
University of Dundee

DOCTOR OF PHILOSOPHY

Rapid analysis of pharmacology for infectious diseases.

Carruthers, Ian Michael

Award date:
2013

Awarding institution:
University of Dundee

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Feb. 2017

http://discovery.dundee.ac.uk/portal/en/theses/rapid-analysis-of-pharmacology-for-infectious-diseases(d783d1bd-d390-40d3-80dd-ea6107af8bd7).html


DOCTOR OF PHILOSOPHY

Rapid analysis of pharmacology for
infectious diseases.

Ian Michael Carruthers

2013

University of Dundee

Conditions for Use and Duplication
Copyright of this work belongs to the author unless otherwise identified in the body of the thesis. It is permitted
to use and duplicate this work only for personal and non-commercial research, study or criticism/review. You
must obtain prior written consent from the author for any other use. Any quotation from this thesis must be
acknowledged using the normal academic conventions. It is not permitted to supply the whole or part of this
thesis to any other person or to post the same on any website or other online location without the prior written
consent of the author. Contact the Discovery team (discovery@dundee.ac.uk) with any queries about the use
or acknowledgement of this work.



Rapid analysis of pharmacology

for infectious diseases.

Ian Michael Carruthers

Biological Chemistry and Drug Discovery

University of Dundee

A thesis submitted for the degree of

Doctor of Philosophy

March 2013

mailto:ian.m.carruthers@gmail.com
http://www.lifesci.dundee.ac.uk/research/bcdd
http://www.dundee.ac.uk


i



for Helen...



Acknowledgements

I would like to express my deepest gratitude to everyone who has

supported me during this project. First and foremost I would like to

thank my supervisor, Professor Andrew Hopkins DPhil FRSC FSB,

for the opportunity to study in his group, his countless support, en-

couragement and positivity that was given throughout. Special thanks

go to Dr. Richard Bickerton, not only has he given me innumerous

advice and guidance, but along with his wonderful wife Ruth, friend-

ship and hospitality. My thanks go to Jeremy Besnard, Professor Paul

Wyatt and Dr. Nick Leslie for useful discussions and feedback.

I would also like to extend my thanks to Pfizer and the EPSRC for

their kind financial support.

Finally, I would like to thank all my family, especially Mum, Dad,

Jacky, Jim and Lee. And to those who gave me the love and moti-

vation to keep going; my darling wife Helen, beautiful son Sebastian

and faithful dog Hendrix.



Declaration

The following work was carried out under the supervision of Prof. Andrew L.

Hopkins at the College of Life Sciences, University of Dundee between April

2009 and March 2013. All references cited in the document have been consulted,

unless otherwise stated. This dissertation is the result of my own work and

includes nothing which is the outcome of work done in collaboration except where

specifically indicated in the text. This thesis has not been submitted in whole or

in part for any degree, diploma or qualification at any other university.

The relevant Ordinance and Regulation have been fulfilled.

iii



Abstract

Infectious diseases represent a multitude of threats to populations in

both the developed and developing world, from the emergence of drug

resistant bacteria and new pathogens to the ancient killers of the ne-

glected topical diseases. Yet a common problem unites all infectious

diseases, that is the challenge of how do we cost effectively identify new

drugs? The arrival of high-throughput low cost sequencing starkly il-

lustrates the nature of the challenge: the genome sequence of any

pathogen can now be determined in a few days yet the availability of

complete pathogen genomes has not led to the anticipated wave of new

therapies. One reason for this failure might be that previous efforts

at selecting the best targets from the genome have not taken into

account information on the properties of associated small molecule

ligands. To improve the exploitation of genomic information in the

discovery of drug targets for new anti-infective agents a modular infor-

matics framework is described that enables the large-scale compara-

tive analysis of pathogen and host genomes. Specifically, new methods

to predict essential genes, identify druggable domains and predict se-

lectivity are presented, that have advantages over current approaches.

The proposed method to predict essentiality is benchmarked against

whole genome essentiality datasets and applied in practice to the anal-



ysis of a diverse range species including the bacterial pathogen Pseu-

domonas aeruginosa and eukaryotic parasites Trypanosoma brucei,

Trypanosoma cruzi, Leishmania braziliensis, Leishmania infantum,

Leishmania major and Schistosoma mansoni. In order to identify

druggable and selective targets a domain-based approach to mining

genomes for druggable targets is developed. A domain family based

approach enables the determination of “binding site signatures” in

the primary amino acid sequences which enables the identification

and comparison of specific binding modes for both active/orthosteric

site and allosteric site ligands. Information in the binding site sig-

natures is used to train and validate a Bayesian model to predict a

compounds selectivity between members of a domain family, whether

from within a single genome or from multiple species.
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Chapter 1

Introduction

“It is time to close the book on infectious diseases, and declare the war against

pestilence won”, is a quote often attributed to Dr. William H. Stewart, United

States Surgeon General from 1965 to 1969 (Spellberg, 2008). Whilst this quote

may be apocryphal, it has often been used to highlight the mistaken belief that

pathogen-borne diseases are no longer a threat to human life. It may be surprising

to some, that shortly after his discovery of penicillin in 1928, Alexander Fleming,

having observed resistance develop in the laboratory gave a stark warning in his

1945 Nobel prize lecture: “there is the danger that the ignorant man may easily

underdose himself and by exposing his microbes to non-lethal quantities of the

drug make them resistant” (Fleming et al., 1945). He was not wrong, indeed

since the introduction of the penicillins in the late 1940’s antibiotic resistance

has rapidly followed, and as early as 1953 an outbreak of Shigella dysenteriae

was found to show resistance to four different classes of antibiotics (Todar, 2008).

In the West, the incidence of multiple antibiotic resistant bacterial strains

has steadily increased year on year. In the US, methicillin-resistant Staphylococ-
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cus aureus, kills more people than emphysema, HIV, Parkinson’s disease, and

homicide combined (Idsa, 2011), and indiscriminately effects people of all ages.

Bacterial drug resistance is becoming an increasing factor in hospital treatments

(Figure 1.1), increasing length of stay, healthcare costs, morbidity and mortality

(Davies & Davies, 2010).

Drug resistant strains are just some of the nearly 340 infectious diseases that

have emerged across the globe since 1940 (Jones et al., 2008). Globally, the

World Health Organization (WHO) estimated that approximately one billion

people suffer from at least one, and some more than one, neglected infectious dis-

eases such as schistosomiasis, soil-transmitted helminthiasis, blinding trachoma,

onchocerciasis, trypanosomiasis and lymphatic filariasis (Chan, 2007). The poor-

est populations of the world are also at risk from the major infectious diseases

such as malaria, tuberculosis and human immunodeficiency virus (HIV). Half of

the disease burden of 80% of the world’s population, that reside in the developing

countries is due to communicable diseases.

Despite the significant global problems associated with emerging and ne-

glected infectious diseases, there remains a lack of progression within the phar-

maceutical industry regarding new and novel therapies. In the last four decades

only one novel class of antibiotic, the oxazolidinones, has been developed and li-

censed for treatment of gram positive bacterial infection (Herrmann et al., 2008),

and there remain few antibiotics in the development pipeline for gram negative

species (Projan & Bradford, 2007). One reason for this limited success is shared

with all drug discovery programmes - that the high attrition rate of compounds

entering clinical development requires a huge financial investment. In the case

of antibacterials, any successful drug revenue can be quickly diminished by the
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emergence of resistance, or held in reserve by physicians as a last resort, therefore

limiting the revenue achievable during the patent term. In the case of neglected

tropical diseases, the most affected populations are often the poorest, and as such

investment costs are difficult to recoup. A common problem unites all infectious

diseases whether they are pandemic, epidemic or endemic infectious diseases -

that is the challenge of how do we cost effectively identify new drugs?

1.1 Post-genomic era

The impact of the genome sequences on infectious disease drug discovery has,

to date, been disappointing. The outbreak of Shiga toxin-producing Escherichia

coli strain O104:H4 in Europe, in the summer of 2011, demonstrated the genome

sequence of an emerging pathogen can now be determined within a few days of

its identification (Rohde et al., 2011). The ability to swiftly examine a pathogen

genome, has had little or no effect on the capacity to develop novel, target-led,

anti-infective drugs (Payne et al., 2006). The availability of complete pathogen

genomes should enable systematic, rational prioritization of all potential drug

targets for a given pathogen (White & Kell, 2004). However, the initial excite-

ment that heralded the release of the first pathogen genomes has been tempered

by the failure of the first generation genomics-led anti-bacterial drug discovery

campaigns to yield the anticipated wave of new therapies (Livermore et al., 2011;

Payne et al., 2006). One contributing factor for this disappointing outcome is

that despite significant effort invested in understanding the biological consid-

erations that underpin a good molecular target (Nagaraj & Singh, 2010; Payne

et al., 2004), there has been little effort to consider the equally important chemical
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aspects, such as druggability, species selectivity, chemical diversity and the appro-

priateness of the chemical space accessed by compound libraries being screened

(Brötz-Oesterhelt & Sass, 2010; Gwynn et al., 2010; Livermore et al., 2011).

1.2 Chemogenomics

The arrival of large-scale chemogenomic resources, such as ChEMBL (Gaulton

et al., 2011), provides an unprecedented opportunity to change this situation

(Bellis et al., 2011). Collectively, these resources provide for the first time some-

thing approaching a global view of pharmacological space (Paolini et al., 2006).

Harnessing this knowledge enables new systematic approaches to be developed to

inform drug target selection (L. Hopkins et al., 2011). Assessment of the chem-

ical space associated with a particular target provides the means to make an

indirect evaluation of the likelihood of binding drug-like chemical matter (Bick-

erton et al., 2012) that is not dependent on the availability of a crystal structure.

This chemogenomic druggability approach also carries the obvious advantage of

suggesting potential chemotypes to seed future development. The question then

becomes one of defining the most appropriate chemical space. As well as the ob-

vious constraints on molecular structure imposed by the requirement for target-

based activity, which will vary according to the target, other constraints on the

physico-chemical properties will be imposed regardless of the target (Hopkins &

Bickerton, 2010; O’Shea & Moser, 2008). These constraints may include the re-

quirement for oral bioavailability or permeation across different cellular barriers

(e.g. human gut, bacterial cellular envelope or the blood brain barrier for central

nervous system penetration). Such constraints should be defined a priori, by

5



1. Introduction

amongst other things, the Therapeutic Product Profile (TPP) (Curry & Brown,

2003; Frearson et al., 2007; Wyatt et al., 2011) and include considerations such

as the route of administration, and the cellular and subcellular location of the

molecular target or targets.

1.3 Target Selection

Target selection criteria include biological features such as gene essentiality (typ-

ically determined by large-scale knockout experiments) and selectivity (typically

determined by an absence of equivalent protein in the human host). Such funda-

mental criteria remain important, but they must be augmented by an equivalent

consideration of underlying chemical factors. In recent years there have been

several attempts to prioritize drug targets from the genomes of pathogens: Plas-

modium falciparum (Joubert et al., 2009), Schistosoma mansoni (Berriman et al.,

2009; Caffrey et al., 2009), Mycobacterium tuberculosis (Hasan et al., 2006; Ra-

man et al., 2008; Singh et al., 2006; White & Kell, 2004), Vibrio cholerae (Katara

et al., 2010), Brugia malayi (Kumar et al., 2007), Staphylococcus aureus (White

& Kell, 2004) and Escherichia coli(White & Kell, 2004). The most extensive

attempt to prioritize neglected disease drug targets to date is the TDR Tar-

gets Database (Aguero et al., 2008) that contains information on 12 pathogen

genomes. However, even the TDR database has a somewhat limited approach

to assessing target essentiality, which was logically intuitive, but had not been

examined for accuracy.

Multiple criteria can be considered when selecting and prioritizing potential

targets encoded in the genome: precedence, druggability, perturbation/essential-
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ity, selectivity, and spectrum of activity. Given the finite number of potential

targets (defined by the pathogen proteome), inclusion of additional criteria raises

the quality and reduces the size of the resulting prioritized target pool. By taking

a broad approach to defining each criterion and using the number and quality

of evaluations to rank targets, the size and quality of the resulting pool can be

maximized. Given the growing availability of complete pathogen genomes, the

target selection and prioritization frameworks are applicable to any pathogen

genome. Indeed, the same considerations are also pertinent to bacterial, proto-

zoal, helminthic, viral or fungal pathogens of humans, animals or plants (L. Hop-

kins et al., 2011).

1.3.1 Precedence

A natural starting point in any target selection strategy would be precedence -

i.e. identification of the known drug targets. Aside from the obvious application

of this set as potential targets themselves, their identification also aids analysis

of the properties that differentiate them from non-drug-targets, to inform future

target selection strategies.

1.3.2 Druggability

A range of definitions of druggability has been suggested (Keller et al., 2006).

The most widely used definition is: a druggable target is one that has the capac-

ity to bind drug-like chemical matter. Importantly this definition is independent

of the wider implications of modulation of the molecular target on cellular func-

tion and biology or issues around ligand selectivity. Most published approaches
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consider druggability qualitatively - a target is classified as being druggable or

otherwise (Halgren, 2009; Krasowski et al., 2011). A more nuanced approach

may be to consider druggability as a continuum, ranging from highly druggable

molecular targets known to bind several different drug-like chemotypes to targets

that have no characterized binding site or whose known ligands have unfavorable

properties. Consideration of druggability in quantitative terms enables targets

to be prioritized objectively and the desired number of high-ranking targets se-

lected according to available capacity. Several approaches have been developed

to assess target druggability, most of which use structural information to char-

acterize ligand-binding sites. The open source fpocket algorithm (Le Guilloux

et al., 2009) employs Voronoi tessellation method to detect protein cavities which

scored using a logistic model trained with three descriptors: local hydrophobic

density, hydrophobicity and normalized polarity. Halgren (2009) describes the

SiteMap package that uses a grid method incorporating van der Waals ener-

gies and a buriedness term to predict protein pockets which are assessed using

a scoring function (Dscore) that includes terms for the pocket size, enclosure,

as well as a penalty for its hydrophilicity. In DoGSiteScorer (Volkamer et al.,

2012) pockets and subpockets are predicted using a difference of Gaussian filter

and druggability prediction made using a machine learning approach based on

global descriptors and a nearest neighbor approach based on local features. In

DrugPred, Krasowski et al. (2011) use a partial least-squares discriminant anal-

ysis that considers the size, polarity, and hydrophobicity of the binding pocket.

Applying such structure-based approaches at genome scale carries the inherent

limitation that an accurate protein structure is required. For example, in the case

of the gram-negative bacteria P. aeruginosa this would limit their applicability
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to 5.0% of the proteome. Whilst coverage could be extended through homology

modelling approaches, the requirement for a highly accurate model of a ligand-

binding cavity, including the correct orientation of amino acid side-chains, means

that in all but the most straightforward of cases comparative models are likely

to have limited use. Even when a structure is available the location of the most

relevant binding site is not always known and is not necessarily obvious. While

the presence of bound ligands can guide identification of the relevant site, many

structures have bona fide binding sites that are unoccupied while others have

multiple occupied binding sites. A further complication is that the ligands found

in structures may include compounds used in the crystallization conditions such

as buffers, detergents or other additives that are not of physiological or pharmaco-

logical interest. The visual inspection of potentially hundreds of structures is not

practical in a high-throughput setting. A range of computational methods exist

that can identify binding sites on protein structures but their accuracy (Bianchi

et al., 2012) limits their use in high-throughput automated studies. An alter-

native approach, independent of the requirement for a protein structure, would

be to assess the quality of a target by analyzing the potency and drug-likeness

of the chemical matter already associated with it. This chemogenomic drugga-

bility approach is expedited by the advent of large-scale databases of bioactivity

that collectively associate millions of compounds with thousands of molecular

targets. The European Bioinformatics Institute’s ChEMBL database (Gaulton

et al., 2011) of bioactivity extracted from the medicinal chemistry literature is an

important database resource for such analyses.
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1.3.3 Perturbation

A clear requirement of a target is that its modulation leads to the inhibition,

disruption or perturbation of the disease pathology at the cellular level. When

looking for drug targets in a pathogen, conventionally this is addressed by consid-

ering genetically essential genes i.e. those that lead to a lethal phenotype when

knocked out (Frearson et al., 2007). Essentiality itself is inherently context de-

pendent: genes that are dispensable in rich media may be essential in minimal

media or in vivo (D’Elia et al., 2009). The interpretation of such data should

be restricted to the conditions under which the experiment was performed. In a

broader sense it may be more appropriate to consider the fact that many validated

drug targets are themselves not genetically essential (Denome et al., 1999; Janoir

et al., 1996). Therefore, perturbant targets are those whose chemical modulation

leads to a perturbation of the disease phenotype. Beyond genetically essential

targets, perturbative targets may also include polypharmacology targets, chem-

ically validated targets, virulence factors, host factors and synthetically lethal

gene combinations.

Analysis of screening data suggests that only approximately 15% of a typical

proteome exhibit any evidence of being potentially modulated by drug-like com-

pounds (Hopkins & Groom, 2002). Similarly genome-scale knockout studies in

model organisms have identified that generally <20% of genes are individually

essential (Baba et al., 2006; Kamath et al., 2003; Winzeler et al., 1999). Assuming

for the purposes of illustration that druggability and essentiality are independent

factors, and assuming 15% of targets are druggable and 20% of targets are es-

sential; then the targets that are both lethal and druggable would only be the
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intersect i.e. 2-3% of the proteome. Even for a bacterium with a relatively large

proteome like P. aeruginosa this leaves only around 100-150 potential targets.

Further, when other important criteria are also considered, such as selectivity

and activity spectrum, then even this small percentage of suitable proteins is

further depleted. The result of these issues is that the set of targets that can be

identified, fulfilling all of the relevant criteria (i.e. the “opportunity space”) may

number just a few dozen distinct proteins. In order to maximize this set, the

approach should be to use multiple orthogonal methods and to integrate the re-

sults to increase coverage. Confidence in each individual target is enhanced when

multiple independent methods give corroborating predictions, thereby providing

the means to rank targets.

1.3.3.1 Polypharmacology

Polypharmacology describes the property of some drugs to interact with multiple

proteins simultaneously. Often this feature is unwanted, and where this occurs

in drugs, it can cause adverse patient side-effects. Polypharmacology can also

be beneficial, especially in anti-infectives, where the limited target space can be

increased by disrupting multiple protein functions simultaneously. Where the

targets are individually non-essential, due to pathway or functional redundancy,

the combinations of functional inhibition may be fatal (Hopkins et al., 2011).

This polypharmacology strategy can have the inherent advantage of reducing

the rate of resistance developing via mutation, as the probability of mutations

occurring in multiple genes simultaneously, is orders of magnitude higher than

that of a single gene. Considering the disadvantage of the single target approach,

it is perhaps no surprise to find that a large number of currently available an-
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tibiotics operate on multiple proteins simultaneously. For example, the β-lactam

antibiotics inhibit multiple related penicillin-binding proteins (PBPs) expressed

by bacterial species. Due to overlapping and functional redundancy, none of these

PBPs are individually essential (Denome et al., 1999), but when multiple PBPs

functions are inhibited the consequences are lethal.

The targeting of two or more essential genes, with a single drug, may be

one strategy to delay the emergence of drug resistance. Alternatively, a drug

that targets essential genes across a number of pathogens may have the potential

to be a broad-spectrum anti-infective, assuming it is selective over any human

homologs. Moreover, the search for broad-spectrum anti-infectives may be one

strategy to help to reduce the burden of poly-parasitism (i.e. patients suffering

from multiple parasitic infections), a condition which is common in the developing

world (Pullan & Brooker, 2008). Given the difficulties associated with developing

a potent drug against just one target, the chances of discovering a broad-spectrum

agent for either bacterial or parasitic diseases may be very small. However, the

opportunity provided by large-scale comparative chemogenomics across multiple

genomes provides us with a means to search the landscape of infectious disease

drug targets, for such drug targets may be essential and druggable yet common

between several species.

1.3.4 Selectivity

Selectivity is a measure of a drugs ability to bind some proteins preferentially

to others. In the case of anti-infectives, the requirement to bind and inhibit

pathogen targets, but not evolutionary related host proteins. While selectivity
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is often a metric of the drug, pairs of related proteins can be predisposed to

bind similar chemical matter, due to similar properties of their ligand binding

pockets. To combat potential pathogen-host selectivity issues, a conventional

strategy is to consider only those targets that share no evolutionary equivalent

with the host. Whilst such a requirement ensures selectivity, it also rules out many

conserved gene products that may otherwise make tractable and valued targets,

e.g. dihydrofolate reductase or the ribosome, which are both successful anti-

infective targets (Silver, 2011) despite having human orthologs. Selectivity may

be achieved by several means, but from a genomic perspective, the identification

and exploitation of amino acid differences in the human-host binding sites offers

the most feasible route.

1.3.5 Spectrum of activity

The presence of orthologous proteins in related pathogenic species opens up the

possibility that successful compounds may exhibit broad-spectrum activity. The

obvious clinical benefits of such an outcome would be tempered by the drawback

that this could increase the selection pressure on gut flora and may therefore

increase the likelihood of resistance occurring, and being spread via horizontal

gene transfer. As such, targets having homologs or orthologs in related Gram-

negative pathogens can be included or excluded depending on the desired strategy.

1.4 Aims

Highly efficient new approaches to infectious disease drug discovery are urgently

required to face the global health challenges posed by emerging drug-resistant and
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neglected infectious diseases. The ready availability of the pathogen and parasite

genomes and the massive reduction in speed and cost of high-throughput genome

sequencing now means that one can approach nearly every infectious disease

with a knowledge of its genome and predicted proteome. Therefore the aim is

to consider informatics-based methods that can help rapidly analyze genomes for

potential drug targets by systematic comparative genomics, chemogenomics and

structural bioinformatics.

1.4.1 Modular Implementation of Analysis

To identify potential drug targets from any genome, a range of informatics services

are required to enable the range of diverse drug discovery approaches. The overall

goal is to create informatics services or modules that can systematically infer the

attributes of pathogen proteins. A basis for designing such an informatics strategy

is to consider the common hypothesis of anti-infectious drug discovery which

propose that a good anti-infective drug target need to satisfy several criteria:

• Essential - the target occupies a point in the cellular network whereby

its modulation will disrupt function at the cellular level, with lethal conse-

quences for the pathogen

• Selective - the drug should preferentially perturb the pathogen target over

any human target.

• Druggable - the target has the capacity to bind and to be modulated by

a drug-like small molecule.
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In this thesis I propose and implement an infectious disease informatics strat-

egy by a modular approach to drug target identification and prioritization. Each

module addresses one of the hypothesized criteria. The intent is that each module

has the ability to be applied generically to any of the genomes of interest.

The successful implementation of the modules would be achieved by fulfilling

the following criteria:

• Identification of Essential genes in pathogens

– Identify essential pathogen genes data.

– Utilize genome-to-genome orthology mapping tools for transfer of es-

sentiality information between genomes.

– Utilize and, if possible, improve existing methodology for ab initio, in

silico genome essentiality prediction.

– Design a rigorous testing procedure to determine the predictive power

of any essentiality prediction method.

• Prediction of Druggable Genes in pathogens:

– Use precedence-based methods to prioritize targets homologous to pro-

teins with known drug-like inhibitors.

– Refine existing resources such as ChEMBL to associate data with spe-

cific ligand-binding sites rather than to whole proteins.

• Analysis of Binding site selectivity
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– Understand the relationships between ligand-binding site properties

and their relationship to the selectivity/potency of small molecule in-

hibitors.

– Catalogue observed binding sites of a protein family, for a binding-site

ontology.

– Prediction of potential selectivity issues between human proteins and

human pathogen targets being assessed for druggability.

– Highlight similar binding sites within a pathogen genome for potential

polypharmacology targets, reducing the risk of resistance and increas-

ing the “essential” space.
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2.1 Introduction

2.1.1 Is essentiality required for drug targets?

The requirement that the modulation of an anti-infective drug target should lead

to the perturbation of the disease pathology, has caused the focus of research on

genetically essential targets. While genetically essential targets are important,

other sources of perturbative targets are available.

Drugs that reduce the pathogen fitness can give the host immune system

additional time to respond to infection. One such mechanism is the bacterio-

static drugs, that target proteins that are not always essential for cell-life, but

required for the normal replication rate. The class of antibiotics known as the

sulfonamides, prevent the action of the bacterial dihydropteroate synthase (Lopez

et al., 1987). This enzyme is required for the synthesis of folate, which in turn is

required for DNA replication. This inhibition of DNA replication halts the bac-

terial cell cycle and stops the multiplication of bacteria, but does not kill them.

The antibiotic trimethoprim targets bacterial dihydrofolate reductase (Hitchings,

1973, 1989), another enzyme involved in folate metabolism and therefore bacte-

rial multiplication. Interestingly, both of the genes encoding these two enzymes

(folA and folP) were classified as essential in Pseudomonas aeruginosa (Table

2.1), despite being known to be only bacteriostatic. This could be explained by

the experimental methodology, which required gene-knockout mutants to form

bacterial colonies to be classified non-essential. Therefore it is important to note

that targeting genes classed as essential, may not kill the pathogen, but only

prevent cell-division, which may not prevent the disease.

