substantial reductions in movement.   

 

 

Figure (6- 22): Crest settlement for (AA08-AA11). 
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Figure (6- 23): Accumulated crest settlement as a function of S/B. 

 

In Figure (6-24) the instantaneous crest settlements are normalised by the value 

measured for the unreinforced slope in each earthquake to give a reduction factor.  It 

can be seen that the progressive improvement in performance with reducing S/B 

observed in EQ1 (see also Figure 6-12) becomes much sharper with further shaking, 

with the intermediate cases (S/B = 4.7 and 7) becoming less effective in aftershocks.  

Piles spaced at S/B = 3.5 however retain their good performance, even after a number 

of strong aftershocks.   

 

 

Figure (6- 24): Crest settlement reduction factor as a function of S/B. 

Figure (6-25 b) shows also how the measured crest settlement for each studied case 

reduces with decreasing of the spacing ratio (S/B) for the row of stabilising piles and 

how the yield acceleration reduction factor increases with increasing accumulative 

Arias intensity, AI (i.e. Figure 6-25 a).  It should be noticed also in figure (6-25 b) that 
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piles are not only important during the main earthquake to stabilise slope, but also in 

the subsequent aftershocks.  

 

 

Figure (6- 25): Aftershocks effects on crest settlement for different pile spacing 

 

6.5.2 Dynamic response 

Normalised ARS for accelerations recorded at the crest of the slope for the first 

earthquake (EQ1) and the last earthquake (EQ4) in each test were determined and are 

shown in Figure (6-26).  The improvement due to the piles is less apparent than in the 

case of the elastic piles, though it is clear that they reduce the acceleration response 

over for T > 0.4 s (except at the widest spacing, S/B = 14)  
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Figure (6- 26): Normalised spectral acceleration in g/ag, (a) after EQ 1; (b) after EQ 4 

 

The spectral acceleration reduction factors (Sred) were also calculated as described in 

Section 6.3.3 for the first and the last earthquake data as shown in Figure (6-27).  

These will be compared to values from the previous tests in section 6.4.2.   
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Figure (6- 27): Spectral reduction factor; (a) after EQ 1; (b) after EQ4 

6.5.3 Degradation of the residual capacity of RC piles (AA08-AA11) 

Determination of the residual moment capacities for the stabilising piles following the 

centrifuge tests with many aftershocks (four successive Chi-Chi earthquakes) were 

conducted as described in Section 6.4.3.  The data is shown in Figures (6-28) – (6-31).  

One of the piles in test AA09 (S/B = 7) was observed to be broken (not tested) and 

another was cracked which is shown by the red line for Pile 2 in Figure (6-29). The 

piles at this spacing ratio saw the largest induced moments and most reduced residual 

capacities.  

 

Figure (6- 28): Residual moment capacity of RC piles (After AA08) 
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Figure (6- 29): Residual moment capacity of RC piles (After AA09) 

 

Figure (6- 30): Residual moment capacity of RC piles (After AA10) 

 

 

Figure (6- 31): Residual moment capacity of RC piles (After AA11) 

Figure (6-32) shows how the mean residual moment capacities were reduced 

compared to the piles tested under a single earthquake motion (from Section 6.4.3).  

The variation of residual capacity with S/B is similar to that for the single motion 
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tests, but reduction is slightly larger.  It was previously noted from the elastic pile 

tests that the induced permanent bending moments increased slightly during the 

aftershocks, so this appears to correlate with the magnitude of the induced moments 

being the main controlling factor on the amount of reduction in the residual pile 

capacity.   

 

Figure (6- 32): Residual moment capacity and expected maximum induced moments 

(AA04-AA11) 

6.6 Effects of non-linearity of pile response on slope performance 

6.6.1 Permanent slope deformations 

Crest settlement results for ‘RC’ and ‘elastic’ piles in all studied cases have been 

normalised by the crest settlement in the appropriate non-reinforced slope case and 

summarised in Figure (6-33a and b) for both a single large earthquake and following a 

sequence of strong aftershocks. 
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Figure (6- 33): Comparison of crest settlements for slopes with elastic and RC piles: 

(a) EQ1; (b) EQ4. 

For a single earthquake at minimum spacing (S/B = 3.5), the crest settlement 

reduction factor was reduced by 36% for the elastic piles and by 32% RC piles.  The 

RC piles in all cases show less improvement than the elastic piles, suggesting that not 

accounting for the true behaviour of the reinforced concrete (i.e. approximating as 

elastic) will generally overestimate performance, though would be close enough for 

design and decision making purposes.  After strong aftershocks, the crest settlement 

reduction is by 39% in the elastic case and 33% for the RC case.  In both cases, the 

piles become less effective during aftershocks at spacings greater than S/B = 3.5, but 

the results suggest that by installing at optimal spacing consistent reinforcement can 

be obtained which remains effective even during ‘storms’ of earthquake activity.  The 

excellent agreement of the normalised results from the Kobe model compared to the 

main data using the Chi-Chi motion, suggests that the proportional improvements are 
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insensitive to input motion (though are likely to still depend on slope and pile 

configuration, e.g. height, slope angle and pile EI).   

6.6.2 Dynamic response 

Figures (6-34) and (6-35) show the comparative ARS for both ‘RC’ and ‘elastic’ piles 

for EQ1 and EQ4.  During the first earthquake (Figure 6-34), the differences between 

the two pile types are relatively small.  The RC piles perform less match at S/B = 7, 

which was one of the tests with the higher induced bending moments.  After four 

earthquakes/aftershocks (Figure 6-35), this is noticeable at all values of S/B except for 

the widest spacing.   

 

 

Figure (6- 34): ARS after EQ1 for: (a) S/B=14; (b) S/B=7; (c) S/B=4.67; (d) S/B=3.5 

. 
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Figure (6- 35): ARS after EQ4 for: (a) S/B=14; (b) S/B=7; (c) S/B=4.67;  (d) S/B=3.5 

Figure (6-36) and correlates the spectral reduction effect evident in Figures (6-34) and 

with the RC pile deterioration observations noted in Sections 6.4.3.  In the lower half 

of the figure, it can be seen that the residual moment capacity was reduced from the 

initial pre-earthquake value in all of the tests.  Comparing this with the maximum 

bending moments measured in the elastic pile tests, it is clear that the reduction in 

residual moment capacity mirrors the variation in the induced moments.  This is a 

classic indication of a fatigue-type process occurring in the RC piles.  The 

convergence between induced moments and residual capacity is reflected in the 

effectiveness of the piles in reducing crest accelerations (i.e. Sred) in the upper part of 

the figure, and suggests that as the piles get close to failure, their effectiveness at 

reducing dynamic motions is dramatically reduced. 
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Figure (6- 36): Reduction in residual moment capacity in RC piles following a single 

earthquake and resulting effectiveness of pile reinforcement (EQ1) 

 

Figure (6-37) shows a similar correlation after four earthquakes.  As demonstrated 

earlier, there is some increase in induced moment from the aftershocks in the elastic 

pile tests.  The additional cyclic loading at higher average moment leads to further 

deterioration in the residual capacity of the section and in one case (S/B = 7.0, test 

AA09) the residual capacity is just below the induced bending moment measured in 

the corresponding elastic test.  On examination of the piles, this was the only test of 

those listed in Table (6-1) in which some cracking damage was seen in one of the 

piles.  It should be noted that only some of the piles were damaged as there is some 

inherent variability in the capacity of the RC pile sections due to the way in which 

they are made (as in real concrete piles) and the induced moments were measured in a 

different (elastic) model.  As in Figure (6-36), the convergence between induced 

moment and residual capacity appears to correlate with the piles becoming ineffective 

at reducing the dynamic motions within the slope.   
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Figure (6- 37): Reduction in residual moment capacity in RC piles following four 

earthquakes and resulting effectiveness of pile reinforcement in EQ4 

Figure (6-38a) plots normalised residual moment capacity (Mres) measured for the 

exhumed piles following the earthquake shaking as a function of the maximum 

induced moment in the piles (Mmax).  This data is derived from Figures (6-17) – (6-20) 

and Figures (6-28) – (6-31).  In each case, the pre-earthquake yield moment capacity 

(My) is used in the normalisation.  The points can all appear to lie along an arc 

between the points (0,1) and (1,0), suggesting a characteristic relationship for this 

particular RC section and earthquake characteristics.  The 1:1 dashed line represents 

the condition that Mres = Mmax, i.e. that failure will have occurred.  The trend of the 

centrifuge data points intersect this line at Mmax/My ≈ 0.6, implying that to avoid 

damage due to fatigue effects, the design value of My > Mmax /0.6 = 1.67Mmax.  

