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Abstract 

 

 

There are six known secretion systems in Gram negative bacteria, referred to as Type 1 to Type 6 

respectively, which are dedicated to moving substrate across the outer membrane. Secretion 

systems are broadly separated into those that move their substrate across the cell envelope in a 

single translocation event (one-step systems), and those that are dependent on the Sec or Tat 

machineries for export to the periplasm (two-step systems). Serratia marcescens is an important 

opportunistic human pathogen and has gathered a lot of interest due to its repertoire of secreted 

proteins. These include the haem-scavenging protein HasA, which is secreted by a Type 1 secretion 

system, and the cytotoxic haemolysin ShlA, which is secreted as part of a two-partner Type 5 

secretion system. Serratia marcescens also encodes a Type 6 secretion system, which is known to 

translocate at least six effector molecules directly into other bacterial target cells.  

Serratia marcescens is a model organism in terms of its ability to degrade the quite intractable 

polymer chitin, for which it produces three chitinase enzymes ChiA, ChiB, ChiC and a chitin-binding 

protein Cbp21, which hydrolyse the β-1,4 link in the chitin chain and promote binding of chitinase to 

the chitin substrate respectively. These chitinolytic enzymes are utilised by S. marcescens for both 

basic physiology and also in pathogenesis. In this work, genetic, biochemical and proteomic 

approaches identified, for the first time, genes that are essential for the secretion of all three 

chitinases as well as Cbp21. A genetic screen identified genes encoding a holin‐like membrane 

protein (ChiW) and a putative L‐alanyl‐D‐glutamate endopeptidase (ChiX). Subsequent quantitative 

proteomics experiments and biochemical analyses established that ChiW and ChiX were required for 

secretion of the entire chitinolytic machinery. Chitinase secretion was observed to be blocked at a 

late stage in the mutant strains as normally secreted enzymes were found to accumulate in the 

periplasm, thus implicating ChiW and ChiX in a novel outer membrane protein translocation process. 

It is proposed that the bacterial genome‐encoded holin‐like protein and endopeptidase identified 

represent a putative secretion system utilised by Gram‐negative bacteria. In addition to this, genes 

encoding the chitinolytic machinery and the putative secretion apparatus were shown to be 

bimodally regulated and co-ordinately expressed.    
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1.1 At the interface: the cell envelope of Gram negative bacteria 

 

In order to survive and flourish cellular life has to maintain the integrity of the cell as a relatively 

enclosed site for basic biochemical and metabolic reactions, and this form is conserved by a semi-

permeable lipid membrane. Many core features of the biosphere (such as the oxygen we breathe) is 

determined by the way bacteria interact with and actively change their environment: one key 

process by which bacteria adapt to their environment is via the transport of effector molecules, 

whereby proteins, or peptides or nucleic acids are actively transported to different cellular, or 

extracellular, locations. Gram negative bacteria are characterised by their distinctive cell envelope, 

which is ~20-40 nm in diameter and consists of an asymmetric membrane bilayer: there is an inner 

cytoplasmic membrane composed of phospholipid, and an outer membrane that also consists of 

phospholipid, but with bound outward facing lipopolysaccharide (LPS) (FIGURE 1.1). There are several 

forms of phospholipid found in Gram negative cell membranes, these are phosphatidylethanolamine 

(PE), which together with phosphatidylglycerol (PG) constitute most of the lipids found in the inner 

membrane, as well as phosphatidyl serine and cardiolipin (Silhavy et al., 2010). Situated between the 

two membranes is the periplasm, which contains a loose network of peptidoglycan. Peptidoglycan 

consists of an interlocking mesh of β-1,4 linked GlcNAc-MurNAc (N-acetylglucosamine and N-

acetylmuramic acid) sugar residues, which are further crosslinked by pentapeptide chains, this forms 

the basic cell wall structure and gives the bacterial cell a durable form (FIGURE 1.1).  

In addition to providing structural stability the cell envelope is also studded with integral membrane 

proteins and different sugar molecules that provide each bacterial strain with important 

distinguishing characteristics. One such key feature is the presence of a crystalline lattice of proteins 

that forms the S-layer, consisting of oligosaccharides and glycoproteins (Sara and Sleytr, 2000), as 

well as long appendages such as fimbriae that facilitate adhesion to surfaces (Connell et al., 1996). 

The outer and inner membranes both contain integral membrane proteins, but these differ 

significantly in their structure: the inner cytoplasmic membrane contains proteins that exhibit α-

helical structure consisting of hydrophobic non-polar transmembrane domains, whereas the outer 

membrane proteins usually consist of monomeric, dimeric and trimeric β-barrels (Berven et al., 

2004). These integral membrane proteins usually serve to mediate nutrient intake and ion transport. 

Gram negative bacteria also contain outer membrane lipoproteins, including Lpp, which interacts 

with the peptidoglycan cell wall enhancing the overall integrity of the cell envelope (Chang et al., 

2012). 
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Figure 1.1 The Gram negative cell envelope consists of an asymmetric membrane bilayer. (A) Basic cartoon 
representation of a bacterial cell. (B) A ‘close up’ of the Gram negative cell envelope. The inner membrane is 
composed of a phospholipid bilayer (shown as dark grey/ red circles) and the outer membrane consists of 
phospholipid with an embedded, outward facing layer of lipopolysaccharide (LPS, represented as blue lines). 
Between these two membranes is the periplasmic space, which contains the cell wall composed of 
peptidoglycan (shown as cross linked black lines). (C) Peptidoglycan is composed of β-1,4 linked chains of 
amino sugars N-acetylglucosamine (GlcNAc or NAG) and N-acetylmuramic acid (MurNAc or NAM), these chains 
are connected by pentapeptide bonds coming off the MurNAc molecule, connecting to the amino group of the 
GlcNAc molecule causing the interlocking residues to stack in layers to form peptidoglycan. (D) 
Lipopolysaccharide (LPS) is embedded in the Gram negative outer membrane, facing outward, and consists of 
O-antigen, core residues and lipid A tail. O-antigen triggers an innate immune response in animals.  

 

 

The secreted proteome is an important distinguishing feature of any given bacterium since effector 

molecules, whether targeted to another cell or to the extracellular environment, are the means by 

which bacteria facilitate change in their environment. In terms of protein effector molecules 
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produced by Gram negative bacteria, a key distinction is whether proteins are targeted to the 

periplasm, defined as protein export, or whether they are targeted to the extracellular environment, 

which requires a dedicated machinery to facilitate movement across the entire cell envelope, which 

is defined as protein secretion.  
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1.2 Protein Export via the Sec Pathway 

 

In bacteria most extracytoplasmic proteins are targeted to the Sec machinery for export. Targeting to 

the Sec pathway involves the synthesis of a precursor polypeptide containing an N-terminal signal 

sequence, which itself is essential for translocation of the passenger protein across the inner 

membrane (von Heijne, 1990). N-terminal signal peptides can vary in size between 5-30 residues, but 

always consist of three domains: a positively charged N-region (1-5 residues), a central hydrophobic 

region (7-15 residues), and a polar region at the carboxy terminal end (the C-region, usually 3-7 

residues), which is recognised and cleaved by a signal peptidase after translocation (von Heijne, 

1990).  

The Sec apparatus consists of the inner membrane heterotrimeric translocase SecYEG, the ATPase 

SecA, the ancillary proteins SecDF and the chaperone SecB. The Sec precursor is captured at the 

ribosome by the SecB chaperone and transported to the SecA motor ATPase (Lycklama and Driessen, 

2012). Currently the most refined model of the Sec mechanism is the ‘reciprocating piston model’ 

(Kusters and Driessen, 2011). In this model, the unfolded SecB-bound precursor is delivered to a SecA 

dimer, which subsequently binds to SecYEG (Mao et al., 2009). The binding of the preprotein to SecA 

initiates a conformational change in SecA, which causes SecB to dissociate from SecA, and also 

triggers the ATPase activity, whereupon it inserts a loop like structure containing the N-terminal 

signal motif and the ‘early mature domain’ of the preprotein into the SecYEG channel (Engelman and 

Steitz, 1981; Joly and Wickner, 1993; Lycklama and Driessen, 2012). Additional binding of ATP to SecA 

pushes the substrate through the SecYEG channel in further sequential translocation steps 

(Economou and Wickner, 1994). In addition to SecA, the SecDF complex facilitates a proton-motive-

force-assisted translocation of the substrate through the channel from the periplasmic side of the 

membrane – hence SecA provides a pushing force from the cytoplasm, and SecDF a pulling force 

from the periplasm. Upon arrival in the periplasm the exported protein folds into its mature 

functional state (Lycklama and Driessen, 2012). 
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Figure 1.2 Schematic representation of the general secretion (Sec) pathway in Gram negative bacteria. After 
elongation the chaperone SecB (yellow) binds the unfolded preprotein and transports it to dimeric SecA 
(maroon), which subsequently binds to the SecYEG channel complex (green). The binding of ATP to SecA 
initiates a conformational change in SecA, at which point SecB dissociates and the preprotein is inserted into 
the SecYEG pore and proceeds in an ATP-driven stepwise manner aided by the ancillary SecDF complex (marine 
blue), which pulls the preprotein through from the periplasmic milieu. During this process the Sec signal 
peptide is recognised and cleaved by a signal peptidase. Once released to the periplasm the protein undergoes 
folding.  Adapted from (Lycklama and Driessen, 2012). 

 

 

 

1.2.1 Protein folding and modification in the periplasm 

 

For most Sec-exported proteins there is a careful process of quality control to ensure that 

extracytoplasmic proteins are correctly folded; these substrates are folded and assembled in the 

periplasm – a process that requires the action of various proteases, folding catalysts and chaperones 

(Miot and Betton, 2004). Two key folding catalysts are protein disulphide isomerases, Dsb proteins, 

and the peptidyl-prolyl isomerases, PPIase, and these proteins facilitate disulphide bond formation 

and isomerisation of peptidyl bonds respectively.  
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The generation of disulphide bridges for the stabilisation of secreted proteins requires an oxidised 

environment, and therefore presents bacteria with a unique challenge: the bacterial cytoplasm is 

kept in a reduced state, hence disulphide bond formation in this compartment is not normally 

possible, and for this reason bacteria will frequently target such proteins to the periplasm, which 

provides a more suitable (oxidising) environment for effective protein folding (de Marco, 2009). 

Disulphide bond formation is essential for the proper assembly of most Sec-exported proteins, and is 

mediated by Dsb oxidoreductase electron transfer pathways (Kadokura et al., 2003). DsbA and DsbB 

introduce disulphide bonds into proteins, whereas DsbC and DsbD mediate a disulphide-isomerizing 

reductive pathway (Sato and Inaba, 2012). The process involves membrane-bound DsbB oxidation of 

DsbA, which in turn catalyses the oxidation of adjacent cysteines in the folding protein. The resultant 

electrons are relayed to the quinone pool (Bader et al., 1999; Miot and Betton, 2004). Any 

production of non-native disulphide bonds made between incorrect pairs of cysteine residues in the 

folded protein are subsequently rearranged by periplasmic thiol isomerases, DsbC and DsbG (Miot 

and Betton, 2004).  

Such examples serve to illustrate the importance of protein folding and assembly in the appropriate 

physiological environment, and that the primary amino acid sequence of each protein contains 

sufficient information to ensure it is processed and targeted correctly.  
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1.3 Protein export via the Tat Pathway 

 

An important mechanism dedicated to the export of proteins across the inner membrane is the twin-

arginine translocation pathway, or Tat system. The Tat system is distinctive for its capacity to 

translocate fully folded proteins across the cytoplasmic membrane: for this the Tat substrates 

contain a distinctive and highly conserved twin-arginine amino acid motif within their N-terminal 

signal peptides, defined as SRRXFLK, that distinguishes it from Sec-targeted proteins (Berks et al., 

2000). In addition to the consecutive arginine residues, the hydrophobicity of the Tat signal peptide is 

considerably less than Sec signal sequences and the C-region of Tat signals contains more basic 

residues than is found in Sec signal peptides (Cristobal et al., 1999). Another remarkable feature of 

the Tat system is that it can transport proteins that do not possess any recognisable signal sequence: 

this is achieved by a hitch-hiking mechanism, whereby one protein forms a complex with another 

bearing a signal peptide in order to co-translocate to the periplasm (Rodrigue et al., 1999).  

In bacteria, the number of substrates exported via the Tat pathway varies dramatically between 

different organisms. For example, some Gram positive Firmicutes, such as Bacillus subtilis and 

Staphylococcus aureus possess few Tat substrates (Dilks et al., 2003; Palmer and Berks, 2012), 

whereas other Gram positives such as Streptomyces coelicolor export up to one-sixth of its total 

secretome via the Tat apparatus (Widdick et al., 2006). Gram negative enteric bacteria, such as 

Escherichia coli and Salmonella sp., encode approximately 20-30 Tat-targeted substrates in their 

genomes (Berks et al., 2000).  

At present, three reasons have been established as to why some proteins need to be exported in a 

fully folded conformation: the insertion of complex cofactors; the transport of hetero-oligomeric 

complexes; or the need to avoid competing metal ions (Palmer and Berks, 2012). In the case of 

cofactor containing enzymes, many cofactors are labile, such as iron-sulphur clusters, so must be 

assembled within a stable protein scaffold prior to export (Berks et al., 2003). A good example of a 

protein that requires folding in the cytoplasm to avoid incorrect metal ions being inserted in to the 

active site is provided by the Mn2+-containing MncA protein, produced by certain Synechocystis sp., 

which must first bind manganese in the absence of competing copper or zinc ions that are abundant 

in the periplasm (Tottey et al., 2008).  

The Tat system consists of three components, TatA, TatB and TatC, which together form a complex 

that mediates the passage of substrates through the TatA component (FIGURE 1.3). The best 

characterised Tat system is in E. coli, where Tat export is initiated by the substrate signal peptide 

binding to the TatBC complex – TatC contains a binding site that recognises the twin-arginine motif 
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(Cline and Mori, 2001). Once bound, TatBC undergoes a conformational change, which triggers TatA 

to polymerise and associate with TatBC (Mori and Cline, 2002). TatA has been shown to form ~4 

subunit oligomers in the absence of TatBC whereas it forms a 25 subunit complex in the presence of 

TatBC (Leake et al., 2008), which provides further evidence that TatABC together form the 

translocation system (FIGURE 1.3). Some models suggest that the Tat substrate is in contact with the 

whole TatABC complex during transport (Mori and Cline, 2002), whereas others suggest that TatBC 

passes the substrate on to TatA for transport (Alami et al., 2003). After formation of TatABC and 

transport of substrate to the periplasm, the Tat signal peptide is cleaved by a signal peptidase (Luke 

et al., 2009) and the complex disassembles (Mori and Cline, 2002) (FIGURE 1.3).. 

 

 

Figure 1.3 Schematic representation of the Tat translocation cycle in E. coli. (A) The Tat substrate is folded in the 
cytoplasm ensuring correct assembly and cofactor/ion insertion, and is targeted to the TatBC complex. TatC 
specifically recognises the twin-arginine (RR) motif of the Tat substrate. At this stage TatA is present in the 
membrane as dispersed protomers. TatB and TatC are composed of multiple copies of TatB and C, but are 
represented here as single proteins for clarity. (B) Binding of the Tat substrate causes TatBC to undergo a 
conformational change that, in turn, causes TatA to polymerise and associate with TatBC to form the 
translocation complex TatABC and the substrate is in contact with each of the three components. (C) The Tat 
substrate is transported across the IM through the TatA component. (D) The signal sequence is cleaved by a 
signal peptidase.  Adapted from (Palmer and Berks, 2012). 
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1.4 Protein Secretion by Gram Negative Bacteria 

 

In order for effector molecules to be externalised across the cell envelope to the extracellular 

environment, where they carry out their functions, most substrates will require active secretion. In 

this work, a secretion system in Gram negative bacteria is defined as any mechanism that is 

dedicated to the selective movement of a substrate across the outer membrane that can also 

maintain the integrity of the envelope without non-specific leakage of cellular or periplasmic 

contents. In Gram negative bacteria six different secretion systems have been identified: these are 

broadly defined as systems that involve a ‘one-step’ or a ‘two-step’ translocation event. One step 

machineries can act in conjunction with inner membrane components to form a contiguous channel 

that spans the bilayer and moves substrate across the envelope in a single translocation event. 

Conversely the two-step systems moves substrate across the inner and outer membranes in two 

separate events and these systems are dependent on the Sec or Tat pathways for export to the 

periplasm, before the dedicated secretion apparatus moves the substrate across the outer 

membrane. 

 

1.4.1 Type 1 Secretion 

 

The Type 1 secretion system (T1SS) is ubiquitous in bacteria and secretes an eclectic set of proteins 

including adenylate cyclases, pore forming hemolysins (such as HlyA), lipases, proteases and the 

extracellular haem scavenging protein HasA (Delepelaire, 2004). The Type 1 secretion system consists 

of a tripartite structure that forms a contiguous channel across the cell envelope: this structure forms 

transiently upon binding of the substrate to the inner membrane ABC (ATP binding cassette) 

transporter, after which the substrate passes through a periplasmic adaptor protein (membrane 

fusion protein MFP), and finally an outer membrane channel of the TolC family (Delepelaire, 2004), 

which is exemplified by the E. coli HlyA Type 1 system composed of HlyB, HlyD and TolC components. 

One general characteristic of Type 1 substrates is the presence of an essential non-cleavable C-

terminal signal sequence, which unlike the Sec-signal peptide lacks any consensus motif and consists 

of an alpha-helical secondary structure that interacts with the ABC protein at the cytoplasmic 

membrane (Zhang et al., 1995).  

The Type 1 secretion components together form a tunnel-like structure that translocates the 

substrate directly from the cytoplasm to the extracellular environment, as exemplified by the HlyA 

system in E. coli (Holland et al., 2005). The inner membrane ABC transporter generates the driving 
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force for protein translocation from ATP hydrolysis, whereas the membrane fusion protein serves to 

join the ABC protein to the periplasmic domain of the outer membrane TolC pore-forming protein 

(Holland et al., 2005). In terms of substrate selection, the recognition event between the Type 1 

substrate and the ABC component is highly exclusive; interestingly the MFP component is also 

thought to act in substrate recognition, mediated by its N-terminal cytoplasmic domain, since 

deletion of this was shown to abolish HlyA secretion completely (Pimenta et al., 1999; Kanonenberg 

et al., 2013). By contrast the outer membrane TolC protein exhibits considerable promiscuity: in 

addition to facilitating the movement of Type 1 substrate (such as HlyA) across the outer membrane, 

TolC has also been shown to mediate the passage of a number of other substrates by interacting with 

different inner membrane proteins, which is thought to aid in the extrusion of cytotoxic compounds 

and drug resistance (Kanonenberg et al., 2013). The crucial point is that Type 1 secretion involves the 

conjunction of all three ABC/ MFP/ TolC components, and therefore that these systems do not exist 

in constant association, static in the cell envelope; ABC/MFP are colocalised, but  their association 

with TolC to form the functional Type 1 complex is triggered by the ABC/MFP substrate recognition 

event (Balakrishnan et al., 2001). 

 

Figure 1.4 The Type1 secretion system exhibits a tripartite structure consisting of ABC/ MFP/ TolC proteins. 
The complex association of ABC/MFP with TolC is known to be triggered by the ABC/MFP substrate recognition, 
upon which the substrate is moved from the cytoplasm to the extracellular environment in a one step process. 
EM, extracellular milieu; OM, outer membrane; Peri, periplasm; IM, inner membrane; Cyto, cytoplasm. 
Adapted from (Kanonenberg et al., 2013). 
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1.4.2 Type 2 Secretion 

 

 

The Type 2 secretion system (T2SS), or general secretory pathway (GSP), involves a two-step process 

whereby the substrate is exported to the periplasm via the Sec or Tat machineries (Voulhoux et al., 

2001; de Keyzer et al., 2003); after cleavage of the signal peptide by the leader peptidase, the 

periplasmic mature exoprotein is pushed through the outer membrane “secretin” component (GspD) 

by the formation of a pseudopilus structure comprised of a helical assembly of pseudopilins (GspG-

K), which is hypothesised to push the substrate through in a piston fashion, driven by a cytoplasmic 

traffic ATPase, GspE (FIGURE 1.5) (Filloux, 2004).  The Type 2 system, or main terminal branch of the 

GSP, consists of 12-15 different proteins named GspA-O and GspS, which are usually encoded within 

a single operon (Korotkov et al., 2012). The Type 2 system is homologous to archael flagella, the 

transformation system of Gram positive bacteria, and to the type IV pilus system: indeed, in 

Pseudomonas aeruginosa both Type 2 pseudopilins and type IV pilins are generated by the same 

prepilin peptidase, GspO/ PilD (Hahn, 1997; Filloux, 2004; Korotkov et al., 2012).    

 

 

Figure 1.5 The two-step Type 2 secretion system of Gram negative bacteria facilitates movement of substrate 
across the outer membrane. T2SS consists of 12-15 core proteins: core features are cytoplasmic ATPase GspE, 
pseudopilus GspG-K, which is hypothesised to push substrate out through the outer membrane secretin (GspD) 
component in a piston fashion. T2SS substrates are dependent on Sec or Tat for export to the periplasm. 
Adapted from (Korotkov et al., 2012). 
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Type 2 secretion is very common in Gram negative bacteria. It is present in both pathogenic bacteria, 

such as Vibrio cholerae, E. coli, Pseudomonas aeruginosa, Klebsiella spp., Legionella pneumophila and 

Yersinia enterocolitica, as well as non-pathogenic organisms such as Shewanella oneidensis (Korotkov 

et al., 2012). Each of these organisms may contain more than one copy of T2SS, and use these to 

secrete a diverse array of substrates, such as enterotoxin and cholera toxin in enterotoxic E. coli and 

V. cholera respectively (Mudrak and Kuehn, 2010), or more benignly, to secrete cell surface exposed 

lipoproteins in S. oneidensis in order to reduce solid metal oxides (Shi et al., 2008). 

 

 

1.4.3 Type 3 Secretion 

 

The Type 3 ‘injectisome’ (T3SS) was discovered in Yersinia pestis and was the first secretion system to 

demonstrate active translocation of effector molecules from the bacterial cytoplasm directly into the 

host cell, as opposed to being secreted into the external medium (Cornelis and Van Gijsegem, 2000). 

The Type 3 system forms a needle/ syringe like structure that bears homology to the bacterial flagella 

basal body (Saier, 2004). Type 3 systems are widely dispersed amongst Gram negative bacteria (e.g it 

is encoded by Pathogenicity Islands in the human pathogen Salmonella and also by plant pathogens / 

symbionts such Rhizobium leguminosarum (Cornelis, 2006).  

Pathogenic Y. pestis, Y. pseudotuberculosis and Y. enterocolitica encode a T3SS as part of a 70 kb 

plasmid pCD1 (Hu et al., 1998). In the absence of the T3SS, Y. pestis is rendered completely avirulent, 

even when introduced into the bloodstream (Viboud and Bliska, 2005). The effector molecules of the 

Yersinia T3SS are collectively referred to as Yops, many of which have specific chaperones (such as 

SycD, SycE, SycH) that mediate effector delivery to their target site (Wattiau et al., 1994; Shao, 2008), 

and these effectors have been shown to target proinflammatory signalling pathways as well as the 

host cytoskeleton (Pan et al., 2009). The injectisome is a remarkably complex secretion system: 

besides the ~20 conserved core features, there are an additional 39 predicted other proteins that 

facilitate regulation, secretion and translocation of the various core components (Pan et al., 2009). 

Key features of the injectisome complex include the ATPase YscN (Blaylock et al., 2006), which 

provides the energy source to drive the Yop effector molecules through the hollow needle channel 

composed of YscF proteins (Edqvist et al., 2007). The translocon consists of YopB and YopD proteins, 

in addition to LcrV at the tip of the needle, which together form a pore in the host cell membrane 

(FIGURE 1.6) (Pan et al., 2009).   
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Figure 1.6 The Type 3 injectisome delivers effector molecules directly from the bacterial cytoplasm into 
target cells. Cartoon representation of the Yersinia pestis T3SS, which is essential for virulence, and delivers 
Yop effector molecules through the hollow YscF channel, across the host cell membrane. Energy for the 
translocation of effector molecules is derived from YscN ATP hydrolysis. Adapted from (Dewoody et al., 2013). 

 

 

1.4.4 Type 4 Secretion 

 

The Type 4 system (T4SS) bears homology to the bacterial conjugation system and translocates 

effector molecules directly in to host cells in one step (Juhas et al., 2008). The Type 4 system is 

exemplified by the plant pathogen Agrobacterium tumefaciens Vir machinery, which translocates T-

DNA and nucleoproteins encoded by its Ti plasmid, directly into its plant host, which thereby induces 

the formation of crown galls (Christie, 2004). Not all Type 4 systems follow this pattern however: the 

pertussis toxin is Sec-dependent and is a notable exception to the T4 one-step dogma (Cascales and 

Christie, 2003). The human gastric pathogen Helicobacter pylori translocates CagA virulence factors 

via the Type 4 system in to gut epithelial cells (Backert and Selbach, 2008), which is in part 

responsible for the formation of peptic ulcers. 

In A. tumefaciens the T-DNA effector is encoded on the Ti-plasmid, but this plasmid also encodes a 

separate region, the virulence vir region that encodes the membrane spanning Type 4 apparatus 
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(Aguilar et al., 2010). In addition to the secretion of single stranded T-DNA, there are several 

nucleoproteins, VirD2, VirE2, VirE3 and VirF that bear a positively charged C-terminal transport 

signal, and are transferred into the plant host by this Type 4 system (Vergunst et al., 2005). The A. 

tumefaciens T4SS consists of a double–chambered channel, composed of VirB7, VirB9 and VirB10, 

which spans the entire cell envelope to form the core of the Type 4 machinery (Fronzes et al., 2009). 

The pilus is composed of VirB2 major component (Lai and Kado, 1998), which forms the delivery 

channel, and VirB5 minor component, which localises at the tip (Aly and Baron, 2007; Aguilar et al., 

2010). Assembly of the Type 4 machinery is facilitated by the muramidase VirB1, which in addition to 

creating a furrow in the peptidoglycan for Type 4 assembly (Zahrl et al., 2005), is also secreted to the 

cell surface and facilitates pilus formation (Zupan et al., 2007). Several features localised at the inner 

membrane, including VirB4, VirB11 and VirD4, of the A. tumefaciens T4SS are thought to provide ATP 

driven power to move substrate through the system (Atmakuri et al., 2004).  

 

 

Figure 1.7 The Type 4 secretion system resembles the bacterial conjugation machinery. A. tumefaciens uses a 
T4SS to deliver oncogenic T-DNA and nucleoprotein effector molecules directly into plant host cells, which 
induces crown gall formation. Adapted from (Cascales and Christie, 2003). 
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1.4.5 Type 5 Secretion 

 

Type 5 secretion is a two-step mechanism whereby substrates are dependent on the Sec machinery 

for export to the periplasm, after which they cross the outer membrane facilitated by a β-barrel; 

transport across the outer membrane takes place in the absence of either ATP hydrolysis or a proton 

gradient, for this reason Type 5 secretion is also referred to as the ‘autotransporter’ system (Leo et 

al., 2012). Currently there are five recognised subclasses of Type 5 secretion systems, which are 

defined by their outer trans-membrane domain, denoted Va, Vb, Vc, Vd and Ve respectively (Leo et 

al., 2012). An interesting feature of autotransporter substrates is their relative lack of cysteine 

residues, since these substrates require folding in the extracellular environment, not in the 

periplasm; indeed the presence of disulphide bonds is known to have an inhibitory effect on Type 5 

secretion (Jose et al., 1996). 

The ‘classical’ autotransporter Va proteins form a β-barrel at their C-terminus which acts as a channel 

for the N-terminal passenger domain, released by proteolytic cleavage (Henderson et al., 2004). This 

subclass of Type 5 proteins include some important virulence factors, most notably the adhesin 

Pertactin produced by Bordetella pertussis (Inatsuka et al., 2010), the adhesin AIDA-I produced by E. 

coli (Wells et al., 2010), and another adhesin, IgA, produced by Neisseria meningitidis (Virji, 2009). 

Type Va substrates encode an extended Sec signal peptide, which keeps the substrate polypeptide 

tethered to the translocon during a quality control process involving Skp, FkpA, SurA, and DegP, 

which ensure there is no premature folding before outer membrane insertion (Ruiz-Perez et al., 

2009). The signal sequence is cleaved once C-terminal POTRA domain is recognised by BamA, which 

inserts the β-barrel domain into the outer membrane (Knowles et al., 2009). The linker region of the 

passenger domain then forms a hairpin in the β-barrel pore, which is subsequently pulled through 

the pore and released to the extracellular milieu – the energy for this process is thought to derive 

from the secreted protein being folded sequentially as it leaves the outer membrane (Leo et al., 

2012). Finally the linker region undergoes cleavage, which in many cases is autocatalytic, releasing 

the passenger domain to the environment, and the remaining α-helical linker plugs the β-barrel pore 

(FIGURE 1.8) (Leo et al., 2012).  
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Figure 1.8 The classical Va autotransporter consists of an N-terminal passenger domain and a C-terminal β-
barrel domain. After export via the Sec translocon, the POTRA domain at the C-terminus is recognised by 
BamA, which inserts the β-barrel into the OM, the passenger domain is then fed through sequentially and folds 
outside the cell, eventually the N-terminal linker region is cleaved, releasing the passenger domain and 
plugging the remaining β-barrel pore. Adapted from (Henderson et al., 2004). 

 

  

In contrast to the classical Va autotransporters, the two-partner Vb system contains a separate pore 

channel (TpsB) and passenger domain (TpsA), and these are usually organised into operons where 

the pore channel encoding gene precedes the passenger encoding gene (Henderson et al., 2004). The 

TpsA and TpsB polypeptides are threaded through the Sec translocon separately: TpsB forms a β-

barrel in the outer membrane, which contains two periplasmic POTRA domains that recognise the N-

terminal ~300 residue two-partner secretion TPS domain of the passenger protein (Delattre et al., 

2011). This subclass of Type 5 substrates include heavy weight adhesins, HMW1 and HMW2, 

produced by Haemophilus influenza (St Geme and Yeo, 2009) and haemagglutinin FHA produced by 

B. pertussis (Guedin et al., 2000). 

In contrast to the Va and Vb Type 5 systems, the Vc autotransporters are not cleaved after their 

passage across the outer membrane, and instead remain cell-associated, covalently attached to the 

membrane anchor, facing outward as far as 250 nm (Linke et al., 2006) – unsurprisingly, this subclass 

consist of some important adhesins, such as YadA of Yersinia entercolitica, which is known to bind 

collagen of its target host cells (Hoiczyk et al., 2000). The Vc Type 5 system externalises three 

polypeptide chains, as opposed to one, and for this reason is often referred to as ‘trimeric 

autotransport’ (Linke et al., 2006). Substrates of the Vc system, like Va and Vb, also encode extended 

signal peptides and are kept in an unfolded ‘translocation-competent’ conformation until they are 

secreted across the outer membrane, and are also dependent on the Bam complex for insertion of 
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the membrane anchor region into the outer membrane (Linke et al., 2006). The recently described 

Vd Type 5 ‘fused two-partner system’ is exemplified by the lipolytic patatin-like protein PlpD of 

Pseudomonas aeruginosa (Salacha et al., 2010): what distinguishes this subclass of Type 5 system is 

that the passenger domain is joined to the β-barrel domain via a POTRA domain, which has led to the 

proposition that this system resembles a fusion of the Vb two-partner system, but with quite 

different passenger substrates (Salacha et al., 2010). The Vd systems are also dependent on BamA for 

insertion into the outer membrane and also for initiation of transport (Ieva et al., 2011). The most 

recently discovered Ve subclass are very similar to the classical Va mode of Type 5 secretion, except 

that the C- and N-terminus of the passenger domain is reversed for these substrates, whereby the α-

helical hairpin loop first enters the β-barrel and draws the passenger polypeptide through from its N-

terminus, as opposed to the C-terminus in Va secretion (Leo et al., 2012). Ve Type 5 substrates 

include some important virulence factors such as Intimin and Invasin produced by E. coli and 

enteropathogenic Yersinia spp. respectively (Leo et al., 2012).  

 

 

1.4.6 Type 6 Secretion 

 

Type 6 secretion systems (T6SS) are composed of 13 core components that together form a 

membrane spanning needle-like structure that resembles an inverted bacteriophage tail-spike and, 

like the Type 3 system, delivers virulence effector molecules into target cells (Silverman et al., 2012). 

Interestingly, Type 6 systems have been shown to target both eukaryotic and bacterial host cells, and 

furthermore different Type 6 systems within a given strain can be used for different purposes and 

exhibit quite different patterns of regulation (Jani and Cotter, 2010). 

 The current model of Type 6 secretion involves a core ATPase motor, TssH in the standard 

nomenclature. The TssD proteins form a hexameric ring that is hypothesized to form a conduit that 

surrounds, and is capped by, the TssI proteins, and these are capable of puncturing the outer 

membrane of the target cell to deliver effector molecules (Silverman et al., 2012). The proteins TssB 

and TssC form a sheath around TssD and TssI at the inner membrane that forms a baseplate 

structure for the Type 6 apparatus (Silverman et al., 2012). It is thought that close contact with 

neighbouring cells causes the assembly of the Type 6 apparatus (Basler et al., 2013) and triggers the 

VipAB sheath to contract, pushing the Hcp/ VgrG needle out of the cell (Basler et al., 2012). The first 

substrates shown to be secreted to the extracellular milieu by the Type 6 system were Hcp (TssD) 

and VgrG (TssI) (Pukatzki et al., 2009).  
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Figure 1.9 The Type 6 secretion system resembles an inverted bacteriophage tail-spike and delivers effector 
molecules directly into target cells. Key features of T6SS include TssH ATPase motor, the TssD channel capped 
by TssI, and the base plate structure, which is sheathed by TssB and TssC. Adapted from (Silverman et al., 
2012). 

 

In Pseudomonas aeruginosa there are three separate Type 6 secretion systems (H1-H3 T6SS) that 

have been described, as well as three different protein effectors Tse1-3 that have been shown to be 

virulence factors targeted to other bacteria (Hood et al., 2010). P. aeruginosa is the third most 

common nosocomial pathogen, and can be lethal in chronic respiratory infections such as cystic 

fibrosis (CF) (Hachani et al., 2011): it is thought that possessing multiple Type 6 systems aids the 

survival of P. aeruginosa within polymicrobial environments, such as in biofilms and/or within the CF 

lung (Southey-Pillig et al., 2005). Recent work (Sana et al., 2012) is beginning to distinguish between 

the different P. aeruginosa H1-H3 Type 6 systems and their separate functions: for example the H2-

T6SS, in contrast to the antibacterial activity of H1-T6SS, was shown to enhance the uptake of strain 

PAO1 in HeLa cells and lung epithelial cells, and was also shown to be essential for infection in a 

worm host, suggesting the H2-T6SS targets eukaryotic cells and may have an important role in 

establishing infection in humans. Little is known about the function of the P. aeruginosa H3-T6SS at 

present, but there is sufficient evidence that the H1-H3 Type 6 systems play diverse roles that enable 

P. aeruginosa to flourish in different environments (Sana et al., 2012).  
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In P. aeruginosa, the best characterised system is the H1-T6SS, which consists of IcmF (TssM), DotU 

(TssL) and Lip (TssJ), which form the cell envelope platform where it is thought that the C-terminal 

peptidoglycan binding domain of DotU functions as an anchor (Lossi et al., 2013). The VgrG (TssI) 

proteins forms the puncturing device reminiscent of the T4 bacteriophage tail spike, which sits at the 

tip of a conduit/ needle composed mostly of hexameric Hcp (TssD) protein (Pukatzki et al., 2007; 

Lossi et al., 2013), and the baseplate consists of HsiF1 (TssE) and likely HsiB1 (TssB), HsiC1 (TssC), 

HsiG1 (TssF) and HsiH1 (TssG) – recent work (Lossi et al., 2013) has established that HsiB1 and HsiC1 

predicted baseplate components could be co-purified and that HsiC1 exhibited tubule and cog-wheel 

structures similar to the phage tail sheath proteins, as previously exemplified by Vibrio cholerae Type 

6 system (Basler et al., 2012), where these components where shown to exhibit a dynamic process of 

assembly, disassembly, reassembly at the inner membrane. 
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1.5 The secreted proteome of Serratia marcescens 

 

1.5.1 Introducing Serratia marcescens: a prolific secretor of proteins and an opportunistic 

human pathogen 

 

Serratia marcescens is a Gram-negative -Proteobacterium, and is a member of the large family 

Enterobactericeae.  Serratia is a rod shaped flagellate bacillus and is, in part, characterised by its 

production of the pigment prodigiosin, which is a secondary metabolite with antibacterial properties 

produced especially under phosphate limiting conditions (Williams, 1973). The most striking thing 

about prodigiosin is the distinctive red quality it gives some Serratia strains, indeed the word 

prodigiosin derives from the Latin word ‘prodigiosus’ meaning miraculous, wonderful, divine and for 

this reason is sometimes referred to as the “miracle bacillus”. Serratia was first discovered by the 

Italian pharmacist Bartolomeo Bizio in 1819 due to its bloody discolouring of polenta. Prior to this, 

Serratia is thought to have made at least one star appearance in history related to its red 

pigmentation. In Italy in the middle ages there were some reported miracles during the Catholic 

Eucharist, or Holy Communion, which is a celebration that involves taking bread and wine as 

symbolic of the body and blood of Christ. There were several reported miracles of holy bread seeping 

with ‘blood’, which has subsequently been attributed to Serratia. It was in 1264 that the Pope Urban 

started the feast of Corpus Christi to celebrate this ‘miracle at Bolsena’, and was later depicted in a 

fresco by Raphael on the walls of the Vatican. 

 

 

Figure 1.10 Serratia marcescens strain 274 produces the brilliant red pigment prodigiosin. 
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Serratia is a widely dispersed saprophyte in nature: it has been isolated from soil and water 

environments, from plant and animal hosts and is present in most households growing on tile grout, 

soap or fatty deposits (Hejazi and Falkiner, 1997). Interestingly Serratia was regarded as harmless for 

many years, from the early to mid-1900s it was used in ‘handshake experiments’ to demonstrate the 

importance of handwashing, and in 1951-1952 the U.S army performed ‘operation sea spray’ where 

they filled balloons with Serratia and burst them over San Fransisco in order to assess the wind 

dispersal of biological weapons; the subsequent increase in urinary tract infections and pneumonia 

contributed to Serratia being classified as an opportunistic pathogen in the 1960s. Once thought to 

be a pathogen only in severely debilitated individuals, Serratia has been implicated in a plethora of 

infections including meningitis, wound infections, respiratory infection, septicaemia, ocular 

infections and as a causative agent of endocarditis both in hospitals and in the community (Mills and 

Drew, 1976; Cox, 1985; Gouin et al., 1993; Korner et al., 1994; Mahlen, 2011). Indeed, Serratia is 

estimated to be responsible for ~1.4% of hospital acquired infections in the US (Hejazi and Falkiner, 

1997). It is especially prevalent in neonatal units where it typically presents itself with meningitis-like 

symptoms, or cerebral abscess, particularly in infants that have undergone head surgery or those 

who have suffered a prior sepsis. Indeed, as recently as March 2011, S. marcescens was identified as 

responsible for the infection of eight infants, resulting in one death, in the neonatal unit at Glasgow’s 

Princess Royal Maternity (PRM) hospital. There are multidrug resistant strains of Serratia: treatment 

usually consists of an antibiotic course of fluoroquinolones, amino-glycosides or beta-lactam agents. 