Polypharmocology is a strategy to target multiple proteins simultaneously,
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therefore reducing mutation-bourn resistance and increase the essential target

space. The cephalosporins are β-lactam antibiotics which are bactericidal by

inhibiting penicillin-binding proteins (PBPs). Table 2.1 shows the five PBPs

of P. aeruginosa (ponA, mrcB, pbpA, ftsI and pbpC ), which are all individually

non-essential. However, many cephalosporins including cefepime, are known to be

effective against P. aeruginosa (Denome et al., 1999) by simultaneously inhibiting

multiple PBPS (Chapman & Perry, 2012).

The fidelity of viral and bacterial DNA replication is low, and bacterial and

viruses can rapidly develop mutations that reduce drugs binding their proteins.

An alternative approach is the targeting host cofactors that are often indispens-

able for the colonization and propagation of pathogens (Khattab, 2009; Vaudaux

et al., 1989). There has been some success with this approach for viruses, and

recently the FDA (U.S. Food and Drug Administration) approved Maraviroc,

an anti-retroviral drug that targets a human protein (C-C chemokine receptor

type 5), to block HIV (Human immunodeficiency virus) infection of host cells

(Friedrich et al., 2011). This approach has also been advocated for pathogenic

bacteria and protozoa (Prudencio & M. Mota, 2012; Schwegmann & Brombacher,

2008).

Virulence factors are genes not usually essential in bacteria, but are often as-

sociated with infectious disease causing strains. Many species such as Clostridium

botulinum, Escherichia coli and Staphylococcus aureus do not usually cause dis-

ease, but the acquisition of genes from virulence factor-encoding bacteriophages

can transform them into highly virulent pathogens (Keen, 2012). The target-

ing of these virulence factors with therapeutics offers the chance to nullify the

pathogenicity of these species. Whilst there exists many classes of perturbative
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targets, the genetically essentials are still an important and trusted source of

anti-infective targets.

PA ID Gene Gene product Essentiality

PA5045 ponA penicillin-binding protein 1A non-essential
PA4700 mrcB penicillin-binding protein 1B non-essential
PA0378 probable transglycosylase non-essential
PA4003 pbpA penicillin-binding protein 2 non-essential
PA4418 ftsI penicillin-binding protein 3 non-essential
PA2272 pbpC penicillin-binding protein 3A non-essential
PA3047 probable D-alanyl-D-alanine carboxypeptidase non-essential
PA3999 dacC D-ala-D-ala-carboxypeptidase non-essential
PA0869 pbpG D-alanyl-D-alanine-endopeptidase non-essential
PA4110 ampC beta-lactamase precursor non-essential
PA5514 probable beta-lactamase non-essential
PA5302 dadX catabolic alanine racemase non-essential
PA4930 alr biosynthetic alanine racemase non-essential
PA4201 ddlA D-alanine-D-alanine ligase A non-essential
PA4410 ddlB D-alanine–D-alanine ligase non-essential
PA3168 gyrA DNA gyrase subunit A essential
PA0004 gyrB DNA gyrase subunit B non-essential
PA4964 parC topoisomerase IV subunit A essential
PA4967 parE topoisomerase IV subunit B essential
PA4450 murA UDP-N-acetylglucosamine 1-carboxyvinyltransferase potential essential
PA4238 rpoA DNA-directed RNA polymerase alpha chain essential
PA4270 rpoB DNA-directed RNA polymerase beta chain essential
PA4269 rpoC DNA-directed RNA polymerase beta′ chain non-essential
PA4462 rpoN RNA polymerase sigma-54 factor non-essential
PA5337 rpoZ RNA polymerase omega subunit non-essential
PA0350 folA dihydrofolate reductase essential
PA4750 folP dihydropteroate synthase essential
PA4560 ileS isoleucyl-tRNA synthetase essential
PA1806 fabI NADH-dependent enoyl-ACP reductase non-essential
PA0286 desA delta-9 fatty acid desaturase, DesA non-essential
PA4266 fusA1 elongation factor G non-essential
PA2071 fusA2 elongation factor G non-essential

Table 2.1: Known antibacterial drug target equivalents in Pseudomonas aerugi-
nosa (Silver, 2011). The individual essentiality of each gene assessed by Jacobs
et al. (2003). Note that not all of these will be the targets of drugs used clinically
against P. aeruginosa itself.

20



2.1. Introduction

2.1.2 Experimental methods to identify essential genes

Experimental techniques to identify essential genes in vitro are well developed and

documented (Gaiano et al., 1996; Glass et al., 2006; Kempheus, 2005). Transpo-

son mutagenesis involves inserting a genetic element into the coding- or promoter-

region of a target gene, thus potentially disrupting its function (Akerley et al.,

1998). Another method is to insert an inducible promoter region upstream of

the target gene so gene expression may be activated on demand (Guzman et al.,

1995). For more complex organisms such as eukaryotes, anti-sense RNA may be

inserted into the cells to bind targeted messenger RNAs (mRNA) thus reducing

translation of gene products (Weiss et al., 1999). RNA interference (RNAi) is a

method, in which double-stranded RNAs (dsRNA) are introduced into the cell,

and trigger the host RNAi pathway to selectively degrade mRNAs (Harborth

et al., 2001). The RNAi pathway is present in many eukaryotic species, but

some species such as Leishmania major lack the RNAi mechanism (Robinson &

Beverley, 2003). Each of these methods have their own advantages and prob-

lems. Two problems shared by all the experimental techniques, are the cost and

time. These methods require extensive laboratory work, which may be appro-

priate for a select few high value targets, or a small number of whole organisms,

but has been historically unfeasible for routinely and rapidly, defining the essen-

tial gene compliment of whole genomes. Rapid genome-wide approaches have

recently been developed such as the RIT-seq system (Alsford et al., 2011), used

to screen Trypanosoma brucei, and the TraDIS system (Langridge et al., 2009),

used to screen Salmonella enterica serovar Typhi. Despite these rapid screening

methods, the genomes of many hundreds of species have been fully sequenced,
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but only a small percentage have genome wide essentiality data experimentally

derived. It is the disconnect, between the speed of genome sequencing, and the

speed of experimental determination of essential genes, that drives the work in

this chapter.

2.1.3 In silico methods to identify essential genes

2.1.3.1 Homology based prediction methods

Similar protein sequences, often have similar functions (Duan et al., 2006), and

a standard informatics technique to transfer annotation from one sequence to

another is by considering homology. Two sequences are homologous to each other

if they share a common ancestor. This homology can be predicted by considering

the detectable and statistically significant similarity of two sequences. Novel

sequences can be searched against databases of known essential genes and where

related sequences are observed, essentiality can be inferred. A recent study by

Holman et al. (2009) showed that a variation of this method performed well at

ranking known essential genes over known non-essentials in many species. It

was noted that certain species (Haemophilus influenzae, Helicobacter pylori and

Escherichia coli) were less amenable to this method of essentiality prediction

than others. This was attributed to multiple factors, the performance of such

methods will be influenced by many species specific factors, the proportion of

essential genes within the species, the number of genes from closely related species

reported in the database; and many other factors related to the biological niche

of the species.
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2.1.3.2 Orthology based prediction methods

Mushegian & Koonin (1996) describe a method to identify the minimal essential

bacterial genome, based on orthology to a distant relative species. The reason-

ing was that those genes which were conserved after speciation, despite a large

evolutionary time and pressure on genome size, are likely to be essential. At the

time, the computational methods available for orthology detection were poor, and

there was little experimentally derived essentiality data available. More recently

Aguero et al. (2008) and many others (Caffrey et al., 2009; Kumar et al., 2007),

have used orthology to infer functional characteristics such as essentiality across

genomes. This method is attractive, as orthology detection capabilities have im-

proved substantially, as well as the rate of genome sequencing and essential data

availability. Intuitively it may be expected that, an essential gene in one species

is likely to be essential in a closely related species, however, historically the ap-

plication of this reasoning has presented some problems. Using a defined cutoff,

as to what passes the criteria for essential, will invariably lead to more false neg-

atives if the criteria are too strict (a lack of sensitivity), and false positives (a

lack of specificity) if the criteria are too loose. Without a rigorous benchmark,

it is impossible to understand how variations in prediction methods and criteria

effect the accuracy of the results. Doyle et al. (2010) performed a benchmark

of their own methods in predicting essential genes in eukaryotes, but there is a

lack of such evidence for prokaryotes. Here it is intended, that these homology

and orthology based prediction methods are extended, as well as benchmarked

to understand the level of confidence in the predictions.
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2.1.4 Understanding homologs, orthologs and paralogs

2.1.4.1 Homologs

Nature is a tinkerer and not an inventor (Jacob, 1977). New genes, and by

extension proteins, evolve by duplication of existing genes, and mutations within

the DNA sequence give rise to differences within the amino acid sequence and thus

the properties of the resulting folded protein. These duplication and mutation

events can, and do, occur many times, resulting in large families of genes which

share a common ancestral gene. In general, the more recent the duplication

event, the greater the similarity of the resultant amino acid sequences. However

evolutionary distant, duplication events can still retain enough sequence similarity

to be detectable by techniques such as the BLAST (Basic Local Alignment Search

Tool)(see 2.2.5.1) (Altschul et al., 1990). We can say that any pair of proteins that

have arisen with characteristics inherited from a common ancestor, irrespective

of the number of duplication events are “homologous” to one another.

2.1.4.2 Orthologs

When a species diverges into two distinct species (speciation), the equivalent

genes within the two species are called “orthologous” to one another (Fitch, 1970).

By definition, orthologs are also homologs. While these genes may undergo amino

acid sequence divergence after speciation, in general, orthologous genes share the

same or a similar functional purpose within the two species (Mushegian & Koonin,

1996).
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2.1.4.3 Paralogs

When a gene duplication event occurs, the resulting two genes are said to be

“paralogous” to each other. The new gene is also a paralog to any orthologs of

the parent gene. If the duplication occurred after a speciation, the new gene is a

called “in-paralog” of the existing gene. If the gene duplication occurred before

speciation event, the resulting genes are called “out-paralogs”. Paralogous genes

have less evolutionary pressure to retain the same function as the parent gene

and often diverge more rapidly than orthologs.

2.1.4.4 Co-Orthologs

When one or more duplication events occurs to an in-paralog, the resulting genes

are collectively referred to as co-orthologs of the original ortholog in the other

species. As these events can occur multiple times in either or both species, the

resulting gene relationships can be one-to-one, one-to-many, or many-to-many.

2.2 Materials and methods

2.2.1 Database tables and loading

Relational databases (Codd, 1970) consist of a collection of interconnected sets

of data stored in indexed tables. Interaction with the database is mediated

by a relational database management systems (RDBMS), with SQL (Structured

Query Language) - a standardized language for the addition, modification and

retrieval of data, the creation and alteration of schema (the tables, constraints

and relationships), and the management of database access. Oracle (http:
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A1 B1

A2

A3 B1

Species A Species B

orthologs

in-paralogs

out-paralogs

Figure 2.1: Ortholog relationships in two related species. The ancestral species
had only gene A1, after speciation only genes A1 and B1 existed. All other genes
occurred after the speciation. Orange arrows link orthologs. Blue arrows link in-
paralogs. Broken gray arrows link out-paralogs. All arrows indicate co-ortholog
pairs. All genes are homologs of all other genes. Adapted from Chen et al. (2007)
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//www.oracle.com) is an industry standard RDBMS, and has been routinely

demonstrated to provide good performance and reliability. There is excellent

support software and API’s (application programming interface) for interacting

with Oracle. The benefits of relational databases are multiple. A well designed

schema will enable complex data relationships to be modelled and enforced, make

ad hoc queries fast, the ability to deal effectively with data growth (both in vol-

ume and type), and enable centralized access to data for multiple users. The

essentiality components of the larger project database are shown in Figure 2.2.

Proteome data was obtained from ftp.ncbi.nlm.nih.gov/genomes/Bacteria/.

Taxonomy data was obtained from http://www.uniprot.org/taxonomy/ (Phan

et al., 2003). Experimental essentiality data is described in 2.2.2 and 2.2.3, and

orthology data calculated as described in 2.2.6.1.

Throughout the work described below, data was inserted, manipulated and

queried into the database using widely available tools such as Perl::DBI (http:

//dbi.perl.org/), cx Oracle (cx-oracle.sourceforge.net and SQL*loader

(http://www.orafaq.com/wiki/SQL*Loader_FAQ).

2.2.2 Gene essentiality data

A number of gene essentiality experiments have been performed and published,

the Database of Essential Genes (DEG)(Zhang et al., 2004) attempts to collate the

results of these studies. The structure of DEG is such that it only records known

essential genes from a species, and omits the known non-essentials. This is impor-

tant as genes which are omitted from DEG maybe non-essential or may not have

been assessed for essentiality. The Online GEne Essentiality (OGEE)(Chen et al.,
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Figure 2.2: Database schema for proteome, essentiality and orthology data. The
primary key, foreign keys and unique keys are represented by P,F and U respec-
tively. Arrows indicate the direction of foreign key inheritance. For more details
on column names and example queries see Appendix A.1. Figure generated using
OmniGraffle (Case, 2013).
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2012) database attempts to address this issue by recording non-essentials, but

was unavailable at the time of this study. The DEG database was obtained from

http://tubic.tju.edu.cn/deg/deg.rar, and contained 5260 essential genes,

from 14 bacterial species (see Table 2.2).

Scientific name NEWT taxon Essential genes Proteome size

Acinetobacter sp. ADP1 62977 499 3307
Bacillus subtilis str. 168 224308 271 4105
Escherichia coli K-12 MG1655 511145 712 4149
Francisella novicida U112 401614 392 1719
Haemophilus influenzae Rd KW20 71421 642 1657
Helicobacter pylori 26695 85962 323 1576
Mycobacterium tuberculosis H37Rv 83332 614 3989
Mycoplasma genitalium G37 243273 381 475
Mycoplasma pulmonis UAB CTIP 272635 310 782
Pseudomonas aeruginosa UCBPP-PA14 208963 335 5892
Salmonella typhimurium LT2 99287 230 4525
Staphylococcus aureus N315 158879 302 2619
Streptococcus pneumoniae 1313 244 1914
Vibrio cholerae 666 5 3,870

Table 2.2: Database of essential genes (DEG) summary. Only essential genes
are available in DEG, those genes tested to be non-essential are not reported.
Multiple copies of the same gene from each species may be present in DEG, if
gene essentiality corroborated in multiple publications. (The specific revision of
the genome used for the essential experiments and the protein prediction may
differ.)

2.2.3 Genome-wide essentiality data

In order to benchmark essentiality prediction methods, it is necessary to have

whole genomes with experimentally derived essentiality data available for the

majority of the genes. Whole genomes are important, as most orthology detection

software rely upon this. Genome-wide essentiality data ensures we know not only

the essential genes, but the non-essential also, which enables accurate analysis of

the predictions. For the purposes of the benchmark, only genomes with >90%
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gene knockout (or equivalent) coverage were utilized. Five sets of published,

genome wide, experimentally verified, essential genes were identified (Table 2.3).

These genomes and associated annotations were extracted from the literature and

added to the database (Figure 2.2).

The five essential genomes were experimentally measured in differing ways,

and therefore the definition of an essential gene depended on the conditions and

methodology used to determine them. In the methodology for these five bacterial

species, all mutants were required to undergo several cycles of division before

the non-essential genes could be detected. As a result of this division cycle, the

observed essential genes may not have been essential for bacterial life, but just

for reproduction. In such cases, targeting these genes with a therapeutic may

have a bacteriostatic effect rather than a bactericidal effect.

Four species (E. coli, F. novicida, M. genitalium and M. pulmonis) were tested

for essential genes required for viability on a rich medium, and one (Acineobacter

sp. ADP1) on a minimal medium. The observed essential sets were smaller on

rich media (≈300-400 genes) than on minimal media (499 genes), as would be

expected, as those genes involved in the biosynthesis of essential compounds such

as amino acids would be absolutely required on a minimal medium (de Berardinis

et al., 2008).

Three of the essentiality experiments (F. novicida, M. genitalium and M.

pulmonis) were performed using random transposon mutagenesis, which relied

upon a significant transposon saturation level. Where no transposon-mutant was

recovered for a gene, then that gene was considered essential. A drawback to this

method was that genes (especially small genes) may not be transposed by chance,

and may have incorrectly been assigned as essential (Gallagher et al., 2007). A
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second drawback to this method was that those genes that were disrupted causing

reduced fitness (not essential for survival), could have been out-competed by other

mutants in the growth stages, and incorrectly deemed essential (Gerdes et al.,

2006).

The other two essentiality experiments (E. coli and Acineobacter sp. ADP1)

were performed using gene-by-gene -deletion and -transposon mutagenesis respec-

tively. The advantage of this method was that genes were not un-disrupted and

predicted as essential by chance alone, and that mutant strains were cultured

separately reducing competition.

Therefore, the definition of “essential genes” in the five genome-scale studies

varied from genes “required for survival”, genes “required for survival in a favor-

able environment” and genes “required for competitive growth” (Gerdes et al.,

2006). For a pathogenic bacteria, the infection process usually occurs in a nu-

trient rich environment (Rohmer et al., 2011), and so this must be considered

when using essential genes predicted on minimal medium. The gold standard for

essentiality prediction in bacteria is a gene-by-gene deletion approach, as ran-

dom transposon mutagenesis is often over-predictive of essential genes (Gallagher

et al., 2007). Despite the advantages of certain methodologies, those essentiality

sets produced by potentially inferior methods were not ignored, as each bacterial

species may have essential genes absent from other essential sets that could offer

unique insight on a pathogens essential genes.
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2.2.4 Existing orthology detection methods

When presented with two genomes or proteomes of distinct species, there is no

guaranteed method to classify the orthologous and paralogous relationships. One

of the reasons for this is that the two species may be separated by multiple

speciation events, and the intermediate species extinct or unknown. The most

reliable way of defining a pair of orthologs is to exhaustively assign biological

functions to every protein in each genome, two genes which have the same function

and share a solid underlying sequence relationship (homology) are most likely

orthologs. Even with this process it is not always easy to distinguish between

orthologs and out-paralogs. Using this manual method is of course impractical

for even one pair of genomes, and impossible for rapidly detecting relationships

between multiple genomes. Fortunately many algorithms and software have been

developed for automatically detecting the orthologous relationships within two

genomes. Many of these methods were exhaustively benchmarked for accuracy

by Chen et al. (2007). The methods that attempt to recognize the problem

of co-orthology generally perform better. The two best methods determined

were INPARANOID (Berglund et al., 2008) and OrthoMCL (Li et al., 2003).

While these two methods are comparable in overall accuracy, they differ in their

prediction sensitivity and specificity, with OrthoMCL having a slightly lower

false-negative rate than INPARANOID (0.07 vs 0.17), at a small cost to the

false-positive rate (0.16 vs 0.07). OrthoMCL was deemed the better option, as

by starting with more ortholog relationships, even at the expense of more incorrect

relationships, would give a greater chance of predicting larger numbers of essential

genes.

33



2.2. Materials and methods

2.2.5 Benchmarking homology for essentiality inference

Each of the five benchmark genomes was compared individually versus the re-

maining four genomes, and against the DEG database using BLAST (section

2.2.5.1) to find essential homologs. The hypothesis being, that any protein that

shared a common ancestor with a known essential protein, was probably essen-

tial itself. A simple variable metric, the percent coverage of the known essential

protein sequence by the BLAST alignment, was used to distinguish significant

hits. The expectation was that the greater the coverage of the essential protein,

the more probable that any protein domain(s) required for the essential function,

were maintained in the query protein, and therefore the essential function was

also maintained.

2.2.5.1 Homology searches (BLAST)

The standalone version of the NCBI BLAST+ program (Camacho et al., 2009)

was obtained from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+

/2.2.21/, and installed locally. All databases builds and searches were performed

with default parameters and an E-value cutoff of 1×10−03, unless otherwise stated,

as described at ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.

2.21/user_manual.pdf.

2.2.6 Benchmarking orthology for essentiality inference

Each of the five benchmark genomes was compared individually verses the re-

maining four genomes using OrthoMCL to establish co-orthology relationships.

The distribution of co-orthology topologies can be seen in Figure 2.3. Direct 1:1
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orthology relationships dominate, coving 66% of the relationships, a 1:0 topology

(i.e. the gene has no detectable orthologs) represents 25% of the relationships,

and with 1:2 (a single gene duplication after speciation in one species) covering

5%. The remaining 4% of the data being represented by numerous alternative

topologies at low frequency.

2.2.6.1 OrthoMCL and parameters

OrthoMCL version 1.4 was downloaded from http://orthomcl.org/common/

downloads/software/unsupported/v1.4/ , and installed locally. The program

was modified to use the standard BLAST installation (see 2.2.5.1). The default

parameters for e-value and MCL inflation index were used, as tightening these

parameters only increases specificity at a larger cost on sensitivity (Chen et al.,

2007), while loosening the parameters reduces the granularity of the co-ortholog

clusters, resulting in increased many-to-many topologies (Li et al., 2003). All pro-

tein sequences representing the genomes, were taken from the Proteome database

(Figure 2.2). OrthoMCL predicts the phylogenic relationships between proteins

from a pair of species, however no phylogenetic tree can be constructed and so the

true orthology relationships are only inferred. The outputs of OrthoMCL are clus-

ters of proteins within the two given genomes representing co-orthologous groups,

where the clustering produces a single gene from each genome, these genes are

both considered orthologs. Where a cluster contains one gene from a species but

multiple genes from the other species, the single gene is considered the ortholog,

and the multiple genes considered paralogs. Where a cluster contains multiple

genes from both genomes, all of these genes are considered paralogs to each other.

Resulting orthology relationships were added to the proteome orthomcl table of
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Figure 2.3: Distribution of OrthoMCL co-ortholog topologies for the five genomes
described in Table 2.3. A co-ortholog topology describes the number of genes
within an OrthoMCL cluster from the two species. For example, the topology
1-2 suggests a single gene in species A shares co-orthology with two genes in
species B. It is not possible to know which of the two genes in species B is the
true ortholog and which is an out-paralog. The topology 1-1 suggests a pair of
orthologs from two species.
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the database (Figure 2.2).

2.2.7 Models of orthology-based essentiality inference

Evolutionary pressures can cause genetic divergence between isolated strains of

a species, resulting in the formation of new species, this process is termed “spe-

ciation”. After speciation, genes that are essential for life must be maintained,

and genes which offer a competitive advantage (fitness) to the new species may

also be maintained. However, if the cost of expressing the gene into a protein

is larger than the benefit of the function, the gene may eventually be lost from

the genome. By considering these factors, it was possible to construct simple

hypotheses and corresponding models to predict essentiality from the inferred

phylogenic relationships observed between genomes. The hypotheses are detailed

below and in Figure 2.4. Note that a genome that is being assessed for essen-

tiality (the “predicted” genome), may have its phylogenetic inferred relationships

analyzed against multiple species genomes (the “predictor” genome(s)).

2.2.7.1 Hypothesis 1

If a gene is conserved after a speciation event, then its function is required for

survival and so the gene is essential. Model 1 essential rule: The predicted gene

is part of a co-orthologous group, it may be a single ortholog, or have multiple

in-paralogs and out-paralogs.

2.2.7.2 Hypothesis 2

If a gene is conserved after a speciation event, then its function is required for

survival and is considered essential, however if the gene has subsequently been
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duplicated there is potential redundancy of function and the gene is not indi-

vidually essential. Model 2 essential rule: The predicted gene has an ortholog or

out-paralogs, but no in-paralogs.

2.2.7.3 Hypothesis 3

A gene function is more probable to be essential, if the co-orthologous gene func-

tion in a related species is known to be essential. Model 3 essential rule: The

predicted gene satisfies the conditions of model 1 AND any one of the predictor

co-orthologs has been experimentally verified as essential.

2.2.7.4 Hypothesis 4

A gene function is more probable to be essential, if the co-orthologous gene func-

tion in a related species is known to be essential, however if the gene has subse-

quently been duplicated there is potential redundancy of function and the gene

is not individually essential. Model 4 essential rule: The predicted gene satisfies

the conditions of model 2 AND any one of the predictor co-orthologs has been

experimentally verified as essential.

2.2.7.5 Hypothesis 5

A gene function is more probable to be essential, if the co-orthologous gene func-

tion in a related species is known to be essential, however if the gene has subse-

quently been duplicated there is potential redundancy of function and the gene

is not individually essential. If the co-orthologous gene(s) from multiple genomes

are known to be essential, then the chance of the predictor gene being essential

is increased. Model 5 essential rule: The predicted gene satisfies the conditions
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of model 4, and the number of times this is corroborated in other genomes, the

greater the chance of essentiality. Note that in this case, results are denoted

m5(N), where N is the number of species where the essentiality is corroborated.
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Figure 2.4: Graphical representation of orthology based essentiality models. The
four models of essentiality based on comparison with a single species (a), and
the model based on multiple species (b). Each tree represents a speciation from
a common ancestor. Each circle represents a gene from a species with experi-
mentally known essentiality (K) or unknown essentiality (U). A crossed branch
indicates an orthologous gene was not detectable or had been lost from the known
species. The genes could be classified into observed essentials (ESS), observed
dispensable/non-essentials (DIS), predicted essentials (ess), predicted dispens-
ables (dis). A final gene classification (ANY) represented all genes from a
species, where the model did not exploit observed essentiality data.

(a) Models 1 to 4. Each tree represents an outcome of an OrthoMCL orthology predic-
tion, and how the model used the outcome to make an essentially prediction.