Given that only one earthquake time history and one pile section were used in the 

testing on RC piles, it is not clear whether this result would apply to all possible 

design situations; however, in the absence of further information, it would be prudent 

to use this value (essentially a partial resistance factor in limit state design).   
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Figure (6-38b) shows that the residual bending stiffness (EIres) measured in the same 

post-shaking four-point bending tests is between 50 – 80% of the pre-earthquake 

value (EIstatic), which may help to explain some of the loss of dynamic reinforcement 

effect in Figures (6-36) and (6-37).  As larger accelerations will likely cause larger 

permanent slips (Newmark), the loss of dynamic reinforcing effect may then be 

responsible for the reductions in permanent movements (Figure 6-33) compared to the 

case of purely elastic piles.   

 

Figure (6- 38): Residual bending properties of RC piles following kinematic loading 
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6.7 Effects of pile detailing and performance of a slope with 

seismically damaged piles 

The generally good performance of the model RC piles (in terms of not breaking in 

the tests described so far) suggested that this section could be considered to have been 

properly designed to resist the seismic effects, in that a sufficient moment capacity 

(My ≈ 230 kNm) had been provided to avoid damage (in all but one pile).  In order to 

examine the effect of not putting sufficient effort into the reinforcement detailing, a 

second type of reinforced concrete pile was produced.  This consisted of a uniform 

distribution of longitudinal reinforcement (rather than concentrating this on the 

upslope side of the pile) and all of this reinforcement was used smooth.  From Figure 

(3-24) it was known that such an arrangement should provide a reduced moment 

capacity in the region of 80 kNm.   

Two further centrifuge tests were conducted using this new weaker RC pile section, 

denoted tests AA18 (subjected to 4 earthquake motions) and AA19 (subjected to 1 

earthquake).  Both tests were conducted at S/B = 7.0; this was chosen as this case gave 

the maximum induced bending moments in the elastic pile tests (see Figure 6-8).  

Further four point bending tests were conducted of the ‘weak RC’ section to verify the 

properties, giving an average moment capacity of 70 kNm for both upslope and 

downslope movements as shown in figure (6-39). 

 

Figure (6- 39): Moment capacity for weak section. 
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The principal bending properties of all three model pile sections described in this 

thesis are summarised in Table (6-2), where it should be noted that values of the 

displacement ductility,  were determined following the method outlined by Pam et 

al. (2001). 

Table (6- 2): Summary of pile bending properties (values at prototype scale) 

Pile type B (m) EI (MNm
2
) My (kNm) Ductility,  

Elastic 0.5 50.4 3750 >6 

RC 0.5 48.9 230 5.3 

Weak RC 0.5 42.2 80 3.7 

 

Figure (6-40) shows the crest settlements measured for S/B = 7.0 for both the 

‘designed’ and ‘weak’ RC sections (tests AA05/09 and AA18 respectively), compared 

to the movements of the unreinforced slope in EQ1.  The displacements of the 

reinforced and unreinforced slopes are initially similar, as relative soil pile movement 

is required to generate resistance from the piles.  Beyond 0.1 m of displacement the 

slope reinforced with the design section moves consistently ≈ 20% less than the 

unreinforced slope.  This is consistent with Figure (6-33a).  The movements in the 

case of the weak section however remain close to those of the unreinforced slope, 

though a reduction of ≈ 7% can be inferred from the figure.  This strongly suggests 

that (i) the weak piles yielded at approximately 0.1 m crest movement in EQ1; and (ii) 

that once yielded the piles do still impart some improvement to the soil.  This latter 

point is true as if the pile has not reached its ultimate capacity (it is instead yielding in 

a ductile manner) it can still provide an additional resisting force to the slipping soil 

mass consistent with that required to generate the yield moment (70 kNm in this case) 

in the piles.  Table (6-3) summarises these differences in crest settlement for the 

different pile types tested at S/B = 7.0, along with complementary data on the 

influence on angular distortion and spectral reduction (Sred). 
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Figure (6- 40): Effect of RC section detailing on crest settlements during EQ1. 

Table (6- 3): Effect of pile design on seismic slope performance (s/B = 7.0) 

Pile type 
Relative crest 

settlement 
Relative angular 

distortion 
Relative Sred 

Unreinforced 1.00 1.00 1.00 
Elastic 0.75 0.65 0.90 

RC 0.80 0.69 0.92 

Weak RC 
(damaged) 

0.93 0.71 0.98 

 

Figure (6-41) shows close-up images of the weak RC piles after the final two tests 

AA18 and AA19. The ruler shown at the bottom of each image has its zero at the top 

of the pile (ground surface).  All but one of the piles show tensile cracking on the 

upslope face (closest to the camera), and some show compressive spalling (loss of 

material) on the downslope face.  This damage can be seen to occur between 60-80 

mm from the top of the model piles, i.e. between 3-4 m below ground surface at 

prototype scale.  This is consistent with the depth of maximum moments shown in 

Figure (6-8).  As significant pile damage occurred in both tests (i.e. under successive 

and single strong earthquakes) it confirms the inference from Figure (6-39) that the 

piles in test AA18 were broken during EQ1.   
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Figure (6- 41): Photographs showing pile damage around the location of maximum 

bending moment: (a) after four successive earthquakes (test AA18); (b) after a single 

earthquake (test AA19). 

6.8 Summary 

An extensive programme of geotechnical centrifuge testing to investigate the 

performance of pile-reinforced cohesionless slopes during earthquakes and after many 

aftershocks has been presented in this chapter. These results have been focused on the 

effects of the piling on the post-seismic permanent deformations of the slope and the 

co-seismic dynamic response. The soil-pile interaction (SPI) has been also 

investigated in this chapter and will subsequently be modelled in Chapter 7. The main 

findings are summarised below: 

1- The deformation of pile-reinforced slopes is significantly influenced by the 

spacing along the pile row (defined by S/B).  Settlement and angular distortion 

at the crest of the stabilised slope reduces as pile spacing decreases.  Minimum 

deformations were observed at the closest pile spacing ratio (S/B = 3.5) while 

virtually no effect is observed at spacing ratios S/B ≥ 14.  The behaviour at 

large S/B is likely due to the breakdown of arching between the piles.  The 

minimum spacing tested represents that suggested for optimal performance by 

other authors and is considered to represent the most effective reinforcement 

for the least cost.  At optimal spacing, permanent deformations were reduced 

between 30-40% compared to the unreinforced case.   
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2- Deformation in subsequent aftershocks is smaller for the same earthquake 

motion for piled slopes. This can be attributed to the geometric hardening 

effects previously noted in Chapter 4 for unreinforced slopes. Piles become 

less efficient in aftershocks at wide spacing, though maintain their 

effectiveness at optimal spacing (S/B = 3.5).   

3- The dynamic response is also reduced as S/B reduces.  This effect appears to 

be period-independent.  At optimal spacing, reductions of up to 20% were 

observed in the magnitude of spectral accelerations.   

4- The designed section RC piles were strong enough that they were not broken 

during centrifuge tests though their residual moment capacity and bending 

stiffness post-earthquake were observed to be reduced.  If the piles are detailed 

so as not to break during the earthquake, modelling them as (linear) elastic 

provides a good first approximation to their behaviour, though elastic 

modelling does marginally over-estimate the degree of improvement to the 

slope’s performance.   

