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Summary

Systemic infections caused by fungal pathogens pose a threat to immunocompro-

mised patients worldwide. The structural integrity of fungi is mainly attributed to

their rigid cell wall. The three layers of the fungal cell wall – chitin, glucan, and

mannan – are mainly formed by carbohydrates. Mannan consists of proteins,

mannoproteins, that carry N-linked glycans with a prominent mannose decora-

tion. Mannoproteins have been shown to be involved in the detection of fungal

pathogens by the immune system as well as adhesion factors of the pathogen to

initiate invasion. The biosynthesis of mannoproteins occurs in the Golgi appara-

tus. The mannan polymerase complex M-Pol I, containing the glycosyltransferases

Mnn9 and Van1, forms an a-1,6-linked mannose backbone that is the base for the

extensive decoration of mannoproteins. The mechanisms by which M-Pol I identi-

fies its substrates and its molecular mechanism are not known.

Initially, mannoproteins can be trapped in the fungal cell membrane by a GPI-

anchor. The anchor can be cleaved and the mannoproteins will become loosely

attached or covalently linked to the glucan in the cell wall. The enzymes involved in

these processes are unknown or poorly characterised. The two extracellular fungal

proteins Dfg5 and Dcw1 are homologs to the bacterial mannosidase Aman6. The

enzymatic function of Dfg5 and Dcw1 is unknown. However, both proteins may

be involved in the transglycosylation of GPI-anchored mannoproteins. Dfg5 and

Dcw1 are essential in yeasts, making them excellent drug targets against fungal

pathogens.

The aim of the work presented here was to structurally and enzymatically charac-

terise the enzymes of the M-Pol I complex, Mnn9 and Van1, as well as the proteins

Dfg5 and Dcw1 or their bacterial homolog Aman6. This would serve as a basis for

the identification of potent inhibitors and their optimisation to lead compounds as

antifungal drugs.

In this work the structure of Saccharomyces cerevisiae Mnn9 in complex with

GDP and Mn2+ is described, the first in its family of glycosyltransferases (GT-62).



Mnn9 consists of a GT-A fold with an unusual extension formed by two b-strands.

Mnn9 alone is able to synthesise a-1,6-mannotriose. A novel coupled enzyme

assay was used to characterise Mnn9 enzymatically with K m,app = 6.5 mM for the

substrate analogue and K m,app = 0.54 mM for the substrate donor GDP-Man. Fur-

thermore, Mnn9 was shown to be manganese-dependent. Structure-guided muta-

genesis led to the identification of residues important for the activity of the glycosyl-

transferase. In vivo studies in S. cerevisiae Dmnn9 knockout cells shows that the

catalytic activity of Mnn9 is indispensable. Van1 alone, in contrast to Mnn9, shows

no activity. Only in the presence of Mnn9 and its product, Van1 is able to synthe-

sise a-1,6-linked oligomannose. The N- and C-terminus of Van1 are important for

activity and/or dimerisation with Mnn9.

In addition, the bacterial mannosidase Aman6 was used as an essential part of

the development of the novel enzymatic assay for Mnn9. Aman6 has further been

used as a model for the essential fungal proteins Dfg5 and Dcw1. The structure of

Aman6 is the first in its glycoside hydrolase familiy (GH-76) with a known enzymatic

function. The mannosidase consists of 12 a-helices forming an a6/a6 barrel with

six inner and six outer helices. The active site is surface exposed and the residues

D124 and D125 are likely involved in the hydrolysis of the Aman6 substrate ana-

logue a-1,6-mannobiose-4MU. Furthermore side chains close to both residues are

important for binding and hydrolysis of the substrate. Aman6 was used to identify

fragments that could act as potential inhibitors of the fungal homologues. However,

none of these fragments inhibited the activity of Aman6 in an in vitro assay.

The results presented in this thesis can be the basis for further structural studies

of the mannoprotein biosynthetic pathway as well as for the identification of potent

inhibitors of the enzymes involved.
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1 Introduction

1.1 Fungi

The fungal kingdom is believed to encompass 1.5–5.0 million species of which only

5 % have been classified today. Fungi can be found in many environments, such

as soil, air, water and on decomposing material. Some fungi have adapted to even

harsh conditions (Mehrotra and Aneja, 1990). The presence of fungi can have ben-

eficial but also adverse effects on humans, animals, plants and bacteria. Humans

use the yeast Saccharomyces cerevisiae for the fermentation of sugars to produce

ethanol and carbon dioxide (e. g. to make bread). Mushrooms are part of the hu-

man diet. Other fungi live in a symbiotic relationship with algae or cyanobacteria

to form lichen (Dobson, 2005). Secondary metabolites can be used as antibiotics

(e. g. penicillin) or food additives (e. g. riboflavin). Fungi are also important sapro-

phytes, decaying and liberating organic and inorganic material. However, to date

more than 300 pathogenic fungi have been described to cause infections in hu-

mans, many others are animal and plant pathogens (Baron, 1996). Even though

humans are constantly exposed to fungi, healthy individuals tend not to be affected

by them. However, humans that have a weakened immune system or an altered

bacterial flora have an increased risk to develop a fungal infection, such as can-

didiasis or aspergillosis.

1
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1.1.1 Morphology of Fungi

Fungi are one of the kingdoms of life in the domain Eukarya (Moore, 1980). Most

of the higher fungi are grouped into the phyla Ascomycota and Basidiomycota.

Fungi are distinct from plants and animals in that they have a cell wall that con-

tains both glucans and chitins. However, fungi also share features with these two

kingdoms. In addition to a cell wall, fungi share the presence of vacuoles (Shoji

et al., 2006), the sexual and asexual reproduction and the formation of spores with

plants (Mehrotra and Aneja, 1990). However, fungi lack chloroplasts, hence they

are heterotrophic organisms like animals. Few fungi grow as unicellular yeast, but

the majority form a thallus of tubular filaments, the hyphae.