U
ess

K
ANY

U
ess

U
ess

K
ANY

U
dis

U
ess

K
ANY

U
dis

U
dis

K
ANY

U
ess

K
ESS

U
ess

U
ess

K
ESS

U
dis

K
DIS

U
dis

U
dis

K
DIS

U
dis

U
dis

U
ess

K
ESS

U
dis

U
dis

K
ESS

U
dis

K
DIS

U
dis

U
dis

K
DIS

U
dis

Model 1 (m1)

Model 2 (m2)

Model 3 (m3)

Model 4 (m4)

40



2.2. Materials and methods

(b) Model 5, with four confidence levels. Dashed branches represent ortholog relation-
ships that may exist but are not required for the prediction. Note that the tree is not
a phylogenetic tree, but represents the speciations from a common ancestor.
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2.2.8 Benchmark metric

When benchmarking the results of a binary classification experiment, it is im-

portant to consider both the sensitivity and specificity of the prediction method.

Sensitivity or True Positive Rate (TPR) is a measure of how many correctly pre-

dicted positive outcomes are observed out of all the possible positive training
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samples. Specificity or True Negative Rate (TNR) is a measure of how many

incorrectly predicted positive outcomes are observed out of all possible negative

training samples. In practical terms high sensitivity is not useful if specificity is

poor. Often the most useful classifiers are those which provide a good balance

of both, however in many cases, the preference for the balance is biased by the

intended uses of the predictions. A Receiver Operating Characteristic (ROC)

plot is a method for judging the effectiveness of altering classification parame-

ters on this balance. By convention when plotted on a graph, the False Positive

Rate (FPR) is on the X-axis and the TPR is on the Y-axis. The perfect classi-

fication system (with no false positives and no false negatives) would lie at the

coordinate 0,1. Any predictions that lie on the line from coordinates [0,0] to [1,1]

represent predictions no better than random guesses. A simple measure of the

overall performance of a ROC point, is the Euclidean distance from the perfect

classification point (PCd), where a lower PDd is preferable. In practise, when

applying the predictive methods to a proteome, there will be a greater interest

in the predicted essential proteins rather than the predicted non-essentials. The

positive predictive value reflects how much confidence can be placed in positive

(essential) predictions.

TPR = TP/(TP + FN) (2.1)

TNR = TN/(FP + TN) (2.2)

FPR = 1− TNR (2.3)
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PPV = 100(TP/(TP + FP )) (2.4)

PCd =
√

(0− FPR)2 + (1− TPR)2) (2.5)

where TP is the true positive count, TN is the true negative count, FP is the

false positives count and FN is false negative count.

2.3 Results

2.3.1 Benchmark of homology inference

The performance of predicting essential genes by the inference of homology with

known essential genes was tested using the benchmark described in Section 2.2.5.

Each of the five proteomes of the benchmark species (Table 2.3), were compared

against both the DEG database, and the essential proteins of the remaining four

proteomes and where homology was inferred, those proteins were predicted essen-

tial. All predicted essential genes then compared to observed essentially status

to measure accuracy. The performance of the essentiality inference, in terms of

average sensitivity and specificity for all five proteomes is shown in Figure 2.5.

A full breakdown of the performance of essentiality inference for each species

is shown in appendix Table A.2. ROC plots of performance in each of the five

species are shown in appendix Figure A.1.

The results suggest that with strict parameters (80-95% target coverage),

increasing the size of the essential genes database increased the accuracy of pre-

dictions. With loose parameters (5-75% target coverage), the increase in the TPR
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Figure 2.5: Benchmark of homology based essentiality prediction. Average per-
formance of predicted essential proteins in five species using homology to two
datasets of observed essential proteins. Essential datasets were: four predictor
proteomes (green), and DEG (purple). Labels show the alignment coverage (%)
of the observed essential sequence, required to infer homology. Individual perfor-
mance of prediction for each species is shown in Appendix A.2.

44



2.3. Results

1000 10 20 30 40 50 60 70 80 90

100

0

10

20

30

40

50

60

70

80

90

Essential target alignment coverage (%)

P
P
V

E. coli

F. novicida

Acinetobacter sp.

M. pulmonis

M. genitalium

Figure 2.6: The positive predictive value (PPV) of the homology-based model of
essentiality for each species in the benchmark. Against the four predictor pro-
teome (circles) and against DEG (crosses). The results must be interpreted with
respect to Table 2.3, as although predicted essential proteins in M. genitalium
have the greatest chance of being essential (up to 94%), a proteins picked at ran-
dom from this species would have a PPV of 80. Conversely, in E. coli, and random
protein would be essential 7% of the time, but this chance can be increased to
36% using the most specific homology-based model.
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is lower than the increase in the FPR. This suggests that as the number of species

with experimentally observed essential genes increases, inference of essentiality

by homology may become increasingly better at predicting true essentials from

a proteome. However, using a larger essential proteins database also increases

the overprediction (FPs) of essential proteins. A significant problem with this

approach is that if a gene is correctly observed to be non-essential in multiple

experiments, but incorrectly observed to be essential in just one experiment, this

incorrect essential could “pollute” the essential database. As many proteins are

members of large homologous families, this pollution could rapidly increase the

overprediction of essentiality.

The accuracy of the inference of essentiality on the five species varied sig-

nificantly (see Figure A.1). There may be multiple species specific factors that

effect the performance, such as the size of genome, the evolutionary distance from

species in the essential proteins database and the environmental niche the species

occupies. Of the five species benchmarked here, the method performs the worst

(in terms of sensitivity) on M. genitalium. Where other bacterial species may

have functional redundancy within their proteomes, M. genitalium has a very

small proteome (475 proteins) of which nearly 80% are essential. This lack of

redundancy may mean many essential proteins of M. genitalium are specifically

essential to itself, and the equivalent the functions in other species are performed

by multiple not-individually-essential proteins.

If this was the only factor influencing the performance, then it would be

expected that the essentials of the related species M. pulmonis would also be

predicted poorly. However Figure 2.5 shows that M. pulmonis performs better

against both essential databases. As M. genitalium essentials are present in both
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databases, and as M. genitalium has more essential proteins than M. pulmonis it

could be that M. genitalium is an ideal species to predict other species with, but

a difficult species to be predicted itself.

Of the remaining three species, E. coli is consistently the best performer,

outperforming F. novicida and Acineobacter sp. ADP1. Amongst other factors,

the fact that the known E. coli essentials were verified using the “gold-standard”

(gene-by-gene) method, then any predicted essentials were being validated against

the most accurate data. As Acineobacter sp. ADP1 essentials was also verified

using this gold-standard method, it could be expected that it would also perform

well. Against the DEG database, its performance was comparable to that of E.

coli, but against the four proteomes database, its TPR was much smaller. The

main factor for this disparity is likely to be that the essentials of Acineobacter

sp. ADP1 were observed on minimal medium, where the other four essential

sets were observed on rich medium. This could result in those proteins involved

in the biosynthesis of essential compounds being classified as non-essential thus

reducing the TPR.

2.3.2 Benchmark of orthology inference

The five models of essentiality (described in Section 2.2.7) were applied to each

genome-genome orthology comparison, and the predicted essential and non-essential

genes correlated with the experimentally derived classifications. The results of

the benchmark study are shown in Table 2.4, and in terms of sensitivity and

specificity, in Figure 2.7.

It has been hypothesized, that genes conserved after speciation events are
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number of genomes which the predicted gene was required to share a known
essential ortholog. Individual performance of prediction for each species is shown
in Appendix A.3.
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more likely to be essential (Mushegian & Koonin, 1996). However, so far there

has been little quantitative evidence to demonstrate these hypothesis. Here,

it is shown using multiple species, that conservation of orthologs (model m1),

is a positive predictor of essentiality. The extension of this hypothesis, that

where these conserved orthologs have recently duplicated, to form in-paralogs,

the chance of individual essentiality is reduced was assessed by model m2. If

the hypothesis was correct, then model m2 should have performed better than

model m1 at predicting essential genes. Across all species, on average, there was

little difference in the overall performance of models m1 and m2 (PCd of 0.50

and 0.50 respectively). However, the PPV of model m2 (Figure. 2.8) was always

greater than model m1. It should be noted that the increase in PPV between

models m1 and m2, has some correlation to proteome size, those species with very

small proteomes such as M. genitalium, have far fewer in-paralogs and as such

are less effected by the constrictions of model m2. Conversely, in the relatively

large and redundant proteome of E. coli, in-paralogs appear to have duplicated

the functions of a larger number of ancestrally essential proteins.

It has also been suggested, that genes conserved after speciation events are

more likely to be essential, if an ortholog is known to be essential in another

species (Aguero et al., 2008). Here, it is shown using multiple species, that

conservation of known essential orthologs (model m3), is a positive predictor of

essentiality. Across all species, on average, there was little difference in the overall

performance of models m3 and m4 (PCd of 0.57 and 0.59 respectively). However,

the PPV of of model m4 (Figure. 2.8) was always greater than model m3

Extending these models, to test if conserved essentiality in multiple compar-

ison species (models m5(1)-m5(4)) improved the probability of essentiality. It
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is clear from Figure 2.8, that the presence of an essential ortholog, in multiple

species, greatly increases the chance of being essential. However, what is also

apparent from Figure 2.4 is that with the greater number of species used to cor-

roborate essentiality, while the PPV increases, the recall (TPR) of the predictions

diminishes. In summary, as the models get more specific the enrichment of true

essentials in the predicted set is increased. There is very high confidence that the

set of essentials predicted with model m5(4) are truly essential, but the set will

only be a small subset (≈ 20%) of the entire essential set of the proteome.

Taking the specific example of E. coli, a previous essential prediction study

(Holman et al., 2009)(see 2.1.3.1) performed poorly on this species. In all the

orthology based methods described here, E. coli was consistently the worst per-

former, in terms of PPV (Figure 2.8). By selecting a gene by chance in this

species, it would be an essential gene 7% of the time. Using m1, and depend-

ing on the species used, the chance would be increased to between 15.4-31.2%

(up to a 4.4 fold increase), by using m2 the chance increased to 18.8-53.8% (7.6

fold). This in some part explained the lack of performance in the Holman et al.

(2009) method, which did not take account of paralogs. In models m3 and m4,

the enrichment of essentials over a random guess for E. coli was up to 8-fold and

9-fold respectively. Using the most specific model (m5(4)), the proportion of true

essentials in the E. coli predictions was 85.3%, or a 12-fold increase over chance.

While the more specific models, performed well at enriching real essential genes

in the predicted set, they did so at a cost of sensitivity, in the case of E. coli, only

81 of the known 296 essential genes (27%) were predicted in the m5(4) model.

Applying each of the benchmarked models consecutively gives a spectrum

of predictions of varying confidence, thereby uniquely providing the means to
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prioritize targets by the confidence in their likely essentiality in a quantitative

manner.

2.3.3 The cost of specificity in the essentiality models.

The most specific model of essentiality for all five species benchmarked was model

m5(4) (Table. 2.4). Depending on the species being examined, the resulting set

of essential predictions were composed of between 80-99% observed essentials

(Figure 2.8). However, with this specificity, the recall of essentials was poor and

reduced the size of the essential sets to between 79-95 proteins. In total, across five

species, 114 unique proteins were predicted as essential using model m5(4). These

proteins are summarized in Appendix A.3. The proteins are mainly involved

in functional classes fundamental across all cellular-organisms including, tRNA

metabolism, DNA metabolism, protein synthesis, cell division, transcription and

energy metabolism. Within this set there are many proteins that are also the

targets of current drugs (gyrA, gyrB, parE, rpoA, rpoB, rpoC, folA, ileS and

fusA)(Silver, 2011), and multiple protein subunits of the ribosome, of which both

the protein and RNA components have been a common target for a diverse array

of antibiotics (Yonath, 2005). While these prioritized targets have confidence of

being essential, they are also limited in number, and many have previously been

exploited for drug discovery. Drugs against these targets are also likely to be

broad-spectrum, which is often useful, but can also facilitate the rapid rise of

resistance.

Conversely, the most sensitive model of essentiality benchmarked was homol-

ogy to proteins in the database of essential genes (DEG). This method also had

52



2.3. Results

the advantage of being computationally quicker than the orthology based meth-

ods. The drawback of this approach is the lack of specificity, and the predicted

essentials sets contain a smaller proportion of truly essential proteins.
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2.3. Results

2.4 Conclusions and future direction

Phylogenetic approaches to predicting essential targets carry the advantage that

they can be applied to genomes lacking experimental essentiality data. These

approaches can be based purely on inferred phylogenetic information (e.g. the

absence of paralogs within a genome, the presence of orthologs between genomes),

or include essentiality data from related species (e.g. the presence of essential

orthologs or homologs) or indeed a combination of the above.

This analysis was performed on prokaryote species, but in a study by Doyle

et al. (2010) the application of similar methods to four eukaryotic species (Caenorhab-

ditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster and Mus mus-

culus) was addressed. As in prokaryotes, the presence of an ortholog (model

m1) was always a positive predictor of essentiality. In the prokaryotes used here,

the absence of paralogs improved the predictive power further, which was also

the trend in eukaryotes with the exception of M. musculus, where the predictive

power deteriorated. In both prokaryote and eukaryotes, the presence of an ob-

served essential ortholog substantially increased the likelihood of essentiality, but

at a cost to the recall of known essential genes.

As new sources of essentiality data become available, these can be added to

the system to increase the range and sensitivity of the predictions further. The

models described above have the advantage of having virtually no cost, in terms

of man-hours, experimental overheads and CPU time.

The breadth of observed essential genomes has increased since this analyses,

with the recent publications of the essential genomes of several bacterial including,

the opportunistic pathogen Streptococcus sanguinis, the pathogen Porphyromonas
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gingivalis and the model organism Caulobacter crescentus (Christen et al., 2011;

Klein et al., 2012; Xu et al., 2011). While the rate of new whole genome essential-

ity screens appears to be increasing, it is not at such a rate to have any significant

effect on the computational overhead of the orthology methods.

When assessing a new pathogen for a drug discovery program defining the

perturbative targets is a priority (Frearson et al., 2007). By using the most pre-

scriptive model of prediction (i.e. m5(4)), clearly the confidence of your essential

set is high. However, given the small proportion of essential genes usually ob-

served in a bacterial genome, and the low sensitivity of the method, the resulting

set of essential genes may be very small. When these targets are subjected to

other criteria such as druggability, the set will diminish further. Therefore, in-

stead of using an individual model of essentiality, it is preferable to use all mod-

els, and rank the predictions by the selectivity of the model, which prioritizes

the most confident essentials, but does not limit the range of targets available

for consideration. A further prioritization could be achieved by pre-ranking the

observed essential genomes with a weighting based on the quality of the experi-

mental method employed. Quality is a subjective measure, but for the purposes

of perturbation of a pathogen, those experiments which more precisely mimic the

environment of a host are preferable (e.g. rich medium essentials rather than

minimal medium). Other factors that effect the quality of predictions include the

experimental method, random transposon mutagenesis has the tendency to over-

predict essential genes, and as such prediction based solely on these sets could

be weighted lower than those of gene-by-gene deletion sets. As the number of

essential genomes increases, a bias in prediction ranking could be introduced if

multiple evolutionary closely related species are used simultaneously.
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2.3. Results

Recently, Deng et al. (2011) published a machine learning method which

amongst other factors, utilized intrinsic, calculable features of a protein (such

as codon bias, hydrophobicity score, aromaticity and cellular location) to predict

essentiality. In the future, new models such as these, or improved orthology mod-

els based on more experimentally derived essentiality sets, could be simply added

to the benchmark, to further increase the spectrum of predictions.
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Chapter 3

Application of phylogenomic

inference of essentiality
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3.1. Application to Pseudomonas aeruginosa

3.1 Application of essentiality predictions to tar-

get prioritization in Pseudomonas aerugi-

nosa

Pseudomonas aeruginosa is an important Gram-negative bacterial pathogen that

is of major clinical significance as a cause of pneumonia, septic shock, urinary

tract and gastrointestinal infections and a particular problem for Cystic Fibrosis

patients and burn victims (Balcht & Smith, 1994; Kerr & Snelling, 2009). The

tendency to form biofilms (Høiby et al., 2001), the low permeability of the bacte-

rial cellular envelope, the presence of multidrug efflux pumps and chromosomally-

encoded antibiotic resistance genes all combine to make P. aeruginosa an intrin-

sically challenging pathogen. The challenge is exacerbated by the capacity of

P. aeruginosa to acquire antibiotic resistance, either by genomic mutation or

horizontal gene transfer of antibiotic resistance determinants. For these reasons

the Aeropath project (http://www.aeropath.eu/) was undertaken to identify

novel drug targets in P. aeruginosa. The Aeropath Target Database aids the

identification of potential drug targets from the genome of P. aeruginosa by cou-

pling a chemistry-led approach to predicting target druggability with information

on gene essentiality, virulence factors, predicted selectivity, related bacterial or-

thologs and assessment of structural biology accessibility. In the database, pertur-

bative targets are identified as either experimentally observed essential targets,

phylogenomically inferred essential targets or as known virulence factors. The

Aeropath Target Database was primarily developed by Dr. Richard Bickerton

in the Hopkins group. My role in this project was to implement the essentiality

64

http://www.aeropath.eu/


3.1. Application to Pseudomonas aeruginosa

inference module of the database using the methods described in Chapter 2. The

Aeropath Target Database is an Oracle relational database hosted locally at the

University of Dundee. A web front end for accessing the database is available at

http://aeropath.lifesci.dundee.ac.uk.

3.1.1 Motivation

In the case of P. aeruginosa there are two sets of published large-scale transposon

knockouts (Jacobs et al., 2003; Liberati et al., 2006), identifying essential genes.

In the method, those genes that were disrupted by the transposon and still viable

were considered non-essential, and those genes that were never observed contain-

ing a transposon were considered essential. In some cases, the genes were only

recovered with a single transposon insertion site close to either the 5′ or 3′-end,

which could indicate that they were essential, but the transposon did not disrupt

the essential region of the protein, those genes were termed “potentially essen-

tial”. With this method, genes that are either small or located in transposition

cold spots could be classified as essential by chance.

The Jacobs et al. (2003) mutagenesis study was performed on the PAO1 strain

of P. aeruginosa and identified 773 genes as being essential (or 13.9% of the pro-

teome) including 97 potentially essential genes. The Liberati et al. (2006) study

was performed on the PA14 strain and the essential gene candidates observed

that were also observed in the PA01 study were reported as essential, suggesting

that 364 genes are essential (or 6.5% of the proteome). Therefore the Jacobs

et al. (2003) set subsumes the Liberati et al. (2006) set. Essentiality depends

on the context of the experimental conditions, and the ability of the experiment
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3.1. Application to Pseudomonas aeruginosa

to accurately assess each individual gene for essentiality. For these reasons, the

experimentally derived set was augmented with predicted essential genes.

3.1.2 Essential gene prediction

Essentiality prediction was performed on the reference P. aeruginosa strain ob-

tained from http://www.pseudomonas.com/. Essentiality prediction was per-

formed using model m5(1) (see section 2.2.7.5), using all five of the benchmark

species reported in Table 2.3 (page 32).

3.1.3 Results and discussion

The number of predicted essential genes in P. aeruginosa using model m5(1) was

572 (or 10.3% of the proteome). The overlap of the predicted set and the two

experimentally derived sets is shown in Figure 3.1. Each source of perturbative

(1.3.3) targets provides a different but overlapping set of proteins, the intersects

of these sets provide additional levels of confidence of essentiality. In combination

they suggest that 1,050 are potentially perturbative (or 18% of the proteome).

If the Liberati et al. (2006) set (364 genes) is taken as the true complement

of essentials then the predictions produce a true positive rate (TPR) of 0.59,

which is within the range of performance observed in the benchmark of model

m5(1) (see Table 2.4). Conversely, if the Jacobs et al. (2003) set (773 genes) is

taken as the true complement of essentials then the predictions produce a TPR

of 0.39, which is comparatively poor compared to the benchmark. This difference

in performance may be explained by the Jacobs et al. (2003) set being an over-

estimation of essential genes due to limitation in the experimental method, or that
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3.1. Application to Pseudomonas aeruginosa

the proteome size of P. aeruginosa (5,677) is larger than all of the predictor species

(see Table 2.3). Where experimentally observed essential genes are available for

a species, the predictive methods provide a means to prioritize essential genes

from an over-estimated set, and supplement the observed set with essential genes

which have been missed due to experimental limitations.

327

277

82

151

0

213

Jacobs Essentials (773)

Predicted Essentials (572)

Liberati Essentials (364)

Figure 3.1: The overlap of the predicted essential genes in P. aeruginosa, with
the experimentally observed essential genes of strain PAO1 (Jacobs et al., 2003)
and strain PA14 (Liberati et al., 2006). Figure produced using BioVenn (Hulsen
et al., 2008).
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3.2. Application to kinetoplastids

3.2 Application of essentiality predictions to tar-

get prioritization in kinetoplastids

Our close collaborators in the Drug Discovery Unit (DDU) at the University of

Dundee have a longstanding interest in kinetoplastid diseases. Target selection

remains a crucial decision point in the drug discovery process and a lack of high

quality validated targets has become a bottleneck for progress in the search for

new antitrypanosomal therapeutics (Wyatt et al., 2011). As such, having seen

the example of the Aeropath Target Database, the DDU were keen to use a

similar systematic approach to identify potential targets in the kinetoplastids.

The result of this work was the Kinetoplastid Target Database (KTD)(http:

//rapid.lifesci.dundee.ac.uk/KTD/) which was built with the same technol-

ogy as the Aeropath Target Database, but applied to multiple genomes. As

before, my role was to supply the essentiality inference module. The KTD in-

cludes the genomes of Trypanosoma brucei (the causative agent of Human African

trypanosomiasis or sleeping sickness in humans and nagana in animals), Try-

panosoma cruzi (El-Sayed et al., 2005) (the causative agent of Chagas disease),

Leishmania braziliensis (Peacock et al., 2007), Leishmania infantum (Peacock

et al., 2007) and Leishmania major (Ivens et al., 2005)(the causative agents of

Leishmaniasis). In total 7 different proteomes were included as three different

genetic variants of T. brucei were covered: T. brucei strain TREU 927 (Berri-

man et al., 2005), T. brucei Lister strain 427 (Becker et al., 2004) and T. brucei

gambiense (Jackson et al., 2010).
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3.2. Application to kinetoplastids

3.2.1 Essentiality inference

The essentiality inference work capitalized on the genome scale RNAi knock-

down experiments performed on T. brucei by Alsford et al. (2011). T. brucei

is transmitted to mammalian hosts by the tsetse fly, and is subject to complex

morphological changes that are induced as it switches between insect and mam-

mal hosts, and during its life-cycle. The RNAi experiments were performed in 4

different induced samples, bloodstream-form cells grown for three (BFD3) or six

days (BFD6), procyclic-form cells (PF) and differentiated cells (DIF). In this work

T. brucei genes were considered essential if they were essential in the BFD3 and

BFD6 forms, as it is in these forms that the trypanosomes multiply in the host and

cause irreversible damage. The procyclic-form occurs exclusively in infection of

the tsetse fly. The differentiated-cells set represented cells grown as bloodstream

forms, induced into the non-dividing form that serve to re-infect tsetse flies (Brun

et al., 2010), and then grown as procyclic forms. While the PF and DIF essentials

were not considered useful for essential drug-target prediction, the information

was retained and could be utilized by KTD users if required. The phylogenomic

models used for essentiality inference were Model 3 (has an essential ortholog)

and Model 4 (has essential ortholog and no in-paralogs). All proteomes were

obtained from TriTrypDB version 3.1 (Aslett et al., 2010) or UniProt complete

proteomes (16th June 2011) (Wu et al., 2006). The essential protein sets were

taken directly from the supplemental material of Alsford et al. (2011), using the

cutoffs described by the authors to determine significant loss-of-fitness genes (i.e.

significant and positive Z-score). Of the ≈7500 non-redundant protein-coding

regions of the T. brucei genome, Alsford et al. (2011) obtained data for 7435 of
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the regions. Of the protein-coding regions covered, 1908 (25.7%) were essential

for fitness in the BFD3 set, and 2724 (36.6%) in the BFD6 set.

3.2.2 Results

Table 3.1 shows the proportions of each of the kinetoplastid proteomes that are

predicted essential using the two models, and the effect of predicting based on

permutations of the BFD3 and BFD6 essential proteins. T. cruzi Esmeraldo-Like

is consistently predicted to have a smaller proportion of essential proteins than the

other kinetoplasids, this is not only due to its larger genome size, as the number

of proteins predicted essential are also consistently smaller (see Appendix Table

A.4), and the cause of this is due to a smaller number of ortholog relationships

inferred by orthomcl (see Appendix Table A.5). The remaining kinetoplastids are

predicted to have similar proportions of essential proteins in each set, which is

unsurprising given the similar life-cycles of these species. Its is important to note,

that in the three Leishmania species, only ≈ 70% of proteins have any co-ortholog

to the reference T. brucei strain, and so 30% of these proteomes cannot be pre-

dicted as essential or non-essential by this method. By using the BFD3∩BFD6:m4

results, the user can select those targets that are likely to be essential for fitness

throughout the host-infection phase, and are likely to be individually essential.

However, this would limit the potential targets to < 15% of the proteomes. Larger

sets can be selected by considering potential polypharmacology targets using m4

or by considering targets only essential in one of the host-infection phases (e.g.

BFD3∪BFD6:m4).

Currently, the DDU is utilizing these essentiality predictions along with other
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3.3. Application to Schistosoma mansoni

information available in the KTD to prioritize potential drug targets for validation

studies.