5- When the piles are incorrectly detailed and yield during shaking, they provide 

only a very small reinforcing effect to slope performance which is essentially 

negligible.  Detailing of RC piles to resist permanent movements and account 

for reductions in residual capacity is therefore extremely important.  It is 

suggested that the static moment capacity is designed to be 1.67 times the 

maximum downslope moment expected from the earthquake and any 

aftershocks (calculation of these moments will be covered in Chapter 7).   
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Chapter seven 

Seismic performance of pile-

reinforced cohesionless slopes: 

Development of sliding block 

procedure 

7.1 Introduction 

In the analysis of piled slopes, it is important to be able to determine (i) the reductions 

in seismic displacement for a given pile arrangement (e.g. S/B) so that the piling can 

be designed to give the required improvement to the geotechnical performance and 

(ii) internal forces (e.g. bending moments) within the piles, so that they can be 

structurally detailed.  In this chapter, a simplified pile-soil interaction model is 

developed for the analysis of piles in slipping soil which can be used within a 

Newmark sliding block analysis.  This will be incorporated into the improved 

methodology for unreinforced slopes from Chapter four, so that the final method 

incorporates both strain-dependent geometric hardening (re-grading) and strain 

dependent pile resistance and is also suitable for use in the events of aftershocks.  This 

model is then validated against the centrifuge test results reported in Chapter six.   

7.2  Sliding block procedure for pile-reinforced slopes 

7.2.1  Formulation 

The limit equilibrium formulation for the yield acceleration developed in Chapter 

four, which includes strain-dependent geometric hardening of the slope, is modified 

here to incorporate the additional component of resistance offered by the piles.  For 

slip of a moving mass of soil (block) of length L, width S and depth z beneath the 

slope surface, the applied downslope shear stress from Figure (7-1) is: 

                    2coscossin zkz happlied                             (7-1) 
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where the first term relates to the static shear stress due to the ground slope, and the 

second term relates to the additional peak dynamic shear stress induced by the 

earthquake.  The total shear resistance to this applied shear stress is given by: 
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Figure (7- 1): slip mechanism in pile reinforced slope; (a) overall configuration; (b) 

forces acting on a pile stabilised slipping soil element 

The soil yields when τapplied = τult.  The value of khy at which this occurs (the yield 

acceleration, khy) can be determined from Equations (7-1) and (7-2) as: 
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In a dry cohesionless soil, 'c  = 0, u = 0. This allows cos  and γz to be cancelled from 

both the numerator and denominator in Equation (7-3), so that khy is dependent on the 

depth of the slip plane, slope geometry (length and angle), soil friction angle, pile 

spacing and the single pile resistance (which will be described in Section 7.3), so long 

as the slip plane continues to be parallel to the slope surface.  Equation (7-3) therefore 

simplifies to: 
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In Equation (7-4), '  , L and P are a function of shear strain i.e. slope displacement.  

Chapter 4 describes how the strain softening model of Matasovic et al., (1997) can be 

used to describe )(
'

cs .  A simple relationship was presented to describe the geometric 

effect of slip on reducing the slope angle (i.e. ).  Numerically within the Newmark 

method, the slope angle is updated for step i+1 based on the slope angle in in the 

previous step (i) and the reduced slope height (Hi) following slope-parallel slip (di): 
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For the initial time step, d0 = 0, Hi = H and βi = β0, as in Chapter four.  In the new 

yield acceleration formulation in this Chapter, the geometric effect extends also to the 

instantaneous slip-plane length Li, which is related to the instantaneous slope angle 

by: 
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The pile resistance as a function of strain (soil slip) depends on a number of 

parameters describing the relative soil-pile stiffness and strength of the soil in the 

unstable material (as it yields around the piles).  Clearly, in the initial stages of the 

analysis before any slip has taken place, the net additional resistance from the piles is 

zero.  As the soil slips, the relative displacement between the soil and the pile 

increases, providing a progressively larger resistance to slip (P).  Eventually, the 

resistance from the pile will reach a maximum limiting value when either the soil 

yields around the pile, or the pile yields structurally, whichever occurs first.  A 

detailed soil-pile interaction (SPI) model, in terms of the relationship between P and 

di, is described in Section 7.3.   

From the form of Equation (7-4) it is clear that as the soil starts to slip P will increase, 

while β will reduce.  This will result in progressive hardening of the slope response 

via an increase in the yield acceleration.  Even once the piles are providing the 

maximum resistance, the slope response will continue to be reduced compared to the 

unreinforced case due to (i) the constant value of P in Equation (7-4), so long as the 

soil or pile are yielding in a ductile way, and (ii) the continued geometric hardening.  

By incorporating the effects of strain fully within the model, the behaviour of a 

seismically damaged slope during subsequent earthquakes/aftershocks can be 

determined from the initial conditions (pile resistance, relative soil-pile displacement, 

re-graded slope angle) obtained at the end of the previous ground motion, as in 

Chapter four. 

7.2.2  Assumptions and simplifications 

For small to moderate earthquakes whose peak ground acceleration magnitude is close 

to (but larger than) khy (and which will therefore have only a limited amount of slip), 

strain softening behaviour can have a dramatic effect on computed slope 

displacements, with khy potentially changing continuously throughout the earthquake 

due to this effect as φ′ changes.  In larger earthquakes, where a single cycle causes 

sufficient slip/strain to reach critical state conditions, then the strain softening model 

is likely to predict only a marginally smaller slip compared to a standard (strain-

hardening) analysis using a constant φ′ = φ′cs.  It was demonstrated in Chapter four 

that the effect of the strain softening was negligible for the strong earthquakes used in 

the centrifuge tests (see Chapters 4).  According to this, the strain softening has been 



Chapter 7                                           Modified Newmark’s procedure for piled slope 

214 

 

neglected in the modelling described in this chapter (i.e. the material has critical state 

strength from the beginning of the analysis).  

It is also assumed, as in Chapter 4, that once the slope has deformed to a new, smaller 

value of β, the failure mechanism will continue to be of the infinite type, with a new 

slip surface forming parallel to the new slope surface (see Figure 4-3).  It should be 

noted, as in Chapter 4, that the model as formulated can be used even for the case of 

large total slope movements (such as may accrue during a series of strong aftershocks) 

as the displacement increment in each individual time step will remain small, and 

therefore the instantaneous failure mechanism will be represented by Figure (6-1) for 

small displacements.   

7.3 Soil-pile interaction (SPI) model 

In this section, the relationship between the amount of soil slip and the pile resistance 

is developed.  This behaviour, described as the SPI model will also enable the peak 

bending moments to subsequently be derived within the piles, so that they can be 

appropriately detailed.  Given that the aim will be to ensure the piles do not break, it 

can be assumed that the soil in the slipping mass will yield around the piles.  The 

interaction in this zone of soil will therefore be described using a single non-linear 

elasto-plastic P-y curve which will describe the force applied on the pile, P, by the 

slipping soil as a function of the relative displacement between the soil and the pile (di 

– yp) at the position of resultant load application.  The part of the pile within the 

‘stable’ soil will be modelled using a linearised elastic response model describing the 

response of the pile (yp) under the applied load P.  This is shown schematically in 

Figure (7-2).   
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Figure (7- 2): Modelling approach. 

 

7.3.1 Soil-pile interaction in slipping soil 

p-y curves are popular for describing the non-linear relationship between soil 

resistance and relative soil-pile deformation.  O’Neill and Murchison (1983) 

developed a procedure which was subsequently adopted by the American Petroleum 

Institute (API) to determine the load-deflection relationship (P-y curve) in sands.  This 

method will be used herein within the slipping soil.  The P-y curve in this procedure 

uses an hyperbolic tangent function to represent the non-linearity in the response. 