Serratia is known to have innate resistance to ampicillin, macrolides and first generation 

cephalosporins, as well as reported increasing resistance to gentamicin and tobramycin (O'Dell, 

1976).       

Although, due to its red pigmentation, Serratia was once used to track infections in human patients, 

today it is still used as a biomarker for pathogenicity in Drosophila and in nematode infection models. 

The genome of S. marcescens Db11 - a spontaneous streptomycin resistant derivative of the Db10 

strain used in this study - has been made available by the Sanger Institute and was shown to contain 

5.12 Mb with 59.51% G+C content. Serratia is renowned for the quantity and diversity of its secreted 

proteome, which includes virulence factors such as phospholipases, the extracellular protein HasA, 

several proteases, a nuclease, a lipase, the surfactant ‘Serrawettin’ and several chitinases; it is this 

eclectic repertoire of secreted proteins that enables Serratia to flourish in such a broad range of 

environmental niches (Hejazi and Falkiner, 1997).  
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1.5.2 Type 1 secretion in S. marcescens 

 

In S. marcescens the haem scavenging hemophore HasA is secreted by an archetypal Type 1 system 

consisting of an inner membrane ABC transporter (HasD), a periplasmic adaptor (HasE) and an outer 

membrane TolC protein (HasF) (Letoffe et al., 1994; Binet and Wandersman, 1996).  The working 

model of Type 1 secretion proposes an essential C-terminal signal peptide that interacts with the ABC 

transporter. However, recent work (Masi and Wandersman, 2010) has demonstrated that HasA 

requires additional linear regions called ‘anchoring sites’ to mediate HasA secretion. This work has 

also shown that synthesis and secretion of HasA is closely coupled and that the C-terminal region of 

HasA actively promotes HasD ATP hydrolysis leading to disassembly of the complex (FIGURE 1.11) 

(Masi and Wandersman, 2010). In previous work it was also established that the C-terminus of HasA, 

although essential for secretion, is not essential for targeting to the Type 1 ABC component, since 

HasA lacking 14 C-terminal amino acid residues was shown to be capable of interacting with the ABC 

protein, but was jammed at the TolC component (Cescau et al., 2007). It has been proposed that this 

model of Type 1 mediated secretion adds another level of complexity to the N-terminal signal 

sequence paradigm, and suggests that the overall secretion process might be more protracted than 

first imagined, involving certain ‘checkpoints’ corresponding to separate motif-recognition events 

(Masi and Wandersman, 2010).  

In addition to the HasDEF Type 1 system in S. marcescens, there is another Type 1 system, the Lip 

system, which consists of the ABC protein LipB, the MFP component LipC, and the OMP LipD 

(Akatsuka et al., 1997). S. marcescens uses the Lip Type 1 system to secrete the lipase LipA and the 

metalloprotease PrtA (Akatsuka et al., 1997).  The Lip ABC transporter (LipB) and the MFP (LipC) 

components exhibit 45% and 53% sequence identity to HasD and HasE in S. marcescens respectively 

(Akatsuka et al., 1995; Akatsuka et al., 1997).  
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Figure 1.11 Schematic of HasA secretion by Type 1 system HasDEF in S. marcescens. (A) Unfolded HasA 
polypeptide encoding Type 1 C-terminal motif is targeted to the HasD ABC component located in the inner 
membrane (IM) by the SecB chaperone. (B) HasDEF translocase forms a channel spanning the cell envelope: 
HasA interaction with HasD induces hydrolysis of ATP that drives HasA through the channel. Linear regions at 
the C-terminal end of HasA are required for a step-wise recognition process while passing across the channel. 
(C) The HasA hemophore folds in the extracellular environment and the Type 1 system disassembles. Cyto, 
cytoplasm; IM, inner membrane; Peri, periplasm (peptidoglycan cell wall shown as black lines); OM, outer 
membrane. Adapted from (Masi and Wandersman, 2010). 

 

 

 

1.5.3 Type 2 secretion in S. marcescens 

 

At present there is no published work investigating Type 2 secretion in S. marcescens. Analysis of the 

Db11 genome (Wellcome Trust Sanger Institute, UK) by searching for homologues of several genes 

(e.g. gspD, gspE and gspG) encoding core Type 2 components in E. coli revealed that S. marcescens 

Db10 does not encode a GspD secretin. Indeed, the closest homologue to this is the PilQ protein 

(SMA3852), a type IV assembly protein. Other gene products similar to  Type 2 components are 

encoded by SMA0091, SMA0092 and SMA0093. Gene SMA0091 encodes a protein, HofC, which has 

45% overall sequence identity with the type IV pilin subunit HofC from E. coli. SMA0092 encodes 

HofB, which shares 52% overall sequence identity with the PulE/GspE ATPase from E. coli. SMA0093 

encodes PppD, a prepilin peptidase dependent protein, which is a predicted major pseudopillus 

subunit in S. marcescens strain WW4 (Kuo et al., 2013), but also has similarity to major prepilin 
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peptidase dependent protein D (60% overall sequence identity) from E. coli. Overall, although the 

Serratia marcescens Db10/Db11 genome encodes a handful of proteins that resemble a T2SS, there 

are no large and highly organised gene clusters or operons that might encode a complete Type 2 

secretion system. 

 

 

1.5.4 Type 3 secretion in S. marcescens 

 

At present there is no published work investigating Type 3 secretion in S. marcescens. Analysis of the 

Db11 genome (Wellcome Trust Sanger Institute, UK) for genes that bear a similarity to core Type 3 

components encoded by Yersinia enterocolitica yopB (encoding YopB major translocon subunit), lcrV 

(needle tip), yscN (ATPase), did not reveal anything that might obviously encode a T3SS. 

Unsurprisingly, Y. enterocolitica yscN gene does have similarity to S. marcescens SMA2198 fliI 

encoding a flagellum-specific ATP synthase. 

 

 

1.5.5 Type 4 secretion in S. marcescens 

 

There is currently no published work investigating Type 4 secretion in S. marcescens.  Searching the 

Db11 genome (Wellcome Trust Sanger Institute, UK) for  genes that have similarity to genes (virD4, 

virB2 and virB4) encoding core components of the Agrobacterium tumefaciens Type 4 secretion 

machinery did not reveal anything resembling Type 4 secretion components. However, we did 

identify SMA3852, encoding PilQ, which is a putative Type 4 fimbrial component in S. marcescens 

strain WW4 (Kuo et al., 2013), and has similarity to some putative Type 4 secretin components 

encoded by various Serratia spp.. S. marcescens PilQ does not have any clear sequence similarities to 

Type 4 secretins produced by either Helicobacter spp. or Agrobacterium spp.; it does, however, 

exhibit a 25% overall sequence identity with a type IV pilus protein from Agrobacterium H13-3.   

Nearby to SMA3852 on the chromosome there is SMA3855, which encodes a putative fimbrial 

assembly protein, as well as SMA3856, which encodes PilM, a putative type IV pilus assembly 

protein. Based on this sequence analysis, S. marcescens Db10 does not appear to encode anything 

resembling a complete bona fide Type 4 secretion apparatus.  
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1.5.6 Type 5 Secretion in S. marcescens 

 

The hemolysin ShlA is a cytotoxin secreted by S. marcescens and is known to interact with ShlB as 

part of a two-partner (Vb) Sec-dependent Type 5 secretion system (Walker et al., 2004; Hodak and 

Jacob-Dubuisson, 2007). The ShlA cytotoxin (encoded by the shlA gene) causes ATP depletion and 

potassium efflux in epithelial cells and fibroblasts (Hertle et al., 1999; Walker et al., 2004), and has 

been shown to contain two conserved regions (68-ANPNL and 109-NPNGIS) that are important for 

activity, since replacement of N-69 and N-111 residues by isoleucine has been shown to abolish 

haemolytic activity (Schonherr et al., 1993; Walker et al., 2004). ShlA is known to be secreted across 

the outer membrane by the ShlB protein in the presence of the cofactor phosphatidylethanolamine: 

in addition to actively secreting ShlA, ShlB also converts ShlA into an active hemolysin (FIGURE 1.12) 

(Schiebel et al., 1989; Walker et al., 2004; Shimuta et al., 2009).  

In addition to ShlA, the phospholipase PhlA is another virulence factor produced by S. marcescens 

that exhibits haemolytic and cytotoxic activity (PhlA haemolytic activity is dependent on  the 

presence of phospholipids, which it cleaves to form lysophospholipids resulting in haemolysis and cell 

death) (Shimuta et al., 2009). PhlA is hypothesised to be secreted by a two-partner Type 5 system 

since a PhlA homologue in the insect pathogen Photorhabdus luminescens has been shown to be 

secreted by the two-partner system (Brillard et al., 2002).  However, this remains to be proven 

experimentally. 
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Figure 1.12 Cartoon representation of Type 5 two-partner secretion of cytotoxic hemolysin ShlA in S. 
marcescens. (A) Both partners, ShlA and ShlB, are Sec dependent for export to the periplasm. Interestingly, the 
preproteins are not targeted to Sec by the SecB chaperone, but by SRP signal recognition particle. (B) Once in 
the periplasm ShlB forms the β-barrel outer membrane component that mediates transport of ShlA virulence 
factor to the extracellular environment. ShlB not only facilitates transport but converts ShlA into an active 
hemolysin by inserting four phosphatidylethanolamine cofactors (green stars). Cyto, cytoplasm; IM, inner 
membrane; Peri, periplasm (peptidoglycan cell wall shown as black lines); OM, outer membrane. Adapted from 
(Walker et al., 2004). 

 

 

1.5.7 Type 6 Secretion in S. marcescens 

 

In recent years the research group led by Dr Sarah Coulthurst, University of Dundee, has identified a 

functional Type 6 secretion system in Serratia marcescens that was shown to predominantly target 

other bacteria and help S. marcescens Db10 to flourish within a polymicrobial niche (Murdoch et al., 

2011). S. marcescens exhibited strong antibacterial killing activity against Pseudomonas fluorescens 

and the opportunistic pathogen Enterobacter cloacae, whereas it did not play a role in virulence of 

non-mammalian hosts such as the nematode Caenorhabditis elegans and wax moth larva Galleria 

mellonella (Murdoch et al., 2011). This same work also showed that Hcp was secreted to the 

extracellular milieu in a Type 6 dependent manner, and that the Type 6 apparatus was constitutively 

expressed from a gene cluster encoding 13 core components that together was postulated to form 

the main features of a Type 6 secretion system (FIGURE 1.13) (Murdoch et al., 2011). 
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The first substrates shown to be secreted to the extracellular milieu by the Type 6 system were Hcp 

and VgrG (Pukatzki et al., 2009), however these represent structural components of the Type 6 

needle and are not regarded as genuine effector proteins.  Recent work identified two bona fide 

virulence effectors, Tae4 homologs Ssp1 and Ssp2, which are targeted to other bacterial cells where 

they act as amidases that hydrolyse the cell wall, and S. marcescens protects itself in turn by 

producing immunity proteins, Rap1a and Rap2a, specific to each of these effectors (English et al., 

2012). In more recent work, further label-free quantitation (LFQ) mass spectrometry experiments 

identified an additional four novel Type 6 anti-bacterial virulence factors secreted by S. marcescens, 

for which another three specific immunity proteins were also discovered (Fritsch et al., 2013). This 

work also identified that the assembly of the Type 6 machinery is regulated by a post-translational 

phosphorylation cascade involving homologues of P. aeruginosa PpkA, PppA and Fha Type 6 

components (Fritsch et al., 2013). In S. marcescens, FhA phosphorylation by PpkA was shown to be 

crucial in activating the Type 6 machinery, which can be subsequently reversed by PppA phosphatase 

activity; interestingly this form of activation was not cell-to-cell contact dependent, as was proposed 

to be the case in Vibrio cholerae (Basler et al., 2012; Fritsch et al., 2013). 

 

In S. marcescens the membrane associated components include IcmH (TssL in the standard Type 6 

nomenclature), IcmF (TssM) and Lip (TssJ); the phage tail-like components include the VgrG (TssI) and 

Hcp (TssD) proteins, Hcp forms hexameric rings that stack on top of one another in a tube-like 

structure that is thought to be capped by a VgrG trimer (Fritsch et al., 2013) – it  has been proposed 

to form a conduit delivering effector proteins to target cells. The proteins VipA (TssB) and VipB (TssC) 

are hypothesised to form a sheath around the VgrG/ Hcp needle, which is also very similar to T4 

phage tail architecture (Bonemann et al., 2009). It is thought that close contact with neighbouring 

cells causes the assembly of the Type 6 apparatus (Basler et al., 2013) and triggers the VipAB sheath 

to contract, pushing the Hcp/ VgrG needle out of the cell (Basler et al., 2012). The current model of 

Type 6 secretion involves a core ATPase motor, ClpV (TssH), which is also essential for the assembly 

of the VipAB sheath in vivo, and in S. marcescens ClpV is known to be recruited to the Type 6 

apparatus upon activation by PpkA, which phosphorylates the Fha (TagH) component (FIGURE 1.13) 

(Fritsch et al., 2013). 
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Figure 1.13 Model of S. marcescens Type 6 secretion system. S. marcescens assembly of Type 6 secretion 
apparatus is activated by PpkA phosphorylation of Fha, which induces the VipAB sheath to form a baseplate 
complex with VgrG/Hcp, whereupon the ClpV ATPase is recruited to the complex and initiates transport of 
effectors. The Hcp and VgrG components form a conduit to transport virulence effectors into the target host 
cell. Some effectors, such as Ssp1/Ssp2 hydrolyse peptidoglycan, whereas others attack the inner membrane 
(Ssp4) or are cytotoxic (effectors Ssp3, Ssp5 and Ssp6). For each of these virulence factors a cognate immunity 
protein has been identified (Rap1-2a and Sip3-5a), except for effector protein Ssp6. Cyto, cytoplasm; IM, inner 
membrane; Peri, periplasm (peptidoglycan cell wall shown as black lines); OM, outer membrane. Adapted from 
(Coulthurst, 2013; Fritsch et al., 2013). 
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1.6 Chitin and chitinolytic activities 

 

1.6.1 Chitin and chitinase enzymes 

 

Chitin is a polymer of (1,4)-N-acetyl-D-glucosamine (GlcNAc), itself an important signalling molecule 

in mammalian cells. Chitin is a key structural component in fungal cell walls, the nematode eggshell 

and pharyngeal lining, insect and crustacean exoskeletons, and is the second most abundant 

polysaccharide on Earth after cellulose (there is an estimated 10 gigatons of chitin recycled in the 

biosphere each year). Chitin exhibits a similar structure to cellulose: the 2-hydroxyl group in cellulose 

is replaced with an N-acetyl group in chitin and the resultant hydrogen bonding between bordering 

polymers accounts for the harder structure and greater stability of chitin. The absence of the acetyl 

group produces the chitin-derivative chitosan. In its unmodified form chitin exists as a translucent 

pliable “leather-like” material: in arthropod exoskeletons, however, it is embedded within a calcium 

carbonate matrix which forms a much harder, rigid substance. The chemical structures of cellulose, 

chitin, chitosan and GlcNAc are given in FIGURE 1.14 below.    

 

Figure 1.14 Chemical structure of chitin, chitosan and cellulose. (A) Chitin is a polymer of β-1,4 linked 
monosaccharide N-acetyl-D-glucosamine (GlcNAc). (B) Chitosan is chitin lacking most of the acetyl groups. (C) 
Cellulose is very similar to chitin: chitin has an acetylamine group where cellulose has a hydroxyl group; this 
quality gives the chitin polymer matrix more stability. 
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Many organisms produce chitinase enzymes that are part of a repertoire of complex carbohydrate 

degrading enzymes that hydrolyse the β-1,4 glycosyl bond in the chitin chain. They are frequently 

classified as ‘exo’ or ‘endo’ chitinases depending on whether they cleave randomly within the chitin 

polymer (endo), or at the end of the polymer (exo) to leave a GlcNAc oligomer or dimer (chitobiose). 

If the resulting chitobiose is to be used as an energy source, it can be subsequently taken into the cell 

and cleaved by a chitobiase to leave GlcNAc monomers  (Brurberg et al., 2000).  The GlcNAc molecule 

can be further broken down by a deacetylase and a deaminase (in some Gram negative bacteria such 

as E. coli and S. marcescens these are encoded by nagA and nagB genes, respectively) to render 

glucose (carbon source) and ammonia (N source) available. A general schema of chitin metabolism in 

enteric bacteria is given in FIGURE 1.15 below.   

Due to the ubiquity of chitin in the biosphere, chitinase enzymes are utilised not just by bacteria but 

also by plants, fungi, viruses, animals and even humans. It is very common for plants to up-regulate 

the expression of chitinase-encoding genes in response to a fungal or insect infection. For example, 

the fescue grass Festuca arundinacea was shown to dramatically enhance the expression of chitinase 

FaChit1 as a stress response to fungal attack, whereas mechanical wounding did not greatly affect 

chitinase expression levels (Wang et al., 2009). Fungi commonly produce their own chitinase 

enzymes that facilitate the turnover of chitin at the growing apical tip in hyphae, for example the 

germination and hyphal growth of Aspergillus nidulans is inhibited in the absence of the chiA 

chitinase-encoding gene (Takaya et al., 1998). Insect viruses commonly express chitinases to facilitate 

terminal release of viral progeny from the infected host, such as the granulovirus PiraGV-K of Pieris 

rapae (cabbage butterfly), which expresses a chitinase that mediates virulence in host larvae, and is 

thought to play an important role in managing the populations of this important crop pest (Oh et al., 

2013).  In addition to expressing their own chitinases, viruses are also of particular interest for 

heterologous expression of chitinases as biocontrol agents: for example a baculovirus isolated from 

the moth Autographa californica expressing a foreign chitinase, AcMNPV-CHT1, expressed in 

Spodoptera frugiperda (The Fall Armyworm) cells, was shown to mediate enhanced killing of 

Haemaphysalis longicornis ticks, and could potentially alleviate the incidents of Lyme disease and 

spotted fever (Assenga et al., 2006).  
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Figure 1.15 General schema of chitin metabolism in Serratia marcescens. Chitin is a polymer of N-acetyl-β-D-
glucosamine (GlcNAc) which is hydrolysed to chitobiose by chitinases (such as ChiA, ChiB, ChiC in Serratia), 
which is cleaved again by a periplasmic chitobiase to form the monosaccharide component, GlcNAc. In S. 
marcescens, binding of the chitinase to the chitin substrate is promoted by chitin binding protein CBP21. 
GlcNAc is transported into the cell via NagE whereupon it binds to the NagC repressor of the NagBACD operon 
and enables constitutive expression: nagA and nagB encode a deacetylase and a deaminase respectively, and 
these protein products cleave GlcNAc to produce glucose, ammonia and an acetate group that can provide a 
carbon and nitrogen source for the cell. 
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1.6.2 Chitinases and chitin-binding proteins as virulence factors 

 

There are currently two major families of bacterial chitinases, these are classified as families 18 and 

19 of the glycoside hydrolases depending on the amino acid sequence of their catalytic domains 

(Suzuki et al., 1999). Family 18 chitinases include bacterial, fungal, animal and plant chitinases, 

whereas family 19 contain just plant chitinases and chitinase C from Streptomyces griseus (Suzuki et 

al., 1999). These two families do not exhibit any amino acid sequence similarity and are thought to 

have emerged independently from separate ancestors (Suzuki et al., 1999). Chitinases have a crucial 

role in recycling environmental chitin. However, in addition to this there is increased focus on 

studying them as virulence factors. This section aims to give a brief introduction to the various uses 

of bacterial chitinolytic activities in relation to the production of chitinase-like molecules in humans, 

and the conditions in which these molecules mediate important host-microbe interactions.  

One of the most interesting features to have emerged from this field is a greater appreciation of the 

diversity of chitinolytic substrates. Although mammals do not produce chitin, it is thought that many 

bacterial pathogens, in particular opportunistic human pathogens exploit ‘chitinous’ receptors, such 

as mucin, on the epithelial cells of the immunocompromised host (Tran et al., 2011). In these cases it 

is thought that bacterial chitinases are used to promote adhesion and penetration of target cells, 

even though these targets do not contain ‘true’ chitin. For example Pseudomonas aeruginosa has 

been shown to upregulate chitinase expression in response to immunocompromised patients, 

despite being unable to utilize chitin as a carbon source in itself (Tran et al., 2011).  

The Gram positive soil bacterium Listeria monocytogenes possesses two chitinase encoding genes 

chiA and chiB, as well as cbp encoding chitin binding protein (chitin-binding proteins promote the 

binding of chitinase to its chitin substrate), and is also an opportunistic human pathogen responsible 

for the food-poisoning condition listeriosis, which typically manifests with meningitis and 

gastroenteritis symptoms (Vazquez-Boland et al., 2001; Leisner et al., 2008). In a mouse infection 

model an L. monocytogenes strain devoid of chiA, chiB or cbp genes was shown to be significantly 

impaired in its ability to be translocated to the liver and spleen (important sites for colonisation) 

(Chaudhuri et al., 2010). In addition to this, the level of chiA expression was shown to be enhanced in 

murine macrophages (Chatterjee et al., 2006), and ChiA has been identified to actively suppress the 

host innate immune response by decreasing the expression of nitric oxide synthase, which provides 

the first concrete evidence of a bacterial chitinase actively suppressing host immune defences in vivo 

(Chaudhuri et al., 2013). Since the mouse model does not encode chitin, it is proposed that Listeria 

monocytogenes chitinases are not only capable of hydrolysing chitin, but are also able to bind 

glycoproteins or carbohydrate moieties in host cells (Chaudhuri et al., 2010). 
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The Gram negative bacterium Pseudomonas aeruginosa is present in the soil, aquatic environments, 

and is also normally a human commensal present on the skin, as well as being an opportunistic 

human pathogen. As mentioned above, P. aeruginosa is the primary agent of pulmonary infection in 

cyctic fibrosis (CF) patients, and is unable to utilize chitin as a sole carbon source (Stover et al., 2000; 

Folders et al., 2001). The chitin binding protein encoding gene was found to be up-regulated in a P. 

aeruginosa strain isolated from a CF patient, suggesting this chitinolytic protein might help establish 

infection of the CF lung (Salunkhe et al., 2005). Furthermore, expression of the chitinase encoding 

gene chiC was shown to be enhanced when P. aeruginosa was grown in culture with samples that 

mimicked sputum from the lung of CF patients. It was hypothesised that mucin was the key factor 

that initiated chiC expression (Fung et al., 2010). In addition to this, it has also been shown elsewhere 

that both chiC and cbp transcript levels were elevated in a CF-associated strain of P. aeruginosa 

(Manos et al., 2009). 

Besides thinking about the chitinolytic activity of the microbial pathogen, another important 

consideration is the chitinolytic activity, and the chitinous molecules, produced by the mammalian 

host. Although human beings do not produce chitin, we do express two chitinases, acidic mammalian 

chitinase AMCase and chitotriosidase CHIT1, as well as the chitinase-like enzyme YKL-40 (or CHI3L1), 

which have been isolated from gut and blood plasma and are thought to aid in defence against 

pathogens. Despite the role of AMCase in innate immunity, enhanced levels of AMCase have also 

been shown to play a role in T helper-2 inflammation leading to asthma (Zhu et al., 2004). In addition 

to mammals encoding chitinases, or chitinase-like enzymes, it is thought that mammalian chitinase 

expression is enhanced in response to the presence of bacterial chitinases. For example, there is now 

evidence that early exposure to fungal systemic infection in neonates causes a spike in the presence 

of chitotriosidase (Labadaridis et al., 2005). Interestingly, the expression of CHIT1 was also shown to 

be heightened in the early immune response of neonates to bacterial infection, suggesting it is not 

the presence of chitin that elicits such a response, but an alternative substrate such as a 

glycoprotein, that sufficiently resembles chitin (Labadaridis et al., 2005). It is clear from these 

examples that expression of chitinolytic, chitin-binding and chitinous molecules form a dense 

network of host-microbial interactions that is complex and multifaceted.  
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1.7 The Chitinolytic machinery of S. marcescens 

 

1.7.1 S. marcescens is a model organism in terms of chitin-degradation 

 

Serratia is renowned for its secreted proteome and in particular for its ability to degrade chitin: it is a 

model chitin-degrading organism due to its repertoire of chitinolytic exoproteins (Brurberg et al., 

1996).  The S. marcescens Db10 genome encodes three extracellular chitinases (ChiA, ChiB, and ChiC) 

and one extracellular chitin binding protein (Cbp21). S. marcescens also encodes a periplasmic 95kDa 

chitobiase (Chb), which cleaves (GlcNAc)2 to produce monosaccharide GlcNAc. Chb belongs to family 

20 of the glycosyl hydrolases and consists of four domains. The catalytic domain contains a TIM-

barrel fold like the family 18 chitinases, however the active site is different. The function of the 

remaining three domains is unknown (Brurberg et al., 2000). In addition to the chitobiase, S. 

marcescens also encodes the nagEBACD operon, which degrades cytoplasmic GlcNAc to glucose, 

ammonia and acetate, and hence S. marcescens is able to fully utilise chitin as a carbon and nitrogen 

source. The LysR-type transcriptional regulator ChiR is also thought to be essential for the expression 

of each of the chitinase encoding genes and cbp21 (Suzuki et al., 2001). The genomic organisation of 

each of these chitinolytic components is illustrated in FIGURE 1.16. 
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Figure 1.16 Genetic material required for chitin utilisation in Serratia marcescens Db10. (A) Genomic loci of 
chitinase encoding gene chiC and the nag operon encoding GlcNAc uptake and utilization proteins. (B) 
Chitobiase encoding gene chb. (C) Chitinase encoding gene chiB, gene chiR encoding a LysR-type transcriptional 
regulator, and cbp21 gene encoding chitin binding protein. (D) Genomic loci of chitinase encoding chiA. ChiA, 
Chb and Cbp21 contain N-terminal Sec signal peptide for export to the periplasm (red tags). The SMA number 
corresponds to the specific gene. The number of residues and the mass of the mature protein is given.  
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1.7.2 S. marcescens ChiA 

 

ChiA is synthesised as a 563-residue precursor with a canonical Sec-type N-terminal signal peptide for 

targeting the enzyme to the periplasm, whereupon it is cleaved and the resulting 540 residues has a 

molecular mass 58.5 kDa (FIGURE 1.17) (Brurberg et al., 2000). ChiA contains five cysteine residues 

and there are two predicted disulphide bonds (115-218, 120-195) (Ferre and Clote, 2006). The 

structure of S. marcescens ChiA was the first crystal structure of a bacterial chitinase, and revealed 

many of the core features of family 18 glycoside hydrolases, in particular the presence of a TIM-

barrel fold, very common for protein active sites, and consists (usually) of eight parallel α-helices and 

eight parallel β-strands (Perrakis et al., 1994). Like the other chitinase enzymes produced by S. 

marcescens, ChiA encodes SXGG and DXXDXDXE sequence motifs that are characteristic of family 18 

glycosyl hydrolases (Brurberg et al., 2000). In addition to this, the structure of ChiA revealed two key 

residues, E144 and E315, that are responsible for the nucleophilic attack that cleaves the β-1,4 link in 

the chitin chain (Perrakis et al., 1994; van Aalten et al., 2001). ChiA contains a deep substrate binding 

groove, and contains three domains that are thought to interact with the chitin substrate, these are 

termed the ChiN, FnIII and ChBD domains. The ChBD domain is thought to be the ‘true’ chitin binding 

domain and it is proposed that the ChiN and FnIII domains are involved in guiding the substrate 

through the active site cleft (Perrakis et al., 1994; Watanabe et al., 1994; Perrakis et al., 1997; 

Brurberg et al., 2000).  

According to the carbohydrate chemistry, hydrolysis of the β-1,4 glycosidic bond by family 18 

chitinases does not follow a ‘classical’ mechanism  and is thought to degrade chitin in a substrate-

assisted manner (Brameld et al., 1998). This has led some authors to propose that family 18 

chitinases have an absolute preference for chitin substrate bearing an N-acetyl group (Honda et al., 

2000), although this strict substrate selection would conflict with the current hypothesis that family 

18 chitinases can be routinely used to bind ‘chitinous’ glycoproteins such as mucin (Frederiksen et al., 

2013). In all family 18 chitinases the signature DXXDXDXE motif facilitates hydrolysis of the chitin 

substrate, all of the aspartate residues, and especially the final glutamate, are key residues in 

mediating catalysis (Tsujibo et al., 1993; Watanabe et al., 1994; Brurberg et al., 1996). S. marcescens 

ChiA exhibits a strong exo-chitinase character and ChiA-cleavage produces (GlcNAc)2 (Brurberg et al., 

2000).  
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Figure 1.17 ChiA is a family 18 glycosyl hydrolase. Structure of chitinase ChiA from Serratia marcescens 
(Perrakis et al., 1994). (A) Full length amino acid sequence of ChiA is shown and consists of 563 amino acid 
residues and has a molecular mass of 61,019 Da. ChiA contains an N-terminal signal peptide for targeting to the 
periplasm (shown in red, the cleavage site in bold), and also bears the signature SXGG/ DXXDXDXE motif of 
family 18 glycoside hydrolases (shown in green, bold underlined). (B) The structure of S. marcescens ChiA. The 
catalytic E144 and E315 residues are shown as blue sticks.   
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1.7.3 S. marcescens ChiB 

 

ChiB of S. marcescens contains the signature SXGG and DXXDXDXE sequence motifs typical of family 

18 glycosyl hydrolases, and the crystal structure revealed that the catalytic domain possesses a TIM-

barrel fold, which is also characteristic of chitinolytic members of this family (FIGURE 1.18). ChiB 

exhibits a distinctive tunnel-shaped active site that mediates its exochitinase activity (van Aalten et 

al., 2001). Mature ChiB contains 498 residues with a mass of 55.4 kDa and is moved to the 

extracellular environment apparently without proteolytic processing, despite not containing a 

recognisable N-terminal signal peptide (Brurberg et al., 1995), but ChiB does contain four cysteine 

residues, with two predicted disulphide bonds (60-328, 127-331), suggesting it is targeted to the 

periplasm (Ferre and Clote, 2006). In addition to this, early studies on S. marcescens ChiB showed 

that, although it was clearly detectable in the extracellular environment, it was mostly localised in 

the periplasm (Brurberg et al., 1995), although this conflicted with other studies concluding that ChiB 

is above all a secreted (extracellular) enzyme (Jones et al., 1986; Watanabe et al., 1997). 

The structure of ChiB contains a deep substrate binding groove and exhibits a strong exo-chitinase 

character. ChiB cleavage produces (GlcNAc)3 and also exhibits a very low level of endochitinase 

activity (Brurberg et al., 1996). A key feature of ChiB mediated degradation is that ChiB degrades 

chitin from the non-reducing end, as opposed to the reducing end for ChiA (Brurberg et al., 2000).  

The crystal structure of ChiB revealed that it mediates catalysis via a substrate-assisted mechanism, 

with the acidic E144 and E315 being the key catalytic residues, and also that E144 is integral to a 

‘roof’ structure described for the catalytic domain (van Aalten et al., 2001). The ChiB structure also 

identified some novel features of the catalytic mechanism. Studies of (GlcNAc)5-bound ChiB proposed 

that following catalysis the ‘roof’ of ChiB re-opens, and that during catalysis the TIM-barrel catalytic 

domain undergoes a conformational change involving conserved polar residues resulting in the 

reaction intermediate being displaced and then stabilised (van Aalten et al., 2001).   
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Figure 1.18 ChiB is a family 18 glycosyl hydrolase. Structure of chitinase ChiB from S. marcescens (van Aalten 
et al., 2001). (A) Full length amino acid sequence of ChiB is shown and consists of 499 amino acid residues and 
has a molecular mass of 55,541 Da. ChiB contains the signature SXGG/ DXXDXDXE motif of family 18 glycoside 
hydrolases (shown in green, bold underlined). (B) The structure of dimeric S. marcescens ChiB. The catalytic 
E144 and E315 residues are shown as blue sticks. 
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1.7.4 S. marcescens endochitinase ChiC 

 

The full length crystal structure of S. marcescens ChiC is yet to be solved. Sequence analysis suggests 

that ChiC bears the signature SXGG/ DXXDXDXE motif characteristic of family 18 glycoside hydrolases 

(FIGURE 1.19), and is a predicted endochitinase (Brurberg et al., 2000). ChiC contains only 1 cysteine, 

so does not contain disulphides. ChiC does not encode any recognisable N-terminal signal peptide, 

however there has been reports suggesting that ChiC in S. marcescens undergoes non-specific 

processing of the N-terminal region resulting in ChiC variants lacking 8-12 N-terminal residues, which 

suggests that ChiC is involved in some sort of processing/ recognition event indicative of export 

(Suzuki et al., 1999). In addition to this, expression of the chiC gene in E. coli gives rise to two 

variants, or fragments, of ChiC:  there is ChiC1 consisting of 479 residues with a mass 51.6 kDa, 

whereas ChiC2 is the C-terminally truncated version of ChiC1 consisting of 325 residues (Gal et al., 

1998; Suzuki et al., 1999). ChiC is regarded as an exoprotein that is moved deliberately to the 

extracellular milieu (Fuchs et al., 1986; Watanabe et al., 1997). 

Based on amino acid sequence, the predicted structure of ChiC suggests that it consists of a catalytic 

domain and two putative chitin-binding domains, and is also predicted to have endochitinase activity 

(Suzuki et al., 1999). It is predicted that an α+β domain, that forms the wall of the substrate binding 

groove in ChiA (residues 295-373) and ChiB, is absent in ChiC, which would account for a much more 

open substrate binding groove, and hence its endochitinase activity (Brurberg et al., 2000). More 

recent work examining the function of S. marcescens chitinases concludes that ChiC is a ‘non-

processive’ endochitinase. When ChiC was incubated with (GlcNAc)6 oligomers ChiC initially 

produced (GlcNAc)4 and (GlcNAc)2 (Horn et al., 2006).  

The structure of the catalytic site of S. marcescens ChiC has recently been resolved (Payne et al., 

2012), and this revealed that ChiC has a novel calcium-binding site, and the catalytic glutamic acid is 

located at E141. Both the partial ChiC structure (Payne et al., 2012) and the Phyre2 predicted 

structure (Kelley and Sternberg, 2009) of S. marcescens ChiC suggests that it exhibits the greatest 

similarity to the endochitinase LlChi18A produced by the Gram positive Lactococcus lactis (PDB entry 

3IAN).  
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Figure 1.19 ChiC is a family 18 glycosyl hydrolase. (A) Full length amino acid sequence of ChiC is shown and 
consists of 480 amino acid residues and has a molecular mass of 51,808 Da. ChiC contains the signature SXGG/ 
DXXDXDXE motif of family 18 glycoside hydrolases (shown in green, bold underlined). (B) Phyre2 predicted 
structure of ChiC (Kelley and Sternberg, 2009). The catalytic E141 residue is shown as a blue stick. 

 

 

FIGURE 1.20 provides a sequence alignment of S. marcescens ChiA, ChiB and ChiC. At the level of 

sequence identity, the three chitinase isoenzymes do not exhibit much similarity: ChiA exhibits 28% 

sequence identity and 41% similarity to ChiB with 85% sequence coverage, and 36% sequence 

identity to ChiC with just 25% coverage. ChiB exhibits a small region (22% coverage) bearing similarity 

to ChiC, with 48% sequence identity and 69% similarity to ChiC. ChiA has a very similar substrate 

binding groove to ChiB, however ChiA exhibits less of a ‘tunnel’ shape due to the absence of a loop 
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that serves as a ‘roof’ in ChiB; in addition to this ChiA has more of an open groove, which means that 

chitin has greater access to the active site and also that ChiA has some additional low-level 

endochitinase activity (more akin to ChiC), this structure affords ChiA a certain catalytic flexibility, 

unlike the other chitinases it can produce GlcNAc monomers, in addition to dimers (Brurberg et al., 

2000).  

 

 

 
 

Figure 1.20 Amino acid sequence alignment of chitinases ChiA, ChiB and ChiC from Serratia marcescens. 
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1.7.5 S. marcescens chitin binding protein Cbp21 

 

S. marcescens produces an 18 kDa (mature) chitin binding protein CBP21, which is classified as 

belonging to family 33 CBMs (carbohydrate binding module) (Fuchs et al., 1986). The 197 amino acid 

precursor contains a Sec-type N-terminal signal peptide for targeting to the periplasm (FIGURE 1.21) 

(Watanabe et al., 1997). The mature chitin binding protein exhibits general similarity to cellulose 

binding domains of cellulases, and is known to promote binding of the chitinase to the chitin 

substrate (Brurberg et al., 2000). An in vitro study investigating the role of Cbp21 in S. marcescens 

chitin degradation concluded that Cbp21 strongly promotes ChiA and ChiC-mediated cleavage, and is 

essential for ChiB-mediated degradation, by binding chitin substrate through polar interactions and 

inducing structural changes of the chitin substrate that enhances accessibility to chitinase  (Vaaje-

Kolstad et al., 2005). This work was carried out in vitro by incubating chitin with Cbp21 and chitinase 

and analysing the degradation products using liquid chromatography (Vaaje-Kolstad et al., 2005), it 

does not establish whether Cbp21 is essential for the chitinolytic activity of Serratia marcescens in 

vivo i.e by making targeted deletion of the cbp21 gene. Cbp21 has two predicted disulphide bonds 

(41-145, 49-162) (Ferre and Clote, 2006).  

 

Figure 1.21 Chitin binding protein Cbp21. Structure taken from (Vaaje-Kolstad et al., 2005). (A) Cbp21 contains 
an N-terminal Sec signal peptide, shown in red, cleavage site in red bold. The crystal structure identified key 
hydrophilic surface exposed residues that facilitate substrate binding (Y54, E55, E60, H114, D182), these are 
shown in blue bold. (B) The structure of S. marcescens Cbp21 consists of a fibronectin type III fold forming two 
β-sheet sandwich (Vaaje-Kolstad et al., 2005). The conserved polar residues are shown as blue sticks.   
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1.8 The problem situation – a hypothesis to be tested 

 

 

Serratia marcescens is an important human pathogen and is a model organism in terms of chitin 

degradation. The bacterium produces at least four extracellular proteins that are required for the use 

of chitin as a carbon and nitrogen source. Considering the fact that S. marcescens is renowned for its 

elaborate secreted proteome, it is surprising that very little is known about the secretion mechanism 

responsible for exporting the various chitinases outside the cell. Since the ChiA and Cbp21 precursors 

contain Sec-type signal peptides it may have been assumed that such proteins would be externalised 

via a Type 2 secretion system.  Indeed, the marine pathogen Vibrio cholerae is known to secrete a 

chitinase via a Type 2 system (Sikora et al., 2011), as does E. coli (Francetic et al., 2000). However, 

our analysis of the S. marcescens Db10 genome was unable to identify any genes encoding typical 

Type 2 components. Since both ChiA and Cbp21 contain disulphide bridges, it makes sense to target 

these proteins first to the periplasm and then out to the extracellular milieu in a two-step process. 