BFD3 ∪ BFD6 BFD6 BFD3 BFD3 ∩ BFD6

kinetoplastid Psize m3 m4 m3 m4 m3 m4 m3 m4
T. cruzi Esmeraldo-Like 10342 25.0 21.5 22.1 18.8 15.6 12.8 12.7 10.1
T. brucei gambiense 9668 31.8 29.3 28.0 25.6 19.5 17.7 15.7 14.0
T. brucei Lister strain 427 8529 38.2 33.3 33.6 29.1 23.8 19.9 19.3 15.7
L. infantum 8033 31.5 29.2 27.9 25.7 19.6 17.8 16.0 14.3
L. major 8045 31.2 29.2 27.6 25.8 19.4 17.8 15.8 14.3
L. braziliensis 7809 31.3 29.0 27.8 25.6 19.6 17.7 16.0 14.3

Table 3.1: Percentage of predicted essential proteins in 6 kinetoplastids. (where
Psize = proteome size; BFD3/BFD6 = bloodstream form after 3/6 days respec-
tively). The essential proteins of T. bruci strain TREU 927. were used to infer
essentiality using models m3 and m4 (as described in Chapter 2.2.7). The es-
sential predictions were based on proteins shown to be essential in either BFD6,
BFD3, both forms or either form.

3.3 Application of essentiality predictions to tar-

get prioritization in Schistosoma mansoni

S. mansoni is a trematode flatworm and one of the causative agents schistosomi-

asis. Schistosomiasis is a significant cause of morbidity in tropical regions, where

an estimated 600 Million people are at a significant risk of infection. Currently

the only treatment available is praziquantel, a drug that has been in use over 20

years, and there are fears that resistance is developing (Doenhoff et al., 2009).

3.3.1 Motivation

Dr. Quentin Bickle’s group from the London School of Hygiene and Tropical

Medicine (LSHTM), aimed to develop new targets for schistosomiasis interven-
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3.3. Application to Schistosoma mansoni

tion. At the start of this project they were in the early stages of setting up

facilities to screen S. mansoni targets with potential small-molecule inhibitors,

and established RNA interference (RNAi) techniques to validate gene targets for

essentiality. The two requirements for the project were targets that were poten-

tially essential, and targets that had known chemical inhibitors validated against

them, or against homologs, as a starting point for compound development.

3.3.2 Essential gene prediction

The organism used to infer essentiality was Caenorhabditis elegans. The genome

of C. elegans was available (Hillier et al., 2005), and downloaded from wormbase

version 205 (Rogers et al., 2008) that contained ≈24k proteins. A systematic

functional analysis of the C. elegans genome, using RNAi, was available (Kamath

et al., 2003). Kamath et al. (2003) assigned each gene to a functional class based

on the phenotype, and the functional classes used to define “essential” genes here

were:

• Embryonic lethality (Emb), defined as >10% dead embryos.

• Sterile (Ste), required a brood size of <10 (wild-type worms under sim-

ilar conditions typically have >100 progeny).

• Sterile progeny (Stp), progeny brood size of <10.

Using these functional classes produced only 1170 essential genes in the C.

elegans set. As only one essential genome was considered appropriate, the most

specific essentiality model available was m4 (see section 2.2.7.4). The proteome of

S. mansoni was download from Sanger genomes version 4.0. Of the 13191 proteins
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in the S. mansoni proteome, 323 were predicted to be essential using this method.

This low number of essential predictions was due to two factors, the relatively

low number of essential genes observed in C. elegans, and the large evolutionary

distance between C. elegans and S. mansoni that restricted orthomcl to find only

39% of the proteins in S. mansoni sharing any co-orthology relationships with

the C. elegans proteome.

3.3.3 Precedence filter

The 323 putative essential S. mansoni genes were searched against the protein

targets in ChEMBL (Gaulton et al., 2011) using BLAST+, (E-value cutoff of

1×10−03 and target coverage of >50%). Only those hits to ChEMBL targets that

had at least one potent compound (<10nM) were considered. This filter reduced

the S. mansoni set to just 24 genes (Table 3.2) that were predicted to be essential

and have the potential to be inhibited by small-molecule compounds.

3.3.4 Prioritized targets in the literature

In the S. mansoni genome study by Berriman et al. (2009), they defined two sets

of potentially druggable targets. Both sets were found by homology searching

ChEMBL and DrugStore (a database the targets of FDA approved drugs) for

precedented targets, with the sets subdivided into those which were homologs of

precedented human drug targets (26 proteins) and those which were homologs to

targets with precedented drug-like chemical matter associated (94 proteins). The

overlap of our results and those of Berriman et al. (2009) are shown in Table 3.2.

The overlap was small as the homology criteria by Berriman et al. (2009) were
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much stricter (>50% sequence identity and >80% target coverage) than my own,

and they did not filter by any essentiality method.

3.3.5 GO term analysis of the prioritized targets

Gene ontology (GO) annotations for S. mansoni proteins were provided by Berri-

man et al. (2009) (downloaded from ftp.sanger.ac.uk/pub/pathogens/). GO

terms were mapped to the generic GO-slim ontology (http://geneontology.

org/GO_slims/) using map2slim from the go-perl library (http://search.cpan.

org/~cmungall/go-perl). GO annotations were available for 8756 of the 13191

proteins of the S. mansoni proteome, which was used as a background population

term set. GO annotations were available for 23 of the 24 proteins in the priori-

tized set. Over-representation of terms in the prioritized targets set was calculated

using the Ontologizer software (Bauer et al., 2008), with settings “Parent-Child-

Union” as described in Grossmann et al. (2007). Only GO terms with the root

biological process (BP) or molecular function (MF) were considered. Those GO

terms significantly over-represented (p-value <0.1) are shown in Table 3.3.

3.3.6 Preliminary in vitro analysis

Laboratory analysis of the 24 S. mansoni genes is being undertaken by Alessan-

dra Guidi at LSHTM. Preliminary results of the first two targets to be treated

with RNAi are reported here. At the time of writing, two of these targets

(Smp 026560.2 and Smp 096310) have been successfully knocked down with RNAi,

achieving greater than 90% mRNA reduction in the cytoplasm. The resulting

phenotypes are shown in Figures 3.3 and 3.4, the wild-type control phenotype is
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Gene Description 26set 94set
Smp 008260 serine/threonine kinase (CMGC group 3) (gsk 3-related) yes
Smp 080730 serine/threonine kinase (CMGC group 3) yes
Smp 096310 serine/threonine kinase (AGC group 5)
Smp 141380 serine/threonine kinase (CK1 group 1)
Smp 180400 serine/threonine kinase (CK1 group 2)
Smp 009030 ribonucleoside-diphosphate reductase, alpha subunit, putative yes
Smp 026560.2 calmodulin, putative yes
Smp 027880 prefoldin subunit, putative
Smp 034670 tubulin gamma chain, putative
Smp 035580 protein phosphatase-1, putative
Smp 040770 methionine-tRNA synthetase, putative
Smp 041600 isoleucine-tRNA ligase
Smp 055890 ribonucleoside-diphosphate reductase small chain, putative yes
Smp 073410 proteasome catalytic subunit 2 (T01 family)
Smp 076230 proteasome subunit alpha 7 (T01 family)
Smp 085740 abl-binding protein-related
Smp 089700 integrin beta subunit, putative
Smp 091770 protein farnesyltransferase alpha subunit, putative
Smp 157090 subfamily C1A unassigned peptidase (C01 family) yes
Smp 164840 proteasome catalytic subunit 3 (T01 family)
Smp 165490 protein phosphatase-2a, putative yes
Smp 170730 proteasome subunit alpha 1 (T01 family)
Smp 173810 protein phosphatase pp2a regulatory subunit B, putative yes
Smp 194160 leucyl-tRNA synthetase, putative

Table 3.2: The 24 prioritized S. mansoni targets (predicted essential and with
precedented active compound(s) available). Targets that were prioritized by
Berriman et al. (2009) are highlighted, the 26set includes the targets homolo-
gous to human drug targets and the 94set includes the targets homologous to
ChEMBL targets with drug-like chemical matter associated. Target annotation
was taken from GeneDB (http://www.genedb.org/) and kinases were classi-
fied into subfamilies using the Kinomer v1.0 HMM library (Miranda-Saavedra &
Barton, 2007).

shown in Figure 3.2. As it is not possible to reproduce the life-cycle of S. mansoni

in vitro, it was not possible to deduce definitively that these genes were essential

for disease progression or reproduction. However, in the opinion of the experts at

LSHTM, these trematodes were significantly damaged, and potentially unviable.
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Figure 3.2: Control phenotype of S. mansoni, no RNAi treatment. 10 days
phenotype.

Figure 3.3: S. mansoni treated with RNAi designed against Smp 026560.2 (pu-
tative calmodulin). 10 days phenotype. Trematodes exhibit a severely segmented
morphology and reduced motility.
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GO id GO name p-value GO
root

Study
Count

Population
Count

GO:0006399 tRNA metabolic process 0.005 BP 3 (13.0%) 125 (1.4%)

GO:0016791 phosphatase activity 0.010 MF 3 (13.0%) 133 (1.5%)
GO:0016301 kinase activity 0.017 MF 5 (21.7%) 466 (5.3%)
GO:0009056 catabolic process 0.025 BP 6 (26.1%) 704 (8.0%)
GO:0006464 cellular protein modifica-

tion process
0.026 BP 6 (26.1%) 713 (8.1%)

GO:0008233 peptidase activity 0.027 MF 4 (17.4%) 349 (4.0%)
GO:0016874 ligase activity 0.051 MF 3 (13.0%) 253 (2.9%)
GO:0006520 cellular amino acid

metabolic process
0.069 BP 3 (13.0%) 162 (1.9%)

GO:0044281 small molecule metabolic
process

0.081 BP 6 (26.1%) 929 (10.6%)

GO:0016765 transferase activity, trans-
ferring alkyl or aryl (other
than methyl) groups

0.084 MF 1 (4.3%) 26 (0.3%)

Table 3.3: GO term over-representation analysis of the prioritized S. mansoni
targets. The study and population counts show the number of targets each term
is associated with in the prioritized set and the S. mansoni proteome respectively.
The GO root shows the GO domain of each term, either Biological process (BP)
or Molecular function (MF). The p-value was calculated by Ontologizer (Bauer
et al., 2008) using Fisher’s Exact Test.

3.3.6.1 Discussion

There is currently no large-scale experimentally derived information on the es-

sential genes in S. mansoni. In order to predict the essential genes using the

methods described in Chapter 2, a reference species was required. There was

limited choice of eukaryotic multi-cellular species with whole genome essential-

ity screens available, these included Danio rerio (zebrafish) (Amsterdam et al.,

2004), Drosophila melanogaster (fruit fly) (Boutros et al., 2004), Mus musculus

(house mouse) (Eppig et al., 2012) and C. elegans (roundworm) (Kamath et al.,

2003). All of these species belonged to a different phylum to S. mansoni. C. ele-

gans was used as it was deemed to be the most similar in life-cycle to S. mansoni,
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Figure 3.4: S. mansoni treated with RNAi designed against Smp 096310 (ser-
ine/threonine kinase - AGC group 5), 22 days phenotype. Trematodes exhibit
tegument damage and extremely reduced motility.

however it was evolutionarily very distant. This large distance was apparent in

the orthology analysis, where only 39% of S. mansoni targets shared a detectable

co-ortholog with C. elegans. The large distance most likely affected the functional

types of targets which were predicted essential, as those targets that were main-

tained across such a large evolutionary distance were more likely to be involved

in core biological processes. The GO term analysis showed that the biological

processes overrepresented in the prioritized set were largely involved in these core

functions, such as tRNA metabolism, catabolism and amino acid metabolism.

The bias in target selection towards core metabolism could have implications on

the need for pathogen-host selective drugs, as the core metabolism targets are

also likely to be essential in the human host. Given the relatively small number

of essential targets predicted in S. mansoni (323), it would be preferable to in-
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fer essentiality from all species with any known essential genes, to increase the

number of predictions.

Using ChEMBL it was intended to predict those targets that were likely to be

inhibited by small molecule compounds. Of the 323 predicted essential targets

only 24 showed significant sequence similarity to a ChEMBL target associated

with potent compounds. This lack of targets may represent a true reflection

of the druggability of the S. mansoni genome. However, as the vast majority

(>85%) of ChEMBL targets are mammalian (largely human, mouse and rat), so

it could also be that there is little experimental data available for non-mammalian

targets. The GO term analysis showed that the molecular functions overrepre-

sented in the prioritized set were enzyme functions such as phosphatases, kinases,

peptidases and ligases. This was unsurprising as enzymes are more amenable to

small molecule inhibition, due to their substrate binding sites often naturally

accommodating small molecules.

It is possible to apply the essentiality models to multicellular organisms, how-

ever, at this time with so few experimental results and the lack of a clear essential

phenotype, it is difficult to assign any confidence to the models. This simple pro-

cedure, of filtering a genome by two features, essentiality and a precedent for

potent chemical matter, shows markedly how quickly potential target space can

be diminished. Of the 11,809 genes of a human pathogen, only 24 were deemed

suitable for a drug discovery program. Given that this process did not even con-

sider host-pathogen selectivity issues, the 24 genes could be reduced even further.

In the context of this collaboration, this was not an issue, however in a major

drug discovery program, the chances of such a small number of target candidates

progressing further would be small.
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Chapter 4

Domain-based Inference for

Druggability

4.1 Introduction

Druggability, the ability of a protein to bind “drug-like” small molecules with high

affinity, is an important attribute to consider when prioritizing potential drug tar-

gets in a pathogen genome. However for druggability assessment of a pathogen

proteome only a handful of proteins have published data on interactions with

biologically active small molecules. For newly sequenced genomes of emerging

pathogens there may be no known binding data or known compounds. To over-

come the sparse availability of pharmacological data for proteins from pathogenic

organisms, we can harness evolutionary information to infer chemogenomic drug-

gability via homology. That is, if we know that a particular protein binds drug-like

chemical matter then, by inference, proteins that are evolutionarily related are

also likely to bind drug-like chemical matter. The relationship between evolu-
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tionary distance and ligand binding potential is a complex one. The confidence

in such inference is inversely proportional to the evolutionary distance between

the pathogen protein and the homolog with known bioactivity. Importantly, such

inference does not rely on homologous proteins necessarily retaining the capacity

to bind a particular small molecule ligand, rather merely the capacity to bind

any small molecule ligand - a much more conservative assertion.

4.1.1 ChEMBL homology for Druggability

The ChEMBL database (Gaulton et al., 2011) (http://www.ebi.ac.uk/chembl/)

comprises binding, functional and ADMET (absorption, distribution, metabolism,

excretion and toxicity) information for drug-like bioactive compounds abstracted

from more than 48,000 papers from the medicinal chemistry literature covering

a period of more than 30 years. The data are manually abstracted from the pri-

mary literature and standardized. Features such as the molecular target, which

are listed in the literature under numerous adopted names and synonyms are

mapped to a non-redundant set of molecular targets, activity units are trans-

formed into a standard preferred format (e.g. nM from µM for IC50) and com-

pounds are drawn in a machine-readable format (Gaulton et al., 2011). The

data is provided in a relational database format supporting multiple RDBMS

platforms (such as Oracle, MySQL and PostgreSQL). To assess the likely drug-

gability of proteins in a pathogen proteome one approach is to identify which

pathogen proteins are homologous to proteins with established biologically active

small molecule compounds (Aguero et al., 2008; Berriman et al., 2009). Such

evolutionary relationships can be determined with standard sequence similarity
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search algorithms such as BLAST+ (Camacho et al., 2009). However, given the

evolutionary distance, sequence similarity and orthology methods may be conser-

vative in identifying druggable protein targets. Conversely proteins which contain

multiple domains may be similar with drug targets in ChEMBL yet lack the vital

domain which contains the drug binding site. A broader approach to identifica-

tion of drug targets in a genome was proposed by Hopkins & Groom (2002) who

suggested most drug binding sites can be mapped to proteins domains or specific

configurations of domains to classify drug targets into druggable domain families,

with conserved architectures (Overington et al., 2006). The presence of a ligand

binding site across domain families could then been assessed by structure-based

sequence alignment within the family. However little work has been done in ap-

plying a domain-based approach to the mining of druggable targets in genomes

since the original Hopkins & Groom (2002) publication. In this chapter a search

method is described to identify a putative set of druggable domains for mining

genomes. In the following chapter we describe how the binding sites in a drug-

gable domain family can be analyzed across the entire family.

The chemogenomic druggability module of RAPID (rapid analysis of phar-

macology for infectious diseases) harnesses the large-scale bioactivity data from

ChEMBL to infer druggability by the quality and diversity of chemical matter

associated with related targets. However, the description of bioactivity as a sim-

ple compound-target pair oversimplifies the biological reality. Drug targets often

comprise multiple structural domains, multiple protein components and even mul-

tiple binding sites. Rigorous domain assignment is an important step in resolving

these issues
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4.1.2 What is a domain?

Domains are the building blocks of proteins, and their smallest evolutionary in-

dependent units. A domain is a collection of structural motifs which arrange to

form a stable three-dimensional structure. If a domain is cleaved out of the parent

protein, it would usually still fold, and often maintain function. Domain stability

is usually achieved by nature of a hydrophobic core, however some smaller do-

mains often use metal ions and disulfide bridges for stabilization. Evolution has

made extensive re-use of domains to produce new proteins with new functions.

Domains from different proteins that share the same structural organization and

show detectable amino acid sequence similarity are said to belong to the same

“family”. Where this structural similarity is observed but sequence similarity

is not present, these domains are said to belong to the same “fold”. An often

neglected feature of domains is that they may be “discontinuous”, and be the

product of multiple peptide regions from within a gene (Figure 4.1). Jones et al.

(1998) found that between 25-30% of observed structures contain a discontinuous

domain, and Dengler et al. (2001) observed that 19% of domain family represen-

tatives in the 3Dee database (Siddiqui et al., 2001) were discontinuous.

4.1.3 Why we need domain annotation

An important feature of many domain families (and to a lesser extent folds), is

that the family members often have varying levels of conserved function. For

example, the majority of the protein kinase family function by phosphorylating

specific residues of other proteins. Each member of the family may act on one or

more specific substrate proteins, but essentially the mechanism of action is the
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(a) Matrilysin (1mmq) (b) Collagenase (1eak)

(c) Superimposed

Figure 4.1: Example of continuous (a) and discontinuous (b) domain in the same
family (Matrix metalloproteases, catalytic domain). Rainbow color scheme (N-
terminus blue to C-terminus red) applied to (a) and (b). In (c) both domains
superimposed over the common domain. The discontinuous domain (b) has three
small domains (Fibronectin type II module) inserted towards the C-terminus.
Figure generated using PyMOL (Delano, 2006)
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same, i.e. transferring a phosphate group from an ATP molecule to a serine, thre-

onine or tyrosine residue in the substrate protein. The consequence of conserved

function(s) is often conservation of the physicochemical properties at important

position in the domain (e.g. the catalytic site or co-factor binding sites). These

functionally important sites are often the target for drug design, and as such the

sharing of properties at these sites can directly effect the potential for selectivity

of a drug against members of a domain family within a genome. Conversely, po-

tential polypharmacology targets may be elucidated by exploiting the similarity

at these sites.

4.1.4 Structure based domain annotation

For a large number of proteins, the three-dimensional (3D) structure has been de-

termined and deposited in the Protein Data Bank (PDB)(Berman et al., 2000).

The two publicly available databases SCOP (Structural Classification Of Pro-

teins) (Murzin et al., 1995), and CATH (Class,Architecture,Topology,Homologous)

(Orengo et al., 1997), provide detailed annotation of the domain delineation

within these 3D structures. Both databases offer a hierarchical classification

system which include equivalents for fold and family levels, and both deal with

discontinuous domains. The CATH process is largely automated and as such

provides a fast turnaround from PDB submission to domain classification. The

SCOP process is largely achieved by manual inspection, and as such is of very

high quality. However this quality comes with a cost, and the release of data

is sporadic. The current release of SCOP (version 1.75), only contains all high

quality PDB submissions up to February 2009.
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4.1.5 Sequence based domain annotation

There exists multiple publicly available resources for the analysis of conserved

domains based solely on sequence homology. The CDD (Conserved Domain

Database) is a protein annotation resource that consists of a collection of well-

annotated multiple sequence alignments (MSAs) for ancient domains and full-

length proteins (Marchler-Bauer et al., 2007). Sequences may be annotated with

these models using Reverse Position-Specific BLAST (RPS-BLAST), which is

more sensitive than BLAST as the targets are sequence profiles of the align-

ment models, rather than the individual sequences. The Pfam (Protein families)

database (Finn et al., 2010) is created by a similar process; high quality, manu-

ally curated families MSAs are collected into PfamA, and automatically generated

sequence clusters are collected into PfamB. The annotations of sequences with

Pfam utilizes a hidden Markov model (HMM), which is sensitive enough to de-

tect extremely distant evolutionary relationships. Both these resources have a

larger coverage of domain space than the structural annotations, as they do not

require a 3D structure representative for an annotation. While these databases

are comprehensive, they are not always accurate in their domain boundary pre-

dictions, and there are many examples of Pfam and CDD domain annotations

that span multiple structural annotations. The sensitivity of the search methods

also makes it difficult to distinguish between family annotations and more distant

superfamily of fold relationships.
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4.2 Methods

To annotate domains in our sequences it was decided that the high quality domain

data in SCOP would be most preferable. However the lack of structural coverage

would be supplemented with the high quality sequence annotations from PfamA.

The rationale for preferential selection of SCOP domain annotations over those

from Pfam is that SCOP has a fundamental conceptual framework in the form

of a rigorous definition of what comprises a structural domain and an exclusive,

self-consistent classification of these domains into a hierarchy. The lack of such

an unambiguous classification in Pfam can result in overlaps in the ensuing an-

notations that can be difficult to resolve. These overlaps may be due to Pfam

profiles describing more than one structural domain (or partial domain) or pro-

files describing protein families at different levels of similarity (e.g. family and

super-family). Pfam has the clear advantage of not being restricted to proteins of

known structure and can therefore provide much greater coverage. Hence the hy-

brid approach used here, use the superior structural domain annotations of SCOP

where available but complement it with the greater Pfam coverage elsewhere.

4.2.1 SCOP search

The Astral database (Chandonia et al., 2004) provides SCOP domain sequences

extracted from the PDB with sequence redundancy removed. The query se-

quence to be annotated was searched against the Astral95 sequence set (http:

//scop.berkeley.edu/astral/) with BLAST+. All significant hits were ranked

according to ascending E-value. As BLAST is a search tool, its heuristic algo-

rithm did not guarantee the most optimal alignment between query and hit se-
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quences. To improve the accuracy of the domain boundary prediction, the Smith-

Waterman algorithm (Smith & Waterman, 1981) was applied. Smith-Waterman

is a dynamic programming algorithm that performs local sequence alignment, and

is guaranteed to find the optimal local alignment between a pair of sequences (with

respect to the gap-scoring and residue substitution system being used). Each full

length hit (representing a full domain) was aligned back to the target sequence

using the EMBOSS (Rice et al., 2000) implementation of Smith-Waterman. The

resulting alignment was scanned for the presence of gap regions, as any signifi-

cant gap regions (greater than 30 amino acid in length) could potentially be an

inserted domain(s). The resulting aligned regions (minus significant gaps) were

retained as a set of domain-fragment boundaries. If the combined length of these

boundaries was greater than 60% of the target domain’s full length, then the

domain assignment was retained. As many protein sequences contain repeated

domains, and as Smith-Waterman was guaranteed to find the optimal alignment,

any assigned domains were masked out of the target sequence, and the process

repeated until no more significant domain assignments were found.

4.2.2 Pfam search

The PfamA database was obtained from ftp.sanger.ac.uk/pub/databases/

Pfam/current_release/ and compiled using hmmpress from the HMMER pack-

age. The pfam scan tool was installed locally (Finn et al., 2010) to search PfamA

with our query sequences.
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4.2.3 Combining the annotations

The domain assignments were ordered firstly by SCOP over PFAM, then % tar-

get domain coverage, then by alignment score. Domain annotations are then

assigned sequentially from this ordered list, where domain boundaries do not

overlap with previously assigned domain boundaries by more than 25% of the

domain length. The ordering method ensures that our preferred structural anno-

tations take precedence. By prioritizing those annotations which cover more of

the target domain, the domain boundaries are likely to be more accurate.

4.2.4 Small unannotated regions

Domain lengths in SCOP range from 21 residues (Retrovirus zinc finger-like do-

mains, family) to 1504 residues (RNA-polymerase beta-prime, family). However

the peak of the domain length distribution is round 100-110 residues and more

than 85% of all domains are less that 200 residues. The loop regions of a protein

(those amino acids that do not fold into secondary structures), occur both inter-

domain (“linker”) and intra-domain. The vast majority of these loop region are

less than 10 amino acids long, however loops may be longer than 50 amino acids

(Martin et al., 1995). Long loops especially on the surface of proteins are often

very mobile, and due to the nature of X-ray crystallographic techniques, may not

be visible in the resulting structure. The outcome of these factors is that regions

of a sequence that are unannotated could be large loops, linker regions or small

domains, and it is not necessarily dependent on their length.
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4.2.5 ChEMBL database

ChEMBL is a database of binding, functional and ADMET information of com-

pounds extracted from published literature (Gaulton et al., 2011). The version

used in this work (version 01) contained over 400,000 distinct compounds assayed

against over 5,500 (redundant by species) targets. Assay targets in ChEMBL can

be a cell-line, organism, nucleic-acid or a protein. The only targets of interest for

this analysis were the protein targets, of which there were 3,622. ChEMBL con-

tains a broad range of assay endpoints but for this analysis the primary concern

were those assays describing binding affinity or their surrogates. Only molecular

target binding assays, whose endpoint was K i, K d or IC50 were selected. For

druggability assessment, only compounds that bind potently were of concern,

those having a binding affinity of greater than 10µm were excluded. However, as

this carried the risk of excluding small but highly efficient binders, compounds

whose binding affinity is greater than 10µm were also retained if they had high

ligand efficiency (>0.3) (Hopkins et al., 2004) as calculated by Equations 4.1 and

4.2. The free energy of ligand binding (Kuntz et al., 1999) was defined at 300K

using:

∆G = −RT lnKd (4.1)

where R is the gas constant, T is the absolute temperature and K d is the

dissociation constant.