1.1.2 Yeasts

Many Ascomycota and Basidiomycota are unicellular yeasts with a cell size of 2–

50 µm in length and 1–10 µm in width. Two of the best studied fungi are yeasts,

S. cerevisiae and Candida albicans.

Saccharomyces cerevisiae

S. cerevisiae is an unicellular, ellipsoid yeast with a diameter of 1–10 µm. Although

it is not regarded as a pathogen, it is still a fungus of importance due to its wide

use as a eukaryotic model organism in fundamental research. Its culture condi-

tions are simple and it doubles every 90–120 min at 30 �C. Molecular techniques,

such as transformations and gene knockouts can be easily carried out. Recently

S. cerevisiae has been used as a model to study the effects of ageing (Wei et al.,

2011, Zadrag et al., 2008), anti-cancer drugs (Matuo et al., 2012) and to under-

stand the formation of yeast biofilms, an important route of infection for C. albicans

(see next section) (Bojsen et al., 2012). Furthermore the principles of the secretory

pathway, through which many of the fungal cell wall components are synthesised

and secreted, has been extensively studied in S. cerevisiae (Barnes et al., 1984,
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Li et al., 2005, Orlean, 1990, Ruiz-Herrera and Sentandreu, 1975, Tillmann et al.,

1987, Welten-Verstegen et al., 1980).

Candida albicans

C. albicans is a commensal, polymorphic yeast found in over 60 % of the popu-

lation (Odds, 1988). Healthy individuals can develop mild forms of candidiasis,

commonly known as thrush, on the mucus membrane of the mouth, throat and

vagina (Calderone and Clancy, 2002). However, immunocompromised patients

and patients with an impaired bacterial flora, e. g. after antibiotic treatment (Seelig,

1966, Woods et al., 1951), can suffer from the pathogenic effects of C. albicans.

Systemic infections in immunocompromised patients have mortality rates of 30–

40 % (Wisplinghoff et al., 2004). C. albicans is also able to form biofilms on and

in medical devices, resulting in systemic infections in patients that came in contact

with the infected devices (Holmes et al., 2006, Salamon et al., 2007).

Various virulence factors, such as adhesins and hydrolytic enzymes, enable

C. albicans to infect its host (Banno et al., 1985, Barrett-Bee et al., 1985, Fu et al.,

1998, Gaur and Klotz, 1997, Gaur et al., 1999, Hube et al., 1991, Staab et al.,

1996, Wright et al., 1992). Many of the adhesins are in fact glycosylated proteins,

highlighting the importance of this post-translational modification for the virulence

of C. albicans. For example, a double knockout of the mannosylated Candida spp.

adhesin Hwp1 led to reduced virulence in a mouse model (Staab et al., 1999).

Deletion of the gene encoding the a-1,2-mannosyltransferase Mnt1 leads to an

avirulent strain (Buurman et al., 1998). This shows that the glycosyltransferases

(GT) involved in the glycosylation of proteins are potential drug targets against

C. albicans.
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1.1.3 Filamentous fungi

Aspergillus fumigatus

A. fumigatus is a saprophytic fungus that survives and grows on organic material

(Haines, 1995, Pitt, 1994). Its airborne conidia can easily reach the lung alveoli

due to their small size of 2 µm (Raper and Fennell, 1965). Inhaling these coni-

dia is usually no problem for immunocompetent individuals, because they can be

easily cleared by the innate immune system (Hospenthal et al., 1998). However,

in immunocompromised patients A. fumigatus can cause severe and often lethal

invasive aspergillosis (IA), making it the most prevalent airborne fungal pathogen

(Bodey and Vartivarian, 1989, Denning, 1998, Dixon et al., 1996). To increase

chances of survival for patients with IA, quick and reliable diagnosis of an A. fumi-

gatus infection is crucial. The most common antigens for a serological diagnosis

are an RNase (Lamy and Davies, 1991, Lamy et al., 1991, Latgé et al., 1991),

a catalase (Calera et al., 1997, Hearn et al., 1992, Lopezmedrano et al., 1995)

and a dipeptidylpeptidase (Beauvais et al., 1997, Harvey and Longbottom, 1987,

Kobayashi et al., 1993). In addition, the presence of galactomannan (GM), a cell

wall component, is used clinically as a diagnostic marker. GM is the only polysac-

charide antigen that has been characterised in A. fumigatus. GM has been iden-

tified to contain a linear mannan backbone of a-1,2- and a-1,6-linked mannose

(Man) residues with the antigenic part made of b-1,5 galactofuranosyl residues

linked to two a-1,2-Man (Azuma et al., 1971, Bardalaye and Nordin, 1977, Barreto-

bergter and Travassos, 1980, Bennett et al., 1985, Latgé et al., 1994, Mischnick and

Deruiter, 1994, Van Bruggen-Van Der Lugt et al., 1992). Interestingly, this epitope

is also present on intra- and extracellular glycoproteins (Latgé et al., 1994).

Other components of the A. fumigatus conidial cell wall are putative virulence

factors. Amongst these are adhesins that bind to host proteins, such as fibrinogen

(Annaix et al., 1992, Bouchara et al., 1988, Coulot et al., 1994), Igs (Sturtevant

and Latgé, 1992) and collagen (Thau et al., 1994). Hydrophobic, low molecular

weight and highly stable proteins (hydrophobins) confer hydrophobic properties on
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A. fumigatus conidia (Thau et al., 1994). One of the genes encoding for such a

protein, RodA, has been deleted (Parta et al., 1994, Thau et al., 1994). Mortality

rates remained comparable in an animal IA model, but the inflammatory response

was retarded (Thau et al., 1994). Carbohydrates present in the conidial cell wall

can bind specifically to host proteins, such as pulmonary surfactant proteins A and

D (Madan et al., 1997), or in the form of fucose and sialic acid-specific lectins

(Bouchara et al., 1997). A conidial cell wall glycoprotein confers laminin binding

(Tronchin et al., 1997). These early results highlight the importance of a functional

carbohydrate system in A. fumigatus for pathogen-host interaction. Any impact on

this biosynthesis pathway may have a negative effect on virulence.

