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“The most beautiful experience we can have is the mysterious. It is the 

fundamental emotion that stands at the cradle of true art and true science.” 

   

-  Albert Einstein (from his essay “The World as I see it”)  
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VI. Summary 
 
Parkinson’s disease (PD) is the most common neurodegenerative movement 

disorder affecting about 1% of population above the age of 65. It is believed that 

common forms of the disease are caused by a combination of both genetic and 

environmental factors. Over the last 15 years, mutations in a growing number of 

genes have been identified in rare families with inherited PD; however, the 

function of many of these genes remains unknown. My PhD project involves the 

study of one such gene known as PTEN-induced kinase 1 (PINK1); in which 

missense mutations lead to autosomal recessive PD. PINK1 is unique amongst 

all known protein kinases since it is primarily localized to the mitochondria. 

When I started my project, little was known about the catalytic properties of 

PINK1 since the human enzyme was inactive in vitro. In particular it was 

unknown how PINK1 kinase activity was regulated or what was the identity of its 

downstream substrate(s). Following the discovery of catalytically active insect 

orthologues of PINK1 in the laboratory, I deployed these to investigate whether 

PINK1 could phosphorylate all known PD-linked proteins as well as proteins 

reported to interact with PINK1. I found that Parkin, a RING-IBR-RING E3 

ubiquitin ligase, was the only protein robustly phosphorylated by insect PINK1 

at residue Serine 65 (Ser65). This phosphorylation event led to marked 

activation of its E3 ligase activity. I also uncovered the mode of regulation of 

mammalian PINK1 and discovered that human PINK1 is specifically activated 

by mitochondrial membrane potential depolarization, enabling it to 

phosphorylate Parkin at Ser65 in vivo. Once activated, PINK1 also undergoes 

autophosphorylation at several sites including Threonine 257 (Thr257) and this 

event is accompanied by an electrophoretic mobility band-shift.  Monitoring for  
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Parkin Ser65 or PINK1 Thr257 phosphorylation could represent the first 

biomarkers for monitoring PINK1-Parkin signaling in vivo.  

 

The second part of my thesis describes the identification of PINK1 interacting 

proteins by a SILAC based interaction screen in mitochondrial fractions. I 

describe validation of these interactors by demonstrating that they can all form 

endogenous complex with PINK1 and investigate their role as potential PINK1 

regulators using shRNA knockdown strategy.  

 

In the final part, I describe the identification of novel substrates of PINK1 by a 

SILAC based phosphoproteomic screen, including the discovery of several Rab 

GTPase proteins namely, Rab8a, Rab8b and Rab13, which are all 

phosphorylated at Serine 111. I have presented validation of these substrates in 

vivo and propose strategies for future work to understand the physiological role 

of this phosphorylation event. 

 

Overall, the work in this thesis outlines a signaling pathway for the PINK1 

kinase in which PINK1 can phosphorylate Parkin and Rab proteins upon 

mitochondrial depolarisation.  My work also indicates that monitoring the 

phosphorylation of Parkin at Ser65, PINK1 at Thr257 and/or Rabs at Ser111 

represent the first biomarkers for examining the PINK1 signaling pathway in 

vivo. 
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1. General Introduction 

1.1. Signal Transduction  

 
Every living organism features an intelligently designed circuit for relay of 

information. A unicellular organism uses this circuit to communicate with its 

surrounding environment. At a multicellular level, this machinery is 

indispensible for communicating within the microenvironment of a cell as well 

as with cues from neighbouring cells in order to function as a whole organism.  

Signal transduction is a collective term used to describe a multistep relay of 

information initiated by binding of an extracellular signaling molecule called a 

ligand (e.g. growth factors, hormones, light) to surface receptor proteins 

embedded in the plasma membrane of a cell (Fig. 1.1). A ligand induced 

conformational change in the receptor triggers a cascade of intracellular events 

such as gene activation, metabolic changes or further activation of secondary 

messengers resulting in an amplification of the initial signal, thereby controlling 

a variety of cellular processes.  

 

For effective signal amplification, the cell chooses to employ certain key 

intracellular players such as enzymes and small molecules called secondary 

messengers (e.g. cAMP, Ca2+). Although they may vary in their physical 

properties both are extremely dynamic in amplifying a signal by either 

catalyzing a repertoire of enzymatic reactions or by diffusing in large quantities 

to trigger a chemical relay to downstream effectors, respectively (Fig.1.1).  A  
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Figure 1.1 Signal transduction circuit within a cell 

Illustration of a typical signal transduction pathway activated in response to an extracellular 

ligand binding to a membrane receptor. This triggers a cascade of intracellular signaling 

molecules that bring about changes in metabolism and/or gene expression.  

 

 
classic example of a signal cascade is the photo-activation of Rhodopsin in rod 

cells of the human eye required for vision in dark light. The transmembrane 

protein comprises of a protein moiety, Opsin (receptor) reversibly linked to a c-

o-factor, Retinal – a Vitamin A derivative. Light (ligand) induced conformational 

changes in Opsin leads to activation of an associated G-protein, which 

eventually signals to Phosphodiesterase (enzyme) leading to a decrease in 

cGMP levels (secondary messenger), hyperpolarization of the cell and 

subsequent change in neurotransmitter release.  

Receptor

Enzyme

Metabolism

Gene expression

Secondary 
messenger

LigandSignal transduction
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1.2. Protein phosphorylation 

Signaling mechanisms within a cell require proteins to function in a concerted 

manner. However, at various stages of signal transduction, protein function can 

be regulated by either co-translational or post-translational modifications 

mediated by enzymes. The majority of intracellular signaling involves a large 

and diverse family of enzymes known as protein kinases. These enzymes 

catalyze transfer of γ-phosphate from the energy source, Adenosine Tri-

phosphate (ATP), to generate phosphate monoesters with protein alcohol 

groups (Ser/Thr) and/or protein phenolic groups (Tyr).  

 
The first evidence for protein kinase activity dates back to 1954 when Eugene 

P. Kennedy described a liver enzyme that catalyzed casein phosphorylation 

(Burnett & Kennedy, 1954).  Not long after, Fischer and Krebs as well as 

Sutherland and Wosilait presented evidence of protein phosphorylation in 

glycogen metabolism (Fischer & Krebs, 1955) (Sutherland & Wosilait, 1955).  

They discovered that the inactive ‘b’ form of glycogen phosphorylase could be 

converted to its active ‘a’ form by an enzyme termed phosphorylase kinase with 

the help of Mg2+ATP (Krebs & Fischer, 1956).  Almost a decade later, it was 

discovered that phosphorylase kinase was regulated by an upstream kinase 

Protein Kinase A (PKA), thus establishing the first evidence of a signaling 

cascade mechanism (Walsh et al, 1968). Although protein phosphorylation was 

initially regarded as a specialized mechanism to regulate glycogen metabolism, 

much research over the ensuing decades have established phosphorylation as 

an important event regulating many essential cellular processes (Cohen, 

2002a; Cohen, 2002b). 
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A phosphorylation reaction is considered to be energetically favourable as it is 

reversible by another group of enzymes called phosphatases and hence 

releases the initial molecule of phosphate being consumed (Fig. 1.2). A 

phosphate group carries two negative charges and hence its addition to a polar 

group in a substrate may lead to a major conformational change. This change 

in conformation could alter activity of the substrate if it is an enzyme; modulate 

binding of interacting protein partners; affect stability or alter localisation 

(Fig.1.2a and c). In some cases, two phosphorylated sites in close proximity 

within a protein can recruit adaptor proteins called 14-3-3, which help in 

shuttling proteins between cellular compartments (Fig.1.2d) (Yaffe et al, 1997).  

 

 

 

Figure 1.2 Protein phosphorylation 

Illustration depicts reversible mechanism of protein phosphorylation that can a) activate a 
protein by conformational change, b) lead to association with a binding partner, c) can affect 
stability of a protein or d) aid binding of scaffold proteins to shuttle them between cellular 
compartments.  
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1.2.1. The Human Kinome  

Approximately 1.7% of the human genome encodes for protein kinases, 

collectively termed the ‘human kinome’. This translates to 518 different kinases 

classified into sub-groups based on sequence similarity and function (Fig 1.3) 

(Manning et al, 2002). With the discovery of the first crystal structure of a kinase 

PKA (Knighton et al, 1991) and several subsequent discoveries (De Bondt et al, 

1993; Zhang et al, 1995) early on, it was exciting to see that most kinases fold 

into a common catalytic core structure. Many have evolved with additional 

domain fusions for functional diversity. 

 
Kinases have been broadly classified into seven groups: AGC (containing PKA, 

PKG and PKC families), CaMK (calcium/calmodulin-dependent protein 

kinases), CK1 (Casein kinase 1), CMGC (containing the CDK, MAPK, GSK3, 

CLK families), STE (containing the homologues of yeast Sterile 7, Sterile 11, 

Sterile 20 kinases), TK (Tyrosine kinases), and TKL (Tyrosine kinase–like) 

(Manning et al, 2002).  A subset of 32 kinases is considered to belong to the 

‘atypical’ kinase family, which do not share sequence similarity with a typical 

kinase domain and yet retain catalytic activity e.g. ATM kinase implicated in 

DNA damage response. In some cases, atypical kinases retain structural 

similarity to a canonical kinase domain (e.g. RIO kinases). Another subset of 

kinases are known as ‘pseudokinases’, which retain a kinase fold but have lost 

essential motifs required for catalytic activity (Manning et al, 2002). Despite lack 

of catalytic activity, pseudokinases have emerged in recent years to play a key 

role as a scaffold to escort proteins or allosterically regulate a functional kinase 

e.g. the pseudokinase STRAD has been shown to regulate the activity of the  
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tumour suppressor kinase, LKB1 (Zeqiraj et al, 2009).  

 

Figure 1.3 The Human Kinome 

Phylogenetic tree of all known human protein kinases based on sequence similarity of the 

kinase domain (Manning et al, 2002). 
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1.2.2.  Structural features of a kinase domain 

A kinase domain usually spans around 250-300 amino acids with highly 

conserved sub-structural motifs. These conserved motifs are vital in 

understanding the mechanism of phosphoryl transfer mediated by a kinase.  A 

kinase fold typically consists of 12 sub-domains arranged as a bi-lobed 

structure (Fig. 1.4A); the smaller N-terminal lobe (N-lobe) consists of up to 5 

sub-domains primarily made up of β-sheets and the rest of them are organized 

into a larger C-terminal-lobe (C-lobe) comprising 6 α-helices (Hanks & Hunter, 

1995). The two lobes are interconnected by a hinge region, which provides 

them with flexibility for adopting active and inactive conformations. 

 

Sub-domain I contains a flexible glycine rich loop with GXGXXG motif (strands 

β1 and β2) that orients nucleotide phosphates by main-chain amide 

interactions. A lysine in sub-domain II and glutamic acid in sub-domain III 

(strand β3 and helix αC respectively) form an ion-pair interaction. An aspartic 

acid (HRDLKXXN) of sub-domain V in the catalytic loop (strand β7) serves as a 

base for phosphotransfer and an invariant Asp in the DFG motif of sub-domain 

VII (strand β8-β9) co-ordinates the divalent cation, Mg2+, and the β and γ 

phosphates of ATP for phosphoryl transfer (Fig.1.4A) (Hanks & Hunter, 1995).  

Researchers have exploited the invariant nature of either Lys in sub-domain II 

or Asp in DFG motif by site-directed mutagenesis of either residue to create a 

kinase-inactive mutant for loss-of-function studies. Sub-domain VIII contains the 

substrate binding APE motif and the region between DFG and APE motif is 

called the “T loop” or “activation loop” containing a crucial Thr/Ser residue.  
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Figure 1.4 Structural features of a kinase 

(A) Illustration highlighting the sub-domains and conserved motifs in the N-lobe and C-lobe of 
a kinase. α represents helices and β represents sheets. 
 

(B) Crystal structure of mouse Protein Kinase A (PKA). N-lobe is represented in lilac and C-
lobe in darker shade of lilac. Side chains highlighted in yellow represents the conserved 
Lysine in sub-domain II of N-lobe, in orange represents DFG motif and in red represents 
HRD motif. These are crucial for kinase activation by mediating ATP binding and metal co-
ordination. 
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For most kinases, this Thr/Ser residue either undergoes cis-phosphorylation 

(auto-phosphorylation) or phosphorylation by an upstream kinase thereby 

stabilizing the activation loop for correct orientation of catalytic residues for 

phosphate transfer to a substrate (Hanks & Hunter, 1995).  For example, 

maximal activation of PKA-Cα subunit occurs upon phosphorylation of Thr197 in 

the activation loop (Steinberg et al, 1993). Another interesting example is trans-

autophosphorylation (phosphorylation by the adjacent kinase within a dimer or a 

higher order multimer) of CamKII Thr286 residue by the neighbouring active 

kinase within a multimeric CaMKII holoenzyme (Miller et al, 1988).  

 

1.2.3.  Protein kinases associated with human disease 

Protein kinases participate in various cellular processes and hence it is not 

unexpected that they undergo a high selective pressure to resist genetic 

variations. Nevertheless, variations do occur leading to severe consequences 

such as inactivation of a kinase or an abnormal increase in kinase activity, 

which are causative of several debilitating inherited diseases and sporadic 

cancers. Table 1.1 lists protein kinases found to be mutated in inherited human 

diseases (Lahiry et al, 2010). Of relevance to this thesis, several kinases have 

been implicated in neurodegenerative diseases. Mutations in the LRRK2 or 

PINK1 kinases are causative of a devastating neurodegenerative disorder 

called Parkinson’s disease; whilst mutations in TTBK2 or PKCγ lead to 

spinocerebellar ataxia 11 or 14 (SCA11 or 14) respectively. Mutations in the 

ATM kinase lead to a rare neurodegenerative disease called Ataxia 

telangiectasia (Table 1.1). 
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Elucidation of the signaling pathways associated with these disease-associated 

kinases is well underway and already delivered new knowledge on the key 

mechanisms underlying several diseases. This has led to the identification of 

novel drug targets. The proof-of-concept example was targeting of Abelson 

tyrosine kinase (Abl) in chronic myeloid leukemia that led to the discovery of 

Imatinib (commercially known as Gleevec), the first clinically approved kinase 

inhibitor used for targeted cancer therapy (Capdeville et al, 2002). To date the 

FDA has approved 23 small molecule kinase inhibitors used for cancer therapy, 

the latest one being Dabrafenib (developed by GlaxoSmithKline), a selective 

inhibitor of BRAF kinase used for treatment of metastatic melanoma, approved 

in May 2013 (Hauschild et al, 2012). 
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Table 1.1 Kinases mutated in human disease. 

Kinase highlighted in red is central to the work in this thesis. 
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1.3. Introduction to Parkinson’s disease 
 
 
Parkinson’s disease (PD) is the most common neurodegenerative movement 

disorder affecting about 1% of the population above the age of 65 (Van Laar & 

Berman, 2009). In 1817, James Parkinson, a British physician, documented the 

first medical description of the disease that was to bear his name in a 

monograph “An essay on the Shaking Palsy” where he described patients 

suffering from ‘paralysis agitans’. He described the clinical features in succinct 

English as follows (Parkinson, 1817):  

 
“Involuntary tremulous motion, with lessened muscular power, in parts not in 

action and even when supported; with a propensity to bend the trunk forward, 

and to pass from a walking to a running pace: the senses and intellects being 

uninjured.” 

 
Almost half a century later, Jean-Martin Charcot, who was instrumental in 

refining the clinical spectrum of the disease, renamed it as Parkinson’s disease 

in honour of James Parkinson. The major clinical symptoms of this movement 

disorder include resting tremor, bradykinesia (slowness in execution of 

movement) and rigidity.  Pathologically, PD is characterized by the relatively 

selective loss of pigmented dopaminergic neurons in the substantia nigra, with 

loss of dopamine in the striatum (Ehringer & Hornykiewicz, 1960). Surviving 

neurons typically contain proteinaceous cytoplasmic inclusions called ‘Lewy 

bodies’, first observed in 1912 by Frederick Lewy in post mortem PD brain 

(Lewy, 1912). 
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The onset of symptoms in PD is believe to appear after ~50-60% loss of 

dopaminergic neurons in the substantia nigra pars compacta (Riederer & 

Wuketich, 1976). Currently, L-DOPA (L-3,4 dihydroxyphenylalanine) is the most 

widely used drug for symptomatic relief. In dopaminergic neurons, the 

biosynthesis of dopamine involves an initial enzymatic reaction catalyzed by 

tyrosine hydroxylase that converts the amino acid L-tyrosine to L-DOPA. The 

enzyme DOPA decarboxylase then converts L-DOPA into the neurotransmitter, 

dopamine. While dopamine itself is restricted to the brain, L-DOPA can freely 

cross the blood brain barrier and serves in replenishing dopamine levels lost in 

PD as a consequence of neuronal death. Besides the central nervous system, 

L-DOPA is converted to dopamine also in the peripheral nervous system often 

leading to side effects when administered on its own. Most treatment strategies 

aim at combining L-DOPA with a peripheral L-DOPA decarboxylase inhibitor 

(carbidopa) depending on the stage of disease and predominating symptoms 

(Nyholm, 2006). Interestingly, a natural source of L-DOPA found in a tropical 

legume, Mucuna pruriens, has been described as early as 1500 BC in ancient 

Indian Ayurvedic medicine to treat neurological disorders bearing similarity with 

Parkinson’s disease (Manyam, 1990). Although L-DOPA provides symptomatic 

relief, it has no effect on the underlying disease progression, and a cure for PD 

remains elusive. 

1.3.1 Genetics of Parkinson’s disease 

Although the aetiology of PD is yet to be deduced, the prevailing hypothesis is 

that the common form of the disease is due to a combination of genetic and 

environmental factors. Despite the fact that most PD cases are sporadic,  
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genetic analysis of familial forms has opened a window to explore cellular 

mechanisms underlying PD pathogenesis. Only around 5-10% of cases are 

known to have familial forms of the disease (Corti et al, 2011). Genes that have 

been associated with PD are termed as PARK to denote their link to PD and are 

numbered in chronological order of their identification. Table 1.2 lists 18 PD-

associated chromosomal loci or genes identified to date. These comprise 

confirmed loci, unconfirmed loci for which linkage analysis could not be 

replicated, unidentified genes with a confirmed linkage and potential risk factors 

(Klein & Westenberger, 2012). Among the genes identified, 5 genes have been 

confirmed in heritable monogenic forms of PD; mutations in α-Synuclein 

(SNCA) and Leucine-rich repeat kinase 2 (LRRK2) linked to autosomal-

dominant forms of PD and mutations in Parkin, PTEN-induced kinase 1 

(PINK1), and DJ1 linked to autosomal recessive forms.  

1.3.2 Autosomal Dominant Parkinson’s disease 

 
α-Synuclein (SNCA) was the first PD gene identified in a large Italian-American 

family with autosomal dominant Parkinsonism (Polymeropoulos et al, 1997). 

SNCA forms a major component of Lewy body aggregates found in post-

mortem brain of sporadic and inherited PD (Spillantini et al, 1997). Mutations in 

SNCA, although quite rare, are causative of autosomal dominant early–onset 

Parkinson’s disease (age of onset <50 years). So far, five missense mutations 

(A30P, E46K, G51D, A53T and H50Q) as well as gene duplications and 

triplications have been reported (Appel-Cresswell et al, 2013; Kiely et al, 2013; 

Klein & Schlossmacher, 2006). The physiological function of SNCA is still  



1 Introduction 
 

 
-16- 

 

unknown, although recently it has been reported to play a role in hippocampal 

neurogenesis (Winner et al, 2012).  SNCA is known to be natively unfolded but 

has a propensity to form toxic oligomers or protofibrils (Conway et al, 2000). 

Several missense mutations have been shown to accelerate the formation of 

these and ultimately lead to formation of β-sheets (Bertoncini et al, 2005; Wise-

Scira et al, 2013).  The occurrence of gene duplications or triplications leads to 

an early onset of clinical symptoms with a more severe phenotype and faster 

progression indicating a 

 

 

Table 1.2 PD-associated gene loci (Klein & Westenberger, 2012). 

Symbol Gene locus Disorder Inheritance Gene Status 

PARK1 4q21‐22 EOPD AD SNCA !"#$%&'()
PARK2 6q25.2‐q27 EOPD AR *+&,%# !"#$%&'()

PARK3 2p13 !-+..%/+-0*1 AD 2#,#"3# 2#/"#$%&'()
PARK4 4q21‐q23 EOPD AD SNCA

4&&"#("5.0-"/5.0
67)(#8%/+-08"0*9:;<=

PARK5 4p13 !-+..%/+-0*1 AD UCHL1 2#/"#$%&'()
PARK6 1p35‐36 EOPD AR *7>;< !"#$%&'()

PARK7 1p36 EOPD AR DJ1 !"#$%&'()

PARK8 12q12 !-+..%/+-0*1 AD ?::;@ !"#$%&'()
PARK9 1p36 AR ATP13A2+8AB%/+-0*10

3%8C0)('(#8%+

PARK10 1p32 !-+..%/+-0*1 :%.,0D+/8"& 2#,#"3# !"#$%&'()

!"#$%&'()

PARK11

PARK12

PARK13

PARK14

PARK15

PARK16

PARK17

PARK18

2q36‐27 ?+8(E"#.(80*1 AD 2#/"#$%&'()2#,#"3#
Xq21‐25 !-+..%/+-0*1 :%.,0D+/8"& 2#,#"3# !"#$%&'()
2p12 !-+..%/+-0*1 91F:%.,0D+/8"& 2#/"#$%&'()HTRA2

22q13.1 4G0)A.8"#%+E
B+&,%#."#%.' AR PLA2G6 !"#$%&'()

22q12‐q13 4G0B+&,%#."#%+#E
BA&+'%)+-0.A#)&"'( AR FBXO7 !"#$%&'()

1q32 !-+..%/+-0*1 :%.,0D+/8"& 2#,#"3# !"#$%&'()

16q11.2 !-+..%/+-0*1 AD

AD!-+..%/+-0*13q27.1

VPS35 !"#$%&'()
2#/"#$%&'()E1F4G1

EOPD ‐ Early‐onset Parkinson’s disease,  AD‐ Autosomal dominant,  AR ‐ Autosomal recessive
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correlation with gene dosage (Fuchs et al, 2007). Another gene which 

numerically is a much more common cause of autosomal dominant PD, 

encodes a large multi-domain protein, Leucine Rich Repeat Kinase 2 (LRRK2). 

The N-terminal region of LRRK2 bears leucine-rich repeats and and both a 

GTPase and kinase domain. Around 5 definite pathogenic mutations have been 

identified most of which cluster around the GTPase or kinase domain. By far, 

the most frequent and best-studied pathogenic mutation is G2019S, which is 

known to significantly increase the kinase activity (Jaleel et al, 2007; MacLeod 

et al, 2006). Consequently, LRRK2 is a major drug target with several 

pharmaceutical companies developing selective inhibitors as a potential 

treatment for PD. 

 

1.3.3 Autosomal Recessive Parkinson’s disease 

 
Mutations in the E3 ubiquitin ligase, Parkin, lead to early onset autosomal 

recessive early-onset Parkinson’s disease (AR EOPD) (Kitada et al, 1998).  The 

typical age of onset is 30-40 years, although certain homozygous missense 

mutations in Parkin lead to Juvenile Parkinson’s disease (age of onset 

<21years). Parkin is the second largest gene in the human genome after 

dystrophin, consisting of 12 exons and together with intronic regions spans up 

to 1.3MB. Parkin is an enzyme that is 465 aa in length, comprising a regulatory 

Ubl domain (residues 1-76); a RING0 domain (residues 145-215); a RING1 

domain (residues 236-293) that binds to an E2; an IBR domain (residues 327-

380); and a RING2 domain that mediates the enzyme’s catalytic activity (413-

450).  
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Recent groundbreaking insights have revealed that Parkin and other members 

of the RING-IBR-RING (RBR) family of E3 ligases exhibit HECT-like properties 

(Lazarou et al, 2013; Wenzel et al, 2011). Specifically, Parkin contains a highly 

conserved catalytic cysteine (Cys431) within its RING2 domain, which acts as a 

ubiquitin acceptor that forms an intermediate thioester bond prior to 

ubiquitylation of its substrate (Wenzel et al, 2011). The physiological relevance 

of this catalytic cysteine is underscored by the presence of human disease-

causing mutations at this residue (Cys431Phe), which have been shown to 

abolish Parkin catalytic activity (Trempe et al, 2013). Missense mutations can 

occur in any domain throughout the protein and rearrangements such as 

deletions or duplications of exons also occur (Klein & Westenberger, 2012).   

 

The second most common gene mutated in AR EOPD is the PINK1 gene that 

encodes a Ser/Thr protein kinase that localizes in mitochondria, which will be 

discussed in great detail in 1.4. In fact human patients with mutations in either 

PINK1 or the aforementioned Parkin display similar clinical symptoms 

(Abeliovich & Flint Beal, 2006). In contrast to Parkin, most of the variations in 

PINK1 are found to be missense mutations distributed throughout the length of 

the protein. The majority of missense mutations lead to loss-of-function of the 

kinase activity signifying the importance of PINK1’s enzymatic function in PD 

pathogenesis. A major aim of this thesis has been to identify and understand 

the downstream signaling pathway of PINK1.  
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A third gene associated with AR EOPD is the DJ1 gene, with a fairly low 

frequency of occurrence of 1-2% (Pankratz et al, 2006). DJ1 protein is believed 

to function as an oxidative chaperone and so far around 10 mutations are 

reported to be inherited in a homozygous or compound heterozygous fashion. 

Mutations in DJ1 lead to instability and proteasomal degradation of the protein 

(Anderson & Daggett, 2008).  

 

1.3.4 Genes with potential link to PD and risk factors 

 
Apart from the six confirmed monogenic forms of PD, several other genes 

(ATP13A2, FBXO7, UCHL1, HTRA2) listed in Table 1.2 are found to be 

causative of PD either by linkage analysis or by candidate gene approach. 

However, some of these genes (HTRA2, UCHL1) are still unconfirmed, while 

others cause a more complex phenotype (ATP13A2, FBX07). Nevertheless a 

better understanding of the physiological function of these genes causing 

complex PD may still shed light on the mechanisms of more conventional types 

of PD due the likely existence of overlapping pathways.   

 

1.4 PINK1 

 Initial discovery 1.4.1

 
A Japanese group published the first report on PINK1, in a study of the tumor 

suppressor gene PTEN (Phosphatase and Tensin Homolog). Their study found 

PINK1 to be transcriptionally upregulated in ovarian cancer cell lines over- 
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expressing exogenous PTEN (Unoki & Nakamura, 2001). However the first 

genetic link between PINK1 and Parkinson’s disease was established in 2004, 

when disease-segregating mutations in PINK1 (G309D missense and W437X 

nonsense) were identified in two families with AR EOPD (Valente et al, 2004; 

Valente et al, 2001). As discussed earlier in 1.3.1.2, several missense and 

nonsense PINK1 mutations have been linked to early onset PD with an average 

age of onset ranging between 20-40 years (Farrer, 2006).  The PINK1 gene 

comprises 8 exons that span 1.8kb and encodes a protein of 581 amino acids. 

At the messenger RNA level, a ubiquitous expression pattern is seen with 

higher levels of expression in heart, skeletal muscle, testis and brain (Taymans 

et al, 2006). PINK1 mRNA levels in the brain are predominantly neuronal in 

substantia nigra, hippocampus and cerebellar Purkinje cells (Blackinton et al, 

2007). 

 Domain architecture of PINK1  1.4.2

 
PINK1 is unique amongst all protein kinases as it contains an N-terminal 

mitochondrial target sequence (MTS) (1-34 residues). Earlier work confirmed 

that PINK1 localizes to mitochondria and that this required an intact MTS (Muqit 

et al, 2006; Valente et al, 2004). The catalytic domain of PINK1 (150-513 

residues) consists of a Ser/Thr kinase domain with conserved sub-structural 

motifs yet PINK1 is not closely related to any other protein kinase (refer to 

Human Kinome – Fig. 1.3). The kinase domain is quite unusual in that it 

contains three unique insertions interspersed between the β-sheets that 

constitute the N-lobe of a protein kinase (Woodroof et al, 2011). Further it  
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contains a C-terminal hydrophobic region of unknown function (513-581 

residues). 

 
Several pathogenic mutations comprising missense mutations or nonsense 

mutations have been identified across the length of the protein (Fig. 1.5) (Corti 

et al, 2011; Deas et al, 2009).  

 

  

Figure 1.5 Domain architecture of PINK1 with PD-linked pathogenic  
mutations 

MTS – Mitochondrial Target Sequence, TM – Transmembrane domain, Ins1 – Insertion 1, Ins2 
– Insertion 2, Ins3 – Insertion 3, CTD – C-terminal domain 

 

 Mitochondrial localization and processing of PINK1 1.4.3

 
Whilst the mitochondrial localization of PINK1 has been established (Muqit et al, 

2006; Silvestri et al, 2005), the exact location of PINK1 in the mitochondria has 

been unclear. Perhaps the most convincing data has come from the 

Przedborski lab in which they determined by limited proteolysis analysis of  
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mitochondria that PINK1 localizes to the outer mitochondrial membrane with its 

kinase domain facing the cytoplasm (Zhou et al, 2008).  

 

PINK1 (through its MTS) is imported via the canonical mitochondrial 

TOM/TIM23 (Translocase of Outer Membrane/ Translocase of Inner Membrane 

23) complex (Fig.1.6A) at the outer and inner membrane in a membrane 

potential dependent manner leading to cleavage of its MTS by Mitochondrial 

Processing Peptidase (MPP) located within the mitochondrial matrix (Greene et 

al, 2012) (Fig.1.6B). This cleaved import intermediate then undergoes 

sequential proteolytic cleavage by the transmembrane protease, PARL 

(Presenilin-associated rhomboid like protease), giving rise to a PINK1 fragment 

whose starting amino acid is residue Phe104 (Fig. 1.6D)(Meissner et al, 2011; 

Whitworth et al, 2008). This de-stabilizing amino acid then targets processed 

PINK1 for degradation by the N-end Rule pathway and ultimately removed by 

the 26S proteasome in the cytoplasm (Yamano K, 2013) (Fig.1.6C). This is 

consistent with the observation that treatment of PINK1-expressing cells with 

proteasomal inhibitor (MG132) leads to an accumulation of cleaved PINK1 

(Muqit et al, 2006). However, PINK1 has been shown to still undergo cleavage 

albeit with a distinct cleavage pattern even in the absence of PARL indicating 

that PARL may not be the only protease involved PINK1 processing under 

basal conditions (Greene et al, 2012). Under conditions where the mitochondrial 

membrane potential is dissipated, PINK1 import and subsequent cleavage by 

its protease/s is inhibited (Jin et al, 2010), leading to a dramatic stabilization of 

PINK1 (Matsuda et al, 2010; Meissner et al, 2011; Narendra et al, 2010).  
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Figure 1.6 Mitochondrial import and processing of PINK1 

Illustration depicts the complex mechanism of mitochondrial import and processing of PINK, 
which begins with A) PINK1 being imported from cytoplasm to mitochondria, B) Translocation of 
PINK1 through TOM/TIM23 import machinery and cleavage of presequence in the mitochondrial 
matrix by Mitochondrial Processing Peptidase (MPP), C) Cleaved import intermediate 
undergoes a second step of proteolytic cleavage by PARL and cleaved product is degraded by 
26S proteasome and D) Upon dissipation of mitochondrial membrane potential, import and 
cleavage of PINK1 is inhibited and it stabilizes in the outer mitochondrial membrane. OM – 
Outer mitochondrial Membrane, IM - Inner mitochondrial Membrane, ΔΨ – mitochondrial 
membrane potential.  
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1.5 Signal Transduction by PINK1 
 

 Kinase activity of PINK1  1.5.3

Initial over-expression studies suggested that the kinase activity of PINK1 might 

have a neuroprotective role since disease mutants of PINK1 rendered cells 

vulnerable to apoptosis in the face of cellular stress (Petit et al, 2005; Valente et 

al, 2004). However, the catalytic properties of PINK1 remained unknown since 

in our hands and those of many other groups recombinant human PINK1 did 

not exhibit significant kinase activity. This prevented the establishment of a 

robust kinase assay of PINK1 and additionally has limited the ability to use 

traditional biochemical approaches to identify PINK1 substrates. However, a 

recent discovery from our lab has established that insect orthologues of PINK1, 

including Tribolium castaneum PINK1 (TcPINK1), are catalytically active when 

expressed in Escherichia coli (Woodroof et al, 2011). This has enabled the 

development of a PINK1 kinase assay which has revealed fundamental insights 

into the intrinsic catalytic properties of PINK1 and demonstrated that most 

disease-associated mutations of PINK1 abrogate its kinase activity (Woodroof 

et al, 2011). The discovery of TcPINK1 has also provided an opportunity to 

investigate the direct substrates of PINK1. 