The ligand efficiency (Hopkins et al., 2004) was calculated using:

∆g = ∆G/Nnon-hydrogen (4.2)
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where N is the number of non-hydrogen atoms.

Each ChEMBL protein target was assigned as druggable if it was associated

with at least one compound with the potency described above. The ChEMBL

database was installed locally as an Oracle database for all the processing un-

dertaken in this work. Note that the preparation and post-processing of the

ChEMBL database was undertaken collaboratively, by myself and other mem-

bers of the Andrew Hopkins group (University of Dundee).

4.3 Analysis

The ChEMBL protein targets were annotated with SCOP and PFAM domains,

using the procedure described in section 4.2.1. Figure 4.2 shows the proportion

of ChEMBL protein residues covered by domain annotation. Assuming a con-

servative linker length, of up to 20 residues, structural annotations cover 55%

of ChEMBL protein residues. By adding sequence-based annotation, this figure

increases to 72% coverage. If a less conservative linker length of 100 residues

was allowed, then the protein residue annotation coverage increased to 80%. As

SCOP is updated to reflect the rapidly growing PDB, the sequence coverage

should improve as well.

Table 4.1 shows the distribution of domain complexity for the ChEMBL tar-

gets. 51% of the targets are single domain proteins, 25% have two domains and

the remainder more than two. This distribution has important implications for

attempts to assign ChEMBL compounds to structural domains, as nearly 49% of

ChEMBL targets are multi-domain, and as such the domain associated with the

activity of the targets compounds cannot be easily assigned.
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Figure 4.2: Domain annotation coverage of ChEMBL protein targets. The anno-
tation coverage was calculated as the proportion of amino acid residues in the
ChEMBL targets, annotated with a domain. Any consecutive residues without
domain annotation were considered un-annotated, if their combined length was
larger than the acceptable unannotated linker size. The structural annota-
tion (SCOP) coverage is shown in red, and the increased coverage achieved by
adding sequence-based (PFAM) annotation is shown in blue.
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ChEMBL protein targets
Domain complexity Frequency Coverage (%) Cumulative coverage (%)

1 1857 51.3 51.3
2 904 25.0 76.2
3 411 11.3 87.6
4 204 5.6 93.2
5 106 2.9 96.1
6 69 1.9 98.0
7 24 0.7 98.7
8 17 0.5 99.2
9 6 0.2 99.3

10+ 24 0.7 100.0

Table 4.1: Distribution of domain complexity in ChEMBL protein targets. Over
50% of the targets are single domain proteins and less than 25% have more than
two domains.

Table 4.2 shows the frequency distribution of the domain annotations in

ChEMBL. The most frequent domains families are the Rhodopsin-like GPCRs,

followed by the Protein Kinases and Ion Channels, all key drug target families.

The related distribution in Table 4.3 shows the frequency distribution of “do-

main fingerprints” (DFP), which represent the canonically ordered combination

of domains of a protein. In cases where the DFP consists of a single domain,

ChEMBL compounds can be assigned to that domain with high confidence (at

least in cases that lack significant unannotated regions). In many cases, where

there are multiple domains in the DFP, the specific domain that is bound by the

compound(s) is well characterized. For example, The Nuclear receptor ligand-

binding domain (NRLBD) is almost always associated with a Nuclear receptor

domain (NRD)(rank 7 in Table 4.3). The NRLBD is a well known druggable

domain which is the target of tamoxifen (Shiau et al., 1998), and other members

of the NRLBD family are the targets for ≈ 13% of all FDA approved drugs (Over-

ington et al., 2006). Therefore, the vast majority (if not all) of the compounds

93



4.3. Analysis

screened against this DFP, will effect via the NRLBD domain. For the major-

ity of the most common DFPs in ChEMBL, the ligand binding mechanisms are

known and well studied. However, the number of activities per DFP in ChEMBL

follow a power law, and for the many DFPs in the tail of the distribution, the

ligand binding mechanism will be unknown.

Of the 525,801 ChEMBL activities used in this work 60% can be assigned

using the top 22 DFPs, as shown in Table 4.4. Furthermore, 50% of the top

activities are covered by the top 11 DFPs alone.

Figure 4.3 illustrates some of the more sophisticated visualizations that can

be performed using these data. In this graph a node represents a domain family

and an edge the co-occurrence of the connected domain families in at least one

ChEMBL protein. A close up of the Giant Component is shown in Figure 4.4.

The analysis illustrates that whereas the protein kinases co-occur with a broad

range of different domain families, the Rhodopsin-like GPCRs and Ion Channels

exhibit a more modest set of connections, and the Nuclear Hormone Receptor

Ligand Binding Domain more modest still, and therefore more simpler to assign

a compounds activity to a domain on a 1:1 basis.

4.3.0.1 Domain fingerprint over-representation

The most common DFPs in ChEMBL are mainly well characterized, eukaryotic,

druggable targets. The proteins targets of ChEMBL are dominated by mam-

malian targets (>80%), and bacterial proteins represent < 10% of all the targets.

In order to investigate the extent of bacterial-oriented information in ChEMBL,

the domain annotation process was applied to the UniProtKB version of the E.

coli K12 proteome. The inferred DFPs were then compared to the E. coli K12
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R Domain family Td

1 Rhodopsin-like 376
2 Protein kinases, catalytic subunit 367
3 Ion transport protein 195
4 Neurotransmitter-gated ion-channel transmembrane region 92
5 Neurotransmitter-gated ion-channel ligand binding domain 84
6 I set domains 84
7 Fibronectin type III 82
8 Eukaryotic proteases 81
9 Nuclear receptor ligand-binding domain 73

10 Nuclear receptor 72
11 Adenylyl and guanylyl cyclase catalytic domain 67
12 SH2 domain 65
13 Cytochrome P450 59
14 Protein kinase cysteine-rich domain (cys2, phorbol-binding domain) 54
15 Neurotransmitter-gated ion-channel transmembrane pore 54
16 SH3-domain 48
17 PDEase 47
18 Sushi domain (SCR repeat) 47
19 Fibronectin type III domain 47
20 7 transmembrane receptor (rhodopsin family) 46
21 Phosphate binding protein-like 44
22 EGF-type module 43
23 Nicotinic receptor ligand binding domain-like 42
24 Receptor family ligand binding region 38
25 Hexokinase 38
26 L-arabinose binding protein-like 36
27 Higher-molecular-weight phosphotyrosine protein phosphatases 35
28 Histone deacetylase, HDAC 34
29 RyR domain 34
30 Carbonic anhydrase 34
31 PLC-like (P variant) 33
32 SNF-like 29
33 RIH domain 29
34 GAF domain 28
35 Complement control module/SCR domain 28
36 cAMP-binding domain 28
37 Voltage-gated potassium channels 28
38 Papain-like 27
39 7 transmembrane sweet-taste receptor of 3 GCPR 27
40 beta-Lactamase/D-ala carboxypeptidase 27
41 Tyrosine-dependent oxidoreductases 27
42 Nucleotide and nucleoside kinases 27
43 Kringle modules 26
44 Pleckstrin-homology domain (PH domain) 26
45 Glutathione S-transferase (GST), C-terminal domain 25

Table 4.2: The 45 most frequent domain families in ChEMBL protein targets.
Td shows the total occurrences in the targets. PFAM and SCOP domain family
annotations are shown in italics and roman respectively. Ranked (R) by Td.
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R Domain fingerprint (DFP) Tt Ct Cc

1 Rhodopsin-like 366 10.1 10.1
2 Protein kinases, catalytic subunit 131 3.6 13.7
3 Cytochrome P450 59 1.6 15.4
4 Eukaryotic proteases 57 1.6 16.9

Neurotransmitter-gated ion-channel ligand binding domain
5

Neurotransmitter-gated ion-channel transmembrane region
47 1.3 18.2

6 7 transmembrane receptor (rhodopsin family) 46 1.3 19.5
Nuclear receptor

7
Nuclear receptor ligand-binding domain

44 1.2 20.7

Neurotransmitter-gated ion-channel transmembrane pore
8

Nicotinic receptor ligand binding domain-like
37 1.0 21.7

9 Carbonic anhydrase 33 0.9 22.6
Phosphate binding protein-like

10
Receptor family ligand binding region

26 0.7 23.4

11 Tyrosine-dependent oxidoreductases 25 0.7 24.0
12 SNF-like 25 0.7 24.7

Protein kinases, catalytic subunit
SH2 domain13
SH3-domain

24 0.7 25.4

14 Histone deacetylase, HDAC 23 0.6 26.0
Glutathione S-transferase (GST), C-terminal domain

15
Glutathione S-transferase (GST), N-terminal domain

23 0.6 26.7

16 PDEase 22 0.6 27.3
17 No domain annotation 22 0.6 27.9

Tubulin, C-terminal domain
18

Tubulin, GTPase domain
21 0.6 28.5

19 Protein serine/threonine phosphatase 20 0.6 29.0
Neurotransmitter-gated ion-channel ligand binding domain

20
Neurotransmitter-gated ion-channel transmembrane region x 2

20 0.6 29.6

Alcohol dehydrogenase-like, C-terminal domain
21

Alcohol dehydrogenase-like, N-terminal domain
20 0.6 30.1

22 Nucleotide and nucleoside kinases 20 0.6 30.7
23 Vertebrate phospholipase A2 19 0.5 31.2

Adenylyl and guanylyl cyclase catalytic domain x 2
24

Domain of Unknown Function (DUF1053)
19 0.5 31.7

25 Pepsin-like 19 0.5 32.2
L-arabinose binding protein-like
7 transmembrane sweet-taste receptor of 3 GCPR26
Nine Cysteines Domain of family 3 GPCR

17 0.5 32.7

Ion transport protein x 4
27

Voltage gated calcium channel IQ domain
16 0.4 33.2

Neurotransmitter-gated ion-channel transmembrane pore
28

Neurotransmitter-gated ion-channel ligand binding domain
16 0.4 33.6

29 Dihydrofolate reductases 16 0.4 34.0
30 Fatty acid binding protein-like 15 0.4 34.5

Table 4.3: The top 30 most frequent domain fingerprints (DFPs) of ChEMBL
protein targets. Tt shows the number of protein targets with the DFP. Ct shows
the % coverage of targets by this DFP. Cc shows the cumulative coverage (%) of
targets. PFAM and SCOP domain family annotations are shown in italics and
roman respectively. Repeated domains are succeeded by the number of copies.
The DFPs are ranked (R) by Tt. 96
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R Domain fingerprint (DFP) Tt Ta Ca Cc

1 Rhodopsin-like 366 135195 25.7 25.7
Neurotransmitter-gated ion-channel ligand binding domain

2
Neurotransmitter-gated ion-channel transmembrane region

47 29798 5.7 31.4

3 Protein kinases, catalytic subunit 131 16989 3.2 34.6
Neurotransmitter-gated ion-channel ligand binding domain

4
Neurotransmitter-gated ion-channel transmembrane region x 2

20 14381 2.7 37.3

Phosphate binding protein-like
5

Receptor family ligand binding region
26 13163 2.5 39.8

Phosphate binding protein-like
N-methyl D-aspartate receptor 2B3 C-terminus6
Receptor family ligand binding region

9 9699 1.9 41.7

7 7 transmembrane receptor (rhodopsin family) 46 9087 1.7 43.4
8 PDEase 22 8904 1.7 45.1
9 Eukaryotic proteases 57 8348 1.6 46.7

Neurotransmitter-gated ion-channel transmembrane pore
10

Nicotinic receptor ligand binding domain-like
37 7854 1.5 48.2

Hemopexin-like domain
MMP N-terminal domain11
Matrix metalloproteases, catalytic domain

10 7146 1.4 49.6

12 SNF-like 25 7081 1.3 50.9
13 Carbonic anhydrase 33 6733 1.3 52.2

EGF-type module
14

Myeloperoxidase-like
12 6363 1.2 53.4

15 Cytochrome P450 59 5797 1.1 54.5
Eukaryotic proteases
GLA-domain16
Kringle modules x 2

3 5080 1.0 55.5

EGF-type module x 2
Eukaryotic proteases17
GLA-domain

8 4858 0.9 56.4

18 Histone deacetylase, HDAC 23 4519 0.8 57.2
Protein kinases, catalytic subunit
SH2 domain19
SH3-domain

24 4353 0.9 58.1

SNF-like
20

Serotonin (5-HT) neurotransmitter transporter, N-terminus
4 4349 0.8 58.9

21 Retroviral protease (retropepsin) 1 4287 0.8 59.7
22 Pepsin-like 19 4189 0.8 60.5

Table 4.4: The domain fingerprints (DFPs) that contribute 60% of all ChEMBL
compound-protein activities. Tt shows the number of protein targets with the
DFP. Ta shows the number of compounds with a reported activity against these
targets. Ca shows the % coverage of activities by these targets. Cc shows the cu-
mulative coverage (%) of activities. PFAM and SCOP domain family annotations
are shown in italics and roman respectively. Repeated domains are succeeded by
the number of copies. The DFPs are ranked (R) by Ta.
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Figure 4.3: Domain co-occurrence graph for protein targets in ChEMBL. Nodes
represent a domain family. Nodes share edges where they co-occur on a ChEMBL
target. Node size is the number of occurrences. Unconnected nodes not shown.
The Giant Component of the graph is expanded in Figure 4.3. Selected families
colored as follows: Protein kinases, catalytic subunit : green, Nuclear receptor
ligand-binding domain: red, Rhodopsin like: yellow and Ion trans: blue.
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Figure 4.4: The Giant Component of network shown in Figure. 4.3. Domain
co-occurrence of proteins in ChEMBL. Nodes represent a domain family. Nodes
share edges where they co-occur on a ChEMBL target. Node size is the number
of occurrences. Only largest (Giant) component shown. Selected families colored
as follows: Protein kinases, catalytic subunit : green, Rhodopsin like: yellow and
Ion trans : blue. Figure 4.3 and 4.4 were prepared using NetworkX (http://
networkx.github.com/)
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complement of ChEMBL, to find over-represented DFPs. E. coli was chosen

as a representative of the bacteria as it has the most ChEMBL targets of all the

prokaryotes. Significantly over-represented DFPs (p-value <= 0.01 using Fisher’s

exact test) are shown in Table 4.5. Of the 7 over-represented DFPs, the beta-

Lactamase/D-ala carboxypeptidase domain was present in four of them. This

domain is common in the family of penicillin binding proteins (the molecular tar-

gets of β-lactam antibiotics), which synthesize the essential peptidoglycan layer

(Ghosh et al., 2008). The Enolpyruvate transferases are the targets of the antibi-

otic fosfomycin (Kahan et al., 1974). The targets MurC and MurD part of the

peptidoglycan pathway and have been studied as potential drug targets (Zoeiby

et al., 2003), and DAHP synthetase is part of the shikimate pathway, which is

essential for bacteria, but absent from mammals (Rizzi et al., 2005).

p-value Domain fingerprint (DFP) ChOb ChNt PrOb PrNt

0.0001 PBP5 C-terminal domain-like 3 69 3 4020
beta-Lactamase/D-ala carboxypeptidase

0.00017 Class I DAHP synthetase 3 69 4 4019
0.00017 beta-Lactamase/D-ala carboxypeptidase 3 69 4 4019
0.0018 Enolpyruvate transferase, EPT 2 70 2 4021
0.0018 MurCD N-terminal domain 2 70 2 4021

MurCDEF
MurCDEF C-terminal domain

0.0018 PBP transglycosylase domain-like 2 70 2 4021
beta-Lactamase/D-ala carboxypeptidase

0.0018 Penicillin binding protein dimerisation domain 2 70 2 4021
beta-Lactamase/D-ala carboxypeptidase

Table 4.5: The domain fingerprints (DFPs) significantly (p-value <= 0.01) over-
represented in the ChEMBL E. coli targets, compared to the E. coli proteome.
Where ChOb = observed in ChEMBL, ChNt = not-observed in ChEMBL,
PrOb = observed in proteome and PrNt = not-observed in proteome.
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4.4 Conclusions

The protein-ligand information available from ChEMBL provides an invaluable

resource for inferring the likely druggability of related pathogen targets. However,

description of bioactivity in terms of simple protein-ligand pairs oversimplifies the

biological reality, drug targets often have more than one binding site, they fre-

quently consist of multiple protein components and each component may consist

of multiple structural domains. A pre-requisite for tackling the problem of as-

signing ChEMBL compounds to binding sites is the consistent domain annotation

framework described here.

Currently, the ChEMBL database is greatly biased towards mammalian pro-

teins, and a small set of domain families with a proven history of druggability.

This bias could have a detrimental effect on inferring druggability onto prokary-

otic pathogens. The lack of screening data for bacteria, is not a negative reflection

on ChEMBL, which just reflects the publication content.

Reliable assignment of ChEMBL compounds to structural domains increases

the accuracy of druggability inference approaches by reducing erroneous infer-

ences through homology to non-binding domains. The work to improve the

chemogenomic druggability inference, by putting it into the context of domain

annotations is still ongoing, but the ChEMBL domain annotation procedures

provided here represent a crucial first stage in achieving this.

Currently, given a pathogen proteome, those targets which share a common

domain fingerprint with a ChEMBL protein target can be prioritized. Where

multiple instances of potent compounds are associated with the ChEMBL target,

the prioritization can be increased.
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Chapter 5

Predicting Selectivity

5.1 Introduction

In a non-viral pathogen genome of interest, the intersect between targets that are

both druggable and essential may be only 3% or less of the proteome, assuming

these attributes are independent of each other. If broad-spectrum activity is re-

quired, this small percentage of possible drug targets may decrease even further.

Anti-infective drugs usually need to be active against the pathogen proteins but

selective over proteins in the host organism to reduce potential toxicity to the

patient and adverse side effects. In searching for new anti-infective drug targets

a common assumption has been that selectivity is determined by identifying pro-

teins that are unique to the pathogen (Chan et al., 2002) or are evolutionarily

distant from any host protein (Kovalevskaya et al., 2005).

To expand the limited number of potential drug targets that are essential,

druggable and selective, the concept of selectivity can be refined. To be a drug

target, essential pathogen genes do not have to be unique to the pathogen or ab-
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sent from the host (Frearson et al., 2007). Importantly, selectivity and therefore

the required therapeutic index can be introduced by exploiting molecular differ-

ences in the binding site between homologous proteins present in both the host

and pathogen proteomes (Zuccotto et al., 2001). Analysis of protein sequences

and structures may identify atomic differences in drug binding sites that could

be exploited by medicinal chemistry to achieve selectivity and increase the ther-

apeutic index. Toxicity, or other off-target undesired pharmacology that results

from binding to a homologous human protein might be designed out if there are

sufficient molecular differences between the homologous binding sites.

An example of how binding site differences between homologous proteins

present in both human and pathogen genomes are exploited is shown by the an-

tibacterial drug trimethoprim. Trimethoprim and other drugs in its class inhibit

bacterial dihydrofolate reductase (DHFR) but not the related human DHFR en-

zyme. Trimethoprim binds bacterial DHFR many thousand times stronger than

human DHFR (Hitchings, 1989). The mechanism of this selectivity is complex,

but structural studies have shown that small differences in the binding sites of

bacterial and human DHFR, result in the catalytic loop of the bacterial DHFR

positioning much closer to Trimethoprim (Kovalevskaya et al., 2007). In addition,

the binding of co-factor (NADPH) in the bacterial DHFR results in hydrophobic

interactions with Trimethoprim, which do not occur in human DHFR due to a

greater distance between the ligands (Kovalevskaya et al., 2005).

Selectivity can be manually assessed by comparing protein structures or mod-

els of homologous proteins. Using homology models has been shown to be an

effective method of exploiting atomic differences between a pair of proteins to de-

sign selectivity into compounds (Hillisch et al., 2004). This method is less effective
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at the target selection stage, as many thousands of homologous protein pairs may

exist between a pathogen and host. Methods have been developed to automate

the generation of proteome-scale protein homology models for pathogen genomes

(Aguero et al., 2008; Ort́ı et al., 2009; Pieper et al., 2009). However, the genera-

tion of compound libraries, independent on the quality of the models, still requires

individual comparison of models to assess selectivity. Moreover proteome-scale

homology modeling requires intensive computational resources and quality con-

trol methods.

The GPRC SARfari and Kinase SARfari platforms https://www.ebi.ac.

uk/chembl/, offer methods to compare ligand binding site distances between any

number of family members, based on sequence metrics. These databases enable

the user to visualize the proteins that share the “closest” binding site to a chosen

target. However, there is yet no benchmark of the relationship between these

binding site similarities and compound selectivity. A further limitation of this

platform is that it is specific to just two protein families, and heavily focused

on mammalian proteins. Detailed analysis of high-affinity kinase inhibitors by

Sheinerman et al. (2005), showed that where kinases shared compound binding

affinity, they had similar residues at specific positions important for binding. This

method had the advantage that once the important binding positions are known

for a compound, then the affinity of the compound could be inferred to any

homologous protein from a pathogen or host. The drawback of this method was

that it required a 3D structure of each compound complexed with a high affinity

target, which are not available for the vast majority of screening compounds.

Currently, assessing the potential for selectivity between homologous human

and parasite proteins is laborious and often experimentally intensive. Automated
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metrics to predict selectivity are available, but their usefulness is limited due to

the lack of any benchmark of their effectiveness.

5.1.1 Motivation

There is a need for high-throughput methods to assess the selectivity of orthologs

and homologs within an organism and between organisms. Such methods would

benefit a number of drug discovery strategies such as:

• Drug re-profiling/repositioning. Identifying binding sites in proteins

which are similar to those of known drug targets. For example the human

drug eflornithine was originally developed for facial hirsutism (Wolf et al.,

2007) but was also found to be an anti-trypanosomiasis drug (Pepin et al.,

1987). Eflornithine inhibits the enzyme ornithine decarboxylase in both

humans and Trypanosoma brucei.

• Polypharmacology. Non-selective or “off-target” interactions can cause

unwanted side effects. An example is the mode of action of the class of

beta-blocker drugs, which reduce high-blood pressure by inhibiting β1 re-

ceptors, but cause adverse effects due to their interactions with β2 receptors

(Bundkirchen et al., 2003). Non-selective compounds have also been found

to be beneficial in certain cases. Imatinib (gleevec), was designed to be a

specific kinase inhibitor to combat chronic myelogenous leukemia, but stud-

ies showed it inhibited other human kinases and has since been approved

for many other kinase dependent cancers (van Oosterom et al., 2001). In

pathogens, targeting multiple proteins simultaneously is both an effective

way of expanding the “essentials” space, and potentially reducing the risk
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of rapid resistance developing (Hopkins, 2008). It is important to note

that polypharmacology can also exist in non-homologous targets, such as

targets that share a common endogenous substrate or targets that share

unexpected commonalities in their binding site (Hopkins et al., 2011), and

the work here does not attempt address these types of polypharmacology.

• Selectivity. Large-scale comparison of gene families shared between host

and pathogen species to identify targets with binding sites with sufficient

molecular differences to be exploited in drug design, to provide selective

drugs.

5.2 Methods

In order to develop a generic methodology to predict selectivity between host and

pathogen proteins it was decided to concentrate on a gene family approach based

on comparison of drug binding sites within the domain. The previous chapter

described a method to identify potentially druggable proteins from a proteome,

based on their domain fingerprints. Here it is described how to compare domains

within a domain family, whether the genes are from one or more species. In

particular, to develop a method to compare the similarity of binding sites within

a canonical gene family. To develop the method, the protein kinase family was

selected. Protein kinases are one of the largest families of proteins in humans

(Mayor et al., 2004), and are present in many eukaryotic organisms. A solution

to predicting kinase selectivity should therefore be applicable to most other gene

families, where a drug/ligand binding site can be identified.
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5.2.1 Protein Kinase Family

An accurate multiple sequence alignment of the domain family was required for

multiple reasons as listed below:

• Transfer of ligand binding information from the PDB to the parent gene

sequence.

• Comparing and condensing ligand binding sites across the domain family.

• Position specific profiles of the binding sites.

• Mapping/prediction of binding sites to all members of the family, as struc-

tural information is not always available.

• Enable sequence based calculations of binding site similarity.