1.1.4 Treatment of Fungal Infections

Because fungi have many common features, i. e. cell wall and similar biosynthetic

pathways, infections by C. albicans and A. fumigatus can often be treated with the

same drugs. The major drugs or drug classes used today to treat systemic fungal

infections are amphotericin B (AmB), the azoles itraconazole and voriconazole, and

caspofungin (Gallis et al., 1990, Johnson and Kauffman, 2003). Even though they

are efficient at killing A. fumigatus under in vitro conditions, their efficacy in vivo

remains low resulting in the high mortality rates of IA patients of 80–90 %. The

mechanism of how AmB works is still not completely understood (Brajtburg and

Bolard, 1996). It is known that it binds to membrane sterols (Bolard, 1986), and

thus creates channels that lead to the increased permeability of cations. In addi-

tion, it inhibits proton ATP pumps, leading to a decrease in cellular energy (Brajt-

burg et al., 1985, Ramos et al., 1989, Surarit and Shepherd, 1987). However, AmB

can cause severe side effects in the patient (Clements and Peacock, 1990, Surarit

and Shepherd, 1987). In contrast, the mode of action of the azoles is well under-

stood (van den Bossche et al., 1987). The free azole nitrogen competes with the

heme iron of cytochrome P450 14a-demethylase. This prevents the synthesis of

ergosterol in the membrane. As a result, this eventually leads to the accumulation
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of phospholipids and unsaturated fatty acids within the fungal cell due to a lack of

deposition in the membrane. A major drawback of the azoles is the recent devel-

opment of resistance against this class of drugs in Candida spp. and A. fumigatus

(Chryssanthou, 1997, Denning et al., 1997a,b, Perfect et al., 2003). One explana-

tion for this resistance is the possibility of an altered affinity of 14a-demethylase

for the drug (Tobin et al., 1997). The most recently approved drug against fun-

gal infections by C. albicans and A. fumigatus is caspofungin, a member of the

echinocandins (Deresinski and Stevens, 2003). It is a semi-synthetic lipopeptide

connected to a fatty acid chain. Caspofungin’s target is the b-1,3-glucan synthase.

b-1,3-glucan is a major component of the fungal cell wall (see p. 11). The inhibi-

tion of b-1,3-glucan synthase results in an osmotically unstable cell wall, affecting

viability. Caspofungin has fewer side effects than AmB or the azoles because b-

1,3-glucan is not present in the human body. In contrast to C. albicans where

caspofungin is fungicidal (Ernst et al., 1999), it is only a fungistatic for A. fumigatus

(Kurtz et al., 1994). A possible explanation for the fungistatic effect is the concen-

tration of b-1,3-glucan in the apical tips during growth of A. fumigatus. However,

recent reports demonstrate the development of resistance against caspofungin in

both fungal pathogens (Krogh-Madsen et al., 2006, Pang et al., 2012, Thompson

et al., 2008).

1.2 Fungal cell wall

The cell wall is the outer layer of a fungal cell and defines its shape by provid-

ing resistance against the turgor. The wall is composed of carbohydrates and

proteins that are linked at the intra- and intermolecular level (Fig 1.1). These

connections provide many benefits for the cell, such as the controlled passage

of macromolecules to and from the cell, protection from the environment and to

shield the cell from the host immune system - particularly important for pathogenic

fungi. However, the wall also provides socialising features for the cell, such as the

presentation of agglutinins and flocculins.
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Figure 1.1: Components of and cross-links in the fungal cell wall. Chitin, made of b-1,4-
linked GlcNAc, is located on top of the extracellular face of the plasma membrane. b-Glucan is
covalently linked to chitin and is acting as a matrix for the integration of mannoproteins and O-
linked glycosylated proteins. Figure adapted from Orlean 2013

The cell wall can account for 15–30 % of the cell dry weight (Aguilar-Uscanga

and François, 2003, Yin et al., 2007). In S. cerevisiae the wall can reach a thick-

ness of 100–200 nm (Dupres et al., 2010, Yamaguchi et al., 2011). To date, about

180 proteins have been identified that are directly involved in the biosynthesis and

remodelling of the wall (Orlean, 2013). Over 90 % of the fungal cell wall consists

of carbohydrates. In S. cerevisiae and C. albicans these carbohydrates are b-1,3-

and b-1,6-glucan, chitin and mannose on mannoproteins. These mannoproteins

form the outermost layer of the wall, mannan. In contrast, the cell wall of A. fumi-

gatus additionally contains a-1,3-glucan and galactomannan. b-1,6-glucan plays

an important role, as it provides a network to which all of the other cell wall com-

ponents can be linked (Kollár et al., 1997). The function of mannoproteins is not

well understood. The function of mannosylated proteins can span from hydrolase

and transglycosidase activity to provide structural features or act as agglutinins and

flocculins (Beauvais et al., 2009, Bojsen et al., 2012, Reynolds and Fink, 2001).

The composition of the cell wall has been identified by chemical and enzymatic

release of the individual components (Fleet, 1991). Cells were first treated with
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alkali and acid to release the polysaccharides. The alkali wash releases the glu-

cans depending on the intermolecular links between glucan and chitin (Magnelli

et al., 2002). Mannoproteins linked to the glucan are released by an acid treatment

(Dallies et al., 1998, Ram et al., 1994). Further enzymatic digests with specific

hydrolases release carbohydrates for further analysis of their composition and link-

ages (Aimanianda et al., 2009, Boone et al., 1990, Magnelli et al., 2002).

Despite its rigid nature, the cell wall and its components undergo many changes

depending on the stage of the cell cycle, growth phase, availability of nutrients,

or environmental stress (de Nobel and Barnett, 1991). Interestingly, the cell walls

of cells in logarithmic growth are more porous compared to cells in the stationary

phase. It has been shown that glycoproteins with a molecular mass of 400 kDa

can pass from the cell into the medium while at logarithmic growth (de Nobel et al.,

1990, Kuranda and Robbins, 1991). However, it is unclear if this is due to fewer

cross-links while the cells are growing or if the proteins are released whilst the

mother cell wall is degraded during budding.

1.2.1 Chitin

Characteristics of Chitin

Chitin is a carbohydrate polymer made of b-1,4-N-acetylglucosamine (GlcNAc)

(Fig. 1.2). It is only a minor component of the cell wall (1–2 % in S. cerevisiae

or 7–15 % in A. fumigatus) (Fontaine et al., 2000). Chitin is usually found in the

budding neck between a mother cell and bud, in the division septum, and in the

lateral wall of daughter cells. The polymer can be visualised by staining cells with

Calcofluor White (CFW). Furthermore, the amount of chitin can be determined by

an alkali/acid wash followed by the specific enzymatic hydrolysis of the polymer,

e. g. by a chitinase of Serratia spp., and the measurement of the released GlcNAc

by ion-exchange chromatorgraphy (Dallies et al., 1998, Kang and Cabib, 1986,

Magnelli et al., 2002, Orlean et al., 1985). Interestingly, chitin exists in three differ-

ent forms in the cell wall. It can exist as free chitin, bound to b-1,3-glucan, or linked
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to b-1,6-glucan which itself is linked to b-1,3-glucan and mannan (Cabib, 2009,

Cabib and Durán, 2005). It has been shown that the rigidity of the S. cerevisiae

cell wall is the result of the covalent cross-link between chitin and glucan.