Three main coefficients are used, namely C1 and C2, which can be calculated as a 

function of the angle of internal friction (API recommended practice, 2000), and the 

initial subgrade reaction (k) which can also be determined as a function of the angle of 

friction (i.e. Figure 7-3).  This relationship is written as: 

   

                                                  slippi
u

u zyd
Ap

kz
ApP 








 tanh                                   (7-7) 

where P is the total soil resistance over the length of the pile within the slipping soil 

mass (i.e. of length zslip), up  is the ultimate soil resistance (see below) at soil yield, di 

is the soil slip, yp is the lateral pile displacement at the location of the P-y curve, k is 

the initial modulus of subgrade reaction, z is the thickness of the slipping soil mass 

and A is a factor to account for cyclic loading. For cyclic loading, A = 0.9; A = 1.0 for 

monotonic loading.  The ultimate capacity, up , is calculated as: 
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                                                          zDCzCp equ   21                                       (7-8) 

Deq is the equivalent pile diameter (assumed to be equal to the square pile width here, 

i.e. Deq = B) and '  is the effective unit weight of the soil. 

 

 

Figure (7- 3): API P-y coefficients as function of
' . 

7.3.2 Soil-pile interaction instable soil 

In the stable soil, the soil is assumed to remain elastic, with the relationship between 

applied load (P) and pile displacement presented by Randolph (1981).  Its 

implementation is shown schematically in Figure (7-4).  Use of this method assumes 

that the resultant horizontal force on the pile from the slipping soil (i.e. P-y spring 

force) acts at a depth of 0.67zslip below the top of the pile, meaning that the pile length 

within the stable soil is treated as a partially embedded pile acted upon by a resultant 

horizontal force ( = Pcos) and moment ( = Pcos × 0.33zslip) acting at the level of the 

shear plane. This method can account for (linear) variation of soil shear modulus with 

depth, and pile sections of any EI (through use of an equivalent elastic circular pile of 

Young’s Modulus Ep).  The resulting relationship between P and yp is given by:   
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Figure (7- 4): Definition of parameters used in model for stable soil 
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The parameter LcG  is the median value of the operative shear modulus over the 

critical length, i.e. the value of G at a depth of Lc/2, and c  is an homogeneity factor 

describing the variation of G with depth.  The key modification made to this existing 

model in this thesis is that the ‘operative’ shear modulus is assumed to be the value of 

‘G’ as reduced to account for the effects of cyclic shearing.  The analytical 

determination of this G-depth relationship is presented in Section 7.3.4.  To use 
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Equations (7-11) – (7-13) some iteration is required due to the inter-relationships 

between Lc and Gc.  In practice an initial value of Lc is assumed and used to determine 

Gc.  This value of Gc is then used in Equation (7-11) to calculate an improved estimate 

of Lc.  The procedure is then repeated until the values of Gc and Lc are consistent with 

each other.   

7.3.3  Combined SPI model and spacing effects (pile ‘shadowing’) 

For use in the Newmark method, i.e. for determining the instantaneous value of P in 

Equation (7-3) or (7-4), a direct relationship between P and slope slip di is desirable, 

so that the slip computed from the previous Newmark step can be used to obtain the 

current pile resistance force.  This can be achieved by substitution of Equation (7-9) 

into Equation (7-7) for the unknown pile displacement yp.  The resulting closed-form 

expression can then be used to evaluate P over a fine grid of di values.  This will give 

a unique curve defining the soil-pile interaction for a single pile.   

When using piles in a closely spaced pile row, the zones of soil into which the piles 

displace relative to the soil may overlap, resulting in a reduction in the resistive force 

(P) available due to ‘shadowing’.  This is accounted for in the present analysis by 

applying the p-multiplier concept, i.e. by reducing the values of P in the SPI model by 

a factor between 0 – 1 which is dependent on the pile spacing.  A number of authors 

have investigated p-multipliers for piles in cohesionless soils and their results are 

summarised in Figure (7-5).  An approximate relationship was derived from this data 

for use within the SPI model: 
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Figure (7- 5): Relationship between p-multiplier and pile spacing. 

 

According to this concept, the measured single pile resistance from the p-y curve 

using API method has been modified to what it should be, based on the spacing ratio, 

i.e. P = pm × P(single pile).   

7.3.4  Determination of operative shear modulus 

In this chapter, a method of estimating the shear modulus within the stable soil is 

described and validated against data derived from the time-acceleration histories of 

the accelerometers from the centrifuge models at three main depths below the ground 

surface (see Brennan et al., 2006). Figure (7-6) shows time-shear stress, time-shear 

strain and a shear stress-shear strain cycle at peak cyclic shear strain from Test AA06. 

These were computed form the data of three vertical accelerometers; 6, 10 and 13 (see 

Figure 6-1 in chapter 6) which were located at the middle of the slope and along the 

centreline of the container (midway between the two central piles) 
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Figure (7- 6): Variation of the shear stress, shear strain and shear modulus: (a) at 2.75 

m depth, (b) at 4.50 m depth, (c) at 6.25 m depth. 

The ‘operative’ shear modulus used in the SPI is calculated based on initial shear 

modulus (Go) for the soil before cyclic loading (from Hardin and Drnevich, 1972 – 

Equation 7-15) as well as the variation of cyclic shear stress ( .av ) and cyclic shear 

strain () during the earthquake with depth using Equation (7-16). 
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The representative cyclic shear stress is estimated using the equation proposed by 

Seed and Idriss, (1971).  They assumed that the equivalent average cyclic shear stress 

caused by earthquake is approximately 0.65 from the maximum induced stress: 
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g

a
o
.)..(65.0 max

.                                             (7-17) 
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where maxa  is the peak ground acceleration at the soil surface, g is the acceleration 

due to gravity, 0v  is the total overburden stresses, and dr  is a stress reduction 

coefficient which was calculated using the equation proposed by Idriss (1999). 

 

                                               
)).()(( Mzz

d er                                               (7-18) 

 

where M is the earthquake magnitude and: 
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where z is the depth below ground surface in meters. 

The cyclic shear strain () is estimated using Equation (7-21) as proposed by Pradel 

(1998): 
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and 
'
o  is the average stress and Pa  is the atmospheric pressure (100 kPa) 
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In Equation (7-24), Ko is the coefficient of lateral earthquake pressure ( 'sin1  ), and 

'
v  is the vertical effective stress.  

Figure (7-7) shows the variation of initial shear modulus (Go), operative shear 

modulus (G) calculated using Equation (7-16) and the measured shear modulus from 

the centrifuge test data, from Figure (7-6).  Some differences are observed between 

the operative and measured shear moduli, but the approximate procedure given above 

appears to give a rational basis for making a reasonable estimation of the operative 

shear modulus for analysis.    

 

 

Figure (7- 7): Actual and average shear modulus. 

 

7.3.5  Final SPI model for parameters used in the centrifuge tests 

Figure (7-8) shows the P-di curves for pile resistance, using soil properties for the 

centrifuge tests.  The curves are identical for S/B = 14.0 and S/B = 7.0, and are 

reduced in magnitude at S/B = 4.7 and 3.5 in line with Equation (7-14).  It can be seen 

how such a curve can be used to determine the pile resistance for a given amount of 

soil slip within the Newmark method described in Section 7.2.  It is also clear that 

once the soil has slipped by more than 10 mm, the pile resistance will reach a 

maximum.  Expressing this in terms of the pile size, 0.015B, this displacement is 

consistent with the lower limit of previous findings by Pan et al. (2002) and Bransby 



Chapter 7                                           Modified Newmark’s procedure for piled slope 

223 

 

et al. (1999) which suggest that the ultimate pile resistance is mobilised within the 

range 0.015D to 0.025D, where D is the diameter of a circular pile.  

 

 

Figure (7- 8): Calculated SPI curves for centrifuge test conditions. 