However, to deepen the mystery further, ChiB also has a disulphide bond but in this case does not 

bear a Sec-signal peptide. Moreover, ChiC has neither disulphides nor a signal peptide, which begs 

the question how these enzymes are targeted to the extracellular environment.  

Other than the Type 1-6 systems, are there other routes to protein export and secretion used by 

bacteria? Non-classical secretion in bacteria can be defined as protein secretion in the absence of any 

recognisable signal motif. There are some fascinating examples of non-classical secretion provided by 

Gram positive bacteria. For example, the human pathogen Mycobacterium tuberculosis produces the 

secreted substrate superoxide dismutase SodA, which it is able to secrete in the absence of any 

recognisable signal motif (Harth and Horwitz, 1999). For this the pathogen uses a variant of SecA 

known as SecA2 (Braunstein et al., 2001). There are additional reported cases of SecA2 mediated 

secretion in other Gram positives, such as Listeria monocytogenes, which also utilises SecA2 in 

virulence to mediate smooth-rough phenotypic variation (Lenz and Portnoy, 2002), or Staphylococcus 

aureus, which uses the accessory secretory factors SecA2 and SecY2 to export the glycoprotein GspB 

(Siboo et al., 2008). Interestingly, recent work investigating the nature of SodA dismutase in the 

Gram negative Rhizobium leguminosarum identified it as being targeted to the Sec apparatus for 

export, despite not bearing a recognisable Sec signal peptide (Krehenbrink et al., 2011).  

It is both interesting and highly relevant to this study that non-classical secretion of chitinase has 

been identified. Work done on chitinase ChiC in P. aeruginosa, which exhibits sequence similarity to 

S. marcescens ChiC (FIGURE 1.22), was first to address the question of non-classically secreted 
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chitinase (Folders et al., 2001). This research identified some unusual characteristics about 

Pseudomonas ChiC with regard to its status as an exoprotein: it lacks a typical N-terminal signal 

sequence, and yet the first 11 residues of the N-terminus were apparently cleaved off in the secreted 

form (FIGURE 1.22) (Folders et al., 2001). These authors also showed that expression of Pseudomonas 

ChiC is regulated by quorum sensing and that it is secreted gradually over a four day time course, and 

this behaviour was not attributable to cell lysis (Folders et al., 2001). 

Thus, chitinase secretion may follow an unusual route in a wide range of pathogenic bacteria. It is 

tempting to speculate that, in addition to the six known protein secretion systems, a seventh may be 

waiting to be discovered. 

 

Figure 1.22 An alignment of ChiC sequences from Serratia marcescens Db10 (Sma) and Pseudomonas 
aeruginosa (Pae) ((Folders et al., 2001) shows considerable sequence conservation. To the sequence of ChiC 
from S. marcescens, ChiC from P. aeruginosa has 65% identity and 76% similarity. Previous work (Folders et al., 
2001) has shown that P. aeruginosa ChiC is processed, the first 11 residues are cleaved (shown in red). By 
comparison, ChiA from Vibrio harveyi has 31% identity and 44% similarity to S. marcescens ChiC, and ChiD from 
B. circulans has 29% identity and 44% similarity to S. marcescens ChiC. Sequence alignments were performed 
with Clustal Omega (2), and displayed using the freely-available on-line tool Boxshade 3.21 
(http://www.ch.embnet.org/software/BOX_form.html). 

  

http://www.ch.embnet.org/software/BOX_form.html
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1.9 Aims  

 

 

The overall aim of this project was to address the core hypothesis that there could be a secretion 

system dedicated to the transport of chitinases across the cell envelope in S. marcescens. We will 

take molecular genetic, proteomic, and biochemical approaches in order to challenge this 

hypothesis. This research has the following specific objectives: 

1. To identify new genes involved in chitin utilisation. 

2. To understand the roles of any new genes in chitinase export and secretion. 

3. To form a new hypothesis on the mechanism of chitinase secretion. 
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2 Identification of genes required for 
chitinolytic phenotype 
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 Introduction 

 

One key process by which bacteria adapt to their environment is via the secretion of effector 

molecules, whereby proteins, or peptides or nucleic acids are actively translocated from inside the 

cell across the cell envelope into the environment. Serratia marcescens is renowned for the quantity 

and diversity of its secreted proteome, which includes a metalloprotease PrtA, a phospholipase PhlA, 

a haem-scavenging hemophore HasA and the cytotoxic hemolysin ShlA (Akatsuka et al., 1997; Hejazi 

and Falkiner, 1997; Hertle et al., 1999; Shimuta et al., 2009). Serratia marcescens is also remarkable 

for its ability to degrade the quite intractable polymer chitin, for which it utilizes three chitinases 

ChiA, ChiB, ChiC and a chitin-binding protein Cbp21. ChiA and Cbp21 both contain signal peptides 

targeting them to the Sec-apparatus (Table 2.1) for export: this was enough to infer that these were 

secreted substrates, and since the S. marcescens Db10 genome does not encode a Type 2 secretion 

system, we postulated that S. marcescens could encode an unknown mechanism dedicated to 

moving these enzymes across the cell envelope. Moreover, ChiB and ChiC do not contain any 

recognisable signal peptides, which makes the question as to how these enzymes - of considerable 

size (ChiC is 50 kDa) - are released outside of the bacterial cell even more pertinent. 

 

 

 Aims 

 

The aim of this Chapter was to begin to address the mechanism responsible for the extracellular 

presence of the S. marcescens chitinolytic system. We aimed to establish whether chitinases are 

deliberately moved to the extracellular environment by Serratia and if, therefore, we could regard 

these as true secreted proteins. We aimed to take a molecular-genetic approach by performing a 

classical transposon mutagenic screen to establish what genes may be responsible for the 

extracellular presence of chitinases in S. marcescens.  
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 Results 

 

2.3.1 Tools for investigating chitinase biology in Serratia: a bank of deletion mutants 
 

In order to understand the different roles of each component in the S. marcescens chitinolytic 

system, it was necessary to produce a bank of deletion mutants that would enable us to study each 

of the chitin-degrading components in isolation. This would establish the core components of the 

system, identify any hitherto unknown chitinolytic proteins, and serve as the basis for a genetic 

screen to search for a secretion system. To do this, we constructed deletion alleles for chiA, chiB and 

chiC in the pKNG101 suicide vector: a system that facilitates the targeted deletion of genes on the S. 

marcescens Db10 chromosome by homologous recombination (Kaniga et al., 1991).  

Initially, we constructed three strains each lacking a single chitinase encoding gene:  JJH01 (∆chiA), 

JJH02 (∆chiB), and JJH03 (∆chiC). In each case the entire gene was removed, with only the start and 

stop codons remaining. Next, the same constructs were used to produce three double mutants that 

would express only one chitinase activity: JchiA (chiA+, ∆chiB, ∆chiC), JchiB (chiB+, ∆chiA, ∆chiC) and 

JchiC (chiC+, ∆chiA, ∆chiB). Finally, a strain lacking all three of the known chitinase encoding genes 

was also constructed, Nochi (∆chiA, ∆chiB, ∆chiC). 
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2.3.2 Tools for investigating chitinase biology in Serratia: antisera against the isoenzymes 
 

In order to understand the molecular basis of chitinase secretion in S. marcescens it was anticipated 

that Western immunoblot analysis would be a powerful tool in assessing the subcellular localisation 

and post-translational modifications of the enzymes. Thus, with the aim of generating polyclonal 

antibodies for each isoenzyme, we cloned the chiA gene into pQE70, and cloned separately the chiB 

and chiC genes into the pQE60 overproduction vector (Qiagen). Upon transformation of the E. coli 

M15 [pRep4] host strain, each of the chitinases were observed to be overproduced by induction with 

2 mM IPTG (final concentration) (FIGURE 2.1). In addition, the engineered C-terminal hexa-histidine 

tags were found to be intact for each isoenzyme following immunobloting with an anti-pentaHis 

monoclonal antibody (FIGURE 2.1). Small scale solubility tests were carried out and, under the 

conditions tested, the recombinant ChiCHis was the only isoenzyme present in the soluble fraction 

(FIGURE 2.1). 

 

 

 

 

 

 

 

 

 

Since ChiC was the only chitinase to appear in the soluble fraction, and because ChiC is one of the 

least well characterised members of the S. marcescens chitinolytic system, we purified ChiCHis by 

immobilised metal affinity chromatography (IMAC) and size exclusion chromatography (FIGURE 2.2). 

The resultant protein was concentrated to 0.74 mg/ml and identified as S. marcescens ChiC by tryptic 

peptide mass fingerprinting, before a fraction of this was used to generate a rabbit anti-ChiC 

polyclonal antiserum (Eurogentec). ChiC was shown to be present in both the cellular fraction and in 

the extracellular medium in S. marcescens Db10 and for the strain JchiC (chiC+, ∆chiB, ∆chiC), but not 

for any of the mutants lacking the chiC gene (FIGURE 2.2).   

 
Figure 2.1 Overproduction of the S. marcescens chitinases in E. coli. (A) Each of the S. marcescens chitinase 
encoding genes chiA, chiB, chiC were overexpressed from pQE60/ pQE70 vector induced with 2mm IPTG in LB 

medium at 37 C for 3 hours. Whole cell fractions were loaded onto a 14 % (w/v) acrylamide gel and stained 
with Coomassie brilliant blue (B) Western immunoblotting of whole cell fractions using a penta-His mouse 
monoclonal antibody shows each of the C-terminal hexa-Histidine tags were present. (C) Following IPTG 
induction, cells were harvested, washed, and sonicated. Insoluble material was removed by centrifugation and 
compared to the remaining soluble protein by SDS-PAGE.  
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Figure 2.2 Generation of ChiC polyclonal anti-sera. First, ChiCHis was overproduced and purified by Ni-IMAC. 
The protein was then pooled and concentrated in 10 kDa MWCO device and loaded onto SuperdexTM 75 10/30 
size exclusion column. (A) Elution profile of ChiCHis at A280 by SEC. Fractions corresponding to the peak shown 
around elution volume 10-16mL were pooled. (B) SDS-PAGE analysis of the SEC fractions revealed one major 
protein at the correct molecular mass for ChiCHis (C) Western immunoblotting of whole cell (WC) and 
supernatant (SN) fractions with ChiC polyclonal antisera. The in‐house α‐ChiC sera was used at a 1:20,000 
dilution, while the secondary antibody was horseradish peroxidase‐conjugated (BioRad) and used at 1:10,000 
dilution. Westerns were developed using enhanced chemoluminescence (Millipore). 
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Next, we wanted to generate ChiB antisera. Since ChiB was insoluble, we overproduced ChiB, but 

then resuspended the cell lysate pellet in 5M urea buffer before refolding and purification via an 

IMAC step. The now soluble ChiB was then concentrated using a 10,000 MWCO device and subjected 

to SEC (FIGURE 2.3).  The resultant protein was then pooled and concentrated to 1.51 mg/ml, and was 

confirmed to be S. marcescens ChiB by tryptic peptide mass fingerprinting, a sample of which was 

used to generate polyclonal ChiB antisera (Eurogentec). ChiB was detectable in the supernatant in 

‘wild type’ strain S. marcescens Db10 and in strain JchiB (chiB+, ∆chiA, ∆chiC). Although the band 

corresponding to ChiB is prominent, the polyclonal antiserum is not immunologically distinct: it is 

able to detect ChiA and at least one other non-specific band in a triple chitinase mutant Nochi (∆chiA, 

∆chiB, ∆chiC) (FIGURE 2.3). 

Figure 2.3 Generation of ChiB polyclonal anti-sera. ChiBHis was overproduced; the low-speed pellet was 
resuspended in 5M Urea, and purified by Ni-IMAC. The protein was then pooled and concentrated in 10 kDa 
MWCO device and loaded onto SuperdexTM 75 10/30 size exclusion column. (A) Elution profile of ChiBHis at A280 
by SEC. Fractions corresponding to the peak shown around elution volume 12-18mL were pooled. (B) SDS-PAGE 
analysis of the SEC fractions showed one protein of the correct molecular mass for ChiBHis. (C) Western 
immunoblotting of whole cell (WC) and supernatant (SN) fractions with ChiB polyclonal antibody detected ChiB 
is present in the extracellular medium of S. marcescens Db10 and JchiB mutant encoding just chiB. The ChiB 
antiserum can recognise the ChiA protein (*) and at least one unidentified protein (**). The in‐house α‐ChiB 
sera was used at a 1:20,000 dilution, while the secondary antibody was horseradish peroxidase‐conjugated 
(BioRad) and used at 1:10,000 dilution. Westerns were developed using enhanced chemoluminescence 
(Millipore).  
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Finally, we also needed to generate ChiA antisera for Western blot analysis. The cell lysate pellet 

(containing overproduced ChiA in inclusion bodies) was denatured in 5M urea before renaturation 

and purification by IMAC. The fractions corresponding to the imidazole elution were pooled and 

dialysed. A 58 kDa band was identified as ChiA by tryptic peptide mass fingerprinting.  The 

aggregation and degradation bands apparent around ChiA by SDS-PAGE (FIGURE 2.4) were revealed 

also to be ChiA by western immunoblotting against the His-tag (FIGURE 2.4).The concentration of the 

protein after dialysis was 0.57 mg/ml and a fraction of this was used to produce polyclonal ChiA 

antisera (Eurogentec). Western immunoblotting against ChiA with the resultant antibody shows ChiA 

is present both in the cell (Db10) and also in the extracellular supernatant, for Db10 and JchiA (chiA+, 

∆chiB, ∆chiC), and shows that it is immunologically distinct, since it does not appear in strains devoid 

of the chiA gene.  

 

 

Figure 2.4 Generation of ChiA polyclonal anti-sera. ChiAHis was overproduced in E. coli, the low speed pellet 
was resuspended in 5M urea and gently stirred for 5 days at room temperature, and then purified by Ni-IMAC. 
The fractions corresponding to the peak from the IMAC step were then pooled and dialysed. (A) The pooled 
sample was loaded onto an acrylamide gel and separated by SDS-PAGE, which revealed one major protein at 
the correct molecular mass for ChiAHis and its identity was confirmed by tryptic peptide mass fingerprinting. We 
loaded three different volumes (10 µl, 5 µl and 2.5 µl) of the same 0.57 mg/ml sample in order to determine 
the most prominent band/s. (B) Western immunoblotting of the same sample revealed aggregates surrounding 
ChiAHis were also ChiA. (C) The ChiA antibody shows ChiA is present in both the cellular fraction and the 
extracellular medium of S. marcescens Db10 and JchiA mutant encoding just chiA. 
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2.3.3 Dissecting the chitin-degrading phenotype of Serratia marcescens 
 

To test for secreted chitinase activity, each of the new deletion strains were grown on LB-agar plates 

supplemented with 2% (w/v) colloidal chitin for 48 hours at 30 C (FIGURE 2.5). Chitinolytic activity 

was not detectable in the triple mutant Nochi strain (FIGURE 2.5), and appears compromised in other 

strains containing one or two chitinases (FIGURE 2.5). This important initial data show that a strain 

lacking all known chitinases is unable to degrade colloidal chitin in this plate test, while strains that 

express only one of the three chitinases retains detectable chitinase activity. This served as the basis 

of a robust genetic screen to identify the secretion systems for each of the chitinase isoenzymes. 

Figure 2.5 The chitin-degrading phenotype is compromised in S. marcescens mutant strains.                   
Chitinolytic activity is compromised in strains lacking one or two chitinase encoding genes, and lost completely 
in strain (Nochi) devoid of any chitinase encoding genes. The parent S. marcescens Db10 and chitinase mutants 
were first grown in liquid cultures for 16 hours and then spotted on LB-agar containing 2% (w/v) colloidal chitin 

and incubated aerobically at 30 C for 48 hours. Chitinase activity is visualised as zones of clearing. (A) Single 
chitinase mutants. (B) Double chitinase mutants. (C) A strain (Nochi) devoid of the known chitinase-encoding 
genes. Parental strain S. marcescens Db10 is included in each image for comparison.   

 

In order to quantify the extracellular chitinolytic activity of the mutant strains we performed an 

enzymatic assay. The supernatants from liquid cultures were grown in the presence of 2% (w/v) 

colloidal chitin for 16 hours and were isolated and incubated with chitin azure for 48 hours. 

Chitinolytic activity was then measured as an increase in A560 caused by release of a blue dye from 

the chitin azure substrate (FIGURE 2.6). The activity recorded suggests that ChiA is the dominant 

chitinase activity expressed by S. marsescens Db10 and that ChiB may be a minor player in the 

utilisation of chitin under these experimental conditions (FIGURE 2.6).  
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Figure 2.6 Chitinase secretion assay showing chitinolytic activity is compromised in each of the mutant strains.  

The spent culture supernatants from the S. marcescens parental strain (‘Sma Db10’) and a selection of the 

chitinase mutants grown for 16 hours overnight were concentrated and assayed for 48 hours at 30oC to measure 

chitinase activity with 1% chitin azure in 100 mM succinate pH 6.0. Error bars represent SEM, n = 3. 
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2.3.4 Deletion of the cbp21 gene encoding chitin-binding protein does not appear to 
affect the chitin degrading phenotype 

 

 

On the basis of previous in vitro work (Vaaje-Kolstad et al., 2005), which suggested that Cbp21 is 

essential for chitin degradation by S. marcescens, we decided to make a targeted deletion of cbp21 in 

order to assess whether the phenotype appears compromised in vivo. The SMA2877 cbp21 gene was 

deleted from both parental strain S. marcescens Db10, to assess whether the whole chitinolytic 

phenotype was altered, but also JchiB (chiB+, ∆chiA, ∆chiC) since previous work had suggested that 

Cbp21 was most essential for promoting binding of ChiB to its substrate (Vaaje-Kolstad et al., 2005). 

Strains were grown for 16 hours and spotted onto solid 2% w/v colloidal chitin rich media and grown 

at 30oC for 48 hours. Deletion of SMA2877 cbp21 appears to have no obvious effect on the in vivo 

chitinolytic phenotype of S. marcescens under these experimental conditions, in either S. marcescens 

Db10 or JchiB backgrounds (FIGURE 2.7).  

 

 

Figure 2.7 Deletion of gene SMA2877 encoding chitin-binding protein Cbp21 appears to have no effect on the 
in vivo chitinolytic phenotype of S. marcescens. Targeted deletion of SMA2877 from parental strains Db10 and 
JchiB (chiB+, ∆chiA, ∆chiC) were made. Strains were grown for 16 hours at 30oC in rich media and then spotted 
onto solid 2% w/v colloidal chitin rich media and grown at 30oC for 48 hours. 
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2.3.5 Chitinases are predominantly localised in the extracellular environment  
 

 
To assess whether each of the S. marcescens chitinolytic proteins were truly secreted enzymes, it was 

important to assess the relative levels of intra- against extracellular presence of chitinase. To test 

this, a biochemical assessment of the localisation of each S. marcescens chitinase was undertaken: S. 

marcescens was cultured aerobically at 30 oC in liquid rich medium, over the course of three days 

before whole cell and cell free supernatants were separated and the respective presence of native 

chitinase was compared using Western immunoblotting (FIGURE 2.8). ChiA, ChiB and ChiC were clearly 

detectable in the culture supernatant over the duration of the experiment, whereas neither the 

cytoplasmic control protein RNA polymerase, nor the periplasmic maltose binding‐protein, could be 

detected in the extracellular milieu even after an extended 72 hours of growth (FIGURE 2.8). This 

strongly suggested that all three chitinases are deliberately externalised from the bacterial cell.  

 

 

 

Figure 2.8 S. marcescens chitinases are located in the extracellular environment. S. marcescens was grown 
aerobically at 30oC in rich medium. At the time points indicated an aliquot was taken and separated into 
culture supernatant ‘SN’ and whole cells ‘WC’ by centrifugation. The fractions were analysed for the presence 
of ChiA, ChiB, ChiC by Western immunoblotting using polyclonal antibodies. The locations of the periplasmic 
control protein (maltose binding-protein, MBP) and a cytoplasmic control protein (RNA polymerase, RNAP) 
were also determined using commercially-available antibodies.  
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2.3.6 A transposon mutagenic screen to search for a chitinase secretion system    
 

The gross phenotypes of the chitinase mutants on colloidal chitin plates (FIGURE 2.9) were used as the 

basis of genetic screens to identify the secretion pathways used by each enzyme. Strains JchiA (chiA+, 

∆chiB, ∆chiC), JchiB (chiB+, ∆chiA, ∆chiC), JchiC (chiC+, ∆chiA, ∆chiB) where separately mated with an 

E. coli donor strain harbouring a mini-Tn5 plasmid containing a transposable element (E. coli SM10 

λpir pUTmini-Tn5Sm/Sp). S. marcescens colonies containing a transposon insertion were selected on 

minimal media plates supplemented with streptomycin, and each mutant was patched onto 2% (w/v) 

colloidal chitin plates to screen for candidates that were defective for chitinolytic activity. For the 

JchiA strain (expressing chiA and cbp21 only) 2,400 transposon insertion mutants were screened; for 

the JchiB strain (expressing chiB and cbp21 only) 3,800 transposon insertion mutants were screened; 

and  for JchiC (expressing chiC and cbp21 only) 2,750 transposon insertion mutants were screened. 

Mutant candidates apparently exhibiting a loss of the chitinolytic halo were re-struck onto fresh 

colloidal chitin plates. We identified 14 JchiA candidates that had lost in vivo chitinase activity; five 

candidates for the JchiB strain; and nine candidates for the JchiC experiment (FIGURE 2.9).  

 

 

 

 

 

 

 

 

 

Figure 2.9 Transposon screen to identify genes encoding a possible chitinase secretion system and 
responsible for in vivo chitinolytic phenotype. Transposon mutagenesis candidates harbouring a single 
chitinase encoding gene exhibiting a loss of chitinolytic activity were grown at 30oC for 48 hours on LB media 
supplemented with 2% (w/v) colloidal chitin. (A) There are currently 14 JchiA candidates (8 are shown) (B) 
There are 5 JchiB candidates. (C) There are 9 JchiC candidates (8 are shown). Parental strains (JchiA, JchiB or 
JchiC) exhibiting a chitinolytic halo, as well as the triple mutant (Nochi) were included for comparison.  
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2.3.7 Mapping Tn5 insertions in the JchiA strain  
 

 

The locations of the transposon insertions in the JchiA (chiA+) strain that exhibited a loss of chitin-

degrading ability were mapped (Table 2.1), using a single primer specific PCR, with reference to the 

genome sequence of S. marcescens Db11 (Wellcome Trust Sanger Institute, UK). 

 

 

 

TnchiA 

Candidate 

 

Disrupted ORF 

 

Putative Product/ Function 

 

TnchiA3 

 

SMA4243 chiA 

 

Chitinase ChiA 

TnchiA4 SMA4243 chiA Chitinase ChiA 

TnchiA5 SMA4243 chiA Chitinase ChiA 

TnchiA6 SMA4482 hfq Host Factor I Protein mRNA Binding Regulator Hfq 

TnchiA7 SMA4243 chiA Chitinase ChiA 

TnchiA8 SMA4243 chiA Chitinase ChiA 

TnchiA9 SMA4243 chiA Chitinase ChiA 

TnchiA11 SMA4243 chiA Chitinase ChiA 

TnchiA13 SMA4243 chiA Chitinase ChiA 

TnchiA14 SMA4579 speF Ornithine Decarboxylase SpeF 

 

Table 2.1 Genetic loci of remaining JchiA Tn5 candidates exhibiting loss of chitin-degrading phenotype. Of the 
ten ‘TnchiA’ candidates that were mapped, all but two contained a transposable element in the chitinase 
encoding gene chiA. Disruption of SMA4482 hfq encoding a global mRNA-binding regulator was shown to be 
responsible for loss of phenotype in one candidate ‘TnchiA6’, as was disruption of SMA4579 speF, encoding an 
Ornithine Decarboxylase in a separate candidate ‘TnchiA14’. 

 

Of the fourteen mutant candidates that were defective on chitin rich media, ten were successfully 

mapped, eight of which were shown to reside in SMA4243, the chitinase encoding gene chiA (Table 

2.1). Of the remaining two candidates, one transposon was located in SMA4579 speF, encoding an 

ornithine decarboxylase, for which there is no published work investigating the role of this in relation 
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to chitin metabolism. The other Tn5 insertion was mapped to SMA4482 hfq, which encodes a global 

mRNA binding transcriptional regulator. At present there is no published work linking Hfq to 

regulation of the chitinolytic machinery in Serratia marcescens: here we have shown that Hfq is likely 

to be essential for the chitin-degrading phenotype produced by ChiA. Cartoon representations of 

each of the Tn5 insertions are given in FIGURE 2.10.  

 

 

TnchiA 

Candidate 

 

 

Genomic 

Location  

S. 

marcescens 

 

Cartoon Representation of Tn5 Insertion and Surrounding Genomic Loci 

 

TnchiA3 

 

Base pair 

location 

4538485-

4538486 

 

 

 

TnchiA4 

 

Base pair 

location 

4538497-

4538498 

 

 

 

 

TnchiA5 

 

Base pair 

location 

4539373-

4539374 

 

 

TnchiA6 

 

Base pair 

location 

4825944-

4825945 
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TnchiA7 Base pair 

location 

4538538-

4538539 

 

 

TnchiA8 Base pair 

location 

4538717-

4538718 

 

 

TnchiA9 Base pair 

location 

4538683-

4538684 

 

 

TnchiA11 Base pair 

location 

4538692-

4538693  

 

TnchiA13 

 

Base pair 

location 

4538492-

4538493 

 

 

 

TnchiA14 

 

Base pair 

location 

4924106-

4924107 

 

 

Figure 2.10 Cartoon representation of the ten JchiA candidate (‘TnchiA’) Tn5 insertions that exhibited a loss 
of chitin-degrading phenotype, including nearby genomic ORF’s. Eight of the ten candidates contained a 
transposon insertion in chiA chitinase encoding gene itself, all except one of these were located toward the 5’ 
end of chiA. In one of the candidates the Tn5 was located in SMA4482, which encodes Hfq, or host factor-I 
protein (HF-I), a global mRNA-binding regulator. In a separate candidate, TnchiA14, the Tn5 was mapped to 
SMA4579 speF, encoding an ornithine decarboxylase. 
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Western immunoblotting of the ‘TnchiA’ candidates revealed that none of these strains, mapped or 

otherwise, were able to produce ChiA, suggesting all of the genes disrupted were directly involved in 

chiA production, rather than transport, if not embedded in chiA itself (FIGURE 2.11).  

 

 

Figure 2.11 ChiA was not detectable in Tn5-containing JchiA candidates. Western immunoblotting to detect 
the presence of ChiA: strains were grown for 16 hours and separated into whole cell (WC) and supernatant (SN) 
fractions and blotted against using polyclonal ChiA anti-sera. ChiA was not detectable in any of the Tn5-
containing strains. The JchiA parental strain is included for comparison. 

 

 

2.3.8 Mapping Tn5 insertions in the JchiB strain  
 

Two of the five ‘TnchiB’ candidates were successfully mapped with respect to the published S. 

marcescens Db11 genome (Wellcome Trust Sanger Institute, UK). One Tn5 was mapped to chiB, the 

other was mapped to chiR, encoding a LysR type transcriptional regulator and known to be an 

essential player in the S. marcescens chitinolytic phenotype (Table 2.2) (Suzuki et al., 2001).  
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Candidate 

 

 

Disrupted ORF 

 

Putative Product/ Function 

 

TnchiB3 

 

SMA2875 chiB 

 

Chitinase ChiB 

 

TnchiB5 

 

SMA2876 chiR 

 

LysR type Regulator of Chitinase transport ChiR 

 

 

Table 2.2 Genetic loci of JchiB Tn5 candidates exhibiting a loss of chitin-degrading phenotype. Of the two 
‘TnchiB’ candidates that were mapped, one Tn5 was located in SMA2875 chiB chitinase encoding gene, and the 
other was located in SMA2876 chiR regulator. 

 

 

A cartoon of each insertion shows a Tn5 was isolated well within the respective ORFs of chitinase 

encoding chiB, and the regulator encoding chiR gene for each candidate (FIGURE 2.12). 
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TnchiB 

Candidate 

 

Genomic Location  

S. marcescens 

 

Cartoon Representation of Tn5 Insertion and Surrounding  

Genomic Loci 

 

 

TnchiB3 

 

Base pair location 

3034536-3034537 

 

 

TnchiB5 Base pair location  

3035608-3035609 

 

Figure 2.12 Cartoon representation of Tn5 insertions for candidates TnchiB3 and TnchiB5. Tn5 insertions were 
mapped well within the respective SMA2875 chiB and SMA2876 chiR ORF’s. 

 

Western immunoblotting each of the ‘TnchiB’ candidates, however, revealed that strain ‘TnchiB2’ 

was able to move ChiB to the extracellular milieu and yet exhibited a loss of in vivo chitinolytic 

activity when grown on colloidal chitin rich media (FIGURE 2.13).  This candidate is yet to be 

successfully mapped. 

 

Figure 2.13 Strain TnchiB2 secretes ChiB to the supernatant but exhibits a loss of chitinolytic activity. (A) 
Strains were grown for 16 hours in liquid rich media before separation into whole cell (WC) and supernatant 
fractions (SN) and the presence of ChiB was determined using polyclonal ChiB-antisera by Western 
immunoblotting. (B) Strain TnchiB2 exhibited a loss of chitinolytic activity in vivo. This was shown by growing 
parental JchiB strain and TnchiB2 for sixteen hours in liquid rich media and then spotting on 2% w/v colloidal 
chitin rich media and grown aerobically at 30oC for two days. 
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2.3.9 Mapping Tn5 insertions in the JchiC strain  
 

 

The JchiC (chiC+, ∆chiA, ∆chiB) strain remained chitinase‐positive on the colloidal chitin solid media 

and would only produce ChiC. The random transposon mutagenic screen identified nine mutant 

isolates that could no longer degrade extracellular chitin. To differentiate between mutants defective 

in chiC expression, from those defective in ChiC secretion, the transposon mutants were grown in 

liquid culture and separated into whole cell/ intracellular and supernatant/ secretion fractions which 

were compared using Western immunoblotting (FIGURE 2.14). This approach identified three 

candidates that had lost in vivo chitin-degrading phenotype: these candidates were producing ChiC 

to normal levels but were blocked in their ability to move ChiC to the extracellular supernatant 

(FIGURE 2.14).  

 

 

 

Figure 2.14 Detection of three JchiC strains producing native ChiC that was not detectable in the culture 
supernatant. Western immunoblot with polyclonal anti-ChiC serum with whole cell and supernatant fractions 
of JchiC transposon mutagenesis candidates 1-9 grown for 16 hours at 30 oC.  

 

 

The locations of the transposon insertions in the three secretion‐defective mutant strains were 

mapped, using single primer specific PCR, with reference to the genome sequence of S. marcescens 

Db11 (Wellcome Trust Sanger Institute, UK), which is a spontaneous streptomycin‐resistant 

derivative of the S. marcescens Db10 strain used in this study. Two of the transposon insertions were 

mapped to different locations in the same gene (SMA2874) and the third was located in SMA2876, 

which had been previously identified as chiR  (TABLE 2.3) (Suzuki et al., 2001).  
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Candidate Disrupted ORF Putative Product/ Function 

 

TnchiC1 

 

SMA2876 chiR 

 

LysR type Regulator of Chitinase transport ChiR 

TnchiC4 SMA2874  Phage holin-like protein  

TnchiC6 SMA2874  Phage holin-like protein  

 
Table 2.3 Genetic location of Tn5 insertion in JchiC candidates responsible for loss of chitinolytic phenotype.  
 

 

 

The chiR gene encodes a transcriptional regulator of the LysR family already known to have an 

important role in the chitin-degrading phenotype (Suzuki et al., 2001), however SMA2874 had not 

been previously studied. Further inspection of the S. marcescens genome sequence revealed that 

chiR and SMA2874 are located adjacent to chiB and cbp21 on the S. marcescens chromosome. The 

relative positions of each Tn5 insertion are represented in cartoon format in (FIGURE 2.15). The 

TnchiC1 transposon was mapped 129 base pairs upstream of the 5’ initiation codon of chiR, and 276 

base pairs upstream of the 5’ start of cbp21 ORF.  
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TnchiC 

Candidate 

 

Genomic Location  

S. marcescens 

 

Cartoon Representation of Tn5 Insertion and Surrounding 

Genomic Loci 

 

TnchiC1 

 

Base pair location 

3036153-3036154 

 

 

 

TnchiC4 

 

Base pair location 

3033033-3033034 
 

 

 

TnchiC6 

 

 

 

 

Base Pair Location 

3033227-3033228 

 

 

Figure 2.15 Cartoon representations of the three JchiC candidate (‘TnchiC’) Tn5 insertions that were blocked 
in their ability to move ChiC to the extracellular environment. One shows insertion in chiR, the other two in 
SMA2874, and including nearby genomic organisation. For candidate TnchiC1, the Tn5 was located 129 base 
pairs upstream of the chiR initiation codon. The Tn5 insertion of candidate TnchiC4 was mapped clearly within 
the SMA2874 ORF, and the insertion for candidate TnchiC6 was located 23 bases upstream of the 5’ initiation 
codon of SMA2874. 
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 Discussion 

 

 

The work presented here investigated the role of each component responsible for the S. marcescens 

chitinolytic phenotype. Each of the single chitinase producing strains were shown to be individually 

chitinase positive when grown on chitin-rich media, whereas cbp21 encoding chitin binding protein, 

Cbp21, was not essential for the chitinolytic phenotype in vivo.  

In this Chapter a transposon mutagenic screen was used to attempt to identify a secretion system 

responsible for moving chitinase across the cell envelope. We have uncovered new evidence that 

genes SMA4482 hfq, SMA4579 speF, SMA2876 chiR, and SMA2874 may have crucial roles in the S. 

marcescens chitinolytic phenotype. Of these four genes, SMA4579 (speF) and SMA2874, have never 

been previously associated with chitin degradation, or chitinase secretion.  

Candidates from the transposon screen with JchiC parental strain bearing a Tn5 in chiR or SMA2874 

were shown to produce intracellular ChiC that was clearly blocked in its capacity to move to the 

extracellular environment, suggesting both of these genes encode proteins involved in transport of 

ChiC, as opposed to transcription or translation of chiC. SMA4579 (hfq) encodes a global mRNA 

binding regulator, Hfq, which plays an important role in the chitinolytic phenotype of the Gram 

positive bacterium Listeria monocytogenes (Nielsen et al., 2011). Furthermore, chiR encodes the LysR 

regulator ChiR, which is already known to have an essential role in the S. marcescens chitinolytic 

phenotype (Suzuki et al., 2001).  
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2.4.1 The potential role of Hfq regulator in the S. marcescens chitinolytic phenotype   
 

 
Although the SMA4482 hfq gene was only hit in our screen for genes involved in ChiA secretion, 

rather than ChiB and ChiC, it has subsequently been shown that deletion of SMA4482 hfq results in a 

complete loss of chitin-degrading activity in Serratia marcescens (Sarah Murdoch and Marilia Costa, 

University of Dundee). From this we can infer that Hfq may be essential for the expression of all 

chitinase enzymes produced by S. marcescens.  

The crystal structure of E. coli Hfq has been solved (Beich-Frandsen et al., 2011), and to date the only 

published work related to Hfq regulation of chiA was done in the Gram positive bacterium Listeria 

monocytogenes (Nielsen et al., 2011). We therefore made an alignment of an Hfq sequence from 

each of these organisms (FIGURE 2.16), which showed considerable sequence conservation between 

all three.  The S. marcescens Hfq protein has 88% overall sequence identity, and 91% overall 

similarity, with E. coli Hfq, and 46% overall sequence identity, and 70% overall similarity, with L. 

monocytogenes Hfq. It may be worth noting that in β- and γ-proteobacteria, Hfq has an extended C-

terminal domain that is thought to have a role in the binding of longer mRNAs, but is unnecessary in 

the binding of small RNAs (Vecerek et al., 2008). Hfq is known to contain an evolutionarily conserved 

core sequence (residues 7-66), from this it is inferred there has been selective pressure to conserve 

the sequence, and the function, of Hfq (Beich-Frandsen et al., 2011). 

 

 

Figure 2.16 An alignment of Hfq sequences from Serratia marcescens Db10 (Sma), Escherichia coli ER2566 
(Eco) and the Gram positive bacterium Listeria monocytogenes EGD-e (Lmo). Sequence alignments were 
performed with Clustal Omega (2), and displayed using the freely-available on-line tool Boxshade 3.21 
(http://www.ch.embnet.org/software/BOX_form.html). 

 

 

 

  

http://www.ch.embnet.org/software/BOX_form.html
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Hfq is involved in riboregulation, a mechanism of stress response involving regulation by small trans-

encoded RNAs (sRNAs) that bind to mRNAs at the ribosome binding site and preclude ribosome 

binding, leaving the mRNA subject to rapid degradation (Papenfort and Vogel, 2009). Many sRNAs 

are functionally dependent on Hfq for stabilization and for its role as a chaperone in mediating the 

interaction between the sRNA and its target mRNA. Deep sequencing of Salmonella enterica serovar 

Typhimurium has shown that Hfq is involved in regulating the expression of 20% of its genes (Moller 

et al., 2002; Sittka et al., 2008). Although most work investigating the role of Hfq in facilitating sRNA-

mediated riboregulation has been done in Gram negative bacteria, Hfq itself in fact belongs to the 

Sm- and Sm-like family of proteins (Moller et al., 2002), but it is commonly classified as an ‘RNA-

chaperone’ (Moll et al., 2003). The Sm-like family of bacterial, eukaryotic and archael proteins are 

comprised of a diverse, and conserved, group of RNA-binding chaperone proteins that operate by 

assisting in the proper spatial configuration of RNA molecules, and they also commonly act as helpers 

in RNA-RNA and RNA-protein interactions (Murina and Nikulin, 2011). 

E. coli Hfq consists of six protomers that form a hexameric doughnut-like structure (Beich-Frandsen 

et al., 2011). This work has shown that the presence of the variable C-terminus, as well as the 

hexameric conformation, have little effect on the Sm-core, which is highly conserved between 

distantly related phyla (Beich-Frandsen et al., 2011). The E. coli Hfq structure exhibits polar and 

hydrophobic interactions between three C-termini, which stabilizes the Hfq hexamers in hexagonal 

layers, and these layers pack against each other to form a double layer (FIGURE 2.17) (Beich-Frandsen 

et al., 2011).  