The requirements of any such method would be:

• Family independent (protein kinases focus, but potentially any domain)

• Species independent (e.g. analyze a pathogen-ome)

• Extendable (e.g. add new structural data when available)

5.2.2 Seed Alignment

As described previously (Chapter 4), domains within the same family share de-

tectable sequence homology. However these similarities are often localized to

specific regions and residues and not uniformly spread over the domain. This of-

ten reflects in the difficulty of producing accurate sequence alignments, especially

in these less conserved regions. The three-dimensional structure of a protein is
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more conserved than sequence, and where available, these structures can be har-

nessed to improve the quality of sequence alignments. Structural information

including solvent accessibility (buried in the globular protein or not), secondary

structure assignment (α, π or 310 helix, or β strand), uncommon hydrogen bonds

(e.g. buried side-chain to main-chain amide), positive φ-torsion angles and disul-

phide bonds can assist the accurate alignment of residues within a domain family

(Mizuguchi et al., 1998a), where the sequences have diverged such that no obvi-

ous similarity remains. Where a protein family has a large coverage of structural

information, a multiple structural alignment may be used as a seed, to create an

alignment of the entire sequence family. A seed alignment is also valuable as a

search tool, as profile-based methods are often more sensitive in retrieving more

family members from a protein database.

Many methods exists to create structural alignments, such as STAMP (Russell

& Barton, 1992), CORA (Orengo, 1999) and MISTRAL (Micheletti & Orland,

2009), as well as databases of pre-calculated structural alignments of protein

families such as HOMSTRAD (Mizuguchi et al., 1998b) and PALI (Balaji et al.,

2001). Despite the benefits of structural alignment, errors in alignment can still

occur, especially in those structurally variable regions such as loops. In the exam-

ple of the protein kinase family, the loop regions are variable in both size and due

to mobility, in orientation. In these cases a combination of structural alignment,

and expert manual adjustment is the preferred method. The Kinase SARfari

database (https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari) provides

a multiple alignment of protein kinase domains, created from a structural align-

ment with manual corrections. The alignment contained 959 unique sequences

(Figure 5.1), representing the human kinome (including splice variants and poly-
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morphisms) as well as orthologs from species with 3D structures available. The

SARfari alignment was used as the seed alignment for the protein kinase family.
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hERK3_248/1-302

hALS2CR7_501/1-290

hHRI_13/1-317

hWEE1B_824/1-280

hPKMYT1_2455/1-255

hPEK_11/1-307

hNEK10_1025/1-272

hGCN2_d2_18/1-317

hNEK6_1308/1-266

hNEK9_1775/1-262

hNEK8_2044/1-259

hNEK5_1807/1-261

hNEK2_1140/1-269

hNEK4_1803/1-261

hNEK11_1511/1-264

hEIF2AK2_93/1-330

hWNK1_1568/1-264

hNRBP1_2394/1-256

hMAP3K14_2060/1-259

hMKK4_1063/1-271

hMEK2_226/1-303

hMAP3K8_2389/1-256

hMAP3K4_1526/1-264

hMAP3K5_1466/1-264

hYSK4_1126/1-269

hMAP3K2_1356/1-266

hMAP3K1_1051/1-271

hPAK2_2103/1-258

hOXSR1_814/1-280

hSLK_1481/1-264

hNRK_399/1-294

hMYO3A_1019/1-272

hMAP4K1_1639/1-263

caeSULU_3008/1-270

hMPS1_1031/1-272

hCSNK2A1_457/1-291

hGAK_791/1-281

hAAK1_999/1-273

hTRIB3_2510/1-247

hSTK40_105/1-327

hSTK11_1363/1-266

hCAMKK1_120/1-318

hChk1_1758/1-262

hULK1_1182/1-268

mAURa_3004/1-265

hPLK4_1971/1-259

hPLK1_2138/1-258

hFLJ16039_1589/1-264

hPIM2_1922/1-260

hPASK_2157/1-258

hTSSK4_749/1-274

hTSSK6_1822/1-261

hTSSK3_1835/1-261

hTSSK1_1344/1-266

hSNRK_2033/1-259

hNIM1_2287/1-257

hPRKAA1_1008/1-273

hMELK_2141/1-258

hNUAK1_2187/1-257

hMARK4_659/1-283

hHUNK_1463/1-264

hMKNK1_94/1-331

hSTK33_1047/1-271

hMSK2_d2_1132/1-269

hMAPKAPK5_579/1-288

hPKD1_1751/1-262

hChk2_1009/1-272

mzCDPK1_2685/1-264

hCASK_1094/1-270

hCAMK2A_1489/1-264

hRSK1_d2_1595/1-263

hPHKG1_963/1-274

hDCAMKL1_1601/1-263

hPSKH1_1607/1-263

hCAMKV_647/1-287

hCAMK1D_1698/1-262

hSPEG_d2_2162/1-258

hOBSCN_d2_2165/1-258

hSPEG_d1_2064/1-259

hOBSCN_d1_2055/1-259

hTTN_1925/1-260

hKALRN_1918/1-260

hSTK17A_1337/1-266

hDAPK1_1193/1-268

gMYLK_2637/1-261

hSgK494_2318/1-257

hSTK32B_1436/1-265

hGRK1_1340/1-266

hADRBK1_1673/1-263

hSTK38L_331/1-296

hDMPK_1054/1-271

hLATS1_205/1-305

hCIT_1143/1-269

hRSKL2_21/1-265

hPKCi_1189/1-268

hMSK1_d1_1076/1-270

hMASTL_1/1-303

hMAST1_890/1-276

hPDPK1_1891/1-260

eimPKG_2683/1-258

bPRKG1_2641/1-260

hSCYL2_288/1-301

Figure 5.1: The multiple sequence alignment of the seed alignment (contains rep-
resentative sequences of the Human Kinome, and all the parent genes of PDB
kinases), created from the structural-based Kinase SARfari alignment. Sequence
redundancy reduced to a maximum of 85% identical, resulting in 221 represen-
tatives of 959 kinase domains. Figure included only for illustrative purposes to
highlight the size and complexity of this family. Visualization and sequence re-
dundancy calculations performed using Jalview 2 (Waterhouse et al., 2009)
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5.2.3 Protein ligand binding information

“CREDO is a relational database storing all pairwise atomic interactions of inter-

as well as intra-molecular contacts between small- and macromolecules found

in experimentally-determined structures from the Protein Data Bank (PDB)”

(http://marid.bioc.cam.ac.uk/credo). The ligand-protein atom interactions

within crystal structures are pre-calculated by the CREDO process (Schreyer &

Blundell, 2009). Multiple interaction types are calculated (see table 5.1), in-

cluding hydrogen bonds, hydrophobic and aromatic interactions. In addition,

CREDO also implements SIFTS (Structure Integration with Function, Taxon-

omy and Sequences) (Velankar et al., 2005), to enable mapping of all polypeptide

residues in the PDB onto their parent UniProt sequence, and therefore, a lig-

and to UniProt mapping. This is no simple matter as PDBs often contain chain

breaks, modified residues, engineered inserts and mutations, all of which can re-

duce the accuracy of mapping. By using CREDO, a great deal of information on

the observed ligand binding sites of protein kinases is already available, and the

task is reduced to extracting and understanding this information.

5.2.4 Protein Kinases in the Human Genome - the “Ki-

nome”

The complement of protein kinase domains within the human genome has been

well studied by Manning et al. (2002). Whilst this is a valuable resource, the

data had limitations, including domains that had a protein-kinase function but

known not to be of the same structural family, the versions of the human genome

studied, Ensembl IPI.1 (Lander et al., 2001) and Celera 25h (Venter et al., 2001)
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CREDO name Interaction type Note

is covalent covalent bond
is vdw clash van der Waals clash
is vdw van der Waals

is proximal ligand-protein atom pair close (<6Å),
and no other contacts

this contact type ignored
in this work

is hbond hydrogen bond
is putative hbond putative hydrogen bond
is weak hbond weak hydrogen bond
is xbond halogen bond
is ionic ionic interaction
is metal complex metal complex

cation-π interactions
is pi donor donor
is pi cation cation
is pi carbon carbon

aromatic interactions see Chakrabarti & Bhat-
tacharyya (2007) for

is aromatic ff face-to-face detailed explanation of
is aromatic of offset face-to-face aromatic interaction types
is aromatic ee edge-to-edge
is aromatic ft non-parallel face-to-face
is aromatic ot offset non-parallel face-to-face
is aromatic et offset non-parallel edge-to-face
is aromatic fe face-to-edge
is aromatic oe offset edge-to-face
is aromatic ef edge-to-face
is hydrophobic hydrophobic interaction
is carbonyl carbonyl interaction

Table 5.1: The protein-ligand atom interaction types defined in the CREDO
database (Schreyer & Blundell, 2009). The CREDO names shown here refer to
the column names in the contacts table of the CREDO sql database (see Appendix
A). All interaction types with the exception of is proximal were used to define
protein-ligand contacts.
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were old (c. 2001), and there is potential for multiple gene sequence revisions and

nomenclature changes. An alternative (Martin et al., 2009) spans the kinomes

of many species. An extra consideration is that most protein families have not

been studied as rigorously as the protein kinases, and a more general method for

retrieving the family complement from a genome is required. One method was

described in Chapter 4. However as a high quality seed alignment was available

for this family (see 5.2.2), the HMMER package (Eddy, 2011) was used to create

a Hidden Markov Model (HMM) of the seed alignment. The HMM was then used

to search against the UniProtKB (Magrane & Consortium, 2011) version of the

human proteome to find the human protein kinase complement, the “Kinome”.

The HMMER (v3.0) suit of programs were installed locally. The seed alignment

HMM was created using the hmmbuild program with default parameters, the

human proteome HMM database was created by converting the FASTA file with

hmmpress, and the HMM search was performed using hmmscan with a best

domain hit E-value cutoff of 1×10−03 (-domE option), and the heuristic filters

off (-max option). The kinase domain regions were extracted from the hmmscan

results and used to created a kinase domain FASTA format sequence database

representing the human Kinome.

5.2.5 Kinase Structures

To enable the use of CREDO ligand binding information, the complement of

protein-kinases within the PDB was required. While databases such as SCOP

accurately classify domains, they are not up-to-date. To collate the current kinase

structures from within the PDB, the same procedure as applied to find the human
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kinome (see 5.2.4), was applied to PDB protein sequences. As multiple PDB

structures of the same kinase were present in the PDB, each kinase structure

was mapped to its parent UniProt sequence using the residuemap table of the

CREDO database. Representing the PDBs by their UniProt sequences, not only

reduced redundancy, but also removed potential alignment errors caused by chain

breaks (gaps in the protein sequence cause by unresolved residues), and enabled

the removal of artificial fusion proteins. Many of the PDB kinase structures were

not of human proteins (e.g. pdb 3dk3, structure of mouse abl1 kinase), in these

cases the parent UniProt protein sequence was retrieved and the domain region

added to a FASTA format sequence database representing the kinase structures.

5.2.6 Family Alignment

The full multiple sequence alignment of the human kinome domains and the ki-

nase structure domains was created using the seed HMM as the input for the

hmmalign program of the HMMER package. The resulting family alignment was

added to the matrix database (Figure 5.2). The boundaries of kinase domains

within the full length UniProt sequences were recorded in the database, such that

any position within the sequence alignment, could be mapped to the correct posi-

tion within the parent UniProt sequence, and by querying the CREDO database,

mapped to the correct residue in any PDB structure of that kinase. Conversely,

any potential ligand binding residues in PDB structures could be mapped through

the database to the equivalent residues in any human kinase.
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ext_compound_id

ext_data_source PK

the activities of a compound 
screen

activities

activity_value  

ext_protein_id PK
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a domain family binding site
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Figure 5.2: The matrix database schema for multiple sequence alignment, bind-
ing sites, activities and amino acid properties. The composite primary keys are
represented by PK . Arrows indicate the direction of foreign key inheritance. For
more details on column names and example queries see Appendix A.5. Figure
generated using OmniGraffle (Case, 2013).
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5.2.7 Amino acid properties

The AAindex database (Kawashima & Kanehisa, 2000) is a publicly available re-

source that collates published information on the observed and theoretical proper-

ties of amino acids. The current version of the database (v9.1) was obtained from

ftp://ftp.genome.jp/pub/db/community/AAindex/. The database is divided

into three sections, of which only AAindex1 was of interest. AAindex1 contains

indices of numerical values for the 20 standard amino acids. Each index attempts

to describe numerically, a specific physicochemical or biochemical property for

each amino acid. Many of these indices relate to properties that could intuitively

be important in ligand binding such as the Hydrophobicity index (ARGP820101)

and the Residue volume index (GOLD730102), whereas others such as the Nor-

malized frequency of beta-sheet, with weights (LEVM780102) pertain to features

more commonly associated with protein structure. The current version contained

544 distinct indices, of which 529 contain a value for all 20 amino acids. The scale

of the numerical values assigned to residues within an index is determined by the

nature of the property measured, thus some indices contain very large values,

while some contain small or negative values. To remove bias from the indices,

each range was transformed to fit a defined range Rmin to Rmax :

Xi,Rmin..Rmax =
(Rmax−Rmin)(Xi −XMin)

Xmax −Xmin

+Rmin (5.1)

where Xi,Rmin..Rmax is the scaled value, Xi is the original value, XMax is the

maximum value within the index and XMin the minimum value within the index.

Values were calculated to both ranges [-1 to +1], and [1 to 10]. The complete

indexes and normalized values were included in the matrix database (Figure 5.2).
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5.2.7.1 Sheinerman Descriptors

Sheinerman et al. (2005) published a study of a handful of high-affinity protein

kinase inhibitors and their kinase inhibition profile. They found that a small

number of non-conservative amino acid substitutions at specific positions in the

binding site could drastically reduce affinity. They produced rules to describe

what constitutes a non-conservative amino acid substitution. These rules could be

implemented using a small number of amino acid properties. By using equivalent

descriptors from the AAindex database, a set of descriptors that described these

important properties was produced (see Table 5.2), this set is referred to as a

“descriptor model”.

Sheinerman rule AAindex accession AAindex description
FAUJ880111 Positive charge

charge substitution
FAUJ880112 Negative charge

polarity substitution GRAR740102 Polarity
Van der Waals volume
difference of 20Å3

GRAR740103 Volume

Table 5.2: The AAindex descriptors used to define the Sheinerman descriptor
model. The descriptor model based on rules of amino acid conservation that
effect ligand binding.(Sheinerman et al., 2005)

5.2.7.2 Westen Descriptors

van Westen et al. (2011) published a study on the effect of Reverse transcriptase

mutations on inhibitor binding. In the study they selected indices from the

AAindex that were descriptive of ligand binding properties or described structural

constraints. A descriptor model was created using the 58 indices suggested (Table

5.3).
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Table 5.3: The AAindex descriptors used to define the Westen descriptor model
(van Westen et al., 2011).

AAindex accession AAindex description

ARGP820103 Membrane-buried preference parameters

BAEK050101 Linker index

BHAR880101 Average flexibility indices

CASG920101 Hydrophobicity scale from native protein structures

CHAM810101 Steric parameter

CHAM820101 Polarizability parameter

CHAM830101 The Chou-Fasman parameter of the coil conformation

CHAM830107 A parameter of charge transfer capability

CHAM830108 A parameter of charge transfer donor capability

CHOP780201 Normalized frequency of alpha-helix

CHOP780202 Normalized frequency of beta-sheet

CHOP780203 Normalized frequency of beta-turn

CIDH920105 Normalized average hydrophobicity scales

COSI940101 Electron-ion interaction potential values

FASG760101 Molecular weight

FAUJ880102 Smoothed upsilon steric parameter

FAUJ880103 Normalized van der Waals volume

FAUJ880104 STERIMOL length of the side chain

FAUJ880105 STERIMOL minimum width of the side chain

FAUJ880106 STERIMOL maximum width of the side chain

FAUJ880109 Number of hydrogen bond donors

FAUJ880110 Number of full nonbonding orbitals

FAUJ880111 Positive charge

FAUJ880112 Negative charge

FAUJ880113 pK-a(RCOOH)

GRAR740102 Polarity

JANJ780102 Percentage of buried residues

JANJ780103 Percentage of exposed residues

JOND920102 Relative mutability

JUNJ780101 Sequence frequency

KLEP840101 Net charge

KOEP990101 Alpha-helix propensity derived from designed sequences

KOEP990102 Beta-sheet propensity derived from designed sequences

KRIW790101 Side chain interaction parameter

KYTJ820101 Hydropathy index

Continued on next page
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Table 5.3 – Continued from previous page

AAindex accession AAindex description

LEVM760102 Distance between C-alpha and centroid of side chain

LEVM760103 Side chain angle theta(AAR)

LEVM760104 Side chain torsion angle phi(AAAR)

LEVM760105 Radius of gyration of side chain

LEVM760106 van der Waals parameter R0

LEVM760107 van der Waals parameter epsilon

MITS020101 Amphiphilicity index

MONM990201 Averaged turn propensities in a transmembrane helix

NISK800101 8 A contact number

NISK860101 14 A contact number

PONP800101 Surrounding hydrophobicity in folded form

PONP930101 Hydrophobicity scales

RACS770103 Side chain orientational preference

RADA880108 Mean polarity

ROSG850101 Mean area buried on transfer

ROSG850102 Mean fractional area loss

ROSM880102 Side chain hydropathy, corrected for solvation

TAKK010101 Side-chain contribution to protein stability

VINM940101 Normalized flexibility parameters (B-values), average

WARP780101 Average interactions per side chain atom

WOLR810101 Hydration potential

ZHOH040102 The relative stability scale extracted from mutation experiments

ZHOH040103 Buriability

5.2.8 Ligand Binding Sites

5.2.8.1 Installing CREDO

The current incarnation of CREDO is available as a queryable database using

web services. At the time of this work, the database was only available as a

mysql database. To enable cross querying of our internal database and CREDO,

it was important to have an oracle version available. As most databases (CREDO

included) use non-ANSI features of their platform, converting from one database
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engine to another was a significant task. The schema of CREDO was available in

mysql-specific SQL, in order to create the schema in oracle, this SQL was hand

translated to the oracle equivalent (see Appendix A.5.2 for usage example and

database schema). The CREDO data was added to the oracle database using

sqlloader.

5.2.8.2 Extracting Ligand Binding Sites

Every kinase PDB-ligand pair in CREDO was queried and the residues with lig-

and interactions stored as a profile (protein-ligand interaction profile or PLIP),

where the profile positions correspond to the residue positions in the family align-

ment. A metric called “contacts” was devised to weight those residues that may

be more important for ligand binding. The metric was defined as the number of

unique ligand-atoms, that shared at least one interaction (described in Table 5.1)

with any of the residue’s atoms. Figure 5.3 shows an example of the contacts

metric for PDB entry 1k3a. The contacts number was used as the value in each

of the PLIP positions (see Table 5.4). A PLIP was therefore a 2D representation

of the ligand’s binding site. As the PLIPs were based on alignment position, they

enabled direct comparison or clustering of a ligand binding sites to all other ligand

binding sites, from any of the other kinases (see Table 5.5). The PDB structures

contained many ligands which were not of interest, such as buffers, very small

ligands and unresolved ligand fragments. To reduce the impact of these ligands

on the analysis, any ligand which had fewer than 8 heavy atoms or had fewer

than four non-zero positions in its PLIP were removed.

119



5.2. Methods

Figure 5.3: The contacts metric used to create PLIPs. An example using PDB
entry 1k3a. Ligand ACP (β,γ-Methylene ATP) is shown in green. Spheres show
atoms involved in interactions. Dotted lines connect residue-ligand atoms with an
interaction. The residues shown here are the subset of residues with contacts in
Table 5.4. An example of the contacts metric is VAL 983 (shown in yellow), which
has 5 ligand-residue interactions with 3 distinct ligand atoms. Figure generated
using PyMOL (Delano, 2006)
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185 1005 LEU 975 2
186 1006 GLY 976 0
187 1007 GLN 977 1
188 1008 GLY 978 2
189 - - - 0
190 - - - 0
191 1009 SER 979 5
192 1010 PHE 980 0
193 1011 GLY 981 0
194 - - - 0
195 - - - 0
196 - - - 0
197 1012 MET 983 0
198 - - - 0
199 1013 VAL 983 3
200 1014 TYR - 0

Table 5.4: PLIP (protein-ligand interaction profile) of Insulin-like growth factor
1 receptor (UniProt entry P08069) with ligand ACP (β,γ-Methylene ATP), con-
structed from PDB entry 1k3a. The alignment position refers to the Kinome
multiple sequence alignment (see 5.2.6). The contacts count refers to the number
of ligand-atoms involved in residue-ligand interactions (see 5.2.8.2), as shown in
Figure 5.3. The PLIP shown here is a small section of the whole profile (positions
185-200 of 1769 positions).
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185 1 2 5 0 6 2
186 0 0 0 3 2 6
187 0 1 1 1 5 3
188 3 2 1 1 4 6
189 0 0 0 4 0 0
190 0 0 0 0 0 0
191 1 5 1 0 3 2
192 0 0 0 2 0 3
193 0 0 0 0 0 0
194 0 0 0 0 0 0
195 0 0 0 0 0 0
196 0 0 0 0 0 0
197 0 0 0 0 0 0
198 0 0 1 0 0 0
199 5 3 3 3 2 2
200 0 0 0 0 0 0

Table 5.5: Multiple PLIPs (protein-ligand interaction profiles) of three kinases
bound to three distinct ligands. Human CDK2 bound to ATP (adenosine triphos-
phate) in four pdb entries, human IGF1R bound to ACP (β,γ-Methylene ATP)
and human NEK2 bound to ADP (adenosine diphosphate). The numbers in
blue show the number of ligand-atoms involved in residue-ligand interactions (see
5.2.8.2) at that MSA position. The MSA position refers to the Kinome multiple
sequence alignment (see 5.2.6). The PLIPs shown here are small sections of the
whole profile (positions 185-200 of 1769 positions). This example shows some of
the variations observed in ligand interactions. Where the same ligand (ATP) has
been co-crystallized with the same protein (CDK2 ), the observed ligand interac-
tions differ substantially.

122



5.2. Methods

(M
S
A

)
A

li
g
n

m
e
n
t

p
o
si

ti
o
n

P
2
4
9
4
1
C
D
K
2

A
T

P
(1

Q
M

Z
)

P
2
4
9
4
1
C
D
K
2

A
T

P
(2

C
J
M

)

P
2
4
9
4
1
C
D
K
2

A
T

P
(1

F
IN

)

P
2
4
9
4
1
C
D
K
2

A
T

P
(1

J
S
T

)

P
2
4
9
4
1
C
D
K
2

A
T

P
M

e
rg

e
d

185 5 0 6 2 3.25
186 0 3 2 6 2.75
187 1 1 5 3 2.50
188 1 1 4 6 3.00
189 0 4 0 0 1.00
190 0 0 0 0 0.00
191 1 0 3 2 1.50
192 0 2 0 3 1.25
193 0 0 0 0 0.00
194 0 0 0 0 0.00
195 0 0 0 0 0.00
196 0 0 0 0 0.00
197 0 0 0 0 0.00
198 1 0 0 0 0.25
199 3 3 2 2 2.50
200 0 0 0 0 0.00

Table 5.6: Merging PLIPs (protein-ligand interaction profiles). Four PLIPs de-
scribing the residue-ligand interactions of Human CDK2 bound to ATP in four
pdb entries, are merged into a single PLIP. Values in blue show the number of
ligand-atoms involved in residue-ligand interactions (see 5.2.8.2) at that MSA po-
sition (or in the case of the merged PLIP value shows the averaged interactions at
that position). The MSA position refers to the Kinome multiple sequence align-
ment (see 5.2.6). The PLIPs shown here are small sections of the whole profile
(positions 185-200 of 1769 positions).
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5.2.8.3 Clustering Ligand Binding Sites

The PDB contains multiple versions of the same kinase domains, often bound to

the same ligand or very similar ligands. This resulted in many fully redundant

ligand-kinase profiles, as well a large number of highly similar profiles. It was

useful to collapse these similar profiles, which usually describe the same ligand-

kinase binding site, with small discrepancies resulting from experimental errors

and crystallographic resolution. Where profiles shared the same ligand, UniProt

and overlapping binding positions, the profiles were merged, retaining the aver-

age number of contacts at each position (see Table 5.6). Further reduction in the

number of ligand-kinase profiles was achieved with hierarchical clustering. Hier-

archical clustering was performed using the Cluster 3.0 software (de Hoon et al.,

2004), with the Uncentered correlation metric and Average linkage setting. Man-

ual inspection of the hierarchical clustering results was performed using TreeView

(Saldanha, 2004). Appendix Figure A.5 shows the clustering tree and heatmap

of the 739 merged PLIPs. Manually inspecting the clustering, it was possible

to rediscover some of the known ligand binding modes observed in kinases (Fig-

ures 5.4 and 5.5). These ligand binding site definitions enabled mapping of any

binding mode onto any kinase within the database.