 

7.3.6 Determination of bending moment profile in piles 

Once the Newmark analysis has been conducted, the variation of P with time will 

have been determined as an integral part of the analysis.  Once the instantaneous load 

is known, it is relatively simple to determine the bending moments within the pile as 

they are proportional to P while the pile remains elastic (ideal design).  Randolph 

(1981), as cited in Fleming et al. (2009), present normalised bending moment profiles 

for the pile (which apply below the slip plane in this case) for the cases of moment-

only loading and shear-only loading.  If the pile remains elastic, the principal of 

superposition can be used to account for the shear force ( = Pcos) and moment ( = 

Pcos × 0.33zslip) acting at the location of the slip plane depth.  Above the slip plane 

(i.e. within the slipping soil) the bending moments are assumed to reduce linearly to 

zero at the ground surface (consistent with the lateral bearing capacity of the soil 

increasing linearly with the depth and all of the soil within this zone being at yield).   

Normalised moment curves ( cPLM ) have been created as a function of normalised 

depth below the slip plane  
cslip Lzz /  and these are shown in Figure (7-9) for ρc = 
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1.0 (homogeneity factor for the centrifuge test conditions, i.e. for G increasing 

linearly with depth, see Figure 7-7).   

 

 

Figure (7- 9): Generalised bending moment curves for piles resisting an infinite slip. 

7.4 Validation of Newmark method against centrifuge data 

7.4.1 Analysis procedure 

To use the Newmark method developed in the previous sections, it is necessary to 

know the sip plane depth, zslip in order to determine the soil slip as a function of time 

and the corresponding bending moment distributions.  In the centrifuge tests zslip was 

not known.  However, both crest settlement (which is directly linked to soil slip as 

described in Chapter 4) and bending moment were measured in the piles, so zslip could 

be determined by trial and error as the value giving a good match simultaneously to 

both the crest settlements and maximum bending moment.  The SPI curves shown in 

Figure (7-8) were used for these analyses.   

Figure (7-10) shows the effect of pile resistance and geometric re-grading (change in 

β) on the yield acceleration compared to an unreinforced slope using the first 

earthquake (EQ1) of test AA15 as an example.  Only the positive (downslope) 

accelerations have been shown for clarity. It can be seen how the yield acceleration is 

strongly influenced by the pile resistance when the ground motion exceeds the yield 

acceleration based on the critical strength.  Motion of the slope also causes re-grading 
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(geometric hardening) and the yield acceleration can subsequently be seen to increase 

non-linearly throughout the remainder of the earthquake, leading to reduced slip 

velocities (and hence reduced permanent slip) compared to the case with no geometric 

hardening (Al-defae et al., 2013 and Chapter 4).  It is also noticeable that the 

geometric hardening effect is less pronounced when the slope is reinforced by piles, 

presumably as the amount of slip has been reduced as a result of adding the 

reinforcement.   

 

 

Figure (7- 10): Effect of pile resistance and geometric hardening on slope behaviour; 

(a) time-crest settlement; (b) time-yield acceleration 

 

Four pile spacing ratios are considered in this section, representing those tested using 

the elastic instrumented piles in the centrifuge which were reported in Chapter 6.  

According to previous studies, there is no effectiveness for pile spacing larger than 5D 

(here 5B) to prevent the slipping soil due to the inability of the stresses to arch 

between adjacent piles (i.e. Hayward, 2000; Wang and Chen, 1974 and Kourkoulis, 
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2011).  Thus, the results in this section are classified into two groups; the first group is 

referred to as ‘non-effective pile spacing’ (S/B = 7 and 14) where little if any effect of 

the piles is expected, while the second is referred to as ‘effective pile spacing’ (S/B = 

3.5 and 4.67) where significant reduction is expected.  Results for both permanent 

deformation (settlement at the crest of the slope) after the earthquake and aftershocks 

and the calculated peak bending moment in the pile (at the end of the earthquake) for 

both two groups were compared with the measured data from the centrifuge tests to 

investigate suitability of the modified Newmark procedure for piled slopes  

7.4.2 ‘Non-effective pile spacing’ results   

The two larger values of pile spacing (i.e. S/B=14 which represented a model slope 

stabilised by 2 piles and S/B=7 which represented a model slope stabilised by 4 piles) 

are considered in this section. The input motion which was used in these Newmark 

analyses are the time-acceleration histories for accelerometer No. 8 (see Figure 6-1), 

as utilised in Chapter 4 for the unreinforced slopes. For the maximum pile spacing 

ratio (S/B=14), the measured bending moment at the end of EQ1 (from test AA12) is 

well predicted by using zslip = 1.5 m.  The slope was known to have displaced by more 

than 10 mm by the end of EQ1, so it is appropriate that the peak bending moment in 

the pile has reached the maximum value.  The peak bending moment is compared to 

the centrifuge measurements in Figure (7-11).  It can be observed from Figure (7-11) 

that the predicted bending moment increased sharply to the peak value compared to 

the measured moment. This can be attributed to the very stiff behaviour of the SPI 

curve (from the underlying P-y curve) shown in Figure (7-8).   

 

Figure (7- 11): Predicted and measured peak bending moment (S/B=14) 
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The predicted settlement at the crest was approximately 110% of the measured 

settlement from the centrifuge at the end of the first earthquake (Figure 7-12) while it 

was increased to 140% at the end of all aftershocks.  This is not surprising considering 

the results of the unreinforced slope from Chapter 4 where the settlement was over-

predicted by approximately 135% from the measured settlement after EQ1 and 150% 

at the end of all aftershocks.  It can also be seen that the pile resistance gives only a 

small improvement of yield acceleration from the unreinforced case (khy = 0.07g) 

increasing to 0.09g at the onset of maximum pile resistance.  The effect of the piles on 

the slope response for such a large spacing is clearly minimal.   

 

 

Figure (7- 12): Validation for test AA12 (S/B = 14): (a) Predicted and measured crest 

settlement; (b) variation of yield acceleration. 

Decreasing the pile spacing ratio to 7, the measured peak bending moment at the end 

of EQ1 from the centrifuge model (i.e. test AA13) was predicted at zslip = 1.75m. At 

the end of EQ4 the predicted moment was approximately 81% from the measured 

moment at the end of the fourth earthquake (Figure 7-13).  
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Figure (7- 13): Predicted and measured peak bending moment (S/B=7) 

The settlement at the crest in this case was under-predicted at approximately 70% of 

the measured settlement from the centrifuge model at the end of EQ1 and reached 

approximately 95% at the end of all aftershocks (Figure 7-14).   

 

Figure (7- 14): Validation for test AA13 (S/B = 7): (a) Predicted and measured crest 

settlement; (b) variation of yield acceleration. 
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Under-prediction of settlement was also observed at the end of the second and third 

earthquakes. The improvement of the yield acceleration is more significant in this 

case due to larger potential pile resistance per metre length of the slope. The yield 

acceleration was increased from 0.07g to 0.167g at the onset of maximum pile 

resistance.  

7.4.3 ‘Effective pile spacing’ results  

The other two pile spacing ratios considered in the centrifuge programme (S/B = 4.67 

and 3.5) were less than 5D (B here), thus according to most of the previous studies, 

these pile spacing ratios were expected to be effective in improving the slope 

performance (i.e. reducing slip/settlement).  For S/B = 4.67, the measured peak 

bending moment at the end of EQ1 from the centrifuge model (i.e. test AA14) was 

predicted from the Newmark procedure using zslip = 1.77 m (Figure 7-15). 

 

 

Figure (7- 15): Predicted and measured peak bending moment (S/B=4.67) 

 

The computed crest settlement at the end of EQ1 associated with these bending 

moments was again under-predicted compared to the centrifuge test measurements 

(approximately 62% of measured), while it was more reasonable at the end of EQ4 

(Approximately 91% of measured).  Figure (7-16a) shows both predicted and 

measured crest settlement while Figure (7-16b) shows the yield acceleration variation 

against time.  
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Figure (7- 16): Validation for test AA14 (S/B = 4.67): (a) Predicted and measured 

crest settlement; (b) variation of yield acceleration 

The yield acceleration in this case was increased sharply from 0.07g to 0.203g when 

the peak pile resistance is first mobilised.  Although the individual resistances of the 

piles are lower than for S/B = 7 due to the shadowing effect, the reduced spacing 

means there is still an increased overall resistance per metre length of the slope.   