 

 

Figure 2.17 E. coli Hfq forms a hexameric doughnut structure (Beich-Frandsen et al., 2011). Each E. coli Hfq 
hexameric molecule (A) packs to form a hexagonal ‘honey-comb’ pattern. The hexameric layers then stack to 
form a staggered double layer (B) with a ~30 Angstroms void between them. 
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To our present knowledge, the only work to have investigated connections between Hfq and chitin 

metabolism has been done in the Gram positive Listeria monocytogenes (Nielsen et al., 2011). This 

work showed that Hfq acts as a post-transcriptional regulator of chiA, it promotes base pairing of the 

LhrA sRNA to the chiA mRNA transcript and hence acts to down regulate the expression of chiA 

(Nielsen et al., 2011). Some recent work carried out in the Division of Molecular Microbiology, 

University of Dundee, by Sarah Murdoch and Sarah Coulthurst (unpublished observations) revealed 

that a FLAG-tagged Hfq of S. marcescens was bound to a small RNA corresponding to a sequence 

located at the 3’ end of chiA. The possibility that the 3’ end of chiA encodes a possible sRNA involved 

in regulation of chiA expression is currently under investigation. This is a tantalizing discovery in the 

light of recent work (Chao et al., 2012) that has identified an sRNA, DapZ, which is encoded in the 3’-

UTR of the dapB gene and acts as a translational repressor. This work also discovered another seven 

genes in Salmonella typhimurium encoding 3’-UTR harbouring sRNAs that are transcribed from a 

gene-internal promoter (Chao et al., 2012). The authors conclude that the 3’ mRNA regions 

potentially provide a rich source of sRNAs that function as Hfq targets and plays an important role in 

Hfq networks (Chao et al., 2012). The transposon screen carried out in this study did not disrupt the 

3’-end of chiA, so it is unlikely that the resulting loss of chitinolytic phenotype is attributable to 

disruption of 3’ encoded sRNA regulation. 

Since targeted deletion of the hfq gene results in a complete loss of chitinolytic phenotype in S. 

marcescens, it is likely that Hfq plays a stimulatory role in the regulation of chitin metabolism. 

Whether this is mediated by a single sRNA, as most Hfq-associated sRNAs are known to regulate 

multiple targets, is an open question.  

 

For future work, there is a publicly available tool TargetRNA 

(http://cs.wellesley.edu/~btjaden/TargetRNA2/) that will predict mRNA targets for a given sRNA 

(Tjaden et al., 2006), and it will be interesting to see whether this supports any new findings in our 

hfq / chiA research. The next task would be to generate a clean deletion of the sRNA encoding locus 

and to compare global transcript levels using microarray analysis, and also to validate any change in 

RNA products of interest using either northern blotting or quantitative RT-PCR – this should provide 

hard evidence that the sRNA of interest plays a role in regulation of chitinolytic, and possibly 

unknown, components.    
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2.4.2 The putative role of ornithine decarboxylase in the chitinolytic phenotype 
 
 

From the transposon mutagenic screen with JchiA parental strain we mapped one Tn5 to gene 

SMA4579 speF encoding a putative ornithine decarboxylase (ODC). This protein belongs to members 

of the ornithine decarboxylase family, their general structure is a dodecamer consisting of six 

homodimers, and they serve to decarboxylate ornithine to form putrescine (John, 1995). The amino 

acid sequence of S. marcescens SpeF exhibits considerable similarity, 72% sequence identity and 84% 

positive identity, to the E. coli ornithine decarboxylase SpeC. In E. coli, SpeC is known to have an 

important role in polyamine biosynthesis: it converts L-ornithine to putrescine, which then 

undergoes condensation with decarboxylated S-adenosylmethionine to produce spermidine, which is 

carried out by a spermidine synthase SpeE (Xie et al., 1989). Regulation of polyamine pools has been 

shown to be important for growth in both bacteria and mammals (Davis et al., 1992). To our current 

knowledge, an ornithine decarboxylase has never been investigated in relation to either membrane 

biology or chitin metabolism. It was therefore a surprising result. Since it is very likely that SpeF, as 

yet uncharacterised in S. marcescens, plays an important role in regulating polyamine pools, it is 

unlikely to be involved directly in facilitating chitinase transport. Furthermore Western blot analysis 

revealed that the presence of ChiA is lost altogether in the speF-Tn5 (TnchiA14) strain (FIGURE 2.11), 

which suggests it is more likely that spermidine/ polyamine pools play a role in transcription or 

translation of chiA, as opposed to transport of ChiA.  

 

Polyamines, such as putrescine, are known to play important roles in gene regulation due to their 

positive-charge, DNA/RNA-binding potential: for example, in E. coli 90% of spermidine is bound to 

RNA, and of the total cellular putrescine available 9.3% is bound to DNA, 48% to RNA and 39% is free 

(Miyamoto et al., 1993; Wortham et al., 2007). In addition to this, polyamines are also thought to be 

involved in stabilising DNA bending, an important feature for many regulatory proteins, such as the 

LysR-type transcriptional regulators (see discussion of ChiR regulation below) (Lindemose et al., 

2005; Pastre et al., 2006). There is evidence that polyamines, including putrescine, alleviate DNA-

bending by preferential binding to adenine tracts in double stranded DNA, and by sequence specific 

interactions with gene promoter regions (Lindemose et al., 2005). The DNA-interacting properties of 

polyamines has led some researches to coin the term ‘polyamine modulon’ to denote this form of 

regulation (Yoshida et al., 2004). 

 

On the S. marcescens Db11 genome, speF lies adjacent to SMA4578 potE encoding a putrescine-

ornithine antiporter, a predicted 46 kDa membrane protein involved in putrescine transport. In E. coli 

there are two ABC transporters, encoded by potABCD and potFGHI, involved in uptake of spermidine 
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and putrescine respectively (Igarashi et al., 2001): in addition to this E. coli also encodes a 

putrescine/ ornithine antiporter, potE, that also forms part of an operon in which it lies adjacent to 

the gene encoding an ornithine decarboxylase, speF, and PotE has been shown to excrete putrescine 

in a 1:1 exchange in response to the presence of ornithine (Kashiwagi et al., 1997)  

 

In order to take this work further, a clean ∆speF strain would need to be constructed, and its effect 

on the secretion of each chitinase determined. The best way to approach this would be to perform a 

chemical complementation using the ∆speF strain, the S. marcescens Db10 parental control strain, 

and ∆speF encoding speF on a plasmid: these strains would then be treated with exogenous 

application of putrescine, applied in a gradient (e.g. 1 µM-10 mM) and the levels of chitinase 

production, as a function of putrescine addition, would be assessed by Western immunoblotting 

(Patel et al., 2006). This will establish whether or not the presence of putrescine plays an important 

role in regulating chitinase gene expression.  It may also be worthwhile isolating mRNA from the 

different putrescine-treated samples, from there it will be possible to do qPCR to assess whether the 

levels of chitinolytic gene expression, including chiR and SMA2874, are affected by the presence of 

polyamines such as putrescine.  
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2.4.3 The role of ChiR and the LysR family 
 

 

In this work, we have identified two separate chitinase secretion mutants – one from the JchiB and 

one from the JchiC screen - bearing Tn5 insertions in SMA2876 (chiR). Moreover, it was very 

interesting that the TnchiC1 mutant was able to produce intracellular ChiC, but appeared blocked in 

its ability to move ChiC to the extracellular milieu. The Tn5 insertion for mutant TnchiB5 was mapped 

well within the chiR ORF, whereas the TnchiC1 transposon was mapped 129 base pairs upstream of 

the 5’ initiation codon of chiR, 276 base pairs upstream of the divergent cbp21 initiation codon, and 

was therefore in an intergenic region. Previous work has implicated the intergenic region between 

chiR and cbp21 to be an important binding site for ChiR (Suzuki et al., 2001).    

ChiR is a LysR-type transcriptional regulator (LTTR). The LysR family are ubiquitous transcriptional 

regulators in bacteria and with 800 members identified they comprise the largest family of DNA 

binding proteins in prokaryotes (Maddocks and Oyston, 2008). In previous work, it was established 

that Tn5 disruption, and targeted deletion, of chiR in S. marcescens results in a complete loss of the 

extracellular presence of each chitin-degrading character (ChiA, ChiB, ChiC and Cbp21) (Suzuki et al., 

2001). This important work identified chiR as essential in the S. marcescens chitinolytic phenotype, it 

identified ChiR as being an LTTR, and also demonstrated that it binds the chiR-cbp21 intergenic 

region (Suzuki et al., 2001). However, this paper made the assumption that if the chitinolytic 

phenotype is lost in a chiR-Tn5 mutant, this infers that ChiR is essential for the transcription of the 

entire chitinolytic set (even though ChiR was shown not to bind chiA, chiB, or chiC promoter regions 

in the same work). Suzuki and co-workers (2001) demonstrate that the extracellular presence of the 

chitinolytic proteins is lost in the culture supernatant of the chiR-Tn5 strain, but do not test (or have 

no way of testing) whether intracellular levels are affected. Testing whether any chitinolytic proteins 

are present within the cell would have enabled them to determine whether ChiR is involved directly 

in transcription of the chitinolytic genes or if it could be regulating something else, for example a 

transport or secretion system.  

Originally, the LysR family were thought to be a small group of transcriptional activators that 

positively regulated expression of a divergently transcribed gene, and exhibited negative 

autoregulation. This classical model of LysR regulation (based on LysR regulation of lysA, encoding an 

enzyme that decarboxylates diaminopimelate to produce lysine in E. coli (Stragier et al., 1983)) has 

since been redefined. LysR regulators are the most abundant family of transcriptional regulators in 

bacteria, they both activate and repress transcription of a very diverse set of genes involved in 

virulence, metabolism, quorum sensing, cell division and motility (Maddocks and Oyston, 2008). The 

LysR family exhibit a conserved structure, characterised by an N-terminal helix-turn-helix (HTH) 

motif, and a C-terminal co-inducer-binding domain. The LTTR N-terminal ‘winged’-HTH motif has 
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three helical domains, the second and third interact with DNA and the third domain inserts into the 

major groove of the DNA helix (Brennan and Matthews, 1989); in addition to this the winged-HTH 

motif also possesses a single anti-parallel β-sheet hairpin between the second and third helix 

(Maddocks and Oyston, 2008). Unlike the N-terminal HTH motif, the C-terminus of the LysR family 

exhibits very little conservation in terms of amino acid sequence. This region is characterised by the 

presence of two subdomains, RD1 and RD2, and the co-inducer binds to the cleft produced by the 

two cross over regions where these interact (Stec et al., 2006).  

An important feature of LTTR regulation is DNA bending: there are two key sites upstream of the 

LTTR target gene, referred to as the RBS (regulatory binding site, which can span -35 to +20 bp of the 

transcriptional start site) and the ABS (activation binding site, which spans -40 to -20 bp) (Porrua et 

al., 2007); another important feature is the ‘LTTR Box’ present at the RBS, it consists of the sequence 

T-N11-A, and is generally palindromic – LTTRs differ in their affinity for the LTTR Box depending on 

whether they are co-inducer bound, which subsequently affects DNA bending and interaction with 

RNA polymerase (Parsek et al., 1994). The LTTR is known to act as a tetramer: the RBS site is usually 

bound by the apo-form of an LTTR dimer, whereas the ABS site is only usually occupied, by a 

separate dimer, once the LTTR is bound by the co-inducer (Tropel and van der Meer, 2004). It is 

thought that the two LTTR dimers located at the RBS and ABS sites come into contact to form a 

tetrameric structure as a result of DNA bending, which facilitates the formation of a higher-order 

complex involving RNA polymerase, leading to transcription - irrespective of whether the LTTR is 

acting as an activator or repressor (Maddocks and Oyston, 2008). A good example of LTTR regulation 

mediated by DNA bending is provided by OccR, which is encoded on the Agrobacterium tumefaciens 

Ti plasmid: it positively regulates genes involved in octopine (a nutrient released from crown gall 

tumours) catabolism, and exhibits negative autoregulation (Akakura and Winans, 2002). When the 

octopine coinducer is bound to OccR, it causes a shift from a high angle bend, OccR occupying base 

pairs 280-228 upstream of target gene initiation codon occQ, to a low angle bend with OccR 

occupying a shorter region of 280-238 bp upstream (Akakura and Winans, 2002). Transcriptional 

activation is dependent on the DNA bending caused by the multimeric OccR octopine-bound complex 

(Akakura and Winans, 2002) (FIGURE 2.18).  

 



94 
 

 

Figure 2.18 General mechanism of LTTR regulation involves DNA bending. A schematic representation of LTTR 
dimers binding separately (the putative ‘step-binding’ model) to the RBS and ABS to form a tightly associated 
tetramer with bound co-inducer. (1) Shows LTTR Dimer I binding to RBS site with high affinity. (2) Shows 
binding of Dimer II, which is enhanced by RDs from Dimer I, which form a loosely associated ‘dimer of dimers’ 
causing the DNA to bend. (3) The coinducer bound dimer of dimers undergoes a conformational change to 
produce a tightly bound tetramer, causing the DNA bend to lessen, which subsequently frees the RNAP 
promoter region. (4) RNAP binds to the promoter, forms a ternary complex, and initiates transcription. 
Adapted from (Maddocks and Oyston, 2008) and (Zhou et al., 2010). 
 

 
 

One important factor that accounts for the ubiquity of LTTRs is the diversity of roles they can employ, 

both positive and negative autoregulation, in addition to acting as either transcriptional activator or 

repressor of target genes. One example of LTTR positive autoregulation is provided by YtxR in 

Yersinia enterocolitica: expression of ytxR from a non-native promoter was shown to increase 

expression of ytxA (ytxAB together encode an ADP-ribosylating toxin) 35-fold, and was shown to 

induce expression from its own promoter 100-fold (Axler-Diperte et al., 2006). In contrast to YtxR, 

relatively early work on another LTTR, IlvY from Salmonella typhimurium, revealed this LTTR is a 

negative regulator of ilvY expression, hence it is a negative autoregulator, although it acts as a 

transcriptional activator of its divergently transcribed target gene ilvC (encoding IlvC, an 

acetohydroxy-acid isomeroreductase, which is involved in the synthesis of L-valine and L-isoleucine) 

(Biel and Umbarger, 1981).  The substrates of IlvC, α-acetolactate and α-acetohydroxybutyrate, are 

both co-inducers of IlvY, which in turn are necessary for transcriptional activation of ilvC – this type of 
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regulation coupled to a feedback loop is considered paradigmatic of LTTR regulation. Perhaps the 

best example of an LTTR acting as a repressor is provided by CcpC regulation of citB (encoding 

aconitase) and citZ (encoding citrate synthase) in Bacillus subtilis. Negative regulation by CcpC plays 

an important role in the Krebs cycle: it has been shown that mutations at the -27 position upstream 

of citB reduces DNA bending, and has a similar effect to the addition of citrate (the co-inducer), 

which provides greater access to RNA polymerase, leading to derepression (Kim et al., 2003). 

However, in contrast to all of these LTTRs, another LysR regulator in Bacillus subtilis, GltC, is able to 

act as both a transcriptional activator and repressor (Picossi et al., 2007). GltC regulates the gltAB 

operon, which encodes glutamate synthase, an essential enzyme of nitrogen metabolism. Work done 

by Picossi et al., (2007) identified three regions (‘dyad symmetry elements’) called Box I, Box II and 

Box III located in the intergenic region of gltA and the divergently transcribed gltC. In order to 

activate transcription, GltC requires the co-inducer α-ketoglutarate (a substrate of glutamate 

synthase): in the absence of inducer, GltC only binds to the Box I region and only marginally activates 

transcription of gltAB (Picossi et al., 2007). However, in the presence of glutamate (the product of 

glutamate synthase), glutamate-bound GltC was shown to bind to Box I and Box III, leading to 

repression of gltAB transcription (Picossi et al., 2007). But in the presence of α-ketoglutarate, GltC 

was shown to bind to Box I and Box II (which overlaps slightly with the -35 region of the gltA 

promoter), and to stabilize binding of RNA polymerase to the gltA promoter in order to activate 

transcription of gltAB (Picossi et al., 2007). This mechanism is thought to be essential for expression 

of gltAB and provides a complex example of LTTR regulation that exhibits both activator and 

repressor characteristics. 

 

Full length crystal structures of LTTRs are sparse because of their insolubility, and also because of  

the flexibility of the winged HTH-motif (Maddocks and Oyston, 2008). At present, five full length LTTR 

crystal structures have been resolved: the first to be resolved was CysB from Klebsiella aerogenes 

(Verschueren et al., 2001), then CbnR from Ralstonia eutropha (Muraoka et al., 2003), DntR from 

Burkholderia sp. strain DNT (Smirnova et al., 2004), CrgA from Neisseria meningitidis (Sainsbury et al., 

2009) and most recently ArgP from Mycobacterium tuberculosis (Zhou et al., 2010). As mentioned 

above, the C-terminal hinge region/ co-inducer binding cleft is a conserved feature of all LTTR 

structures, although the C-terminal region of different LTTRs exhibits very little sequence similarity. 

The full length structure of CbnR is regarded as the archetypal LTTR: CbnR is a homo-tetramer, a 

dimer of dimers, and each dimer – held together by an anti-parrallel helix-helix interaction - consists 

of two subunits in different conformations, one short-form and one extended-form subunit, which 

gives the tetramer an overall ellipsoid shape  (Muraoka et al., 2003). The DNA-binding domain (DBD 

residues 1-58) of CbnR forms a V-shaped bottom that interacts with the two DNA binding sites (RBS 

and ABS) spanning a 60bp stretch of the cbnA promoter (the cbnABCD operon encodes enzymes 
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involved in the degradation of chlorocatechol, cbnR is divergently transcribed) (Muraoka et al., 

2003).  The regulatory domain (residues 88-294) and the DBD are held together by a flexible linker 

region (residues 59-87) (Muraoka et al., 2003). In addition to this, recent structural work with ArgP 

(an LTTR regulator of outward arginine transport) has confirmed many of the details first described in 

the CbnR structure (Zhou et al., 2010): like CbnR, ArgP forms a homodimer, each subunit consists of 

two domains, a regulatory domain (RD) and a DNA binding domain (DBD), and two distinct subunit 

conformations were observed, closed or open (Zhou et al., 2010) (FIGURE 2.19). Based on this most 

recent structure, these authors propose a ‘step-binding’ model for LTTR regulation (FIGURE 2.18): the 

first dimer binds to the RBS site (higher affinity), which facilitates binding of a second dimer to the 

ABS site (lower affinity) to form a dimer of dimers in loose conformation covering the RNAP binding 

sites; subsequent binding of effectors (co-inducers) to the dimer of dimers is hypothesised to cause 

conformational changes in both RD and DBD leading to formation of a tight tetramer conformation 

that frees the RNAP binding site, and enables formation of a ternary complex leading to transcription 

(Zhou et al., 2010).  
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Figure 2.19 LTTR crystal structures. (A) The structure of CbnR from Ralstonia eutropha (Muraoka et al., 2003) is 
paradigmatic of LysR family structure. The main body of the tetramer forms a V-shape, with the DNA binding 
domains located at the bottom of the V, and this is suited to interact with the full 60 bp length of the promoter 
region (Muraoka et al., 2003). The target DNA is bent along the V-shaped bottom of the CbnR tetramer, and 
relaxes when CbnR is bound by its co-inducer (Muraoka et al., 2003). (B) The structure of ArgP from 
Mycobacterium tuberculosis exhibits the same LTTR core features first elucidated in the CbnR structure (Zhou 
et al., 2010): ArgP forms a homodimer and each subunit contains two domains, a DNA-binding domain (DBD) 
and a regulatory domain (RD), and these exhibit two distinct conformations, closed or open, depending on 
whether it is bound by its co-inducer. (C) Predicted structure of S. marcescens ChiR (Kelley and Sternberg, 
2009). In terms of predicted structure (Kelley and Sternberg, 2009), S. marcescens ChiR exhibits similarity to 
BenM from Acinetobacter sp. and to CrgA from Neisseria meningitidis, both LysR family regulators. 

 

 

In this work, we have isolated a chiR-Tn5 candidate that is blocked in its ability to move ChiC to the 

extracellular supernatant. Based on this result, and since it has already been shown that ChiR does 

not bind to the promoter regions of chiA, chiB or chiC, we hypothesise that ChiR is involved in 

regulating the transcription of components involved in the secretion of chitinase, as opposed to the 

chitinase genes directly. However, we cannot rule out the possibility that ChiR might regulate 

transcription of ChiB, since we were unable to detect the intracellular presence of ChiB in mutant 
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TnchiB5 (chiR-Tn5) (FIGURE 2.13), and also because chiR is divergently transcribed from chiB, which is 

typical of LTTR target genes. However, since the intracellular presence of each chitinase is lost in a 

clean ∆hfq strain, it seems more likely that Hfq mediates transcriptional regulation of the chitinase 

genes. In order to test this we will need to generate a clean targeted deletion of the chiR gene, and 

confirm that each of the chitinases are blocked in terms of movement to the culture supernatant by 

Western immunoblotting. From there the first crucial task will be to identify the small molecule 

coinducer of ChiR. The work of Picossi et al., (2007) identified the coinducer of GltC as α-

ketoglutarate, and since ornithine is also known to be an important molecule in the same metabolic 

pathways in B. subtilis (the Krebs cycle and the Roc pathway), this work potentially outlines a good 

approach. To begin with we will engineer both N-terminal and C-terminal His6-tagged ChiR (including 

a TEVP cleavage site) on the S. marcescens chromosome, and ensure that these retain a chitinase 

positive phenotype by Western blot analysis and also on chitin rich media. If the candidate shows a 

positive phenotype, indicating that the ChiRHis strain is still active, we can then overexpress and purify 

the physiologically active ChiRHis in E. coli, which will provide the basis for an in vitro transcription 

assay in the presence of different potential coinducers. The transcription assay will involve adding 

purified ChiRHis to ~300 bp regions encoding the upstream promoter regions of chiR (autoregulator) 

and also chiB (likely target gene) and chiC (control) genes in the presence of E. coli RNA polymerase 

(S. marcescens RNAP does not appear to be available), and these mixtures will be incubated 

separately with different metabolites (possible co-activators): initially it would be best to start with 

the following candidates, NAD, NADH, NADP, NADPH, ornithine, putrescine, spermidine, NH4Cl, 

glutamate, glutamine, α-ketoglutarate, glucose and GlcNAc at their respective physiological 

concentrations. Including α-32P labelled dNTPS in the reaction will enable the transcription reactions 

(incubated at 37oC for 20 mins) to be visualised on sequencing gels, and we can check the transcripts 

correspond to the target genes using internal primers for sequencing. If transcription levels appear 

elevated in the presence of a particular small molecule, we will then repeat the experiment with that 

particular potential coactivator in a dose-dependent manner to assess its overall sensitivity to the 

molecule.  

 

Identifying the ChiR coinducer in this way will enable us to further characterise the regulatory role of 

ChiR. A microarray experiment would identify the expression of genes that are affected by a chiR 

deletion (in comparison to S. marcescens Db10), the important thing in this case would be to identify 

whether the target genes encode anything that could facilitate secretion of chitinase (such as 

SMA2874). Further gel mobility shift assays, or transcription assays will clarify whether ChiR binds to 

the promoter regions of candidate target genes directly. 
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2.4.4 The role of the SMA2874 holin-like protein in chitinase secretion  
 

Two independent transposon mutants were identified in a holin-encoding gene (SMA2874) as being 

responsible for the chitin-degrading ability of ChiC in S. marcescens. This is the first time a holin has 

been implicated as being important in chitin degradation by S. marcescens. The SMA2874 gene was 

discovered to be nestled within a genomic region dedicated to chitin metabolism including genes 

encoding chitinase B, the LysR regulator chiR, and chitin-binding protein Cbp21. This genomic 

organisation sparked further in-depth investigation of the role of SMA2874 in chitinase secretion in 

Chapter 3.  

 

 

 

 Conclusions 

 

Since, ideally, we should have screened 10,000 candidates for each of the three strains - JchiA, JchiB, 

JchiC - the transposon mutagenic screen conducted here was not exhaustive and we cannot rule out 

the possibility that there may remain important genes that are not yet identified. Nevertheless, the 

genetic screens performed in this Chapter identified four genes with potentially important roles in 

chitinase expression and/or secretion - SMA4482 (hfq), SMA4579 (speF), SMA2876 (chiR) and 

SMA2874. Of these, only chiR was identified from screens of two separate strains (once in a screen 

for ChiB secretion and again in a screen for ChiC secretion). The SMA2874 gene encoding the holin-

like protein was isolated twice with two independent insertions identified in a screen against JchiC. 

The four independent isolations of mutations in chiR and SMA2874 give confidence that these genes 

have roles in chitin degredation by S. marcescens.  

  



100 
 

 

 

 

 

 

 

 

 

 

3 A holin and an endolysin are essential for 

secretion of the chitinolytic machinery  
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3.1  Introduction 

 

The transposon mutagenesis carried out in Chapter 2 identified a gene (SMA2874) that was 

apparently required for the externalization of ChiC by S. marcescens Db10. The SMA2874 gene 

product comprises 108 amino acid residues and has a predicted molecular mass of 11,787 Da. BLAST 

analyses suggest that SMA2874 is a member of the phage holin-3 family that includes the archetypal 

holin protein encoded by the λ bacteriophage. The SMA2874 protein shares 35% overall sequence 

identity, and 50% overall  similarity, with the canonical lambda S105 holin (FIGURE 3.1) (White et al., 

2010). The number of transmembrane helices predicted by TMHMM gives three helices, 20-39, 48-

70, and 74-93 with an N-out, C-in topology (FIGURE 3.1). In addition to canonical λ-S, ChiW is also 

similar to holins produced by the Enterobacterial phages, especially to HK97 (33% sequence identity, 

49% similarity) (Juhala et al., 2000), and Sf6 (35% sequence identity, 50% similarity) (FIGURE 3.1) 

(Casjens et al., 2004).  

 

 
Figure 3.1 SMA2874 is a holin-like protein with three predicted transmembrane helices. (A) The primary 
sequence of SMA2874. Predicted transmembrane domains are underlined, and transmembrane domains 
inferred from the phage lambda S holin protein are shaded (White et al., 2010). (B) Putative inner membrane 
localisation and topology of SMA2874. The number of transmembrane helices predicted by TMHMM prediction 
gives three helices (20-39, 48-70, and 74-93 with N-out, C-in). (C) An alignment of S. marcescens ChiW with 
holins produced by bacteriophage: the canonical lambda S105 holin (‘Lam-BplS’) (White et al., 2010), a holin 
produced by the Enterobacteria phages HK97 (‘HK97_holin’) (Juhala et al., 2000) and Sf6 (‘Sf6_holin’) (Casjens 
et al., 2004). Sequence alignments were performed with Clustal Omega (2), and displayed using the freely‐
available on‐line tool Boxshade 3.21 (http://www.ch.embnet.org/software/BOX_form.html). 
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SMA2874 has not been previously studied in relation to chitin metabolism. The SMA2874 gene is 

located in an apparent four‐cistron operon with a gene encoding a predicted L‐alanyl‐D‐glutamate 

endopeptidase (SMA2873) and two genes encoding homologues of bacteriophage spanins 

(SMA2872, SMA2871) (FIGURE 3.2). Intriguingly, SMA2874 is located adjacent to three genes already 

known to be involved in chitin metabolism, namely chiB, chiR and cbp21. The role of SMA2874 in 

chitinase secretion therefore deserved further investigation. 

 

 

  

 

Figure 3.2 A cartoon representation of the genetic organisation of the S. marcescens chromosome around 
region 3,032,110 – 3,037,022. SMA2874 encodes a bacteriophage holin-like protein and forms part of an 
apparent four-cistron operon encoding a predicted endopeptidase (SMA2873) and two genes (SMA2872, 
SMA2871) encoding proteins that resemble bacteriophage spanins. SMA2874 also lies adjacent to genes that 
encode known chitinolytic proteins, such chitin binding protein encoding cbp21, LysR-type regulator encoding 
chiR and chitinase encoding chiB.  

 

 

 

3.2  Aims 

 

The aim of this Chapter was to explore the role of the SMA2874 phage holin-like protein in chitinase 

secretion and chitin degradation. The initial aim was to construct an in-frame, unmarked, isogenic 

deletion mutant in the SMA2874 gene and then take a combination of genetic, biochemical and 

proteomic approaches to understand its role in chitinase secretion. A second aim was to examine the 

roles of adjacent genes at the SMA2874 locus in chitinase secretion. 
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3.3 Results   

 

3.3.1 The phage holin-like protein encoded by SMA2874 is essential for secretion of the 

entire chitinolytic machinery in S. marcescens Db10  

 

Tn5 transposon disruption of SMA2874, encoding a phage holin-like protein, apparently results in a 

loss of ChiC associated chitinolytic phenotype in S. marcescens (Chapter 2). In order to determine 

whether the phage holin-like protein is in fact responsible for the extracellular presence of ChiC we 

constructed an unmarked deletion strain (JJH08p) in SMA2874. Initial Western immunoblotting 

analysis demonstrated that the new deletion in the gene encoding the phage holin-like protein 

phenocopied both of the Tn5 insertion mutants isolated in Chapter 2 (FIGURE 2.15). The ChiC protein 

is produced to a similar level as the parent strain, but remains associated with the whole cells and is 

not detected in the culture supernatant (FIGURE 3.3).    

Next, the role of SMA2874 in secretion of ChiA and ChiB was examined. Very interestingly, Western 

immunoblotting revealed that both ChiA and ChiB were mislocalised in the JJH08p (SMA2874) strain 

(FIGURE 3.3). This data gives initial, but strong, evidence that the phage holin-like protein has a 

pleiotropic role in mediating translocation of each chitinase across the cell envelope in S. 

marcescens.    
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Figure 3.3 A phage holin-like protein facilitates the movement of ChiA, ChiB and ChiC to the extracellular 
environment. The S. marcescens parent strain Db10, and strain JJH08p (∆SMA2874) were grown aerobically in 
rich media for 16 hours at 30oC before aliquots of whole cells (WC) and culture supernatants (SN) were taken 
and analysed for the presence of ChiA, ChiB and ChiC by Western immunoblotting. The band marked by the 
single asterisk (*) is the ChiA protein, which the polyclonal ChiB antiserum can also detect.  

 

 

Next, it was important to take a whole systems approach to understand the involvement of the 

phage holin-like protein in protein secretion in general. Thus a new collaboration was initiated with 

Dr Matthias Trost of the Protein Phosphorylation and Ubiquitination Unit, University of Dundee, who 

is an expert in label-free quantitative proteomics. The broad aim was to compare the total 

extracellular secretome of the S. marcescens Db10 and with that of the JJH08p (SMA2874) mutant, 

and obtain quantitative data on the relative amounts of each protein in each extract. To do this, total 

protein extracts of culture supernatants (‘secretomes’) were prepared. The strains were grown in 

minimal media supplemented with glucose for 16 hours at 30oC, and the proteins present in the 

supernatant were concentrated by TCA precipitation. Label‐free quantitative mass spectrometry was 

then used to profile changes in protein abundance in the corresponding secretomes. Four biological 

replicates of secretome digests of both strains were analysed by high‐resolution mass spectrometry 

in an Orbitrap Velos Pro mass spectrometer and data processed through Maxquant (Cox and Mann, 

2008). Using strict filtering, 497 proteins (<1% FDR) were identified, of which 351 showed good 

reproducibility and were quantified in at least two of the four replicates for each strain. Although the 

relative levels of almost all proteins identified by this method remained unaffected by the SMA2874 

deletion, a subset of ten proteins (shown as green and red points in FIGURE 3.4) showed with high 
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confidence (p<0.01) a significant increase in abundance in the secretome of the parent strain 

compared to the mutant (Table 3.1). Strikingly, the most abundant proteins by far in this small group 

of ten proteins were the entire known chitinolytic machinery produced by S. marcescens (ChiA, ChiB, 

ChiC and Cbp21) (FIGURE 3.4).  

 

 

 

Figure 3.4 Intensity scatter plot of secretome data shows the extracellular presence of each of the four main 
chitinolytic proteins is dramatically affected by a SMA2874 deletion. Label‐free intensities of secretome 
proteins (average of four biological replicates) of the ΔSMA2874 (‘∆Holin’) strain versus the secretome of the 
Db10 parental strain. Highly abundant proteins that were reduced significantly (p<0.01) in the ΔSMA2874 
secretome are labelled red and, with the locations of the other, lower abundant, proteins shown in green (see 
Table 3.1). The three chitinases, ChiA, ChiB and ChiC, as well as the chitin‐binding protein, Cbp21, are by far the 
most abundant of the proteins affected by the ∆SMA2874 mutation. 

 

 

In total there were ten proteins whose extracellular levels were significantly affected by the 

SMA2874 deletion. In addition to the four chitinolytic proteins, the removal of the SMA2874 gene 

deleteriously affected the extracellular levels of six other proteins, including those as diverse as a 

pirin (encoded by SMA3897), an anthranilate synthase TrpE (SMA1933), a malate dehydrogenase 

MdhA (SMA4522), a NADP-dependent malic enzyme MaeB (SMA2870), a putative haem oxygenase 

(SMA2390) and a proly-tRNA synthetase ProS (SMA3147) (TABLE 3.1). It should be noted, however, 

that the relative abundance of these proteins in the secretome was very low when compared to the 

chitinases (TABLE 3.1). 
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Table 3.1 Extracellular proteins secreted in a holin‐dependent manner identified by label‐free mass 
spectrometry. Proteins identified as present in the secretome of the S. marcescens parental strain (Db10) at an 

abundance > 3  higher than observed in the secretome of a strain (JJH08p) lacking the gene encoding the 
phage holin-like protein (p<0.01) are shown. Four biological replicates of each strain were analysed. * relative 
intensity is calculated in relation to the intensity of the least abundant protein in the list (prolyl‐tRNA 
synthetase). 

 

 

Each of the proteins from the label free MS show a tight distribution: the extracellular presence of 

the ten proteins identified (TABLE 3.1) are also clearly reduced in the ∆SMA2874 deletion strain when 

presented on a volcano intensity plot (FIGURE 3.5). Of the 497 proteins identified by label free Mass 

Spec, 351 (71%) exhibited a high level reproducibility (FIGURE 3.5). 
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Figure 3.5 Proteomics quality control. (A) Volcano plot of the proteomics experiment shows an expected tight 
distribution for the majority of proteins with the few significantly reduced proteins in the JJH08p strain 
(‘ΔHolin’) mutant coloured green and red. (B) An intensity scatter plot of all four biological replicates shows the 
high reproducibility of the changing chitinases and the chitin‐binding protein Cbp21. 

 
 

 

In addition, in‐gel analysis of the same S. marcescens Db10 and JJH08p (SMA2874) secretome 

samples used in the quantitative proteomics experiments clearly showed ChiA and Cbp21 were 

missing in the JJH08p (SMA2874) secretome (FIGURE 3.6). Minor Coomassie-stained bands 

correseponding to ChiB and ChiC were also missing in the JJH08p (SMA2874) extract, while flagellin 

(FliC) and a Type V‐dependent secreted serine protease (SSP) acted as internal controls whose 

extracellular levels remained completely unaffected (FIGURE 3.6). 
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Figure 3.6 In-gel comparison of secretion profiles reveals ChiA, ChiB, ChiC and Cbp21 are missing from 
∆SMA2874 secretome.  The relative levels of ChiA, ChiB, ChiC and CBP21 are diminished in the profile of the 
∆SMA2874 strain in comparison to the secretion profile of Db10 parental strain. Strains were grown aerobically 
in minimal media supplemented with glucose before culture supernatants were separated and their 
proteinaceous content analysed by SDS‐PAGE and Coomassie staining. Tryptic peptide mass fingerprinting was 
used to identify each indicated protein: SSP (SMA1670), Type V‐secreted serine protease; FliC, flagellin; ChiA, 
ChiB, ChiC and Cbp21. 
 
 
 

Further analysis of the protein bands in Figure 3.6 by tryptic peptide mass fingerprinting revealed 

excellent peptide coverage for each chitinolytic enzyme (FIGURE 3.7). Indeed, the quality of the tryptic 

peptide mass fingerprinting data allows some conclusions to be drawn regarding post-translational 

processing of the proteins.  The N-terminal Sec signal peptides of both ChiA and Cbp21 are clearly 

missing, confirming that these proteins must be targeted to the periplasm by the Sec pathway 

(FIGURE 3.7). More interestingly, this mass spec data provides the first definitive evidence that neither 

ChiB nor ChiC are proteolytically processed during the secretion event (FIGURE 3.7). 
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Figure 3.7 Tryptic Peptide Mass Fingerprinting of the secreted chitinolytic set of S. marcescens. (A) Analysis of 
excised gel pieces around ChiA (Fig. 3.6) identified the ChiA protein (score 3247) and 92% sequence coverage 
showed clearly that the N‐terminal Sec signal peptide was not present. (B) Analysis of excised gel pieces around 
ChiB (Fig. 3.6) identified the ChiB protein (score 3851), 78% overall sequence coverage revealed that neither 
the N‐ nor C-terminus of the polypeptide was proteolytically processed during secretion. (C) Analysis of excised 
gel pieces around ChiC identified peptides corresponding to ChiC (score 5336). 84% overall sequence coverage 
revealed that, although the initiator methionine was not present, neither the N‐ nor C‐terminus of the 
polypeptide was proteolytically processed during secretion. (D) Analysis of excised gel pieces around CBP21 
identified the Cbp21 protein (score 914) and showed that its N‐terminal Sec signal peptide was not present. 

 
 
 
 
 

In addition to the substrates identified as having a reduced presence in the ∆SMA2874 secretome, 

the label free mass spectrometry also identified nine proteins that underwent a >3-times increased 

abundance in the ∆SMA2874 extracellular fraction. These included Type-1 fimbrins FimA (encoded by 

SMA3915), FimI (SMA1250), and SafA (SMA1052); 50S ribosomal proteins RplU (SMA4526) and RplI 

(SMA4500); predicted fimbrial-like adhesion proteins, PmfE (SMA3920) and another encoded by 

SMA0789;  a flagellar assembly protein FlgD (SMA2217); and a component of the Type 6 secretion 

system Hcp (SMA2263) (TABLE 3.2). 
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Table 3.2 Extracellular proteins of increased abundance in ∆SMA2874 strain identified by label-free mass 
spectrometry. Proteins identified as present in the secretome of a holin-deficient mutant (JJH08p) at an 
abundance >3X higher than observed in the secretome of the parent strain Db10 (p<0.01) are shown. Four 
biological replicates of each strain were analysed.   
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3.3.2 Genetic dissection of the chiWXYZ locus    

 

We have now gathered compelling genetic and biochemical evidence that the phage holin-like 

protein encoded by the SMA2874 gene plays a central role in the secretion of the entire chitinolytic 

machinery in S. marcescens. In view of this we now propose to name the SMA2874 gene as chiW. In 

every sequenced strain of Serratia the chiW gene is found in a locus that includes chiB, chiR and 

cbp21, together with three other genes. We hypothesise that, since the downstream ORFs overlap 

considerably, that chiW forms part of an apparent four-cistron operon, here named chiWXYZ (FIGURE 

3.8).  