5.2.8.4 Defining Ligand Binding Sites

As is shown in the hierarchical clustering (Appendix Figure A.5), where mul-

tiple structures are solved with the same, or highly similar ligands bound, the

residue contact profile can vary significantly. These variations can be attributed

to many factors, such as protein structure flexibility, ligand flexibility, conforma-
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Figure 5.4: Four kinase ligands bound closely or overlapping the ATP binding
site, that clustered into distinct groups in the hierarchical clustering. All protein
structures oriented to the same reference structure. Top left: the ATP site,
with ADP bound, Top right: non-ATP competitive allosteric site, with U0126
a MEK1 inhibitor bound, Bottom left: ATP competitive allosteric site, with
SKF86002 a MAPK14 inhibitor bound and Bottom right: ATP competitive
overlapping ATP site, with gleevec an ABL2 inhibitor bound. PDB entry codes
3eqh, 3eqh, 1kv1 and 3gvu respectively. Figure generated using PyMOL (Delano,
2006).
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Figure 5.5: Two kinase ligands bound distantly to the ATP binding site, that clus-
tered into distinct groups in the hierarchical clustering. Both protein structures
oriented to the same reference structure. Left: the first C-terminal allosteric site,
with myristic acid bound and right: the second C-terminal allosteric site, with
β-octylglucoside bound. PDB entry codes 1opl and 2npq respectively. Figure
generated using PyMOL (Delano, 2006).
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tional variability in loops, crystallographic conditions, structural resolution errors

and sequence alignment errors. However in most cases, their exists a core subset

of residues which consistently interact with the ligand group, which enables clus-

tering. To define the binding site positions, four methods were applied: 1. Loose

binding site, all positions in an identified cluster were added to the definition

(e.g. Loose ATP site). 2. Conservative binding site, any position which was

observed in less than 35% of the cluster members was removed (e.g. Conservative

ATP site). 3. Precise binding site, each unique example of a ligand within

the clusters was added as a binding site defined by its own structural contacts

alone, if multiple examples of the same ligand were present, the example with the

most contacts was chosen. 4. Whole domain binding site, the kinase domain

alignment was manually inspected and regions with large inserts in a small num-

ber of sequences were removed, leaving the core kinase domain regions and most

loops.

5.2.9 Screening Data

In order to create knowledge based, predictive methods for ligand selectivity and

polypharmacology, a set of ligands with known activity against our kinases was re-

quired. As described in Chapter 4, ChEMBL contains a large number of activities

associated with protein kinases. While this is a potentially invaluable resource for

future work, it currently has some limitations. As described in Chapter 4 much

of this data is associated with multidomain proteins. So that any compound

activity reported against a known kinase protein, may have arisen from an in-

teraction with a non-kinase domain within the protein. A final problem which is
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more subtle is that there may exist a bias in publication towards positive results,

reducing the reporting of those screens where the compound was inactive, this

has yet to be confirmed.

The major requirements for our test set were:

• A diverse set of compounds.

• A diverse set of protein kinases.

• Confidence that the activity of the compound is due to interaction with the

kinase domain.

• Contains both active and inactive results for the same compound.

• Screening methods and activity units comparable.

• Compound structures available.

The pharmaceutical company, Abbott Laboratories recently collated its his-

torical kinase screening data and made the data publicly available ((Metz et al.,

2011)). The data set comprised 3858 compounds, with activities reported against

172 human kinases. As the data were published as kinase enzyme inhibitory val-

ues, and the screening compounds were generally not specific to a single kinase

(>96% of compounds showed activity against at least two kinases), there could be

some confidence that the activity was due to interaction with the kinase domain.

However, allosteric effects due to compound binding within a non-kinase domain

could not be ruled out The set was not all-by-all (every compound screened

against every kinase), but ∼40% of the matrix had screening data (Table 5.7).

The inhibitory values were presented as pK i, which is the negative log10 of the
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K i value. The K i value is the binding affinity of the inhibitor and is directly

comparable when compared across assays against different enzymes. Where the

pK i of a compound was low (i.e. low or no affinity), the values were expressed

as less than the limit of the assay (e.g. pK i <5.6), and could be interpreted

for our purposes as inactives. Where the exact pK i was presented, a pK i cutoff

determined if the compound was classed as active against the kinase. Of the

assayed compounds ∼40% were supplied with chemical structures, these were

converted to Canonical SMILES (Weininger, 1988) string format using Pipeline-

pilot (http://accelrys.com/products/pipeline-pilot/). Canonical SMILES

strings were also generated for all CREDO ligands, so those Abbott compounds

that were also in CREDO, could be identified by a database join. The kinase

genes were supplied as gene names which were used to search for Uniprot identi-

fiers to map to the kinase alignment. Six of the 172 genes contained dual kinase

domains, and thus the inhibitory values against these genes could not be con-

fidently assigned to one kinase domain so these genes were discarded from the

analysis.

Abbott protein kinase compound screen Total

Kinase genes assayed 172
Genes containing dual kinase domains 6
Compounds assayed 3,858
Compounds assayed with structures available 1,497
Activities assessed 258,094
Activities confirmed1 103,919
1 where reported activity is not < limit of assay

Table 5.7: Abbott kinase screening file summary

Every pair of kinases in the Abbott screening set had pairwise sequence iden-
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tity calculated over the residues in the Loose ATP binding site definition (48

positions). The binding affinities (pK i) for all compounds that had been assayed

against both pairs were correlated using the coefficient of determination (R2).

Four selected pairs of kinases are shown in Figure 5.6. Panel (A) shows a pair of

kinases with a high sequence identity over the binding site, as would be expected,

the correlation between compound activities here is strong (R2 = 0.81). Panel

(B) shows a pair of kinases with a lower sequence identity over the binding site,

but a stronger correlation of activities (R2 = 0.89). It should be noted that this

is possibly due to far fewer data points. Figure 5.6 (C) and (D) each show a

pair of kinases with 45% sequence identity over the binding site, but with very

different correlation of activities (R2 0.48 vs. 0.00). An overview for all pairs of

kinases is shown in Figure 5.7. The drop in correlation is sharp after around 80%

identity over the binding site, but even at these levels and greater, there exists a

high standard deviation in the correlations.

5.2.10 Compound Binding Inference

Two methods are described here to attempt to infer compound binding from a

training set of kinases, onto a test set of kinases.

5.2.10.1 Amino Acid Conservation Model

A simple method to predict if a compound will inhibit a protein, is to infer from

evidence that the compound inhibits a closely related protein. It is logical to

assume that if the determinants of ligand binding (i.e. the amino acid residues

which form the ligand binding pocket), are identical between two proteins, then

the ligand binding profile should be the same (excluding any allosteric effects).
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Figure 5.6: Correlation of ligand binding profiles in highly similar binding sites
(A, B) and less similar sites (C, D). Each point represents an Abbott compound
and its activity (pK i) against a pair of kinases. The kinases are denoted by
their UniProt entry accession. The correlation of activities is measured using R2

(coefficient of determination). The sequence identity (%ID) of the kinase pair is
calculated over the 48 residues in the Loose ATP binding site.
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Figure 5.7: Correlation of Abbott compound-kinase activities versus binding site
sequence identity. The sequence identity (%ID) of the kinase pairs is calculated
over the 48 residues in the Loose ATP binding site. Kinase pairs are binned
by sequence identity, and the mean value shown for each bin. The mean pK i cor-
relation of activities is shown, for kinase pairs in each sequence identity bin. Bars
show standard deviation. (The underlying distribution of binding site sequence
identity is shown in Appendix B. Figure A.4.)
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While in general kinases are much more conserved at ligand binding positions

than over the whole domain, in practise few proteins share 100% identity over the

binding site. By applying a variable cutoff, the activity of a compound against

a kinase, could be inferred if another kinase within the identity threshold was

inhibited by the same compound.

5.2.10.2 Näıve Bayesian Model

Bayes’ Theorem is a way of inverting a conditional probability. It is stated:

P (X|Y ) =
P (Y |X)P (X))

P (Y )
(5.2)

which means the probability event X being true given event Y has occurred.

It can be used in a predictive manor by substituting X with a category (e.g active

compound), and substituting Y with a feature of the protein (e.g. hydrophobic

residue at position 24 of the alignment). Given a training set of examples of

compounds and the protein feature, its is possible to calculate the P(Y|X) as the

probability of feature present given an active compound, P(X) as the probability

of active compound independent of the feature, and P(Y) as the probability of

the feature present independent of the compound being active:

P (active|feature) =
P (feature|active)P (active))

P (feature)
(5.3)

The same can be calculated for the compound being inactive:

P (inactive|feature) =
P (feature|inactive)P (inactive))

P (feature)
(5.4)
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With both categories being calculated, a prediction would be based on which

probability was greatest such that:

active = P (active|feature) > P (inactive|feature) (5.5)

inactive = P (inactive|feature) > P (active|feature) (5.6)

Where multiple features are available, the probability of each can be multiplied

to calculate the overall probability of the event given all features. As this method

assumes the features are independent of each other (i.e. state of one feature does

not affect the state of another feature) it is called the ”Näıve Bayesian”. In this

case, the features of a protein are not independent. However, it has been shown

that making this independence assumption even when it is not true, often has

little effect on the results (Domingos & Pazzani, 1997).

5.2.10.3 Näıve Bayesian Implementation

The Näıve Bayesian Models were implemented in Perl using the Algorithm::

NaiveBayes module from CPAN (http://www.cpan.org/). The data was di-

vided into Active and Inactive target-compound pairs using a pK i cutoff of >6.

Bayesian models were created using a defined binding site (site as described by

the kinase MSA), and a set of AAindex descriptors (Figure. 5.8). The weights

for the features were the normalized AAindex values for the amino acid at that

alignment position for the kinase training set (Figure 5.9). The Bayesian im-

plementation software used could not utilize negative values for features, so the

normalized AAindex value range used was [1 .. 10]. Multiple proteins with activ-
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ity data against the compound could be used to train the Bayesian model, which

in turn could be used to predict the compounds activity against a protein with

no screening data (Figure 5.10). Each model could be trained on any number of

examples, using multiple binding site positions and multiple AAindex descriptors

with no significant performance issues.

Figure 5.8: Describing a Bayesian model. There are two possible model
states for a compound, active or in-active against a protein. The proposed ligand
binding site is defined by a set of multiple sequence alignment (MSA) positions, in
this case four positions of the MSA. The ligand binding site residues are described
by amino acid property descriptors, in this case: blue properties described volume
(GRAR740103) and orange described polarity (GRAR740102).

the amino acid descriptors

the binding site definition 

the model for a compoundActive?

position 
1

position 
2

position 
3

position 
4

D1 D2 D1 D2 D1 D2 D1 D2

Figure 5.9: Populating a Bayesian model. In this case, the compound is
potent (green) against protein CDK2. The residues at the MSA positions for
CDK2 are added, shown here colored by the ClustalX scheme (Thompson, 1997).
The residue properties are added for each descriptor, the shade of each property
relates to the size of the property descriptor.

fill residue values for descriptors

fill residues for the MSA positions

 is the compound potent against a proteinCDK2 
Active

Ser Cys Ala His

5.8 2.6 1.7 3.8 4.6 2.5 7.1 6.0
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Figure 5.10: Classifying with a Bayesian model. In this case, the potency of
the compound is against the protein is unknown (shaded green to red). However
the residues at the MSA positions are known, as are the descriptors. These are
filled as in Figure 5.9. Multiple training proteins which are inhibited (green) or
not (red) by the compound, are populated as before. The Bayesian model then
predicts the potency state for the compound against the unknown protein.

Prediction is Acitive

fill in the values as before

Is the compound potent against this protein? ?

Trained Bayesian model
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5.2.10.4 Validation Sets

In order to assess the validity of the models for transferring activity, the data

set could not wholly be used to train the models, as some data is required to be

retained in order to benchmark the models. Another question to ask of the models

is how many known data points are required to train them, and how it affects the

accuracy of the predictions. The training set could also be biased by aberrant

kinases, those which are either promiscuous compound binders or super-selective

could affect the benchmark. To combat this, the data set was divided into training

and testing sets randomly, and 50 iterations of the benchmark performed so most

of the data points would be used to train and test independently. Where a

compound had been assayed against less than 70 of the kinases, these compounds

were discarded from the benchmark. The number of training examples was varied

between 5 and 60, and the remainder used to test the model. For each model,

each of the 50 training and testing sets were used independently, and the average

prediction accuracy calculated. All of the variations of prediction models used

the same 50 training and testing sets so they could be compared legitimately.

5.3 Results

5.3.1 Benchmark of the binding site identity models

The results of the benchmark of using percent identity of residues in the binding

site to infer shared activity are shown in Figure 5.11. As can clearly be seen, a

stringent identity threshold (90%) while producing very few false positives (incor-

rectly predicted actives), also misses most of the true positives. At 50% identity
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across the binding site, the inference even when using a large set of training

compounds, is not much better than a random guess. Where larger amounts of

training data are available (40+), a sequence identity cutoff of 60% could be used

to infer potential polypharmacology targets, as with a large family of proteins

such as the kinases, the TPR observed at these levels (≈ 0.48) would provide a

substantial number of targets to investigate. However, this method would be less

useful for predicting selectivity, as many proteins that would share compound

binding profiles would not be inferred.

5.3.2 Benchmark of the Bayesian models

Figure 5.12 shows the benchmark using different definitions of the binding site

residues, and how they affect the Bayesian models predictive power. Only those

compounds that were in both the Abbott screening data, the validation set

(5.2.10.4) and observed to be kinase-bound in CREDO were analyzed. The Shein-

erman descriptors were used to describe the binding site properties. With low

numbers of training examples, all these definitions perform poorly (PCd of be-

tween 0.95-0.91 for 5; and 0.95-0.89 for 10 training examples). As more training

data are utilized, each model’s sensitivity improves at a similar rate.

Figure 5.13 shows the benchmark using different descriptors of the bind-

ing site properties, and how they affect the Bayesian model’s predictive power.

The Loose ATP binding site definition was used to describe the binding site

residues. All compounds in the validation set (5.2.10.4) were used. Increasing the

training data increased the sensitivity for both sets of descriptors, with a slight

cost to specificity.
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Figure 5.11: ROC analysis of the Amino acid conservation model as described in
5.2.10.1. The analysis was performed on all compounds in the Screening data.
Sequence identity calculations were performed on the residues in the Loose ATP
binding site definition. Number of training data points are shown in black.
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The Loose ATP binding site definition of the binding residues, using the

Sheinerman binding site property descriptors, was common in both benchmarks,

the only difference between the two was the set of compounds used to benchmark

the Bayesian. The compounds used in the Ligand binding site properties

benchmark (Figure 5.13) entirely subsumes the compounds used in the Ligand

binding site residues benchmark (Figure 5.12), so the difference in perfor-

mance can only be attributed to a random bias of poorly performing compounds

in the smaller set.

As with the binding site identity predictions (Figure 5.11), the predictions

based on the Bayesian model (Figure 5.12) are much more specific (low FPR) than

sensitive (high TPR). In practical terms, when a compound has been observed

to bind potently to a set of proteins, the compound can be predicted to bind

potently to other proteins of the family, and those predictions are likely to be

correct. Conversely, where the compound is predicted not to bind a protein, a

large number of these proteins would in reality be inhibited by the compound.

This would cause problems when trying to assess selectivity, as many non-selective

compounds could be predicted as selective.

5.4 Conclusions and future direction

The structure-ligand information available from CREDO (Schreyer & Blundell,

2009) provides an invaluable resource for linking structural contact information

to binding site residues, and through the process described here, onto all domain

family members. This simple process can be applied to any protein family of

interest - given any structural representation for the domain family - to rapidly
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Figure 5.12: Ligand binding site residues benchmark. ROC analysis of
the effect of the ligand binding site definition on the Bayesian inference model
(5.2.10.2). The analysis was performed on just the compounds in both the Screen-
ing data (5.2.9) and kinase-bound in the structure database (5.2.3). Trends for
the Whole domain binding site are shown in red, Loose ATP binding site
in orange. The Precise binding site (structurally observed ligand binding po-
sitions for each compound) in the green series. The number of training kinases
shown in black.

141



5.4. Conclusions and future direction

      0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

TP
R

Binding site descriptors:
Westen set

5
10

20

40

60

Sheinerman set

Figure 5.13: Ligand binding site properties benchmark. ROC analysis of
the effect of increased binding site feature information on the Bayesian inference
model (5.2.10.2). The analysis was performed on all compounds in the Screening
data. Identity calculations were performed on the Loose ATP binding site.
Green is Westen descriptors. Red is Sheinerman descriptors, . The number of
training data points shown in black
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catalogue potential drug binding sites.

These ligand binding sites can be used to infer selectivity across a target

family. A clear caveat on such analysis is that even between highly similar binding

sites there can be large variations in ligand binding profiles.

The Bayesian classifier predicts whether a compound will be active against a

set of proteins, using related protein screening results as a model. Unsurprisingly,

larger amounts of training data produce better results. This could be an issue for

lesser studied or smaller, protein families that lack significant amounts of suitable

and accessible bioactivity data.

These results suggest that knowledge of the specific binding mode of a com-

pound does little to improve inference, as using the most precise definition of a

binding site increases the sensitivity of predictions marginally, accompanied by a

larger decrease in specificity. Adding more information to describe the properties

of the binding sites does appear to improve the models, albeit only marginally.

When applying these approaches it is important to bear in mind that the lack

of sensitivity means that potential selectivity issues may be missed. However,

given the levels of specificity observed in Figure 5.2.10.2 broad spectrum targets

or polypharmacology targets that are identified with this method, will be enriched

with many more truly non-selective proteins than selective proteins.
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Chapter 6

Conclusions

6.1 Overview

The primary objectives of the research presented here was to address three dis-

tinct criteria of pathogen target selection. To date, the essentiality prediction can

be used, and have been employed to prioritize potentially essential proteins from

a genome. The druggablity module, can be used “as is” to search for druggable

domain profiles within a proteome. The caveat being it will not be as sensitive as

a domain-based model. The selectivity analysis relies heavily on domain family

specific screening data, and to date only the protein kinase family has been in-

vestigated. However, as the protein kinases are a large druggable family present

in many eukaryotic pathogens, the analysis and prediction of potential pathogen

kinase inhibitors is feasible.

6.2 Essentiality

Many existing anti-infectives target multiple non-essential proteins simultane-

ously to produce a lethal response. Currently, our ability to elucidate these
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inter-dependent targets is limited. Despite the relatively small genomes of many

pathogens, the combinatorics of finding just the gene pairs that are essential in

tandem would require genome-size2 targeted gene deletions. Given this caveat,

single gene essentiality is still an important criterion for target selection, and

many current antibiotics exploit this. For most pathogen genomes we do not

have genome-scale experimental essentiality data, and despite a recent surge in

the number of whole-genome essentiality screens (Christen et al., 2011; Klein

et al., 2012; Xu et al., 2011), the rate of experimentally derived essentials genomes

is too slow for the systematic application to all pathogens. Therefore, in silico

genome essentiality prediction methods are required that capitalize on existing

genome scale essentiality experiments. Previously to this work, the idea of us-

ing homology and orthology to known essentials, as indicators of essentiality had

been employed (Aguero et al., 2008; Holman et al., 2009), but without any insight

into how effectively they worked across multiple species. Chapter 2 attempted

to address this, with the development and benchmarking of a procedure to har-

nesses the available experimental data on genetic essentiality and uses a series of

phylogenetic models to infer likely essentiality in related pathogen proteins.

To date, data on published genome scale essentiality experiments have been

incorporated into a scalable relational database framework, which enabled the

application a robust orthology detection algorithm at large scale. Identifying or-

thologs and paralogs shared between experimentally characterized organisms and

pathogenic genomes of interest, enables putatively essential genes to be identified

by inference. The application of multiple models of essentiality allowed a ranking

of putative essentials rather than a binary classification, which is important given

that the most specific models of essentiality suffer from a low recall rate. Simul-
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taneously to my work benchmarking the method in bacteria, Doyle et al. (2010)

performed a similar benchmark on eukaryotes. Comparison of both results, show

that orthology and orthology to a known essential gene are positive predictors of

essentially in both eukaryotes and prokaryotes.

Since this work, Yuan et al. (2012) have used a machine learning method

trained on multiple Ab initio calculable protein properties, and identified the

gene evolutionary age, as the top predictive feature. This property is comparable

to my most selective model, as multiple orthologs across many species greatly

increased the chances of being essential, and where these relationships still exist,

then the likelihood is that their conservation throughout speciation was essential.

In Chapter 3, these procedures were applied to three different anti-infective

discovery projects, being undertaken at the University of Dundee and the Lon-

don School of Hygiene and Tropical Medicine. These include the genomes of

the Gram negative bacterium Pseudomonas aeroginosa, a panel of seven kine-

toplastid genomes and the genome of the clinically important parasite Schisto-

soma mansoni. The analysis of essentials predicted in S. mansoni represented

a recurring theme: at some (undetermined)-evolutionary distance, the types of

genes predicted essential tended to be involved in “core” metabolism. A clear

disadvantage of this are the potential selectivity issues with the host, and more

importantly, only a small number of predicted essentials. These limited sets can

quickly be exhausted when applying further filters such as druggability.

The question - “which of these non-essential proteins can i infer essentiality

onto”? Is most likely the cause of the lack of sensitivity in my own, and others

methods. A logical next step would be to ask the question - “Assuming all

proteins are essential, can i find evidence to infer them non-essential?”.
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6.3 Druggability

Druggability is an equally important criteria for assessing potential drug targets

alongside essentiality, particularly given the failure of large-scale, high-throughput

screening in discovering new lead compounds against antibacterial targets (Payne

et al., 2006). Multiple methods exist to predict druggability, either based on

structural features (Halgren, 2009), precedence (Hopkins & Groom, 2002) or using

calculable protein features (Al-Lazikani et al., 2007). For any validation, all

methods require testing data, proteins that are known to bind drug-like molecules

with high affinity. The ChEMBL database offers a window into this valuable

training data, but how valuable is the data in it current form?

In Chapter 4, the protein-ligand information available from ChEMBL was

assessed for its validity as a resource for inferring the druggability of pathogen

targets. What was clear, were the challenges faced to fully harness the data to

mirror biological reality. A major issue with the early ChEMBL version, was

the linkage of compounds via affinity to the protein sequence level. In reality,

the association of a compound to a protein is via a specific set of residue-ligand

interactions. A simplification of this complex reality is to assign the ligand to a

protein domain or set of domains that can be defined as a “druggable unit”. The

programmatic procedure described in Chapter 4 was a first step in defining the po-

tential druggable units. The annotation provided a “domain fingerprint”, which

combined with a simple measure of associated compound desirability, enables

other proteins with the same domain organization to be inferred as druggable.

Since this work was undertaken, the ChEMBL team have implemented their

own system of domain annotation (Kruger et al., 2012), based on PFAM. Using
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these domains they attempted to automatically assign compounds to domains

using a simple heuristic of “seed domains”. The seed domains are those which

occur as a single domain in ChEMBL, and where they also occur in a multido-

main, the corresponding “seed domain” is assigned as the binding domain. With

this approach they predict the correct domain will be assigned in 88% of mul-

tidomain cases. It is clearly a large task linking domains and compounds in the

large tail of difficult edge-cases, and ultimately hand curation of these cases may

be necessary.

The applicability of ChEMBL to bacteria was briefly discussed, given the

lack of prokaryotic targets in ChEMBLv01. Since this analysis, the database has

grown rapidly, from 440,000 compound screened against 3,622 protein targets, to

1.3 million against 6,235. However, the proportion of eukaryotic and prokaryotic

targets has remained broadly the same.

6.4 Selectivity

The ability of some compounds to bind multiple members of a protein family is

based not only on the compounds properties, but also on the properties of the

protein’s binding site. Where a pair of proteins exhibit similar physicochemical

properties at positions important for compound binding then they may share

compound binding profiles.

In Chapter 5, the ability to predict selectivity or non-selective proteins was

assessed using the protein kinase domain family as a test case. The protein

kinases are a large and diverse family, and exhibit multiple ligand binding modes.

The availability of large scale compound binding affinities was a major factor
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6.4. Selectivity

in selecting the test case. For the proteins kinases, the Abbott kinase screening

data provided a large compound-kinase screening matrix, with both active kinase-

compound pairs and inactive pairs.

The analysis of the structural information in the CREDO database, enabled

the semi-automated classification of distinct ligand binding modes, including al-

losteric sites. Importantly, limiting a selectivity assessment to a single domain

family, allows the transfer of structural information across the whole family, using

a multiple sequence alignment.

The classical selectivity assessment is to compare the sequence identity of the

binding site residues in a pair of proteins, and where the identity is high, then

these two proteins would be considered non-selective and would share similar

ligand binding profiles. In order to establish the validity of this assessment,

a benchmark was performed. The results were unsurprising, protein binding

sites with high sequence identity often share compound binding profiles, however,

protein binding sites with low sequence identity often share compound binding

profiles also. There are two reasons assumed for this, firstly, sites can be very

similar in terms of physicochemical properties, but share low sequence identity

due to redundant properties of the 20 standard amino acids, and secondly, specific

modes of compound binding can be entirety dependent on very small number of

binding site residues, and while overall the binding site is not conserved, the

important residues could be identical.

To address the limitation of the sequence identity method, a machine learning

method using a Näıve Bayesian classifier to learn these patterns of amino acid

properties, a used them to predict compound binding. Unsurprisingly, where

amounts of training data produce better predictions. This could be an issue
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for lesser studied protein families that lack significant amounts of suitable and

accessible bioactivity data. These results suggest that knowledge of the specific

binding mode of a compound does little to improve inference. Adding more

information to describe the properties of the binding sites does appear to improve

the models, albeit only marginally.

When applying these approaches it is important to bear in mind that the lack

of sensitivity means that many potential selectivity issues may be missed. How-

ever, given the good levels of specificity broad spectrum targets or polypharma-

cology targets can be identified with reasonable confidence. This sensitivity/selec-

tivity bias, indicates that rather than a selectivity predictor, i have inadvertently

produced a promiscuity predictor.

Little comparable work has been done in this field, while medicinal chemists

often use specific knowledge of binging site properties to guide compound design,

it is not often in an automated fashion. However, they use properties of the

compound also, which is lacking from this method. Another feature of the data

currently unused it the cross-correlation of binding profiles, where the knowledge

that a compound is potent against a protein, may infer that similar compounds

are more likely to be potent against the same protein.

A logical next would be to analyze a multiple different protein families, to see

if the kinases are typical of performance or a difficult case.