 Role of PINK1 in mitochondria 1.5.4

The first link between Parkinson’s disease and mitochondria was established in 

the early 1980s when a neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6– 

tetrahydropyridine), an accidental byproduct of illicitly synthesized heroin,  
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resulted in a Parkinsonian syndrome indistinguishable from idiopathic PD in 

Californian drug addicts (Langston et al, 1983). This drug crosses the blood 

brain barrier, wherein it is metabolized to MPP+ and then enters  dopaminergic 

neurons via the dopamine transporters leading to inhibition of mitochondrial 

complex I (NADH ubiquinone oxidoreductase) and profound dopaminergic loss 

and Parkinsonism (Nicklas et al, 1985). MPTP and other complex I inhibitors 

such as rotenone are now used widely to model PD in animals (Hirsch, 2007).  

A reduction in complex I activity has also been found in post mortem PD brains 

further suggesting a role for mitochondrial dysfunction in the pathogenesis of 

PD (Parker et al, 1989; Schapira et al, 1989).  

 

1.5.4.1 PINK1-Parkin in mitochondrial dysfunction 
 
 
There has been accumulating evidence of a function for PINK1 and another PD-

associated gene, Parkin, in mitochondrial quality control. The first link was 

established in Drosophila melanogaster where PINK1 Knockout (KO) flies were 

found to have a similar phenotype to Parkin KO flies including muscle 

degeneration and abnormalities in mitochondrial morphology (Clark et al, 2006; 

Park et al, 2006). Moreover, the phenotype of PINK1 KO flies could be rescued 

by transgenic expression of Parkin but not vice versa, suggesting that Parkin is 

downstream of PINK1 (Clark et al, 2006; Park et al, 2006).  

 

Recently there has been a flurry of reports confirming a link between PINK1 and 

Parkin in mammalian cells. The consensus of these reports is that Parkin, which 

normally resides in the cytoplasm translocates to the mitochondria when the  
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membrane potential is depolarized by mitochondrial uncoupling agents (e.g. 

CCCP) and this is dependent on the expression of wild-type but not kinase-

inactive PINK1 (Fig. 1.7). Recruitment of Parkin to mitochondria appears to be a 

pre-requisite for mitophagy, a selective autophagic mechanism to dispose of 

dysfunctional mitochondria (Narendra et al, 2008; Narendra et al, 2010).  

 

Figure 1.7 PINK1-Parkin pathway in mitochondrial dysfunction 

Illustration depicts that A) in healthy mitochondria PINK1 undergoes a constant turnover in a 
membrane potential dependent manner and Parkin remains in the cytosol, whereas B) in 
depolarized mitochondria, rapid accumulation of PINK1 in the mitochondrial membrane helps in 
recruiting Parkin from the cytosol to the mitochondrial membrane to induce mitophagy. OM – 
Outer mitochondrial Membrane, IM - Inner mitochondrial Membrane, ΔΨ – mitochondrial 
membrane potential.  
 

Dissipation of mitochondrial membrane potential also leads to rapid 

accumulation of PINK1, which is essential for translocation of Parkin (Narendra 

et al, 2010; Seibler et al, 2011; Vives-Bauza et al, 2010).  
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A quantitative proteomic approach in CCCP-treated Hela cells over-expressing 

Parkin showed an accumulation of Lys-48 and Lys-63 poly ubiquitylation in 

outer mitochondrial membrane proteins (Chan et al, 2011). The prevailing 

hypothesis is that, a modification of outer mitochondrial membrane proteins by 

Parkin-mediated ubiquitylation in response to CCCP treatment serves in 

recruiting autophagic machinery to dysfunctional mitochondria (Geisler et al, 

2010). However, the mechanism by which PINK1 mediates translocation of 

Parkin to mitochondria and activates mitophagy is unclear.   

 

1.5.4.2 Role of PINK1 in mitochondrial dynamics 
 
Mitochondrial dynamics  
 
Electron micrograph studies depict mitochondria as static, bean-shaped 

organelles. With advances in live-cell imaging, it is now recognised that 

mitochondria are highly dynamic organelles capable of changing their shape, 

size and sub-cellular distribution (Chan, 2006; Okamoto & Shaw, 2005). Such 

dynamic behavior is imparted by mitochondrial fission and fusion machinery and 

their transport along cytoskeletal tracks. Mitochondria exist in the form of 

fragmented spherical species or interconnected rod-like structures depending 

on whether fusion or fission predominates. Several dynamin-like GTPases have 

been identified which tightly regulate mitochondrial dynamics. Mitofusin1 and 2 

(Mfn 1 and 2) are required for outer mitochondrial fusion and OPA1 induces 

inner membrane fusion. Drp1 (Dynamin related protein 1) is a cytosolic protein 

which when activated is recruited to mitochondrial membrane and promotes 

fission (Detmer & Chan, 2007).  
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Mitochondrial transport along cytoskeleton is essential to distribute it to various 

sub-cellular locations based on intracellular energy demand. In mammals, 

mitochondria travel along actin and microtubule tracks (Hollenbeck & Saxton, 

2005; Ligon & Steward, 2000).  Varying sub-cellular distribution of mitochondria 

is particularly evident in neuronal cells. Measurement of rates of mitochondrial 

transport in neurons indicates a speed ranging from 0.4µm/min (Li et al, 2004) 

to 0.1-1µm/sec (Morris & Hollenbeck, 1995). The direction of mitochondrial 

movement is classified as anterograde (away from nucleus) and retrograde 

(towards the nucleus). 

 

In neurons, mitochondria with high membrane potential undergo anterograde 

transport in order to recruit them to sites of high-energy demands such as pre-

synaptic and post-synaptic sites and active growth cones, while mitochondria 

with low-membrane potential undergo retrograde transport (Miller & Sheetz, 

2004). Also, the motor proteins kinesin and dynein play a critical role in 

anterograde and retrograde transport, respectively (Hollenbeck & Saxton, 

2005). Genetic screening in Drosophila identified two proteins, Miro and Milton, 

which play a crucial role in anterograde transport of mitochondria (Guo et al, 

2005; Stowers et al, 2002). Milton is a kinesin binding protein, while Miro is a 

mitochondrial membrane bound atypical Rho GTPase with Ca2+ binding EF 

domains (Fransson et al, 2003). In yeast model system, disruption of Miro 

orthologue (Gem1) results in abnormal mitochondrial morphology and defects in 

cellular respiration. Fig. 1.8 depicts the dynamic features of mitochondria.  
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Figure 1.8 Mitochondrial dynamics 

A) Mitochondrial fission and fusion regulate size and mitochondrial number, wherein two small 
mitochondria fuse together to form a larger one and conversely, a single mitochondrion can 
divide into two smaller ones by fission.  B) Mitochondria can move along cytoskeletal tracks 
either in the anterograde direction (away from nucleus) or in the retrograde direction (towards 
the nucleus) and this ensures their availability in cellular regions that demand energy.  
 
 
 
PINK1-Parkin in mitochondrial dynamics 
 
Loss of function of PINK1 or Parkin in cultured cells or primary neurons from 

mouse models leads to a decrease in mitochondrial membrane potential and 

ATP production along with pronounced Drp-1 dependent mitochondrial 

fragmentation (Exner et al, 2007; Lutz et al, 2009). This phenotype can be 

rescued by either promoting fusion (expression of Mfn2 or OPA1) or by 

inhibiting fission (expression of dominant negative Drp-1) or by increased 

expression of either PINK1 or Parkin (Lutz et al, 2009). However, the opposite  
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is observed in PINK1 or Parkin deficient Drosophila, which exhibit an increase 

in mitochondrial fusion (Deng et al, 2008; Poole et al, 2008; Yang et al, 2008).  

Although the exact role of the PINK1-Parkin pathway in mitochondrial 

fisson/fusion is yet to be deduced, one possible hypothesis is that under 

conditions of cellular stress causing irreversible damage, this pathway could 

trigger fission in order to sequester and degrade damaged mitochondria. 

 
Miro2 and Milton have been previously identified as potential interacting 

partners of PINK1 (Weihofen et al, 2009). Following up this interaction, studies 

were carried out in rat hippocampal neurons as well as Drosophila larval 

neurons, where overexpression of either PINK1 or Parkin was found to halt 

mitochondrial movement (Liu et al, 2012; Wang et al, 2011). Moreover, this 

study reported that Miro1 is a putative substrate of PINK1 and upon 

phosphorylation is degraded in a Parkin dependent manner. The working 

model for these findings is that Miro1 is required for mitochondrial transport 

across microtubules, but under conditions of mitochondrial damage, the PINK1-

Parkin pathway leads to degradation of Miro1 to prevent damaged 

mitochondria from being transported prior to elimination by mitophagy (Fig. 

1.9). 

 

 Phenotype of PINK1 loss-of-function models 1.5.5

As stated above, PINK1 null flies undergo adult muscle degeneration and also 

exhibit degeneration of a subset of dopaminergic neurons and the KO male 

flies are sterile (Yang et al, 2006). In addition, mutant PINK1 flies also show  
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reduced ATP levels and mitochondrial DNA (mtDNA) content (Clark et al, 2006; 

Park et al, 2006; Yang et al, 2006). 

 

 
Figure 1.9 PINK1 in mitochondrial trafficking along microtubules 

Illustration depicts the role played by PINK1 in regulating mitochondrial trafficking. A) A normal 
healthy mitochondria moves along microtubule by binding of mitochondrial trafficking proteins, 
Miro1 and Milton to Kinesin (in red), B) In a damaged mitochondrion, the stabilization of PINK1 
and recruitment of Parkin lead to degradation of Miro1 and thus a disassembly of mitochondrial 
trafficking proteins occurs which halts mitochondrial movement.  
 
 

The PINK1 null phenotype cannot be rescued when either PD-associated 

mutant forms of PINK1 are over-expressed (Yang et al, 2006) or expressed 

under the control of endogenous PINK1 promoter (Yun et al, 2008), consistent 

with PD-linked mutations being a result of loss of function. One report also  
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shows that in Drosophila neurons, PINK1 deficiency leads to defects in 

synaptic function due to immobilization of synaptic vesicles (Morais et al, 2009).  

 

This can however, be rescued by addition of ATP to the synapse thus 

indicating that defects in synaptic vesicle transmission are secondary to a  

 

decrease in ATP production (Morais et al, 2009). In mouse models, PINK1 

deficiency itself does not lead to neuronal loss (Kitada et al, 1998; Zhou et al, 

2007), however, systemic exposure to toxic insults such as MPTP, make them 

more vulnerable to dopaminergic neuronal loss (Haque et al, 2012).  Both 

PINK1 KO flies as well as mouse models show a decrease in complex I activity 

which can be rescued by expressing wild-type PINK1 and not disease 

associated pathogenic mutants. However, it must be noted that unlike the 

scenario in fly models, KO mouse model does not show any gross change in 

mitochondrial morphology. Apart from studies in context of neuronal function, 

one study shows that PINK1 is indispensible for heart function, which requires 

highly developed cardiac muscle mitochondria (Billia et al, 2011). This study 

describes that PINK1 KO mice develop left ventricular dysfunction and cardiac 

hypertrophy as early as 2 months of age and this may be due to defects in 

mitochondrial function and an increase in oxidative stress (Billia et al, 2011).   

 
Primary fibroblasts and neurons isolated from PINK1 KO mouse models show 

a significant reduction in mitochondrial membrane potential (Gautier et al, 2012; 

Yao et al, 2011). Whilst the enzyme activity of electron transport chain complex 

remained normal in PINK1 deficient cells, it was found that mPTP pore opening  
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was a contributing factor to the decrease in membrane potential (Gautier et al, 

2012). Also, this reduction in membrane potential is specific to neuronal cells 

as PINK1-deficient myocytes display a high basal membrane potential perhaps 

due to enhanced glycolysis in these cells capable of rescuing metabolic defects 

of PINK1 deficiency (Yao et al, 2011).  

 

 

1.6 Aims and scope of this thesis 

In 2004, disease-segregating mutations in a little studied gene called PTEN-

induced kinase 1 (PINK1) were identified in families with early-onset autosomal 

recessive Parkinson’s disease (Valente et al, 2004). Whilst the function of the 

protein kinase remained unknown, elegant analysis in Drosophila melanogaster 

revealed that loss-of-function of PINK1 in flies led to mitochondrial deficits and 

this phenotype could be rescued by over-expressing another Parkinson’s 

associated gene called parkin; thus establishing the first link between these two 

genes (Clark et al, 2006; Park et al, 2006). PINK1 is a unique kinase, since it 

localizes to the mitochondrial membrane and many cellular studies had found 

that under basal conditions it is rapidly degraded but its total protein levels 

becomes selectively stabilized in mitochondria upon mitochondrial 

depolarization (Narendra et al, 2010).  Nevertheless when I embarked on my 

PhD, many fundamental questions regarding the biochemical function of PINK1 

remained unknown including how it was regulated; what was its physiological 

substrate and how did disease mutations impact on PINK1 activity and 

downstream function. 



1 Introduction 
 

 
-34- 

 

Our laboratory made a crucial breakthrough when it discovered catalytically 

active insect orthologues of PINK1 (Woodroof et al, 2011). In the first part of my 

thesis (Chapter 3), I describe how I have exploited this knowledge to discover 

that Parkin is a direct substrate of PINK1. Phosphopeptide mapping revealed 

that PINK1 phosphorylated Parkin at a highly conserved Serine 65 residue 

within the Ubl domain of Parkin, which led to activation of its E3-ubiquitin ligase  

 

activity in vitro. I also discovered that human PINK1 is activated upon 

mitochondrial depolarization, enabling it to phosphorylate Parkin at Ser65 in 

vivo, providing the first evidence of kinase activity of human PINK1. Once 

activated, I found that PINK1 also undergoes autophosphorylation at various 

residues including Thr 257 and that this can be used to monitor PINK1 activity 

in vitro.  

 

I have also investigated whether PINK1 exists in a complex in cells and sought 

to determine novel binding partners of PINK1 in the hope that these might also 

be crucial regulators of PINK1 activity. To this end I undertook a SILAC based 

interactor screen aimed at identifying novel interacting partners of PINK1. A 

number of proteins were found to interact with PINK1 when it is stabilized in the 

mitochondria upon mitochondrial depolarization (Chapter 4). Further validation 

was performed by knockdown analysis of these interacting proteins in order to 

understand their role in regulating PINK1 activity.   
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A final aim of my thesis was to identify novel substrates of PINK1 by a SILAC 

based phosphoproteomic analysis of cells expressing either wild type or kinase 

inactive PINK1, subjected to mitochondrial depolarization (Chapter 5). From 

this screen I identified nine new putative PINK1 substrates. I was able to 

establish that a highly conserved phosphorylation site Ser111, common to three 

members of a Rab GTPase sub-family is regulated by PINK1. This discovery 

paves the way for future work to to establish the physiological relevance of 

these phosphorylation sites mediated by PINK1 on GTPase activity.  

 

In addition to fundamental discoveries of the PINK1 kinase, this work 

establishes novel biomarkers to assess PINK1-Parkin signaling in vivo and also 

provides evidence for new signaling pathways regulated by PINK1. This opens 

up several avenues to explore the fundamental role of PINK1 and further 

understand how dysregulation of its function leads to the molecular 

pathogenesis of PD.  
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2 Materials and Methods 
 
2.1 Materials 
 

 Commercial reagents 2.1.1

Common salts and buffers were from BDH (Lutterworth, UK) or Sigma-Aldrich 

(Poole, UK). Cellophane films and All Blue Precision Plus pre-stained protein 

markers were from BioRad (Herts, UK). siRNA buffer was from Dharmacon. 

40% (w/v) 29:1 Acrylamide: Bis-Acrylamide solution was from Flowgen 

Bioscience. Protein A-agarose, Protein G-Sepharose, Glutathione-Sepharose, 

Enhanced chemiluminescence (ECL) kit, Hyperfilm MP was purchased from GE 

Healthcare (Piscataway, USA). [γ32P]-labeled ATP was from Perkin Elmer. Pre-

cast NuPAGE Novex SDS polyacrylamide 4-12% Bis-Tris gels, NuPAGE MES 

and MOPS running buffer (20X), 10X NuPAGE sample reducing agent, 4X 

NuPAGE LDS sample buffer, NuPAGE transfer buffer, Colloidal blue staining 

kit, ProLong Gold, SYBR DNA gel stain were from Invitrogen (Paisley, UK). 

Instant Blue staining solution was purchased from Expedion (Cambridgeshire, 

UK). Coomassie protein assay reagent (Bradford reagent) was from Pierce 

(Chester, UK). Photographic developer (LX24) and liquid fixer (FX40) were from 

Kodak (Liverpool, UK). X-ray films were from Konica Corporation (Japan). 

Agarose was from Melford Laboratories (Chelsworth, UK). Restriction enzymes, 

DNA ligase and DNA ladder were from New England Biolabs (Hertfordshire, 

UK). Taq DNA polymerase in storage buffer A, sequencing grade trypsin and 

nucleotide mix (dNTP) were from Promega (UK). Site-directed mutagenesis 

was carried out using the QuikChange® site-directed- mutagenesis method  
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(Stratagene) with KOD polymerase (Novagen). Plasmid Maxi kits were from 

Qiagen Ltd (Crawley, UK). Acetonitrile (HPLC grade) and trifluoroacetic acid 

(TFA) were from Rathburn Chemicals (Walkerburn, UK). Protease inhibitor 

cocktail tablets and proteinase K were purchased from Roche (Lewes, UK). 

Protran BA nitrocellulose membrane (pore size - 0.45µm) was purchased from 

Schleicher and Schuell (Anderman and Co. Ltd., Surrey, UK). Immobilon PVDF 

membrane (pore size - 0.45µm) was purchased from Sigma. Adenosine 5’-

triphosphate sodium salt (ATP), anti-HA-agarose, anti-FLAG-agarose, 

ammonium persulphate (APS), ampicillin, benzamidine, benzonase, bovine 

serum albumin (BSA), bromophenol blue (BPB), brilliant blue, doxorubicin, 

dimethyl pimelimidate (DMP), dimethyl sulphoxide (DMSO), ethidium bromide, 

glutathione, iodoacetamide, phenylmethanesulphonylfluoride (PMSF), Ponceau 

S, sodium dodecyl sulphate (SDS), sodium tetraborate, N,N,N’,N’-

Tetramethylethylenediamine (TEMED), triethylammonium bicarbonate, Triton-X-

100 and Tween-20 were from Sigma-Aldrich (Poole, UK). Skimmed milk 

(Marvel) was from Premier Beverages (Stafford, UK). Maleimide-PEG 5000Da 

was from Iris Biotech GmBH (Germany). FLAG-Ubiquitin was purchased from 

Boston Biochem. HRP-conjugated secondary antibodies and SuperSignal West 

Dura extended duration substrate were from Thermo-scientific (Essex, UK). 

3mm chromatography paper was from Whatman International Ltd (Maidstone, 

UK). Spin-X columns were from Corning Incorporated (NY, USA). Bio-Spin 6 

size exclusion columns were purchased from BioRad (Herts, UK).  
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 Tissue culture reagents 2.1.2

6 well plates, cell culture dishes and cryovials were from Corning Incorporated 

(NY, USA). Cell scrapers were from Costar (Cambridge, USA). Dulbecco’s 

modified eagle medium (DMEM), Opti-MEM reduced serum media, Foetal 

bovine serum (FBS), tissue culture grade Dulbecco’s phosphate buffered serum 

(PBS), Trypsin/EDTA solution, L-glutamine, non-essential amino acids, 

vitamins, sodium pyruvate and antibiotic/antimycotic were from GIBCO (Paisley, 

UK). Polyethylenimine (PEI) was from Polysciences (Warrington, PA). 

Penicillin/streptomycin solution, hygromycin, tetracycline, blasticidin, Zeocin, 

Lipfectamine 2000 were from Invitrogen. Dialysed Foetal Calf Serum (FCS) and 

DMEM w/o Arg, Lys and Met were from Biowest. Following unlabeled and 

isotopically labeled amino acids were purchased for SILAC experiments; L-

arginine and L-lysine (Sigma–Aldrich) for R0K0 (light); L-arginine-HCl (U-13C6) 

and L-lysine-2HCl (4,4,5,5,D4) for R6K4 (medium); and L-arginine-HCl (U-

13C6, 15N4) and 13C-Llysine-2HCl (U-13C6, 15N2) for R10K8 (heavy) 

(Cambridge Isotope Laboratory). Polybrene, puromycin, and the 

MISSION™shRNA and siRNA constructs were from Sigma-Aldrich. The 

following chemicals used to induce mitochondrial depolarization were 

purchased from SIGMA: Oligomycin, Antimycin, Valinomycin, FCCP, CCCP, 

Dopamine, 6-OHDA, MPP+Iodide, Rotenone, Ionomycin, 3-N- Propionic acid, 

L-BSO (L-Buthionine Sulfoxime), H202, Diamide, Doxorubicin. Phenformin 

(SIGMA) and Deferiprone (SIGMA). 
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 Instruments 2.1.3

The Procise 494C Sequenator was from Applied Biosystems (Foster City, USA). 

Centrifuge tubes, rotors and centrifuges were from Beckmann (Palo Alto, USA). 

Trans-Blot Cells, automatic western blot processors and gel dryer apparatus were 

from BioRad (Herts, UK). SpeedVacs were from CHRIST (Osterode, Germany). 

HPLC system components were obtained from Dionex (Camberley, UK). 

Thermomixer IP shakers were purchased from Eppendorf (Cambridge, UK). The 

Biofuge microcentrifuge was from Haraeus Instruments GmBH (Osterode, 

Germany). pH meters and electrodes were from Horiba (Kyoto, Japan). X-Cell 

SureLock Mini-cell electrophoresis systems and X-Cell II Blot modules were from 

Invitrogen (Paisley, UK). X-omat autoradiography cassettes, with intensifying 

screens, were from Kodak (Liverpool, UK). The Konica automatic film processor 

was from Konica Corporation (Japan). The LiCOR odyssey infrared imaging 

system was from LiCOR biosciences (Cambridge, UK). CO2 incubators were from 

Mackay and Lynn (Dundee, UK). Tissue culture class II safety cabinets were from 

Medical Air Technology (Oldham, UK). The PCR thermocycler (PTC-200) was from 

MJ Research. The 96-well Versamax plate reader was from Molecular Devices 

(Wokingham, UK). The Vydac 218TP54 C18 reverse phase HPLC column was 

from Separations group. The LTQ-Orbitrap mass spectrometer and Nanodrop were 

from Thermo Scientific. Scintillation counter (Tri-Carb 2800 TR) was from Perkin-

Elmer. Vibrax-VR platform shaker was from IKA. Vydac 218TP54 C18 reverse 

phase HPLC column was from Separations Group. Dionex HPLC system 

components were from Dionex GINA50 autosampler, Dionex P580 pump, 

DionexUVD1705 detector, EG&G Berthold Radioflow Detector LB509 and 

Gilson FC204 fraction collector. 
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  In-house reagents  2.1.4

Primers were synthesised by the University of Dundee oligonucleotide 

synthesis service. Bacterial culture medium Luria Bertani (LB) broth and LB 

agar plates were provided by the University of Dundee media kitchen facility. 

The Protein Production Team at Division of Signal Transduction and Therapy 

(DSTT) expressed and purified all proteins used in kinase activity assays. His-

SUMO-Protein purification of recombinant Parkin was carried out by the Protein 

Production and Assay Development (PPAD) team. His-UCHL1 was purchased 

from Ubiquigent (UK).  

  Antibodies 2.1.5

In-house sheep polyclonal antibodies (Table 2.1) were produced by the Division 

of Signal Transduction Therapy (DSTT, University of Dundee). Antisera were 

raised in sheep by Diagnostics Scotland (Carluke - Lanarkshire, UK). All in-

house antibodies were affinity purified on CH-Sepharose covalently coupled to 

the corresponding antigen. 

 

In-house phospho-specific antibodies were generated by conjugating the 

phopho-peptide immunogen to BSA and also separately to keyhole limpet 

haemocyanin (KLH). These BSA and KLH conjugates were then injected into 

sheep along with Freund’s Adjuvant. Three weeks later, sheep were injected 

with a booster and the first bleed was collected a week later. This was repeated 

to produce a total of 3-4 bleeds. Each bleed was allowed to clot overnight at 

4°C, centrifuged at 1500xg for 60min at 4°C and filtered through glass wool  
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prior to storage at -20°C.  To purify the antibodies, serum was heated for 20min 

at 56°C and filtered through a 0.4 micron filter. The anti-serum was diluted with 

an equal volume of 50mM Tris-HCL pH 7.5 containing 2% Triton-X 100 and 

passed through a column of phospho-peptide immunogen couple to Sepharose. 

Antibodies were eluted with 50mM Glycine (pH 2.5) and dialyzed overnight 

against PBS. Solubility of respective non-phospho peptide was determined and 

dissolved in a buffer of appropriate pH range.  

 

Antibodies were used at a concentration of 1µg/ml in 5% skimmed milk in TBST 

(0.1% Tween20). Phospho-specific antibodies were used at a concentration of 

1µg/ml in 5% BSA in TBST supplemented with non-phospho peptide (10µg/ml) 

to increase specificity. 

 

 

Antibody Immunogen Sheep 
Number 

Bleed 
Number 

PINK1 (175-250 human) GST-human PINK1 (175-250) S085D 3rd 
PINK1 phospho Thr 257 CAGEYGAVT*YRKSKR (residues 

250-262 of human PINK1) 
S114D 3rd 

PARKIN human GST-full length PARKIN human S966C 3rd 
PARKIN phospho Ser 65 RDLDQQS*IVHIVQR [residues 60 - 

72 of human PARKIN] 
S210D 2nd 

Rab8a phospho Ser 111 RNIEEHAS*ADVEKMR [residues 
104 - 117 of human] 

S503D 2nd 

Rab8b phospho Ser 111 RNIEEHAS*SDVERMR [residues 
104 - 117 of human] 

S504D 3rd 

 

Table 2.3 In house antibodies  
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Commercial antibodies used in this thesis are listed in Table 2.2. Antibodies 

were diluted using 5% BSA in TBST (0.1% Tween20) in appropriate dilutions.  

 

Antibody Catalogue 
Number 

Company Host Antibody 
dilution 

PINK1 human polyclonal BC-100-494 Novus Rabbit 1:1000 
PARKIN human monoclonal PRK8 SantaCruz Mouse 1:2000 

GAPDH 2118 Cell Signaling Rabbit 1:5000 
Hsp60 4870S Cell Signaling Rabbit 1:2000 

HtrA2/OMI 2176 Cell Signaling Rabbit 1:1000 
FLAG-HRP A8592 SIGMA  1:7000 

HA-HRP 12013819001 
 

Roche  1:2000 

VDAC2 sab2501095 
 

SIGMA Goat 1:1000 

Miro1 HPA010687 
 

SIGMA Rabbit 1:1000 

Miro2 H00089941-A01 
 

Abnova Mouse 1:1000 

TOMM40 18409-1-AP 
 

Protein Tech 
Group Inc. 

Rabbit 1:2000 

TIMM50 AB23938 
 

Abcam Goat 1:1000 

TOM22 T6319 SIGMA Mouse 1:2000 
ANT2 H00000292-B01P 

 
Abnova Mouse 1:1000 

ANT3 14841-1-AP 
 

Protein Tech 
Group Inc. 

Rabbit 1:1000 

C1QBP ab24733 
 

Abcam Mouse 1:25,000 

IMMT/Mitofilin 10179-1-AP 
 

Protein Tech 
Group Inc. 

Rabbit 1:1000 

Total AMPK 2532 Cell Signaling Rabbit 1:1000 
Phospho T172 AMPK 2535 Cell Signaling Rabbit 1:1000 

Total ACC 3662 Cell Signaling Rabbit 1:1000 
Phospho S79 ACC 3661 Cell Signaling Rabbit 1:1000 

Total ERK1/2 9102 Cell Signaling Rabbit 1:1000 
Phospho T202, Y204 Erk1/2 4736S Cell Signaling Rabbit 1:1000 

Total JNK 1/2 9252 Cell Signaling Rabbit 1:1000 
Phospho T183, Y185 JNK1/2 4668S Cell Signaling Rabbit 1:1000 

 

Table 2.4 List of Commercial antibodies 

 
 

 DNA constructs 2.1.6

Table 2.3 and Table 2.4 list all mammalian and bacterial expression clones 

respectively, used in this thesis. PINK1 constructs were cloned by Dr.Maria M.  
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Deak, Parkin constructs by Dr. Mark Peggie and Ms. Nikki Wood. RabGTPase 

constructs were cloned by Dr. Mark Peggie and srGAP1 by Ms. Rachel Toth.  

 

Protein expressed Vector Clone number 
PINK1 – FLAG Wild-type 

(WT) 
pcDNA5-FRT/TO DU17461 

PINK1-FLAG Kinase Dead – 
D384A 

pcDNA5-FRT/TO DU17462 

FLAG-empty pcDNA5 FRT/TO DU 41457 
Parkin pCMV5 DU23306 

Parkin S65A pCMV5 DU39808 
Parkin pcDNA5-FRT/TO DU23307 

Parkin S65A pcDNA5-FRT/TO DU39797 
HA-Parkin pCMV5 DU23310 
HA-Rab8a pCMV-HA-1 DU35414 

HA-Rab8a S111A 
                  pCMVHA-1 

 

DU43528 
HA-Rab8b pCMVHA-1 DU39856 

HA-Rab8b S111A pCMVHA-1 DU43564 
HA-RAB13 pCMVHA-1 DU 43140 

Table 2.5 List of constructs in mammalian expression vector 

 
 

Recombinant Protein 
expressed 

Vector Clone number 

GST- α – synuclein pGEX-6 DU 30005 
GST-DJ1 pGEX6P-1 DU 3391 

GST-LRRK2 Kinase inactive 
D2017/A (1326-end) 

pGEX-6 DU10594 

GST-OMI pGEX-6 DU17745 
GST-GAK Kinase inactive 

D191/A 
pGEX-6 DU38360 

GST-FBXO7 pGEX-6P2 DU42160 
GST-VPS35 pGEX-6 DU38573 
GST-TRAP1 pGEX-6 DU17444 
GST-PARL pGEX-6 DU17743 
GST-NCS1 pGEX-6 DU30410 
GST-MIRO1 pGEX-6 DU38256 

GST-Parkin (1-108) pGEX6P-1 DU37370 
GST-Parkin (1-108) S65A pGEX6P-1 DU37374 
MBP-PARK14 (PLA2G6) pMAL4c DU38361 

MBP-ATP13A2 pMAL4C DU 38296 
His-SUMO-Miro2 (1-592) pET6 His-SUMO DU43242 
His-SUMO-Miro1 (1-592) pET6 His-SUMO DU40832 

GST-VDAC1 pGEX-6 DU30855 
GST-VDAC2 pGEX-6 DU38503 

GST-TOMM40 pGEX-6 Du38299 
Table 2.6 List of constructs in bacterial expression vector 
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 Buffers 2.1.7

    
All lysis buffers contain chelating agents such as EDTA and EGTA to chelate 

divalent cations, which are co-factors for proteolytic activity. Sodium fluoride, 

sodium pyrophosphate, sodium β-glycerophosphate inhibit serine/threonine 

protein phosphatases; and sodium orthovanadate (Na3VO4) inhibits protein 

tyrosine phosphatases. Benzamidine and PMSF are added to inhibit serine 

proteases and metallo, aspartyl, cysteinyl, and seryl proteinases. Sodium 

orthovanadate was prepared by several rounds of boiling, cooling to room 

temperature on ice and then adjusted to pH 10. This was repeated until the pH 

was stable at pH 10 and the solution remained colourless. This ensures that the 

majority of sodium orthovanadate is in the monomeric state enabling inhibition 

of tyrosine phosphatases. Buffers used in this thesis are listed in Table 2.5. 