Synthesis and remodelling of Chitin

In S. cerevisiae three enzyme complexes are known to be involved in the synthesis

of chitin: Chitin synthase (CS) I–III. The complexes need the activity of the three

enzymes Chs1, Chs2, and Chs3. All three enzymes are located in the plasma

membrane, use UDP-GlcNAc as their donor and belong to the GT-2 family of pro-

cessive inverting GTs (Jimenez et al., 2010, Merzendorfer, 2011). The sequence

QXRRW has been identified as a signature motif for chitin synthases (Cos et al.,

1998, Merzendorfer, 2011, Nagahashi et al., 1995, Ruiz-Herrera et al., 2002, Sax-

ena et al., 1995, Yabe et al., 1998). The exact mechanism of chitin synthesis

remains unknown. However, studies performed with bacterial homologs (NodC) or

non-fungal chitin synthases support a mechanism where chain extension occurs at

the non-reducing end of the chitin polymer (Imai et al., 2003, Kamst et al., 1999).

The length and amount of the chitin present in the S. cerevisiae cell wall is highly

variable. Increased amounts of chitin can be found if the synthesis of other cell

wall components, such as b-glucan, mannan or GPI anchors, is negatively affected

(Grabinska et al., 2007). The majority of chitin synthesis in S. cerevisiae is carried

out by Chs3 (Orlean, 1987). Chs3 is highly dependent on four auxiliary proteins

O
O
HO

NH
O

OH

CH3
O

O

HO
NH

OH

CH3
O

n

Figure 1.2: Chemical structure of chitin. Chitin is a polymer made of N-acetylglucosamine linked
vi an b-1,4-O-glycosidic bond
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(Chs4–7) that activate and regulate the synthase along the secretory pathway until

it reaches the plasma membrane (Gonzalez Montoro et al., 2011, Lam et al., 2006,

Santos and Snyder, 1997, Santos et al., 1997, Ziman et al., 1998). Cells lacking

Chs7, for example, show very similar effects on chitin levels as chs3D cells (Trilla

et al., 1999).

Chitin synthesis in A. fumigatus is carried out by at least eight chitin synthases

(AfChsA-G and AfChsE’) (Mellado et al., 1996a,b, 2003, Munro and Gow, 2001),

and five of them are unique to filamentous fungi (AfChsC, AfChsD, AfChsG, AfChsE,

and AfChsE’) (Mellado et al., 2003). They are grouped into two groups, based on

the location of sequence motifs within the synthase (Latgé and Calderone, 2006).

Cells lacking AfChsA, AfChsB, AfChsC, AfChsD, or AfChsF show no growth phe-

notype compared to wild type cells (Mellado et al., 1996a,b). In contrast, chsED

and chsGD cells show altered growth, reduced mycelial chitin, reduced chitin syn-

thase activity and swollen hyphae (Aufauvre-Brown et al., 1997, Mellado et al.,

1996a). The regulation of chitin synthesis in A. fumigatus has not been charac-

terised yet.

Chitinases cleave the glycosidic bond between b-1,4-GlcNAc residues. S. cere-

visiae has two chitinases, Cts1 and Cts2. Cts1 is a plant-type chitinase with a po-

tential endo-hydrolytic activity (Hurtado-Guerrero and van Aalten, 2007) whereas

Cts2 is a bacterial-like chitinase presumably showing exo-hydrolytic activity (Brurberg

et al., 1996) (see explanation in 1.4, p. 38). Both chitinases are found to be heav-

ily O-mannosylated (Kuranda and Robbins, 1991). The function of Cts2 is only

poorly understood. cts1D cells form cell aggregates joined at their chitin-containing

septa, highlighting the importance of Cts1 for cell separation (Kuranda and Rob-

bins, 1991).

A. fumigatus has 18 predicted chitinases (Gastebois et al., 2009). Five belong

to the fungal/plant-like chitinases, twelve to the fungal/bacterial-like chitinases and

one is a class C chitinase. However, their function remains largely unknown. Upon

deletion of one of the fungal/bacterial-like chitinases (ChiB1) the fungus developed

no apparent phenotype (Jaques et al., 2003).
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1.2.2 Glucan

Characteristics of Glucan

Glucan represents the majority of carbohydrates found in the fungal cell wall, mak-

ing up to 30–60 % of the cell wall dry weight. It is formed by a- or b-linked glucose

polysaccharides. S. cerevisiae and C. albicans possess only b-1,3- and b-1,6-

glucan, whereas the cell wall of A. fumigatus also contains a-1,3-glucan. Not only

is glucan the major part of the cell wall, it is also important for the integrity of the

cell as it serves as a platform to which all the other cell wall components can be

covalently linked (Fig 1.1). This link occurs via glycosidic bonds between the car-

bohydrates of the cell wall components.

b-1,3-glucan

The synthesis of b-1,3-glucan is dependent on the proteins of the Fks family and

the regulatory subunit Rho1 GTPase. Fks1, Fks2, and Fks3 are UDP-glucose

(UDP-Glc) dependent, belong to GT-48 and are located in the plasma membrane

(Drgonová et al., 1996, Kang and Cabib, 1986, Mazur and Baginsky, 1996, Qadota

et al., 1996, Shematek et al., 1980). Fks1 and Fks2 are essential proteins, and

Fks1 is responsible for the majority of the b-1,3-glucan biosynthesis (Inoue et al.,

1995, Mazur et al., 1995). However, the mechanism of glucan biosynthesis is

unknown. The growing b-1,3-glucan chain is exported through the membrane and

can be linked to chitin by Crh1 and Crh2, two translycosylaes (Cabib, 2009), further

extended by Gas1 (Mouyna et al., 2000a), or decorated with b-1,6-Glc (Ecker et al.,

2006).

b-1,3-glucan undergoes constant remodelling once it has been deposited to

the cell wall. In S. cerevisiae the Gas1 family members Gas1–5, GH-72 b-1,3-

glucanosyltransferases, are responsible for these changes (de Groot et al., 2003,

Popolo and Vai, 1999). They cleave b-1,3-glucan and transfer the new reducing

end to an existing non-reducing end of another b-1,3-glucan chain (Carotti et al.,

2004, Mazáň et al., 2011, Mouyna et al., 2000a, Ragni et al., 2007b). All pro-
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teins contain a GPI-w-attachment site (Caro et al., 1997, de Groot et al., 2003,

Fankhauser et al., 1993) and Gas1, Gas3, and Gas5 have been found to be cova-

lently linked to the cell wall (De Sampaïo et al., 1999, Yin et al., 2005). Cells of a

S. cerevisiae gas1D knockout have increased chitin and mannan content (Popolo

et al., 1997, Ram et al., 1995, Valdivieso et al., 2000) and release b-1,3-glucan

into the medium (Ram et al., 1998), indicating that Gas1 is important for the incor-

poration of b-1,3-glucan chains into the cell wall. Whilst Gas1, Gas3, and Gas5

can be found in vegetative cells, Gas2 and Gas4 are only found in sporulating

cells. A double knockout of gas2 and gas4 leads to sporulation defects (Ragni

et al., 2007a). Similar remodelling of b-1,3-glucan occurs also in A. fumigatus. The

GPI-anchored b-1,3-glucanosyltransferases Gel1 and Gel2, both GH-72 members

as well, perform these reactions in the filamentous fungus (Hartland et al., 1996,

Mouyna et al., 2000b). Both enzymes have the same activity as Gas1 in S. cere-

visiae (Mouyna et al., 2000a, 2005).