6.5 Outlook

The modular informatics framework presented here could be a useful set of meth-

ods to improve the exploitation of genomic information in anti-infectives drug
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discovery, by enabling proteome-based, domain-based and binding site based com-

parisons within and between genomes.
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A.1 Proteome database

Table A.1: The database tables for proteome, essentiality and orthology informa-
tion. The datatypes for each column are shown. Each database tables primary
key (where available) is shown (pk). The reference table(s) that post foreign
keys are shown in fk table. The notes section described the column data with
example where appropriate.

Proteomes - describes a published proteome (or the protein compliment of a genome

study).

column name type pk fk table notes

Proteome id Number Y Internal proteome identifier

Proteome reference String Newt entry Description of the source paper or

online resource of the the original

genome or proteome information.

Load date Date Date proteome added to the

database (not the date of proteome

release).

Taxon Number NEWT taxon identifier for pro-

teomes species

Proteins - describes the proteins of a proteome.

column name type pk fk table notes

Protein id Number Y Internal protein identifier

Proteome id Number Proteomes Internal proteome identifier

Accession String The unique per-proteome accession

used by the original proteome re-

source. e.g. “ACIAD1303”

Gi number Number The NCBI sequence identifier

(where available).

Primary description String The protein description provided by

the original proteome resource. e.g.

“putative extracellular nuclease”

AA sequence digest String The md5 checksum/digest of the

proteins ammino acid sequence.

AA sequence Large The proteins ammino acid sequence.

Protein attributes - describes the diverse additional annotation of proteins.

column name type pk fk table notes

Attribute id Number Y Proteins Internal attribute identifier.

Continued on next page
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Table A.1 – Continued from previous page

Attribute value String Other unrequired data value pro-

vided with a protein annotation e.g.

“gapB”.

Attribute name String Other unrequired data type pro-

vided with a protein annotation e.g.

“gene name”.

Protein id Number Internal protein identifier.

Proteome orthomcl - describes the co-orthology relationships between a pair of pro-

teomes, as calculated by orthomcl.

column name type pk fk table notes

Ortholog id String Y Internal co-ortholog relationship

identifier.

Proteome id a Number Proteins Internal proteome identifier for

species A.

Proteome id b Number Proteins Internal proteome identifier for

species B.

Accession a String Proteins The protein accession of species A.

Accession b String Proteins The protein accession of species B.

Cluster id Number Internal identifier for a co-

orthologos cluster.

NEWT entry - describes the EBI NEWT taxonomy hierarchy.

column name type pk fk table notes

Taxon Number Y NEWT taxon identifier for this

group

Scientific name String Name of taxonomic group e.g.

“Homo sapiens”

Rank String Taxonomic rank e.g. “Species”

Parent taxon Number Newt entry NEWT taxon identifier for this

groups parent group

Essential sets - describes the published essentiallity screens.

column name type pk fk table notes

Set id Number Y Internal identifier for this essential

screen.

Taxon Number Newt entry NEWT taxon identifier for essential

screen species.

Literature ref String Citation for the paper describing the

screen.

Continued on next page
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Table A.1 – Continued from previous page

Genome wide Number Flag for whole geneome essentiallity

screen.

Essential genes - the essential proteins from published essentiallity screens.

column name type pk fk table notes

Accession String The proteome accession used by the

original proteome resource.

Set id Number essential sets Internal identifier for this essential

screen.

DEG - describes the DEG (database of essential genes) resource.

column name type pk fk table notes

DEG accession String Y DEG identifier

GI number Number The NCBI sequence identifier.

Taxon Number NEWT taxon identifier of the essen-

tial screen species.

Description String The protein description provided

DEG.

AA sequence digest String The md5 checksum/digest of the

proteins ammino acid sequence.

AA sequence Large The proteins ammino acid sequence.

A.1.0.1 Proteomes database usage examples

Use orthomcl results to predicted essential proteins in Pseudomonas aeruginosa

PAO1, using orthology to known essential genes in Escherichia coli. This query

produces cluster ids which represent a co-orthologous group between the two

species. If there are multiple proteins from P. aeruginosa PA01 in this cluster

then those protein had in-paralogs, and therefore represented a model m3 predic-

tion (see section 2.2.7). Single P. aeruginosa PA01 proteins represent model m4

predictions.

SELECT proteome_id_a ,

proteome_id_b ,

cluster_id ,

-- how many predicted proteins in co -ortholog group

COUNT(DISTINCT prt_a.accession) total ,

-- if more than one predicted protein has in -parlaogs

DECODE(COUNT(distinct prt_a.accession),

1, ’ORTHOLOG ’,
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’PARALOGS ’

) in_para

FROM proteome_orthomcl mcl

JOIN proteomes pa

ON pa.proteome_id = mcl.proteome_id_a

JOIN proteomes pb

ON pb.proteome_id = mcl.proteome_id_b

JOIN proteins prt_a

ON mcl.accession_a = prt_a.accession

JOIN proteins prt_b

ON mcl.accession_b = prt_b.accession

JOIN essential_sets es

ON es.taxon = pb.taxon

JOIN essential_genes eg

ON eg.set_id = es.set_id

-- want to predict essential co -ortholog clusters in this

species

WHERE pa.taxon = (

SELECT taxon

FROM newt_entry n

WHERE n.scientific_name = ’Pseudomonas aeruginosa

PAO1’)

-- using this species ’ known essential genes to predict

AND pb.taxon = (

SELECT taxon

FROM newt_entry n

WHERE n.scientific_name = ’Escherichia coli str. K-12

substr. MG1655 ’)

AND eg.accession = prt_b.accession

GROUP BY proteome_id_a , proteome_id_b ,cluster_id;

The first 6 results of the query are shown below, there are two clusters of m3

predictions, and four m4 predictions:

PROTEOME_ID_A |PROTEOME_ID_B |CLUSTER_ID |TOTAL |IN_PARA

-----------------------------------------------------------

3 |2 |53 |2 |PARALOGS

3 |2 |1300 |1 |SINGLE

3 |2 |1700 |1 |SINGLE

3 |2 |1900 |1 |SINGLE
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3 |2 |2100 |1 |SINGLE

3 |2 |253 |2 |PARALOGS

--------------------- truncated ---------------------------

The following SQL inspects the first cluster shown above:

SELECT DISTINCT

prt.protein_id ,

mcl.accession_a ,

prt.primary_description

FROM proteome_orthomcl mcl

JOIN proteins prt

ON prt.accession = mcl.accession_a

WHERE prt.proteome_id = mcl.proteome_id_a

AND mcl.cluster_id = 53

AND mcl.proteome_id_a = 3

AND mcl.proteome_id_b = 2;

Which finds the two proteins in the m3 cluster (both probable serine pro-

teases):

ACCESSION_A |PRIMARY_DESCRIPTION

--------------------------------------------

PA0766 |serine protease MucD precursor

PA4446 |AlgW protein

A.2 Homology inferrence
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Appendix A

Figure A.1: Homology benchmark details. Performance of predicting essential
proteins in five species using homology to two databases of known essential pro-
teins.

(a) Performance using the Database of essential genes (DEG).
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(b) Performance using four essential proteomes.
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Figure A.2: Orthology benchmark details. Performance of predicting essential
proteins in five species using orthology models. The four models of essentiallity
shown here are m1, m2, m3 and m4. Models are connected in numerical order
starting with m1, which always produces the largest FPR.
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Figure A.3: Orthology benchmark details. Performance of predicting essential
proteins in five species using orthology models. The four models of essential-
lity shown here are m5(1), m5(2), m5(3) and m5(4). Models are connected in
numerical order starting with m5(1), which always produces the largest FPR.
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Table A.3: The proteins predicted essential in any of the five benchmark species
by the most specific model - m5(4).

Function Protein description Gene name(s)

tRNA metabolism alanyl-tRNA synthetase alaS

arginyl-tRNA synthetase argS

aspartyl-tRNA synthetase aspS

cysteinyl-tRNA synthetase cysS

glutamyl-tRNA synthetase gltX

histidyl-tRNA synthetase hisS

isoleucyl-tRNA synthetase ileS

leucyl-tRNA synthetase leuS

tRNA(Ile)-lysidine synthetase mesJ,tilS

methionyl-tRNA synthetase metG,metS

seryl-tRNA synthetase serS

threonyl-tRNA synthetase thrS

tryptophanyl-tRNA synthetase trpS

tyrosyl-tRNA synthetase tyrS

valyl-tRNA synthetase valS

phenylalanyl-tRNA synthetase subunit alpha pheS

phenylalanyl-tRNA synthetase subunit beta pheT

tRNA (guanine-N(1)-)-methyltransferase trmD

methionyl-tRNA formyltransferase arnA,fmt

peptidyl-tRNA hydrolase pth

DNA metabolism DNA primase dnaE,dnaG,polC-2

DNA topoisomerase I topA

DNA polymerase III subunits gamma and tau dnaX

DNA-directed RNA polymerase subunit alpha rpoA

DNA-directed RNA polymerase subunit beta rpoB

DNA-directed RNA polymerase subunit beta rpoC

DNA gyrase subunit A gyrA

DNA gyrase subunit B gyrB,parE

replicative DNA helicase dnaB

NAD-dependent DNA ligase LigA ligA

dihydrofolate reductase dhfR,folA

Protein synthesis peptide chain release factor 1 prfA

preprotein translocase subunit SecA secA

preprotein translocase subunit SecY secY

translation initiation factor IF-1 infA

Continued on next page
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Table A.3 – Continued from previous page

Function Protein description Gene name(s)

translation initiation factor IF-2 infB

translation initiation factor IF-3 infC

elongation factor G fus,fusA

elongation factor Ts tsf

ribosome biogenesis GTP-binding protein YsxC engB,yihA

ribosome recycling factor frr

50S ribosomal protein L1 rplA

50S ribosomal protein L10 rplJ

50S ribosomal protein L11 rplK

50S ribosomal protein L13 rplM

50S ribosomal protein L14 rplN

50S ribosomal protein L15 rplO

50S ribosomal protein L16 rplP

50S ribosomal protein L17 rplQ

50S ribosomal protein L18 rplR

50S ribosomal protein L19 rplS

50S ribosomal protein L2 rplB

50S ribosomal protein L20 rplT

50S ribosomal protein L21 rplU

50S ribosomal protein L22 rplV

50S ribosomal protein L23 rplW

50S ribosomal protein L24 rplX

50S ribosomal protein L27 rpmA

50S ribosomal protein L3 rplC

50S ribosomal protein L34 rpmH

50S ribosomal protein L4 rplD

50S ribosomal protein L5 rplE

50S ribosomal protein L6 rplF

50S ribosomal protein L7/L12 rplL

30S ribosomal protein S10 rpsJ

30S ribosomal protein S11 rpS11,rpsK

30S ribosomal protein S12 rpsL

30S ribosomal protein S13 rpsM

30S ribosomal protein S14 rpsN

30S ribosomal protein S15 rpsO

30S ribosomal protein S16 rpsP

30S ribosomal protein S17 rpsQ

Continued on next page

172



Appendix A

Table A.3 – Continued from previous page

Function Protein description Gene name(s)

30S ribosomal protein S18 rpsR

30S ribosomal protein S19 rpsS

30S ribosomal protein S2 rpsB

30S ribosomal protein S3 rpsC

30S ribosomal protein S4 rpsD

30S ribosomal protein S5 rpsE

30S ribosomal protein S7 rpS7,rpsG

30S ribosomal protein S8 rpsH

30S ribosomal protein S9 rpsI

Transcription RNA polymerase sigma factor RpoD rpoD

transcription elongation factor NusA nusA

transcription antitermination protein NusG nusG

Energy metabolism triosephosphate isomerase tpiA

F0F1 ATP synthase subunit alpha atpA

F0F1 ATP synthase subunit beta atpD

F0F1 ATP synthase subunit gamma atpG

adenylate kinase adk

Cell division cell division protein FtsH ftsH,hflB

cell division protein FtsY ftsY

cell division protein FtsZ ftsZ

chromosomal replication initiation protein dnaA

Transportation signal recognition particle protein ffh

macrolide transporter ATP-binding /permease pro-

tein

lolD,macB,ybbA

Other NAD synthetase nadE

cytidylate kinase cmk

peptide deformylase def

phosphopyruvate hydratase eno

glyceraldehyde-3-phosphate dehydrogenase gap,gapA

serine hydroxymethyltransferase glyA

guanylate kinase gmk

S-adenosylmethionine synthetase metK,metX

GTPase ObgE obgE

phosphoglycerate kinase pgk

phosphatidylglycerophosphate synthetase pgsA

inorganic pyrophosphatase ppa

ribose-phosphate pyrophosphokinase prs,prsA

Continued on next page
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Table A.3 – Continued from previous page

Function Protein description Gene name(s)

uridylate kinase pyrH

putative DNA-binding/iron metalloprotein/AP en-

donuclease

gcp,ygjD

phosphoglyceromutase gpmI,pgm

GTP-binding protein EngA der,engA

thymidylate kinase tmk

A.4 Kinetoplastids

BFD3 ∪ BFD6 BFD6 BFD3 BFD3 ∩ BFD6

kinetoplastid Psize m3 m4 m3 m4 m3 m4 m3 m4
T. cruzi Esmeraldo-Like 10342 2587 2219 2289 1944 1613 1319 1314 1043
T. brucei gambiense 9668 3072 2832 2704 2474 1886 1715 1515 1356
T. brucei Lister strain 427 8529 3255 2837 2868 2480 2032 1698 1643 1341
L. infantum 8033 2527 2342 2240 2065 1573 1427 1285 1149
L. major 8045 2510 2349 2222 2073 1559 1431 1270 1154
L. braziliensis 7809 2446 2266 2168 1999 1530 1382 1251 1114

Table A.4: Numbers of predicted essential proteins in 6 kinetoplastids. (where
Psize = proteome size; BFD3/BFD6 = bloodstream form after 3/6 days respec-
tivly). The essential proteins of T. bruci strain TREU 927. were used to infer
essentiality using models m3 and m4 (as described in Chapter 2.2.7). The es-
sential predictions were based on proteins shown to be essential in either BFD6,
BFD3, both forms or either form.

kinetoplastid Psize % of proteome
T. cruzi Esmeraldo-Like 10342 61 (6323)
T. brucei gambiense 9668 80 (7739)
T. brucei Lister strain 427 8529 98 (8345)
L. infantum 8033 70 (5653)
L. major 8045 70 (5657)
L. braziliensis 7809 70 (5499)

Table A.5: Percentage of kinetoplastid proteme with co-ortholog relationships
with T. bruci strain TREU 927. (Psize = proteome size; Protein count in brack-
ets).
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A.5 Matrix database

Table A.6: The database tables for protein family sequence information and
screen compounds activity information. The datatypes for each column are
shown. Each database tables primary key (where available) is shown (pk). The
reference table(s) that post foreign keys are shown in fk table. The notes section
described the column data with example where appropriate.

matrix alignment - describes a protein family multiple sequence alignment (MSA).

column name type pk fk table notes

Alignment id String Y Unique name given to the protein

family alignment e.g. “HumanAnd-

PDBKinases“.

Accession String Y matrix gene

to uniprot

UniProt accession.

Seq res String The amino acid residue at this MSA

position e.g. “-” (alignment gap).

Aln pos Number Y The sequential position in the MSA.

Seq pos Number The sequential position in the

UniProt sequence.

Domain id Number Y The unique identifier for this do-

main, important where the UniProt

contains repeats of the same domain

family.

matrix sites - describes a binding site of a protein family in terms of sequence positions.

column name type pk fk table notes

Site id String Y unique name given to the binding

site e.g. “conserved atp site”.

Alignment id String Y matrix align-

ment

unique name given to the protein

family alignment e.g. “HumanAnd-

PDBKinases“.

Accession String Y matrix align-

ment

UniProt accession of a family mem-

ber used to describe the binding site.

Seq pos Number Y matrix align-

ment

UniProt sequence position.

matrix gene to uniprot - maps gene names and synonyms to UniProtKB accessions.

column name type pk fk table notes

Taxon Number Y newt entry NEWT taxon identifier for the pro-

tein screened.

Continued on next page
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Table A.6 – Continued from previous page

Accession String Y UniProtKB protein accession.

Synonym String Y the gene name or synonym for the

UniProt protein.

matrix activities - describes a set of protein-compound screening data.

column name type pk fk table notes

Taxon Number Y newt entry NEWT taxon identifier for the pro-

tein screened.

External data source String Y source of activities data e.g. “Ab-

bott”.

External compound id String Y unique identifier given for the com-

pound.

Activity units String measurement of affinity e.g “pKi”

Activity value Number affinity of the compound to the pro-

tein.

Activity qualifier String used to qualify the affinity e.g. “<”

(affinity lower than activity value).

External protein id String Y matrix gene to

uniprot .syn-

onym

identifier given for the protein (ex-

pected to be a standard gene name).

matrix compounds - describes the compounds of a assay.

column name type pk fk table notes

External data source String Y matrix activi-

ties

source of activities data e.g. “Ab-

bott”.

Cannonical smiles String string representation of the com-

pound structure.

External compound id String Y matrix activi-

ties

unique identifier for the compound

given by source.

matrix aaindex - describes a the AAindex resource. a database of amino acid descriptors.

column name type pk fk table notes

Accession String Y External AAindex accession. e.g.

“ARGP820101”.

Seq res String Y The amino acid residue described

e.g. “Y” (Tyrosine).

Original value Number The index value for the amino acid

e.g. “1.88”.

Normal value Number The index value for the amino acid

when scale normalized between -1

and 1.

Continued on next page
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Positive shifted Number The index value for the amino acid

when scale normalized between 1

and 10.

A.5.0.2 Matrix database usage examples

Consult a compound screening experiment to find (a) how many compounds have

been screened against some proteins of interest. Then add an acitivity cutoff to

find (b) only the potent compounds.

SELECT gu.accession uniprot ,

ma.external_protein_id gene ,

COUNT(ma.external_compound_id) compounds

FROM matrix_activities ma

JOIN matrix_gene_to_uniprot gu

ON ma.external_protein_id = gu.synonym

WHERE gu.accession IN (’P00519 ’,’O00311 ’,’O75582 ’)

-- use the Abbott screening data

AND ma.external_data_source = ’abbott_kinase ’

-- we know Abbott use pKi , so set an "active" cutoff

AND ma.activity_value >= 7 -- remove for (a)

-- ignore screens where activity not resolved

AND (ma.activity_qualifier != ’<’

OR ma.activity_qualifier IS NULL) -- remove for (a)

GROUP BY gu.accession , ma.external_protein_id;

(a) shows some genes have been screened with many more compounds than

others:

UNIPROT |GENE |COMPOUNDS

---------------------------

O75582 |RPS6KA5 | 938

O00311 |CDC7 |1912

P00519 |ABL1 |2065

(b) shows more of the compounds screened are potent against CDC7:

UNIPROT |GENE |COMPOUNDS

---------------------------

O75582 |RPS6KA5 | 51
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O00311 |CDC7 |806

P00519 |ABL1 |262

Find the positions in the MSA which reflect a ligand binding site.

SELECT ma.aln_pos

FROM matrix_sites ms

JOIN matrix_alignment ma

ON ms.alignment_id = ma.alignment_id

WHERE ms.accession = ma.accession

AND ms.seq_pos = ma.seq_pos

-- a small ligand binding site observed from

-- a binding site profile clustering run

AND ms.site_id = ’UnCentCorAverage_16 ’

-- the MSA the clustering used

AND ms.alignment_id = ’HumanAndCredo1 ’;

Which produces 7 MSA postions:

ALN_POS

-------

569

670

671

672

674

1458

1459

1460

Use this small binding site definition to find the equivalent residues from

another protein, and use an amino acid index to describe these residues:

SELECT ma.domain_id ,

ma.seq_pos ,

ma.seq_res ,

mi.original_value

FROM matrix_alignment ma

JOIN matrix_aaindex mi

ON mi.seq_res = ma.seq_res

WHERE ma.aln_pos in (569 ,670 ,671 ,672 ,674 ,1458 ,1459 ,1460)

AND ma.alignment_id = ’HumanAndCredo1 ’
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-- the UniProt protein we are describing

AND ma.accession = ’O00141 ’

-- an index of hydrophobicity

AND mi.accession = ’ARGP820101 ’

ORDER BY domain_id , ma.aln_pos;

produces a numerical value describing the hyrophobicity of the binding site

residues. In this case the protein target had only 1 kinase domain. The sequence

postions of the binding site on the original UniProtKB protein sequence are also

shown:

DOMAIN_ID |SEQ_POS |SEQ_RES |ORIGINAL_VALUE

-------------------------------------------

1 |189 |Q |0

1 |191 |E |0.47

1 |192 |R |0.6

1 |193 |C |1.07

1 |195 |L |1.53

1 |292 |Y |1.88

1 |293 |G |0.07

1 |294 |L |1.53

A.5.1 Binding site analysis
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Figure A.4: The distribution of binding site sequence identity in the Protein
kinases. The sequence identity (%ID) of the kinase pairs was calculated over the
48 residues in the Loose ATP binding site.
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Figure A.5: Hierarchical clustering of the PLIP highlight multiple modes of lig-
and binding. Modes largely overlap with the natural ATP binding, but distinct
allosteric sites can be observed. Clustering performed using Cluster 3.0 software
(de Hoon et al., 2004). Figure generated using TreeView (Saldanha, 2004).
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A.5.2 CREDO database

In this work, the major function of the CREDO database was to a) find the

binding sites of pdb ligands and b) to map those binding sites onto UniProtKB

sequences (so the binding sites information could be transferred to all protein

family members via a multiple sequence alignment). The following query finds

all interesting ligands of a kinase pdb chain, and maps their binding residues onto

a PLIP:

SELECT DISTINCT

rmp.uniprot accession ,

lig.name ligand_name ,

rmp.res_num uniprot_res ,

rmp.one_letter_code olc ,

count(distinct con.hetatm_id) contacts

FROM credo.structures str

JOIN credo.chains chn

ON str.id = chn.structure_id

JOIN credo.residues res

ON chn.id = res.chain_id

JOIN credo.atoms atm

ON res.id = atm.residue_id

JOIN credo.contacts con

ON atm.id = con.atom_id

JOIN credo.hetatms het

ON con.hetatm_id = het.id

JOIN credo.ligands lig

ON het.ligand_id = lig.id

JOIN credo.residuemap rmp

ON res.id = rmp.residue_id

-- ignore is_proximal types

WHERE con.is_proximal = 0

-- ignore very small ligands of <= 8 heavy atoms

AND lig.num_hvy_atoms > 8

-- this is out query PDB entry

AND str.pdb = ’3EQH’

AND chn.pdb_chain_id = ’A’
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GROUP BY

rmp.uniprot ,

lig.name ,

rmp.res_num ,

rmp.one_letter_code

ORDER BY ligand_name ,uni_res_num;

Finds two ligands for this pdb entry (both also shown in Figute 5.4), each of

these ligands sites could be mapped across the Kinome using the matrix database

described above (see A.5.0.2):

ACCESSION |LIGAND_NAME |UNIPROT_RES |OLC |CONTACTS

---------------------------------------------------

Q02750 |5BM |97 |K |1

Q02750 |5BM |99 |I |1

Q02750 |5BM |118 |L |2

Q02750 |5BM |127 |V |1

Q02750 |5BM |141 |I |3

Q02750 |5BM |143 |M |3

Q02750 |5BM |188 |H |1

Q02750 |5BM |189 |R |1

Q02750 |5BM |190 |D |2

Q02750 |5BM |207 |C |2

Q02750 |5BM |208 |D |6

Q02750 |5BM |209 |F |5

Q02750 |5BM |210 |G |2

Q02750 |5BM |211 |V |1

Q02750 |5BM |212 |S |1

Q02750 |5BM |216 |I |4

---------------------------------------------------

Q02750 |ADP |74 |L |2

Q02750 |ADP |75 |G |1

Q02750 |ADP |77 |G |1

Q02750 |ADP |80 |G |1

Q02750 |ADP |82 |V |4

Q02750 |ADP |95 |A |2

Q02750 |ADP |97 |K |2

Q02750 |ADP |144 |E |1

Q02750 |ADP |145 |H |1
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Q02750 |ADP |146 |M |2

Q02750 |ADP |150 |S |2

Q02750 |ADP |153 |Q |1

Q02750 |ADP |192 |K |1

Q02750 |ADP |194 |S |3

Q02750 |ADP |195 |N |1

Q02750 |ADP |197 |L |4

Q02750 |ADP |208 |D |1

CREDO Schema Diagram on two pages, (created by Adrian Schreyer). The

Oracle implementation mirrors this MySQL version where possible. More infor-

mation about the data content of CREDO can be found at http://marid.bioc.

cam.ac.uk/credo.
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Brötz-Oesterhelt, H. & Sass, P. (2010). Postgenomic strategies in antibac-

terial drug discovery. Future Microbiology , 5, 1553–1579. 5

Brun, R., Blum, J., Chappuis, F. & Burri, C. (2010). Human African

trypanosomiasis. The Lancet , 375, 148–159. 69

Bundkirchen, A., Brixius, K., Bölck, B., Nguyen, Q. & Schwinger,

R.H. (2003). 1-adrenoceptor selectivity of nebivolol and bisoprolol. A compar-

ison of [3H]CGP 12.177 and [125I]iodocyanopindolol binding studies. European

Journal of Pharmacology , 460, 19–26. 105

Caffrey, C.R., Rohwer, A., Oellien, F., Marhöfer, R.J., Braschi,
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