By decreasing the pile spacing ratio to the minimum studied value in this research, the 

measured peak bending moment at the end of EQ1 from centrifuge test AA15 were 

predicted by using zslip = 1.7 m.  This moment was 80% of that measured after EQ4 

(Figure 7-17).  
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Figure (7- 17): Predicted and measured peak bending moment (S/B=3.5) 

The computed crest settlement at this minimum pile spacing ratio (S/B) is compared to 

the measured crest settlement in Figure 7-18.  The crest settlement was again initially 

under-predicted (approximately 60% compared to the measured crest settlement at the 

end of EQ1) but this improved during the subsequent earthquakes.   

 

Figure (7- 18): Validation for test AA15 (S/B = 3.5): (a) Predicted and measured crest 

settlement; (b) variation of yield acceleration. 

The yield acceleration was increased from 0.07g to 0.193g when the peak pile 

resistance is first mobilised (Figure 7-18b).   
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One further case considered was test AA16, where twelve time-acceleration records 

of the Kobe motion were applied to a model with S/B = 4.67.  This is used here to 

investigate the Nemark procedure’s validity under many aftershocks (twelve here), 

and also demonstrate that its predictive abilities are not limited to just the Chi-Chi 

motion.  The same value of zslip was used as in test AA14 (Chi-Chi motion at S/B = 

4.67).  Peak bending moment and settlement comparisons are shown in Figures (7-19) 

and (7-20), respectively.   

 

Figure (7- 19): Predicted and measured peak bending moment for Kobe model 

(S/B=4.67) 

 

Figure (7- 20): Validation for test AA16 (S/B = 4.67): (a) Predicted and measured 

crest settlement; (b) variation of yield acceleration. 

It can be seen from the computed bending moment for (AA16) that it was increased to 

more than (150%) at the end of EQ4 from that measured at the end of the EQ1. This 
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actually is contrasting with what was observed from all Chi-Chi- model described 

earlier. This attaributed to the input motion which has height spiky in very narrow 

range comparing with Chi-Chi earthquake.      

7.4.4 Summary of model performance: crest settlement 

Figure (7-21) shows both the predicted and measured accumulative and instantaneous 

(during a single earthquake) crest settlements for all four earthquakes and for all 

studied cases. It is clearly shown that the accumulative crest settlement for maximum 

pile spacing (S/B=14) is over predicted for all aftershocks and this difference between 

the measured and predicted values increases with further aftershocks and this was 

consistent with what was observed in the unreinforced case presented in chapter 4.  

 

Figure (7- 21): Predicted and measured crest settlement: (a) accumulated and (b) 

instantaneous 
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The accumulated crest settlements at the end of each earthquake match reasonably 

well with the measured crest settlement for all cases (except S/B=14) especially after 

the end of all aftershocks (see figure 7-21 a). Figure (7-21 b) shows the instantaneous 

crest settlement after each earthquake. The validity of this modified procedure is 

shown from the crest settlement where decreasing of crest settlement after each 

aftershock is observed.  

Figure (7-22 a) shows the accumulated crest settlement computed by the modified 

Newmatk’s procedure for test AA12 (Kobe model) and test AA10 (Chi-Chi model). 

These tests have the same S/B ratio, but different input motions. The crest settlement 

is slightly under predicted for all aftershocks, but generally the match is very good 

and clearly applicable across different input motions and for a large amount of seismic 

input.  

 

 

Figure (7- 22): predicted and measured crest settlement for AA10 and AA16 

(S/B=4.67): (a) accumulated and (b) instantaneous 
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7.4.5 Summary of model performance: pile bending moments 

As was explained in section 7.3.5, the bending moment along the pile has been 

calculated based on three main parameters: peak or mobilised pile resistance (P) at the 

end of the first earthquake, depth of the slip surface (zslip) and critical length of the 

pile (Lc).  Moment distributions along the piles have been determined using Figure (7-

9) and compared to those measured in the centrifuge tests at the end of the first 

earthquake (see chapter 6).  These are shown in Figure (7-23).  It can be noticed that 

the magnitude of the peak bending moment, which occurs just below the slip plane, is 

slightly over-predicted and occurs at a shallower depth (predicted at 2 m depth, while 

it was measured from the centrifuge at 3.6 m depth).   

 

 

Figure (7- 23): Predicted and measured bending moments along piles, end of EQ1. 
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Figure (7-24) shows a comparison of the moment distributions from the Chi-Chi and 

Kobe models where both of them had the same pile spacing ration (S/B = 4.67). The 

same depth of the maximum moment was observed in both cases while the maximum 

moment magnitude predicted was slightly larger in the Kobe case. 

 

Figure (7- 24): moment distribution along pile for Chi-Chi and Kobe models (s/B = 

4.67) 

 

As shown from both Figures (7-23) and (7.24), the procedure gives a visualization 

about the magnitude of the maximum bending moment, but it does not give a good 

estimation of the moment distribution below the slip plane. This can be attributed to 

the effect of the critical length of the pile used in the calculation procedure. By 

modifying the normalised curve shown in Figure (7-9) to a new form (i.e. Figure 7-
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25), by using three times the calculated critical length of the pile proposed by 

Randolph, 1981 both the depth of maximum bending moment and the moment 

distribution are well predicted. (see Figure 7-26).         

 

Figure (7- 25): Generalised bending moment curves for piles resisting an infinite slip 

 

Figure (7- 26): Predicted and measured bending moments along piles, end of EQ1. 
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7.5 A priori determination of zslip  

In the forgoing validation in Section 7.4, the Newmark method was used to obtain 

(simultaneously) a good prediction of slope displacements and pile bending moments, 

allowing the empirical determination of zslip.  However, for practical use in design it 

would be more useful if an a priori determination of zslip could be made.  The 

Discontinuity Layout Optimisation (DLO) technique was therefore used to analyse the 

pile-reinforced slope system under pseudo-static seismic accelerations to investigate 

the shape of the seismic slip surface and the (initial) yield acceleration of the pile-

slope system (Smith and Gilbert, 2007). As in Chapter 4, LimitState:GEO, 2.0 

software was used to calculate the minimum upper-bound mechanism by DLO for the 

actual limited geometry of the centrifuge model of the unreinforced slope.  

The piles were represented as ‘engineered elements’.  By using engineered elements, 

relative displacement between the soil and each node of this element is allowed, such 

that the soil can slip past the piles if energetically desirable.  Three main parameters 

are required to define the properties of engineered elements: (i) lateral resistance per 

unit length per unit width to lateral displacement (N); (ii) pullout resistance per unit 

length per unit width, (T) and (iii) plastic moment resistance of the element per unit 

width. A linear variation with depth was assumed for both lateral resistance and 

pullout resistance: 

                                                        vqc TTT '.                                                  (7-25) 

                                                       vqc NNN '.                                              (7-26) 

The spacing ratio has been taken into account in the calculation of the parameters in 

Equations (7-25) and (7-26), so that they represent equivalent values per unit length of 

the slope. As the pile elements have their tops at the surface of the slope where both 

resistances are expected to be zero, thus Tc = Nc = 0. The depth-dependent parameters 

Tq and Nq are given by: 

                                                    tan).2.(.4 oq KBT                                              (7-27) 
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Where  

 B:  Pile width 

oK : Earth pressure coefficient at rest condition = 'sin1  . 

pK : Passive earthquake pressure and be calculated using equation 7-29: 

                                                           
a

p
K

K
1

                                                     (7-29) 

And 

aK  is the active earthquake pressure and is calculated using equation 7-3: 

                                                        
'

'

sin1

sin1








aK                                                   (7-30) 

 

 : The interface angle between the soil and the pile calculated from direct shear box 

at critical state (see section 3-8 in chapter 3). 

 The variation of the angle of internal friction with depth (dilation suppression due to 

confining stress level) has also been taken into account in the representation of the 

soil model. Thus, the soil is divided into many 0.5 m thick layers over the top 8 m of 

soil such that each layer can be given a different angle of friction.  Figure (7-27) 

shows how the angle of friction vary with depth (effective stress) based on the results 

from the direct shear box tests conducted in Chapter 3. 