Further reorganisation of the b-1,3-glucan is achieved by many exo- and endo-b-

1,3-glucanases present in theS. cerevisiae cell wall (Baladrón et al., 2002, Cappel-

laro et al., 1998, Larriba et al., 1995, Mrsa et al., 1993, Sestak et al., 2004). None

of the glucanases known so far are essential. Most of them are for cell wall main-

tenance. Bgl2, an endo-b-1,3-glucanase, is believed to be involved in branching of

the b-1,3-glucan as it is not only able to hydrolyse b-1,3-links but also able to create

b-1,6-links (Goldman et al., 1995). Deletion Bgl2 and other glucanases has only

minor effects on the cells, usually manifested in an increased chitin content (Cap-

pellaro et al., 1998, Klebl and Tanner, 1989, Sestak et al., 2004). In A. fumigatus

b-1,3-glucanases are important during conidial germination and mycelial branch-

ing. The only characterised enzyme of this class is the endo-b-1,3-glucanase Eng1

(Mouyna et al., 2002). However, the deletion does not lead to a phenotype.
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Synthesis of b-1,6-glucan

To date, the in vivo biosynthesis of b-1,6-glucan has not been characterised. Two

major drawbacks make it difficult to identify the protein(s) involved in the synthesis.

Firstly, if there is only a single essential b-1,6-glucan synthase it is impossible to

screen for knockouts of this synthase (Lesage and Bussey, 2006). Secondly, in the

case of multiple synthases, all of them could have redundant activity and mutations

in individual synthases would not give any phenotype. Additionally, b-1,6-glucan is

widely present in fungi, whereas most other organisms lack glucan, making it diffi-

cult to study homologous enzymes. Actinobacillus suis synthesises a b-1,6-glucan

attached to a lipopolysaccharide, but its biosynthesis has not been characterised

(Monteiro et al., 2000). Other bacteria synthesise a b-1,6-GlcNAc polymer with

GT-2 synthases that resemble the S. cerevisiae Chs transferases (Gerke et al.,

1998, Itoh et al., 2008). Taking all of this into account, a potential b-1,6-glucan

synthase could define a new GT family or a otherwise known GT is able to form

b-1,6-glycosidic bonds using UDP-Glc as the donor.

Synthesis of a-1,3-glucan

In addtion to the two types of b-glucan discussed above, the A. fumigatus cell wall

also contains a-1,3-glucan (Latgé and Calderone, 2006). However, much like with

b-1,6-glucan, the exact mechanism or substrate for a-1,3-glucan synthesis in vivo

is unknown. Two genes, AGS1 and AGS2, have been identified in A. fumigatus

based on homology with the AGS genes in S. pombe (Beauvais et al., 2005), that

may act as a-1,3-glucan synthases. Neither of the two A. fumigatus proteins is

essential. Both proteins contain two amylase-like domains and a glycogen-like

domain carrying a UDP-Glc-binding motif (Beauvais et al., 2005). The amount of

a-1,3-glucan can be reduced to approximately 50 % by deletion of AGS1 and the

expression level of AGS2 is upregulated upon deletion of AGS1, indicating that

they can compensate for each other (Beauvais et al., 2005).
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1.2.3 Mannan

Characteristics of Mannan

Mannan forms the outer layer of the fungal cell wall. It is formed by mannoproteins

that bear N- and O-linked glycans. Some of the mannoproteins carry a GPI anchor

which traps them in the plasma membrane (Fig. 1.3), others are covalently linked to

the b-glucan via glycosidc bonds between the glycan of a GPI anchor remnant and

the b-glucan (Fig. 1.1). Mannan consists of three types of proteins. The first group

consists of hydrolases and transglycosidases that are involved in the formation

and remodelling of the cell wall. The second group encompasses agglutinins and

flocculins, important factors for cell-cell adhesion (Dranginis et al., 2007, Goossens

and Willaert, 2010, Klis et al., 2006, 2010). The third group is formed by proteins

that carry long extracellular Ser/Thr-rich N-termini and are trapped in the plasma

membrane by a single-pass domain and a short C-terminal cytosolic tail (Levin,

2011). Members of this group are thought to act as mechanosensors that detect

cell wall stress and can induce rescue pathways (Rodicio and Heinisch, 2010).

Members of the first two groups can be covalently linked to the b-glucan present

in the fungal cell wall and are referred to as cell wall proteins (CWP) (Yin et al.,

2005). CWPs can be subdivided into three groups: 1) GPI proteins have a GPI-

anchor that fixes them in the plasma membrane (Gonzalez et al., 2009) (Fig. 1.1

and 1.3). However, the GPI can be cleaved and eventually the protein will be co-

valently linked to b-1,6-glucan via a GPI remnant (Gonzalez et al., 2009). Some of

these proteins are enzymatically active, others may have purely structural roles

in the cell wall. 2) Proteins that can be released by alkali treatment or b-1,3-

glucanases (Mrsa et al., 1997, Tohe et al., 1993), which are referred to as proteins

with internal repeats (PIR), since they carry multiple copies of the DGQ(hydropho-

bic residue)Q motif (Klis et al., 2010). These proteins are linked to the b-1,3-glucan

via ester bonds that are formed between an glutamine of the repeat sequence and

a glucose (Ecker et al., 2006). 3) Proteins linked via disulfide-bonds, which can

be released by reducing agents (Cappellaro et al., 1998, Moukadiri et al., 1999,
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Moukadiri and Zueco, 2001, Orlean et al., 1986, Rosa Insenser et al., 2010). These

proteins create a shield to prevent glycoside hydrolases (GHs) from degrading the

cell wall polysaccharides (Zlotnik et al., 1984).