 

 

 

atgtccagcatagagcctgacgctgttggcttaatagtccagcgagtatgtgaatatctt 

 M  S  S  I  E  P  D  A  V  G  L  I  V  Q  R  V  C  E  Y  L  

 chiW 

 

cagccggtattgaacgccattctggccggcgtgatggcgctattgcacggtgcctatcgc 

 Q  P  V  L  N  A  I  L  A  G  V  M  A  L  L  H  G  A  Y  R  

 

aacgtgggtattcggcgccgtttattgaatgcggcgatgtgcgcgttattggcctggacg 

 N  V  G  I  R  R  R  L  L  N  A  A  M  C  A  L  L  A  W  T  

 

gtgcgcgatgcgctggcgttgatgggcctggaattaaagtgggcgaatttggccagcgta 

 V  R  D  A  L  A  L  M  G  L  E  L  K  W  A  N  L  A  S  V  

 

ctgattggttttatgggggcggattacatcaacgccttaattaaaaaattcatcggcaaa 

 L  I  G  F  M  G  A  D  Y  I  N  A  L  I  K  K  F  I  G  K  

 

aagacggggtttaaaaatgttaaatgacatcgaagagattcgctttactgcccgcagcga 

 K  T  G  F  K  N  V  K  *   

                 M  L  N  D  I  E  E  I  R  F  T  A  R  S  E 

                 chiX 
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agaaaacctgcgcggcgtgcacccggatctggtgcgcgttattcgtctggcgctgcgtta 

  E  N  L  R  G  V  H  P  D  L  V  R  V  I  R  L  A  L  R  Y 

  

ttccctggtgccgttttccgtcagcgaggggctgcgcagtatggcgcgccagcgggaaat 

  S  L  V  P  F  S  V  S  E  G  L  R  S  M  A  R  Q  R  E  M  

 

ggtgcgcgccggcagcagccaaacgctgcgcagccgccatctgaccggtcacgcggtgga 

  V  R  A  G  S  S  Q  T  L  R  S  R  H  L  T  G  H  A  V  D  

 

tgtggtggcgatgccggcgggtgtggtctcctgggagtgggattactacgcgcagattgc 

  V  V  A  M  P  A  G  V  V  S  W  E  W  D  Y  Y  A  Q  I  A 

 

ggtggcggtgcggcgcgcggcgcgtgaatgcggcatcatcgtcgaatggggcggcgaatg 

  V  A  V  R  R  A  A  R  E  C  G  I  I  V  E  W  G  G  E  W  

 

gaaaaccctcaaggatggtccgcacttccagctgacgttccgggactacccggcatgagc 

  K  T  L  K  D  G  P  H  F  Q  L  T  F  R  D  Y  P  A  *    

                                                       M  S 

                                                       chiY 

ggttggctgcaaaaactgatgcagggcgggttgctgctgctgttgctggcggctatctgc 

 G  W  L  Q  K  L  M  Q  G  G  L  L  L  L  L  L  A  A  I  C  

  

ctcggcggctacagctcgctgctgtcgcaccagttggcgtctgcacggcaacaggcggca 

 L  G  G  Y  S  S  L  L  S  H  Q  L  A  S  A  R  Q  Q  A  A  

 

gagttacagaaaagtctggcgcagcaggcggggctgatcgccaccctgcagactcaggat 

 E  L  Q  K  S  L  A  Q  Q  A  G  L  I  A  T  L  Q  T  Q  D 

 

gcgcaaaatcgtgcgctgatggcggcgcagcagcggcaggaacagcagctacgccaacaa 

 A  Q  N  R  A  L  M  A  A  Q  Q  R  Q  E  Q  Q  L  R  Q  Q  

 

cacgaggcttatcagaggaaataccgtgaagcgattaaaaacgatccctgcgccgctcag 

 H  E  A  Y  Q  R  K  Y  R  E  A  I  K  N  D  P  C  A  A  Q  

                          M  K  R  L  K  T  I  P  A  P  L  S  
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                          chiZ 

cctctgcctggcgctgtgtttgagctcctgcgcccggccgccggcgccgcaggccgtgcc 

 P  L  P  G  A  V  F  E  L  L  R  P  A  A  G  A  A  G  R  A 

  L  C  L  A  L  C  L  S  S  C  A  R  P  P  A  P  Q  A  V  P 

 

gctgttgccccctgaatcggtattcgctccctgtgagcagccgcagttgcaggggaagac 

 A  V  A  P  *   

  L  L  P  P  E  S  V  F  A  P  C  E  Q  P  Q  L  Q  G  K  T 

 

ctggggcgatgcggtaagctatgccctggcgttacaaacctcgttacacatttgcgccgg 

  W  G  D  A  V  S  Y  A  L  A  L  Q  T  S  L  H  I  C  A  G  

 

ccaggtggatacgctcaacgcctggcgcgccatgctgccgccgccctga 

  Q  V  D  T  L  N  A  W  R  A  M  L  P  P  P  *  

 

Figure 3.8 The chiWXYZ operon and its protein products. The coding sequence of the chiWXYZ operon. The 
DNA sequence shown is the complementary strand reading base pairs 3,033,204 – 3,031,956 from the 
Wellcome Trust Sanger Centre database entry for the S. marcescens Db11 genome. Note that each of the genes 
in the operon overlap considerably, and also that translation of the spanin homologue chiZ is predicted to 
initiate at a GUG codon, encoding formyl-Methionine.  
 

 

 

Next, it was important to determine whether any other component of the chiWXYZ operon, besides 

chiW, is potentially important in facilitating chitinase secretion. In order to establish whether each of 

the individual members of the chiWXYZ locus is essential for chitinase secretion, a new bank of four 

in-frame deletion strains was constructed, and the localisation of each chitinase was assessed using 

Western immunoblotting (FIGURE 3.9). In addition to chiW, it was revealed that ChiX, a putative L-

alanyl‐D‐glutamate endopeptidase, was also essential for secretion of the three known chitinases ( 

FIGURE 3.9). However, the genes encoding the spanin‐like proteins, chiY and chiZ, were shown not to 

be individually essential for chitinase secretion (FIGURE 3.9).    
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Figure 3.9 The ChiW holin and ChiX endopeptidase are both essential for secretion of each chitinase. The S. 
marcescens parental strain (‘Db10’) together with JJH04w (∆chiW), JJH05x (∆chiX), JJH06y (∆chiY) and JJH07z 
(∆chiZ) were all grown aerobically in rich media and separated into whole cell (‘WC’) and culture supernatant 
(‘SN’) fractions. Proteins were separated by SDS‐PAGE and analysed by Western immunoblotting using the 
specific antisera indicated. MBP ‘maltose binding protein’. ChiA detected by the ChiB antisera is indicated (*). 

 
 

 

 

3.3.3 A two-step pathway for chitinase secretion  

 

A secretion system is defined as a mechanism that facilitates the movement of a particular substrate 

across the cell envelope, while also maintaining the membrane integrity. Each chitinolytic 

component of this system has been shown to be dependent on the presence of ChiW and ChiX for 

movement to the extracellular environment. Since two of these components, ChiA and Cbp21, 

contain Sec type N-terminal signal peptides, we hypothesised that the putative secretion apparatus is 

dedicated to facilitating the movement of the chitinolytic enzymes across the outer membrane - 

which would classify it as a two-step secretion system. In order to test this we prepared periplasmic, 

cytoplasmic, extracellular and total membrane fractions from S. marcescens Db10 parental and 

chiW strains, grown aerobically at 30oC for 16 hours. The periplasm was prepared using an osmotic 

shock method and the cytoplasmic and membrane fractions were separated using 

ultracentrifugation at 80,000 rpm. The fractions were separated by SDS‐PAGE and analysed by 

Western immunoblotting (FIGURE 3.10). Probing with periplasmic and cytoplasmic control antisera 

established that the fractionation protocol had prepared samples of the S. marcescens Db10 and 
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chiW periplasm free from cytoplasmic contamination (FIGURE 3.10). Further inspection revealed that 

both ChiA and ChiC were located in the periplasm in the secretion‐defective strain (FIGURE 3.10). 

Similarly, fractionation of the ∆chiX strain also revealed that ChiA and ChiC secretion was blocked at 

the outer membrane transport step, since both proteins could be detected in the periplasm in the 

mutant background (FIGURE 3.10). Taken altogether, these data suggest strongly that export of ChiA 

and ChiC to the periplasm is not adversely affected by the chiW or chiX mutations, but that secretion 

is completely blocked at the final outer membrane translocation stage. Surprisingly, ChiB appeared 

to behave differently in this experiment, where a periplasmic intermediate for this isoenzyme was 

not readily detectable in the mutant strains.  

 

 

Figure 3.10 The ChiW holin and ChiX endopeptidase facilitate movement of ChiA and ChiC across the outer 
membrane. In strains lacking the chiW holin encoding gene (A), and the chiX endopeptidase encoding gene (B), 
movement of chitinase ChiA and ChiC is blocked across the outer membrane. In both strains, ChiA and ChiC are 
located in the periplasm, suggesting ChiW and ChiX facilitate their passage across the outer membrane, as part 
of a two-step secretion mechanism. The S. marcescens parental strain (Db10) together with the JJH04w 
(∆chiW) mutant (panel A) and the JJH05x (∆chiX) mutant (panel B) were grown aerobically in rich media, 
harvested, and fractionated into cytoplasm (‘C’), periplasm (‘P’), total membranes (‘M’) and culture 
supernatant (‘SN’). Proteins were separated by SDS‐PAGE and analysed by Western immunoblotting using the 
antisera indicated. The band marked by the single asterisk (*) is the ChiA protein, which the polyclonal ChiB 
antiserum can also detect. Control blots were against the periplasmic maltose binding protein (MBP) and the 
cytoplasmic glutamine synthetase (GS) enzyme. 
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3.3.4 Regulation of chitinase secretion  

 

A stretch of DNA sequence 203 base pairs upstream of the chiW translation start was analysed by a 

bacterial transcriptional promoter scanning program (softberry.com), which predicted that chiW may 

have a single transcription initiation site (FIGURE 3.11).  

 

 

 
Figure 3.11 Analysis of chiW regulatory region. (A) Output from the sequence analysis and predicted locations 
of regulator binding-sites. (B) The sequence as analysed. The position of the chiW translation start codon is 
highlighted in purple, and the sequence given is numbered relative to this position. The putative ribosome 
binding site for chiW is shown in blue. The predicted transcription start site is highlighted in yellow and by the 
asterisk, with the predicted -10 and -35 sigma (70) factor binding sites red underlined. 

 

 

 

We were interested in whether ChiR regulates expression of the chiWXYZ operon since it has been 

shown that ChiR has an essential role in the S. marcescens chitinolytic phenotype (Suzuki et al., 

2001). Moreover, we had observed in previous work (FIGURE 3.12) that a Tn5 disruption of ChiR (in 

strain TnchiC1) did not affect the intracellular expression of ChiC, but did prevent the movement of 

ChiC to the extracellular milieu. So the question became if ChiR was not involved in the transcription 
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of chitinase genes per se, could it be alternatively involved in regulating the expression of the 

transport system? One way to test this is to look at transcript levels in a basic RT-PCR experiment. 

Cultures were grown for 6 hours before total RNA was isolated and cDNA was generated and used as 

a template in a PCR to assess the relative transcript levels of chiWX and chiC. What is especially clear 

is that transcript levels of chiWX are dramatically reduced in a strain harbouring a Tn5 in chiR, 

TnchiB5, and we also see a less-dramatic reduction of transcript levels in candidate TnchiC1 (FIGURE 

3.12 A). A strain with a Tn5 in chiW (TnchiC4) was used as a control, showing no transcript as 

expected (FIGURE 3.12 A). We also hypothesised that ChiR would not regulate the chitinase encoding 

genes directly, since ChiR has been shown not to bind the promoter regions of chiA, chiB or chiC 

(Suzuki et al., 2001). In this case we did not see a strong reduction in chiC transcript levels in the 

absence of chiR (FIGURE 3.12 B, bottom panel). 

 

 

Figure 3.12 Trancript levels of chiWX are reduced in strains harbouring a Tn5 in chiR. Strains were grown for 6 
hours at 30oC, total RNA was isolated, from which cDNA templates were made and used as the template for 
PCR with primers specific for either chiWX, or chiC. PCR with reverse transcriptase (+), PCR without reverse 
transcriptase to control for DNA ‘carry over’ (-), and gDNA positive control (g). 
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3.4 Discussion 

 

3.4.1 ChiW and ChiX are essential for chitinase secretion in S. marcescens 

 

Work in this Chapter has identified two genes – chiW (SMA2874) and chiX (SMA2873) – that are 

essential for chitinase secretion by S. marcescens. ChiW is a holin‐like protein encoded within a 

putative four gene operon, chiWXYZ, that is itself located within a wider genetic locus dedicated to 

chitin degradation, which includes chiB (SMA2875), cbp21 (SMA2877) and chiR. The chiX gene 

overlaps chiW, and encodes a predicted L-alanyl-D-glutamate endopeptidase. Both chiW and chiX 

appear to facilitate secretion of chitinase across the outer membrane, since deletion of these genes 

results in the stalling of ChiA and ChiC in the periplasm (FIGURE 3.10). Of the genes encoded within 

the chiWXYZ operon, chiW and chiX were essential for mediating chitinase secretion, whereas chiY 

and chiZ (encoding putative spanins) were not essential since targeted deletion of these did not 

appear to have an obvious effect on chitinase secretion.  

 

Bioinformatic analysis of ChiW reveals that it exhibits amino acid similarity to prophage-encoded 

holins located within the sequenced genomes of Gram negative enteric bacteria such as Klebsiella 

pneumonia and Xenorhabdus bovienii, and to holins produced by Enterobacterial phages, such as 

HK97 and Sf6, and also to canonical lambda S105 holin. At present there is no published work 

examining the role of phage holin–related proteins in mediating protein secretion in S. marcescens, 

and, until now, work attempting to draw solid evidence for holin-mediated protein secretion in other 

biological systems has proved inconclusive. Although there is currently no published work providing a 

plausible mechanism of ChiW-mediated chitinase secretion, it is worth noting that, of fifty two holin 

families in total, there are twelve holin families predicted to be of proteobacterial origin (Reddy and 

Saier, 2013) – none of these have been extensively characterised. 
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3.4.2 The role of holins in the bacteriophage lytic cycle 

 

 

The ChiW protein shares sequence identity with bona fide phage holin proteins and is predicted to be 

an inner membrane protein with three transmembrane domains (FIGURE 3.1). At present, there are 

two general forms of bacteriophage holin: canonical holin, such as S105, and pinholins, such as S2168 

produced by lambdoid phage 21 (Park et al., 2007; Pang et al., 2009). There are also two general 

forms of peptidoglycan-degrading endolysin: canonical endolysins such as λ-R, and signal anchor 

release (SAR) endolysins, such as R21 of phage 21 and Lyz of phage P1 (Berry et al., 2012). As part of 

the phage lytic cycle, canonical holins are known to accumulate until, at an allele specific time point, 

they form an oligomeric pore in the inner membrane. The pore is often of considerable size: λ-S105 

forms one single pore per host cell, with an average pore diameter of 340 nm (but these pores can 

be as large as 1 µm), and positions itself randomly in the host membrane (Dewey et al., 2010). The 

holin pore permits the passage of the fully folded endolysin (canonical R protein), which degrades the 

cell wall and, in conjunction with spanins that join the inner and outer membrane, results in 

catastrophic cell lysis (Wang et al., 2000; Berry et al., 2008). Another key feature of the canonical 

bacteriophage lytic cycle is the production of the S107 antiholin, which functions as a negative 

regulator of the S105 holin (Young, 2002). The S gene consists of 107 codons, the mRNA transcript 

contains a stem-loop structure that partitions two translation initiation codons designated Met1 and 

Met3, resulting in translation two separate products: S107 and S105 (Wang et al., 2000). Indeed, a 

key distinguishing feature of holins is that they encode two translation initiation codons and hence 

the anti-holin/holin are considered together as integral features (Barenboim et al., 1999). The S107 

anti-holin is completely inactive and does not form a pore. Instead, it binds to the S105 holin and so 

maintains it too in an inactive form. It is thought that anti-holins therefore serve a role in ‘fine-

tuning’ the lysis event: for example, in lambdoid phages the anti-holin serves to slightly delay lysis 

(Barenboim et al., 1999); whereas in other systems, such as P1, the absence of the antiholin can 

result in premature cell lysis before the phage virion assembly has taken place, and hence for these 

systems anti-holin function is essential (Walker and Walker, 1980; Young, 2002).  

In contrast to the canonical mechanism exhibited by λ-S105 and λ-R, the alternative mechanism 

involves the accumulation of pinholins that, upon allele specific ‘triggering’, form heptameric foci, or 

rafts, in the inner membrane and generate pores that are just 2 nm in diameter and so are too small 

to accommodate the passage of folded proteins (Park et al., 2007; Pang et al., 2009). The pinholin 

triggering event depolarises the inner membrane and induces the periplasmic, Sec-dependent, SAR 

endolysin to fold at which point it degrades the peptidoglycan and induces lysis (Pang et al., 2013).  
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Figure 3.13 Two general phage lysis mechanisms exemplified by canonical λ-S105/R and phage 21 S21/R21. 
Figure adapted from (Berry et al., 2012). Both canonical holin (S105) and pinholin (S21) accumulate harmlessly 
in the IM, until an allele specific triggering permits the endolysin R/R21 to attack the peptidoglycan. Once 
triggered, the canonical holin forms an oligomeric pore that permits the endolysin to pass through, whereas 
the pinholin forms heptameric foci, or rafts, containing 2nm pores too small to accommodate folded proteins. 
The pinholin raft disrupts the energy gradient of the IM and releases the Sec-dependent (previously membrane 
tethered) endolysin, which refolds into its muralytic conformation and degrades the peptidoglycan. The spanins 
have an essential role in disrupting the OM. IM ‘inner membrane’, OM ‘outer membrane’. 

 

 

If ChiW were to function like a canonical phage holin, it would be involved in catalysing cell lysis. 

However, we have already identified several features of this system that are incompatible with this 

idea. First, various cytoplasmic protein controls have been used in these experiments, such as MBP, 

RNAP and GS, that were not detected in the extracellular supernatant. In addition, the ChiW system 

appears to be highly selective: of the 497 proteins identified in the S. marcescens Db10 secretome, 

only a subset of ten proteins, including the chitinolytic machinery, were shown to be significantly 

diminished in a chiW deletion strain (TABLE 3.1 AND FIGURE 3.4). There are also some notable 

differences between the phage S105 encoding gene and chiW.  For example, the lambda S holin has 

two translation initiation codons that result in active lambda S105 and anti‐holin lambda S107 forms. 

However, unlike most holins encoded by phage or prophage, the S. marcescens ChiW protein has a 

single translation start (FIGURE 3.11) and therefore probably has no ‘anti‐holin’ activity associated 

with it. Indeed, we propose that this may point to a different mechanism for ChiW, involved in 

mediating protein secretion, compared to cell lysis induced by canonical lambda holin S.  
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3.4.3 The roles of prophage and their holins in protein externalisation 

 

The term ‘bacteriophage’ (a composite of ‘bacteria’, and the Greek phagein ‘devour’) denotes viruses 

that inject their genetic material and replicate within bacteria: their presence is vast and, according 

to some estimates, they account for 90% of phages discussed in published research (Krupovic et al., 

2011). A distinguishing feature of some bacteriophages, such as phage λ, is their capacity to integrate 

their DNA onto the chromosome of their respective host, and to subsequently lie dormant until 

environmental signals trigger the lytic cycle and release of phage progeny (Krupovic et al., 2011). This 

quiescent or temperate stage of the phage life cycle, where the phage coexists with the host, is 

referred to as a ‘prophage’. Not all prophages are integrated onto the bacterial chromosome, some, 

such as E. coli phage P1 exist as extrachromosomal circular plasmids, or even, in the case of N15, as a 

linear plasmid (Krupovic et al., 2011). The integration of novel genetic components by phage is 

considered a major driving force in evolution and this is sometimes, together with transposon and 

plasmid-mediated evolution, collectively referred to as the ‘mobilome’ (Canchaya et al., 2004). 

Indeed, prophage genes, or remnants of prophage genes, have been identified in most bacterial 

genomes, and can in some cases account for as much as 10-20% of the genetic material (Casjens, 

2003). 

Unsurprisingly, there are examples in the literature of prophage encoded holin/ endolysin-mediated 

release of proteins. For example the spirochete Borrelia burgdorferi, which is the causative agent of 

Lyme disease, has been shown to encode a prophage holin/ endolysin system BlyA/BlyB that 

mediates release of the SheA protein (Damman et al., 2000). Similarly, the enteric Xenorhabdus 

nematophila genome contains a 5.7 kbp prophage locus that includes a holin encoding gene that 

causes a SheA mediated haemolytic phenotype when expressed in E. coli, the functional holin was 

also shown to complement a λ-S mutant in mediating host cell lysis (Brillard et al., 2003). There are 

other examples of prophage encoded holin-mediated lysis, such as the prophage NgoΦ1 element of 

Neisseria gonorrhoeae, which encodes a holin that performs the same lytic function as λ-S holin 

when expressed in E. coli (Piekarowicz et al., 2007).  

Bioinformatic analysis of the lambdoid prophage DLP12 identified a putative holin encoding gene 

essD and endolysin ybcS, that was shown to function as a two-component lysis system akin to phages 

p21 and P1: like a canonical holin, essD was shown to encode two initiation sites that produced both 

holin and antiholin (Srividhya and Krishnaswamy, 2007). The endolysin, encoded by ybcS, was a SAR 

endolysin and exhibited lytic activity when expressed in E. coli and Salmonella typhi (Srividhya and 
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Krishnaswamy, 2007). Similar prophage encoded holin/ endolysin activities have also been described 

in Listeria monocytogenes (Zink et al., 1995). In the case of prophage DLP12 encoded holin, the 

important thing to note is that it encodes two initiation codons for holin and anti-holin activities 

(Srividhya and Krishnaswamy, 2007), and that (to our knowledge) all of the prophage encoded holins 

described in the literature have mediated lysis, none appear to be involved in facilitating protein 

secretion. 

Based on its amino acid sequence, the chiW holin exhibits some similarity to prophage-encoded 

holins in Klebsiella pneumoniae (Fouts et al., 2008) with 34% identity and 50% similarity (FIGURE 3.1), 

and Xenorhabdus bovienii (Chaston et al., 2011) with 32% identity and 47% similarity (FIGURE 3.14). 

However, in contrast to S. marcescens ChiW, both of these prophage-encoded holins are regarded as 

homologues of λ-S in the literature. They also both harbour two initiation codons for holin/ anti-holin 

proteins, characteristic of canonical holin function (Fouts et al., 2008; Chaston et al., 2011). Both 

Klebsiella pneumoniae and Xenorhabdus bovienii produce at least one chitinase (belonging to family 

18 glycosyl hydrolases) – the X. bovienii chitinase exhibits 32% sequence identity to S. marcescens 

ChiA.  

It is important to note that the S. marcescens chiWXYZ operon is not framed within a prophage in the 

bacterial chromosome. There are no other phage-related genes of any kind located adjacent or near 

the chiWXYZ operon. Instead, ChiW is an example of a holin encoded by a bacterial genome. 

 

 

Figure 3.14 The S. marcescens ChiW holin exhibits similarity to prophage-encoded holins from Gram negative 
enteric bacteria. An alignment between S. marcescens holin (Sma_ChiW) and a prophage-encoded holins 
produced by Klebsiella pneumoniae 342 (Kpn_holin) (Fouts et al., 2008), and Xenorhabdus bovienii SS-2004 
(Xbo_holin) (Chaston et al., 2011).   



123 
 

3.4.4 Analysis of structure and function of ChiX 

 

In addition to the holin ChiW, the predicted L-alanyl-D-glutamate endopeptidase, ChiX, was shown to 

be an essential component in the chitinolytic system of S. marcescens (FIGURE 3.15).  

ChiX exhibits similarity to a putative endopeptidase produced by the Gram negative pathogen 

Yersinia pestis, with 45% identity and 64% similarity. If restricted to proteins that appear in published 

work, the top hits for ChiX homologues include a putative phagelysin produced by Y. enterocolitica 

strain 8081 (Thomson et al., 2006), which shows good similarity (61% identity, 74% similarity, and 

94% sequence coverage), as well as a phage-related P7-like protein produced by Y. 

pseudotuberculosis strain 32953 (Rosso et al., 2008), which has 61% identity and 75% similarity (91% 

coverage). Unsurprisingly, ChiX also has features similar to an endolysin produced by Yersinia phage 

PY100 (Schwudke et al., 2008), which has 53% identity and 74% similarity (94% coverage) (FIGURE 

3.15).  

In the Yersinia phage, the endolysin serves as part of the lytic cycle (Schwudke et al., 2008); whereas 

the endopeptidases produced by the Yersinia spp. have not been studied in isolation, but as one 

candidate in the genomic investigation of systemic infections caused by Y. enterocolitica and Y. 

pseudotuberculosis in immunocompromised individuals (Thomson et al., 2006; Rosso et al., 2008). 

The predicted structure of ChiX, generated using the Phyre2 on-line tool (Kelley and Sternberg, 2009), 

shows greatest similarity to Ply500, produced by bacteriophage A500 of the Gram positive bacterium 

Listeria monocytogenes (Korndorfer et al., 2008). Ply500 is a peptidoglycan degrading endopeptidase, 

with predicted structural similarities to peptidases such as the D-alanyl-D-alanine dipeptidase VanX, 

which is involved in vancomycin resistance in Enterococcus faecium (Bussiere et al., 1998). The ChiX 

protein also has predicted structural similarity with the peptidoglycan-degrading murein 

endopeptidase MepA from Escherichia coli (Marcyjaniak et al., 2004), and the L,D-endopeptidase 

CwlK produced by Bacillus subtilis (Fukushima et al., 2007), which are members of the LAS family 

(Korndorfer et al., 2008).  

The LAS family are identified by a Zn2+ ion containing active site, and a highly conserved arrangement 

of coordinating residues, and side-chains, surrounding the active site  (Korndorfer et al., 2008). The 

L,D-endopeptidase, CwlK, produced by B. subtilis was the first bacterial, chromosomally encoded, 

peptidoglycan degrading member of the LAS family to be characterised (Fukushima et al., 2007). The 

function of CwlK (and the predicted function of ChiX) is to cleave the base of the peptidoglycan chain 

containing L-alanine-D-glutamic acid (FIGURE 3.16), although the purpose this serves in B. subtilis 

remains to be tested. CwlK encodes an additional, putative, VanY D,D-carboxypeptidase motif, but is 
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unable to hydrolyse the D-alanine-D-alanine link (Fukushima et al., 2007). CwlK is localised in the B. 

subtilis membrane and is hypothesised to be a lipoprotein, unlike the phage encoded Ply500, which is 

holin-dependent for export to the periplasm (Loessner et al., 1995; Fukushima et al., 2007). As a 

lipoprotein, CwlK is Sec-dependent for export, whereas S. marcescens ChiX does not encode any 

recognisable signal sequence. In this sense it is reasonable to hypothesise that the mechanism of 

CwlK export might be more akin to that of SAR-endolysins (such as R21), since these are Sec-

dependent, membrane-tethered peptidases.   

The E. coli MepA is thought to have a role in both the removal and integration of murein in the 

sacculus and is the only LAS protein from the Enterobacteriaceae to have had an X-ray crystal 

structure solved (Goodell and Schwarz, 1983; Marcyjaniak et al., 2004). Like other LAS enzymes, 

substitution of the Zn2+ coordinating residues results in a loss of its function as a D,D-

carboxypeptidase (Marcyjaniak et al., 2004). The fold of the MepA active site has most similarity to 

the N-terminal domain of sonic hedgehog (Shh-N) from M. musculus (Marcyjaniak et al., 2004). The 

role of Shh-N is perhaps the most novel of all the known LAS family members: in the vertebrate 

embryos, sonic hedgehog plays a vital role in the induction of ventral cell types, the N-terminal (LAS) 

domain is responsible for signalling activities, whereas the C-terminal domain exhibits 

autoprocessing activities (Hall et al., 1995). The Phyre2 analysis also revealed structural similarities 

between ChiX and the N-terminal domain of sonic hedgehog from Mus musculus (ShhN), PDB entry 

1VHH (Hall et al., 1995).  

Another LAS family member, VanX, produced by the Gram positive, antibiotic recalcitrant 

Enterococcus faecium (Gin and Zhanel, 1996) plays a crucial role in mediating resistance to 

vancomycin (Bussiere et al., 1998). VanX is a cytoplasmic D-alanyl-D-alanine dipeptidase that clears 

intracellular D-alanyl-D-alanine, which increases the endogenous pool of D-alanine that is 

subsequently converted to D-alanine-D-lactate by VanA and is left to accumulate in the cell, since 

VanX exhibits strict specificity and does not cleave D-ala-D-lac (Walsh, 1993; Bussiere et al., 1998). 

The increased production of D-ala-D-lac, as opposed to D-ala-D-ala, is crucial in mediating clinical 

vancomycin resistance: since vancomycin interacts with the terminal D-ala-D-ala residue of the 

peptidoglycan chain, by substituting this for a D-ala-D-lac moiety abolishes hydrogen bonding, and 

hence the affinity, between vancomycin and peptidoglycan, resulting in 1000-fold enhanced 

resistance to vancomycin (Nieto and Perkins, 1971; Liu et al., 1994; Bussiere et al., 1998). Such 

examples highlight the functional diversity of LAS family enzymes, and indicates that although 

structurally ChiX is very likely to possess a LAS-type Zn2+ coordinated active site, this does not give 

immediate insight into its role in the S. marcescens chitinolytic system, whether it facilitates 

assembly of a trans-envelope secretion system or simply facilitates the passage of chitinase remains 

to be tested. 
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Figure 3.15 The endopeptidase ChiX has predicted structural similarity to the cell wall degrading endolysin 
from bacteriophage A500 of Listeria monocytogenes, Ply500. The amino acid sequence of the L‐alanyl‐D‐
glutamate endopeptidase ChiX (SMA2873) contains 133 amino acid residues and has a predicted molecular 
mass of 15,183 Da. (A) An alignment with Ply500 from L. monocytogenes bacteriophage 500 sequence, 
‘Lmo_Ply5’ (PDB entry 2vo9). For comparison, the bacteriophage lambda R lytic transglycosylase (BplR) is also 
included, although this protein has only limited identity with ChiX. Zinc binding residues confirmed in the 
Ply500 crystal structure (His80, Asp87 and His133) are shown by the red circles. Other Ply500 active site 
residues (Arg50, Gln55, Ser78 and Asp130) are shown by the blue circles. Sequence alignments were 
performed with Clustal W2 (Larkin et al., 2007), and displayed using Boxshade 3.21 
(http://www.ch.embnet.org/software/BOX_form.html). (B) Phyre2 (Kelley and Sternberg, 2009) structural 
model of ChiX. Predicted zinc‐binding side-chains are coloured cyan. The structural model of Ply500 is included 
for comparison, zinc-binding side-chains are coloured red and active site residues are coloured purple.   

 

 

There is no published work investigating the links between a muralytic endopeptidase and chitin 

metabolism, there is recent work investigating the role of a muramidase, TtsA, in another enteric, 

Salmonella enterica Typhi, which has been shown to play an essential role in typhoid toxin secretion 

(Hodak and Galan, 2013). These authors identified a conserved N-terminal ‘EGGY’ motif, and 
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mutation of the key glutamic acid TtsAE14A was found to disrupt its role in mediating secretion of 

typhoid toxin (Hodak and Galan, 2013).  Since Salmonella Typhi is an exclusively human pathogen, 

and given that typhoid fever is a devastating systemic disease, this work provides important evidence 

that muramidase-mediated protein secretion is medically relevant (Hodak and Galan, 2013).  

 

 

Figure 3.16 ChiX is a predicted L-alanyl-D-glutamate endopeptidase (LD-EPase). The peptidoglycan structure 
shown is from E. coli or B. subtilis, depicting the hydrolysis of amide and peptide bonds in peptidoglycan by 
endopeptidases (EPases) and carboxypeptidases (CPases) respectively. Endopeptidases (DD-EPase, LD-EPase, 
DL-EPase) such as Ply500 and CwlK cleave amide bonds in the peptides, whereas carboxypeptidases (DD-CPase, 
LD-CPase, DL-CPase) are known to cleave peptide bonds that remove C-terminal D-or L- amino acids (Vollmer 
et al., 2008). Adapted from (Vollmer et al., 2008). 

 

Endopeptidases are known to be involved in a diverse array of cellular functions: from cell division, to 

peptidoglycan turnover during cell growth, to some specialised hydrolases that form pores for the 

assembly of large complexes that span the entire cell envelope (Vollmer, 2008). In E. coli, the 

stretched pores in the peptidoglycan can permit the passage of proteins 50-100 kDa, but not the 

assembly of trans-envelope structures such as Type 2, Type 3, Type 4 secretion systems, type IV pili 

or flagella (Vollmer et al., 2008). Specialised peptidoglycan hydrolysing enzymes are often involved in  

the assembly of large protein structures, for example E. coli FlgJ has been shown to generate a 

localised space in the peptidoglycan layer for assembly of the flagella basal body (Nambu et al., 

1999). Other examples of such specialised lytic transglycosylases include VirB1 of the plant pathogen 

Agrobacterium tumefaciens that aids the assembly of the Type 4 secretion machinery (Zahrl et al., 

2005), and also E. coli PilT, which facilitates the assembly of type IV pili (Koraimann, 2003).   
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3.4.5 The roles of the spanins, ChiY and ChiZ 

 

As part of the lambda phage lytic cycle the recently identified spanins, Rz and Rz1, are thought to 

comprise an integral inner membrane protein and an outer membrane lipoprotein, repectively. The 

lambda spanins have been shown to interact and contribute to the disruption of the outer 

membrane during host cell lysis (Berry et al., 2012). Although the S. marcescens ChiY/ChiZ spanin-like 

components do not appear to form essential components of the chitinolytic secretion system (FIGURE 

3.9), we cannot rule out the possibility they have subtle roles in protein externalisation.  
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3.4.6 A putative two-step mechanism for ChiWX-mediated secretion 

 

Secretion systems are broadly characterised according to whether they move the substrate to the 

extracellular milieu via a one-step or a two-step mechanism. The fractionation work presented here 

provides sound evidence that ChiWX mediated secretion translocates chitinolytic enzymes across the 

inner and outer membranes separately, as part of a two-step process (FIGURE 3.10). Western analysis 

revealed that both ChiA and ChiC are present in the periplasm in chiW and chiX mutants, which 

indicates that ChiWX are both crucial for the movement of the chitinolytic set across the outer 

membrane (FIGURE 3.10). In support of this, the proteomic analysis confirmed that the Sec signal 

peptide of the Sec-targeted ChiA and Cbp21 was subject to N-terminal processing – clearly these 

substrates do not require ChiWX to cross the inner membrane. A further reason supporting a two-

step secretion process is that ChiA, ChiB and Cbp21 contain disulfides, and the formation of 

disulphide bonds is catalysed in the periplasm by the Dsb system (Kadokura et al., 2003).  Disulfide 

bond formation has already been shown to be essential for proper export and folding of the S. 

marcescens nuclease NucA (Ball et al., 1992). 

Previous work investigating the role of ChiC in P. aeruginosa hypothesised that this enzyme also 

undergoes an unusual form of N-terminal processing (Folders et al., 2001). Although ChiC in P. 

aeruginosa and S. marcescens are very similar, our proteomic analysis did not detect any processing 

of ChiC since the secreted form was shown to be intact, as was the secreted form of ChiB (FIGURE 3.7). 

The mode of ChiC export to the periplasm is yet to be clarified, but it is clearly not mediated by ChiW 

or ChiX. It could be the case that ChiC is an unusual Sec-dependent enzyme. Recent work has 

revealed that the SodA dismutase produced by Rhizobium leguminosarum is a Sec-dependent protein 

but is devoid of any apparent signal peptide (Krehenbrink et al., 2011). Surprisingly, the ChiB protein 

was not detectable in the periplasm of either chiW or chiX strains: it is likely that ChiB is rapidly 

degraded when mislocalised to the periplasm (FIGURE 3.10). A possible way to establish whether ChiC 

is exported via Sec would be to attempt to inhibit SecA with sodium azide and assess whether export 

of freshly synthesised ChiC is affected.  

 

The hypothesis that ChiW and ChiX act in conjunction to facilitate secretion of the S. marcescens 

chitinolytic proteins across the outer membrane is both compelling and perplexing. ChiW is predicted 

to reside in the inner membrane according to TMHMM prediction, although this remains to be 

proven experimentally. It seems there are three possible mechanisms that might account for the 

data presented here: 
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1. ChiW is localised in the IM; ChiX is exported via ChiW or Sec to the periplasm; the chitinolytic 
enzymes are targeted to the periplasm via Sec and specifically moved across the outer membrane via 
other proteins yet to be discovered (FIGURE 3.17).  
 

This scheme (1) suggests that ChiW is embedded in the inner membrane (as TMHMM predicts), 

facilitates the passage of ChiX to the periplasm, and operates in partnership with other outer 

membrane‐associated proteins to accomplish chitinase secretion. This scheme suggests a selective 

translocation - suggesting some sort of substrate recognition event - of the chitinolytic machinery 

across the outer membrane by a bona fide secretion system FIGURE 3.17.   

 

2. ChiW is localised in the IM; ChiX is exported via ChiW or Sec and induces general periplasmic 
leakage thus releasing the chitinolytic substrates.  
 
This scheme (2) also suggests that ChiW facilitates the export of ChiX to the periplasm, but that this 

activity either forms a localised pore in the outer membrane, or ruptures it in some way leading to 

non-specific release of substrate from the periplasm. This is not a secretion system but a release 

mechanism.  

 
 
3. ChiW has an unexpected structure that allows it to interact either directly, or indirectly, with the 
outer membrane; ChiX is exported via Sec, ChiW facilitates movement of substrates across the OM. 
 
This scheme (3) is the most counter intuitive and suggests that ChiW is at least partly localised in, and 

facilitates secretion of substrate across, the outer membrane. A secretion mechanism involving a 

holin-like protein forming a pore in the outer membrane would be unprecedented and nothing like 

holin-mediated transport across the outer membrane has been described in bacteria. There are, 

however, other holin-like proteins that are known to interact with the equivalent of the outer 

membrane in other biological systems. For example, in some eukaryotic systems it has been shown 

that Bax (Bcl-2 family proteins) is a functional holin (when expressed in E. coli) and that the protein 

triggers mitochondria-mediated apoptosis (Pang et al., 2011; Westphal et al., 2011). Prior to 

apoptosis, the Bax protein, which is normally present in the cytoplasm in globular form, undergoes a 

conformational change that exposes the transmembrane domains that targets it to form an 

oligomeric pore in the mitochondrial outer membrane (Westphal et al., 2011). This event, known as a 

mitochondrial outer membrane permeabilisation (MOMP) event, causes the release of proteins from 

the mitochondrial intermembrane space, the resulting caspase cascade induces apoptosis (Chipuk 

and Green, 2008). Bax has also been shown to act as a holin in a heterologous bacterial system (Pang 

et al., 2011). While this certainly highlights a general functional similarity between Bax and the λ-

S105 holin, the data presented in this chitinase secretion study might suggest an entirely novel 
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mechanism: it can be hypothesised that the ChiW holin-like protein facilitates a bacterial outer 

membrane secretion mechanism akin to Bax-induced MOMP.  

 
 
 

 
Figure 3.17 A two‐step model for chitinase secretion: ChiW and ChiX facilitate movement of substrate across 
the outer membrane. The ChiA and Cbp21 proteins are initially targeted to the periplasm by the Sec 
machinery. ChiC is also initially targeted to the periplasm, although the route taken is yet to be proven. Once in 
the periplasm the secretion of the chitinolytic enzymes across the outer membrane is controlled by the ChiW 
and ChiX proteins, possibly via controlled permeabilisation of the outer membrane that allows specific 
secretion of the enzymes. There may be other, as yet unidentified, components of this secretion system 
involved. 
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3.4.7 Further characterisation of the ChiWX-dependent secretion system 

 

For this work to progress, there are at least two very important questions that need to be answered: 

where in the cell envelope is ChiW and ChiX localised; and what (if anything) do they associate with? 