 

Buffer Composition 

Mammalian cell 
Lysis Buffer 

 
25 mM Tris (pH 7.5), 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 
50 mM NaF, 5 mM sodiumpyrophosphate, 1 mM sodium 
orthovanadate, 10 mM sodium b-glycerophosphate, 1 mM 
benzamidine, 0.2 mM PMSF, 0.1% 2-mercaptoethanol, 0.27 M 
sucrose and one mini Complete™protease inhibitor cocktail tablet 
per 10ml of lysis buffer. 
 

Mitochondrial 
fractionation buffer 

 
20 mM HEPES, 3 mM EDTA, 1% (w/v) 1 mM sodium 
orthovanadate,10 mM sodium β-glycerophosphate, 250 mM 
sucrose,  50 mM NaF, 5 mM sodium pyrophosphate, pH 7.5 and 
one mini Complete™protease inhibitor cocktail tablet per 10ml of 
lysis buffer. 
 

Recombinant protein 
purification E.coli 

lysis buffer 

 
50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 
5% (v/v) glycerol, 1% (v/v) Triton X-100, 0.1% (v/v) 2-
mercaptoethanol, 1 mM benzamidine and 0.1 mM PMSF. 
 

Recombinant protein 
purification wash 

buffer 

 
50 mM Tris-HCl (pH 7.5), 500 mM NaCl, 0.1 mM EGTA, 5% (v/v) 
glycerol, 0.03% (v/v) Brij-35, 0.1% (v/v) 2-mercaptoethanol, 1 mM 
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benzamidine and 0.1 mM PMSF. Equilibration buffer contained 50 
mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.1 mM EGTA, 5% (v/v) 
glycerol, 0.03% (v/v) Brij-35, 0.1% (v/v) 2-mercaptoethanol, 1 mM 
benzamidine and 0.1 mM PMSF. 

Recombinant protein 
purification 

equilibration buffer 

50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.1 mM EGTA, 5% (v/v) 
glycerol, 0.03% (v/v) Brij-35, 0.1% (v/v) 2-mercaptoethanol, 1 mM 
benzamidine and 0.1 mM PMSF. 

Recombinant protein 
purification elution 

buffer 

 
Equilibration buffer containing 12mM Maltose/20mM L-Glutathione 

 
Recombinant protein 

storage buffer 

 
Equilibration buffer with the addition of 0.27 M sucrose and glycerol-
PMSF and benzamidine were omitted. 
 

TBS-Tween buffer 50 mM Tris-HCl (pH 7.5), 0.15 M NaCl and 0.1% (v/v) Tween-20. 
 

5X sodium dodecyl 
sulphate (SDS) 
sample buffer 

 
250 mM Tris-HCl (pH 6.8), 5% SDS, 5% (v/v) 2 - mercaptoethanol, 
32.5% (v/v) glycerol, 0.05% bromophenol blue. 
 

Tris-Glycine SDS 
running buffer 

25 mM Tris-HCl (pH 8.3), 192 mM glycine, 0.1% (w/v) SDS. 

Tris-Glycine transfer 
buffer 

48 mM Tris-HCl (pH 8.3), 39 mM glycine, 20% (v/v) methanol. 

 
Kinase assay 

reaction buffer 

 
50mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 10 mM MgCl2, 2 mM DTT 
and 0.1 mM [γ-32P] ATP (approx. 500 cpm/pmol). 
 

 
Enhanced 

chemiluminescence 
Reagent (ECL) 

 
ECL1: 100 mM Tris-HCl pH 8, 2.5 mM Luminol, 0.4 mM p-
Coumaric Acid. ECL2: 100 mM Tris-HCl pH 8, 5.6 mM H2O2. 
Stored in the dark at 4ºC. Equal volumes ECL1 and ECL2 are 
mixed immediately before the use. 
 

Table 2.7 List of common buffers 

 

2.2 Methods 
 

 Molecular biology methods 2.2.1

2.2.1.1 Transformation of competent E.coli 
 
Calcium competent E.coli DH5α cells were provided by Dr Maria Deak and Dr 

Mark Peggie using a previously described method (Inoue et al, 1990). For each 

transformation, approximately 10ng DNA was added to 35µl of competent cells 

and incubated on ice for 5min. Cells were then subjected to heat shock at 42°C 

for 90 s in a water bath to induce the uptake of DNA and briefly placed back  
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on ice. Bacteria were streaked onto LB agar plates containing 100µg/ml 

ampicillin and plates incubated at 37°C overnight. DNA for mammalian cell 

transfection was amplified in E.coli DH5α strain and for bacterial protein 

expression was transformed in E.coli BL21 DE3 RIL (codon plus) cells 

(Stratagene). 

2.2.1.2 Purification of plasmid DNA from E.coli 
 
Transformed DH5α E.coli were cultured in 150ml LB containing 200mg/L 

ampicillin at 37°C overnight and cells were pelleted by centrifugation at 

3000rpm for 15min. Plasmid DNA was purified using a Qiagen plasmid Maxi kit 

according to the manufacturer’s instructions. This yields an approximate of 0.3-

1mg plasmid DNA. 

2.2.1.3 Measurement of DNA and RNA concentration 
 
DNA or RNA was diluted in sterile MilliQ water in a disposable cuvette and the 

absorbance at 260nm was measured. MilliQ water alone was used as a blank 

control. A 50µg/ml solution of double-stranded DNA, a 30µg/ml solution of 

single stranded DNA oligonucleotide or a 40µg/ml solution of single-stranded 

DNA has an absorbance of 1.0. The absorbance at 280nm was also measured 

to allow the calculation of the 260nm:280nm ratio, an indicator of DNA purity. A 

260:280 ratio greater than 1.6 is indicative of a highly pure sample. 

2.2.1.4 Restriction enzyme digests of plasmid DNA 
 
 
Restriction digests were carried out using 1µg DNA in the presence of 2µl 10X 

stock of the appropriate digestion buffer and 1U of restriction enzyme in a final 

volume of 20µl. Reactions were incubated at 37°C for 3hrs and analyzed via  
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agarose gel electrophoresis. 

2.2.1.5 Agarose gel electrophoresis 
 
The appropriate amount of agarose (in order to generate 0.8-1.5% agarose 

gels) was boiled in 1X TAE buffer. SYBR stain was added and the solution 

cooled before being poured into a plastic mould. Electrophoresis was carried 

out at 120V for 40- 60min. 

2.2.1.6 DNA mutagenesis 
 
All mutagenesis was performed using the QuikChange site directed 

mutagenesis method (Stratagene) with KOD polymerase (Novagen). DNA 

constructs were verified by DNA sequencing. 

2.2.1.7 DNA sequencing 
 
The sequencing of plasmid or PCR product DNA was carried out by the DNA 

sequencing service (School of Life Sciences, University of Dundee) using 

DYEnamic ET terminator chemistry (Amersham Biosciences) on Applied 

Biosystems automated DNA sequencers. 

  Mammalian Cell culture 2.2.2

2.2.2.1 Cell culture 
 
Cells were maintained at 37°C in 5% CO2 water saturated incubator and 

allowed to reach 80-90% confluency prior to passaging. Human Embryonic 

Kidney 293 (HEK293) and HEK293T were grown in Dulbecco’s modified eagle 

medium (DMEM) supplemented with 10% (v/v) foetal bovine serum (FBS), 2mM  

L-glutamine, 100U/ml penicillin and 0.1mg/ml streptomycin. Mouse embryonic  
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fibroblasts (MEFs) were grown in DMEM containing 10% (v/v) FBS, 2mM L-

glutamine, 100U/ml penicillin and 0.1mg/ml streptomycin, 1X non-essential 

amino acids and 1mM sodium pyruvate. HEK293 Flp In TRex stable cell lines 

were maintained in the same media supplemented with 15µg/ml of Blasticidin 

and 100µg/ml of Hygromycin and filtered through a 0.2µm vacuum filtration unit.  

2.2.2.2 Freezing/thawing of cell lines 
 
Confluent cells grown in T-75 flasks were trypsinized and collected in culture 

media by centrifuging at 1200 rpm for 3 min. Culture media were aspirated and 

cells resuspended in 3 ml of freezing media (50% DMEM/ 40%FBS/ 10% 

DMSO). Aliquots of cells (1 ml) in cryovials were stored in a Nalgene Mr Frosty 

Freezing Container at -80°C for 2 days, and transferred to liquid nitrogen. To 

thaw the cells, each vial was placed in 37°C water bath for 3 min and cells were 

added to a T-25 flask containing 10 ml of culture media. Cells were allowed to 

attach and given a media change a day later to remove trace amounts of 

DMSO.  

2.2.2.3 Transfection of mammalian cells 
 
HEK293/HEK293T cells grown to 30-40% confluency in 10-cm-diameter dishes 

were transiently transfected using Polyethylenimine (PEI) from Polysciences. 

PEI stock (1 mg/ml) was prepared by dissolving it in 20 mM HEPES (pH 7). 

Aliquots were filter sterilized (0.22 µm) and stored at -80°C. For transfection of 

one 10 cm dish, 5 µg of DNA and 20 µg of PEI (1:4 ratio) were added to 1 ml of 

DMEM media (antibiotic-and serum-free). The mixture was vortexed for 20 sec 

and further incubated at room temperature for 15 min before being added to 

cells. Cells were harvested 36-48 h post transfection. 
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2.2.2.4 Generation of stable cell lines 
 
To ensure low-level uniform expression of recombinant proteins, manufacturer's 

instructions (Invitrogen) were followed to generate stable cell lines that express 

FLAG-tagged forms of proteins (cDNA subcloned into pcDNA5-FRT-TO 

plasmid) in a tetracycline inducible manner. Flp-In T-REx-293 host cells 

containing integrated FRT recombination site sequences and Tet repressor, 

were co-transfected with 9 µg of pOG44 plasmid (which constitutively 

expresses the Flp recombinase), and 1 µg of pcDNA5/FRT/TO vector 

containing a hygromycin resistance gene for selection of the gene of interest 

with FLAG tag under the control of a tetracycline-regulated promoter. Cells were 

selected for hygromycin and blasticidin resistance three days after transfection 

by adding new medium containing hygromycin (100 µg/ml) and blasticidin (7.5 

µg/ml). After 3 weeks of selection, colonies were trypsinized and expanded. 

Expression of the recombinant protein was induced with 0.1 µg/ml of 

tetracycline for 24 hours. 

2.2.2.5 siRNA knockdown of PINK1 expression 
 
To knock down PINK1 gene expression, HEK293 cells were transfected 

separately with two sets of Mission siRNA oligos (Sigma) designated as siRNA 

#1 (5’-CCAUCAAGAUGAUGUGGAATT-3’) or siRNA #2 (5’-

CAGAGAAGUGUUGUGUGGATT-3’) and scrambled control siRNA (Sigma). 

Cells were transfected using TransFectin Lipid Reagent (Bio-Rad) and 

incubated for 48 h before CCCP treatment. The final concentration of siRNA 

was 30 nM. Over-expression of additional genes in a knockdown background 

was achieved via co-transfection with the siRNA. 
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2.2.2.6 shRNA knockdown 
 
The MISSION pLKO.1-puro lentivirus plasmid vector (3 µg) containing the 

shRNA sequence (refer to Table 2.6) was transfected together with packaging 

(3 µg) and envelope (3 µg) plasmids in a 10 cm dish containing HEK293T cells 

of 70% confluency using 36 µl of PEI. The lentiviral particles were collected 72 

h after transfection, filtered (0.45 µm pore size) and used to infect HEK293Flp 

In TRex cells stably expressing PINK1 in the presence of 5µg/ml polybrene. 

Lentiviral particles (5 ml/10 cm-dish) were used to infect cells at 60-70% 

confluency. The cells were selected with 3 µg/ml puromycin and experiments 

carried out within a week after infection. 

2.2.2.7 Treatment of cells with mitochondrial stimulations 
 
To uncouple mitochondria, cells were treated with 10 µM CCCP (Sigma) 

dissolved in DMSO. An equivalent volume of DMSO was used as a control. In 

addition, cells were incubated with the following agonists for 3 h including: 1 µM  

Oligomycin (Sigma), 10 µM Antimycin A (Sigma), 2 µM Valinomycin (Sigma), 10 

µM FCCP (Sigma), 10 µM Dopamine (Sigma), 100 µM 6-Hydroxy-dopamine  

(Sigma), 100 µM MPP+ (Sigma), 1 µM rotenone (Sigma), 5 µM ionomycin 

(Sigma), 10 µM 3-nitropropionic acid (Sigma), 50 µM L-BSO (Sigma), 50 µM 

(Sigma), 0.5 µM Phenformin (Sigma). Cells were treated with 1 mM Deferiprone 

(3-Hydroxy-1,2-dimethyl-4 (1H)-pyridone; Sigma) for 24 h. 
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Target 
Gene 

shRNA 
no. 

TRC Number  Sequence  Region 

TOMM40  #1  TRCN0000219098  GTACCGGCAAAGGGTTGAGTAACCATTTCTCGAGAAATGGTTACTCAACCCTTTGTTTTTTG  CDS 

#2  TRCN0000231155  CCGGTGAATGGCGCTTCGGGATTCTCTCGAGAGAATCCCGAAGCGCCATTCATTTTTG  3’UTR 

TOM22  #1  TRCN0000060883  CCGGGCAGATACTTCTAGGACCTAACTCGAGTTAGGTCCTAGAAGTATCTGCTTTTTG  CDS 

#2  TRCN0000230173  CCGGGCAGCCATGCAGATGGTTATTCTCGAGAATAACCATCTGCATGGCTGCTTTTTG  3’UTR 

IMMT  #1  TRCN0000135616  CCGGGTCTAGAAATGAGCAGGTTTACTCGAGTAAACCTGCTCATTTCTAGACTTTTTTG  3’UTR 

#2  TRCN0000136189  CCGGGCTAAGGTTGTATCTCAGTATCTCGAGATACTGAGATACAACCTTAGCTTTTTTG  CDS 

TIMM50  #1  TRCN0000072464 

 

CCGGGACACCATGTAAAGGATATTTCTCGAGAAATATCCTTTACATGGTGTCTTTTTG  CDS 

#2  TRCN0000072463  CCGGGCTACCATACCCAGCTAATTTCTCGAGAAATTAGCTGGGTATGGTAGCTTTTTG  3’UTR 

C1QBP  #1  TRCN0000057103  CCGGCCCAATTTCGTGGTTGAAGTTCTCGAGAACTTCAACCACGAAATTGGGTTTTTG 

 

CDS 

#2  TRCN0000057104  CCGGGCGAAATTAGTGCGGAAAGTTCTCGAGAACTTTCCGCACTAATTTCGCTTTTTG  CDS 

MIRO2  #1  TRCN0000072918  CCGGCCCAGAATTCTCAGGGCTCTACTCGAGTAGAGCCCTGAGAATTCTGGGTTTTTG  3’UTR 

#2  TRCN0000072919  CCGGCGTCTACAAGCACCATTACATCTCGAGATGTAATGGTGCTTGTAGACGTTTTTG  CDS 

VDAC2  #1  TRCN0000150602  CCGGGATCTCAACAAGAGCTGTATTCTCGAGAATACAGCTCTTGTTGAGATCTTTTTTG  3’UTR 

#2  TRCN0000151179  CCGGGCAGCTAAATATCAGTTGGATCTCGAGATCCAACTGATATTTAGCTGCTTTTTTG  CDS 

Scramble      CCGGCCTAAGGTTAAGTCGCCCTCGCTCTAGCGAGGGCGACTTAACCTTAGGTTTTT   

    Table 2.8 List of shRNA sequences used in this thesis
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2.2.2.8 Cell lysis and mitochondrial fractionation 
 
Cells were lysed using mammalian cell lysis buffer as listed in Table 2.5. 

Lysates were clarified by centrifugation at 13,000 rpm for 10 min at 4 °C and the 

supernatant was collected. For mitochondrial fractionation, cells were lysed in 

mitochondrial fractionation buffer (refer to Table 2.5) at 4 °C. Cells were 

disrupted using a glass hand held homogeniser (20 passes) and lysates 

clarified by centrifugation for 10 min at 800g at 4°C. The supernatant was 

removed and further centrifuged at 16,600g for 10min. The resultant 

supernatant was retained as the cytosolic fraction. The pellet containing the 

mitochondrial fraction was resuspended in buffer containing 1% Triton X-100 

and centrifuged at 13,000 rpm for 10 min. This final supernatant contained 

solubilized mitochondrial proteins. All lysates were snap-frozen at -80°C until 

use. 

2.2.2.9 Gel filtration of mitochondrial fraction 
 
The AKTA explorer chromatography system was operated according to 

manufacturer’s instructions using Unicorn 4.1 software. All buffers, lysates and 

markers were sterile filtered before loading onto the column. A HiLoadTM 26/60 

SuperdexTM 200 preparative grade column was attached and equilibrated 

overnight with three column volumes of gel filtration buffer (50 mM Tris/HCl pH 

7.4, 1 mM EDTA pH 8.0, 150mM NaCl, 0.1% (v/v) 2-mercaptoethanol). Flp In 

TRex HEK 293 cells stably expressing wild-type PINK1 were induced for protein 

expression and treated with either DMSO or 10 µM CCCP for 3 h. Cells were 

subjected to mitochondrial fractionation as described in 2.2.3.9. Lysates were  
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snap frozen before centrifugation and stored at -80°C until required. Lysates 

were thawed on ice and cleared by centrifugation at 15,000 g for 30 min. The 

supernatant was sterile filtered on 0.22 µm Steriflip columns and the protein 

concentration of each lysate was estimated. Equal amounts (5 mg, 1 ml) of 

each protein lysate were loaded onto the Superdex column. Between runs the 

column was washed through with two column volumes of buffer. Fractions of 1 

ml (200) were collected at a flow rate of 1.5 ml/min. Molecular weight markers 

from BioRad with added Dextran blue were resuspended in water and run after 

the lysates. The void volume of the column is 100 ml (Dextran Blue 2000 kDa is 

the marker for the void volume). The 670 kDa marker (thyroglobulin) eluted in 

fractions 117-129. The 158 kDa marker (bovine γ-globulin) eluted in fractions 

165-180. The 44 kDa marker (chicken ovalbumin) eluted in fractions 207-225. 

Fractions from 98 to 228 were transferred to eppendorfs and snap-frozen. 100 

µl of every third sample from 99 to 207 was denatured in LDS sample buffer, 

boiled for 5 min at 95 °C and 5 µl of each denatured fraction was subjected to 

western blot analysis.  

 

 Protein Biochemistry 2.2.3

2.2.3.1 Purification of recombinant proteins 
 
 
Maltose binding protein (MBP) fusion proteins were purified by the following 

protocol: briefly, BL21 Codon plus transformed cells were grown at 37 °C to an 

OD600 of 0.3, then shifted to 16 °C and induced with 250 µM IPTG (isopropyl β-

D-thiogalactoside) at OD600 of 0.5 and were further grown at 16°C for 16 h.  
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Cells were pelleted at 4000 rpm., and then lysed by sonication in lysis buffer. 

Lysates were clarified by centrifugation at 30 000g for 30 min at 4°C followed by 

incubation with 1 ml per litre of culture of amylose resin for 1.5 h at 4°C. The 

resin was washed thoroughly in wash buffer, then equilibration buffer, and 

proteins were then eluted. Proteins were dialysed overnight at 4 °C into storage 

buffer, snap-frozen and stored at -80°C until use. GST-fusion proteins were 

purified by similar methods except that recombinant GST-fusion proteins were 

affinity purified on glutathione-Sepharose and eluted with buffer containing 20 

mM glutathione.  GST-VPS35 was cleaved with GST-PreScission protease at  

4°C overnight. His-UCHL1 was purchased from Ubiquigent (UK). His-SENP1 

catalytic domain (residues 415–643) was purified as follows: transformed BL21 

cells were grown in LB (Luria Broth), 50 µg/ml carbenicillin until OD600 of 0.6, 

then induced with 300 mM IPTG (isopropyl β-D-1-thiogalactopyranoside) and 

expressed overnight at 15 °C. Cells were collected, lysed and protein purified 

using Ni2+ -nitriloacetic acid- Sepharose chromatography, followed by dialysis 

into 50 mM HEPES pH 7.5, 10% glycerol, 150 mM NaCl, 1 mM DTT).  

 

His-SENP1 catalytic domain (residues 415–643) was purified as follows: 

transformed BL21 cells were grown in LB (Luria Broth), 50 mg/ml carbenicillin 

until OD600. 0.6, then induced with 300 mM IPTG (isopropyl b-D-1-

thiogalactopyranoside) and expressed overnight at 15°C. The cells were 

collected, lysed and the protein was purified using Ni2+-nitriloacetic acid- 

Sepharose chromatography, followed by dialysis into 50mM HEPES pH 7.5, 

10% glycerol, 150 mM NaCl, 1 mM DTT).  



2 Materials and Methods 

 
-56- 

 

Untagged Parkin (His-SUMO cleaved) was expressed and purified using a 

modified protocol from Helen Walden’s laboratory (Chaugule et al, 2011). BL21 

cells were transformed with His-SUMO tagged Parkin constructs, overnight 

cultures were prepared and used to inoculate 12x1L LB medium, 50 mg/ml 

carbenicillin, 0.25 mM ZnCl2. The cells were grown at 37°C until the OD600 was 

0.4 and the temperature was reduced to 16 °C. At OD600 of 0.8, expression was 

induced with 25 mM IPTG. After overnight incubation the cells were collected 

and lysed in 75 mM Tris pH 7.5, 500 mM NaCl, 0.2 % Triton X-100, 25 mM 

imidazole, 0.5 mM Tris(2- carboxyethyl)phosphine (TCEP), 1 mM Pefablok, 10 

mg/ml Leupeptin. After sonication and removal of insoluble material, His-

SUMO-Parkin was purified via Ni2+-NTA-Sepharose chromatography. The 

protein was collected by elution with 400 mM imidazole in 50 mM Tris, pH 8.2, 

200 mM NaCl, 10 % glycerol, 0.03 % Brij 35, 0.5 mM TCEP. This was dialysed 

twice against 50 mM Tris pH 8.2, 200 mM NaCl, 10 % glycerol, 0.5 mM TCEP in 

the presence of His-SENP1 (415–643) at a ratio of 1 mg His-SENP1 per 5 mg 

His-SUMO-Parkin. The protease, the His-SUMO tag and any uncleaved protein 

was removed by two subsequent incubations with Ni2+NTA–Sepharose. The 

cleaved Parkin was further purified in 50 mM Tris, pH 8.2, 200 mM NaCl, 20 % 

glycerol, 0.03 per cent Brij-35, 0.5 mM TCEP over a Superdex 200 column. 

2.2.3.2  Estimation of protein concentration 
 

Protein concentration of purified proteins and cleared cell lysates was evaluated 

using the Bradford method in a 96 well plate format (Bradford, 1976). 0.25 ml of 

Bradford reagent (Pierce) was added to 5µl of diluted sample (cell lysates were 

usually diluted 20-fold in water). 5ul of water was used as a blank. For a  
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standard curve 5ul of serial dilutions of BSA were used (1, 0.5, 0.25 and 0.125 

mg/ml). Absorbance at 595 nm was measured using a 96 well plate reader. All 

samples were measured in triplicate and a standard curve was generated for 

each analysis. Bradford method is a colorimetric protein assay, based on an 

absorbance shift from 465 nm (red) to 595 nm (blue) upon binding to proteins. 

The Coomassie dye binds to arginines, aromatic amino acids, and histidines. 

For purified proteins, Coomassie staining of polyacrylamide gel verified sample 

purity additionally.  

2.2.3.3 Covalent coupling of antibodies to Protein G-
Sepharose 

 
Antibodies were covalently coupled to protein G-Sepharose with a dimethyl 

pimelimidate (DMP) cross-linking procedure. DMP has two functional imine 

groups, which interact with free amine groups at pH range 7.0-10.0 to form 

amidine bonds. Antibody-coupled beads (1 µg antibody per 1 ul beads) were 

prepared by incubating antibody with Protein – G Sepharose beads at 4°C for 

1hr. The beads were washed 5 times with 10 volumes of 0.1 M sodium borate 

pH 9 and then resuspended in 10 volumes of 0.1 M sodium borate pH 9 

containing freshly added dimethyl pimelimidate (a fresh batch used every time) 

to a concentration of 20 mM and incubated for 30 min at room temperature with 

gentle mixing. The beads were pelleted and then reincubated with dimethyl 

pimelimidate. The beads were washed 4 times with 10 volumes of 50 mM 

glycine pH 2.5 to remove all the antibodies that were not covalently coupled to 

the beads. The beads were then washed twice with 0.2 M Tris-HCl pH 8 and  
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incubated in this buffer for a further 2 h at room temp with gentle mixing to 

ensure that any residual DMP was quenched by reaction with the amine group 

of Tris. The antibody-coupled beads were stored in PBS containing 0.02% (w/v) 

sodium azide at 4ºC for up to one month. 

2.2.3.4 Immunoprecipitation 
 
For immunoprecipitation, unless otherwise indicated, 1 mg of cell lysate was 

incubated with 5 µg of coupled antibody for 2 h at 4°C or O/N for protein pull-

down. The mixture was centrifuged for 1 min at 800 g and supernatant was 

removed. For kinase assays, the immunoprecipitates were washed twice with 1 

ml of lysis buffer containing 0.5 M NaCl and twice with 1 ml of Buffer A (50 mM 

Tris pH 7.5, 0.1 mM EGTA) and assayed as described in section 2.2.4.1. For 

co-immunoprecipitation, the immunoprecipitates were washed twice with 1 ml of 

lysis buffer containing 0.15 M NaCl and once with 1 ml of Buffer A, 

resuspended in 1x SDS Sample Buffer and subjected to Sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE). All procedures were 

carried out at 4 °C. 

2.2.3.5 Resolution of protein samples via SDS-PAGE 
 
SDS-PAGE is used to separate proteins on the basis of their apparent 

molecular weight. The anionic detergents, sodium dodecyl sulphate (SDS) and 

lithium dodecyl sulphate (LDS), bind to proteins giving them a resulting negative 

charge that is proportional to their mass. As a result, the speed of migration of a 

protein through a constant gradient polyacrylamide gel matrix is a linear 

function of the logarithm of its molecular weight, with small proteins migrating 

faster than large proteins. Separation gels were prepared containing 375 mM  
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Tris HCl pH 8.6, 0.1 % SDS, 8-15 % acrylamide (depending on the size of the 

protein) with final addition of N,N,N’,N’- tetramethylethylenediamine (TEMED) 

and ammonium persulphate (APS) to initiate polymerisation. Gels were allowed 

to polymerise for 30min. Stacking gels contained 125 mM Tris HCl pH 6.8, 0.1 

% SDS, 4 % acrylamide, TEMED and APS.  

 

Cell lysates, immunoprecipitates and purified proteins were prepared in 1X LDS 

sample buffer containing 1X sample reducing agent (for use with pre-cast 

NuPAGE 4-12% Bis-Tris gels) or 1X SDS sample buffer (for use with 

homemade acrylamide gels) and heated to 92 °C for 2 min. Samples were 

loaded onto gels along with Precision plus protein standards which have 

apparent molecular weight markers of 250, 150, 100, 75, 50, 37, 25, 20, 15 and 

10 kDa. Electrophoresis was carried out at 90 V for 30 min prior to an increase 

of the voltage to 180V for a further 1 hr and gels were either stained or 

transferred for immunoblotting. 

 

2.2.3.6 Coomassie staining of polyacrylamide gels 
 
Gels were incubated in Instant Blue solution for 1 hr followed by de-staining in 

water. Gels were scanned on a Li-Cor Odyssey infrared system for imaging and 

quantification. For mass spectrometry, gels were stained with Colloidal 

coomassie (Invitrogen) according to the manufacturer’s instructions. 
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2.2.3.7 Desiccation of polyacrylamide gels 
 
Gels containing 32P-labeled proteins were dried to enhance autoradiographic 

signal. Gels were incubated in 5 % glycerol prior to encasement between two 

sheets of cellophane. The gel was then dried in a GelAir Dryer. 

 

2.2.3.8 Autoradiography of polyacrylamide gels 
 
Coomassie stained gels were placed in an X-Omat autoradiography cassette 

and exposed to Hyperfilm MP for different lengths of time. Typically exposures 

were carried out for between 30 min to 48 hr in order to detect radioactively 

labeled proteins. For long exposures, the cassette was placed in -80 °C freezer 

to improve autoradiographic signal. Films were developed using a Konica 

automatic developer. For identification of phosphorylation sites by mass 

spectrometry, wet gels were autoradiographed before excision of the bands. 

2.2.3.9 Transfer of proteins to nitrocellulose membranes 
 
Gels after being subjected to electrophoresis were assembled into a gel 

membrane ‘sandwich’ and loaded into a BioRad Mini Trans-blot electrophoretic 

transfer cell. Prior to assembly, nylon sponge pads, Whatman 3mm filter papers 

and nitrocellulose membranes were soaked in transfer buffer containing 20 % 

(v/v) methanol. The transfer cell was submerged in transfer buffer and 

electrotransfer carried out at 100 V for 1.5 hr. 

2.2.3.10 Immunoblotting 
 
 
Membranes were blocked for 30 min in TBS-Tween buffer containing 5 % (w/v) 

skimmed milk or BSA and incubated with the appropriate antibody at 4°C  
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overnight. Membranes were washed 3 times with TBS-T, incubated with 

horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 hr and 

washed another 3 times with TBS-T. Finally, membranes were incubated with 

the enhanced chemiluminescence reagent (either in-house or commercial 

reagents) and exposed to X-ray films for different lengths of time. As before, 

films were developed using a Konica automatic developer. 

 In vitro assays  2.2.4

2.2.4.1 Kinase assays 
 
 
In assays utilising E.coli-expressed wild-type or kinase dead (D359A) MBP-

TcPINK1, reactions were set up in a volume of 40 µl, with substrates at 2 µM 

and kinase at 0.5 µg in 50 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 10 mM MgCl2, 

2 mM dithiothreitol (DTT) and 0.1 mM [γ-32P] ATP (approximately 50 cpm/pmol). 

Assays were incubated at 30°C with shaking at 1200 rpm and terminated after 

the indicated time by addition of SDS sample buffer. In mammalian HEK293 

immunoprecipitation kinase assays, C-terminal-FLAG tagged wild-type or 

kinase dead (D384A) PINK1 was immunoprecipitated from 5 mg of 

mitochondrial enriched extracts using anti-FLAG agarose beads and activity 

measured in a reaction volume of 40 µl consisting of 50 mM Tris-HCl (pH 7.5), 

0.1 mM EGTA, 10 mM MgCl2, 2 mM DTT, 0.1 mM [γ-32P] ATP (2000 cpm/pmol) 

and 5 µM of indicated substrate. Assays were incubated at 30°C with shaking at 

1200 rpm and terminated after 30 min by addition of SDS sample buffer. For all 

assays, reaction mixtures were resolved by SDS-PAGE. Proteins were detected 

by Coomassie staining and gels were imaged using an Epson scanner and  
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dried completely using a gel dryer (Bio-Rad). Incorporation of [γ-32P] ATP into 

substrates was analysed by autoradiography using Amersham Hyper-Film ECL. 