 

 

Figure (7- 27): Soil friction angle as a function of depth 
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The moment capacity of the RC model piles was used in determining the plastic 

moment resistance (Mp).  This was divided by the pile spacing to represent the 

equivalent moment resistance per unit length of the slope. 

Figure (7-28) shows the failure mechanism for the pile-reinforced cohesionless slope 

at different spacing ratios using the variation of the angle of the friction with depth.  It 

can be seen that the failure mechanism is different from case to other. The slip surface 

is appearing along the whole slip surface and ‘through’ (past) the piles at S/B = 14.  

As the pile spacing reduces to S/B = 7.0, it is changed to two symmetric slip failures 

either side of the pile. With further reductions of S/B the critical mechanism involves 

only the soil upslope of the pile.  These observations can be attributed to the flow of 

the soil through piles at larger pile spacing whereas the piles restrain the soil around 

them as they become closer together. The depth of the slip surface is observed to be 

approximately 1.5m below the surface in each case and this is broadly consistent with 

what was investigated from the modified Newmark’s procedure (see Figure 7-29).  

 

 

Figure (7- 28): Failure mechanisms for piled-slope computed from DLO for seismic 

case 
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Figure (7- 29): Depth of slip surface 

 

The yield accelerations in each case were also determined using DLO.  Table (7-1) 

shows the static factor of safety and the yield acceleration for all cases.  Compared to 

the Newmark-derived yield accelerations at the onset of full pile resistance, the DLO 

predictions are much higher and appear not to be significantly influenced by S/B.  It 

should be noted however that the Newmark method is used to predict performance to 

large displacement, and hence critical state strength parameters were used.  The DLO 

only finds the instantaneous slip mechanism assuming that the pile can mobilise its 

resistance with no relative slip (i.e. when soil properties are at peak).  The use of 

critical state strength everywhere (i.e. both on the slip plane and in the SPI) is a 

simplification in the Newmark method and it is expected that the initial position of the 

slip plane will actually be controlled through soil-pile interaction when there is 

negligible relative soil-pile movement and the soil is at peak strength (i.e. as predicted 

from DLO).  This slip plane is then thought to be maintained throughout further 

shearing during which (and for the majority of the earthquake) the soil parameters will 

have softened to critical state.  Therefore, it is thought that the DLO analyses can be 

used to estimate the slip plane position, but that the yield acceleration should be 

calculated through the Newmark model where the effects of pile strength mobilisation 

and re-grading can be taken into account.   
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Table (7- 1): Static and dynamic slope stability data 

s/B F (DLO) khy 

(DLO) 

khy 

(Newmark)* 

zslip (DLO) zslip 

(Newmark) 

Unreinf. 1.61 0.21g 0.07g 0.50 m N/A 

14 1.66 0.2599g 0.09g 1.50 m 1.50 m 

7.0 1.66 0.2635g 0.167g 1.50 m 1.75 m 

4.67 1.66 0.2635g 0.203g 1.50 m 1.77 m 

3.5 1.66 0.2635g 0.193g 1.50 m 1.70 m 

*Values at onset of maximum pile moment, including re-grading effect 

7.6 Summary 

The modified Newmark procedure which was developed in Chapter 4 for predicting 

slip in unreinforced cohesionless slopes has been modified in this chapter to be 

applicable to pile–reinforced cohesionless slopes. A summary of the key results and 

observations are given below: 

1- The Newmark method gives reasonably good predictions of permanent 

seismic slope deformation at all pile spacing ratios, both in initial earthquakes 

and following many strong aftershocks and for different input motions.   

2- The pile spacing ratio (S/B) played an important role in the deformation of the 

stabilised slope during earthquake loads. This was consistent with the 

observations from the centrifuge tests reported in Chapter 6. 

3- The peak pile resistance was generally mobilised at very small amounts of 

seismic slip, and therefore within a very short time for the strong earthquakes 

considered.  This can be attributed to the high stiffness of the P-y curve used 

in the slipping soil.  Future developments to the Newmark method could 

consider alternative P-y formulations to improve this .   

4- In contrast to the unreinforced slope, the depth of the slip surface played an 

important role in determining the magnitude of slope deformation and the 

response of (bending moments within) the stabilised pile, as the calculated 

peak pile resistance (limited by the slipping soil) is dependent on the slip 

depth.   
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5- The depth of the slip surface in unreinforced slopes was approximately 0.5m 

from Chapter 4.  Application of the developed Newmark method for pile-

reinforced slopes to prediction of the centrifuge test results from Chapter 6 

suggested that the presence of the piles increased the slip depth to 1.5 m in 

case of S/B = 14 and between 1.7 – 1.77 m at closer spacing.  

6- The DLO technique appears to give a reasonable a priori estimate of the slip 

plane depth in the case of pile-reinforced slopes which is required for the 

Newmark method.  This must be done using peak strength parameters and 

accounting for the suppression of dilation (reduction in peak strength) with 

depth.  However, yield accelerations should be determined using the Newmark 

formulation where strain dependency can be taken into account.   
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Chapter eight 

Conclusions, remarks and   

recommendations for further research 

8.1 Overview 

In this thesis, nineteen successful dynamic centrifuge tests were reported and 

interpreted, considering unreinforced and pile-reinforced cohesionless slopes. This 

was supported by Finite Element modelling procedures for predicting unreinforced 

slope behaviour and new validated Newmark procedures for use in design.   

All dynamic centrifuge tests were implemented using 1:50 scale models at 50- g level 

and accelerations, dynamic response and permanent deformations were measured. 

Two kinds of pile models were used to stabilise cohesionless slope in this study, RC 

pile models (made of cementations plaster mortar and reinforcing steel wire), which 

were damageable and elastic model piles (aluminium alloy) which were instrumented 

to measure induced seismic bending moments.  

8.2 Improved Newmark procedure for unreinforced slopes 

The dynamic centrifuge tests included in Chapter four were for unreinforced 

cohesionless slope. An analytical solution was developed to determine the seismic 

displacement (permanent settlement) of the slope and to investigate the effects of soil 

strength properties and how the yield acceleration of slopes changes with time during 

earthquakes and aftershocks. The following key conclusions have been drawn: 

1- A fully strain-dependent formulation of the seismic yield acceleration of a 

granular slope has been developed, for use in a modified Newmark sliding-

block procedure.  Reduction in slope angle with slip/strain (re-grading or 

geometric hardening) has been incorporated alongside an existing strain-

softening/hardening formulation.  The new model allows for greatly-improved 

prediction of slope movement under multiple strong earthquakes as it 

implicitly contains the strain history (seismic memory) of the slope, and 
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therefore permits both the response of slopes under strong aftershocks, and the 

whole-life performance of a slope to be quantified.  

2- The model has been validated against centrifuge test data for a dry 

cohesionless sandy slope under the action of both multiple sequential recorded 

ground motions from recent strong earthquakes, and under harmonic shaking.  

It has been demonstrated that the effects of geometric hardening are much 

more significant than those of strain hardening/softening in the soil when the 

ground motions are strong and there are many of them (as would be the case 

for real slopes over their design life).  

3- Though predicted displacement (settlements) of the slope were over predicted 

compared to the centrifuge results, the new procedure gives better results than 

the previous state-of-the-art (just shear strain softening behaviour).  

4- The sliding block model is useful in preliminary design due to the limited soil 

property data required and low computational effort compared to more 

complex models (e.g. Finite Elements). 

8.3 Finite Element modelling of unreinforced slopes 

A set of constitutive model parameters for an advanced non-linear model simulating 

HST95 sand has been used in chapter five within Plaxis 2D to predict the centrifuge 

test results. Simulations with this model were compared with an existing model 

(Brinkgreve et. al, 2010), validated against centrifuge data and compared to the new 

analytical solution described in Section 8.2. The key conclusions are outlined below:   

1- The validated Finite Element model procedures give a more complete picture 

of seismic slope response.  These procedures can be used to undertake detailed 

analyses on optimal slope designs, based on preliminary designs developed 

using the improved sliding-block procedure described above. 