The first question can be answered by integrating N or C terminal HA-tags on to both ChiW and ChiX 

and then detecting their localisation by Western blot against the HA-epitope. This will provide a quick 

and strong indication. In the long run it would be best to generate ChiW and ChiX antisera, which 

would provide the same evidence and may also enable the identification of unknown binding 

partners that may also be involved in this mechanism. Producing ChiW antisera might prove 

problematic because the expression of a bona fide holin in a heterologous host might induce lysis. 

Perhaps one way to overcome this might be to overexpress a truncated version of ChiW. On going 

research in Dundee is focussed on identifying whether ChiX is exported to the periplasm via ChiW, in 

which case this would also provide evidence that ChiW is localised in the inner membrane.  

It is also necessary to identify any potential binding partners that might associate with ChiW or ChiX 

to form part of a larger secretion apparatus. One approach would be to try a co-immunoprecipitation 

(Co-IP) experiment, whereby antibody is immobilised on agarose beads and then incubated with S. 

marcescens detergent-dispersed membrane fractions before being separated by centrifugation, 

washed, and analysed by SDS-PAGE. Depending on the scale of the experiment, it may be possible to 

submit prominent protein bands for tryptic peptide mass fingerprinting. Possible interactions could 

then be verified using bacterial two-hybrid experiments, before moving on to work out whether 

these newly identified components are essential for chitinase secretion.  

 
It may also be valuable to visualise any ChiW-dependent pore-formation using microscopy 

techniques. The strains encoding an integrated ChiW or ChiX HA-tag could be exploited for cryogenic 

electron microscopy (cryo-EM) that would establish whether ChiW forms a single pore in the 

membrane, as is the case for λ-holin (Dewey et al., 2010), and would also determine the average 

pore size. In addition to this, it would be valuable to assess ChiW pore formation in real time: 

designing ChiW-fluorescent protein (GFP, mCherry, mKate) chimeric constructs would make it 

possible to track holin expression/ accumulation throughout the S. marcescens growth phase and to 

determine the precise moment of pore-formation. Of course it will be important to assess whether 

the chimeric fusion disrupts ChiW function by assessing the extracellular presence of chitinase with 

Western blotting.  If this were done in tandem with chitinase-fluorescent chimeric fusions it would be 

possible model pore formation in conjunction with chitinase release.   
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3.4.8 Non-classical protein secretion and the question of holin-mediated secretion 

 

There is currently much interest in the question of non-classical secretion: that is secreted substrates 

that do not encode any clear targeting signals, and also whether any cases of non-classical secretion 

can be accounted for by a holin-dependent system (Desvaux, 2012). Work done on chitinase ChiC in 

Pseudomonas aeruginosa was first to address the question of non-classically secreted chitinase, and 

identified that it lacked a typical N-terminal signal sequence, and also that the first 11 residues of the 

N-terminus is cleaved off in the secreted protein (Folders et al., 2001). These authors showed that 

expression of Pseudomonas ChiC is regulated by quorum sensing and that it is secreted gradually 

over a four day time course and was not attributable to cell lysis (Folders et al., 2001). 

The question of non-classically secreted proteins is still pressing even in 2011. It has been shown that 

heterologous expression of the carboxyl-esterase Est55 is secreted in late stationary phase in Bacillus 

subtilis despite the absence of a classic cleavable N-terminal signal sequence (Yang et al., 2011). This 

work also identified a hydrophobic α-helical domain that contributes to the secretion of enolase, and 

they controlled against the question of lysis using cell density, comparing relative levels of EF-Tu and 

SecA, and also by including autolysin deficient mutants (Yang et al., 2011). From this they concluded 

that large amounts of cytoplasmic substrates are secreted by an unknown non-classical mechanism, 

and is not attributable to lysis or membrane vesicles or the previously identified ESAT-6 system (Yang 

et al., 2011). However, like the 2001 Pseudomonas paper (Folders et al., 2001), they did not identify 

the secretion system responsible.  

 

Recently there has been a lot of attention gathering around the idea that much non-classical 

secretion is holin-mediated (Tjalsma et al., 2004). There are lots of details in favour of this: phage 

related genes are ubiquitous, and according to some studies there is a gap between exoproteins that 

are found within a ‘secretion profile’ in experimental work, and secreted proteins that are recognized 

by genome prediction software – so holins are currently in the lime-light to address this discrepancy 

(Tjalsma et al., 2004). Up to now there has been some evidence that holins have a role in protein 

secretion, but this turned out to be self-contradictory. It was hypothesised that the holin TcdE was 

responsible for the secretion of toxins TcdAB in Clostridium difficile (Govind and Dupuy, 2012), but 

subsequent deletion of the tcdE gene was shown to have no significant effect on the secretion of 

TcdAB or the overall secretion profile (Olling et al., 2012). Besides this, the S. marcescens NucE 

protein (SMA0177) was suggested to be a holin required for the secretion of the Sec-dependent 

NucA nuclease (Berkmen et al., 1997). However, similar to the C. difficile story above, deletion of the 

nucE gene was found to have no effect on nuclease secretion (Strych et al., 1999). Solid evidence of 
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holin-dependent protein secretion is yet to be published, but the holin hypothesis is still compelling, 

especially in light of the Bacillus Est55 work where cytoplasmic substrates are shown to accumulate 

in the exponential/ early stationary phase, and are then secreted in the late stationary phase (Yang et 

al., 2011). In both Vibrio harveyi and Pseudomonas aeruginosa this type of late-stage accumulation 

and secretion of exoproteins is known to be brought about by the accumulation of auto-inducers, as 

part of a complex social-behaviour (Folders et al., 2001; Defoirdt and Sorgeloos, 2012). 
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3.4.9 The role of ChiR  

 

In this work we wanted to establish whether ChiR (encoded by chiR SMA2876) LysR type 

transcriptional regulator (LTTR) regulates expression of the chiWXYZ operon. In order to do this we 

used a basic RT-PCR to assess relative mRNA transcript levels in different Tn5-bearing strains: we 

used candidates TnchiB5 containing a Tn5 in chiR, TnchiC1 containing a Tn5 129 base pairs upstream 

of chiR, and TnchiC4 that contains a Tn5 in chiW. We hypothesised that ChiR would regulate the 

chiWXYZ genes involved in movement of chitinase to the extracellular supernatant, as opposed to 

the expression of chitinase encoding gene itself; for this reason we assessed the relative levels of 

chiWX transcript against the presence of chiC transcript. The result clearly shows that chiWX 

transcripts are dramatically reduced in strain TnchiB5 (FIGURE 3.12), which bears a Tn5 well within the 

chiR ORF. The level of chiWX transcript appears less markedly reduced in strain TnchiC1, about the 

same reduction as chiC transcript for this strain (FIGURE 3.12). This could suggest that ChiR affects 

both chiWX and chiC transcript levels, although the reason that chiWX transcript levels are less 

dramatically reduced for strain TnchiC1 might be attributable to the Tn5 not being embedded well 

within the chiR ORF (as it is with candidate TnchiB5). Instead it is located upstream of chiR in the 

chiR-cbp21 intergenic region. Previous work has shown that ChiR binds to the chiR-cbp21 intergenic 

region and not to the promoter regions of the chitinase encoding genes (Suzuki et al., 2001). This 

suggests that in strain TnchiC1, ChiR binding to its own promoter and hence its function as an 

autoregulator is disrupted (all LTTRs are autoregulators). Since the chiR gene itself is not disrupted, 

the overall presence of ChiR in the cell is not completely lost, which gives an indication as to why the 

levels of chiWX transcripts are not so dramatically affected in TnchiC1 compared to TnchiB5 where 

chiR is completely disrupted. 

Clearly this preliminary work is not sufficient to assess whether ChiR regulates chiWXYZ as opposed 

to chitinase encoding genes. To take this work further it is necessary to generate a clean ∆chiR strain, 

and to identify genes that are affected by a chiR deletion (microarrays). This will not only identify 

chiWXYZ vs. chiC regulation by ChiR, but should provide a global view that potentially reveals 

unidentified genes involved in the chitinolytic phenotype as well. Indeed this, in conjunction with a 

∆hfq microarray, might give some important clues about the S. marcescens chitinolytic phenotype 

that results derived from the transposon screen may not have identified.  

Instead of a basic RT-PCR, a more thorough, quantitative approach to this experiment would be a 

quantitative real time, qPCR. For this a ∆chiR strain would be necessary in order to quantify the 

presence of target genes in real time using fluorescent probes.  
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3.4.10 A specific set of ten proteins are secreted by a ChiW-dependent mechanism 

 

In order to establish exactly what proteins are secreted in a ChiW-dependent manner, we used a 

whole systems approach to identify differences in the secretion profile of S. marcescens Db10 against 

a strain where the chiW gene had been deleted. Of the 497 proteins identified in the S. marcescens 

Db10 secretion profile, 351 proteins showed a high level of reproducibility, ten of which were shown 

to be diminished in a chiW strain (FIGURE 3.4 and FIGURE 3.5). The label free mass spec revealed the 

extracellular presence of the entire chitinolytic machinery is significantly affected by a chiW deletion.  

Cbp21 exhibited a 3.4 times reduction; ChiA was reduced 7 times, ChiC 14.7 times, while the 

presence of ChiB appeared to be most dramatically affected and was diminished 80.7 times (TABLE 

3.1). This result was also confirmed by in-gel analysis of the same secretion profiles, whereby the 

samples were separated by SDS-PAGE and any prominent bands that appeared to be absent from the 

∆chiW profile were identified from the S. marcescens Db10 profile using tryptic peptide mass 

fingerprinting – bands corresponding to the entire chitinolytic set, ChiA, ChiB, ChiC and Cbp21 were 

again shown to be lost in the ∆chiW profile (FIGURE 3.6). An interesting discrepancy between the two 

approaches is that the label-free MS revealed that ChiB was by far the most dramatically reduced in 

the ∆chiW profile (TABLE 3.1), whereas although it is clearly absent from the profile as it appears on 

PAGE analysis (FIGURE 3.6), it is ChiB that appears least affected.  

Besides the chitinolytic machinery another six candidates were identified as potential substrates of 

ChiW-mediated secretion. These included a pirin metal-binding protein (encoded by SMA3897), 

anthranilate synthase TrpE (SMA1933), malate dehydrogenase MdhA (SMA4522), NADP-dependent 

malic enzyme MaeB (SMA2870), a putative haem oxygenase (SMA2390), and prolyl tRNA synthetase 

ProS (SMA3147). It is not immediately apparent if these proteins are credible candidates for secreted 

proteins. Indeed all but one was of low abundance and was just above the arbitrary 3  difference 

cutoff that was imposed by us. It is notable that the gene encoding the malic enzyme MaeB 

(SMA2870) is located immediately downstream of chiZ (SMA2871), which may give an initial 

indication that its expression levels may have changed in the mutant strain investigated here.  

In order to take this work further we would first need to determine whether these proteins are true 

secreted substrates of this pathway. Ideally, we would generate antisera specific to each protein for 

detection by Western immunoblotting, but this might not prove cost effective. For this reason we 

would start by integrating HA epitope tags to the native chromosomal loci and assessing subcellular 

localisation of the tagged proteins. Of course this approach will only be successful if protein secretion 

is not blocked by the addition of N- or C-terminal tags. Alternatively, the proteins could be radio-

labelled and subjected to a pulse-chase experiment perhaps based on one first developed in E. coli 
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(Studier and Moffatt, 1986). These experiments will give a good indication of whether the individual 

proteins identified in this work are transported across the outer membrane by the ChiW secretion 

system. Once it is established that these proteins are true ChiW-dependent secreted substrates they 

can be individually characterised and understood in the wider context of both the S. marcescens 

chitinolytic machinery and its secreted proteome.  

Malic enzymes, such as MaeB (82 kDa) in S. marcescens, are broadly separated into two groups 

depending on their associated cofactor: those that are NAD+ or NADP+ dependent. NADP+ dependent 

malic enzymes, such as MaeB, have been isolated from both prokaryotes and eukaryotes (Takeo, 

1969). NADP+-dependent malic enzymes are involved in the formation of acetyl-coA (and therefore 

play an important role in the TCA cycle), and have also been shown to decarboxylate malate to 

produce CO2 and pyruvate (Takeo, 1969). At present there is no work investigating the role of malic 

enzymes in Serratia: however in the symbiotic N2-fixing Sinorhizobium meliloti, malic enzymes have 

been shown to be involved in the synthesis of acetyl-coA, as predicted (Driscoll and Finan, 1997). 

Interestingly, mammalian NADP+-dependent malic enzyme has been shown to associate with 

pyruvate dehydrogenase complex and to be localised in the mitochondrial inner membrane (Teller et 

al., 1992). Since mitochondrial malic enzyme is known to associate with the inner membrane, it 

would be interesting to establish whether S. marcescens MaeB is localised in the inner membrane: 

the production of HA-tagged MaeB will make it possible to determine this by Western blotting after 

separation of the membrane fractions by sucrose gradient. In addition to malic enzyme MaeB, we 

also identified a malate dehydrogenase, MdhA, whose extracellular presence was affected by chiW 

deletion. MdhA is a ubiquitous cellular enzyme that oxidises malate to pyruvate and CO2. This is a 32 

kDa protein with 93% sequence identity to E. coli malate dehydrogenase, for which there is a crystal 

structure that reveals a dimeric conformation, and shows significant homology to the mitochondrial 

enzyme (Hall et al., 1992). MdhA does not have a signal peptide, even though there appears to be a 

short one at the N-terminus according to some bioinformatics analyses (Petersen et al., 2011). If both 

of these proteins are the only malic enzyme and malate dehydrogenase produced by Serratia, it 

would seem very unlikely that they would be actively secreted from the cell.  

The presence of 26 kDa pirin (SMA3897) was shown to be affected by the chiW deletion, indeed its 

presence was decreased 11.2 times in the chiW secretion profile, greater than ChiA (7 times 

reduction) (TABLE 3.1). The pirin superfamily of proteins are conserved between bacteria, fungi, 

plants and mammals. In bacteria they usually serve as transcriptional cofactors but, interestingly, in 

eukaryotes they have been shown to be involved in programmed cell death (Orzaez et al., 2001). This 

is especially interesting if we consider that Bax has recently been identified as a holin-like protein 

involved in mitochondrial outer membrane permeabilisation (MOMP) (Pang et al., 2011). Not many 

bacterial pirins have been properly characterised, however there has been work investigating its 
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function in S. marcescens CH-1 (Soo et al., 2007). These authors identified a pyruvate dehydrogenase 

subunit E1 (PDH-E1) as being negatively regulated by S. marcescens pirin. Mutation of the pirin-

encoding gene was shown to increase the PDH associated activities, such as ATP concentration, 

which increased 140-250% depending on the pirin gene mutation and shifted the NADH/NAD+ ratio, 

which is a consequence of increased tricarboxylic acid (TCA) cycle activity (Soo et al., 2007). These 

authors concluded that S. marcescens pirin has an important role in regulating the synthesis of 

acetyl-coA from pyruvate, which is mediated by PDH-E1, and hence pirin regulates a crucial pathway 

junction between the TCA-cycle and fermentative metabolism (Soo et al., 2007).  Thus there may be 

a connection between pirin, malic enzyme and malate dehydrogenase expression in Serratia.  The 

crystal structure of the E. coli pirin YhhW has been resolved and the authors identified the 

antioxidant quercetin as a substrate of both human and E. coli pirin (Adams and Jia, 2005), before 

hypothesising that this may form a link to the role of pirins as transcriptional cofactors because the 

presence of quercetin has an inhibitory effect on DNA gyrase activity (Plaper et al., 2003). The Phyre2 

predicted structure (Kelley and Sternberg, 2009) of S. marcescens pirin (SMA3897) suggests this 

enzyme is most similar to the RmlC-like cupins, a large superfamily of proteins with a conserved β-

barrel fold and, in the majority of cases, an Fe-bound active site (FIGURE 3.18) (Dunwell et al., 2004). 

 

Figure 3.18 Structural prediction of S. marcescens pirin suggests it belongs to RmlC cupin superfamily. (A) The 
S. marcescens pirin is predicted to have the most structural similarity to E. coli YhhW, the archetypal RmlC 
protein (Adams and Jia, 2005). RmlC proteins have a characteristic bicupin fold and N-terminal metal binding 
site, in YhhW this is coordinated by residues His57, His59, His101 (that binds a cadmium ion) and Glu103 
(together with the His residues forms the Fe binding site), these sites are represented as red sticks. (B) 
Predicted structure of S. marcescens pirin: RmlC proteins are similar between bacteria, plants and mammals – 
the same metal binding residues of YhhW are conserved in the S. marcescens pirin and are also shown as red 
sticks. 
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This work also identified the S. marcescens anthranilate synthase (AS) enzyme, TrpE, as being 

diminished in the secretome of the chiW deletion strain. The effect of chiW deletion on the presence 

of TrpE was shown to be greater (4.8 times) than the overall effect on the presence of chitin binding 

protein Cbp21 (3.4 times) (TABLE 3.1). S. marcescens AS is formed from a complex of two polypeptide 

chains TrpE2:TrpG2 - TrpG belongs to the glutamine amidotransferase family and produces 

chorismate from hydrolysis of glutamine, whereas the TrpE subunit produces anthranilate after 

binding chorismate (Zalkin, 1993; Tesmer et al., 1996). The structure of S. marcescens anthranilate 

synthase has been resolved in a state with bound anthranilate to the TrpE subunit and another in the 

inhibitor- (tryptophan) bound state (Spraggon et al., 2001). Tryptophan acts as a competitive 

inhibitor of chorismate and prevents the synthesis of anthranilate when bound to TrpE: from the 

structure these authors concluded that the inhibitor binds at a distinct site from that of the substrate 

and that, once bound, inactivates both TrpE subunits (Spraggon et al., 2001). It is not immediately 

apparent why TrpE should be secreted from the cell: however, in addition to anthranilate it also 

produces pyruvate, as does the malic enzyme MaeB and the malate dehydrogenase MdhA. In 

addition to this MdhA and the pirin both have roles in the TCA cycle (MdhA in the synthesis of acetyl-

coA and pirin in repressing pyruvate dehydrogenase).  

The putative 25 kDa haem oxygenase (encoded by SMA2390) is predicted to be involved in haem 

degradation, and might possibly be a virulence factor since Fe metabolism and sequestering of Fe is a 

crucial factor in many important pathogens. In terms of amino acid prediction, this protein is 

predicted to belong to the TenA superfamily, which is a group of enzymes involved in transcriptional 

activation. The Phyre2 predicted structure (Kelley and Sternberg, 2009) of S. marcescens haem 

oxygenase suggests it has structural similarities to TenA from Helicobacter pylori and Bacillus subtilis, 

and also to THI20 from Saccharomyces cerevisiae, which contains a TenA-like domain. The structure 

of TenA in Bacillus subtilis has been resolved (Toms et al., 2005) and reveals that TenA is a thiaminase 

that degrades thiamine, for which three active-site residues, Asp44, Cys135, and Glu205, where 

shown to be important for substrate binding and catalysis (Figure 3.19). Obviously the status of this 

enzyme as a bona fide secreted protein will need to be determined before properly characterising its 

function in S. marcescens.  
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Figure 3.19 Structural prediction of S. marcescens haem oygenase suggests it is similar to Bacillus subtilis 
TenA. (A) The structure of Bacillus subtilis TenA (Jenkins et al., 2008), active site residues involved in substrate 
binding and catalysis are shown in green and cyan as stick models . (B) The Phyre2 predicted structure of S. 
marcescens haem oxygenase (Kelley and Sternberg, 2009). 

 

The presence of a proly-tRNA synthetase, ProS, was also diminished in the chiW secretion profile: of 

the ten substrates identified as being significantly reduced, ProS was least affected by the chiW 

deletion (3 x reduction in relative abundance). There is no published work examining the role of the 

Prolyl tRNA synthetase ProS in Serratia marcescens; it is predicted to have structural similarity to 

prolyl-tRNA synthetase from Enterococcus faecalis (Crepin et al., 2006). It clearly is a putative ligase 

involved in translation and why it should be a substrate of ChiW-mediated secretion is not clear.  

The label free mass spectrometry also identified nine substrates whose extracellular presence 

appears to be increased in a chiW deletion strain (TABLE 3.2).  These were shown to be Type-1 

fimbrins FimA (SMA3915), FimI (SMA1250), and SafA (SMA1052); 50S ribosomal proteins RplU 

(SMA4526) and RplI (SMA4500); a predicted fimbrial-like adhesion proteins, PmfE (SMA3920), and 

another encoded by SMA0789;  a flagellar assembly protein FlgD (SMA2217) and the Type 6 secreted 

protein Hcp (SMA2263) (TABLE 3.2). 

The most prominent feature of the set of proteins with increased abundance in ∆chiW is that most of 

these are fimbrial adhesins (FimA, FimI, SafA, PmfE, protein encoded by SMA0789). Of the remaining 

substrates FlgD and Hcp are associated with extracellular machineries (flagellar and Type 6 secretion 

system respectively), whereas RplU, RplI have clear intracellular functions and a strong reason for 

their extracellular presence is not immediately apparent.  

Fimbrial proteins and fimbrial-like adhesion proteins have an important role in pathogenesis, 

particularly in facilitating adhesion/ binding, and have been linked to S. marcescens role in urinary 
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tract infections (Leranoz et al., 1997), and also in wounds and ocular infections (especially in relation 

to contact lenses) (Parment et al., 1992). In E. coli, fimbriation (for which FimA is a key structural 

component) is regulated in a bistable manner, i.e. is expressed in a subpopulation of cells within an 

isogenic population, and the phenotypic switching is known to be regulated by a temperature-

dependent switching of the fimS locus encoding the promoter region of fimA and fimH  (Kuwahara et 

al., 2010). Similarly, the human pathogen Vibrio cholera is also known to express the tcpA gene, 

encoding the repeating subunit of toxin-coregulated pilus, in a bistable manner (Nielsen et al., 2010).  

 

 

3.4.11 Conclusion 

 

This work provides a fascinating example of an apparently non-classical system dedicated to the 

movement of S. marcescens chitinolytic machinery across the cell envelope. Whether or not the 

ChiWX system can be regarded as a true secretion system will require further testing.  
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4 Evidence for bimodal and co-ordinated 

expression of chiA and chiX 
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4.1 Introduction 

 

 

Since ChiW exhibits some similarities to the canonical λS-105 holin, and ChiX is a predicted 

endopeptidase, it is reasonable to question whether the S. marcescens ChiWX system will operate as 

a classic lambda lysis cassette. Therefore, a core problem this project needs to address is the 

question of whether S. marcescens actively secretes chitinase, or whether it releases chitinase via an 

altruistic lysis event. The work done in Chapter 3 initially addressed this problem: using 

immunochemistry techniques, the presence of intracellular control proteins such as cytoplasmic 

glutamine synthase (GS) and periplasmic maltose binding protein (MBP), were shown to be not 

detectable in the extracellular supernatant. In addition to this, the more sensitive and wider-ranging 

label-free proteomics employed in this work only detected a change in the presence of a very specific 

subset of proteins, the most abundant of which being the chitinolytic machinery. On the basis of the 

evidence gathered so far, it could be argued that if these substrates were released by a general lysis 

event we would expect to see many more non-specific cytoplasmic and periplasmic proteins in the 

extracellular milieu of a wild-type strain – whereas, in practice, only a particular small subset are 

affected by inactivation of the ChiWX system, which is more indicative of the substrate selectivity we 

might expect from a true secretion system.  

 

As yet, however, we have not definitively ruled out the question of a lysis event. It could be argued 

that a subpopulation of cells may, in fact, grossly overproduce the chitinolytic machinery, while 

repressing all other biological pathways, and then lyse.   
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4.2 Aims 

 

The aim of this Chapter was to determine whether the ChiWX system mediates a cell lysis event. We 

initially hypothesised that if every cell in the population was expressing chiWX simultaneously, then 

cell lysis was unlikely to be the mode of chitinase secretion. To test this hypothesis the approach 

chosen was that of live cell imaging with the specific objectives of collecting static images of bacterial 

cultures and real-time fluorescence microscopic data on growing populations. To facilitate this study, 

fluorescent reporter strains were constructed in collaboration with Prof Tracy Palmer and Dr Grant 

Buchanan (University of Dundee), and fluorescence microscopy experiments were performed in 

collaboration with Dr Nicola R. Stanley-Wall and Dr Victoria L. Marlow (University of Dundee).  
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4.3 Results 

 

4.3.1 Expression of chiX is bimodal. 

 

In order to visualise the expression of the chiWXYZ operon in live cells, fluorescent reporter strains 

were constructed using the pKNG101 suicide vector (Kaniga et al., 1991) to integrate gene 

replacements onto the S. marcescens chromosome. The fluorescent protein mKate (Pletnev et al., 

2008) was chosen for its reported brightness and photostability. In this work, a gene replacement 

allele was prepared, chiX::mKate. In this case, the chiX gene was deleted in-frame and a cassette 

encoding mKate, including an optimised RBS, was integrated as a replacement. As a result we have a 

transcriptional fusion strain, ChiXmKate (chiX::mKate), which is also a chiX mutant and so defective 

in chitinase externalisation. 

 

 

Figure 4.1 A transcriptional fusion strain, ChiXmKate, in which mKate replaces chiX. For strain ChiXmKate, the 
732 base pair mkate gene was integrated at base position 3032609-3032610 on the S. marcescens 
chromosome in order to serve as a reporter of chiX transcription. 

 

 

The ChiXmKate (chiX::mKate) strain was designed to serve as a reporter of chiX expression.  For this 

experiment we used fluorescence microscopy to observe ChiXmKate (chiX::mKate) cells after 16 

hour growth at 30oC in rich media. An initial analysis of the data shows a clear bistable expression of 

chiX in S. marcescens (FIGURE 4.2).  
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Figure 4.2 Expression of the chiX gene exhibits a bimodal distribution. Representative still frames (merged DIC 

[light microscopy] and/ or TRITC [red fluorescence] channel) of the ChiXmKate (chiX::mKate) strain. Cells were 
grown for 16 hr in rich media and images were taken using an Olympus x100 1.4 NA lens and CoolSNAPHQ 
camera. Scale bars show 10 µm. 

 

 

In order to quantify the bimodal expression data, the TRITC (red channel) fluorescence intensities 

corresponding to 1,500 individual cells was measured, for two separate experiments, and compared 

to the parent strain S. marcescens Db10. The ChiXmKate (chiX::mKate) strain shows a population of 

bright fluorescent cells that are well above the background intensities obtained for S. marcescens 

Db10 (FIGURE 4.3). From the two separate experiments there were a total of 4% and 8%, respectively, 

of the population that were defined as brightly fluorescent (‘ON’). The background fluorescence was 

calculated as the mean TRITC value of the S. marcescens Db10 population plus three times the 

standard deviation. For the first experiment the background was calculated to 132 AU and the bright 

ON cells were defined as those above 140 AU, which corresponded to 59 of 1,500 cells measured 

(4%) (FIGURE 4.3 A and B). For the second repeat experiment the background intensity was calculated 

to be 138 AU and the bright ON cells were defined as those above 150 AU, which corresponded to 

120 of the 1500 cell population, 8% (FIGURE 4.3 C and D). The bright ON cells were determined as 

those that were above the background level and also well above the general population cells to 

ensure that cells included were emitting a clear unambiguous fluorescence.  
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Figure 4.3 The chiX gene is expressed in 4 - 8% of the S. marcescens population. (A) First experiment. A 
subpopulation of cells emitting a fluorescence intensity above the background (BG) level calculated as the 
mean value of S. marcescens Db10 grown under the same conditions, plus three times the standard deviation. 
The BG value is set at 0 on the x axis. (B) The ON cells were defined as those well above the BG value and the 
general population of both ChiXmKate and the S. marcescens Db10 parental strain. Here, the bright cells were 
defined as those above 140 TRITC AU, which corresponds to 4% of the population. (C) Second Experiment. A 
subset of cells exhibiting greater fluorescence intensity than the general population, which corresponded (D) to 
8% of the population defined as ON. (E and F) DIC and/or TRITC overlay shows mKate fluorescence was only 
observed for strain ChiXmKate. Scale bars show 10 µm.  

 

  



147 
 

4.3.2 Expression of chiA exhibits a bimodal distribution.  

 

Having established that chiX is expressed only in a subpopulation of the cells, attention next turned 

to the chitinases themselves. A strain was constructed, Db10::chiA-gfp, that was positive for chitinase 

secretion (the native chiWXYZ operon was intact), encoded full length ChiA, but also encoded GFP 23 

base pairs downstream of the chiA termination codon (FIGURE 4.4). The Db10::chiA-gfp strain was 

considered to be a transcriptional fusion between chiA and gfp.  

 

 

 

Figure 4.4 Strain Db10::chiA-gfp is a transcriptional fusion between chiA and gfp. For strain Db10::chiA-gfp, 
the 717 base pair gfp gene was integrated at base position 4540152-4540153 on the S. marcescens 
chromosome, 23 base pairs from the end of the chiA termination codon. In the GFP fusion strain, chiA is left 
intact and gfp gene is integrated 23 base pairs downstream of the chiA termination codon.  

 

 

Next, we used fluorescence microscopy to observe the Db10::chiA-gfp strain cells after 16 hour 

growth at 30oC in rich media. It is clear from the images shown in FIGURE 4.5 that expression of chiA is 

limited to a particular subpopulation and exhibits a bimodal distribution.  
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Figure 4.5 The expression of the chiA gene exhibits a bimodal distribution. Representative still frames 

(merged DIC and/ or FITC [green fluorescence] channel) of the Db10::chiA-gfp strain. Cells were grown for 16 hr 

in rich media and the images were taken using an Olympus x100 1.4 NA lens and CoolSNAPHQ camera. Scale 

bars show 10 µm.  

 

 

It was important to quantify the bimodal expression data for the Db10::chiA-gfp strain, which was 

subjected to the same analysis as the mKate-encoding strain by measuring the fluorescence 

intensities corresponding to 1,500 individual cells, for two separate experiments, in comparison to 

the parental strain S. marcescens Db10. The Db10::chiA-gfp strain shows a population of bright 

fluorescent cells that are above the background intensities obtained for S. marcescens Db10 (FIGURE 

4.6). From the two separate experiments there were a total of 3% and 1% of the population that 

were defined as ‘ON’. The background fluorescence was calculated as the mean FITC (green channel) 

value of the S. marcescens Db10 population plus three times the standard deviation. For the first 

experiment the background was calculated to 119 AU and the ON cells were defined as those above 

140 AU, which corresponded to 38 of 1,500 cells measured (3%) (FIGURE 4.6 A and B). For the second 

repeat experiment the background intensity was calculated to be 118 AU and the ON cells were 

defined as those above 120 AU, which corresponded to 15 of the 1500 cell population, 1% (FIGURE 4.6 

C and D).  
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Figure 4.6 The chiA gene is expressed in 1 – 3% of the S. marcescens population. (A) First experiment. 
Db10::chiA-gfp shows a subpopulation of cells emitting a fluorescence intensity above the background (BG) 
level calculated as the mean value of S. marcescens Db10 parental strain grown under the same conditions, 
plus three times the standard deviation. The BG value is set at 0 on the x axis. (B) The ON cells were defined as 
those well above the BG value and the general population of both Db10::chiA-gfp and S. marcescens Db10 cells. 
Here the bright cells were defined as those above 140 TRITC AU, which corresponds to 3% of the population. 
(C) Second experiment. A subset of cells exhibiting greater fluorescence intensity than the general population. 
(D) The cells defined as ON corresponded to 1% of the population. (E and F) DIC and/or TRITC overlay shows 
GFP fluorescence was only observed for strain Db10::chiA-gfp. Scale bars show 10 µm. 
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4.3.3 Evidence for co-ordinated expression of chiA and chiX. 

 

 

Next, a dual fusion strain was constructed that would report both chiA (GFP) and chiX (mKate) 

expression simultaneously. The role of the ChiXmKate::chiA-gfp double fusion strain was to establish 

whether chiA and chiX are expressed within the same subpopulation of cells.  

Fluorescence microscopy was employed to observe ChiXmKate::chiA-gfp double fusion strain after 16 

hour growth at 30oC in rich media. The bimodal expression of both chiX and chiA was again evident in 

this experiment (FIGURE 4.7). Interestingly, the microscopy also revealed that chiX and chiA expression 

was co-ordinated (FIGURE 4.7). Visual inspection of the overall population revealed that most cells 

showed some co-expression where one fluorescence intensity appeared greater. There were 

relatively few cells where only one fluorescence channel (GFP or mKate) could be detected.  
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Figure 4.7 Co-ordinated expression of chiA and chiX. Representative images (DIC and/or TRITC and/or FITC 
channel) from three separate images (A-C) of dual fusion strain ChiXmKate::chiA-gfp shows co-ordinated 
expression of chiA and chiX. Cells where expression of chiA and chiX are both strong appear as yellow in the 
FITC and TRITC overlay. (D) Representative image of S. marcescens Db10 with no detectable fluorescence. The 
ChiXmKate::chiA-gfp cells were grown for 16 hours in rich media and images were taken using an Olympus 
x100 1.4 NA lens and CoolSNAPHQ camera. Scale bars show 10 µm. 
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It was important to quantify the respective levels of FITC (green) and TRITC (red) fluorescence 

intensities, as this would provide a more sensitive assessment (in addition to visual presentation) of 

whether chiA and chiX expression exhibited a similar distribution. For this, the fluorescence 

intensities of 2,000 ChiXmKate::chiA-gfp dual fusion strain and S. marcescens Db10 cells were 

compared and shown to exhibit a remarkably similar profile: chiA expression was defined as ON in 

8% of the dual fusion population, whilst chiX expression was ON within 7% of the total population.  

FIGURE 4.8 shows the 7% subpopulation (147 cells of 2,000 in total) within the yellow ON box where 

chiA and chiX expression are co-expressed (bright ON for both intensities). Interestingly, the 

fluorescence emitted by the overall population of the ChiXmKate::chiA-gfp dual fusion strain, 

detected by both FITC (8E-84) and TRITC (2.6E-260) channels, was significantly different from the S. 

marcescens Db10 parental strain, suggesting a low level of basal fluorescence throughout the whole 

population. These cells were excluded from the ON definition (FIGURE 4.9 A and B). 

    

Figure 4.8 Quantification of the fluorescence intensities establishes chiA and chiX expression are co-
expressed. The fluorescence intensities of a total of 2,000 cells were measured, of which 165 cells were 
defined as ON corresponding to chiA expression (8%) and 147 cells were defined as ON corresponding to chiX 
expression (7%). The 7% of the population where the expression of both chiA and chiX was significant are 
located within the yellow box and represent those cells for which expression of both genes can be regarded as 
co-ordinated.  
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Figure 4.9 Dual fusion strain exhibits basal level of fluorescence. ChiXmKate::chiA-gfp cells exhibited a 
significantly greater level of fluorescence detected for both FITC (A) (p-value 8E-84) and TRITC (B) (p-value 2.6E-
260), suggesting a basal level of fluorescence, for both intensities, throughout the whole population. The ON 
cells were defined as above this basal level intensity: for FITC, cells with a value greater than 130 AU were 
defined as ON, and for TRITC cells above 220 AU were also defined as ON. 
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4.3.4 Expression of chiA does not predispose cells to autolysis.  

 

 

Having established that expression of chiX and chiA is tightly co-ordinated, attention can now turn to 

the important issue of whether release of chitinases is attributable to a cell lysis event. Our 

ChiXmKate::chiA-gfp dual fusion strain shows unequivocally that chiX is expressed at exactly the 

same time as chiA. We can therefore study the strain Db10::chiA-gfp, which expresses intact and 

active chiX essential for the extracellular release of chitinase, safe in the knowledge that whenever 

GFP production is ‘ON’ the cells will be in the process of releasing chitinases.  

The fate of the Db10::chiA-gfp ‘ON’ population was followed using time-lapse microscopy. The 

Db10::chiA-gfp cells were grown for 18 hours in minimal media glucose and were then monitored at 

15 minute intervals under the DIC (light microscopy) and FITC (green fluorescence) channels. Images 

were taken using an Olympus x100 1.4 NA lens and CoolSNAPHQ camera. The time lapse 

experiments (FIGURE 4.10 and FIGURE 4.11) showed unequivocally that fluorescent ‘ON’ Db10::chiA-gfp 

cells were capable of dividing and differentiating (growing) into a non-fluorescent cell population, 

and, less frequently, into a fluorescent subpopulation that divides again to become non-fluorescent 

daughter cells. The representative example of fluorescent cell division shown in (FIGURE 4.10 and 

FIGURE 4.11) exhibited intact cell morphology over a three hour period. This provides strong evidence 

that the bimodal distribution of chitinase expression is not concomitant with an altruistic lysis event. 

Indeed, in the first time lapse experiment, of the 39 total fluorescent cells observed throughout the 

twelve distinct observation points, 23 of these went on to subdivide (59%). Similarly, when the same 

experiment was repeated, 17 of the 28 fluorescent cells observed across twelve different observation 

points displayed a clear cell division event (61%). In both cases, the remaining ~40% of ‘ON’ cells 

retained an intact morphology and, while none of them lysed, most appeared quiescent (non-

dividing) and were eventually subsumed within a growing colony of cells.  
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Figure 4.10 Expression of chiA gene is not concurrent with a lysis event. Representative images (DIC and FITC 
channels), taken at 15 minute intervals, from a three hour time lapse experiment using real time microscopy. 
Strain Db10::chiA-gfp is clearly able to express the chiA gene and subsequently undergo cell division. This 
behaviour is incompatible with the hypothesis that a cell lysis event is responsible for the extracellular release 
of chitinase, since evidently the subpopulation of cells that are expressing chiA at a high level retain their 
membrane integrity. From two separate time lapse experiments, each consisting of twelve different 
observation points, there were a total of 67 fluorescent cells, of which 40 cells divided (60%). Furthermore, 
none of the remaining 40% exhibited a clear lysis event and all appeared to retain an intact cell morphology. 
The Db10::chiA-gfp cells were grown for 18 hours in minimal media glucose and images were taken using an 
Olympus x100 1.4 NA lens and CoolSNAPHQ camera. Scale bars show 10 µm. 
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Figure 4.11 Expression of chiA gene is not concurrent with a lysis event. The same representative images as 
above showing just the FITC channel. Images were taken at 15 minute intervals, from a three hour time lapse 
experiment using real time microscopy. Strain Db10::chiA-gfp is clearly able to express the chiA gene and 
subsequently undergo cell division. This behaviour is incompatible with the hypothesis that a cell lysis event is 
responsible for the extracellular release of chitinase, since evidently the subpopulation of cells that are 
expressing chiA at a high level retain their membrane integrity. From two separate time lapse experiments, 
each consisting of twelve different observation points, there were a total of 67 fluorescent cells, of which 40 
cells divided (60%). Furthermore, none of the remaining 40% exhibited a clear lysis event and all appeared to 
retain an intact cell morphology. The Db10::chiA-gfp cells were grown for 18 hours in minimal media glucose 
and images were taken using an Olympus x100 1.4 NA lens and CoolSNAPHQ camera. Scale bars show 10 µm. 
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4.4 Discussion 

 

  

There is now a great appreciation of bimodal gene expression in a wide variety of biological systems, 

particularly in relation to virulence. It is generally accepted that the phenotypic variation provided by 

bimodal gene expression is favourable for survival in environments that may be prone to rapid 

fluctuations, such as establishing infection within a host, or in a soil environment. The work of Arkin 

et al., (1998) was the first to study λ phage infection of E. coli resulting in two distinct phenotypes, 

lytic and lysogenic, present in an isogenic population and subject to fluctuating ratios regulated by 

environmental signals. More recent work in Bacillus subtilis has investigated bistable gene expression 

involved in genetic competence, sporulation (Grossman, 1995) and biofilm formation (Chai et al., 

2008). For example, only ~15% of the B. subtilis population become competent (able to take up 

exogenous DNA) and this has been shown to be regulated by the relative concentration of the 

regulator ComK, which is itself under the control of the master regulator Spo0A-P that both activates 

and represses comK transcription depending on its cellular abundance, thus creating a ‘window’ of 

ComK mediated competence  (Mirouze et al., 2012). There are also good examples of bimodal gene 

expression from enteric bacteria, such as the phase variation exhibited by pathogenic E. coli 

(Haagmans and van der Woude, 2000) and Salmonella (Hughes et al., 1988). 