 
Calculation of specific activity of γ-32P ATP for in vitro kinase assay 
 
The bench limit for usage of ATP is 8 MBq for 32P. The activity of neat γ-32P 

ATP ordered is 3000 mCi/mmol at a concentration of 10mCi/ml. For a working 

stock, a custom-made order pre-diluted to a concentration of 350 µCi/ml (diluted 

with 1 mM cold ATP) is purchased. Usually a volume of 2.5 ml is purchased and 

made into 25 aliquots of 100µl each and stored in the communal freezer in the 

radioactive room. Note that under normal circumstances, our lab manager 

Allison Bridges takes care of making aliquots. Going by the bench limit, not 

more than 6 aliquots (100 µl each) can be used at any given time on your 

bench. Experiments that exceed bench limit must be performed in the enclosed 

radioactive room. 

 

For a kinase assay we require a final concentration of 100 µM ATP. 1 mCi 

ideally corresponds to 2.22 x 10^9 cpm and hence this would approximately 

correspond to a count of 500,000 cpm per µl measured from an aliquot of γ-32P  

ATP, using a scintillation counter (this value depends on the amount of decay 

that the radioactive material has undergone). The final concentration of ATP in 

a kinase assay is 100 µM. The calculation for specific activity of γ-32P ATP used 

in our assay is as follows: 

Reaction volume: 40 µl 

Amount of γ-32P ATP from aliquot to achieve a concentration 100 µM = 4 µl 

(A) 4 µl contains 4 x 500,000cpm = 20,00,000 cpm of hot radioactive tracer 
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Molar concentration of 100 µM cold ATP = 100 pmol 

(B) A 40 µl reaction will have, 40 x 100 = 4000 pmols of cold ATP 

Specific activity of γ-32P ATP used in a kinase assay  =  (A)/(B) 

         = 20,00,000/4000  

                = 500 cpm/pmol 

For reactions that require a higher specific activity, the neat ATP can de diluted 

less to achieve more than >500,000 cpm/µl. 

 

For calculation of stoichiometry of incorporation, the kinase assay reaction is 

resolved by SDS-PAGE and substrate bands are excised and counted in a 

scintillation counter. Based on the number of counts obtained we can calculate 

the number of moles of ATP incorporated per mole of protein used in the assay 

(Hastie et al, 2006). Stoichiometry is represented as mol of ATP/mol of protein.  

 

2.2.4.1 Ubiquitylation assay  
 
 
Wild-type or Ser65Ala Parkin (2 mg) were initially incubated with the indicated 

amounts of E. coli-expressed wild-type or kinase-inactive (D359A) MBP-

TcPINK1 in a reaction volume of 25 ml (50 mM Tris-HCl (pH 7.5), 0.1 mM 

EGTA, 10 mM MgCl2, 1 % β-mercaptoethanol and 0.1 mM [γ-32P] ATP 

(approx. 500 cpm/pmol); in parallel to confirm the phosphorylation). Kinase 

assays were incubated at 30°C with shaking at 1000 rpm for 60 min followed by 

addition of ubiquitylation assay components and Mastermix to a final volume of 

50 ml (50 mM Tris-HCl (pH 7.5), 0.05 mM EGTA, 10 mM MgCl2, 0.5%  
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2-mercaptoethanol, 0.12 mM human recombinant E1 purified from Sf21 insect 

cell line, 1 mM human recombinant UbcH7 purified from E. coli, 0.05 mM FLAG-

Ubiquitin (Boston Biochem) and 2 mM ATP. Ubiquitylation reactions were 

incubated at 30°C with shaking at 1000 rpm for 60 min and terminated by 

addition of SDS sample buffer. For all assays, reaction mixtures were resolved 

by SDS-PAGE. Ubiquitylation reactions were subjected to immunoblotting with 

anti-FLAG antibody (Sigma, 1:7500), anti-Parkin or anti-MBP antibodies. 

Incorporation of [γ-32P] ATP into substrates was analysed by autoradiography. 

 

2.2.4.2 Lambda phosphatase assay 
 
 
C-terminal-FLAG-tagged wild-type or kinase-inactive (D384A) PINK1 were 

immunoprecipitated from 5mg of mitochondrial enriched extracts using anti-

FLAG agarose beads. Wild-type PINK1 was incubated with or without 1000 U of 

Lambda phosphatase (NEB) in a reaction volume of 40 µl consisting of 50 mM 

Tris pH 7.5, 1 mM MnCl2 and 2 mM DTT. In addition wild-type PINK1 was 

treated with 1000 U of lambda phosphatase in the presence of 50 mM EDTA. 

Assays were incubated at 30 °C for 30 min with shaking at 1200 rpm. The 

beads were washed three times in 50 mM Tris pH7.5, 0.1 mM EGTA and then 

utilized in an in vitro kinase assay with GST-parkin UBL (1-108) as the 

substrate. Samples were further analyzed as described in 2.2.6.1. 
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 Mass spectrometry 2.2.5

2.2.5.1 Sample preparation 
 
Proteins were reduced with 10 mM DTT at 92°C for 5min and alkylated with 

50mM Iodoacetamide before resolving by SDS-PAGE and stained using 

Colloidal coomassie staining solution. Samples for mass spectrometry were 

prepared in a laminar flow hood. Protein bands were excised from the gel using 

a sterile scalpel and placed in a 1.5 ml Eppendorf tube. Gel pieces were 

washed sequentially with 0.5 ml of water, 50% acetonitrile/water, 0.1 M 

NH4HCO3 and 50% acetonotrile/50 mM NH4HCO3. All washes were 

performed for 10 min on a Vibrax shaking platform. Once colourless, gel pieces 

were shrunk with 0.3 ml acetonitrile for 15 min. Acetonitrile was aspirated and 

trace amounts removed by drying sample in a Speed-Vac. Gel pieces were 

then incubated for 16 h with 5 mg/ml trypsin in 25mM triethylammonium 

bicarbonate (TEA) at 30 °C on a shaker. An equal volume of acetonitrile (same 

as trypsin) was added to each sample and further incubated on a shaking 

platform for 15 min. The supernatants were transferred to clean tubes and dried 

by Speed-Vac. Another extraction was performed by adding 100 ml 50 % 

acetonitrile/2.5 % formic acid for 15 min. This supernatant was combined with 

the first extract and dried by Speed Vac.   

2.2.5.2 Mass spectrometry analysis 
 
All mass spectrometric (MS) analysis was performed by Dr. David Campbell, 

Robert Gourlay and Joby Varghese (College of Life Science, University of 

Dundee). Analysis of the tryptic peptides by LC-MS were performed on a  
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Thermo LTQ-Orbitrap system. The MS data was analysed through the Mascot 

search engine (www.matrixscience.com) against the human International 

Protein Index database. Tryptic phosphopeptides were identified by LC-MS on 

an ABI 4000 Q-TRAP system using precursor ion scanning in negative mode to 

search for release of the (PO3)- ion (-79 Da) allowing for +/-1 Da (Williamson et 

al, 2006), followed by MS/MS analysis in positive mode. The resulting data files 

were searched against the appropriate sequence, using Mascot run on an in-

house server, with a peptide mass tolerance of 1.2 Da, a fragment mass 

tolerance of 0.8 Da, and with variable modifications allowing for phosphorylation 

of serine/threonine or tyrosine and for methionine oxidation or dioxidation. 

MassFingerPrinting results from Mascot were viewed using a software package 

from ProteinGURU (www.proteinguru.com). 

 

2.2.5.3 In vitro 32P-labelling of PARKIN and identification 
of phosphorylation sites 

 
GST-Parkin (1 µg) purified from E. coli was incubated with 2 µg of either wild 

type MBP-TcPINK1 (1-570) or kinase dead MBP-TcPINK1 (D359A) for 60 min 

at 30 °C in 50 mM Tris-HCl (pH 7.5), 0.1 mM EGTA, 10 mM MgCl2, 2 mM 

dithiothreitol (DTT) and 0.1mM [γ-32P] ATP (approximately 20,000 cpm/pmol) in 

a total reaction volume of 25 µl. The reaction was terminated by addition of LDS 

sample buffer with 10 mM DTT, boiled, and alkylated with 50 mM 

iodoacetamide before samples were subjected to electrophoresis on a Bis-Tris 

4-12% polyacrylamide gel, which was then stained with Colloidal Coomassie 

blue (Invitrogen). Phosphorylated parkin was digested with trypsin and >95% of  
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32P radioactivity incorporated in the gel bands was recovered. Peptides were 

chromatographed on a reverse phase HPLC Vydac C18 column (Cat# 

218TP5215, Separations Group, Hesperia, CA) equilibrated in 0.1 % (v/v) 

trifluoroacetic acid and the column developed with a linear acetonitrile gradient 

at a flow rate of 0.2 ml/min and fractions (0.1 ml each) were collected and 

analysed for 32P radioactivity by Cerenkov counting. Isolated phosphopeptides 

were analysed by LC-MS-MS on a Dionex 3000 nano liquid chromatography 

system coupled to a Thermo LTQ-orbitrap mass spectrometer. The resultant 

data files were searched using Mascot (www.matrixscience.com) run on an in-

house system against a database containing the parkin sequence, with a 10 

p.p.m. mass accuracy for precursor ions, a 0.8 Da tolerance for fragment ions, 

and allowing for Phospho (ST), Phospho (Y), Oxidation (M) and Dioxidation (M) 

as variable modifications. Individual MS/MS spectra were inspected using 

Xcalibur 2.2 software. The site of phosphorylation of these 32P-labeled peptides 

was determined by solid-phase Edman degradation on an Applied Biosystems 

494C sequencer of the peptide coupled to Sequelon-AA membrane (Applied 

Biosystems) as described previously (Campbell & Morrice, 2002). 

2.2.5.4  In vivo Phospho-site mapping of PINK1 substrate  
 
Flp-In T-Rex HEK 293 cell lines stably expressing empty vector, wild-type or 

kinase-inactive PINK1–FLAG were sequentially co-transfected with the 

respective HA-tagged substrates, induced with 0.1µg/ml of Doxycycline and 

then incubated with 10 µM CCCP or DMSO control for 3 hr before whole cell 

lysis. Approximately 30mg of lysate was subjected to immunoprecipitation with 

anti-FLAG-agarose and then eluted in LDS sample buffer. Samples were boiled  
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with 10 mM DTT, and then alkylated with 50 mM iodoacetamide before being 

subjected to electrophoresis on a Bis-Tris 10 % polyacrylamide gel, which was 

then stained with Colloidal Coomassie blue. Coomassie-stained bands 

migrating with the expected molecular mass of parkin were excised from the gel 

and digested with trypsin and samples underwent phosphosite analysis with 

LTQ-Orbitrap Velos. Individual MS/MS spectra were inspected using Xcalibur 

2.2 software. 

2.2.5.5  In vivo phospho-site mapping of human PINK1 
 
10 mg of mitochondrial extract from Flp-In T-Rex HEK 293 cell lines stably 

PINK1–FLAG were subjected to immunoprecipitation with anti-FLAG-agarose 

and then eluted in LDS sample buffer. Samples were boiled with 10 mM DTT, 

and then alkylated with 50 mM iodoacetamide before being subjected to 

electrophoresis on a Bis-Tris 4-12% gradient polyacrylamide gel, which was 

then stained with Colloidal Coomassie blue. Coomassie-stained bands 

migrating with the expected molecular mass of PINK1-FLAG were excised from 

the gel and digested with trypsin and samples were analysed either by an 

Applied Biosystems 4000 Q-TRAP system with precursor ion scanning as 

described previously (Williamson et al, 2006) or on the LTQ-Orbitrap Velos 

system with multistage activation. 

2.2.5.6  N-terminal Edman Sequencing 
 
HEK293 cells were transiently transfected with wild-type PINK1-FLAG and then 

underwent whole cell lysis. 100mg of lysate was subjected to 

immunoprecipitation with anti-FLAG agarose and then eluted in LDS sample 

buffer. Samples were boiled with 10 mM DTT, and then alkylated with 50mM  
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iodoacetamide before being subjected to electrophoresis on a Bis-Tris 10% 

polyacrylamide gel, which was then transferred to Immobilon PVDF 

(Polyvinylidene difluoride) membrane and stained briefly with Coomassie Blue. 

The band corresponding to the processed form of PINK1 was excised and 

subjected to Edman degradation in an Applied Biosystems ProCise 494 

Sequencer. The resulting HPLC profiles were analysed with Model 610 software 

(Applied Biosystems). 

 Stable Isotope Labeling with Amino acids in Culture 2.2.6

(SILAC) 

2.2.6.1 Preparation of SILAC media 
 
SILAC DMEM (high glucose without NaHCO3, L-glutamine, arginine, lysine and 

methionine; Biosera #A0347) was supplemented with methionine, glutamine, 

NaHCO3, 10 % dialysed FBS (Hyclone) and the following combinations of 

unlabeled and isotopically-labeled arginine (84 µg/ml) and lysine (146 µg/ml): L-

arginine and L-lysine (Sigma–Aldrich) for R0K0 (light); L-arginine-HCl (U-13C6) 

and L-lysine-2HCl (4,4,5,5,D4) for R6K4 (medium); and L-arginine-HCl (U-

13C6, 15N4) and 13C-Llysine-2HCl (U-13C6, 15N2) for R10K8 (heavy). The 

SILAC medium was filtered through a 0.22-µm filter and cells cultured for five 

passages in these media for maximum incorporation of labeled amino acids.  

2.2.6.2 PINK1 triple SILAC-based interactor screen 
 
Flp In TRex HEK293 cells stably expressing FLAG empty were grown in ‘light’ 

SILAC medium. Flp In HEK293 cells stably expressing PINK1-FLAG Wild-type 

was grown in ‘medium’ as well as ‘heavy’ SILAC medium. All cell lines were  
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grown for at least 5 passages in SILAC media to ensure maximal incorporation 

of labeled amino acids. Experimental set-up is listed in Table 2.7.  Mitochondrial 

and cytosolic fractions were made from the different conditions listed in the 

Table 2.7. 0.7 mg of mitochondrial fraction and 3.3 mg of cytosolic fraction from 

each condition were immunoprecipitated individually with 10 µl of FLAG-

agarose beads. Mitochondrial immunoprecipitates from all three SILAC 

conditions of replicate 1 and 2 were pooled together, respectively. Similarly, 

cytosolic fractions were also pooled together. Pooled immunoprecipitates were 

resolved by SDS-PAGE and the gel was stained using Colloidal Coomassie 

blue. The gel was further cut into 8 pieces per lane and subjected to mass 

spectrometry sample preparation as described in 2.2.6.1. 

 

 
Experiment 

 
‘light’ 

 
‘medium’ 

 
‘heavy’ 

 
 
 

 Replicate 1 
 

 
Cell line: 

   FLAG empty 
 

 
Cell line: 

PINK1-FLAG wild type 

 
Cell line: 

PINK1 – FLAG wild 
type 

 
Stimulation: 
10µM CCCP 
for 3 hours 

 

 
Stimulation: 

 
DMSO treated control 

 
Stimulation: 

 
10µM CCCP for 3 hours 

 
 
 
 
  Reciprocal   
  replicate 2 

 
Cell line: 

FLAG empty 
 

 
Cell line: 

PINK1-FLAG wild type 

 
Cell line: 

PINK1-FLAG wild type 

 
Stimulation: 
10µM CCCP 
for 3 hours 

 

 
Stimulation: 

 
10µM CCCP for 3 hours 

 

 
Stimulation: 

 
DMSO treated control 

 

Table 2.9 PINK1 SILAC-based interactor screen experimental set-up 
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Tryptic peptides of proteins from SILAC-labeled cells were analysed by Orbitrap 

mass spectrometry and raw mass spectrometric data files for each experiment 

were collated into a single quantitated dataset using MaxQuant (version 

1.0.13.13) (http://www.maxquant.org) and Mascot search engine (Matrix 

Science, version 2.2.2) software. Enzyme specificity was set to that of Trypsin, 

allowing for cleavage N-terminal to proline residues and between aspartic acid 

and proline residues. Other parameters were: (i) Variable modifications: 

methionine oxidation and protein N-acetylation; (ii) Fixed modifications: cysteine 

carbamidomethylation; (iii) Database: target-decoy human MaxQuant 

(ipi.HUMAN.v3.52.decoy) (containing 148,380 database entries); (iv) Labels: 

R6K4 or R10K8; (v) MS/MS tolerance: 0.5 Da; (vi) Minimum peptide length: 6; 

(vii) Top MS/MS peaks per 100 Da: 5; (viii) Maximum missed cleavages: 2; (ix) 

Maximum of labeled amino-acids: 3; (x) False Discovery Rate (FDR): 1 %; (xi) 

Posterior Error Probability: 1; (xii) Minimum ratio count: 2. The protein ratios 

were calculated using all peptides. As well as taking the FDR into account, 

proteins were considered identified if they had at least one unique peptide and 

considered quantified if they had at least one quantified SILAC pair. Data 

quality was also assessed manually, and only high confidence results reported. 

SILAC analysis was performed by Francois-Michel Boisvert (Angus Lamond’s 

lab, GRE, Dundee) and Chandana Kondapalli.  

 

2.2.6.3 PINK1 SILAC phosphoproteomics 
 
PINK1 SILAC phosphoproteomics was performed in collaboration with Matthias 

Trost (MRC PPU, Dundee). Flp In TRex HEK293 cells stably expressing either  
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FLAG empty, PINK1-FLAG wild type or PINK1-FLAG Kinase dead were grown 

in ‘light’, ‘heavy’ and ‘medium’ SILAC media, respectively, for at least 5 

passages. Experimental set-up is listed in Table 2.8. Experiments were set-up 

as two biological replicates with a technical replicate in each and hence is 

considered to have n=4, which is beneficial to achieve statistical significance.  

 

Cells in each condition were stimulated with 10 µM CCCP for 3 hr and were 

scraped using a hand-made cell scraper (obtained from Michel Desjardin’s lab, 

Montreal in appropriate amount of homogenization buffer (8.55 % w/v Sucrose 

in 3 mM Imidazole pH 7.4 supplemented with protease inhibitor and 

phosphatase inhibitor cocktail from Roche and Benzonase from Roche). The 

 

 
‘light’ 

 
‘medium’ 

 
‘heavy’ 

 
Cell line: 

      FLAG empty 
 

 
Cell line: 

PINK1-FLAG Kinase 
dead 

 
Cell line: 

PINK1 – FLAG wild 
type 

 
Stimulation: 

10µM CCCP for 3 
hours 

 

 
Stimulation: 

    
    10µM CCCP for 3 
hours 

 

 
Stimulation: 

 
10µM CCCP for 3 hours 

 

 
          Table 2.10 PINK1 SILAC phospho-proteomic experimental set-up 

 
cells were lysed by mechanical disruption using a stainless steel Dounce 

Homogenizer by subjecting to 6 passes (Fisher, cat# 08-414-20A). The lysate 

was centrifuged at 3000 rpm for 10 min at 4 °C to spin down cell debris and the 

supernatant was collected in Ultra-clear centrifuge tubes 14x95 mm (Beckman, 

cat# 344060) and subjected to ultra-centrifugation at 100,000 g for 30 min.  
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Resultant pellet corresponds to a crude mitochondrial fraction. 1 % RapiGest 

(RAPIGESTTM SF from Waters – Cat # 186002123), 50 mM Tris pH 8.0, 1 mM 

TCEP + phosphatase inhibitors (without EDTA) to were added to a cell pellet 

aiming for ~10 mg/ml protein concentration and the resultant solution vortexed 

briefly. Rapigest is an acid cleavable SDS-like detergent that is removed by 

addition of 1 % TFA and solid-phase extraction (SPE). 

The following protocol was followed for Rapigest cell lysis (from Matthias Trost’s 

lab). 

• Add 0.5-1 ul of Benzonase to remove DNA. Incubate for 3 min on ice. 

• Sample should be clear, if not, add more RapiGest buffer. 

• Heat at 70-95° for 5 min. Allow cooling to room temperature.  

• Add 5 mM iodoacetamide in Tris pH 8.0 for 20 min in dark (RT, shaker). 

• Add 10 mM DTT in Tris for 20 min in dark (RT, shaker). At this stage it 

would be a good point to freeze. 

• Accurate protein estimation was performed by EZQ protein estimation 

method (Molecular probes kit – R33200).* 

*A small amount of heavy and medium labeled samples were taken to check 

labelling efficiency. Also, small amounts of heavy, medium and light labeled 

samples were mixed at 1:1:1 ratio, digested and checked by mass spectrometry 

if samples were indeed at a 1:1:1ratio. Only after performing this the samples 

were taken for enzymatic digestion. 

• Dilute 1:10 with 50 mM Tris 8.0 (to allow trypsin to work) and vortex.  

• Perform a quick centrifugation to spin down foam.  
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• Mix lysates from the three different conditions from each experimental 

replicate in equal amounts, respectively (9mg total).  

• Digest with 1:100 trypsin for 3 h, then another 1:100 overnight and leave on 

Thermoshaker 37°C. (for large amounts use Worthington trypsin at 1:75 

twice) (Only low-bind tubes and low-bind tips were used with the start of 

Trypsin digestion).  

• Acidify to final lysate with 1% Triflouroacetic acid (TFA) to cleave RapiGest. 

• Shake for 1h at 37°C at 1000 rpm. 

• Pellet by spinning at max speed for 30 min (set to room temp). 

• SPE (Solid-phase extraction) clean up of supernatant was done. 

• Lyophilise or elute with 800 ul of 80% Acetonitrile (ACN), 0.1% Formic acid 

and subject it to HILIC (Hydrophilic interaction chromatography – performed 

by Bob Gourlay from Mass spectrometry team, MRC PPU). HILIC enables 

phospho-peptide enrichment and for every sample separated by HILIC, we 

collect fractions 10-35, which are lyophilized and each of these will undergo 

a subsequent TiO2  phosphopeptide enrichment.  

 

TiO2 Enrichment of Phosphopeptides 
 
TiO2 micro-columns were prepared in-house by the Trost laboratory. Sample loading, 

washing and elution were performed by centrifuging (5,000 rpm, 5 min) the micro-

column. Each micro-column was used once to avoid contamination. The following 

materials were utilised: Titansphere (TiO2), 150x4.6 mm, 5 µm (GL, Life science), pH 

indicator strips colorpHast (EMD), High Performance  
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extraction disk C-8 47 mm (3 M Empore), Trifluoroacetic acid (TFA), Lactic Acid (Ph 

Eur grade, Fluka) c=13.42 M, Acetonitrile (AcN)-Fisher Scientific, Ammonium 

hydroxide 28-30 % (NH4OH)-Sigma-Aldrich, 20 µL pipette tip. 

The following protocol was used to prepare the micro-columns: 

 
Preparation of TiO2 micro-columns (Illustrated in Fig. 2.1): 

1- Insert C8 extraction disk in a 20 µL pipette tip. 

2-Load 25 µL (1.25 mg, 5 mm) of 50mg/mL 

“homogeneous” TiO2 solution in each tip, making sure 

that the TiO2 solution is always homogeneous by constantly stirring it with a 

magnetic bar. This ensures that the same amount of TiO2 is reproducibly added 

into each pipette tip. 

3- Elute the acetonitrile. 

 

 

 
Figure 2.1 Preparation of TiO2 tips for phospho-peptide enrichment 

 

 

 

 

TiO2 
C8 extraction disk 
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TiO2 enrichment procedure (Illustrated in Fig.2.2): 

Condition micro-columns with 10 µL of 3% TFA in 70% AcN solution. 

Reconstitute sample (250µg) in 50 µL of 250mM lactic acid/3% TFA/70% AcN. 

Verify if pH is acidic (~2) using a pH indicator strip. Load sample on a 1.25 mg 

TiO2 micro- column.  Wash micro-column with 10 µL of 250mM lactic acid/3% 

TFA/70% AcN. Wash micro-column with 30 µL of 3% TFA in 70% AcN. Wash 

with 10 µl 0.1% TFA. Put 1 µL of 50% TFA in a new eppendorf (LoBind) and 

elute phosphopeptides with 10-30 µL of 1% NH4OH pH10.5 into this tube. At 

the loading step, adjust the gas pressure or centrifugation speed to obtain a 

very slow elution rate (3,000-5,000 rpm) to have a higher recovery of 

phosphopeptides and enrichment level. Inject 1/3rd of the eluate into mass spec 

straight away. Store in liquid N2 or -80C. 

 

 
Figure 2.2 Phospho-peptide enrichment procedure using TiO2 tips  

 

Chandana Kondapalli performed the experiment. Matthias Trost and Brian Dill 

performed Max-quant analysis of phospho-peptides identified by mass  
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spectrometry.  Data quality was also assessed manually, and only high 

confidence results reported. 

2.2.6.4 Sequence alignment 
 
Sequence alignments were prepared using ClustalW algorithm and visualised 

using Jalview 10.0.  

2.2.6.5 Statistical analysis 
 
All experiments presented in this thesis were performed at least two times with 

significant reproducibility across replicates.  
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3 Elucidation of PINK1 signal transduction pathway  
 

3.1 Introduction 

Ever since the discovery of autosomal recessive mutations in PINK1 in 2004, 

causative of early-onset Parkinson’s disease (Valente et al, 2004), there has 

been great excitement in probing the regulation and function of this enzyme. 

Despite considerable research, there was little understanding of the kinase 

activity of PINK1, its physiological substrates and how this links to pathogenesis 

of PD. In order to establish a functional pathway for PINK1, a crucial first step 

has been to determine its enzymatic properties. Human PINK1 in our hands was 

found to be inactive, however, a major advance made by our lab was the 

discovery that insect orthologues of PINK1, including an orthologue from the red 

flour beetle, Tribolium castaneum (TcPINK1), are catalytically active when 

expressed in Escherichia coli (Woodroof et al, 2011).  I have exploited this 

discovery to employ TcPINK1 as a biochemical tool to uncover PINK1 

substrates. I initially explored whether TcPINK1 could phosphorylate 11 PD-

linked genes and/or 7 putative PINK1 interacting proteins. My analysis revealed 

that PINK1 robustly phosphorylates another PD-linked protein, namely the RING-

IBR-RING E3 ubiquitin ligase, Parkin.  

 

Further, I have mapped the phosphorylation site to a highly conserved residue, 

Serine 65 (Ser65) in Parkin, which regulates its E3-ubiquitin ligase activity.  In 

parallel studies, I have discovered that human PINK1 is activated upon 

mitochondrial depolarization, enabling it to phosphorylate Parkin at Ser65 in vivo,  
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providing the first evidence of kinase activity for mammalian PINK1. Once 

activated, PINK1 also undergoes autophosphorylation at various residues 

including Threonine 257 (Thr257), which represents a novel marker for its 

activation state.  

3.2 PART I – Phosphorylation of Parkin by catalytically active   
insect orthologue of PINK1 

 

3.2.1  Insect PINK1 phosphorylates Parkin in vitro 
 
In the human kinome tree, PINK1 exists in a lone branch being unrelated to any 

other known protein kinases (refer to Fig. 1.3). Multiple sequence alignment of 

the kinase domain of PINK1 with CaMKI, CaMKII and PKA reveals a high degree 

of conservation of sub-structural motifs that are required for catalytic activity (Fig. 

3.1). In addition, PINK1 also contains three unique insert regions in the N-lobe of 

the kinase domain, which are as of yet unknown function (Fig. 3.1). Although 

human PINK1 contains a highly conserved kinase domain and all the motifs 

necessary for activity, in our laboratory and those of other groups, human PINK1 

expressed in a variety of different systems was found to be inactive. A recent 

breakthrough in our lab was the identification of insect orthologues of PINK1, 

including that of Tribolium castaneum (TcPINK1), that are catalytically active 

when expressed in E.coli (Woodroof et al, 2011). The discovery of TcPINK1 

served as a valuable tool to delineate evolutionarily conserved downstream 

signaling pathways of PINK1. Catalytically active recombinant TcPINK1 was 

used to directly phosphorylate 11 different proteins encoded by genes linked to 

Mendelian inherited-PD and 7 proteins reported in literature to be putative PINK1 

interacting proteins by in vitro kinase assay using 32P-adenosine triphosphate 
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[γ-32P ATP] ATP (Fig. 3.2A). This strikingly revealed that wild-type but not kinase-

inactive TcPINK1 phosphorylated full length Parkin, but not any of the other PD-

linked proteins or interacting proteins tested (Fig. 3.2A and B). 

 

 
  

Figure 3.1 Conservation of hallmark motifs in PINK1 required by active 
kinases 

Multiple sequence alignment (MSA) of human and mouse PINK1 along with Protein Kinase A 
(PKA) and calcium and calmodulin dependent kinase 1 (CamKI) and 2 (CamKII) shows the 
presence of conserved motifs (highlighted in orange) present in most active kinases. Green bars 
represent the three unique insertions in PINK1. The secondary structure of PINK1 determined by 
JPred (http://www.compbio.dundee.ac.uk/www-jpred/) is represented below the MSA, wherein 
arrows represent β-sheet and cylinders represent α-helix. 
 

3.2.2 Mapping of phosphorylation site on Parkin  
 
In order to identify the phosphorylation site on Parkin, Parkin was initially 

phosphorylated by TcPINK1 using γ-32P ATP; digested with trypsin and tryptic 

peptides analysed by chromatography on a C18 column. Two major 32P-labelled  
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Figure 3.2. Insect PINK1 phosphorylates Parkin in vitro 

(A) The indicated PD-linked proteins (1 mM) were incubated with either full-length MBP-fusion of 
wild-type TcPINK1 (1–570) or kinase-inactive (KI) TcPINK1 (D359A) (0.5 µg) and [γ-32P] ATP for 
30 min. Assays were terminated by addition of SDS loading buffer and separated by SDS-PAGE. 
Proteins were detected by Colloidal Coomassie blue staining (lower panel) and incorporation of 
[γ-32P] ATP was detected by autoradiography (upper panel). Similar results were obtained in 
three independent experiments. Fine dividing lines indicate that reactions were resolved on 
separate gels. The substrate bands on the Coomassie gel are denoted with a small red asterisk. 
All substrates were of human sequence and expressed in E. coli unless otherwise indicated.  
 
(B) As in (A) except that proteins reported to interact with PINK1 were tested as PINK1 
substrates. Similar results were obtained in three independent experiments.  
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Figure 3.3  Insect PINK1 phosphorylates Parkin at Ser65, a highly 
conserved residue within its N-terminal Ubl domain 

(A) Full-length GST-Parkin (1 µg) was incubated with 2 µg of either wild-type TcPINK1 (1–570) or 
KI TcPINK1 (D359A) in the presence of Mg2+[γ-32P] ATP for 60 min. Assays were terminated by 
addition of LDS loading buffer, separated by SDS-PAGE and proteins were detected by Colloidal 
Coomassie blue staining. Phosphorylated Parkin was digested with trypsin. The resultant 
peptides were separated by reverse phase HPLC on a Vydac C18 column equilibrated in 0.1% 
(v/v) trifluoroacetic acid and the column developed with an acetonitrile gradient (diagonal line). 
The flow rate was 0.2 ml/min and fractions (0.1 ml each) were collected and analysed for 32P 
radioactivity by Cerenkov counting. Two major 32P-labelled peaks (P1, P2) were identified 
following incubation with wild-type TcPINK1 (left). No peaks were identified following incubation 
with kinase-inactive TcPINK1 (right).  
 
(B) Schematic of domain organization of Parkin and sequence alignment showing a high degree 
of conservation of Ser65 residue from mammals to invertebrates.  
 
(C & D) Phosphopeptides P2 and P1 were sequenced by solid-phase Edman sequencing 
followed by mass spectrometry.  The amino-acid sequence of LC-MS/MS analysis is shown using 
amino acid single-letter code. Abbreviations: Ubl, ubiquitin-like; IBR, in-between-RING; RING, 
really interesting new gene. 
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phosphopeptides were observed (Fig. 3.3A). A combination of solid-phase 

Edman sequencing and mass spectrometry described previously (Campbell & 

Morrice, 2002), revealed that both of these encompassed variants of a peptide 

phosphorylated at Serine 65 (Fig. 3.3 C and D). Ser65 is located within the N-

terminal Ubl (Ubiquitin-like-domain) domain of Parkin, and is highly conserved 

from mammals to invertebrates (Fig. 3.3B). 