Synthesis of Mannoproteins

Membrane and cell wall proteins are synthesised along the secretory pathway.

Proteins will receive N- and O-linked glycosylation as well as a GPI-anchor on

the lumenal side of the endoplasmic reticulum (ER). Further modifications of the

glycans occur in the Golgi apparatus. The modified proteins are deposited in the

plasma membrane or secreted to become covalently attached to the cell wall carbo-

hydrates. The processes involved in the secretory pathway have been extensively

studied in S. cerevisiae. Hence, the processes will be described as they occur in

baker’s yeast. Differences, if known, to other fungi will be pointed out.

N-linked Glycosylation The glycosylation of asparagine residues in a discrete

sequon (N-X-S/T, where X can be any amino acid except P) is called N-linked

glycosylation. Proteins are glycosylated in a one-step reaction with a glycan that

is synthesised on the cytoplasmic and lumenal face of the ER (Burda et al., 1999,

Helenius and Aebi, 2004, Larkin and Imperiali, 2011, Lehle et al., 2006) (Fig 1.4).

The initial steps of glycan formation occur on the cytosolic face of the ER. GlcNAc-

1-P is transferred from UDP-GlcNAc to dolichol phosphate by the GT Alg7 (Barnes

et al., 1984). The heterodimeric Alg13/Alg14 adds a b-1,4-GlcNAc (Bickel et al.,

2005, Chantret et al., 2005, Gao et al., 2005) which is further extended with b-

1,4-Man by Alg1 (Couto et al., 1984). Subsequently, Alg2 transfers a-1,3-Man and

a-1,6-Man (Kaempf et al., 2009, O’Reilly et al., 2006). The cytoplasmic part of the

glycan synthesis is finished with the addition of an a-1,2-Man by Alg11 resulting

in a Dol-PP-GlcNAc2Man5 glycan (Absmanner et al., 2010, Cipollo et al., 2001,

O’Reilly et al., 2006).

To date, it is unknown how the Dol-PP precursor translocates through the ER

membrane, but a potential flippase is Rft1 (Helenius et al., 2002). After transloca-
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tion, Dol-PP-GlcNAc2Man5 is further extended on the lumenal side of the ER by

a plethora of membrane-bound GTs. In contrast to the cytosolic transferases, the

lumenal GTs use sugars activated by Dol-P instead of UDP (UDP-GlcNAc) or GDP

(GDP-Man). The a-1,6-Man of the precursor is extended with a-1,3-Man by Alg3

(Aebi et al., 1996, Sharma et al., 2001), a-1,2-Man by Alg9 (Burda et al., 1999,

Cipollo and Trimble, 2002), a-1,6-Man by Alg12 (Burda et al., 1999), and another

a-1,2-Man by Alg9 (Frank and Aebi, 2005) to produce Dol-PP-GlcNAc2Man9. The

a-1,2-Man that was added by Alg11 on the cytosolic side is extended with two a-

1,3-Glc by the transferases Alg6 and Alg8 (Reiss et al., 1996, Stagljar et al., 1994).

The formation of the glycan is finished with the addition of an a-1,2-Glc by Alg10

(Burda and Aebi, 1998) to form the Dol-PP-GlcNAc2Man9Glc3 precursor.

The glycan precursor is transferred from Dol-PP in a single step by the oligosac-

charyltransferase complex (OST) to the asparagine in the sequon N-X-S/T of nascent

growing polypeptide chains that are synthesised by ribosomes of the rough ER
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(Kelleher and Gilmore, 2006, Knauer and Lehle, 1999, Larkin and Imperiali, 2011,

Lehle et al., 2006, Lennarz, 2007, Yan and Lennarz, 2005). The recent structure of

a bacterial OST gave first insights into the mechanism of this transfer (Lizak et al.,

2011). OST contains two binding sites, one for the glycan donor and one for the

protein that will receive the N-linked glycosylation. The sites are connected through

a tunnel in which the acceptor asparagine can bind. In yeast, OST is formed by

Stt3, Ost1, Ost2, Wbp1, Swp1, Ost4, Ost5, and Ost3 or Ost6 (Schwarz et al.,

2005, Spirig et al., 2005, Yan and Lennarz, 2005). The proteins form three different

subunits (1, Swp1+Wbp1+Ost2; 2, Stt3+Ost4+Ost3/Ost6; 3, Ost1+Ost5) (Karaoglu

et al., 1997, Kelleher and Gilmore, 2006, Kim et al., 2003, Knauer and Lehle, 1999,

Li et al., 2003, Reiss et al., 1997, Spirig et al., 1997). Stt3 has been identified as the

catalytically active enzyme of the complex (Hese et al., 2009, Kelleher et al., 2007,

Lizak et al., 2011, Wacker et al., 2002, Yan and Lennarz, 2002). The other sub-

units are important to delay protein folding (Ost3 or Ost6) (Kelleher and Gilmore,

2006, Schulz and Aebi, 2009), for donor substrate specificity (Swp1, Wbp1, Ost2)

(Kelleher and Gilmore, 2006, Pathak et al., 1995), for recruitment of other subunits

(Ost4) (Karaoglu et al., 1997, Knauer and Lehle, 1999, Spirig et al., 2005) and for

the translocation of the growing peptide chain (Ost1) (Lennarz, 2007).

The steps after the transfer by OST are important for protein quality control (Aebi

et al., 2010, Herscovics, 1999). Only properly folded proteins will be exported from

the ER. In contrast, misfolded proteins will be sent for degradation. The processes

involved in quality control begin by the removal of the a-1,2-Glc by Gls1/Cwh41

(glucosidase I) (Romero et al., 1997) followed by the trimming of the two a-1,3-Glc

by Gls/Ro2 and Gtb1 (glucosidase II) (Quinn et al., 2009, Trombetta et al., 1996).

Eventually, Mns1 (mannosidase I) removes a-1,2-Man to produce GlcNAc2Man8

(Herscovics, 1999, Jakob et al., 1998). Only correctly folded proteins carrying this

trimmed glycan will be exported from the ER. If a protein is misfolded it will be

bound by Pdi1 which removes another Man to form GlcNAc2Man7 (Clerc et al.,

2009). The misfolded protein will then be degraded by the ER-associated protein

degradation system (Helenius and Aebi, 2004).
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Glycosylation in the Yeast Golgi Apparatus N-linked glycosylated proteins that

arrive from the ER can be further extended in the cis-Golgi apparatus by mannose

to form a core-type glycan or can be decorated with 150–200 Man to form manno-

proteins (Ballou et al., 1990, Jigami, 2008) (Fig. 1.5). The Man is transferred from

GDP-Man by a large number of redundant GTs.