2- The elasto-plastic constitutive model required parameters which could be 

specified based only on relative density using existing correlations, or using 

routine laboratory tests to develop a soil-specific model. 
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3- The new procedures offer significant benefits for use in routine design.  It was 

demonstrated that the use of soil-specific parameters gave far improved 

predictions, particularly of permanent settlement, compared to existing 

correlations, which over-predicted settlements, particularly in subsequent 

earthquakes (aftershocks). This highlights the value of performing adequate 

site investigation. 

4- The FE models gave comparable predictions of permanent movements at the 

slope crest to those using the improved sliding block model developed in 

chapter four, capturing the decay in ground displacement (geometric 

hardening) observed in the centrifuge tests.  

5- FEM is able to additionally quantify the dynamic performance of the soil and 

the ground deformation profile (angular distortion) at the crest.  This would 

provide the necessary information to make a detailed study of the seismic 

hazard posed to infrastructure located at the slope crest, and would therefore 

be complimentary to the sliding block models, being useful in the later stages 

of detailed design. 

6- It was observed that the FE models generally over-predicted the magnitude of 

dynamic ground motions in the slopes which was ascribed to difficulties in 

modelling shear wave interaction with the sloping ground surface.  It has 

additionally been shown that Eurocode 8 recommendations for topographic 

amplification effects may not be period independent and may result in under-

predictions of the dynamic response of supported infrastructure. 

7- In developing the soil-specific model used in this study, a complete 

characterisation has been made for the HST95 sand used in physical modelling 

experiments at the University of Dundee over a wide range of relative density; 

the constitutive parameters so derived will be useful in numerically simulating 

future static and dynamic geotechnical problems.  

8.4 Centrifuge modelling of pile-reinforced slopes  

In Chapter six, the effect of a discretely spaced row of piles on seismic slope 

performance was evaluated by testing fourteen centrifuge models of pile-reinforced 
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slopes.  The 1:2 dry sandy slope used in the unreinforced slopes was subject to same 

ground motions recorded in the 1999 Chi-Chi earthquake, with the pile type and pile 

spacing being varied between tests.  Three different pile types were investigated, 

including a conventional ‘elastic’ model, a ‘designed’ model reinforced concrete (RC) 

section with a moment capacity larger than the seismically induced bending moments, 

and a ‘weak’ model RC section consisting of nominal longitudinal reinforcement, 

which was weaker than the induced moments.  The tests described represent the first 

use of a novel technique of modelling reinforced concrete at very reduced scales 

(1:50) for the study of seismic soil-structure interaction problems within a 

geotechnical centrifuge.  The following conclusions have been drawn: 

1. As elastic piles are spaced more closely, they have increasingly significant 

effects in reducing settlement and angular distortion at the crest and in 

reducing the magnitude of dynamic ground motions at the crest.  Existing 

recommendations for the maximum spacing of the piles to make use of 

arching effects appeared to correlate with optimal reinforcement of the slope 

observed in the tests, and it is suggested that these could be used in 

determining pile layouts.  Reductions of up to 35% in permanent movements 

and 20% in accelerations were recorded at S/B = 3.5.   

2. Tests on more realistic piles using model reinforced concrete demonstrated 

that even if the piles are designed with a sufficient moment capacity to remain 

elastic, non-linearity within the cyclic response and fatigue effects combine to 

reduce the beneficial effects of the soil-pile interaction, particularly as the 

induced moments become close to the residual capacity of the section.  

However, reductions of 30% in permanent movements and 15% in 

accelerations were still observed at the optimal spacing (S/B = 3.5). 

3. From the induced bending moments measured in the elastic piles and the 

measured slope settlements it is shown that elastic soil-pile interaction is 

replicated accurately by the model RC piles, so long as the induced bending 

moments are below the moment capacity of the model RC section.  It is 

therefore verified that the elastic behaviour of the model concrete translates to 

prototype scale. 

4. It has been observed that realistic bending properties can be achieved in the 

model RC piles and that the SSI within the boundary value problem 
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considered is largely indistinguishable from one using purely elastic elements. 

This suggests that the model RC will be particularly useful in studying 

(dynamic) soil structure interaction problems, replicating correct pre-failure 

behaviour, but also being able to sustain damage at realistic loads (bending 

moment capacity) and show representative post-failure behaviour (ductility). 

5. If the pile is not structurally detailed to resist the seismically induced bending 

moments, the piles will break, though the ductile yielding of the piles will still 

impart some additional resistance to the slope in subsequent strong shaking 

(e.g. aftershocks).  

8.5 Improved Newmark procedure - pile-reinforced slopes 

The improved Newmark procedure presented in Chapter 4 was modified in chapter 7 

(without strain softening behaviour and by incorporating strain-dependent pile 

resistance) to allow prediction of permanent seismic deformation in piled slopes. Only 

slope hardening (re-grading) effects were taken into account in this extension to the 

model. It was investigated how piles and pile spacing affect slope deformation, depth 

of slip surface and induced moment. The main important findings are presented 

below: 

1- The seismic permanent deformation of the slopes was strongly influenced by 

the mobilisation of the pile resistance due to relative soil-pile movement. The 

displacement was observed to reduce clearly with decrease in pile spacing. 

2- The pile resistance mobilised its peak resistance within a very short time when 

the slope started to slip reaching the ultimate resistance at soil lateral 

displacement of approximately 0.025D (here B) and this was identical with 

what was observed by others (e.g. Bransby et al. 1999).     

3- In contrast to the solution for unreinforced slopes presented in Chapter four, 

the depth of the slip surface played an important role in variation of both 

bending moment and the permanent deformation (seismic displacement) of the 

pile-reinforced slope. 

4- The depth of the slip surface can be determined by DLO technique; this was 

approximately 1.5m below the ground surface for all pile spacing values 
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(except S/B=14). Very similar values were determined based on back-

calculating the centrifuge test results using the analytical solution. 

5- This solution, even if has not given a very good prediction of distribution of 

the bending moment along the pile (the critical length of the pile appeared to 

be longer than originally predicted), gives excellent results in terms of the 

seismic permanent deformations at the crest and the magnitude of the 

maximum bending moment within the piles.  

6- The calculated displacements were over predicted at pile spacing S/B=14 

whereas they were under predicted as the pile spacing decreases. The best 

prediction was observed for the minimum pile spacing (i.e. S/B=3.5).    

8.5 Suggestions for further research 

Based on the conclusions given in Sections 8.2 – 8.4, the modified procedures 

developed in this thesis are recommended for use, particularly in the preliminary 

design stages.  The suggested further research work is outlined below: 

1. Further study is required including constructed infrastructure at and near the 

crest of the slope to investigate how this may influence the overall failure 

mechanisms, site effects and dynamic behaviour.  

2. More FEM (e.g. using Plaxis 3D and the same constitutive model parameters 

presented in the 2D modelling in chapter four) could be used to model the pile 

reinforced slopes modelled in the centrifuge. This would provide a tool for 

detailed design to complement that developed for unreinforced slopes.  It 

could then be used to investigate in further detail how pile spacing affects 

slope and pile performance during earthquake events. 

3. Different positions of stabilising piles within the slope could be tested to 

understand what is the best position for piles to be installed to give optimal 

reinforcement (e.g. piles installed near the toe of the slope or near the crest of 

the slope).  Both centrifuge and 3D finite element modelling are 

recommended. 
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4. Different soil types, slope angles and slope heights should be considered, 

particularly ground water flow and consequent pore pressure effects besides 

cases where failure may be rotational, more than translational. 

5. The lateral forces acting on piles due to soil movements is recommended to be 

measured by using the earth pressure sensors (fixed along the upslope face of 

the pile) besides the instrumented piles to better understand the soil-pile 

interaction .   
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