 

3.2.3 Stoichiometry and specificity of Parkin phosphorylation 
 
To determine the stoichiometry of Parkin phosphorylation, a time course of was 

undertaken, which revealed that TcPINK1 could indeed phosphorylate Parkin in a 

time-dependent manner reaching a maximal stoichiometry of phosphorylation of 

approximately 0.25 moles of 32P-phosphate per mole of protein (Fig. 3.4A). 

Mutation of Ser65 to Alanine prevented phosphorylation of full-length Parkin as 

well as an N-terminal Parkin fragment consisting of the Ubl-domain; therefore 

confirming that Ser65 is the major site for PINK1-mediated phosphorylation (Fig. 

3.4C). It was also interesting to observe that the isolated Ubl domain of Parkin 

was phosphorylated to a higher stoichiometry than full-length Parkin perhaps 

indicating that there is a structural constraint in accessing the Serine residue in 

full-length Parkin.  In fact, a recent study in Parkin has shown that the N-terminal 

Ubl domain interacts with its C-terminal region to form a closed conformation 

(Chaugule et al, 2011). Based on this, a C-terminal truncation of Parkin (1-383) 

was made in order to test if this could relieve its closed conformation and make 

Serine 65 more accessible to PINK1. Phosphorylation of Parkin (1-383) was 

observed to be slightly more than full-length Parkin, however the interpretation is  
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confounded by the observation that this C-terminal Parkin truncation mutant is 

highly unstable and degraded (Fig. 3.4D) 

 
 

Figure 3.4 Specificity of PINK1 mediated phosphorylation of Parkin 

(A) MBP-TcPINK1 (0.5 µg) was incubated in the presence of GST-Parkin (1 µg) and [γ-32P] ATP 
for the times indicated and assays terminated by addition of SDS loading buffer. Samples were 
subjected to SDS-PAGE and proteins detected by Colloidal Coomassie blue staining (lower 
panel) and incorporation of [γ-32P] ATP was detected by autoradiography (upper panel). Gel 
pieces corresponding to Parkin were quantified by Cerenkov counting to calculate stoichiometry. 
Similar results were obtained in two independent experiments.  
 
(B) Schematic of different truncated versions of Parkin used for in vitro kinase assays.  
 
(C and D) Full-length wild-type TcPINK1 (1–570) and kinase inactive TcPINK1 (D359A) against 
wild-type or S65A mutants of full-length Parkin, GST-fusion of isolated Ubl-domain-containing N-
terminal fragment (residues 1–108) or C-terminal truncated Parkin (1-383). The indicated 
substrates (2mM) were incubated in the presence of the indicated enzyme (1 µg) and [γ-32P] 
ATP for 30 min. Assays were terminated by addition of SDS loading buffer and separated by 
SDS-PAGE. Proteins were detected by Colloidal Coomassie blue staining (lower panel) and 
incorporation of [γ-32P] ATP was detected by autoradiography (upper panel). The substrate 
bands are denoted by a small red asterisk.  
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3.2.4 PINK1 phosphorylation of Parkin at Ser65 mediates 
activation     of Parkin E3 ubiquitin ligase activity  

 
As discussed earlier, a recent study provided strong evidence that the Ubl 

domain of Parkin acts as an auto-inhibitory domain by binding to a region within 

the C-terminus thereby suppressing catalytic activity (Chaugule et al, 2011). 

Given that Ser65 lies within the core of the Ubl domain, we hypothesized that 

phosphorylation of Ser65 might relieve the autoinhibition thereby activating the 

E3 ligase activity of Parkin. To investigate this, an E3 ligase auto-ubiquitylation 

assay was performed to assess Parkin catalytic activity using highly purified full 

length recombinant Parkin expressed in E. coli with no epitope tags that can 

interfere with the autoinhibitory effect of the Ubl domain (Chaugule et al, 2011). 

Agne Kazlauskaite, a current PhD student in our lab, performed this part of the 

study. Prior to undertaking the E3 ligase activity assay, Parkin was 

phosphorylated with increasing levels of TcPINK1 in the presence of γ-32P ATP 

so that we could verify PINK1 mediated phosphorylation of Parkin (middle panels 

in Fig. 3.5). To assess Parkin E3 ligase activity, aliquots of these reactions were 

added to a reaction containing E1 ubiquitin-activating ligase, UbcH7 conjugating 

E2 ligase, ubiquitin and Mg-ATP. After 60 min, reactions were terminated with 

SDS sample buffer in the presence of dithiothreitol (DTT) and reactions analysed 

by immunoblot analysis with antibodies that detect ubiquitin, Parkin and 

TcPINK1. 

 
In the absence of PINK1 phosphorylation we confirmed previous findings and 

found that Parkin displayed no significant E3 ligase activity and no evidence of 

formation of polyubiquitin chains were observed (lane 1 in Fig. 3.5A).  
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Remarkably, when increasing levels of TcPINK1 were added to the reaction at 

concentrations in which phosphorylation of Parkin was detected (middle panel of 

Fig. 3.5A), we observed a marked dose-dependent appearance of non-DTT-

reducible low molecular weight polyubiquitylated species migrating between 

approximately 30 and 50 kDa (top panel of Fig. 3.5A). Consistent with this being 

mediated by phosphorylation of Parkin at Ser65 by TcPINK1, the appearance of 

polyubiquitin chains was inhibited by introducing a point mutation in PINK1 that 

ablates catalytic activity (Fig. 3.5B) or by mutating Ser65 in Parkin to a non-

phosphorylatable Ala residue (Fig. 3.5C). Thus, based on this in vitro analysis, it 

is clear that TcPINK1 mediated phosphorylation of Parkin at Ser65 is a crucial 

event that leads to activation of the E3 ubiquitin ligase activity of Parkin.  



 
88 

 

 

Figure 3.5 PINK1 phosphorylation of Ser65 mediates activation of Parkin E3 ligase activity (performed by Agne Z. Kazlauskaite) 

Wild-type (A) but not kinase-inactive (B) PINK1 activates wildtype Parkin, but does not affect the activity of Ser65Ala (S65A) mutant Parkin (C). Wild-type or S65A Parkin were 
phosphorylated with indicated amounts of wild-type or kinase-inactive (D359A) MBP-TcPINK for 60 min. Phosphorylated Parkin was subjected to in vitro - ubiquitylation assay for 
60min, reaction terminated in SDS loading buffer and resolved by SDS-PAGE. Ubiquitin, Parkin and PINK1 were detected using anti-FLAG, anti-Parkin and anti-MBP antibodies, 
respectively. Incorporation of [γ-32P] ATP was detected by autoradiography (lower panel). Ubiquitin attached to the E1 (Ub-Ube1) and ubiquitin dimer (Ub2) formation occurred in the 
assay in all conditions (A-C). Ubiquitylation of PINK1 (Ub-PINK1) is indicated in (A). Polyubiquitin chain formation (poly-Ub) upon Parkin activation (A) is indicated. Representative of 
n=3.  
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3.3 PART II – Evidence of Parkin Ser65 phosphorylation by 
human PINK1 in mammalian cells 

 

3.3.1 Human PINK1 is stabilized by mitochondrial 
depolarization 

 

In order to study human PINK1 in mammalian cells, Flp-In TRex HEK293 

(Human Embryonic Kidney) inducible cell lines stably expressing C-terminal 

FLAG-tagged human PINK1 were generated as described in 2.2.3.4. This Flp-In 

cell line allows for integration and expression of PINK1 at a specific genomic 

location enabling doxycycline induced expression of PINK1 at levels nearer that 

of endogenous PINK1 expression and much less than transient over-expression 

cell systems. We chose a C-terminal tag since the N-terminal region of PINK1 

contains a mitochondrial targeting sequence that undergoes cleavage upon 

mitochondrial localization. Stable cell lines expressing either FLAG-tag alone 

(negative control), human wild-type-C-terminal FLAG-tagged PINK1 or human 

Kinase inactive (D384A)–C-terminal FLAG tagged PINK1 were generated and 

induced for expression with 0.1µg/ml of doxycyline for 24 hours (Fig. 3.6A).  

 

As described in 1.4.3, the sub-cellular localization and stabilization of PINK1 

was tested in PINK1 stable cell lines. As seen in previous studies, it was 

observed that both full-length (63kDa) and cleaved forms (53kDa) of PINK1 

exist under basal conditions (Fig. 3.6B).  A previous study has established that 

PINK1 gets selectively stabilized in mitochondria upon treatment with 

mitochondrial uncoupling agents (such as valinomycin or CCCP - (m-

chlorophenylhydrazone)) and in order to confirm this, a dose response and time  
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course of CCCP stimulation was performed (Appendix Fig. 6.1 A & B) (Matsuda 

et al, 2010; Narendra et al, 2010). This confirmed that optimal stabilization of 

full length PINK1 in mitochondria occurs with 10µM CCCP and the stabilization 

is maximal within 3 hours of stimulation (Appendix Fig. 6.1 A & B). A time 

course and dose response of proteasomal inhibition using the 20S proteasomal 

inhibitor, MG-132, shows an accumulation of the 53kDa cleaved form of PINK1 

(Appendix 6.1 C & D).  

 

 

Figure 3.6 PINK1 is stabilized upon mitochondrial depolarization 

 
(A) FlpIn TRex HEK293 cell lines stably expressing either FLAG-alone, human PINK1 wild-type-
C-terminal FLAG or human PINK1 kinase inactive-C-terminal FLAG were stimulated for protein 
expression using 0.1µg/ml of doxycycline for 24 hours. Whole cell lysates were blotted for 
PINK1 using anti-PINK1 (Novus) and GAPDH as loading control.  
 
(B) HEK293 cells stably expressing PINK1 wild-type-FLAG were induced for protein expression 
and stimulated with the indicated amounts of valinomycin, CCCP or MG-132 for 3 hours. Cells 
were fractioned into cytosolic and mitochondrial fractions and were blotted for PINK1 using anti-
PINK1 (Novus) antibody. GAPDH and HSP60 serve as cytosolic and mitochondrial markers 
respectively and high molecular weight ubiquitin species served as a control for proteasomal 
inhibition. 
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Using these optimized conditions, Flp-In T-Rex cell HEK293 lines stably 

expressing PINK1-FLAG were treated with 10µM CCCP or 2µM valinomycin for 

3 hours. Both act differentially to depolarize the mitochondrial membrane 

potential by uncoupling ATP synthesis from the electrochemical gradient. 

 
A pronounced stabilization of full-length PINK1 migrating at 63kDa occurred 

with both conditions in the mitochondrial fraction compared to DMSO treatment 

(Fig. 3.6B). In contrast the expression of PINK1 in the cytosolic fraction 

appeared to reduce with uncouplers. The stabilization was also 20S 

proteasome independent as cells treated with MG-132 in parallel had a 

differential effect on PINK1 with stabilization of the processed form of PINK1 at 

53kDa in cytoplasm and mitochondria (Fig. 3.6B). N-terminal Edman-

sequencing of PINK1 confirmed that the cleaved protein begins at residue 104 

(Appendix 6.2) consistent with previous work indicating that human PINK1 is 

proteolysed between residues Ala103-Phe104 by the mitochondrial rhomboid 

protease, PARL (Deas et al, 2011; Jin et al, 2010; Meissner et al, 2011). In 

conclusion, this initial characterisation of PINK1 stable cells suggested that 

PINK1 undergoes constant turnover under basal conditions with sequential 

cleavage followed by removal of the cleaved form via proteosomal degradation. 

This turnover can be interupted and PINK1 selectively stabilized when cells are 

subjected to mitochondrial depolarization. 
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3.3.2 CCCP induces a band-shift in wild-type but not kinase-  
inactive mitochondrial PINK1 

 
A 3 h CCCP treatment induced a marked increase in levels of full length wild-

type PINK1 in the mitochondrial fraction with a concomitant decrease in protein 

levels in the cytoplasmic compartment (Fig. 3.7). The level of full length PINK1 

was also considerably increased in whole cell lysates consistent with CCCP 

stabilizing full length PINK1. We then sought to examine the effects of CCCP on 

the stabilization of kinase-inactive PINK1. Kinase-inactive PINK1 also 

undergoes stabilization in the mitochondria upon CCCP treatment (Fig. 3.7). 

However, CCCP stimulation induced a significant reduction in the 

electrophoretic mobility (‘band-shift’) of wild-type PINK1 when compared to the 

kinase-inactive form (Fig. 3.7). In fact, this phenomenon was been best 

observed when proteins were resolved by an 8% isocratic Tris-glycine SDS-

polyacrylamide gel (Appendix 6.3 shows a comparison of 8% vs. 10%) and was 

less pronounced in gradient gels (Appendix 6.4). 

 
 
Figure 3.7 CCCP induces a bandshift in wild-type but not kinase inactive 

PINK1 

Flp-In T-Rex HEK293 cell lines stably expressing FLAG alone, wild-type or kinase-inactive 
PINK1-FLAG were induced for with doxycycline for protein expression. Cells were treated with 
10mM CCCP for 3h and lysates subjected to sub-cellular fractionation. 25µg of cytoplasmic or 
mitochondrial lysate were resolved by 8% SDS-PAGE. Relative purity of the fractions was 
confirmed using cytoplasmic and mitochondrial markers, namely GAPDH and HSP60, 
respectively. Whole cell lysates were also made from the same lysates and 25 µg was resolved 
by 8% SDS-PAGE. 
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3.3.3 Autophosphorylation of CCCP-stabilized mitochondrial   
PINK1 

 
The presence of a CCCP-induced band-shift in wild-type PINK1 and not in the 

kinase-inactive form raised a possibility for an autophosphorylation event in the 

catalytically active form of the kinase. This, being a common feature of many 

protein kinases, prompted us to investigate whether mitochondrial 

depolarization could stimulate phosphorylation of any residues on PINK1. We 

undertook mass spectrometric phosphopeptide analysis of wild-type and 

kinase-inactive full-length PINK1 after immunoprecipitation from mitochondrial 

fractions of CCCP-treated cells and also of wild-type mitochondrial PINK1 from 

CCCP-untreated and treated cells in an independent experiment (Appendix 6.4 

and Fig. 3.8A). We were able to unambiguously identify one phosphorylation 

site at Thr257 (Fig. 3.8A). Several other residues of PINK1 were 

phosphorylated in CCCP treated cells but at lower stoichiometry making their 

identification challenging. A phospho-specific antibody was raised against the 

Thr257 phosphorylation site and HEK293 FlpIn TRex stable cell lines were 

generated with a mutation of Thr257 to Alanine in order to characterize the 

phospho-specific antibody (Fig. 3.8B). Employment of the Phospho Thr257 

antibody confirmed that CCCP treatment markedly stimulated phosphorylation 

of wild-type but not kinase-inactive PINK1 at Thr257, suggesting that this 

residue is an autophosphorylation site (Fig. 3.8C). Mutation of Thr257 to Ala 

abolished detection of phosphorylated PINK1 confirming the specificity of the 

Thr257 antibody (Fig. 3.8C). Thr257 is located within the second insert region 

(residues 247–270) (Fig. 3.8D) and this site is not highly conserved between 

species (Appendix 6.5). Nevertheless my analysis suggests that monitoring 
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Figure 3.8. Autophosphorylation of PINK1 induced by mitochondrial       
uncoupling 

(A) Flp-In T-Rex HEK293 cell lines stably expressing FLAG alone, or wild-type PINK1-FLAG 
were treated with DMSO or 10 mM of CCCP for 3 h. Recombinant PINK1 was 
immunoprecipitated from 10mg of mitochondrial extract, subjected to 4–12% gradient SDS-
PAGE and stained with colloidal Coomassie blue. Bands corresponding to PINK1-FLAG were 
excised from the gel, digested with trypsin, and subjected to precursor-ion scanning mass 
spectroscopy. The major phosphopeptide that is indicated ‘Thr257’ was seen only in cells 
expressing wild-type PINK1-FLAG treated with CCCP and not in the other two conditions. The 
figure shows the signal intensity (cps, counts of ions per second) of the HPO3

- ion (279 Da) 
seen in negative precursor ion scanning mode versus the ion distribution (m/z) for the Thr257 
phosphopeptide. The observed values of 722.4 and 788.4 are for the VALAGEYGAVTYR and 
VALAGEYGAVTYRK variants, respectively, of the Thr257 peptide as [M-2H]2- ions. Other un-
assignable phosphopeptides are marked with an asterisk.  
 
(B) FlpIn TRex HEK293 cell lines stably expressing either FLAG-alone, wild-type PINK1-FLAG, 
kinase-inactive PINK1-FLAG or phospho-mutant PINK1 (T257A)-FLAG were stimulated for 
protein expression and whole cell lysates were blotted for PINK1 using anti-PINK1 (Novus) and 
GAPDH as loading control.   
 
(C) 0.5 mg of mitochondrial extracts (treated with DMSO or 10 mM of CCCP for 3 h) of stable 
cell lines expressing FLAG empty, wild-type PINK1-FLAG, kinase-inactive PINK1-FLAG 
(D384A) and phospho-mutant PINK1 Thr257Ala (T257A) were immunoprecipitated with anti-
FLAG agarose and probed with anti-phospho-Thr257 PINK1 antibody and anti-PINK1 antibody.  
 
(D) Multiple sequence alignment of human and mouse PINK1 with kinases such as PKA, 
CamKI and      CamKII confirms presence of Thr257 residue in the second insertion of PINK1 
kinase domain. 
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phosphorylation of this residue could serve as a useful cell based marker for 

PINK1 activity in vivo. 

3.3.4 Human PINK1 phosphorylates Parkin at Ser65 in vivo 
 
Having established that PINK1 is activated in cell lines upon mitochondrial 

depolarisation, I next investigated whether human PINK1 is capable of  

phosphorylating Parkin in vivo. Full-length human HA-Parkin was over-

expressed in Flp-In TRex HEK293 cells stably expressing wildtype human 

PINK1, or kinase-inactive human PINK1 (D384A) (Fig. 3.9A). Cells were treated 

with or without CCCP for 3 h—conditions that induce stabilization and activation 

of PINK1 at the mitochondria (Fig. 3.7). Parkin was immunoprecipitated and 

phosphorylation site analysis undertaken by mass spectrometry. This strikingly 

revealed that Parkin was phosphorylated at Ser65, but only in cells expressing 

wild-type human PINK1 that had been stimulated with CCCP (Fig. 3.9A). No 

detectable phosphorylation of Ser65 was observed in the absence of CCCP 

treatment or in cells expressing kinase-inactive PINK1 (Fig.3.8A). This result 

indicates that CCCP treatment activates PINK1 enabling it to phosphorylate 

Parkin. We also detected phosphorylation of a previously reported site on 

Parkin (Ser131) (Avraham et al, 2007). In contrast to Ser65, phosphorylation of 

Ser131 was constitutive and not modulated by CCCP or PINK1 (Fig. 3.9A). We 

failed to detect phosphorylation of Parkin at another previously reported PINK1 

site (Thr175) (Kim et al, 2008). 

 

 



3 Elucidation of PINK1 signal transduction pathway 

 
-96- 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.9 Human PINK1 phosphorylates Parkin at Ser65 in vivo 

(A) Flp-In T-Rex HEK293 cells expressing FLAG-empty, wild-type PINK1-FLAG, and kinase-
inactive PINK1-FLAG (D384A) were co-transfected with HA-Parkin, induced with doxycycline 
and stimulated with 10 mM of CCCP for 3 h. 30mg of whole-cell extract were 
immunoprecipitated with anti-HA-agarose, resolved by SDS-PAGE and stained with colloidal 
Coomassie blue. Bands corresponding to mass of HA-Parkin were excised, digested with 
trypsin, and subjected to high performance liquid chromatography with tandem mass 
spectrometry (LC-MS-MS) on an LTQ-Orbitrap mass spectrometer. Extracted ion 
chromatogram analysis of Ser131 and Ser65 phosphopeptide (3+ 
R.NDWTVQNCDLDQQSIVHIVQRPWR.K +P). Y-axis corresponds to phosphopeptide signal 
intensity and x-axis to retention time.  
 
(B) Flp In TRex HEK293 cells stably expressing either FLAG alone, wild-type PINK1-FLAG or 
kinase-inactive PINK1-FLAG was over-expressed with untagged-Parkin. Cells were induced 
with doxycycline, stimulated with CCCP and 0.25mg of whole cell lysates were 
immunoprecipitated with S966C covalently coupled Parkin antibody and blotted with the 
indicated antibodies.  
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We next raised a phospho-specific antibody against the Parkin Ser65  

phosphorylation site. For characterization of the phospho-specific antibody, 

stable cell lines expressing either FLAG alone, PINK1-FLAG wild-type or 

PINK1-FLAG kinase-dead were over-expressed with untagged-Parkin and 

stimulated with CCCP for 3 hours. All three bleeds of the phospho-antibody 

were tested and demonstrated that the 1st and 2nd bleeds was able to robustly 

detect phosphorylation in cells expressing wild-type PINK1 (Fig. 3.9B). The 

specificity of the antibody was confirmed by absence of any detectable 

phosphorylation in cells over-expressing Parkin containing a mutation of the 

phospho-site Ser65 to alanine (S65A). Further, the phospho-Ser65 antibody did 

not detect any Ser65 phosphorylation under basal conditions indicating that this 

event specifically occurs during mitochondrial depolarization (Fig. 3.10A). 

Interestingly, we could also detect phosphorylation of Ser65 in cells treated with 

CCCP that do not over-express wild-type PINK1 (Fig.3.10A). This suggested 

that endogenous PINK1 was present in HEK293 cells and could phosphorylate 

Parkin.  

 

To test whether endogenous PINK1 was indeed expressed in, HEK 293 cells, 

Ning Zhang, a post-doc in the lab, undertook a timecourse of CCCP stimulation 

in native HEK293 cells at the times indicated (Fig.3.10B). Whole cell lysates 

were immunoprecipitated with a an in-house sheep polyclonal PINK1 antibody 

(raised against aa 175-250 of human PINK1) and immunoblotted with a 

commercial rabbit polyclonal PINK1 antibody (Novus Biologicals). This revealed 

the presence of a band that migrated at the predicted mass of endogenous 



3 Elucidation of PINK1 signal transduction pathway 

 
-98- 

 

PINK1 and was being stabilized by CCCP in a time dependent manner (Fig. 

3.10B). This band was significantly reduced when cells were transfected for 48h 

with two different PINK1 siRNA probes but not scrambled siRNA confirming its 

identity as endogenous PINK1 (Fig. 3.10C). Importantly, siRNA-mediated 

knockdown of PINK1 severely abrogated phosphorylation of Ser65, indicating 

that endogenous PINK1 can phosphorylate Parkin Ser65 in vivo (Fig. 3.10C).  

 

3.3.5 Human mitochondrial PINK1 directly phosphorylates 
Parkin at Ser65 in vitro 

 
 
To test whether Parkin was a direct substrate of human PINK1, wild-type or 

kinase-inactive PINK1 was immunoprecipitated from the mitochondrial fraction 

of cells treated with CCCP and tested to see whether it could phosphorylate the 

Ubl domain of Parkin in vitro (Fig. 3.11). This revealed that wild-type PINK1 

isolated from CCCP-treated cells but not from non-treated cells could 

phosphorylate the Ubl domain of Parkin (Fig.3.11). Importantly, kinase-inactive 

PINK1 isolated from CCCP-stimulated cells failed to phosphorylate the Ubl 

domain of Parkin. Mutation of Ser65 to Ala also prevented wild-type 

PINK1isolated from CCCP-stimulated cells from phosphorylating the Ubl 

domain of Parkin (Fig.3.11). These observations confirm that Parkin at Ser65 is 

a direct substrate of human PINK1. 
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Figure 3.10 Endogenous PINK1 phosphorylates Parkin in vivo  

(A) Flp In TRex HEK293 cells stably expressing either FLAG alone, wild-type PINK1-FLAG or 
kinase-inactive PINK1-FLAG were over-expressed with untagged-Parkin. Cells were induced 
with doxycycline, stimulated with CCCP or DMSO and 0.25mg of whole cell lysates were 
immunoprecipitated with S966C Parkin antibody and blotted with the indicated antibodies. 
 
(B) HEK293 cells were stimulated at the indicated time points with 10 mM of CCCP. 1mg of 
whole-cell lysates were immunoprecipitated with anti-PINK1 antibody (S085D) or pre-immune 
IgG covalently coupled to protein G Sepharose and resolved by 8% SDS-PAGE. 
Immunoblotting was performed with anti-PINK1 antibody (Novus). Representative of three 
independent experiments performed by Ning Zhang.  
 
(C) HEK293 cells were co-transfected with PINK1 siRNA (#1 or #2) or scrambled siRNA 
(scrambled) and untagged wild-type (WT) or Ser65Ala (S65A) mutant Parkin as indicated. Cells 
were treated with or without 10 mM CCCP for 3 h. 0.25 mg of 1% Triton whole-cell lysate were 
subjected to immunoprecipitation with S966C covalently coupled Parkin antibody covalently and 
immunoblotted with the indicated antibodies. 5% of IP was used to blot for total Parkin blots. 
0.25 mg of whole-cell lysates was immunoprecipitated with anti-PINK1 antibody (S085D) and 
immunoblotted with anti-PINK1 antibody (Novus). Representative of three independent 
experiments performed by Ning Zhang.  
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Figure 3.11 In vitro phosphorylation of Parkin by human PINK1 

 
Flp-In T-Rex HEK293 cells expressing wild-type PINK1-FLAG, and kinase-inactive PINK1-
FLAG was induced for protein expression for 24h. Cells were then treated with 10 mM of CCCP 
for 3 h and lysates subjected to sub-cellular fractionation. 5mgs of mitochondrial lysate was 
subjected to immunoprecipitation with anti-FLAG agarose and used in an in vitro radioactive 
kinase assay with [γ-32P]-Mg2+ATP and E. coli expressed recombinant GST-Parkin Ubl domain 
(residues 1–108) (Ubl) and mutant GST-Parkin (residues 1–108) Ser65Ala (Ubl S65A), purified 
from E. coli. One half of the assay reaction was run on a 10% SDS-PAGE and was subjected to 
autoradiography. Colloidal Coomassie stained gel shows equal loading of recombinant 
substrate. The other half of the reaction was immunoblotted with anti-phospho-Thr257 PINK1 
and total PINK1 antibodies following 8% SDS-PAGE. 
 
 
 

3.3.6 Time course of PINK1 activation and phosphorylation of   
Parkin  

 
I next investigated the timecourse of PINK1 activation. I performed a CCCP-

induced timecourse of PINK1 stable cell lines transfected with untagged Parkin. 

This revealed that the stabilization of full-length PINK1 at mitochondria is rapid 
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with significant stabilization seen within 5 min of CCCP treatment and is 

maximal by 40 min and then sustained for up to 3 h (Fig. 3.12A). Loss of the 

cleaved form of PINK1 observed in the cytosol is particularly rapid and almost 

disappears within 5 min of CCCP treatment. However, the appearance of  

‘band-shift’ and autophosphorylation of Thr257 occurred more slowly and was 

observed only after 40 min of CCCP treatment and was sustained for up to 3 h 

(Fig. 3.12A). There was no phosphorylation of Thr257 or band-shift of  

 

 

Figure 3.12 Timecourse of PINK1 activation in vivo 

 
(A) Flp-In T-Rex HEK293 cells stably expressing PINK1-FLAG wild-type and kinase-inactive 
(D384A) were stimulated at the indicated time points with 10 mM of CCCP. 0.5 mg of 
mitochondrial extracts was immunoprecipitated with anti-FLAG agarose and immunoblotted with 
anti-phospho-Thr275 antibody or total PINK1 antibody.  
 
(B) As in (A) cytoplasmic extracts were obtained at the indicated time-points and 
immunoprecipitated with anti-FLAG agarose and immunoblotted with PINK1 anti-phospho-
Thr275 antibody or total PINK1antibody.  
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cytoplasmic PINK1 indicating that mitochondrial association is required for this 

event (Fig.3.12B). In contrast, monitoring Parkin Ser65 phosphorylation in vivo 

using the phospho-specific antibody against phospho-Ser65 indicated that 

Parkin Ser65 phosphorylation occurs at 5 min and becomes maximal and 

sustained from 40 min onwards (Fig. 3.13).  This suggests that the kinetics of 

PINK1 activation against its substrate is significantly faster than the kinetics of 

PINK1 autophosphorylation, which is not surprising as most kinases undergo 

autophosphorylation as a consequence of enzymatic activation. 

 

 

 

Figure 3.13 Timecourse of Parkin Ser65 phosphorylation in vivo 

Flp-In T-Rex HEK293 cells stably expressing wild-type PINK1-FLAG were co-transfected with 
untagged wild-type (WT) or Ser65Ala (S65A) mutant Parkin; induced with doxycycline and 
stimulated with 10 mM of CCCP at the indicated time points. 0.25 mg of whole-cell lysate was 
immunoprecipitated with anti-Parkin covalently coupled antibody (S966C) and immunoblotted 
with anti-phospho-Ser65 antibody in the presence of dephosphorylated peptide. 1% of the IP 
was immunoblotted with total anti-Parkin antibody. 1.5 mg of whole-cell extract was 
immunoprecipitated with anti-FLAG agarose and immunoblotted with anti-PINK1 antibody 
(Novus). Representative of at least 3 independent experiments performed by Agne Kazlauskaite
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3.3.7 PINK1 Thr257 autophosphorylation is dispensable for  
Parkin  phosphorylation in vivo 

 
 
I next investigated whether autophosphorylation of PINK1 at Thr257 was critical 

for downstream PINK1-Parkin signaling. I monitored Parkin phosphorylation in 

cells stably expressing PINK1-FLAG harbouring a phospho-mutant of Thr257 to 

Alanine. Parkin Ser65 phosphorylation was still observed in CCCP-treated cells 

expressing PINK1 T257A suggesting that phosphorylation of this residue is not 

crucial for activation of PINK1 in vivo (Fig. 3.14A). However, as described 

above, mass spectrometry analysis indicated that PINK1 is likely to be 

autophosphorylated at additional sites although it was not possible to identify 

these (Fig. 3.8A). I therefore investigated whether PINK1 autophosphorylation 

perhaps at these other sites was important for its activity. Lambda phosphatase 

treatment of mitochondrial PINK1 isolated from CCCP-treated cells induced 

complete dephosphorylation of Thr257 and led to a significant inhibition in 

kinase activity as judged by its phosphorylation of Parkin in vitro (Fig.3.14B). 

Addition of lambda phosphatase inhibitor EDTA prevented dephosphorylation of 

Thr257 and loss of the ability of PINK1 to phosphorylate Parkin. I also observed 

that phosphatase treatment did not collapse the CCCP-induced band-shift (Fig. 

3.14B) indicating the presence of either phosphatase resistant sites or an 

additional protein modification on PINK1. Therefore, Thr257 is dispensable for 

Parkin phosphorylation in vivo (Fig. 3.14A). However, phosphorylation of PINK1 

at additional sites other than Thr257 could contribute to CCCP-induced PINK1 

activation. In future work it would be critical to define these sites. 
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Figure 3.14 PINK1 Thr257 autophosphorylation is dispensable for Parkin  

phosphorylation 

 
(A) Flp-In T-Rex HEK293 cells expressing FLAG-empty, wild-type PINK1-FLAG, kinase-inactive 
PINK1-FLAG and T257A PINK1-FLAG were co-transfected with untagged wild-type (WT) or 
Ser65Ala (S65A) mutant Parkin, induced with doxycycline and stimulated with 10 mM of CCCP 
for 3 h. Parkin and PINK1 immunoprecipitation and immunoblotting was performed as described 
in legend of Fig. 3.12. 
 