Och1 initiates the formation of core-type glycosylation and mannoproteins by

the transfer of a a-1,6-Man to the a-1,3-Man added by Alg2 in the ER (Nakayama

et al., 1997). Deletion of OCH1 results in severe growth defects (Nakayama et al.,

1997).

The formation of the poly-a-1,6-Man backbone of mannoproteins occurs in the

cis-Golgi apparatus by the two heteromeric GT complexes M-Pol I and M-Pol II

(Hashimoto et al., 1997, Jungmann and Munro, 1998, Jungmann et al., 1999). M-

Pol I is formed by the two homologous GT-62 GTs Mnn9 and Van1. M-Pol I adds the

first 10–15 a-1,6-Man to the Man that has been attached by Och1 (Rodionov et al.,

2009, Stolz and Munro, 2002). To date, results suggest that Mnn9 adds the first

a-1,6-Man whilst Van1 adds the remaining Man residues (Stolz and Munro, 2002).

Further elongation of up to 80 a-1,6-Man is carried out by the heteroheptameric

complex M-Pol II containing Mnn9, Anp1, Hoc1, Mnn10, and Mnn11 (Jungmann

et al., 1999).

In contrast, core-type mannoproteins receive an a-1,2-Man by an unknown GT,

which is added to the a-1,6-Man added by Och1. This addition blocks it from further

elongation to a a-1,6-Man backbone. Mnn1 further elongates the N-linked glycan

with three more a-1,3-Man residues (Lewis and Ballou, 1991).

To date, it is unclear how the transferases in the yeast Golgi can discriminate

between proteins that will receive the poly-a-1,6-Man-backbone or the core-type

structure. The GT that adds the a-1,2-Man to the Och1-derived a-1,6-Man has

not been identified yet. However, it has been proposed that either the uniden-

tified GT(s) or M-Pol I are able to determine if a protein receives the core-type

mannosylation or becomes hypermannosylated. A proposed mechanism assumes

that Mnn9 is able to perform the GT reactions that lead to a-1,6-linked or a-1,2-
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linked Man (Stolz and Munro, 2002). If this is the case, the discrimination between

mannoproteins and core-type mannosylated proteins would work as follows. An

N-linked glycosylated protein arrives from the ER and receives the first a-1,6-Man

from Och1. Then, the protein arrives at M-Pol I. Mnn9 is able to change its GT ac-

tivity depending on the protein substrate, presumably through recognition of an as

yet unidentified sequon or a different fold of protein that will receive either the Man

backbone or the core-type structure. If a protein is supposed to receive the Man

backbone, Mnn9 will add an a-1,6-Man that will be extended by Van1 (Stolz and

Munro, 2002). Core-type proteins will receive an a-1,2-Man by Mnn9 and are sub-

sequently extended by Mnn1 (Stolz and Munro, 2002). However, this mechanism

is controversial because these results were obtained from samples that were im-

munoprecipitated from S. cerevisiae and may have been contaminated with other

GTs that can perform the a-1,2-Man reaction (Rodionov et al., 2009, Stolz and

Munro, 2002). After expression of Mnn9 and Van1 in Pichia pastoris the only re-

action product that could be found was poly-a-1,6-Man, indicating that M-Pol I can

only carry out this type of glycosyltransfer (Rodionov et al., 2009).

The poly-a-1,6-Man backbone formed by the two M-Pol complexes can be fur-

ther decorated with a-1,2-Man and phosphomannose. The first a-1,2-Man is added

by Mnn2 to each of the a-1,6-backbone Man (Rayner and Munro, 1998). Mnn5

adds a second a-1,2-Man (Rayner and Munro, 1998). Subsequently, the trans-

ferases Ktr1, Ktr2, Ktr3, Kre2/Mnt1, and Yur1 add further a-1,2-Man thereby ex-

tending the N-linked outer chain (Lussier et al., 1996, 1997, 1999). In addition,

mannoproteins as well as core-type mannosylation can be further extended by

phosphomannose. This is mainly carried out by Mnn6/Ktr6 which transfers Man-1-

P (Jigami and Odani, 1999, Wang et al., 1997). Many glycosylated proteins receive

a final a-1,3-Man cap on their terminal a-1,2-Man or Man-1-P which is added by

Mnn1 (Ballou et al., 1990, Yip et al., 1994).

O-Mannosylation O-mannosylation is the formation of linear oligomannose on

serine or threonine residues on many yeast proteins. This process is essential,
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because mutants lacking combinations of the GTs involved are not viable.

The first step is carried out on the lumenal side of the ER. Six substrate specific

GTs are responsible for the addition of the initial Man from Dol-P-Man (Lehle et al.,

2006, Lommel and Strahl, 2009, Strahl-Bolsinger et al., 1999). All belong to the

family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases

(Pmt1-6) (Girrbach et al., 2000, Lommel et al., 2011, Strahl-Bolsinger and Scheinost,

1999). PMTs can form homo- and heterodimers to achieve their substrate speci-

ficity (Girrbach and Strahl, 2003), e. g. the Pmt1/Pmt2 heterodimer can manno-

sylate soluble or membrane-bound proteins whereas the homodimer of Pmt4 can

only mannosylate proteins with a GPI anchor or with a transmembrane domain

(Hutzler et al., 2007). Generally, O-mannosylation precedes N-linked glycosylation.

However, because O-mannosylation occurs on Ser or Thr, the N-linked glycosyla-

tion sequon N-X-S/T is a potential target. In fact, in pmt4D S. cerevisiae cells the

protein Cwp5 gets N-linked glycosylated because O-mannosylation cannot occur

(Ecker et al., 2003). This implies that O-mannosylation can regulate the N-linked

glycosylation of a protein.

The initial Man is extended with up to four a-Man by GDP-Man dependent GTs in

the Golgi apparatus (Lussier et al., 1999). The first two a-1,2-Man are transferred

by Ktr1, Ktr3 and Kre2 – the same GTs that carry out the outer chain synthesis

of N-linked glycosylated mannoproteins (Lussier et al., 1997). The remaining two

a-1,3-Man are added by Mnn1, Mnt2, and Mnt3 (Romero et al., 1999).