Such examples serve to illustrate that phenotypic bimodality is a common phenomenon, a way for 

cells to pre-adapt to a possible new environment. In this work, we have shown that only a 

subpopulation of cells express two key genes responsible for the S. marcescens chitinolytic 

phenotype. Below is a discussion of the role of bimodal expression of the chitinolytic components, in 

the context of what is currently known about this behaviour.  
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4.4.1 Release of ChiA into the extracellular environment is not attributable to lysis 

 

This work has shown that the release of ChiA to the extracellular environment is not attributable to 

ChiX-mediated lysis (FIGURE 4.10). Strain Db10::chiA-gfp was shown to be capable of bistable 

expression of chiA in cells that retained an intact morphology and were perfectly capable of division 

(FIGURE 4.10 and FIGURE 4.11). Since ChiX has already been shown to be essential for the extracellular 

presence of chitinase, and since it was shown in this work that expression of chiX is co-ordinated with 

expression of chiA (FIGURE 4.7), we can conclude that ChiX is not involved in mediating an altruistic 

lysis event. Instead, it is reasonable to hypothesise that ChiX facilitates the movement of chitinase to 

the extracellular supernatant in a way that maintains the overall integrity of the membrane. Further 

experiments will need to focus on testing how, in a cell producing ChiWX, the integrity of the cell 

envelope is kept intact, and whether ChiWX-mediated release of substrate across the outer 

membrane is a selective process.  

Continuing research on this topic will involve integrating a torA-gfp fusion (encoding the signal 

peptide of the E. coli Tat substrate trimethylamine N-oxide reductase TorA fused to GFP) 

downstream of the chiA locus in order to test whether Tat-exported (and presumably periplasmic) 

GFP can then be detected in the culture supernatant. This will then enable us to discern whether the 

ChiX-mediated release of substrate across the outer membrane is selective. This could show whether 

the chitinolytic machinery is recognised by, an as yet unidentified, receptor component located in the 

outer membrane, or alternatively whether ChiX facilitates a non-selective leakage of the entire 

periplasmic contents into the culture supernatant. If the former hypothesis is correct, and the 

integrity of the outer membrane is kept intact, then we are justified in calling ChiWX-dependent 

release of chitinases a true secretion system.  

Another way to test the issue of membrane integrity is to consider that if a subpopulation of cells 

resort to shedding their periplasmic contents, then the subset (~7%) of cells identified as expressing 

chiA/chiX at high levels should have a partially disrupted outer membrane that might be detectable 

by Gram staining. For example, the subpopulation of cells might be rendered more sensitive to retain 

the primary crystal violet stain as a result of any disruption in their outer membranes. The sensitivity 

of the outer membrane could also be tested by treating the mkate/ gfp fusion strains with bile salts 

or antimicrobial peptides, such as polymixin B or Bis-lentivirus lytic protein 1 (Bis-LLP1), and assessing 

whether this affects the bimodal distribution due to the enhanced sensitivity of the cell envelope. 

Both of these experiments should establish whether ChiWX is selective and whether the integrity of 

the outer membrane is kept intact, which are both key features of a true secretion system. 
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4.4.2 Expression of chiA and chiX exhibit a co-ordinated bimodal distribution 

 

This work has shown that expression of chiA and chiX are expressed in ~7% of the S. marcescens 

population. This sort of bimodal expression of genes is thought to act as an insurance policy against 

environmental fluctuations that might change too rapidly for a transcriptional response to a signal – 

instead, some cells in a population ‘pre-adapt’ to a certain change. Some researchers use the 

interesting term ‘hysteresis’ to denote this sort of behaviour based on historical exposure to a given 

environmental stress. Recent work with Gram negative Pseudomonas aeruginosa investigating the 

role of the LysR type transcriptional regulator (LTTR) BexR has shown that it is a bistable regulator of 

its target genes (including aprA, which encodes a secreted virulence factor alkaline protease) and, 

like many LTTRs, exhibits positive autoregulation (Turner et al., 2009). Besides BexR-mediated 

bistability, there are a number of other phenotypes in P. aeruginosa that exhibit a bimodal 

distribution - these include antibiotic resistance and biofilm formation (Deziel et al., 2001; Drenkard 

and Ausubel, 2002), which indicates the relevance of bimodality from a medical perspective.  

Based on this understanding, the reason why expression of the chitinolytic machinery exhibits a 

bimodal distribution in S. marcescens becomes apparent. Chitin is quite insoluble, so with a 

subpopulation of cells already expressing chitinase then those cells are pre-adapted to a potential 

loss of an accessible carbon source and can begin to degrade complex carbohydrates, such as chitin, 

for the benefit of the overall population. Since bimodal expression of the chitinolytic machinery is 

now abundantly clear, the next question is how is this process regulated? The first candidate we 

would postulate as responsible for this behaviour would be the LysR regulator ChiR, and the best way 

to test whether ChiR is involved would be to construct a ∆chiR deletion in the ChiXmKate::chiA-gfp 

dual fusion strain to see whether this abrogates bimodal expression of chiA and/or chiX. If so, we 

would expect to see a shift from a bright ON subpopulation to a more general background basal level 

of fluorescence. In this regard it would also be interesting to generate a separate ∆hfq deletion in the 

dual fusion background: if the hypothesis is true that Hfq regulates chitinase transcription, whereas 

ChiR regulates genes involved in transport, then we would hypothesise that a ∆hfq strain, by 

contrast, would retain bimodal  expression of chiX but would lose expression of chiA altogether. This 

work would complement a microarray transcriptional analysis of the ChiR and Hfq target genes 

(discussed in Chapter 2), taking Hfq regulation into account alongside ChiR is necessary since, 

although chiA and chiX expression are unequivocally co-ordinated, Hfq was only found to bind the 

mRNA of chiA (Sarah Murdoch & Dr Sarah Coulthurst, unpublished observation).  

Pseudomonas aeruginosa BexR has only 24% sequence identity, 44% similarity (and this from only 

55% query coverage) to S. marcescens ChiR but interestingly, like ChiR, it exhibits structural similarity 

to other important LTTR enzymes, such as CrgA of Neisseria meningitidis and to CbnR of Ralstonia 
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eutropha (Kelley and Sternberg, 2009). Applying the previous work of Turner et al., (2009) on 

Pseudomonas BexR to S. marcescens ChiR would provide a possible direction for further 

characterising the putative ChiR-mediated bimodality. To take this idea further, these proposed 

experiments would use the dual fusion strain (ChiXmKate::chiA-gfp) as a reporter of chiA and chiX 

expression, with one strain devoid of chiR and another left intact. In both these strains we could 

integrate the promoter of chiR followed by a yfp-lacZ reporter (PchiR-yfp-lacZ) in order to monitor chiR 

autoregulation, and at another locus we could integrate chiR under the control of an IPTG inducible 

promoter (PIPTG-chiR) (FIGURE 4.12). To begin with, this will determine whether ChiR exhibits positive 

or negative autoregulation: if YFP fluorescence or lacZ activity increases with elevated levels of IPTG-

induced chiR expression, then ChiR is a positive autoregulator; conversely if reporter levels decrease 

with elevated levels of chiR expression then ChiR can be said to exhibit negative autoregulation. 

These strains will also enable us to monitor the expression levels of the chitinolytic machinery when 

chiR expression levels are varied. If ChiR is a positive autoregulator, and enhanced levels of chiR 

expression creates a positive feedback situation (which is the case with BexR mediated regulation in 

P. aeruginosa), we would expect to see a non-linear increase in the levels of chiX and chiA expression 

(mKate and GFP fluorescence), the fluorescent population will increase as the expression of chiR is 

elevated (this is the hypothetical situation illustrated in FIGURE 4.12). Whereas if chiR acts as a 

repressor of its target genes we would expect to see the levels of chiA and chiX expression diminish 

as chiR expression increases.  

Another interesting feature to test using these hypothetical strains would be whether the chitinolytic 

ON cells exhibit hysteresis. In a hysteretic system cells grown under identical conditions should 

exhibit different responses when regrown under the same conditions. In this situation, we could test 

whether blue ON cells grown on X-Gal media exhibit a greater abundance of fluorescent ON cells 

when inoculated and grown in fresh liquid media, compared to OFF colonies from the same plate.  

 

 

 



161 
 

 

Figure 4.12 Hypothetical experiment to test whether ChiR mediates positive regulation of target genes and 
exhibits positive autoregulation. This experiment would use the dual fusion strain (ChiXmKate::chiA-gfp) as a 
reporter of chitinolytic gene expression, ON or OFF. One dual fusion strain would be devoid of native chiR 
(SMA2876) and the other would encode full length chiR. Into both dual fusion strains, the chiR gene under the 
control of an IPTG inducible promoter would be integrated onto the chromosome, and at another location a 
reporter of chiR expression would be integrated, a yfp-lacZ (encoding yellow fluorescent protein YFP and β-
galactosidase LacZ) construct under the control of the chiR promoter. If, in this hypothetical situation, ChiR 
were shown to act as a positive regulator and to initiate a positive feedback loop as the presence of ChiR 
increases (with increasing IPTG concentration), we would expect to see the overall proportion of chitinolytic 
ON cells (shown in red) to increase. Whereas, alternatively, the ∆chiR (SMA2876) strain unable to initiate such 
a positive feedback loop would keep a relatively constant biomodal distribution, irrespective of IPTG 
concentration. This experiment would determine the nature of ChiR mediated regulation of the bimodal 
chitinolytic phenotype. Figure adapted from (Turner et al., 2009). 
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4.4.3 Conclusions 

 

The chitinolytic phenotype in S. marcescens displays a clear bimodal distribution and the extracellular 

secretion of chitinase is not attributable to ChiX-mediated lysis. There are good reasons for thinking 

that the ChiR LTTR is responsible for the bimodal chitinolytic phenotype, since disruption of chiR has 

been shown previously to result in a loss of chitinolytic phenotype and a similar LTTR is responsible 

for the bimodal phenotype in P. aeruginosa (Turner et al., 2009).  

Whether or not ChiWX constitutes a true secretion system requires further testing to determine 

whether ChiWX facilitates the selective release of chitinolytic substrates, as opposed to non-specific 

periplasmic shedding. 
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5 Future Perspectives 
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5.1 Do opportunistic human pathogens use chitinases to establish infection? 

 

5.1.1 Chitinases and virulence 

 

There has recently been a growing appreciation of the role of chitinases in pathogenesis, particularly 

in cases where these are used to bind ‘chitinous’ receptors such as mucin or carcinoembryonic 

antigen-related cell-adhesion molecules (CEACAM) (Tran et al., 2011). Opportunist human pathogens 

such as Pseudomonas aeruginosa have been shown to up-regulate expression of genes encoding the 

chitinolytic ChiC and Cbp proteins (Manos et al., 2009) in response to samples mimicking sputum 

from immunocompromised cystic fibrosis (CF) patients. Since P. aeruginosa, unlike S. marcescens, is 

incapable of utilising chitin as a carbon source (Folders et al., 2001), it is reasonable to hypothesise 

that chitinolytic proteins have a putative role in virulence for this bacterium. The production of 

chitinolytic enzymes has been shown to be a crucial feature of the physiology of the Gram positive 

bacterium Listeria monocytogenes, especially in its ability to colonise the liver and spleen, and to 

actively suppress the host innate immune response in a murine infection model. Since mammalian 

hosts do not produce chitin per se, it was proposed that L. monocytogenes produces chitinolytic 

proteins to exploit glycoproteins and carbohydrate moieties as target sites for establishing infection 

(Chatterjee et al., 2006; Chaudhuri et al., 2010). In addition to the expression of chitinolytic enzymes 

by opportunistic pathogens to exploit chitin-like receptors in the mammalian host, the picture is 

further complicated if we consider that the host, in turn, also expresses chitinases/chitinase-like 

enzymes in response to the presence of bacterial chitinases. For example, the gene encoding 

chitotriosidase CHIT1 has been shown to be up-regulated in response to bacterial infection in 

neonates (Labadaridis et al., 2005). This suggests a complex picture of host-microbe interactions 

mediated by chitinases/chitinase-like enzymes interacting with other chitin-like carbohydrate 

molecules. 

 

Initially, as part of this study, we wanted to test whether S. marcescens chitinases act as virulence 

factors during infection of the insect host, such as wax moth larva Galleria mellonella. For this we 

performed a basic killing assay where a population of ten larvae were injected with different Serratia 

marcescens strains (FIGURE 5.1) grown overnight in rich media and were subsequently injected with 

10 µl of 10-6 and 10-8 PBS dilutions of the respective strains. It was clear from this preliminary 

experiment that deletion of S. marcescens chitinase encoding genes has no effect on insect killing in 

this particular assay – indeed the strain completely devoid of chitinase encoding genes (Nochi) killed 
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more (10/10) wax moth larvae than Db10 (3/10). For this reason we did not take this line of enquiry 

further.  

This preliminary experiment suggests that chitinases are not necessary for virulence in this particular 

chitin-containing insect host. It should be considered, however, that since this particular assay 

involved injecting bacteria beneath the chitin cuticle and into the haemocoel. A more appropriate 

virulence assay may have involved feeding wild-type and mutant S. marcescens to Caenorhabditis 

elegans, where the pathogens would have to escape the chitinous grinder in order to establish 

infection. Neverthelss, a ∆hfq deletion strain appears to be unable to kill the moth larvae in the 

injection assay, although it should be noted that Hfq has a pleiotropic role in the regulation of a wide 

spectrum of virulence factors.  

 

 

Figure 5.1 S. marcescens chitinases do not appear to play a role in insect virulence. A preliminary experiment 
testing the ability of different S. marcescens strains to kill wax moth larvae G. mellonella. Strains were grown 
overnight in rich media and subsequently diluted 10-6 or 10-8 in PBS: 10 µl of each culture was injected into 10 
separate larvae for each strain respectively, including a PBS control, and these were incubated in the dark at 25 
oC overnight. The bars represent exact numbers of dead larvae.  

 

In V. cholerae, expression of the chitinolytic machinery is thought to be induced by the presence of 

chitin or GlcNAc (Meibom et al., 2004), whereas in V. harveyi it has been shown to be regulated by 

quorum sensing as a social behaviour (Defoirdt et al., 2010). Previous work studying V. cholerae has 

shown that the chitin binding protein GbpA, as well as biofilm formation, is negatively regulated by 

quorum sensing (Jude et al., 2009). This suggests that GbpA might not be a structural component of 
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the biofilm, but could be used to initiate attachment to the host cell surface (Jude et al., 2009), which 

is congruent with the work done in V. harveyi (Defoirdt et al., 2010). 

Legionnaires disease is a potentially devastating form of pneumonia caused by Gram negative 

Legionella pneumophila, and immunocompromised people are particularly susceptible to infection by 

this normally aquatic bacterium. In cases of infection, the bacterium is usually ingested or inhaled 

leading to its colonising the respiratory tract and subsequent invasion of alveolar macrophage  (Fields 

et al., 2002; Tran et al., 2011). L. pneumohila externalises a chitinase ChiA, and a chitin binding 

protein CBP via a Type 2 secretion system. Recent work studying L. pneumophila ChiA has established 

that ChiA makes a significant contribution to L. pneumophila infection in the mouse lung, and that 

ChiA also elevates the survival of L. pneumophila in mammalian host cells (DebRoy et al., 2006). 

These authors also hypothesised that ChiA is involved in degrading N-acetylated ‘chitinous’ proteins 

in the lung, and that the bacterial persistence within host cells is attributable to the host response 

being less capable of eradicating L. pneumophila cells producing ChiA (DebRoy et al., 2006). This work 

provides further evidence of bacterial chitinases being utilised as virulence factors to target 

mammalian host cells. 

 

The gene encoding chitin binding protein CbpD in P. aeruginosa has been shown to be regulated 

according to the environmental conditions, and also shows variation in expression levels between 

strains, i.e. clinical isolates versus conditioned laboratory strains (Salunkhe et al., 2005). A microarray 

analysis of the P. aeruginosa transcription profiles from different strains revealed that cbpD 

expression was upregulated in a strain (LES) associated with the CF lung in comparison to a standard 

laboratory strain (PAO1) (Salunkhe et al., 2005). In addition to this, a separate analysis of the 

transcription profile from different P. aeruginosa strains revealed that cbpD gene expression was 

elevated in a clinical CF-isolate of P. aeruginosa in comparison to a strain isolated from a burn 

wound, suggesting that CbpD might have a particular role in adherence and colonisation of the CF 

lung (Sriramulu et al., 2005). Indeed, the work conducted by Manos et al., (2009) also showed that 

cbpD and chiC gene expression levels are elevated in clinical CF-strain of P. aeruginosa in comparison 

to a non-CF associated strain, and it also showed that cbpD and chiC expression was greater in free 

planktonic cells as opposed to biofilm conditions, which indicates that these chitinolytic proteins 

have a possible role in establishing early acute infection and initial adherence to lung epithelial cells, 

rather than later stages of biofilm formation. P. aeruginosa has been shown to have elevated cbpD 

gene expression when grown in media containing mucin that mimicked CF-sputum (Fung et al., 

2010), which complements the work done in V. cholerae (Bhowmick et al., 2008) showing that the 

production of GbpA was highly sensitive to the presence of mucin in the growth media.   
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There is also evidence that the chitinolytic phenotype of the Gram positive Listeria monocytogenes, 

causative agent of the severe form of pneumonia Listeriosis, are defective for growth in the mouse 

liver and spleen (Chaudhuri et al., 2010), and some studies have hypothesised that L. monocytogenes 

could utlilise ChiA to exploit host immune defences within host macrophages (Chatterjee et al., 

2006), suggesting chitinases might have an intracellular role in infection in addition to facilitating 

initial attachment and adherence to target cells. Some very recent in vivo work has shown that L. 

monocytogenes ChiA is a key virulence factor in a mouse infection model (Chaudhuri et al., 2013). 

One of the most interesting features of this study, in contrast to the number of times bacterial 

chitinases have been shown to facilitate early attachment to target sites, is that L. monocytogenes 

ChiA was shown to facilitate intracellular growth after 72-96 hours post infection (Chaudhuri et al., 

2013). Furthermore, L. monocytogenes ChiA was shown to actively change the innate immune 

response of the murine host, since the secretion of ChiA was shown to dramatically decrease the 

host expression of inducible nitric oxide synthase, which rendered the host environment more 

permissive to the presence of this bacterium (Chaudhuri et al., 2013).    

 

5.1.2 Chitinases and Inflammatory Bowel Disease 

 

 

Many of the organisms studied for their chitinolytic abilities are human commensals and/ or (mostly 

opportunistic) human pathogens, such as E. coli, V. cholerae, P. aeruginosa, L. monocytogenes and 

Legionella pneumophila, and it is worth questioning why such organisms exhibit a chitinolytic 

phenotype, given their mammalian host is incapable of producing a chitin substrate. There is a 

growing body of work that is beginning to address this question, and one of the most interesting 

examples is provided by chitinolytic pathogens that colonise the gut. For example, the causative 

agent of cholera (a severe disease associated with watery diarrhoea and vomiting), Vibrio cholerae, 

encodes four chitinase genes and GbpA (a chitin binding protein). The latter was shown to facilitate 

binding of V. cholerae to intestinal epithelial cells (Kirn et al., 2005) and, furthermore, to bind the 

‘chitinous’ N-glycosylated protein mucin in vivo in a murine infection model (Bhowmick et al., 2008). 

The study also demonstrates that the production of GbpA was enhanced in the presence of mucin in 

a concentration dependent manner and, in turn, mucin was produced at higher levels in response to 

the presence of V. cholerae, indicating a mutual positive feedback (Bhowmick et al., 2008). This study 

has demonstrated that the chitinolytic proteins produced by V. cholerae can be utilised to promote 
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adhesion to host cells and appear to have an important role in colonisation of the gut – hence they 

can be regarded as key players in mediating pathogenesis in the mammalian host.  

There are estimated to be 15,000-36,000 different species of bacteria living in the human gut (Frank 

et al., 2007), and these have a beneficial role in maintaining the health of the small and large 

intestines, many of which associate into a thick biofilm consisting of bacteria, polysaccharides, DNA 

and proteins (Macfarlane et al., 2005). In inflammatory bowel diseases such as Crohn’s disease or 

ulcerative colitis, the homeostasis of the gut flora and host-microbial interactions is disrupted as is 

the intestinal immune balance, resulting in severe bowel disorder (Mizoguchi et al., 2003). A 

particular variant of E. coli, Adherent Invasive E. coli (AIEC), which is present in 6% of healthy people, 

has been identified as having a particularly increased presence (30-50%) in the inflamed mucosa of 

individuals suffering from inflammatory bowel disorder (Martinez-Medina et al., 2009). Since not 

every individual bearing AIEC necessarily has Crohn’s disease, this bacterium is regarded as an 

opportunistic human pathogen (Martinez-Medina et al., 2009). AIEC, like other E. coli strains, is 

unable to utilise chitin as a carbon source, but AIEC has also been shown to encode a family 18 

chitinase ChiA (Low et al., 2013). A very recent study has shown that deletion of the ChiA encoding 

gene in AIEC strain LF82 greatly reduced adhesion to intestinal epithelial cells, which it mediates by 

binding to the chitinase 3-like-1 (CHI3L1) molecule produced by mucosal tissues (Low et al., 2013). 

The N-glycosylated N68 residue of murine CHI3L1 was shown to be a crucial target site of AIEC LF82 

ChiA, and provided a fine example of a chitinolytic enzyme targeting a non-chitin substrate in a 

virulence model (Low et al., 2013). These authors concluded that AIEC ChiA has an important role in 

establishing infection in a mouse infection model (Low et al., 2013). 

In addition to this, there has been work (Kawada et al., 2008) investigating whether the S. 

marcescens chitinolytic machinery can promote adhesion to mammalian host target sites. When the 

S. marcescens cbp21 gene was overexpressed in E. coli the adherence to CHI3L1 was greatly 

enhanced in vitro (Kawada et al., 2008). From this in vitro study these authors hypothesise that 

bacterial chitin binding protein may be a key factor in facilitating invasion of colonic epithelial cells in 

inflammatory bowel conditions (Kawada et al., 2008). 
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5.1.3 Possible future work in Serratia marcescens 

 

Since S. marcescens Cbp21, expressed in E. coli, was shown to greatly enhance binding to colonic 

epithelial cells (Kawada et al., 2008) , there is some evidence that the S. marcescens chitinolytic 

machinery is capable of binding to more than just a chitin substrate, and may even facilitate a role in 

virulence for this opportunist human pathogen.  Inspired by all of the work outlined above, here are 

some interesting questions that could be addressed in Serratia marcescens: 

 

 Is the chitinolytic phenotype of Serratia marcescens regulated in response to the presence of 

chitin, or other complex carbohydrates, or in a population dynamic fashion? 

 

 

 Can S. marcescens utilise its chitinolytic repertoire to establish infection in mammalian cells? 

Or to promote binding/adherence to the surface or epithelial cells, and if so, what is the 

bacterial chitinase being used to target - cell surface associated GlcNAc, or a chitinase-like 

protein? 
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5.2 Harnessing chitin degrading enzymes for biotechnological applications 

 

 

Chitin is the second most abundant polysaccharide on earth after cellulose. There is an estimated 

1011 tons of chitin in the biosphere produced annually by fungi, insects, molluscs and crustaceans 

(Tharanathan and Kittur, 2003). In 2008 the annual commercial production of crustaceans was 

estimated to be 10.8 million tons (FAO, 2010) a significant proportion of which consists of chitin that 

is usually dumped as waste by the sea food industry. For example, shrimp makes up 45% of 

processed seafood and 50-70% weight of the raw material is (mostly) chitin waste (Gortari and 

Hours, 2013).  In this respect, microbial chitinases have a crucial role in recycling environmental 

chitin, but they have also gathered interest for their possible exploitation in degrading commercial 

chitin waste. Glucose, ammonia and acetate from chitin are potentially valuable commodities. 

 

5.2.1 Heterologous expression of chiA with cbp21 confers a chitinolytic phenotype to E. 

coli K-12 

 

In a preliminary experiment, we decided to investigate whether heterologous expression of S. 

marcescens chiA in E. coli would be sufficient to confer chitinolytic activity on this host. To do this the 

S. marcescens chiA gene was cloned into the pUNI-PROM vector (Jack et al., 2004) for constitutive 

expression from the E. coli tat promoter. The E. coli K-12 wild-type strain MG1655 was transformed 

with pUNI-chiA and plated onto LB supplemented with 2% (w/v) colloidal chitin. In this case, no 

chitinolytic activity was observed (FIGURE 5.2). Next, the S. marcescens cbp21 gene was cloned 

downstream of chiA on the pUNI-chiA vector to give pUNI-chiA-cbp. Surprisingly, this plasmid was 

able to confer chitinolytic activity to E. coli MG1655 (FIGURE 5.2). The obvious zone of clearing 

induced by pUNI-chiA-cbp was not as a result of CBP21 alone, since modification of this vector to 

encode a version of ChiA lacking its Sec signal peptide (pUNI-chiANOSIG-cbp), exhibited a loss of 

chitinolytic activity (FIGURE 5.2). From this preliminary in vivo data it is possible that an intact S. 

marsescens ChiA protein together with an intact S. marsescens CBP21 protein are sufficient to confer 

significant chitinolytic activity to E. coli.   
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Figure 5.2 The S. marcescens chiA and cbp21 genes confer a chitin-degrading phenotype on E. coli . MG1655, 
MG1655 + pUni-Prom empty vector, MG1655 + pUni-chiA, and MG1655 + pUni-chiA-cbp21 plated on LB 

supplemented with 2% colloidal chitin and grown at 37C for 16 hours. 

 

 

This was an unexpected and interesting result.  It is believed that the Type 2 secretion system in E. 

coli K-12 strain MG1655 is cryptic, begging the question as to how these S. marcescens proteins are 

being secreted. Moreover, since the expression of full length chiA in conjunction with cbp21 is 

essential to confer a chitin-degrading phenotype in a heterologous host, it is surprising that the 

targeted removal of cbp21 did not appear to affect the chitinolytic phenotype of S. marcescens in 

vivo (FIGURE 2.7). This final preliminary experiment brings this project full-circle. Are ChiA and Cbp21 

secreted by E. coli K-12, or are we observing cell lysis or non-specific shedding of periplasmic 

contents? Transposon mutagenesis would be an appropriate place to start. 
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6 Materials & Methods 
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6.1 Media and Additives 

 
 

Medium Components Quantity (L-1) 

 

LB-agar 

 

NaCl 

Tryptone 

Yeast Extract 

Agar 

 

 

 

10 g 

10 g 

5 g 

15 g 

Luria Bertani medium 

(LB) 

NaCl 

Tryptone 

Yeast Extract 

 

 

10 g 

10 g 

5 g 

 

Solid chitin rich media NaCl 

Tryptone 

Yeast Extract 

Agar 

Colloidal chitin 

 

 

10 g 

10 g 

5 g 

15 g 

20 g 

Liquid chitin rich media NaCl 

Tryptone 

Yeast Extract 

Colloidal chitin 

 

 

10 g 

10 g 

5 g 

20 g 

Chitinase Secretion 

Assay Substrate Buffer 

Not sterilised 

 

0.2% (w/v) chitin azure 

(Sigma)  

Succinate 

Adjusted to pH 6 with 

NaOH 

 

0.666 g 

 

11.8 g 

Minimal Media (MM) 

 

50x phosphate buffer* 

10% (w/v) (NH4)2SO4* 

1M MgSO4* 

Agar 

 

20 ml      

 

10 ml        

0.41ml  

 

16 g                  
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Medium Components Quantity (L-1) 

 
 
MM Agarose 
 
 
 

 

50x phosphate buffer* 

10% (w/v) (NH4)2SO4* 

1M MgSO4* 

20% glucose* 

Ultra-Pure Agarose* 
 

 
 
20 ml      
 
10 ml        
 
0.41ml  
10 ml         
 
15 g                  

 

MM Glucose 

 
50x phosphate buffer* 

10% (w/v) (NH4)2SO4* 

1M MgSO4* 

20% glucose* 

Agar (for solid media only) 

 

 
20 ml      
 
10 ml        
 
0.41ml  
10 ml         
 
16 g                  

 

MM High sucrose  

 

 

50x phosphate buffer* 

10% (w/v) (NH4)2SO4* 

1M MgSO4* 

50% sucrose* 

Agar 

 

 

20 ml      
 
10 ml        
 
0.41ml  
200 ml         
 
16 g                  

 

Table 6.1 Growth media. Constituents were sterilised by autoclaving unless indicated otherwise. Components 
indicated by an asterisk in were sterilised individually and then added to the media afterwards. 
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Media supplements.  

 

 

 

Antibiotic 

 

Stock 

concentration 

 

Prepared in 

 

Volume used 

(100ml-1) 

 

Final 

concentration 

 

Ampicillin 

 

125 mg ml-1 Water 80 μl 100 μg ml-1 

Kanamycin 

 

50 mg ml-1 Water 100 μl 50 μg ml-1 

Streptomycin 

 

100 mg ml-1 Water 100 μl 100 μg ml-1 

Tetracycline 

 

5 mg  ml-1 70% ethanol 200 μl 10 μg ml-1 

 

Table 6.3 Antibiotics. All filter sterilised prior to use 

 

 

  

Media 

Supplement 

Stock 

concentration 

Sterilised Quantity 

(L-1) 

Final 

concentration 

DMSO 20% filter 20 ml 0.4% 

glucose 20% filter 10 g 0.2% 

glycerol 50% autoclave 10 ml 0.5% 

IPTG 1M filter 1 ml 1 mM 

SDS 20% N/A 100 ml 2% 

TMAO 20% filter 20 ml 0.4% 

Table 6.2 
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6.1.1 Preparation of Colloidal Chitin 

 

Colloidal chitin was prepared by slowly adding 40g shrimp shell chitin to 1 L 37% HCl, and this was 

left to stir gently at 4oC for 5 days, after which it was added to 2 L of distilled water at 4oC and left to 

settle for 2 day. The pH was then adjusted to 7.5 with repeated wash steps using Tris and 50% KOH, 

and the colloidal chitin was finally harvested by centrifugation and autoclaved. 

 

 

 

6.2 Buffers and Solutions 

 

6.2.1 General Buffers and Solutions 

 

Buffer/Solution Component 

 

APS 

 

10% ammonium persulphate 

 

 

Carbonate transfer buffer (CTB) 

 

10 mM NaCHO3 pH 9.9 

3 mM Na2CO3 

20% (v/v) methanol 

 

 

Coomassie stain 

 

0.1% (w/v) coomassie brilliant blue (R25) 

 

 

DNA loading buffer 

 

0.25% (w/v) bromophenol blue 

0.25% (w/v) xylene cyanol blue 

40% (w/v) sucrose  
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Buffer/Solution Component 

 

EDTA 

 

1.5 mM EDTA pH 7.5 

 

Laemmli sample buffer (2x) 

 

62.5 mM Tris (HCl) pH 6.8 

2% (w/v) SDS 

5% (v/v) β-mercaptoethanol 

25% (v/v) glycerol  

0.01% (w/v) bromophenol blue 

 

Lysozyme  

 

 

5 mg ml-1 lysozyme (from chicken egg white) 

Dissolved in water 

 

 

50 x Phosphate buffer pH 7.0 

 

350 g  L-1      K2HPO4 

100 g  L-1      KH2PO4 

 

 

1x Phosphate Buffered Saline (PBS) 

 

 

137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

1.8 mM KH2PO4 

 

PBS-Tween (TBS-T) 

 

1x PBS 

0.1% (v/v) Tween 20 

 

 

SDS-running buffer (5x) 

 

25 mM Tris (HCl) pH 8.3 
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Buffer/Solution Component 

192 mM glycine 

0.5% (w/v) SDS  

 

Sucrose Buffer 

 

 

58.8 mM Tris-acetate pH 7.8 

 735 mM sucrose 

 

 

 

TAE buffer 

 

 

40 mM Tris (HCl) pH 8.0 

1.142% (v/v) acetic acid 

1 mM EDTA 

 

 

Towbin Buffer (1 L) 

 

 

 

3.03 g Tris 

14.4 g Glycine 

850 ml MeOH 

150 ml H2O 

 

 

 

Tris buffered saline (TBS) 

 

 

50 mM Tris (HCl) pH 7.6 

150 mM NaCl 

 

Tris-Sucrose buffer 

 

50 mM Tris (HCl) pH 7.5 

40% (w/v) sucrose  

 

Table 6.4 Table Buffers and solutions employed for general procedures. 
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6.2.2 Chromatography Buffers 

 

Nickel affinity Buffers Components 

 

Nickel buffer A 

 

50 mM Tris (HCl) pH 7.5 

100 mM NaCl 

12 mM Imadazole 

 

 

Nickel buffer B 

 

 

Buffer A plus 500 mM Imidazole 

 

Urea Buffer 

 

 

Buffer A plus 5 M Urea 

 

Table 6.5 Nickel sepharose affinity chromatography buffers. 

 

 

 

Size Exclusion Buffers Components 

 

SEC Buffer 

 

50 mM Tris (HCl) pH 7.5 

150 mM NaCl 

 

 

Table 6.6 Size exclusion chromatography buffers. 
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6.3 Culture Conditions 

 

6.3.1 Bacterial strains and growth conditions 

 

 

The growth media and supplements used in this study are detailed in Section 6.1 and 6.2. Aerobic 

growth of strains in liquid culture was achieved by agitation at 200 rpm or higher and by maintaining 

a minimum 1:4 ratio of liquid to air in the culture vessel. S. marcescens was routinely grown 

aerobically in LB medium at 30°C. For the microscopy experiments and for the label-free mass 

spectrometry experiments S. marcescens was grown in minimal medium glucose pH 7.8. When 

required, media were supplemented with agar to 1.5% (w/v) and antibiotics to the final 

concentrations: ampicillin, 100 μg/ml; kanamycin, 50-100 μg/ml; streptomycin, 100 μg/ml; and 

tetracycline, 10 μg/ml. 

For long term storage, cells were frozen in LB following addition of 25% (v/v) glycerol in CryotubTM 

vials (Nunc) tubes, at -80˚C. 

 

 

6.4 Genetic Manipulations 

 

6.4.1 Plasmid DNA preparation 

 

Purification of plasmid DNA was performed using a plasmid miniprep kit supplied by Qiagen. The 

basis of this procedure is the alkaline lysis method of plasmid extraction as described by Birnboim 

and Doly (1979). Cells were prepared from an overnight culture in 5 ml LB medium in addition to any 

required antibiotics (TABLE 6.3). Cells were harvested by centrifugation at 6238 x g for 10 minutes in 

an AccuSpin benchtop centrifuge (Fisher) with subsequent resuspension and alkaline lysis of the cells. 

The lysate, following neutralisation and subsequent centrifugation was washed over a silica 

membrane, which selectively absorbs plasmid DNA in the presence of high salt buffer. Bound plasmid 

DNA was eluted by a further wash step in the supplied elution buffer. 
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6.4.2 Polymerase Chain Reaction (PCR) 

 

In this report, the DNA polymerases Gotaq (Promega) and Expand Long Template (Roche)  or 

Herculase (Stratagene) were the standard polymerases for general work and high-fidelity 

amplifications, respectively. Gotaq polymerase was employed for PCR in which high fidelity was 

unimportant. The Expand Long Template and the Herculase enzymes possess an exonuclease activity 

that serves to proof-read the extending strand and increases the fidelity of the reaction. For long PCR 

products (>2 kb) requiring high fidelity, the Expand High Fidelity PCR system (Roche) was used.  A 

standard PCR program used a 95˚C/30s denaturation step, a 55˚C/30s annealing step, a 72˚C 

elongation temperature and approximately 30 cycles. For each kilobase to be amplified an extension 

time of 1 min was required. For each reaction (typically 50 μl for standard PCR) a mix comprising 1 

μM of each primer, 0.2 mM dNTP (supplied by Roche), 1 μl of DNA template, 1 μl of polymerase and 

a final volume of 1x reaction buffer, made up to the final volume with H2O. In most cases the 

template for PCR was either chromosomal DNA or plasmid DNA purified using the Qiagen Blood & 

Tissue Kit or miniprep method respectively. When using chromosomal DNA as template or when 

using primers with a high degree of secondary structure it was useful to include 5% (v/v) DMSO to 

the reaction mixture to serve as a denaturant. The resultant PCR product, if intended for subsequent 

use such as cloning, was purified using either QIAquick PCR Purification or QIAquick Gel Extraction 

(Qiagen) using the provided kits. Gel extraction was most often used at this stage, particularly for the 

purification of PCR products from a plasmid template as this method enables the direct visualisation 

of a product band of the appropriate size following agarose gel electrophoresis, but also allows the 

precise excision and purification of product to the exclusion of any plasmid template. 