(B) C-terminal-FLAG tagged wild-type or kinase-inactive (D384A) PINK1 were 
immunoprecipitated from 5 mg of mitochondrial enriched extracts using anti-FLAG agarose 
beads. Wild-type PINK1 was incubated with or without 1000 U of lambda phosphatase or 
treated with lambda phosphatase along with 50 mM EDTA. Kinase-inactive PINK1 was 
incubated in buffer alone without lambda phosphatase. Phosphatase treated PINK1 was taken 
for an in vitro kinase assay with GST-Parkin Ubl (1–108) as the substrate. Samples were 
analysed as described in legend to Fig. 3.11. 
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3.4 PART III – Investigation of the mechanism of PINK1  
activation 

3.4.1 PINK1 is specifically activated by depolarization of inner   
mitochondrial membrane potential 

 
 
Within the inner mitochondrial membrane (IMM), the electron transport chain 

transfers electrons through a series of oxidation–reduction reactions coupled to 

the transfer of protons across the IMM and this efflux creates a proton 

electrochemical gradient known as the protomotive force. The protomotive force 

drives the re-entry of protons through the proton channel of the F1F0-ATP 

synthase crucial for ATP production and comprises mainly of an electrical 

component - the mitochondrial membrane potential (ΔΨm) - and a 

transmembrane pH gradient (ΔpH) (Abou-Sleiman et al, 2006) (Fig. 3.15).  

 

Figure 3.15  Illustration depicting mitochondrial electron transport chain 

   Adapted from (Lehninger et al, 2005) 
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CCCP dissipates both ΔΨm and the pH gradient leading to impaired 

mitochondrial ATP synthesis. To determine the mechanism of activation of 

PINK1, a panel of agonists that have previously been reported to disrupt 

mitochondria by diverse modes of action were tested (Fig. 3.16A). Under the 

conditions tested only the proton ionophores CCCP, FCCP and the potassium-

uniporter valinomycin were able to induce activation of PINK1 leading to Parkin 

Ser65 phosphorylation (Fig. 3.16B). In contrast to CCCP and FCCP, 

valinomycin depolarizes the ΔΨm but does not affect the pH gradient 

suggesting that PINK1 is specifically activated by loss of the ΔΨm. We did not 

observe any effect of an inhibitor of ATP synthase (oligomycin) or various 

inhibitors of the electron transport chain complexes that have previously been 

implicated in neurodegeneration models (MPP+, rotenone, 3-nitropropionic 

acid) when used alone (Fig. 3.16B). 

3.4.2 Further analysis of the effects of mitochondrial 
respiratory chain inhibition on PINK1 activation  

 
The mitochondrial membrane potential is critically dependent on ATP synthesis 

yet from Fig. 3.16 it is clear that inhibition of individual components of electron 

transport chain in HEK293 cells does not lead to PINK1 activation. However, I 

reasoned that since HEK293 being a cancer cell relies less on oxidative 

phosphorylation and more on glycolysis; depolarisation of the mitochondrial 

membrane potential may be less easily disrupted upon inhibition of individual 

components of the electron transport chain. I therefore investigated whether 

inhibition of complex I, II or III in combination with ATP synthase inhibition may  
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Figure 3.16 Inducers of mitochondrial depolarization specifically activate PINK1 

(A) Table of agonists tested. (B) Flp-In T-Rex HEK293 cells expressing wild-type PINK1-FLAG were co-transfected with untagged wild-type Parkin, induced with 
doxycycline and stimulated with the indicated agonists for 3 h except for Deferiprone (24 h treatment). 0.25 mg of whole-cell lysate was subjected to 
immunoprecipitation with anti-Parkin covalently coupled antibody (S966C) and immunoblotted with anti-phospho-Ser65 antibody in the presence of 
dephosphorylated peptide. 10% of the IP was immunoblotted with total anti-Parkin antibody. 25µg of whole-cell lysate was immunoblotted with total PINK1 antibody 
(Novus), phospho-JNK (CST), total-JNK (CST), phospho-ERK1/2, total-ERK1/2 (CST), phospho-ACC (CST), total ACC (CST), phospho-AMPK (CST) and total 
AMPK (CST). Representative of two independent experiments 
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be sufficient to induce PINK1 activation. Consistent with this I observed that 

inhibition of Complex III (using antimycin) in combination with an ATP synthase 

inhibitor (Oligomycin) could indeed activate PINK1 as judged by Parkin Ser65 

phosphorylation, which was comparable to that of CCCP stimulation (Fig. 

3.17B). 

 

Figure 3.17 Activation of PINK1 by inhibition of Complex III and ATP   
synthase 

(A) Illustration depicting the various inhibitors of mitochondrial electron transport chain used in 
this study. 

(B) Flp In TRex HEK293 cells stably expressing wild-type PINK-FLAG were co-transfected with 
untagged wild-type Parkin and treated with the indicated electron transport chain inhibitors 
at concentrations listed in Fig. 3.16A for 3h. Samples were processed and immunoblotted 
as described in legend of Fig. 3.16B. 
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3.5 Discussion 
 
Discovery of Parkin Ser65 phosphorylation as a substrate of PINK1 
 
The first genetic link between PINK1 and Parkin was established by elegant 

studies using the Drosophila model system (Clark et al, 2006; Park et al, 2006). 

dPINK1 and dParkin null flies share similar degenerative phenotypes and over-

expression of Parkin can rescue the phenotype of dPINK1 null flies and not vice 

versa, indicating that Parkin lies downstream of PINK1 (Clark et al, 2006; Park 

et al, 2006). Interestingly, patients with loss-of-function mutations of either 

PINK1 or Parkin display very similar clinical presentation of PD, which further 

argues towards a common signaling pathway between PINK1 and Parkin in 

human beings (Abeliovich & Flint Beal, 2006).  

 

The phosphorylation site on Parkin was mapped to a highly conserved Ser65 

residue in the N-terminal Ubl domain. Parkin belongs to the RING-in-between-

RING (RBR) family of E3 ubiquitin ligases. RING family E3 ubiquitin ligases act 

as scaffolds by bringing together the E2 ubiquitin ligase and substrate to 

mediate catalytic transfer of ubiquitin (Fig.3.21B). Recent work suggest that 

Parkin and other RBR family members may function as a RING/HECT hybrid 

that directly catalyze ubiquitin transfer to a substrate via an intermediate 

thioester-linked ubiquitin adduct on a conserved cysteine (Cys 431) in the 

RING2 domain of Parkin (Fig.3.21A) (Wenzel et al, 2011). The figure below 

describes mechanisms of ubiquitin transfer mediated by RING and HECT family 

E3 ligases (Fig.3.21).  
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Figure 3.18 Mechanism of Ubiquitin transfer in HECT and RING family E3   

ligases (Deshaies & Joazeiro, 2009) 

 
(A) HECT E3 ubiquitin ligases contain a conserved cysteine that accepts ubiquitin from E2-Ub 
to form an E3-ubiquitin thioester linkage. Ubiquitin is then transferred from this covalent E3-
intermediate to its substrate.  
 
(B) RING E3 ligases mediate direct transfer of ubiquitin from E2-Ub to substrate  
 
 

More recently, it has been proposed that the Ubl domain of Parkin acts as an 

auto-inhibitory domain, which prevents catalytic activity by binding to the C-

terminal region that thereby abrogates ubiquitin binding to the C-terminus 

(Chaugule et al, 2011).  However, the mechanism of activation of Parkin 

remained unknown in this study.  Analysis of all available NMR and crystal  
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structures of Parkin revealed that the PINK1-mediated Parkin Ser65 

phosphorylation site could lie in the fifth β-strand that makes up the ubiquitin-

like fold that is partially exposed to the surface (PDB code: 2KNB (solution, 

mouse) (Trempe et al, 2009); PDB code: 1lYF (solution, human) (Sakata et al, 

2003)) (depicted in Fig.3.22) or may sometimes lie within a loop adjacent to the 

strand suggesting some conformational flexibility around this region (PDB code: 

1MG8 (solution, mouse) (Tashiro et al, 2003); PDB code: 2ZEQ (solution, 

mouse) (Tomoo et al, 2008)). 

 

 
 

Figure 3.19 Structure of human Parkin Ubl domain 

 
Three views representing a 90° rotation about the y-axis, depict the Ubl domain of Parkin with 
Ser65 highlighted and the contacts it make within 4 Angstroms (PDB code 1IYF). Provided by 
Helen Walden. 
 
In our study, full length Parkin is phosphorylated to a lesser extent when 

compared to isolated Ubl domain, which suggests the presence of certain 

structural constraints in accessing Ser65 site by PINK1 in full length Parkin. It is 

therefore possible that upon interaction with PINK1, the Ubl domain can 

undergo a local conformational change enabling PINK1 to gain access to Ser65 

for phosphorylation.  
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A low resolution crystal structure of full length rat Parkin has recently been 

published (Trempe et al, 2013). This study reveals an auto-inhibited structure of 

Parkin wherein the RING0 domain occludes the ubiquitin-binding catalytic 

Cys431 (present in RING2) by binding to RING2 domain. Another region of 

autoinhibition is mediated by an alpha helical REP (Repressor element of 

Parkin) domain, which lies in the linker region between IBR and RING2 domain. 

The REP helix binds to the RING1 domain and occludes the E2- binding site 

(Trempe et al, 2013) (Fig. 3.23B). Overall the structure does suggest that upon 

activation, Parkin would need to undergo a major conformational change to 

enable E2 binding as well as catalytic activity. The crystal structure of Parkin 

reveals that the Ubl domain lies close to the E2 binding site as well as the REP 

linker (Fig. 3.23B) However, the Ser65 residue lies away from the Ubl/RING1 

interface and it is not possible to discern how phosphorylation of Ser65 might 

lead to activation (Trempe et al, 2013). It has already been found that a point 

mutant of the REP linker (W403A) aids relieving the auto-inhibition and 

enhancing E2 binding (Trempe et al, 2013) Hence in future, it would be 

important to test if Ser65 phosphorylation could also influence binding of Parkin 

to its cognate E2 (Fig. 3.23B).  

 

In this work, Parkin activity has been assayed using an auto-ubiquitylation 

assay and monitoring the formation of short poly-ubiquitylated free chains. It 

would also be important to validate the findings using a physiological Parkin 

substrate/s to confirm that Ser65 phosphorylation does indeed enhance 

ubiquitylation of a physiological substrate of Parkin. My data also suggest that  
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small molecules that bind to and disrupt the Ubl domain-C-terminus auto-

inhibitory interface may activate Parkin in a similar manner to Ser65 

phosphorylation. Understanding how Ser65 phosphorylation confers activation 

will also be important in the development of small molecule activators in terms 

of understanding their mechanism.  

 
 
 

 

Figure 3.20 Schematic of auto-inhibition of Parkin 

(A) Primary structure and domains of Parkin 
 
(B)  Schematic representation of auto-inhibition of Parkin showing the occluded catalytic site 

and E2 binding-site mediated by indicated interactions between RING0-RING2 and REP 
linker-RING1 respectively.  
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Phosphosite mapping of Parkin also identified Ser131 in addition to Ser65 

phosphorylation site. Ser131 is constitutively phosphorylated and not influenced 

by PINK1 or CCCP. Ser131 lies within the linker region of Parkin between the 

Ubl and RING0 domain and unlike Ser65 is not fully conserved in lower 

organisms (e.g. leucine in Drosophila). A previous in vitro study has suggested 

that Ser131 may be phosphorylated by Cdk5 (Avraham et al, 2007) and further 

work would be required to define the importance of this phosphorylation site.  

 

There has been one previous report that human PINK1 isolated from non-

CCCP unstimulated cells can directly phosphorylate Parkin at a single threonine 

residue, Thr175 (Kim et al, 2008). In that study, a deletion fragment of PINK1 

spanning residues 200–581 was used that would be predicted to be missing 

approximately the first 50 amino acids of the N-lobe of the PINK1 kinase 

domain including the conserved glycine-rich loop motif (residues 163–169), 

which in other kinases is essential for coordinating ATP. This construct of 

PINK1 would therefore be expected to be inactive. Moreover, in their study, the 

kinase-inactive mutant of the PINK1 [200–581] fragment still exhibited 

substantial kinase activity towards Parkin (Kim et al, 2008). Taken together 

these findings indicate that phosphorylation of Thr175 observed in that study 

was likely to be mediated by a contaminating kinase.  

 

PINK1 activation concurs with its stabilization, since I begin to observe Parkin 

Ser65 phosphorylation from 5min of CCCP treatment reaching a maximal 

activation at 40min in cells. However, the time course of PINK1 auto- 
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phosphorylation takes longer, requiring around 40min with activation then being 

sustained for at least up to 3h. This observation is not surprising as most 

kinases display differential kinetics for autophosphorylation and substrate 

phosphorylation, where the latter occurs at a faster rate and is a better readout 

of kinase activity. Interestingly previous studies suggest that Parkin can 

translocate to mitochondria upon CCCP treatment to induce mitophagy and this 

is enhanced when PINK1 is co-expressed in cells (Geisler et al, 2010; Matsuda 

et al, 2010; Narendra et al, 2010; Vives-Bauza et al, 2010).  The kinetics of 

Parkin translocation is 5min in cells co-expressing PINK1 compared with 30min 

when PINK1 is absent (Narendra et al, 2010). This strikingly matches the 

kinetics of Parkin Ser65 phosphorylation we observe and raises the possibility 

that phosphorylation can influence Parkin translocation to the mitochondria. In 

fact, a follow up study of our finding has shown that Ser65 phosphorylation is 

not only essential for efficient translocation of Parkin, but also important for 

Parkin-mediated degradation of mitochondrial outer membrane proteins in 

mitophagy (Shiba-Fukushima et al, 2012). A recent report has validated my 

findings that PINK1 phosphorylates Parkin at Ser65 in primary mouse neurons 

stably expressing PINK1 and Parkin by lentiviral transduction. (Koyano et al, 

2013). In a separate study the same group provide further evidence that PINK1-

mediated phosphorylation of Parkin at Ser65 drives formation of ubiquitin-

thioester linkage on the catalytic Cys431 residue in RING2 domain of Parkin 

(Iguchi et al, 2013).  
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My data suggests that loss-of-function mutations in PINK1 would lead to 

suppression of Parkin E3 ligase activity and result in reduced ubiquitylation of 

Parkin’s targets. This may explain why over-expression of Parkin in dPINK1 null 

flies restores ubiquitylation of targets and rescues the null phenotype (Clark et 

al, 2006; Park et al, 2006). It is possible that the key Parkin targets are located 

at the mitochondria and indeed several candidate mitochondrial substrates for 

Parkin have been proposed, including Mitofusin1 (Ziviani et al, 2010), VDAC1 

(Geisler et al, 2010) and more recently PARIS (Shin et al, 2011) and Miro (Liu 

et al, 2012). In a recent report, a quantitative diGly proteomic approach was 

undertaken to define PARKIN-dependent ubiquitylome in response to 

mitochondrial depolarization (Sarraf et al, 2013). 

 

Hence, to conclude this section, my studies have demonstrated that 

depolarization of ΔΨm induces stabilization and activation of PINK1 enabling it 

to directly phosphorylate Parkin at Ser65 within the N-terminal Ubl domain 

leading to activation of Parkin E3 ligase activity (Fig. 3.24C). Activation of 

Parkin is likely to involve major re-organisation from its basal auto-inhibited 

‘closed’ conformation. Once Parkin is activated in depolarized mitochondria, it is 

likely to play a key role in ubiquitylation of mitochondrial proteins that may 

signal mitochondria for lysosomal degradation – this process termed as 

‘mitophagy’ (Fig. 3.24B). 
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Figure 3.21 Model of Parkin activation by PINK1 

(A) A linear pathway for PINK1-Parkin shows that under basal conditions, Parkin is kept in a 
closed inactive conformation by Ubl-mediated auto-inhibition. Following mitochondrial 
depolarization, PINK1 mediated phosphorylation of Parkin relieves its auto-inhibition and 
enables Parkin to become active to ubiquitylate target substrates. 
 
(B) Illustration depicts that in normal healthy mitochondria, a constant turnover of PINK1 occurs 
and thus Parkin remains in its auto-inhibited state. 
 
(C) In depolarized mitochondria, PINK1 stabilization occurs accompanied by 
autophosphorylation of PINK1 as well as phosphorylation of Parkin at Ser65. Parkin can then be 
activated and perhaps subsequently can sequester damaged mitochondria for lysosomal 
degradation. 
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Insights on PINK1 stabilization and autophosphorylation in mitochondria 
 

Like many kinases, PINK1 was found to undergo autophosphorylation mainly at 

Thr257. Based on multiple sequence alignment, Thr257 lies in the middle of the 

second insertion loop and would likely be accessible for phosphorylation 

(Woodroof et al, 2011). However, my data suggests that autophosphorylation of 

Thr257 is not crucial for activation of PINK1. However, lambda phosphatase 

treatment of PINK1 substantially reduced its in vitro kinase activity suggesting 

that phosphorylation of PINK1 at other as yet unidentified sites are essential for 

its activation. Recently, another group has claimed that Ser228 and Ser402 are 

crucial auto-phosphorylation sites in PINK1, which when mutated to Ala can 

abrogate Parkin translocation to mitochondria (Okatsu et al, 2012). However, 

the authors of this study failed to provide direct evidence that Ser228 and 

Ser402 are phosphorylated either by mass spectrometry or by immunodetection 

with a phospho-specific antibody. Studies undertaken in our lab have also been 

unsuccessful at confirming phosphorylation of these sites. Nevertheless, whilst 

my data suggests that autophosphorylation at Thr257 is not critical for PINK1 

activation, I believe this could potentially serve as a useful reporter for PINK1 

activation.  

 

In my hands, PINK1 also undergoes an electrophoretic mobility shift after CCCP 

treatment of wild-type but not kinase-inactive PINK1, which is incapable of 

autophosphorylation. There have been no previous reports of the occurrence of 

a band-shift in PINK1 and this was detected only when the protein was resolved 

by 8% isocratic Tris-Glycine SDS-PAGE. The bandshift was less pronounced in  
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gradient gels perhaps explaining why this observation was not made earlier. I 

was able to conclude that the band-shift is not a result of auto-phosphorylation, 

as lambda phosphatase of immunoprecipitated PINK1 could not abolish it. 

Thus, in future, it would be interesting to determine both the crucial auto-

phosphorylation sites and/or covalent modifications induced by CCCP and 

investigate their role in PINK1 activation.  

 

The specificity of PINK1 activation was explored by testing the effect of a wide 

range of mitochondrial toxins. This showed that PINK1 was efficiently activated 

only under conditions that depolarize ΔΨm (CCCP, FCCP or Valinomycin 

treatment), as judged by its ability to mediate Parkin Ser65 phosphorylation. 

Under these conditions PINK1 could be associated with a non-covalent 

activator at the mitochondrial membrane, such as another protein or a small 

molecular second messenger. In order to address which proteins could 

potentially interact with PINK1 and possibly play a role in its activation, a 

quantitative proteomic interactor screen was performed, which is discussed in 

Chapter 4.  

 

Defects in electron transport chain have been implicated in PD and has been 

discussed in section 1.5.2. I observed that PINK1 activation is specific to 

mitochondrial depolarization and inhibition of individual components of the 

electron transport chain caused no effect in HEK293 cells. It has been reported 

in a previous study that a combination of complex III inhibition (using Antimycin 

A) and complex V inhibition (by Oligomycin) can cause translocation of Parkin  
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to mitochondria comparable to CCCP stimulation in HEK293T cells (Vives-

Bauza et al, 2010). Using a fluorescent dye to detect mitochondrial membrane 

potential, they claim that this combination of electron transport chain inhibitors 

can lead to efficient reduction in mitochondrial membrane potential, PINK1 

stabilization and downstream Parkin translocation. Using Parkin Ser65 

phosphorylation as a read-out for PINK1 activation, I decided to test if this holds 

true in my study system. A combination of Complex I+V inhibition, Complex II+V 

inhibition and Complex III+V inhibition was performed. Complex IV inhibition 

leads to cell death and hence was omitted. Strikingly, I observed robust Parkin 

phosphorylation accompanied by PINK1 stabilization under conditions of 

complex III+V inhibition.  

 

To conclude this chapter, I have reported important new information to support 

the notion that ΔΨm depolarization leads to stabilization and activation of 

PINK1 in the mitochondria and subsequent phosphorylation of Parkin at Ser65. 

Phosphorylation of Parkin occurs in its N-terminal Ubl domain, which leads to 

activation of its E3 ubiquitin ligase activity. In addition to this, I provide evidence 

that once activated PINK1 gets autophosphorylated at several residues, one of 

which we have identified as Thr257.  Using Parkin Ser65 phosphorylation as a 

reporter for PINK1 activity, I confirm the specificity of PINK1 activation to occur 

only when mitochondrial membrane potential is perturbed.  



 

 

 

 

 
 

 
 

 
 

Chapter 4 
 

Identification of novel interacting partners of 

mitochondrial PINK1 
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4. Identification of novel interacting partners of 

mitochondrial PINK1 

1.1 Introduction 
 
PINK1 is unique amongst all known protein kinases by its primary localization in 

the mitochondria. Under basal conditions, PINK1 undergoes constant turnover 

in order to maintain a minimal level of expression in the mitochondria. Upon 

mitochondrial depolarization, PINK1 undergoes stabilization and subsequent 

activation in the mitochondria. Attempts to identify bona fide interacting partners 

of PINK1 have been hampered by the low expression of PINK1 under basal 

conditions (Weihofen et al, 2009). Since mitochondrial depolarization leads to 

dramatic stabilization of mitochondrial PINK1, I decided to identify binding 

partners of PINK1 under these conditions. 

 

The last decade has seen a wide range of applications for mass spectrometry in 

studying protein-protein interactions. The standard approach involves affinity 

purification of protein complexes from a relevant tissue or cell type and analysis 

by mass spectrometry (Aebersold & Mann, 2003). Given that proteins are highly 

dynamic entities in terms of turnover and localisation, protein complexes can 

undergo a constant change in their composition. This called for the invention of 

more quantitative mass spectrometry methods to monitor dynamic complexes 

and can be achieved by either metabolic labeling of living cells, in which 

isotopically ‘heavy’ amino acids replace the naturally ‘light’ amino acids in 

growth medium or  
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by isotopic labeling of lysates (post-extraction) using enzymatic or chemical 

approaches (Gingras et al, 2007; Ong & Mann, 2005)).  

 

I employed Stable Isotope Labeling with Aminoacids in Culture (SILAC) based 

quantitative affinity purification mass spectrometry for identifying PINK1 

interactors. In SILAC-based approach, cells are cultured in media containing 

stable isotope-labeled amino acids for at least five generations to ensure near-

complete metabolic labeling of the proteome (Ong et al, 2002). Two to three 

different conditions can be grown in a similar growth medium, which varies only 

by the presence of ‘light’ unlabeled, ‘medium’ or ‘heavy’ labeled amino acids 

(such as Lys or Arg) substituted with stable isotopic nuclei (such as 15N, 13C) 

(Fig. 4.1). Differentially labeled cell extracts are mixed in equal proportions and 

subjected to mass spectrometry (Fig.4.1).  

 

Peptides that are derived from the labeled condition are identical to their 

corresponding ones from unlabeled condition in their amino acid sequence. 

However, the incorporation of stable isotopes in the labeled peptide imparts a 

mass difference compared to its unlabeled counterpart, which is detected by 

mass spectrometry. Therefore we can quantitatively measure the difference in 

relative amounts of the protein of interest between experimental conditions. 

SILAC can be used for various applications such as differential whole proteome 

analysis of cells, differential sub-cellular proteomics, studying protein turnover 

or analysis of affinity purified protein complexes.   
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Figure 4.1. Stable Isotope Labeling of Amino acids in Culture (SILAC) 

Illustration depicting a typical SILAC-based experiment in which cells from two to three 
experimental conditions are maintained in growth medium supplemented with ‘light’ amino acids 
and their stable isotopically labeled ‘medium’ or ‘heavy’ counterparts (labeled with 15N, 13C). 
Lysates from the three conditions are then combined in an equal ratio, proteolyzed and 
subjected to standard mass spectrometry to establish quantitative differences between 
conditions.  
 
 

SILAC-based metabolic labeling has certain advantages over chemical labeling 

strategies. In chemical labeling, the two proteomes to be compared are required 

to be processed in precisely the same manner to enable relative quantitation. 

However, SILAC-based methods allows efficient metabolic labeling of cells (up 

to 98%) followed by mixing an equal population of unlabeled cells and 

subsequent biochemical fractionation, thus, minimizing errors in quantitation 

(Mann, 2006). Nonetheless SILAC also has disadvantages such its detection 

limit based on peptide abundance or size; and metabolic conversion of isotopic 

Arg to Pro, which generates artifacts in quantitation. The latter is avoided in 

most cases by reducing 
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the amount of Arg available in the SILAC medium, but, this may not suits cells 

with a high cellular metabolism (Scott et al, 2000).  

4.2 SILAC-based immunoprecipitation mass spectrometry to  
identify novel binding partners of PINK1 

 

4.2.1 Identification of PINK1 interacting proteins by SILAC 

method 
 
The discovery that mitochondrial uncoupling agents such as CCCP can 

significantly enrich PINK1 in mitochondria makes it feasible to perform large-

scale immunoprecipitation in order to identify potential interacting partners. 

Quality control of mitochondrial fractions was validated by immunoblotting 

mitochondrial and cytoplasmic fractions with various sub-mitochondrial markers 

(Appendix 6.6). I employed SILAC based immunoprecipitation mass 

spectrometry to address this question. A triple SILAC labeling experiment was 

performed: cells were grown in unlabeled media are termed as ‘light’ (R0KO), 

cells grown in media supplemented with 2H4-Lysine and 13C6-Arginine termed 

as ‘medium’ (R6K4) and cells grown in media supplemented with 15N2 13C6-

Lysine and 15N4 13C6-Arginine termed as ‘heavy’ labeled (R10K8). FlpIn TRex 

HEK293 cells stably expressing wild-type PINK1-FLAG were cultured for at 

least five generations in ‘medium’ or ‘heavy’ SILAC media to ensure a high 

efficiency of metabolic labeling. As an experimental control, FlpIn TRex 

HEK293 cells expressing FLAG-vector were cultured in unlabeled ‘light’ 

medium.  
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Figure 4.2. Triple SILAC based immunoprecipitation mass spectrometry 

Flow chart depicting experimental set-up for the triple SILAC-based PINK1 immunoprecipitation 
mass spectrometry to identify potential binding partners of PINK1. The different conditions 
employed in the biological replicates are mentioned in the illustration.  
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As an additional control, I undertook a ‘swap’ experiment. In the first replicate, 

control ‘light’ labeled cells stimulated with CCCP, PINK1-FLAG expressing 

‘medium’ labeled cells were unstimulated and PINK1-FLAG containing ‘heavy’ 

labeled cells were stimulated with CCCP. In the second biological replicate, 

control ‘light’ labeled cells were again stimulated with CCCP, but this time 

PINK1-FLAG ‘heavy’ labeled cells were unstimulated and PINK1-FLAG 

‘medium’ labeled cells were stimulated with CCCP (Fig.4.2). All above 

conditions were induced for protein expression with doxycycline before treating 

with 10µM CCCP for 3h in the respective aforementioned conditions. Cells were 

fractionated into cytosolic and mitochondrial fractions in each condition.  

 

Cytoplasmic immunoprecipitates from 33mg of ‘light’, ‘medium’ and ‘heavy’ 

labeled extract from each replicate were pooled respectively. Similarly, 

mitochondrial immunoprecipitates from 7mg of ‘light’, ‘medium’ and ‘heavy’ 

extract from each replicate were pooled respectively. Pooled 

immunoprecipitates were resolved by 4-12% Bis-Tris SDS-PAGE (Fig.4.4), and 

each lane was excised into 8 bands, proteolyzed with trypsin and identified by 

LC-MS/MS. Relative ratios of peptides between unstimulated and stimulated 

conditions were determined using MaxQuant (version 13.13.10) and were 

reproducible across experimental replicates with at least two peptides identified 

per protein (Table 4.1). Protein ratios in unstimulated and stimulated conditions 

that were below 2 fold were considered to be insignificant. PINK1 levels 

decreased in the cytoplasm upon CCCP stimulation (approximately 2 fold 

decrease) and increased approximately 20 fold   
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Figure 4.3. Immunoprecipitation control blots from individual SILAC 
labeled  conditions 

(A) FlpIn TRex HEK293 cells stably expressing FLAG-alone cultured in unlabeled medium was 
induced for protein expression and stimulated with 10µM CCCP for 3h. In experiment 1, 
‘medium’ labeled Wild-type PINK1-FLAG cells were treated with DMSO and ‘heavy’ labeled 
cells were treated with 10µM CCCP for 3h. In experiment 2, the labeling is swapped, with 
‘heavy’ being untreated and ‘medium’ being treated with CCCP. All of the above conditions 
were fractionated into cytosol and mitochondria and immunoprecipitated for 7mg PINK1 in 
each condition using anti- FLAG agarose. 10% of immunoprecipitates were blotted with 
anti-PINK1 antibody. The fractions were immunoblotted for GAPDH and HSP60 as 
cytoplasmic and mitochondrial markers.  
 

(B) Five times more of cytoplasmic fractions were immunoprecipitated given that the levels of 
PINK1 in the cytoplasm were less compared to mitochondria. 33mg of cytoplasmic PINK1 
from each condition in the two experimental replicates were immunoprecipitated using anti-
FLAG agarose and 10% of immunoprecipitates were blotted with anti-PINK1 antibody.  
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Figure 4.4. Pooled mitochondrial and cytosolic PINK1 immunoprecipitates  
for identification of interacting partners by SILAC method 

Individual cytoplasmic and mitochondrial PINK1 immunoprecipitates from ‘light’, ‘medium’ and 
‘heavy’ labeled conditions from each experimental replicate were pooled together respectively 
and resolved by 4-12% Bis-Tris SDS-PAGE. The gel was stained with Colloidal Coomassie blue 
and each lane was excised into 8 bands each of which undergoes in-gel tryptic digestion and 
identified by LC-MS/MS.  
 

in the mitochondrial fraction as expected (Narendra et al, 2010). Approximately 

600 cytoplasmic proteins were found to co-immunoprecipitate with cytoplasmic 

PINK1 but identified but none were significant interacting partners for 

cytoplasmic PINK1 (ratio < 2) except for HSP90 and Cdc37 chaperone proteins 

(Fig. 4.5).  Upon CCCP stimulation I observed a 20-fold enrichment of 

mitochondrial PINK1 and significant enrichment of potential PINK1 binding 

partners (Table 4.1). Approximately 200 proteins co-immunoprecipitated with 

mitochondrial PINK1 but only 40 proteins were enriched at significant levels 

(ratio>2).  Cytoskeletal proteins and ribosomal proteins were disregarded, as 

they are common contaminants in affinity purification mass spectrometry 

(Trinkle-Mulcahy et al, 2008). Heat shock proteins such as Cdc37 and HSP90  
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were found to interact with both cytoplasmic and mitochondrial PINK1 

irrespective of CCCP simulation (Fig. 4.5). The following groups of proteins 

were of potential interest (Table 4.2): 

1. Proteins that are a part of mitochondrial protein import machinery were 

enriched significantly upon CCCP stimulation. 

2. Mitochondrial RhoGTPase Miro2, which has previously been reported as 

a PINK1 interactor and plays a role in mitochondrial dynamics (Weihofen 

et al, 2009). Mitofilin, previously reported as a PINK1 interactor and 

recently discovered to be crucial for maintaining mitochondrial cristae 

morphology (Weihofen et al, 2009; Zerbes et al, 2012). 

3. Proteins that are involved in mitochondrial membrane permeability 

transition pore namely VDAC2, ANT2/3 and C1QBP.  

 

Figure 4.5. Unstimulated vs. stimulated SILAC-ratios of PINK1 interacting  
proteins from cytoplasm and mitochondrial fractions 

SILAC peptide ratios from unstimulated condition are plotted along X-axis and CCCP stimulated 
conditions are plotted along Y-axis. Data point indicating enrichment of PINK1 is highlighted. 
Chaperone proteins that associate with PINK1 independent of CCCP stimulation in both 
cytoplasm and mitochondria are highlighted. Red-dotted line indicated a threshold of 2 fold and 
data-points that lie below this threshold are considered as insignificant interactors or common 
contaminants.  
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Table 4.11. List of interacting partners of cytosolic and mitochondrial  
PINK1  identified by SILAC-based affinity purification mass 
spectrometry 

List of proteins binding to cytoplasmic and mitochondrial PINK1 are classified based on function 
or cellular localization. Peptide ratios of both experimental replicates from unstimulated and 
CCCP stimulated condition are listed. PEP (Posterior Error Probability) score has been 
mentioned with a cut-off of <0.01 (99% confidence level). 
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Table 4.12. List of putative PINK1 interacting proteins in mitochondria 

List of short-listed candidate proteins potentially interacting with mitochondrial PINK1. Fold 
change of peptide ratios of CCCP stimulation over unstimulated is being listed.  
 

4.2.2 Validation of interacting proteins identified by SILAC with 

stably expressed exogenous PINK1 
 
To verify PINK1 interacting proteins identified by SILAC, I undertook co-

immunoprecipitation experiments using antibodies that detected endogenous 

protein of the various interactors. FlpIn TRex HEK293 cells stably expressing 

FLAG vector and PINK1-FLAG cells were induced for protein expression and 

treated with and without 10µM CCCP for 3h and mitochondrial fractions were 

prepared. PINK1 was immunoprecipitated using anti-FLAG agarose and was 

immunoblotted for the above interacting partners to confirm that they 

specifically co-immunoprecipitate with PINK1 when it gets stabilized in the 

mitochondria by CCCP. Most of the interacting proteins co-immunoprecipitate 

with mitochondrial PINK1 upon CCCP stimulation and the levels of the 
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interactors themselves did not change with CCCP treatment (Fig. 4.6). This 

suggests that the calculated enriched ratios from the SILAC analysis reflect 

binding to PINK1 and not simply greater protein abundance with CCCP. In 

contrast ANT2 and ANT3 show non-specific binding to FLAG and hence these 

proteins were excluded from further analysis (Fig. 4.6). 

 
 
Figure 4.6. Validation of PINK1 interacting proteins by co-   

immunoprecipitation study with stably expressed PINK1 

FlpIn TRex HEK293 cells stably expressing either FLAG-alone or wild-type PINK1-FLAG were 
induced for protein expression with doxycycline and treated with either DMSO control or 10µM 
CCCP for 3 h and cells were fractionated into mitochondria. 0.5mg of mitochondrial lysate was 
used for immunoprecipitation of PINK1 using anti-FLAG agarose and was immunoblotted using 
ant-PINK1 antibody. Co-immunoprecipitation of all endogenous interacting partners was 
performed using their respective antibodies. 25µg of lysate was used to immunoblot for the 
respective proteins to ensure that it serves as an input control for the immunoprecipitation 
study. Representative of two independent experiments. 
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4.2.3 Validation of interacting proteins identified by SILAC with 

endogenous PINK1 
 
I next investigated whether the other confirmed interactors were capable of 

binding to endogenous PINK1. HEK293 cells were treated with or without 10µM 

CCCP for 6h and mitochondrial fractions were immunoprecipitated for 

endogenous PINK1 using an in-house anti-PINK1 (S085D) covalently coupled 

polyclonal antibody. All proteins co-immunoprecipitated specifically with 

endogenous PINK1 providing strong evidence that they may be physiological 

binding partners of PINK1 (Fig. 4.7).  

4.2.4 Gel filtration analysis of mitochondrial PINK1 and its 

interacting proteins 
 
Size exclusion chromatography has been widely used to study protein 

complexes and changes in their interaction between different experimental 

conditions (Munoz et al, 2009). Since most of the PINK1 interacting proteins are 

found in the mitochondrial fraction, I investigated whether PINK1 could be a part 

of a large protein complex and if so would these interacting proteins co-migrate 

in the same size. Size exclusion chromatography of mitochondrial fractions from 

untreated and CCCP stimulated FlpInTRex HEK293 cells stably expressing 

wild-type PINK1-FLAG were performed (Fig. 4.9). This indicated that PINK1 

exists in a high-molecular weight complex (approximately 670kDa) in basal as 

well as CCCP stimulated conditions although the level of PINK1 differed 

between the two conditions (Fig. 4.9). Most of PINK1 interacting proteins co-

migrated in the high- molecular weight complex while some of them such as  
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TIMM50 and C1QBP existed across a large range of sizes with a proportion still 

co-migrating with PINK1 (Fig. 4.8). 

 
 

Figure 4.7   Validation of PINK1 interacting proteins by co-      
immunoprecipitation study with endogenous PINK1 

HEK293 cells were treated with either DMSO control or 10µM CCCP for 6 h and cells were 
fractionated into mitochondria. 1mg of mitochondrial lysate was used for immunoprecipitation of 
using anti-PINK1 S085D or pre-immune IgG covalently coupled to protein-G sepharose. 
Immunoblotting was done using anti-PINK1 (Novus) antibody. Co-immunoprecipitation of all 
endogenous interacting partners was performed by immunoblotting with their respective 
antibodies. 25µg of lysate was used to immunoblot for the respective proteins to ensure that it 
serves as an input control for the immunoprecipitation study. Representative of two independent 
experiments.  
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Figure 4.8.  Gel filtration analysis of mitochondrial PINK1 and its   
interacting partners 

FlpIn TRex HEK293 cells stably expressing wild-type PINK1 were induced for protein 
expression and treated with either DMSO control or 10µM CCCP for 3h and mitochondrial 
fractions were made.  Extracts were analyzed by size-exclusion chromatography performed on 
a HiLoad 26/60 Superdex200 column in buffer containing 150mM NaCl and every third fraction 
was denatured for immunoblotting with indicated antibodies. Elution positions of Thyroglobulin 
(670kDa), γ-globulin (158kDa), Ovalalbumin (44 kDa) and Myoglobin (17kDa) are shown.  
 
 

Cytochrome-C, which does not bind to PINK1 eluted as a monomer and served 

as a control for mitochondrial gel-filtration analysis (Fig. 4.8). 

 

4.2.5 shRNA knockdown analysis of interactors to study their 

effect on activation of PINK1 
 
Since none of the interacting proteins tested so far were substrates, I next 

investigated whether any of them could regulate PINK1 activity. I performed 

shRNA (short hair-pin RNA) mediated knockdown analysis of PINK1 interacting 

proteins and studied their effect on activation of endogenous PINK1. HEK293 

cell lines that stably express shRNA against each interacting partner were  
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generated using lentiviral gene delivery. Two different shRNA oligonucleotides 

per gene were used for generation of two independent stable cells lines in order 

to ensure reproducibility across biological replicates. Untagged-Parkin was 

transiently expressed in the stable cell lines and cells were treated with either 

DMSO or 10µM CCCP for 5h. Immunoblotting confirmed robust knockdown for 

all interacting proteins (Fig. 4.9) however none led to a significant effect on 

PINK1 activation as judged by Parkin Ser65 phosphorylation.  

4.2.6 Analysis of PINK1 interactors as potential substrates 
 
I next investigated whether any of the identified interacting partners of PINK1 

could be potential PINK1 substrates. Proteins listed in Table 4.2 were 

expressed in E.coli. Full length Miro2 and its orthologue, Miro1, were unstable 

probably due to possession of a short transmembrane region in their C-

terminus (Fig. 4.10). In contrast, C-terminal domain truncation mutants 

(truncation from aa593-618) were highly stable when expressed with a His-

SUMO fusion epitope tag (Fig. 4.10). GST-fusions of TOMM40 and VDAC2 

were made and the protein quality was appreciable (Fig. 4.10). VDAC1, an 

orthologue of VDAC2 was also expressed as a GST-fusion protein and was 

used as a substrate in my panel. However, efforts to purify Mitofilin, TIMM50, 

TOM22 and C1QBP are currently ongoing and will be tested in future. I 

undertook in vitro kinase assays using a catalytically active insect orthologue of 

PINK1 (TcPINK1). Kinase inactive TcPINK1 served as a negative control and 

Parkin as a positive substrate control. TcPINK1 did not significantly  
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Figure 4.9. Effect of shRNA-mediated knockdown of interacting proteins 
on      activation of PINK1 

HEK293 cells stably expressing the shRNA against respective gene indicated above each 
panel, was transfected with untagged-Parkin and treated with either DMSO or 10µM CCCP for 
5h. 0.5mg of whole cell lysate was immunoprecipitated with anti-PINK1 S085D covalently 
coupled antibody and immunoblotted with anti-PINK1 (Novus) antibody. 10µg of lysate was 
used to detect Parkin Ser65 phosphorylation using MJF-17 Parkin Ser65 monoclonal antibody. 
25µg lysate was used to immunoblot the respective genes that are knocked down in this study. 
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phosphorylate any of the proteins compared to Parkin with only trace 

phosphorylation against TOM40 and VDAC1 (Fig. 4.10). 

 

 
 

Figure 4.10.   In vitro kinase assay of PINK1 interactors using TcPINK1 

The indicated proteins (1 µM) were incubated with either full-length MBP-fusion of wild-type 
TcPINK1 (1–570) or kinase-inactive (KI) TcPINK1 (D359A) (0.5 mg) and [γ-32P] ATP for 30 
min. Assays were terminated by addition of SDS loading buffer and separated by SDS-PAGE. 
Proteins were detected by Colloidal Coomassie blue staining (lower panel) and incorporation of 
[γ-32P] ATP was detected by autoradiography (upper panel). Similar results were obtained in 
two independent experiments. Fine dividing lines indicate that reactions were resolved on 
separate gels. All substrates were of human sequence and expressed in E. coli unless 
otherwise indicated 
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4.3 Discussion 
 
Identification of novel interacting partners of PINK1 by affinity-purification 
based quantitative mass spectrometry 

 
There has been no previous attempt to identify interacting partners of PINK1 

comparing basal and depolarized conditions. Under basal conditions the 

constant turnover of PINK1 ensures a low level of expression in the 

mitochondria. When cells are treated with mitochondrial uncoupling agents such 

as CCCP, PINK1 levels decrease dramatically in the cytoplasm with a 

concomitant increase in levels of full length PINK1 in the mitochondria (refer to 

3.7). Owing to such variability in expression levels of PINK1 I decided to 

undertake affinity purification coupled with quantitative mass spectrometry 

based method to fish out for potential PINK1 interacting proteins. Since PINK1 

exists in two cellular compartments at any given time, I decided to perform the 

experiment with pull downs from cytoplasmic and mitochondrial fractions in 

order to identify a distinct set of interactors for each. This was accomplished by 

a triple labeling SILAC experiment. 

 

My analysis revealed that cytoplasmic localized PINK1 does not have any 

significant interacting proteins except for chaperones such as Cdc37 and 

HSP90, which are also found to interact with mitochondrial PINK1 independent 

of CCCP stimulation. A previous mass spectrometry based study from basal 

conditions identified HSP90 and Cdc37 to be enriched with PINK1 (Weihofen et 

al, 2008). Given that PINK1 is a mitochondrial protein imported via the  



4. Identification of novel interacting partners of mitochondrial PINK1 
 

 
-142- 

 

presequence containing precursor pathway (refer to Fig.3.25), it is noteworthy 

that HSP90 also plays a role in delivering precursor proteins to outer 

mitochondrial import receptors (Young et al, 2003). Cdc37 is a co-chaperone 

that recruits intrinsically unfolded proteins (mostly kinases) to the chaperone 

HSP90 to prevent proteasomal degradation. A report on the autophagy related 

kinase Ulk1 suggests that its association with HSP90-Cdc37 complex is crucial 

for its stability as well as activation (Joo et al, 2011). In a recent analysis of 

protein kinases regulated by HSP90-Cdc37 chaperone system, PINK1 was 

found to be a strong interactor of HSP90 (Taipale et al, 2012). Hence, it is 

possible that these chaperones are involved in maintaining PINK1 stability 

although I cannot rule out that this association of chaperones is due to over-

expression artifact (Fig. 4.5).  

 
My SILAC-based affinity purification mass spectrometry approach demonstrates 

a 17-fold enrichment of PINK1 in the mitochondria upon depolarization. This is 

consistent previous analysis showing that uncoupling agents stabilize PINK1 in 

the mitochondria (Narendra et al, 2010). In addition to enrichment of PINK1, I 

found several interacting partners in the mitochondria. Although a total of 40 

interactors, were identified some proteins were omitted, as they are common 

contaminants in mass spectrometry experiments (such as cytoskeletal proteins 

and ribosomal proteins). Chaperones and chaperone related proteins were also 

not considered for further analysis. Another group of interacting proteins listed 

in Table 4.1 were of unknown function of which some were non-mitochondrial 

proteins. Since antibodies were not available for this group of proteins, they  
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were not considered for further validation experiments. However, a group of 9 

proteins were found to be significantly enriched with PINK1 which all localize to 

the mitochondria (Fig. 4.11) and for which reagents were available and I was 

able to validate all but 2 of these. 

 

 
Figure 4.11. Illustration depicting sub-mitochondrial localization of 

putative PINK1 interactors  

Putative PINK1 interactors are illustrated based on their sub-mitochondrial localization. Dialog 
box next to each protein or a group of proteins indicates their function in the mitochondria. 
 
 
Insights into association of PINK1 with mitochondrial protein import 
machinery 
Interaction of PINK1 with TOM40 and TOM22 mitochondrial import receptors is 

not unsurprising as all nuclear encoded mitochondrial proteins are imported via 

TOM40, which along with TOM22 and three small TOM subunits forms the  
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general protein import pore of the outer mitochondrial membrane (Dekker et al, 

1998) (refer to Fig.3.25). Although I have determined that PINK1 exists in a 

large multi-protein complex with TOM40 and TOM22 by size-exclusion 

chromatography, shRNA-mediated knockdown of either TOM40 or TOM22 had 

no effect on import or activation of endogenous PINK1 as judged by Parkin 

phosphorylation. Recently, work by another group confirmed a stable interaction 

between PINK1 and TOM40/TOM22 complex in depolarized mitochondria and 

proposed that perhaps it is necessary for PINK1 to be in constant contact with 

the TOM complex, as this would allow rapid re-import of PINK1 to rescue 

repolarized mitochondria (Lazarou et al, 2012). However, my analysis reveals 

that PINK1 does not solely rely on the TOM40/TOM22 complex for import and it 

would be interesting to undertake shRNA knockdown of all the known TOM 

proteins to determine which are critical for PINK1 import.   

 

I also found another mitochondrial import component, TIM50 to interact with 

PINK1. TIM50 plays a crucial role in transfer of precursor proteins from the 

TOM complex to the TIM23 complex in the inner mitochondrial membrane for 

import of proteins destined to mitochondrial matrix or inner membrane 

(Mokranjac et al, 2003; Mokranjac et al, 2009). Recently it was established that 

the C-terminal region of TIM50 binds to positively charged mitochondrial 

presequence present in the N-terminus of incoming precursor proteins imported 

into the mitochondria (Schulz et al, 2011). This is a crucial event to impart 

directionality to the import process, as recognition of presequences by TIM50  

 



4. Identification of novel interacting partners of mitochondrial PINK1 
 

 
-145- 

 

directs them into TIM23 import receptor (Schulz et al, 2011). My analysis 

suggest that the role of TIM50 in mitochondrial import does not appear to be 

essential since knockdown did not impair PINK1 import even under 

mitochondrial depolarization when it would be predicted that Tim23 would be 

inactivated. However, knockdown was not complete and it is possible that 

import was conferred by the residual TIM50 protein. 

 

Insights into association of PINK1 with Miro2 

 

Miro2 was the highest enriched PINK1-binding partner identified in our 

interaction screen. The Miro proteins (Miro1 and Miro2 in humans) are a family 

of atypical Rho GTPases tethered to the mitochondrial outer membrane (Fig. 

4.12), which play a role in anterograde transport of mitochondria (Glater et al, 

2006; Guo et al, 2005). The domain architecture of Miro proteins consists of 

tandem GTP binding domains separated by a linker region and calcium binding 

EF-hand motifs (Fransson et al, 2003). Calcium is known to halt mitochondrial 

movement and it has been speculated that Miro may play a role in this via its 

calcium-binding motif (Glater et al, 2006). Previously a mass spectrometry 

based analysis to identify potential interacting partners of immunoprecipitated 

mitochondrial PINK1 from basal conditions, identified Miro2 as an interactor 

(Weihofen et al, 2009).  

 

Further studies by two independent groups reported that PINK1 plays a role in 

mitochondrial trafficking by regulating the level of Miro1, an orthologue of Miro2 

(Liu et al, 2012; Wang et al, 2011). However, Miro1 was not found to bind  
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PINK1 in my screen and perhaps it would be important to test in future if 

HEK293 cells express Miro1. Given that Miro2 knockdown had no effect on 

downstream phosphorylation of Parkin, additional work is required to establish 

the physiological relevance of interaction between PINK1 and Miro2.  

 
Insights into association of PINK1 with Mitofilin 
 
A previous study that identified Miro2 as an interactor of mitochondrial PINK1 

also found Mitofilin in their mass spectrometry based screen (Weihofen et al, 

2009). From our co-immunoprecipitation study we observe an increased 

association of PINK1 with Mitofilin upon mitochondrial depolarization. Mitofilin is 

an inner mitochondrial membrane protein (Fig. 4.12) discovered to play a vital 

role in maintaining mitochondrial cristae morphology (John et al, 2005) and 

more recently was found to mediate this in complex with five partner proteins 

collectively called the MINOS complex (von der Malsburg et al, 2011). Besides 

regulating cristae morphology, Mitofilin was also found to associate with the 

outer membrane import receptors (TOM40 and SAM) to play a role in the 

biogenesis of outer mitochondrial membrane proteins with a β-barrel topology 

(Bohnert et al, 2012). Interestingly, defects in cristae morphology have been 

observed previously in PINK1 loss-of-function models (Clark et al, 2006; Exner 

et al, 2007).  

 

Although I saw a stable interaction by co-immunoprecipitation studies, I found 

that knockdown of Mitofilin did not have any effect on PINK1 stabilization or 

activation upon CCCP stimulation. However, it is unknown whether Mitofilin  
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knockdown in HEK293 cells can alter cristae morphology and it would be 

important to perform electron micrograph studies to test this in future. Also, 

Mitofilin is enriched only around 2.8 fold upon CCCP stimulation and the 

interaction could perhaps happen only occur due to close proximity with PINK1 

within the sub-mitochondrial milieu. Further work is required to confirm if this 

interaction is functionally relevant.  

 
Insights into association of PINK1 with VDAC2 and C1QBP 
 
VDAC2 and C1QBP are implicated in mitochondrial Membrane Permeability 

Transition (MPT) (Fig. 4.11). Mitochondrial MPT pore is a large non-specific 

channel in the inner mitochondrial membrane, which induces cell death by 

causing lethal changes in mitochondrial permeability (Halestrap, 2009). MPT 

pore opening can lead to loss of membrane potential, mitochondrial swelling 

and rupture and ultimately cell death and has implications in pathogenesis of 

neurodegenerative diseases. The proteins believed to be a part of this process 

are VDAC (Voltage dependent anion channel) in the outer membrane, ANT 

(Adenine nucleotide transporter) in the inner membrane and cyclophilin D in the 

mitochondrial matrix. However, it has now been established that VDAC and 

ANT are dispensable for membrane permeability transition (Baines et al, 2007; 

Kokoszka et al, 2004) leaving cyclophilin D as the only known regulator of MPT, 

with the core components of the pore yet to be identified. CIQBP, a 

mitochondrial matrix protein, was recently identified as an inhibitor of MPT pore 

opening by direct binding and inhibition of cyclophilin D (McGee et al, 2011). 

Interestingly, studies in PINK1 -/- mouse embryonic fibroblasts show a decrease  
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in mitochondrial membrane potential and an increase in MPT pore opening 

(Gautier et al, 2012). VDAC2 and C1QBP were confirmed as PINK1 interactors 

from co-immunoprecipitation studies. Similar to the shRNA analysis done for all 

PINK1 interactors, VDAC2 and C1QBP also were found to have no effect in 

regulating PINK1 activity in vivo. Perhaps this could be tackled in future to see if 

C1QBP can rescue defects of MPT pore opening in PINK1 -/- MEFs or shRNA 

silenced cells. VDACs (VDAC1, 2 and 3) have been reported to specifically 

interact with Parkin upon mitochondrial depolarization (Sun et al, 2012). 

Although we do not observe a regulatory role for VDAC2 in PINK1 activation, 

we did notice that the levels of VDAC2 decrease upon CCCP stimulation in cells 

stably expressing scrambled shRNA. This perhaps suggests that PINK1 

mediated activation of Parkin upon CCCP stimulation can lead to degradation of 

VDAC2. Given the significant fold change (9 fold) in VDAC2 association with 

PINK1 upon CCCP stimulation, it is possible that the association of PINK1 with 

VDAC2 can mediate efficient ubiquitylation of VDAC2 simply because of 

proximity of Parkin, once it is activated by PINK1-mediated phosphorylation.  

 

In conclusion, my SILAC analysis has identified a number of interactors for 

mitochondrial PINK1. Although I have validated these interactions 

biochemically, their functional relevance remains unknown. In future work it will 

be vital to study the other interacting proteins of unknown function since these 

may hold key roles in the regulation of PINK1 localization, stability and activity.



 

 

 

 
 
 
 
 
 

 
 

 

 

 

 

Chapter 5 

Identification of novel substrates of PINK1 
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5. Identification of novel substrates of PINK1  
 

5.1 Introduction 
 
 
As stated in Chapter 3, I have determined that Parkin is a robust substrate of 

PINK1 and have established a biochemical link between these two PD-linked 

genes. However, I hypothesized that PINK1 may have additional substrates that 

are critical for mediating PINK1 downstream signaling in response to 

mitochondrial depolarization. To address this I undertook a SILAC-based 

quantitative phospho-proteomic approach in collaboration with Matthias Trost.  

 

Phosphorylation is one of the most abundant post-translational modifications in 

a cell and the identification of substrates for all the known protein kinases has 

been a major goal of signal transduction research over the last three decades. 

Traditionally, most screens have employed in vitro approaches using 

radioactive [γ-32P] ATP and recombinant protein kinase (Cohen & Knebel, 2006; 

Roskoski, 1983; Witt & Roskoski, 1975). However, kinases can often exhibit 

differential effects in vitro than in vivo and many robust in vitro substrates from 

such screens cannot be validated as physiological in vivo substrates. As 

described in 4.1, mass spectrometry has been a valuable tool to identify 

protein-protein interactions and with the invention of highly sensitive mass 

spectrometers and improved methodologies to isolate phosphopeptides, it has 

also become a powerful technology for analysis of in vivo phosphorylation 

(Chen & White, 2004; Mumby & Brekken, 2005). Typically most modern  



5. Identification of novel substrates of PINK1 
 
 

 
-151 

protocols involve initial enrichment of phosphorylated peptides from the sample 

of interest followed by their identification by mass spectrometry. Recently, this 

has been made more quantitative by employing SILAC methodologies, which 

permits comparison of phosphorylation status of protein substrates across up to 

three different conditions/stimuli (Olsen et al, 2006).    

 

Identification of protein phosphorylation sites on global scale has posed a 

significant analytical challenge due to a combination of relatively low abundance 

of many phosphopeptides and diverse physico-chemical properties of some 

phosphopeptides. However, several affinity-based methods have been 

developed for the isolation and identification of phosphorylated peptides (Trost 

et al, 2010).  

 

1. Immobilized Metal Affinity Chromatography (IMAC): This method is based on 

selective binding of metal-ligand complexes with phosphate groups thereby 

selective enriching for phosphopeptides. The metal-ligand complex most 

commonly used is Fe(III) immobilized on nitrilotriacetate support (NTA).  In 

order to reduce non-specific binding of peptides containing acidic residues 

such as glutamate and aspartate, their carboxylic group can be converted 

into methyl esters using methanolic HCl. IMAC can yield a higher distribution 

of multiply phosphorylated peptides.  

 

2. Metal Oxide Affinity Chromatography (MOAC):  This method is based on 

enriching phosphorylated amino acids using titanium-di-oxide (TiO2) by a 
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similar mechanism as IMAC. Titanium di-oxide exhibits a high level of 

chemical, mechanical and thermal stability and selectively captures 

phosphopeptides in an acidic solution without the requirement for methyl  

esterification of peptides. Also, this affinity media can preferentially enrich 

singly and doubly phosphorylated peptides. Over the last few years, 

numerous studies have employed TiO2 in large-scale phosphoproteomics for 

enrichment of numerous phosphopeptides from complex biological extracts. 

Other uncommon metal oxides used in MOAC are Aluminium hydroxide 

(Al(OH)3),  Zirconium oxide (ZrO2) and Niobium oxide (Nb2O5). 

 

3. Chromatographic enrichment methods: The negative charge of the 

phosphate moiety of a phosphopeptide enables them to be enriched by ion-

exchange chromatography methods. Some methods employed are Strong 

Anion Exchange (SAX), which enriches negatively charged phosphopeptides 

or Hydrophilic Interaction Liquid Chromatography (HILIC), which can retain 

phosphopeptides owing to their high hydrophilicity. However, when 

compared to affinity-based methods, chromatography gives a low yield of 

phosphopeptides and hence it is often performed in combination with IMAC 

or TiO2 enrichment.  

 

To identify novel PINK1 substrates I have employed a SILAC based quantitative 

phosphoproteomic approach. Since PINK1 resides in the mitochondria, I 

focused on identifying phosphopeptides in the mitochondria using membrane 

enriched cell extracts that would contain mitochondria and other membrane-
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bound organelles but largely excluding nuclear and cytosolic proteins. HEK293 

FlpIn TRex cells stably expressing either FLAG alone, Kinase inactive PINK1 or 

wild-type PINK1 were stimulated with the uncoupling agent, CCCP and 

membrane enriched fractions were subjected to phosphopeptide analysis and 

compared across conditions to identify phosphopeptides that were potentially 

regulated by PINK1. 

 

5.2 SILAC-based phosphoproteomics to identify novel 
substrates of PINK1 

 
 

5.2.1 Workflow for SILAC-based phosphoproteomic approach  
 

Flp In TRex HEK293 cells stably expressing either FLAG empty, wild-type 

PINK1-FLAG or Kinase-inactive PINK1-FLAG were grown in ‘light’, ‘heavy’ and 

‘medium’ SILAC media, respectively, for at least 5 passages. Experiments were 

set-up as two biological replicates with a technical replicate in each (equivalent 

to n=4), to achieve statistical significance (Fig. 5.1). Cells in each condition 

were stimulated with 10µM CCCP for 3 hours and membrane-enriched fractions 

were made and solubilized in 1% RAPIGEST. Protein estimation was 

determined by the EZQ method of protein quantitation, which is compatible with 

RAPIGEST solubilized lysates and is a highly sensitive method to determine 

accurate protein concentration. RAPIGEST being an acid cleavable detergent 

can be extracted from the lysates prior to trypsin digestion of a mixture of equal 

amounts of lysate from the three experimental conditions (9mg per condition). 
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The experimental procedure is described in more detail in the Materials and 

Methods 2.2.7.3 (Fig. 5.2). 

 

Digested peptides from each replicate were subjected to phospho-peptide 

enrichment by HILIC chromatography and around 15 eluates were collected per 

experiment (Appendix 6.7). Each eluate was further subjected to a second 

round of phospho-peptide enrichment using a TiO2 column and analysed by 

mass spectrometry. Data analysis was done using MaxQuant. 

 

 

 

 

Figure 5.1 Control blots from individual SILAC labeled condition in the 
phosphoproteomics experiment 

FlpIn TRex HEK293 cells stably expressing FLAG-alone were cultured in unlabeled medium, 
Wild-type (WT) PINK1-FLAG cells were ‘heavy’ labeled and Kinase inactive (KI) PINK1-FLAG 
were ‘medium’ labeled. All conditions were treated with 10µM CCCP for 3h and subjected to 
membrane enriched fractionation. 25µg of lysate was immunoblotted with anti-PINK1 antibody. 
Immunoblotting for TOMM40 and GAPDH serve as markers for mitochondria and cytoplasm 
and confirm mitochondrial enrichment.   
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As illustrated in Fig. 5.2 after trypsin digestion of the lysate mixture, a small 

amount is taken for mass spectrometry to determine labeling efficiency. 

Labeling efficiency of at least 95% is desirable for comparative and quantitative 

proteomics. Individual labeling efficiency for peptides with ‘heavy’ Arg and 

‘heavy’ Lys (Fig. 5.3) and ‘medium’ Arg and ‘medium’ Lys (Fig. 5.4) were 

determined and compared to their respective unlabeled peptide. Density plots 

for incorporation of Arg and Lys-containing peptides show a labeling efficiency 

of approximately 96% in both ‘heavy’ and ‘medium’ labeled conditions (Fig. 5.3 

and 5.4).  
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Figure 5.2 SILAC phospho-proteomic workflow for identification of PINK1 
substrates . 

Refer to 2.2.7.3 in Material and Methods for description of experimental procedure. 
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Figure 5.3 Density plot for incorporation of ‘heavy’ labeled Arg and Lys 
containing peptides 

Density plot depicting labeling efficiency of ‘heavy’ labeled Arg and Lys amino acids used for 
metabolic labeling of HEK293 FlpIn TRex Wild-type PINK1-FLAG stable cell line. The inset 
shows median incorporation level for all peptides, Arg-containing peptides and Lys-containing 
peptides. 
 
 
 
Scatter plots corresponding to peptide intensity from each experimental 

replicate versus average peptide intensity were plotted for labeled and 

unlabeled conditions and a good correlation was found between experimental 

replicates (R2 = 0.83) (Fig. 5.5). A total of 14,213 phosphosites were identified 

among which 12,374 were quantified. Frequency plots were generated in order 
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to deduce phosphosites that were up regulated between the different 

experimental conditions.  

 
 
 

 

Figure 5.4 Density plot for incorporation of ‘medium’ labeled Arg and Lys 
containing peptides 

Density plot depicting labeling efficiency of ‘medium’ labeled Arg and Lys amino acids used for 
metabolic labeling of HEK293 FlpIn TRex Kinase inactive PINK1-FLAG stable cell line. The 
inset shows median incorporation level for all peptides, Arg-containing peptides and Lys-
containing peptides. 
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Figure 5.5 Reproducibility of proteomic data  

Scatter plots showing a comparison of peptide intensity from each independent experimental 
replicate in (A) unlabeled condition, (B) ‘medium’ labeled condition and (C) ‘heavy’ labeled 
condition, with a strong correlation with the average peptide intensity.  
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The measured ratios for each condition were grouped into ‘bins’ and plotted 

along the x-axis (in logarithmic scale): H/M for wild-type PINK1 vs. kinase-

inactive PINK1, H/L for wild-type PINK1 vs. control and M/L for kinase-inactive 

PINK1 vs. control. The frequency of occurrence of peptides in each binned ratio 

was plotted along the y-axis (Fig. 5.6). This plot showed a normal distribution 

curve with majority of peptides remaining unchanged between experimental 

conditions (Fig. 5.6).  

 

Frequency plot of Wild-type PINK1 versus Kinase inactive PINK1 shows that 

129 phosphosites are up regulated (> 3fold) (Fig. 5.6A). Frequency plots of 

Wild-type PINK1 versus control showed 73 up regulated sites (Fig. 5.6B) 

whereas Kinase-inactive versus control (Fig. 5.6B) had around 42 up regulated 

sites (Fig. 5.6C). Among the 73 phosphosites that were up regulated in wild-

type PINK1 vs control, only 42 phosphosites overlapped with the ones that were 

up regulated (> 3 fold) in wild-type PINK1 vs kinase-inactive PINK1. Among 

these, 20 of them were found in at least two out of four experimental replicates 

(Table 5.1). Among the proteins listed in Table 5.1, only 8 proteins were 

consistently identified in all experimental replicates. 7 other proteins were 

identified in three out of four replicates and 5 of them were found only in two 

replicates. One of the up-regulated phosphosites identified corresponded to the 

Thr257 PINK1 autophosphorylation site, which in part validated the screen. 
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Figure 5.6 Frequency plot for phosphoproteomic data  

Frequency plots of (A) Wild-type PINK1 vs Kinase inactive PINK1 (heavy/medium), (B) Wild-
type PINK1 vs control (heavy/light) and (C) Kinase inactive PINK1 vs control (medium/light). 
The measured ratios for each case were grouped into ratio bins, and the y-axis shows the 
frequency of peptides detected per bin. 