 

6.4.3 Sequencing PCR 

 

DNA sequencing was employed to ensure that the products of PCR contained no undesired 

mutations. The DNA sequencing service was provided by the University of Dundee in-house 

sequencing facility. Sequencing reactions were performed with 200-300 ng DNA template, 1 μl of 3.2 

μM of the desired sequencing primer, and made up to 15 μl with H2O. The template DNA is usually 

prepared by plasmid miniprep using a Qiagen kit, or gel extracted DNA following a standard PCR from 

a chromosomal template.  The returned DNA sequence was analysed using the National Centre for 

Biotechnology Information (NCBI) basic local sequence alignment tool (BLAST; (Altschul et al., 1990)). 
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6.4.4 Digestion by Restriction Endonucleases for Cloning 

 

Digestion of DNA using restriction endonucleases was carried out in the manufacturer supplied 

buffer. In cases where two enzymes were used, an appropriate buffer was selected to permit 

efficient activity of both enzymes. If this was not possible then the two digestions were carried out 

separately, after the first digestion the DNA was ‘cleaned’ using a Strataclean resin (Agilent 

technologies). A typical restriction digestion used 1 μl of each enzyme (10 U/ μl), buffer diluted to 1x 

concentration, a variable amount of DNA template, and water up to 30 μl final volume. Digestions 

were carried out at 37˚C for 30 min- 3h. Following restriction enzyme digests, cut vectors were 

treated with alkaline phosphatase (Roche). This enzyme removes phosphate groups from the 5’ end 

of DNA molecules, preventing re-ligation of the cut vector without the addition of insert: 3 μl of 

alkaline phosphatase was added to the restriction digest and incubated at 37˚C for 30 min before 

addition of another 3 μl of alkaline phosphatase for a further 30 min. Digested PCR products for 

cloning were purified by QIAquick PCR Purification (Qiagen) according to kit instructions to remove 

restriction endonucleases. Digested vectors for cloning were purified using the QIAquick gel-

extraction kit (Qiagen): in this case, the digestion product was run on an agarose gel and the cut band 

of the correct size was excised from the gel and purified according to kit instructions.  

 

6.4.5 DNA Ligation 

 

Vector and insert were mixed in a 2 µl: 6µl ratio and incubated in 1x ligation buffer and 2 µl of T4 

DNA ligase (Roche) in a final volume of 20 μl and incubated at 16˚C overnight. Following ligation, the 

entire 20 μl ligation mixture was transformed into the appropriate cloning strain (TABLE OF STAINS). 

 

6.4.6 Agarose Gel Electrophoresis 

 

DNA samples were analysed by agarose gel electrophoresis using 1% (w/v) agarose gels prepared in 

1x TAE and containing 1:500,000 dilution of GelRed Nucleic Acid Stain (Biotium). DNA was mixed in a 

10:1 ratio with 10x DNA loading dye and loaded into wells of the gel, which was then run in 1x TAE 

buffer at approximately 100 V. DNA size markers (Roche) were run alongside the samples and all 

were visualised after separation under UV light. 
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6.4.7 Transformation of Competent Cells with Plasmid DNA 

 

Chemical transformation: 5 ml of liquid LB plus any required antibiotics was inoculated with 1:100 

dilution of an overnight culture of the desired strain and incubated at 37˚C with agitation until the 

mid-log phase of growth (~90 min). The cell cultures were then centrifuged at 6238 x g for 10 min in 

an AccuSpin benchtop centrifuge (Fisher) and the resultant cell pellets resuspended in 500 μl 

transformation buffer (TSB). The resuspended cells were then kept at 4˚C for at least 30 minutes 

before storing at -80˚C or were used immediately in transformation. For each transformation, 200 μl 

of competent cells were used, and incubated with 1 μl of the desired plasmid DNA at 4˚C for 10 min. 

The cells were then heat shocked by incubation at 42˚C for 90 s before returning to 4˚C for a further 

5 min. To each transformation, 1 ml of liquid LB was added followed by incubation at 37˚C for 1 h to 

allow for phenotypic expression of the plasmid encoded antibiotic resistance genes. Cells were then 

centrifuged at 16100x g for 1 min in an Eppendorf 5415 D centrifuge and the supernatant removed. 

Resuspended cells were then spread onto a plate of LB-agar containing any required antibiotics and 

incubated at 37˚C overnight.  

 

Electroporation: 25 ml of LB broth medium supplemented with the appropriate antibiotics was 

inoculated 1:100 from an overnight culture and incubated at 30˚C with shaking at 200 rpm to an 

optical density at 600 nm (OD600) of 0.4 – 0.6. Upon reaching the required OD, cell cultures were kept 

at 4˚C for 30-40 min before centrifugation at 3000 x g for 10 min in an AccuSpin benchtop centrifuge 

(Fisher) at 4˚C and the resulting pellet re-suspended gently in 10 ml ice-cold H2O. This centrifugation 

and subsequent re-suspension was repeated twice, first re-suspending again in H2O and then in 10% 

glycerol, both kept at 4˚C before use. For the preparation of competent cells of Serratia marcescens, 

wash steps in water were substituted by washes in ice-cold 10% glycerol. Cells were then pelleted 

once more before re-suspension in 250 μl of ice-cold 10% glycerol. 50 μl of electrocompetent cells 

were then added to 1 μl of plasmid DNA and incubated on ice for 10 min. These cells were then 

transferred using chilled pipette tips to a Molecular BioProducts (San Diego, CA) 2 mm 

electroporation cuvette (kept until this stage at -20°C). An electrical pulse with the following settings; 

2.5 kV voltage, 25 μF capacitance, 200 Ω resistance, 2 mm cuvette length; was applied to the cuvette 

using a BioRad (Hercules, CA) GenePulser Xcell electroporator. 1 ml of LB medium at room 

temperature was added to the electroporation cuvette and the cells mixed by gentle pipetting. Cells 

were then transferred to an eppendorf tube and incubated at 37˚C for 1 h. All of the cells were 

pelleted and resuspended in 150 µl of LB, and then spread onto LB-agar supplemented with the 

required antibiotics and incubated at 30˚C overnight.  
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6.4.8 Chromosomal deletions using the pNKG101 system 

 

 

Deletion strains of S. marcescens were constructed by allelic exchange using the suicide vector 

pKNG101 as described previously (Kaniga et al., 1991). Briefly, this involved constructing the desired 

deletion allele in pBluescript before moving the allele onto pKNG101. The pKNG101 constructs were 

introduced into S. marcescens by conjugation followed by selection on MM streptomycin and then 

MM sucrose, which, following a round of PCR-based screening, allowed isolation of mutants in which 

the native gene had been replaced with the deletion allele.  

Strains, JJH04w (chiW), JJH05x (chiX), JJH06y (chiY) and JJH07z (chiZ) were prepared as in-frame 

deletions that preserved all initiation and termination codons, putative ribosome binding sites and 

coding sequences of flanking genes. Strain JJH08p is devoid of the entire coding sequence of chiW 

and also lacks the initiation codon of chiX, and therefore exhibits a chiW, chiX genotype (Supp 

Table S2). The JJH01 (chiA), JJH02 (chiB), JJH03 (chiC), JchiA (chiB, chiC), JchiB (chiA, chiC) 

and JchiC (chiA, chiB) strains are devoid of the coding sequence of chiA, chiB or chiC respectively, 

these were each made as in-frame deletions where the entire coding sequence was removed with 

the exception of the initiation and termination codons .  

 

 

6.4.9 Transposon Mutagenic Screen 

 

 

Transposon mutagenesis of the JchiA (chiA+, ∆chiB, ∆chiC), JchiB (chiB+, ∆chiA, ∆chiC) and JchiC (chiC+, 

∆chiA, ∆chiB) strains were performed separately using E. coli donor strain SM10 λpir [pUTmini-

Tn5Sm/Sp] as outlined by (de Lorenzo et al., 1990). Briefly, this procedure involved patch mating E. coli 

donor strain with S. marcescens recipient strain and also HH26 (pNJ5000) helper strain, normalised to 

OD600 1.0, in a 1:1:3 ratio respectively, from which 40 µl was spotted onto an LB agar plate and 

incubated at 30 oC for 16 hours.  The patch mated colony was then suspended in 1 ml LB and diluted 

10-2 in MM streptomycin (100 µg/ ml), from which 100 µl was spread on MM streptomycin plates (in 

order to select for Tn5 insertion) and incubated at 30 oC for 48 hours. Individual JchiA, JchiB and JchiC 

colonies that contained Tn5 were patched onto LB agar plates supplemented with 2% (w/v) colloidal 

chitin. Strains that exhibited a loss of chitin-degrading phenotype (no chitinolytic zone of clearing) 

were then patched on to fresh colloidal chitin media to check the chitinolytic phenotype (in 

comparison to the parental strain) had been disrupted.  
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6.4.10 Single Primer Specific PCR for Mapping Tn5 Insertions 

 

 

Transposon insertion sites were mapped using single primer specific PCR (Shyamala and Ames, 1989) 

where gDNA was digested with XhoI and PstI and then ligated into pBluescript followed by a round of 

PCR with vector- and Tn5-specific primers. In this case, after restriction enzyme digestion, it was the 

gDNA that was phosphatase treated, not the vector. PCR products not present in the S. marcescens 

Db10 control gDNA were sequenced with Tn5 primers and the positions of the Tn5 insertions within 

the S. marcescens genome were located by BLAST (Altschul et al., 1997) analysis of the S. marcescens 

Db11 genome, of which Db10 is the direct parent, using the publicly-available server at 

http://www.sanger.ac.uk/resources/downloads/bacteria/serratia-marcescens.html. For further 

genetic and mass spectrometric analyses, the complete S. marcescens Db11 genome sequence and 

preliminary gene prediction were also obtained from the Sanger Institute at the location above.   

 
 
 

 

 

  

http://www.sanger.ac.uk/resources/downloads/bacteria/serratia-marcescens.html
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6.5 Protein Methods 

 

6.5.1 Overproduction of His6-tagged protein from an IPTG-inducible promoter 

 

 

SMA0468 (ChiC), SMA2875 (ChiB) and SMA4243 (ChiA) were overproduced in E. coli as C-terminally 

hexa-Histidine-tagged proteins from plasmids based on pQE60 (Qiagen). The plasmid encoding S. 

marcescens ChiA, ChiB or ChiC was transformed into E. coli M15 containing the pREP4 plasmid 

encoding the lac repressor. From the resultant colonies on an LB-agar plate incubated at 37˚C 

overnight, single colonies were used to inoculate 5 ml liquid LB including the appropriate antibiotics, 

which was then grown at 37˚C overnight with agitation at 200 rpm. 500 ml of liquid LB plus the 

appropriate antibiotics was then inoculated with a 1:100 dilution of the overnight culture and 

incubated at 37˚C with shaking at 200 rpm until the OD600 > 0.4 (~2 h). Expression of the vector-borne 

gene of interest was induced by the addition of 1.5 mM isopropyl β-D thiogalactopyranoside (IPTG; 

Sigma), activating expression from the lac promoter. After a further 16 h growth the cells were 

harvested by centrifugation at 4539.5 x g for 20 min in a Beckman JS-4.2 rotor.  

 

 

6.5.2 Small Scale Solubility Tests 

 

 

We also performed small scale solubility tests, whereby 5 ml cultures (as outlined in Section 6.5.1) 

expressing  ChiA, ChiB, ChiC were overproduced for 3 hours, then resuspended in 5 ml 50 mM Tris-

Hcl and lysozyme, and sonicated for 1 minute at 16 % amplitude, with pulses for 4 seconds on and 4 

seconds off. The lysed cultures were then centrifuged at 3000 x g for 10 min in an AccuSpin benchtop 

centrifuge. The supernatant contained the soluble fraction, from which a sample was mixed 1:1 with 

laemmli buffer. The insoluble lysed pellet was resuspended in the same volume of 50 mM Tris-Hcl, 

and a sample was also mixed 1:1 with laemmli buffer. The different samples were analysed using 

SDS-PAGE. 
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6.5.3 Purification of His6-tagged ChiA, ChiB and ChiC to generate polyclonal antisera 

 

 

The pellets obtained according to Section 6.5.1 were resuspended in 10 ml 50 mM Tris (HCl) pH 7.5 

per g of cell pellet. To the cell suspension, 50 μl Protease Inhibitor Cocktail 3 (Calbiochem) per g cell 

pellet, lysozyme and DNAase was added. Cells were broken by two passages through a French 

pressure cell at ~8000 psi. The French pressure effluent was then centrifuged at 17210.7x g in a 

Sorvall SS-34 rotor for 12 min to remove unbroken cells and other large cellular debris from the 

crude protein in the supernatant. For the purification of soluble ChiC, the presence of the C-terminal 

His6-tag on the protein of interest allowed for the specific purification of the overproduced protein 

directly from a crude protein extract by nickel-affinity chromatography, whereas for insoluble ChiA 

and ChiB, the lysed debris (with inclusion bodies) was resuspended in 50 ml Buffer A containing 5 M 

Urea and gently stirred for 3 days before being applied to the nickel-affinity chromatography column. 

In all cases a Ni(II) column (5 ml HisTrapTM HP column from Amersham Biosciences) was used in 

conjunction with an ÄKTA FPLC system (GE Healthcare). The column was first equilibrated with 2-3 

column volumes of nickel buffer A (TABLE 6.5). The crude cell extract was then applied to the column 

at a flow rate of 1 ml min-1 and the unbound flow-through collected if desired to ascertain successful 

binding of the protein to the column by SDS-PAGE. Non-specifically bound proteins were eluted by 

further washing through the column with nickel buffer A until the elution profile displayed no further 

protein eluting from the column. Bound protein was then eluted in a 0-100% gradient of nickel buffer 

B over 30 min and collected in 2 ml fraction tubes. Fractions containing the protein of interest were 

concentrated using a 10 kDa cut-off spin concentrator (Vivascience) and centrifugation at 3000 x g in 

an AccuSpin benchtop centrifuge (Fisher) before overnight dialysis in 1.91 ml cm-1 volume, 8 kDa 

molecular weight cut-off dialysis tubing (supplied by BioDesign) into 50 mM Tris (HCl) pH 7.5, 150 

mM NaCl to remove unwanted imidazole from the protein sample. 

 

Following immobilised metal affinity chromatography the purified ChiA protein was used to raise 

rabbit polyclonal antisera (Eurogentec, Belgium), whereas ChiB and ChiC were put through an 

additional size exclusion chromatography step. Protein identification was by tryptic peptide mass 

fingerprinting following separation by SDS-PAGE (FingerPrints Proteomics Service, University of 

Dundee). 
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6.5.4 Size Exclusion Chromatography (SEC) 

 

 

Separation by size exclusion was performed using a SuperdexTM column (Amersham Biosciences) in 

conjunction with an ÄKTA FPLC system (GE Healthcare). The column was first equilibriated with 2-3 

column volumes of SEC buffer (TABLE 6.6). 500 μl of purified protein was applied to the column at a 

flow rate of 0.5 ml min-1 and eluted in 50 mM Tris (HCl) pH 7.5 / 150 mM NaCl. Fractions were 

collected in 5 ml tubes. The desired fractions were pooled and concentrated using a 10 kDa cut-off 

spin concentrator (Vivascience) and centrifugation at 3000 x g in an AccuSpin benchtop centrifuge 

(Fisher) and dialysed overnight against 50 mM Tris (HCl) pH 7.5 using 1.91 ml cm-1 volume, 8 kDa 

molecular weight cut-off dialysis tubing (BioDesign). 

 

Following immobilised metal affinity chromatography and size exclusion chromatography, the 

purified ChiB and ChiC proteins were used to raise rabbit polyclonal antisera (Eurogentec, Belgium). 

Protein identification was by tryptic peptide mass fingerprinting following separation by SDS-PAGE 

(FingerPrints Proteomics Service, University of Dundee). 

 

 

6.5.5 SDS-PAGE 

 

SDS-PAGE was performed according to the principle described by Laemmli ((Laemmli, 1970)) using 

the BioRad mini protean III system. Protein samples were diluted in a 1:1 ratio with Laemmli sample 

buffer and boiled for 2 min. Samples were then loaded onto an SDS-PAGE gel (percentage acrylamide 

varies) in a BioRad gel electrophoresis tank filled with 1x SDS running buffer. The gel was run at 100 V 

until the dye front had crossed from the stacking gel and into the resolving gel and then increased to 

< 200 V. Molecular weight protein standards (BioRad) were run alongside the protein samples. 

Proteins were visualised by treatment with coomassie stain (InstantBlue, Expedeon) with shaking. 

After incubation for at least 2 hr the gel was removed from the coomassie stain. Gels were incubated 

in water with shaking until the background staining of the gel had sufficiently diminished. 
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6.5.6 Western Immunoblot 

 

For Western immunoblotting protein samples were separated by SDS-PAGE on 12% (w/v) 

polyacrylamide gels.  Samples were electroblotted at 250 mA for 90 minutes in Towbin buffer onto 

polyvinylidene difluoride (PVDF) (Millipore). ChiA, ChiB, ChiC, MBP (New England BioLabs), RNAP 

(NeoClone) or GS (Javelle et al., 2004) were detected by hybridization of the primary antibody (ChiA, 

ChiB, ChiC, MBP at 1:20,000 dilution, RNAP at 1:40,000 and GS at 1:10,000) followed by the 

secondary antibody, horseradish peroxidase (HRP)-conjugated goat antirabbit or antimouse antibody 

(BioRad; 1:10,000), and then exposed using an enhanced chemiluminescent detection kit (Millipore).  

 

 

6.5.7 Protein Concentration Determination 

 

The protein concentration of purified samples of ChiA, ChiB and ChiC was determined by measuring 

the absorbance at 280 nm (A280) using a Nanodrop spectrophotometer (labtech) after deducting an 

appropriate blank (50 mM Tris-Hcl, 150 mM NaCl) reading. An accurate concentration using this 

method required the manual input of the predicted molecular weight and the molar extinction 

coefficient of the protein. These were obtained using the ExPASy ProtParam server 

(http://www.expasy.org/tools/protparam.html). 

Stacking Gel Volume (ml) 

0.5 M Tris (HCl) pH 6.8 1.25 

H2O 2.6 

30% Acrylamide 1 

10% SDS 50 µl   

10% APS 50 µl 

Temed 5 µl 

Resolving Gel (15%) Volume (ml) 

1 M Tris (HCl) pH 8.8 2 

H2O 2.6 

30% Acrylamide 3.2 

10% SDS 80 µl 

10% APS 80 µl 

Temed 8 µl 

 

Table 6.7 SDS-PAGE gels. Constituents of the resolving and stacking gels for the preparation of 12% acrylamide 
gels for SDS-PAGE. 
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6.5.8 Label Free Mass Spectrometry  

 

 

S. marcescens Db10 and JJH08p (∆chiW, ∆chiX) secreted protein samples were prepared for label-

free mass spectrometry by first growing cells in 50 ml minimal media at 30°C aerobically for 16 hours. 

Cultures were centrifuged at 5000 x g, 4 °C, 30 min, the supernatant decanted and the cell pellet 

discarded. This procedure was repeated eight times. Next, 2.6 ml of a 6.1 N trichloroacetic acid 

solution (approx. 100% w/v) was added to 40 ml of culture supernatant and proteins were 

precipitated overnight at 4 oC. The protein precipitate was collected at 5000 x g, 4 °C, 30 min and the 

supernatant discarded. The protein precipitates were then washed four times in 1 ml 80% acetone (–

20°C) before being dried at room temperature under laminar flow hood for 45 min.  

 

The following section was carried out by Dr Matthias Trost and Manman Guo, PPU, University of 

Dundee: Samples were resuspended in 500 µl 20 mM Tris-HCl pH 8.0, 4 % (w/v) SDS, 1 mM TCEP and 

alkylated by addition of 5 mM iodoacetamide for 20 min in the dark at room temperature. After 

quenching with 5 mM DTT, samples were treated using the FASP protocol (Manza et al., 2005; 

Wisniewski et al., 2009) and digested using trypsin (sequencing grade, Promega). About 0.5 μg of 

each digest was injected in an interleaved manner onto a 2 cm x 100 μm trap column and separated 

on a 15 cm x 75 μm Pepmap C18 reversed-phase column (Thermo Fisher Scientific) on a Dionex 

Ultimate 3000 RSLC. Peptides were eluted by a linear 2-hour gradient of 95% A/5% B to 35% B (A: 

H2O, 0.1% Formic acid (FA); B: 80% ACN, 0.08% FA) at 300 nl/min into a LTQ Orbitrap Velos Pro 

(Thermo-Fisher Scientific). Data was acquired using a data-dependent “top 20” method, dynamically 

choosing the most abundant precursor ions from the survey scan (350-1650 Th, 60,000 resolution, 

AGC target value 106). Precursors above the threshold of 500 counts were isolated within a 2 Th 

window and fragmented by CID in the LTQ Velos using normalised collision energy of 35 and an 

activation time of 10 ms. Dynamic exclusion was defined by a list size of 500 features and exclusion 

duration of 60 s. Lock mass was used and set to 445.120025 for ions of polydimethylcyclosiloxane 

(PCM) (Fritsch et al., 2013).  

Label-free quantitation was performed using MaxQuant v1.3.0.5 (Cox and Mann, 2008). Mass 

spectrometric runs of 4 biological replicates of Db10 and  JJH08p were searched against a combined 

database of S. marcescens containing 4,720 sequences and a list of common contaminants in 

proteomics experiments using the following settings: enzyme Trypsin/P, allowing for 2 missed 

cleavage, fixed modifications were carbamidomethyl (C), variable modifications were set to Acetyl 

(Protein N-term) and Oxidation (M). MS/MS tolerance was set to 0.5 Da, precursor tolerance was set 
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to 6 ppm. Peptide and Protein FDR was set to 0.01, minimal peptide length was 7, and one unique 

peptide was required. Re-quantify and retention time alignment (2 min) were enabled. 
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6.6 Cell Fractionation 

 

 

6.6.1 Separation of whole cell and extracellular supernatant fractions 

 

For the separation of supernatant and whole cell fractions, cultures were grown for 16 hours in LB 

medium at 30 oC, the cells were harvested by centrifugation at 16,000 x g. The supernatant was 

carefully removed (supernatant fraction), and the cell pellet was resuspended in LB (whole cell 

fraction). Samples were mixed 1:1 with laemmli buffer and boiled for 3 min. 

For small scale protein secretion assays strains were grown in 100 ml volumes with shaking 220rpm 

at 30 oC for a total of 120 hours. The OD600 for each sample was normalized before whole cell and 

supernatant fractions were collected by centrifugation at 16,000 x g. Culture supernatants were 

subjected to a further ultrafiltration step through a 0.2 m device (Millipore). Samples were taken at 

16 hr, and 24 hr, 48 hr, 72 hr intervals thereafter. Samples were boiled for 10 minutes at 1:1 ratio 

with Laemmli disaggregation buffer (Sigma).  

 

 

6.6.2 Separation of extracellular/ cytoplasmic/ periplasmic/ total membrane fractions 

 

 
For preparation of cytoplasmic, total membrane, periplasmic and secreted (culture supernatant) 

fractions, we performed a modified version of the protocol outlined by (Osborn and Munson, 1974). 

500 ml cultures grown for 16 hours in LB medium at 30 oC, the cells were harvested by centrifugation 

at 8000 x g, supernatant was removed and then put through an ultrafiltration step using a 0.2 m 

device (Millipore). Next, 1 g cell pellet was gently suspended in 6.8 ml sucrose buffer (58.8 mM Tris-

acetate pH 7.8, 735 mM sucrose) to which 1.2 ml 5 mg/ml lysozyme was added and gently stirred for 

2 minutes, 200 µl was removed (whole cell fraction), then 16 ml of cold 1.5 mM EDTA pH 7.5 was 

added and gently stirred for 8 minutes at 4 oC. The sample was centrifuged at 8000 x g and 5 ml 

supernatant (periplasmic fraction) was put through 0.2 µm filter. The sphaeroplast pellet was 

homogenised in 24 ml of lysis buffer (16.6 mM Tris-acetate pH 7.8, 1 mM EDTA, small crystal of 

DNAse, protease inhibitors) and 200 µl sample was removed (sphaeroplast fraction). The cells were 

then lysed and centrifuged to remove cell debris and 1 ml of the remaining crude cell extract was 

submitted to ultracentrifugation at 80,000 rpm for 30 mins, after which 200 µl supernatant was 

removed (cytoplasmic fraction). The total membrane pellet was homogenised in 1 ml buffer (50mM 
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Tris-HCl, 500mM NaCl) and the ultracentrifugation step was repeated. The ‘washed’ membrane 

pellet was resuspended in 800 µl of the same buffer and 200 µl was removed (membrane fraction).  

 

 

 

6.7 Chitinolytic Activity Assays 

 

6.7.1 Secretion Assay 

 

Protocol adapted from (Coulthurst et al., 2006). Cultures of each strain were grown in LB for 16 h. 

Culture samples were centrifuged at 16,000 g, and the supernatant was carefully removed at kept on 

ice. A 200 µl sample of culture supernatant was mixed with 400 µl of secretion assay substrate buffer 

(TABLE 6.1), which was incubated at 37 oC for 72 h. The samples were then centrifuged at 16,000 g for 

5 min and the A560 of the supernatant measured. Chitinolytic activity was measured as ∆A560 h-1 ml-1 

per OD600 unit with respect to a blank incubated with just LB (not culture supernatant).  

 

6.7.2 Solid Chitin-Rich Media Plate Assay 

 

Cultures were grown in LB for 16 hr at 30 oC. The OD600 of each culture was normalised, and 15 µl of 

each culture was spotted onto solid chitin rich media (TABLE 6.1) and incubated at 30 oC for 48 hr. 

Chitinolytic activity was observed as a zone of clearing around the colony. 

 

6.7.3 Wax Moth Larvae Killing Assay 

 

Protocol adapted from (Murdoch et al., 2011). To determine whether the chitinolytic activity of S. 

marcescens is important for virulence in an insect model, overnight cultures of S. marcescens Db10 

strains were diluted 10-6 and 10-8 in 1x PBS. Wax moth larvae (Galleria mellonella) were warmed from 

4 oC to room temperature, and were injected with 10 µl of each dilution using a Hamilton syringe via 

the hind left proleg (10 larvae per dilution). Ten larvae were injected with just PBS. After the 

injection, the larvae were incubated at 25 oC for 24 hr, afterwhich they were scored as dead or alive. 

Dead larvae were very easy to score as they would turn black and harden.  
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6.7.4 Heterologous expression of S. marcescens ChiA and Cbp21 in E. coli 

 

Serratia marcescens chiA was amplified using a primer that introduced BamH1 and Xba1 restriction 

sites at 5’ and 3’ ends respectively, and cbp21 was amplified using primers that introduced Xba1 and 

HindIII sites at the 5’ and 3’ ends respectively. The PCR product was purified by gel extraction 

(Qiagen). First, the cbp21 gene product was cut with the restriction enzymes listed above, and cloned 

in to the expression vector pUniprom cut with the same enzymes, then chiA was cloned into the 

same vector using the appropriate restriction enzymes. To clone the gene encoding ChiA without the 

N-terminal Sec signal peptide, the region encoding the mature ChiA was amplified and cloned into 

the same vector above from which full length chiA had been removed. The absence of the N-terminal 

signal region was confirmed by sequencing. The constructs were transformed into E. coli MG1655, 

and grown overnight at 30 oC in LB ampicillin, and then 15 µl was spotted onto MM colloidal chitin 

and grown at 30 oC for 48 hr. Chitinolytic activity was observed as a zone of clearing around the 

colony. 
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6.8 Microscopy 

 

Fluorescent reporter strains were constructed using the pKNG101 suicide vector (Kaniga et al., 1991) 

to integrate gene replacements onto the S. marcescens chromosome. The fluorescent protein mKate 

(Pletnev et al., 2008) was chosen for its reported brightness and photostability. In this work, a gene 

replacement allele was prepared, chiX::mKate. In this case, the chiX gene was deleted in-frame and 

a cassette encoding mKate, including an optimised RBS, was integrated as a replacement. As a result 

we made a transcriptional fusion strain, ChiXmKate (chiX::mKate), which is also a chiX mutant and 

so defective in chitinase externalisation. Another strain was constructed, Db10::chiA-gfp, that was 

positive for chitinase secretion (the native chiWXYZ operon was intact), and encoded full length ChiA, 

but also encoded GFP 23 base pairs downstream of the chiA termination codon. The Db10::chiA-gfp 

strain was considered to be a transcriptional fusion between chiA and gfp.  

 

6.8.1 Visualisation of cells with static microscopy 

 

Cells were grown in LB aerobically overnight at 30 oC with shaking 220 rpm. The following day the 

overnight culture was subcultured 25 µl in 5 ml fresh LB and grown for 16 hr at 30 oC with shaking 

220 rpm. Cells were then pelleted at 8000 g, resuspended in 5 ml PBS, then spun again at 8000 g and 

resuspended in 10 ml PBS. Microscope slides 75 x 25 x 1.2 mm (VWR) were then prepared to 

visualise the strains: these were prepared by filling a 125 µl adhesive gene frame (ABgene)  with 

molten MM agarose, which was then covered with a glass slide in order to flatten the MM agarose 

surface. Once the MM agarose layer had set, the cover slide was removed, and the MM agarose layer 

was also carefully removed with a scalpel leaving behind 2 thin strips. Then 1.2 µl of the strains were 

spotted onto the MM agarose strip. These were allowed to dry for ~1 minute and were then covered 

with a 22 x 40 mm glass cover glass plate (VWR).     

The following section was carried out by Dr Victoria L. Marlow and Dr Nicola R. Stanley-Wall, 

University of Dundee: Images were acquired using a DeltaVision Core widefield microscope (Applied 

Precision) mounted on an Olympus IX71 inverted stand with an Olympus 100X 1.4 NA lens and 

Cascade2 512 EMCCD camera (Photometrics). Datasets (512 × 512 pixels with 13 Z sections spaced by 

0.2 µm were acquired with Differential interference contrast (DIC) and fluorescence optics. DIC 

images were acquired with an LED Transmitted light source (Applied precision) at 32 % intensity and 

exposure times between 25 and 50 ms.  
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6.8.2 Visualisation of cells with time lapse microscopy 

 

Cells were grown in LB aerobically at 30 oC with shaking 220 rpm for 8 hr, and then subcultured (25 µl 

into 5 ml) into MM glucose and grown aerobically at 30 oC with shaking 220 rpm for 18 hr. Cells were 

diluted to OD600 0.01 in MM glucose. Microscope slides 75 x 25 x 1.2 mm (VWR) were then prepared 

to visualise the strains: these were prepared by filling a 125 µl adhesive gene frame (ABgene)  with 

molten MM agarose, which was then covered with a glass slide in order to flatten the MM agarose 

surface. Once the MM agarose layer had set, the cover slide was removed, and the MM agarose layer 

was also carefully removed with a scalpel leaving behind 2 thin strips. Then 1.2 µl of the strains were 

spotted onto the MM agarose strip. Then 1.2 µl of the strains were spotted onto the MM agarose 

layer. These were allowed to dry for ~1 minute and were then covered with a 22 x 40 mm glass cover 

glass plate (VWR).  The microscope slides were incubated at 30 °C in a temperature controlled 

environmental chamber (Weather Station; Applied Precision USA). Prior to the start of acquisition 

the cells were allowed to equilibrate on the agarose pads for 3 hours.  

The following section was carried out by Dr Victoria L. Marlow and Dr Nicola R. Stanley-Wall, 

University of Dundee: Time‐lapse imaging of microcolony development and chiA‐gfp expression was 

performed using a DeltaVision Core widefield microscope (Applied Precision) mounted on an 

Olympus IX71 inverted stand with an Olympus 60X 1.4 NA lens and CoolSNAPHQ, camera 

(Photometrics) with Differential interference contrast (DIC) and fluorescence optics. For each time-

lapse experiment twelve independent fields, each containing one or two cells, were manually 

identified and their XYZ‐positions stored in the microscope control software (SoftWorx, Applied 

precision). Datasets (512 × 512 pixels with 2 × 2 binning and 12 z sections spaced by 1 µm) were 

acquired every 15 min for up to 12 hours. GFP was imaged using a 100 W Mercury lamp and a FITC 

filter set (EX 490/20; EM 528/38) with an exposure time of 50 ms.  

 

6.8.3 Image Processing 

 

Post‐acquisition data sets were rendered and analysed using OMERO software 

(http://openmicroscopy.org). The threshold used to define whether expression from the the 

transcriptional reporters ∆chiX::mKate and chiA-gfp was defined as the fluorescence intensity value 

greater than 3 standard deviations above the mean background fluorescence of the parental strain S. 

marcescens Db10. 

 
 

http://openmicroscopy.org/
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7 Appendix 
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7.1 Strains 

 

Strain  Relevant genotype Source/ 

construction 

   

S. marcescens 

Db10  

 

Non pigmented Wt strain. Insect pathogen isolated from 

moribund Drosophila. 

 

First isolated by (Flyg 
et al., 1980) 

Genome sequence 
available at Sanger 
Institute, Jonathan 
Ewbank. 

 

JJH01 

 

As Db10 ∆chiA 

 

This study 

JJH02 As Db10 ∆chiB This study 

JJH03 As Db10 ∆chiC This study 

JchiA As Db10 ∆chiB ∆chiC This study 

JchiB As Db10 ∆chiA ∆chiC This study 

JchiC As Db10 ∆chiA ∆chiB This study 

Nochi As Db10 ∆chiA ∆chiB ∆chiC This study 

JJH04w As Db10 ΔchiW (SMA2874) This study 

JJH05x As Db10 ΔchiX (SMA2873) This study 

JJH06y As Db10 ΔchiY (SMA2872) This study 

JJH07z As Db10 ΔchiZ (SMA2871) This study 

JJH08p As Db10 ΔchiW, chiX  This study 

JJH09 As Db10 Δcbp21 This study 

JJH10 As JchiB Δcbp21 This study 

ChiXmKate As JJH05x Db10 ∆chiX containing gene encoding fluorescent 

construct mKate (Pletnev et al., 2008) 

This study 

Db10::chiA-gfp As Db10 encoding gene encoding Green Fluorescent Protein 

(GFP) 23 base pairs downstream of chiA (in-tact full length 

chitinase encoding gene). 

This study 
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ChiXmKate::chiA-gfp Dual fusion strain. As ChiXmKate ∆chiX encoding fluorecent 

mKate, and as Db10::chiA-gfp encoding chiA-gfp 

transcriptional fusion. 

This study 

TnchiA1 As JchiA, containing unmapped Tn5.  This study 

TnchiA2 As JchiA, containing unmapped Tn5.  This study 

TnchiA3 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA4 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA5 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA6 As JchiA, containing Tn5 in SMA4482 hfq. This study 

TnchiA7 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA8 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA9 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA10 As JchiA, containing unmapped Tn5. This study 

TnchiA11 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA12 As JchiA, containing unmapped Tn5. This study 

TnchiA13 As JchiA, containing Tn5 in SMA4243 chiA. This study 

TnchiA14 As JchiA, containing Tn5 in SMA4579 speF This study 

TnchiB1 As JchiB, containing unmapped Tn5. This study 

TnchiB2 As JchiB, containing unmapped Tn5. This study 

TnchiB3 As JchiB, containing Tn5 in SMA2875 chiB This study 

TnchiB4 As JchiB, containing unmapped Tn5. This study 

TnchiB5 As JchiB, containing Tn5 in SMA2876 chiR. This study 

TnchiC1 As JchiC, containing Tn5 in SMA2876 chiR. This study 

TnchiC2 As JchiC, containing unmapped Tn5. This study 

TnchiC3 As JchiC, containing unmapped Tn5. This study 

TnchiC4 As JchiC, containing Tn5 in SMA2874 chiW This study 

TnchiC5 As JchiC, containing unmapped Tn5. This study 

TnchiC6 As JchiC, containing Tn5 in SMA2874 chiW This study 

TnchiC7 As JchiC, containing unmapped Tn5. This study 
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TnchiC8 As JchiC, containing unmapped Tn5. This study 

TnchiC9 As JchiC, containing unmapped Tn5. This study 

 

E. coli 

  

Dh5α Host strain for plasmids.  

φ80dlacZΔM15 recA1 endA1 gyrA96 thi-1 hsdR17(rK -mK+) 
supE44 relA1 deoR Δ(lacZYA-argF) U169 

Promega 

MG1655 Wild type strain 

F- lambda- ilvG- rfb-50 rph-1 

(Blattner et al., 1997) 

 

M15 pRep4 

 

 

Host strain for protein expression. The plasmid pREP4 
constitutively expresses the Lac repressor protein encoded 
by lacI and thus provides tight control of the lac promoter-
mediated transcription. 

 

Qiagen 

 

CC118 λpir 

 

 

Host for pKNG101 suicide vector. 

Δ(are-leu) araD ΔlacX74 galE galK phoA20 thi-1 rpsE rpoB 

argE recA1 lysogenized with λpir phage 

 

(Herrero et al., 1990) 

 

HH26 pNJ5000  

 

 

Helper strain used in marker exchange 

 

(Grinter, 1983) 

SM10 λpir pUTmini-

Tn5Sm/Sp 

Donor strain used in transposon mutagenesis 

thi-1, thr, leu, tonA, lacY, supE, recA::RP4-2-Tc::Mu, 1pir, 
KmR 

 

 

(de Lorenzo et al., 

1990) 

 

Table 7.1 Bacterial Strains used in this study. 
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7.2 Vectors 

 

 

Plasmid Relevant genotype Source/ construction 

 

pBluescript 2 

 

Cloning vector AmpR 

 

Stratagene 

pUniprom Cloning vector AmpR (Jack et al., 2004) 

pUniprom-chiA pUniprom containing chiA from Serratia marcescens This study 

pUniprom-chiAcbp21 pUniprom containing chiA & cbp21 from Serratia 

marcescens 

This study 

pUniprom-

chiANOSIGcbp21 

pUniprom containing chiA without N-terminal signal 

peptideand cbp21 from S. marcescens. 

This study 

pQE60 Overproduction vector Qiagen 

pQE70 Overproduction vector Qiagen 

pQE70-chiA Overproduction vector containing recombinant chiA from S. 

marcescens with C-terminal hexa-histidine tag. 

This study 

pQE60-chiB 

 

Overproduction vector containing recombinant chiB from S. 

marcescens with C-terminal hexa-histidine tag. 

This study 

pQE60-chiC 

 

Overproduction vector containing recombinant chiC from S. 

marcescens with C-terminal hexa-histidine tag. 

This study 

pKNG101 

 

Suicide vector used to generate mutant S. marcescens Db10 

strains lacking chitinase encoding gene/s. SmR, sacB locus 

mediates sucrose sensitivity. 

(Kaniga et al., 1991) 

pKNG101-∆chiA Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA4243 chiA for generating ∆chiA 

mutant. 

This study 

pKNG101-∆chiB   

 

Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2875 chiB for generating ∆chiB 

mutant. 

This study 

pKNG101-∆chiC Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA0468 chiC for generating ∆chiC 

mutant. 

 

 

This study 
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pKNG101-∆cbp21 

 

Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2877 cbp21 for generating 

∆cbp21 mutant. 

 

This study 

pKNG101-∆chiW Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2874 chiW for generating ∆chiW 

mutant. 

This study 

pKNG101-∆chiX Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2873 chiX for generating ∆chiX 

mutant. 

This study 

pKNG101-∆chiY Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2872 chiY for generating ∆chiY 

mutant. 

This study 

pKNG101-∆chiZ Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2871 chiZ for generating ∆chiZ 

mutant. 

This study 

pKNG101-∆phl Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2874 chiW including 

overlapping region of chiX. For generating ∆chiW, chiX 

mutant. 

This study 

pKNG101-

∆chiX::mKate 

Suicide vector containing 500bp upstream and downstream 

of S. marcescens Db10 SMA2873 chiX for generating ∆chiX 

mutant, containing gene encoding fluorescent mKate for 

integration at the chiX locus.   

This study 

pKNG101-∆chiA-gfp Suicide vector containing 500bp flanking region of S. 

marcescens Db10 SMA4243 chiA for integrating gene 

encoding green fluorescent protein 23 base pairs 

downstream of the chiA locus.   

 

This study 

 

Table 7.2 Plasmid vectors used in this study. 
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