 
 
Although there were a reasonable number of putative substrates identified from 

my screen, some nuclear proteins (such as RHG35, GCFC1, ZNF36 and 

PRDM2) were excluded from further analysis since they are likely to represent 

nuclear membrane contamination during preparation of crude mitochondrial 

fractionation. Cytoskeletal protein (MAP1B), heat shock protein (DNAJB2) and 

translation initiation factor (EIF4E2) were not considered for further analysis.  
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     Table 5.1 Complete list of putative PINK1 substrates identified by SILAC phospho-proteomic screen 
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Table 5.2 Short-list of putative substrates of PINK1 

 
 

 

 

Figure 5.7 Phosphosite motif analysis of putative PINK1 substrates 

The upper panel shows sequences encompassing the phosphosite identified in each putative 
PINK1 substrate listed in Table 5.2 along with Parkin Ser65 phosphosite sequence. The 
position of phosphosite is kept at zero and upstream and downstream sequences are marked 
with negative or positive numbering respectively. The lower panel shows a sequence logo 
generated from these peptide sequences using Weblogo (Version 2.8.2) 
http://weblogo.berkeley.edu/.  
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Among substrates that were detected in two replicates, FAM21A and GPRIN3 

were excluded from the list, as one of the replicates did not show a significant 

fold change. NF1 (also known as neurofibromin) was found in all four replicates 

but owing to the size of the protein (319kDa) it was difficult to clone. 

Furthermore, this candidate was given less priority for further analysis since it is 

predominantly nuclear. I therefore decided to focus on nine putative PINK1 

substrates in view of the significance of the fold change of their respective 

phosphosites upon PINK1 activation. Interestingly, three Rab GTPases namely 

RAB8A, RAB8B and RAB13 were identified in all experiments with a significant 

fold change when comparing wild-type versus kinase-inactive PINK1 (Table 

5.2). The screen also identified the atypical mitochondrial Rho-GTPase Miro2, 

which I had previously found to be a significant interactor of PINK1 (Table 4.2). 

All of the putative PINK1 substrates identified were phosphorylated at serine 

residues, similar to the Parkin (Ser65) site described in Chapter 3. An alignment 

comparison of the surrounding residues of the phosphosite sequence of the 

putative substrates identified, along with the Parkin Ser65 phosphosite 

sequence suggested a possible preference of PINK1 for acidic residues at the -

3 position and +2/+4 position.  

 

5.2.2 Validation of Rab8A, Rab8B and Rab13 as PINK1 
substrates  

 

Three Rab GTPases namely RAB8A, RAB8B and RAB13 were identified as 

putative PINK1 substrates in my SILAC phospho-proteomic experiment. The  
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phosphosite identified in these Rab GTPases was significantly up regulated in 

cells containing wild-type PINK1 activated by mitochondrial depolarization in all 

experimental replicates. The phosphorylation site corresponded to Serine 111 

residue, and multiple sequence alignment of individual Rab GTPases from 

higher mammals as well as Drosophila revealed a high degree of conservation 

of this site (Fig. 5.8 A, B and C). 

 

 

 

Figure 5.8 Multiple sequence alignment of Ser111 phosphorylation site in    
RAB8A, RAB8B and RAB13 

Multiple sequence alignment (MSA) of orthologs from higher mammals and Drosophila 
performed for (A) RAB8A, (B) RAB8B and (C) RAB13. (D) MSA for human RAB8A, RAB8B and 
RAB13. Red asterisk shows the position of the Serine 111 phosphorylation site.  
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Full-length human HA tagged versions of the respective Rab GTPases (RAB8A, 

RAB8B and RAB13) were transiently over-expressed in Flp-In TRex HEK293 

cells stably expressing FLAG alone, wild-type human PINK1, or kinase-inactive 

human PINK1 (D384A). Cells were treated with or without CCCP for 3 h-

conditions that induce stabilization and activation of PINK1 at the mitochondria. 

The respective Rab GTPase was immunoprecipitated with HA-agarose and 

phosphorylation site analysis undertaken by mass spectrometry. This confirmed 

that RAB8A and RAB8B were phosphorylated at Ser111 in cells expressing 

wild-type human PINK1 that had been stimulated with CCCP (Fig. 5.9 and Fig. 

5.10). No detectable phosphorylation of Ser111 in RAB8A or RAB8B was 

observed in the absence of CCCP treatment or in cells expressing kinase-

inactive PINK1 (Fig. 5.9 and Fig. 5.10).  Similarly for RAB13, I observed 

significant phosphorylation of Ser111 only in cells expressing wild-type PINK1 

stimulated with CCCP and no detectable phosphorylation was observed in 

control cells or kinase inactive cells treated with CCCP (Fig. 5.11). 
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Figure 5.9 PINK1 phosphorylates RAB8A at Ser111 in vivo  

Flp-In T-Rex HEK293 cells expressing FLAG-empty, wild-type PINK1-FLAG, and kinase-
inactive PINK1-FLAG (D384A) were co-transfected with HA-RAB8A, induced with doxycycline 
and stimulated with 10 mM of CCCP for 3 h. 10mg of whole-cell extract were 
immunoprecipitated with anti-HA-agarose, resolved by SDS-PAGE and stained with colloidal 
Coomassie blue. Bands corresponding to mass of HA-RAB8A were excised, digested with 
trypsin, and subjected to high performance liquid chromatography with tandem mass 
spectrometry (LC-MS-MS) on an LTQ-Orbitrap mass spectrometer. Upper panel shows 
Extracted ion chromatogram analysis of Ser111 phosphosite with Y-axis corresponding to 
phosphopeptide signal intensity and x-axis to retention time. 
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Figure 5.10 PINK1 phosphorylates Rab8B at Ser111 in vivo  

Flp-In T-Rex HEK293 cells expressing FLAG-empty, wild-type PINK1-FLAG, and kinase-
inactive PINK1-FLAG (D384A) were co-transfected with HA-RAB8B, induced with doxycycline 
and stimulated with 10 mM of CCCP for 3 h. 10mg of whole-cell extract were 
immunoprecipitated with anti-HA-agarose, resolved by SDS-PAGE and stained with colloidal 
Coomassie blue. Bands corresponding to mass of HA-RAB8B were excised, digested with 
trypsin, and subjected to high performance liquid chromatography with tandem mass 
spectrometry (LC-MS-MS) on an LTQ-Orbitrap mass spectrometer. Upper panel shows 
Extracted ion chromatogram analysis of Ser111 phosphosite with Y-axis corresponding to 
phosphopeptide signal intensity and x-axis to retention time. 
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Figure 5.11 PINK1 phosphorylates RAB13 at Ser111 in vivo  

Flp-In T-Rex HEK293 cells expressing FLAG-empty, wild-type PINK1-FLAG, and kinase-
inactive PINK1-FLAG (D384A) were co-transfected with HA-RAB13 and stimulated with 10 mM 
of CCCP for 3 h. 10mg of whole-cell extract were immunoprecipitated with anti-HA-agarose, 
resolved by SDS-PAGE and stained with colloidal Coomassie blue. Bands corresponding to 
mass of HA-RAB13 were excised, digested with trypsin, and subjected to high performance 
liquid chromatography with tandem mass spectrometry (LC-MS-MS) on an LTQ-Orbitrap mass 
spectrometer. Upper panel shows Extracted ion chromatogram analysis of Ser111 phosphosite 
with Y-axis corresponding to phosphopeptide signal intensity and x-axis to retention time. 
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5.2.3 Characterization of Ser111 phosphosite specific antibody 
for RAB8A and RAB8B 

 

I next raised phospho-specific antibodies against the Ser111 phosphorylation 

site for RAB8A, RAB8B and RAB13. For characterization of the antibodies, 

stable cell lines expressing either FLAG alone, PINK1-FLAG wild-type or 

PINK1-FLAG kinase-dead were over-expressed with either HA-RAB8A or HA-

RAB8B and stimulated with either doxycycline alone or with CCCP for 3 hours. 

All three bleeds of each phospho-antibody were tested on the respective Rab 

GTPase that had been immunoprecipitated from cells under the various 

conditions stated above. For the RAB8A Ser111 phospho-specific antibody, the 

2nd bleed was able to robustly detect phosphorylation in cells expressing 

 
 

 
Figure 5.12 Characterization of RAB8A and RAB8B Ser111 phospho-

specific antibody  

Flp In TRex HEK293 cells stably expressing either FLAG alone, wild-type PINK1-FLAG or 
kinase-inactive PINK1-FLAG was over-expressed with (A) HA-RAB8A or (B) HA-RAB8B. Cells 
were induced with doxycycline, stimulated with either doxycline or CCCP and 0.25mg of whole 
cell lysates were immunoprecipitated with anti-HA agarose beads and blotted with the indicated 
antibodies. 
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wild-type but not kinase-inactive PINK1 (Fig. 5.12 A). For the RAB8B Ser111 

phospho-specific antibody the 3rd bleed was able to detect phosphorylation in 

cells expressing wild-type PINK1 (Fig. 5.12 B). Further, the phospho-antibody 

for both RAB8A and RAB8B did not detect any Ser111 phosphorylation under 

basal conditions indicating that this only occurs during mitochondrial 

depolarization when PINK1 would be predicted to be active (Fig. 5.12).  In 

contrast none of the bleeds for the RAB13 Ser111 phospho-specific antibody 

could detect phosphorylated RAB13 (data not shown). 

5.2.4 Preliminary analysis of further putative PINK1 substrates  
 

I undertook a multiple sequence alignment (MSA) of the other phosphosites 

identified as putative PINK1 substrates (from the SILAC screen) with their 

respective orthologues. The phosphosites identified in Ribosomal protein S27A 

(RL40), 2-oxoglutarate dehydrogenase (DLST), TMEM51 and SLIT-ROBO 

GAP1 (srGAP1) showed a high degree of conservation across all species. 

Furthermore, the srGAP1 phosphosite was highly conserved between its two 

paralogs srGAP2 and srGAP3. In contrast, for BH3-interacting death domain 

agonist (BID), the phosphorylation site was conserved in primates but not 

rodents (substitution for D) suggesting that it may not be critical for regulation of 

BID. For Miro2, mass spectrometry analysis could not distinguish between two 

potential sites in my screen: Ser535 with a probability 0.835 and Ser538 with a 

probability of 0.165 (Table 5.2). However, Ser535 is not conserved at all across 

species whereas Ser538 showed a relatively higher degree of conservation in 

higher organisms but not in Drosophila.  In future work it will be crucial to  
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validate all these phosphosites in vivo using candidate-based mass 

spectrometry and raise phospho-specific antibodies against the most promising 

candidates. 

 

Figure 5.13 Multiple sequence alignment of PINK1 substrates identified 
from the SILAC phospho-proteomic screen 

Multiple sequence alignment (MSA) of orthologs of RL40, DLST, BID, Miro2, TMEM51 and 
srGAP1 were performed. Red asterisk shows the position of the PINK1 mediated 
phosphorylation site with the amino acid residue number indicated above the asterisk. 
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5.3 Discussion 
 
 
Identification of novel substrates of PINK1 by a SILAC phospho-proteomic 
approach 
 
 
In Chapter 3, I have provided strong evidence that Parkin is a substrate of 

PINK. However, I wanted to explore alternate signaling pathways downstream 

of PINK1. Having established a cell line over-expressing either wild-type of 

kinase-inactive PINK1 wherein conditions of mitochondrial depolarization can 

specifically activate wild-type PINK1 (Fig. 3.7), I decided to employ this system 

to screen for novel PINK1 substrates by a quantitative SILAC phospho-

proteomic approach.  

 

Since PINK1 is stabilized and activated in the mitochondrial membrane, I 

hypothesised that PINK1 may have mitochondrial substrates. I therefore 

focused on a screen of membrane-enriched fractions that would include 

mitochondria rather than a whole phosphoproteome analysis. This would also 

be technically more tractable since fractionation would likely enhance the signal 

to noise ratio and make it more likely to capture less abundant 

phosphopeptides.  

 

The SILAC phospho-proteomic screen employed three conditions in four 

experimental replicates; control cells stimulated with CCCP were unlabeled, 

wild-type PINK1 cells stimulated with CCCP (in order to activate PINK1) were  
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‘heavy’ labeled and kinase-inactive PINK1 cells stimulated with CCCP were 

‘medium’ labeled. A total of 12,374 unique phosphosites were identified in my 

screen among which only 129 phosphosites (1% of the total identified) were 

significantly upregulated between wild-type vs. kinase-inactive PINK1.  

 

Although 129 phosphosites were upregulated between wild-type and kinase-

inactive PINK1, only 73 peptides were up regulated between wild-type PINK1 

and control cells stimulated with CCCP. This could perhaps be due to the effect 

of endogenous PINK1 being activated by CCCP stimulation in control cells. The 

least number of up regulated phosphosites (42 phosphosites) was found in 

kinase-inactive PINK1 vs. control and these may represent non-specific 

phosphosites since endogenous PINK1 would be similarly activated in both cell 

lines.  Among the 73 peptides up-regulated in wild-type vs. control, only 42 of 

them overlap with the peptides identified comparing wild-type vs. kinase-

inactive. Furthermore, of these only 20 phosphosites were up regulated in two 

out of four experimental replicates and these were considered for further 

analysis. Among the 20 proteins identified I decided to focus on nine putative 

PINK1 substrates in view of the significance of the fold change of their 

respective phosphosites upon PINK1 activation.  

 

Overview of members of a Rab GTPase sub-family comprising RAB8A, 
RAB8B and RAB13 and implications of potential regulation by PINK1. 
In a eukaryotic cell, compartmentalization of various membrane-bound 

organelles was fundamental for the origin of special mechanisms to transport  
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proteins or lipids between distinct organelles. Such processes are tightly 

regulated to enable efficient utilization of the available space within a cell and 

are typically achieved by packaging contents that are required to be transported 

into vesicles, which bud from the membrane of a donor organelle and 

eventually fuse into an acceptor membrane. A large family of proteins called the 

Rab GTPases, which are part of the Ras superfamily of small GTPases, play a 

key role in regulating the intricate organization required for all membrane 

trafficking events in a cell (Schwartz et al, 2007; Stenmark & Olkkonen, 2001). 

Over 60 members of Rab GTPases have been identified in distinct intracellular 

membranes (Stenmark & Olkkonen, 2001) (Fig. 5.14).  

 

Figure 5.14    Sub-cellular localization of Rab GTPases  

     Adapted from (Stenmark, 2009) 
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Rab GTPases are themselves regulated by shuttling between two distinct 

conformational states: a GDP-bound ‘off’ state and a GTP-bound ‘on’ state 

(Stenmark, 2009) (Fig. 5.15). In the ‘off’ state, Rabs are usually bound to GDP-

dissociation inhibitors (GDI). Once switched ‘on’ by exchange of GDP for GTP, 

catalyzed by Guanine nucleotide Exchange Factor (GEF), they can interact with 

several effector molecules based on which their downstream function is defined 

(Fig, 5.15). The switch from ‘on’ back to the ‘off’ state is achieved by hydrolysis 

of the bound GTP either by intrinsic GTPase activity or by GTPase Activating 

Protein (GAP) (Stenmark, 2009) (Fig. 5.15) .  

 

 

 

Figure 5.15  Rab GTPase cycle depicting a switch in conformational state  

Illustration depicting the conformational switches between inactive “off” state and active “on” 
state in a Rab GTPase cycle. Abbreviations: GDI – GTP dissociation inhibitor, GEF – Guanine 
exchange factor, GAP – GTPase activating protein.  
 

In my screen for putative PINK1 substrates, I have identified a highly conserved 

phosphosite to be significantly up regulated in three Rab GTPases namely 

RAB8A, RAB8B and RAB13. RAB8A and RAB8B are localized in the trans-golgi 

network and are implicated in trafficking between trans-golgi and plasma  
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membrane (Fig. 5.14) (Grigoriev et al, 2011). Rab13 is recruited to functional 

tight junctions from the cytosol (Fig. 5.14) (Marzesco et al, 2002). Interestingly, 

the phosphosite identified was highly conserved across the three Rab proteins 

and corresponds to a Serine 111 residue (Fig. 5.8). Interestingly this site is not 

conserved in any other Rab and all 3 Rabs that share Ser111 are found within 

the same phylogenetic branch in an evolutionary tree of all human Rab 

GTPases (Bock et al, 2001) (Fig. 5.16).  Although Rab10 is also found within 

the same phylogenetic branch (Fig. 5.16), multiple sequence alignment 

revealed that Ser111 phosphorylation site is not conserved in Rab10 (data not 

shown). I further validated this site by candidate-based mass spectrometry in 

which I confirmed that these proteins were phosphorylated at Ser111 upon 

analysis of each respective Rab, isolated from wild-type PINK1 expressing cells 

stimulated by mitochondrial depolarization. In the case of RAB8A and RAB8B, I 

could also detect Ser111 phosphorylation using phospho-specific antibodies I 

generated against each site. 

 

Most Rab proteins share a common structural fold comprising six β-sheets 

surrounded by five α-helices (Fig. 5.17A). Loop regions interspersed between 

the sheets and helices, are key structural elements for guanine nucleotide 

binding, magnesium ion co-ordination as well as GTP hydrolysis (Fig. 5.17A) 

(Stenmark & Olkkonen, 2001). Loop 2 and the region loop4-helix2-loop5 

correspond to two important regions, which are crucial for conformational 

switches between active and inactive states and also for interaction with  
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Figure 5.16 Phylogenetic tree of human Rab GTPases  

Phylogenetic tree of all human Rab GTPases adapted from (Bock et al, 2001). A red box 
highlights the terminal branch containing RAB8A, RAB8B and RAB13 indicating that these 
proteins are evolutionarily conserved.   
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regulatory proteins such as GEFs and GAPs. Apart from these regions, Rab 

proteins also contain Rab-specific regions (RabF) required for unequivocal 

identification of Rab proteins (Fig. 5.17A). Also, they possess Rab sub-family 

specific sequences (RabSF), which are required to classify them into the ten 

Rab sub-families (Fig. 5.17A) (Moore et al, 1995). RabSF regions are believed 

to enable binding of effector proteins, which can specifically recognize a 

particular Rab sub-family apart from sensing the GTP-bound state.  Multiple 

sequence alignment of human RAB8A, RAB8B and RAB13 revealed that they 

contain highly conserved sub-structural motifs that define Rab GTPases (Fig. 

5.17B). Interestingly, I observed that the PINK1 mediated phosphorylation site, 

Ser111, is located in a loop region also corresponding to a RabSF region (Fig. 

5.17B). Therefore this phosphorylation could possibly modify the interaction 

between the Rabs of interest and their effector proteins. However, an 

outstanding question is whether PINK1 directly phosphorylates Ser111 or 

whether the regulation of the phosphorylation site is indirect. I have recently 

optimized expression of each Rab protein in E.coli, and it would be crucial to 

test these as direct substrates of insect PINK1. If these were direct substrates 

then the next question would be to address the functional consequences of 

phosphorylation. Based on the location of the phosphorylation site in the 

GTPase domain, it would important to undertake binding studies to determine if 

phosphorylation influences the interaction of the Rab GTPase with its effector 

protein.  
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Figure 5.17 Sub-domain organization of Rab8A, 8B and 13 

(A) HMM (Hidden Markov Model) based profile amino acid sequence of Rab GTPase 
superfamily adapted from (Stenmark & Olkkonen, 2001). Upper case letters correspond to 
highly conserved motifs found in HMM profile with probability > 0.5. Rab-specific residues RabF 
(1-4) highlighted in red, Sub-family specific motifs RabSF (1-4) highlighted in dark blue and 
highly conserved nucleotide binding motifs highlighted in cyan. G, Guanine-base binding motif, 
PM – phosphate/magnesium binding motif and secondary structure units (α-helices, β- sheets 
and λ – loops) are represented in this image.  

(B) Multiple sequence alignment of RAB8A, RAB8B and RAB13 with red boxes highlighting all 
conserved motifs featured in (A). The green bar represents the loop region λ7 which is also a 
sub-family specific motif called RabSF3. Ser111 phosphorylation site is present in loop λ7 that 
lies in between RabF5 (Rab-specfic region) and G2 (Guanine-base binding motif). Lilac colour 
code indicates the degree of conservation, where darker colour represents higher conservation. 
 



5. Identification of novel substrates of PINK1  
 

 
-182 

 

The discovery that PINK1 may regulate Rab GTPases and that this may be 

disrupted in patients harbouring PINK1 mutations suggests that the regulation 

and downstream function of Rabs may mediate a major mechanism in 

Parkinson’s disease. Interestingly, work from Susan Lindquist’s group has 

demonstrated that RAB8A as well as RAB1 and RAB3A could rescue 

neurotoxicity mediated by another PD-linked gene, α-synuclein (Gitler et al, 

2008). Over-expression of α-synuclein is believed to disrupt vesicular trafficking 

between Endoplasmic reticulum (ER) to Golgi network, which is rescued by 

over-expression of these Rabs and this was observed in yeast, C. elegans and 

primary rat midbrain cultures over-expressing α-synuclein (Gitler et al, 2008). 

My discovery that PINK1 can phosphorylate RAB8A at Ser111 suggests that 

the Rab GTPase signaling pathway may lie at the nexus of PINK1 and α-

synuclein mediated neurodegeneration in Parkinson’s disease.  

 

 
RAB8a has also been reported to have a critical role in synaptic function, where 

it is specifically involved in trafficking of AMPA-type glutamatergic receptors 

(AMPARs) to the surface of post-synaptic membrane during long-term 

potentiation (LTP) (Gerges et al, 2004). This study also reported that RAB8 is 

required only for synaptic delivery of AMPARs to the dendritic membrane, but 

not for trafficking of AMPAR from the shaft into the dendritic spine or for delivery 

into the synaptic membrane (Gerges et al, 2004). The effector proteins 

mediating these functions is unknown and it would be exciting to identify these 

and determine whether their interaction with Rab8a was dependent on PINK1  
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mediated Ser111 phosphorylation. This would be a very important study in light 

of a report that suggests specific impairment in corticostriatal long-term 

potentiation (LTP) and long-term depression (LTD) in PINK1 KO mice (Kitada et 

al, 2007).  

 

Previous work in mammalian cells has found that RAB8a vesicles re-distribute 

to the cell periphery and this is linked to Protein Kinase C (PKC)-induced 

polarized transport of Rab8a vesicles (Hattula et al, 2002). Another group has 

investigated phosphorylation of Rab8a using recombinant Bombyx mori 

(silkmoth) RAB8A expressed in E.coli by PKC, and reported three sites namely 

Ser17, Ser111 and Ser132 to be phosphorylated by PKC (Uno et al, 2009; Uno 

et al, 2007). However, a major concern of this study was that the authors 

employed PKC isolated from rat brain and the in vitro kinase assay was 

performed without employing any negative control for enzyme activity. 

Therefore it remains unclear whether these Rab8a sites including Ser111 are 

regulated by PKC or a co-purifying contaminant kinase.  

 

In my study I have provided strong evidence that Ser111 phosphorylation of 

members of a Rab GTPase sub-family is regulated by PINK1 activity and in 

future it would crucial to establish whether the phosphorylation is direct or 

indirect and determine the the functional relevance of this phosphorylation 

event in Rab signaling. 
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Additional putative substrates of PINK1: implications for understanding 

PINK1 signaling 
 
Apart from the Rab GTPase sub-family members, six other proteins were 

identified as putative substrates of PINK1 in the phospho-proteomic screen. 

Much of this data is preliminary and needs to be validated as part of future 

work.  A phosphosite on RL40 was found to be significantly up regulated in all 

four experimental replicates. RL40 encodes a ubiquitin fusion protein, with a 

ubiquitin moiety at the N-terminus and a ribosomal protein L-40 at the C-

terminus (Wiborg et al, 1985). The human genome encodes for four genes that 

produce ubiquitin; UBB and UBC, which encode for poly-ubiquitin chains and 

RL40 (UBA52) and RPS27A, either of which consists of a single ubiquitin 

moiety fused to an unrelated ribosomal protein (Finley et al, 1989; Kimura & 

Tanaka, 2010; Redman & Rechsteiner, 1989).  

 

Interestingly, the PINK1-mediated phosphorylation site on RL40 occurs at 

Serine 65 present in the Ubiquitin moiety, which is extremely exciting as I 

previously found that PINK1 phosphorylates Parkin at Serine 65 of its Ubl 

domain (see Chapter 3). A multiple sequence alignment of Polyubiquitin-B 

(UBB), Polyubiquitin-C (UBC), RL40, RPS27A and the Ubl domain (Ubiquitin-

like domain) of Parkin revealed that the Serine 65 residue is highly conserved 

across all these proteins (Fig. 5.18). Although phospho-proteomic analysis 

predicts this to occur on RL40, the ubiquitin moiety is 100% identical in all four 

ubiquitin encoding genes and hence we cannot exclude the possibility that this 

phosphorylation may happen in either ubiquitin itself or in any of the ubiquitin  
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fusion proteins (RL40 or RPS27A). It would be interesting to express each of 

these 4 ubiquitin proteins and determine the stoichiometry of phosphorylation 

compared to the Ubl domain of Parkin. Furthermore, since the Serine 65 

residue is in close proximity to Lysine 63 (K63), an important residue for 

formation of polyubiquitin chains, it would be crucial to investigate the effect of 

phosphorylation on chain formation. 

 

 

 
 
Figure 5.18   Alignment of RL40 with Ubiquitin, RPS27A and Ubl domain of 

Parkin 

Multiple sequence alignment was performed for Ubl domain of human Parkin, full length human 
RL40, full length human RPS27A, ubiquitin moiety of human UBB and UBC. The conserved 
PINK1-mediated Serine 65 phosphorylation site is indicated by a red asterisk. The blue colour 
code indicates the degree of conservation, where darker colour represents higher conservation. 
 
 
Another putative PINK1 substrate identified in my screen is the atypical Rho 

GTPase Miro2, which I previously identified to be a strong PINK1 interactor 

(described in Chapter 4).  Studies by two independent groups report that PINK1 

plays a role in mitochondrial trafficking by regulating levels of a paralog of 

Miro2, Miro1 (Liu et al, 2012; Wang et al, 2011). One of these groups reported  
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that immunoprecipitated human PINK1 can phosphorylate recombinant 

Drosophila Miro at Ser156 and this event is crucial for proteasomal degradation 

of Miro in a PINK1-parkin dependent manner (Wang et al, 2011). However, this 

was not confirmed by another study (Liu et al, 2012) and also by my own 

findings in which I found that insect PINK1 could not directly phosphorylate 

Miro1 or Miro2 (Chapter 4). The phosphorylation site on Miro2 (Ser 538) found 

in my screen is highly conserved in Miro1. Whilst Miro2 may not be a direct 

substrate for PINK1, in future it would be important to validate whether 

phosphorylation of Miro2 at Ser538 is still regulated by PINK1 in human cells in 

vivo and if so to elucidate the kinase responsible for this since by default this 

kinase will be regulated by PINK1. 

 

In conclusion, the major discovery I have made is that the phosphorylation 

status of members of a Rab GTPase sub-family (RAB8A, RAB8B and RAB13) 

is regulated by PINK1 under conditions of mitochondrial depolarization. The 

Ser111 residue phosphorylated by PINK1 is common to all three Rabs and 

occurs in a loop region that is crucial for binding of effector proteins. An 

important question to address in the future would be to explore the effect of this 

phosphorylation on Rab GTPase activity and effector binding. 
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Figure 6.1 Dose response and time-course of CCCP and MG132 treatment 

 
(A and C) Dose response : Flp In TRex HEK293 cells stably expressing PINK1 wild-type-Flag 
were induced for protein expression and stimulated with the indicated amounts of  CCCP or 
MG-132 for 3 hours. Cells were fractioned into cytosolic and mitochondrial fractions for CCCP 
treated samples and into whole cell lysates for MG-132 treatment and blotted for PINK1 using 
anti-PINK1 (Novus) antibody. GAPDH and HSP60 serve as cytosolic and mitochondrial markers 
respectively and high molecular weight ubiquitin species served as a control for proteasomal 
inhibition. 
 
(B and D) Time course : Flp In TRex HEK293 cells stably expressing PINK1 wild-type-Flag 
were induced for protein expression and stimulated with 10 µM CCCP or 15 µM MG-132 for the 
indicated time-points. Cells were fractioned into cytosolic and mitochondrial fractions for CCCP 
treated samples and into whole cell lysates for MG-132 treatment and blotted for PINK1 using 
anti-PINK1 (Novus) antibody. GAPDH and HSP60 serve as cytosolic and mitochondrial markers 
respectively and high molecular weight ubiquitin species served as a control for proteasomal 
inhibition. 
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Figure 6.2 Mapping of PINK1 cleavage site by N-terminal Edman 
sequencing 

 
HEK293 cells were transiently transfected with wild-type PINK1-FLAG and 100mg of whole cell 
lysate immunoprecipitated with anti-FLAG agarose. After electrophoresis, samples were 
transferred to Immobilon PVDF membrane and stained with Coomassie Blue. Coomassie 
stained PVDF membrane showing band corresponding to the cleaved form of PINK1 that was 
excised and subjected to Edman degradation and analysis. The amino acid sequence obtained 
in the gel band started with FGLGLG (residues 104 – 109) (upper panel). Representative of 3 
independent experiments. Sequence alignment of residues around Phe104 in human PINK1 
showing high degree of conservation amongst higher organisms (lower panel). Cleavage site 
indicated by an arrow. 
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Figure 6.3  Mass spectrometry confirmation that phosphorylation of PINK1 

Thr257 is an autophosphorylation site.  

 
Flp-In T-Rex HEK 293 cell line stably expressing wild-type or kinase-inactive PINK1-FLAG were 
treated 10µM of CCCP for 3hrs. 
 
(A) Recombinant PINK1 was immunoprecipitated from 10mg of mitochondrial extract for each 
condition using anti-FLAG-agarose, subjected to 4-12% gradient SDS-PAGE, and stained with 
colloidal Coomassie blue.  
 
(B) The Coomassie-stained bands migrating with the expected molecular mass of PINK1-FLAG 
were excised from the gel, digested with trypsin, and subjected to LC-MS-MS on an LTQ-
Orbitrap mass spectrometer.  
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Figure 6.4 CCCP induced band-shift in wild-type PINK1 is resolved better by low percentage (8%) SDS-PAGE 

Flp-In T-Rex HEK293 cell lines stably expressing FLAG alone, wild-type or kinase-inactive PINK1-FLAG were induced for with doxycycline for protein expression. 
Cells were treated with 10µM CCCP for 3h and lysates subjected to sub-cellular fractionation. 25µg of cytoplasmic or mitochondrial lysate were resolved by (A) 10 % 
SDS-PAGE or (B) 8% SDS-PAGE. Relative purity of the fractions was confirmed using cytoplasmic and mitochondrial markers, namely GAPDH and HSP60, 
respectively. Whole cell lysates were also made from the same lysates and 25 µg was resolved by 10% and 8% SDS-PAGE. 
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Figure 6.5 Multiple sequence alignment of all annotated orthologues of mammalian and insect PINK1 

The blue colour code indicates the degree of conservation, where darker colour represents higher conservation. Green bars represent the three insertions in PINK1. 
Thr 257 auto-phosphorylation site is highlighted by a red box. A red asterisk marks the start and end of the kinase domain.  
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Figure 6.6 Quality control of mitochondrial fractionation 

Flp-In T-Rex HEK293 cell lines stably expressing FLAG alone, wild-type or kinase-inactive 
PINK1-FLAG were induced for with doxycycline for protein expression. Cells were treated with 
10µM CCCP for 3h and lysates subjected to sub-cellular fractionation. 25µg of cytoplasmic or 
mitochondrial lysate were resolved by SDS-PAGE and blotted for the different mitochondrial 
markers. GAPDH was used as a cytoplasmic marker. Abbreviations: OMM- Outer Mitochondrial 
Membrane, IMM – Inner Mitochondrial Membrane. 
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Figure 6.7 HILIC (Hydrophilic Interaction Liquid Chromatography) 
chromatogram 

HILIC Chromatograms for all four experimental replicates employed. The chromatogram 
represents absorbance of the peptides eluted (in mAU) on the y-axis and retention time on the 
x-axis. Fractions enriched with phospho-peptides (1-15) were collected for TiO2 enrichment.
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