GPI-Anchored Proteins GPI-anchored proteins initially remain attached to the

plasma membrane. However, the glycan present in GPI can be cleaved and the

protein can be covalently linked to the b-glucan in the cell wall via glycosidic bonds

(Kollár et al., 1997). A protein is highly likely to receive a GPI anchor if it contains

a hydrophobic N-terminal secretion signal and a C-terminal GPI-anchor signal se-

quence that contains a specific amino acid, w, The GPI anchor is attached to wvia

an amide-bond (Nuoffer et al., 1991, 1993).

The structure of the GPI anchor is organism-specific. In S. cerevisiae the car-
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boxyl end of w is covalently linked to NH2-CH2-CH2-PO4-6-Man-a-1,2-Man-a-1,6-

Man-a-1,4-GlcN-a-1,6-myoinositol phospholipid (Fankhauser et al., 1993) (Fig. 1.3).

The a-1,2-Man is extended with another a-1,2-Man which in turn can be further

decorated with a-1,2-Man or a-1,3-Man. Additionally, a-1,4-Man and a-1,6-Man

are modified with ethanolamine phosphate (Etn-P) (Orlean and Menon, 2007, Pit-

tet and Conzelmann, 2007).

The synthesis of the GPI precursor is carried out by at least 21 proteins of which

18 are essential (Fig. 1.6). The synthesis is initiated at the cytoplasmic side of the

ER (Tiede et al., 2000, Vidugiriene and Menon, 1993, Watanabe et al., 1996). Glc-

NAc is transferred to PI by a heterohexameric complex (Gpi1, Gpi2, Gpi3, Gpi15,

Gpi19, Eri1) (Leidich and Orlean, 1996, Leidich et al., 1995, Newman et al., 2005,

Sobering et al., 2004, Yan et al., 2001). GlcNAc-PI is de-acetylated by Gpi12

(Vidugiriene and Menon, 1993, Watanabe et al., 1999). Subsequently, GlcN-PI

is translocated through the ER membrane and the subsequent steps occur on the

lumenal side of the ER. The flippase for this translocation has not been identified

(Vishwakarma and Menon, 2005).

On the lumenal side of the ER the inositol of GlcN-PI is acetylated on the 2-OH by

Gwt1 using acyl-CoA as donor (Costello and Orlean, 1992). Then, GlcN-(acyl)PI

is extended with a-1,4-Man by the heterotrimeric complex of Gpi14, Arv1, and

Pbn1 (Ashida et al., 2005, Kajiwara et al., 2008, Maeda et al., 2001), a-1,6-Man

by the heterodimeric complex of Gpi18 and Pga1 (Fabre et al., 2005, Kang et al.,

2005, Sato et al., 2007), and two a-1,2-Man added by Gpi10 and Smp3 (Canivenc-

Gansel et al., 1998, Grimme et al., 2001, Sutterlin et al., 1998), respectively. The

mannose residues are modified by the addition of Etn-P (Orlean, 2009). a-1,4-Man

is modified at 2-OH by Mcd4, whereas Man-2 and Man-3 (Fig. 1.3) are modified

at 6-OH by Gpi13 and Gpi7, respectively (Benachour et al., 1999, Galperin and

Jedrzejas, 2001, Gaynor et al., 1999). This forms the GlcN-(acyl)PI-Man4-Etn-P3

anchor which will be transferred to the w site of a GPI acceptor protein. This

transfer is done by the transamidation of the amino group of Etn-P on Man3 and

the carboxyl group of the w residue and carried out by the essential heteropen-
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tameric complex formed by Gaa1, Gab1, Gpi8, Gpi16, Gpi17 (Benghezal et al.,

1996, Fraering et al., 2001, Grimme et al., 2004, Hamburger et al., 1995, Hong

et al., 2003, Ohishi et al., 2000, 2001).

Remodelling of the GPI anchor occurs immediately after the transfer to a protein

acceptor (Fujita and Kinoshita, 2010). First, the inositol acyl residue is removed by

Bst1 (Fujita et al., 2006, Tanaka et al., 2004). Then the acyl chain of diacylglycerol

is replaced with a C26 acyl group (a completely saturated fatty acid) to improve

the transition from the ER to the Golgi apparatus (Bosson et al., 2006). In the

Golgi apparatus further Man can be added to the glycan core of the GPI anchor

(Fankhauser et al., 1993). Once the protein reaches the plasma membrane it can

be directly cross-linked to the b-1,6-glucan. However, the GPI glycan can also

be cleaved, by yet unidentified hydrolases, and the protein with the GPI remnant

cross-linked to the b-1,6-glucan in a transglycosidation reaction. These GPI-CWP

confer structural integrity and enzymatic activity in the cell wall.

Galactomannan Galactomannan describes proteins that carry a linear a-poly-

mannose backbone that has side-branches of chains of b-1,5-galactofuranose.

Galactomannan is not present in the cell wall of S. cerevisiae and C. albicans

but can make up to 25 % of the A. fumigatus cell wall (Fontaine et al., 2000). In
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fact, diagnostic tools to identify invasive aspergillosis are based on the detection of

galactomannan (Pfeiffer et al., 2006).

The biosynthetic pathway of galactomannan formation is unknown. The forma-

tion of mannoproteins in A. fumigatus has not been described and comparative

studies with homologs of the yeast proteins have identified four orthologs of Och1

as well as orthologs for Mnn9, Van1 and Anp1 (Gastebois et al., 2009). However,

it is unknown whether these A. fumigatus orthologs perform the same reactions as

described in baker’s yeast.

1.2.4 Remodelling and Crosslinking of Cell Wall Components

The components of the cell wall – carbohydrates, proteins and GPI – can undergo

further remodelling or they can be crosslinked once they reach the extracellular

face of the plasma membrane. The order of cell wall assembly has been exten-

sively studied in S. cerevisiae spheroplasts and on mutants lacking individual cell

wall components. Cell wall assembly is initiated by the synthesis of b-1,3-glucan,

as it serves as a scaffold for the incorporation of b-1,6-glucan and mannoproteins.

GPI-CWPs are incorporated after the formation of the b-1,6-glucan layer. Chitin is

only visible after cytokinesis, hence it is believed to be the last component added

to the cell wall.

Crosslinking of GPI-anchor proteins

GPI-anchored proteins can be retained in the plasma membrane or are incorpo-

rated into the cell wall as GPI-CWPs (Gonzalez et al., 2009). This depends on

the N-terminal region of the w residue (w(–)) in those proteins (Caro et al., 1997,

De Sampaïo et al., 1999, Frieman and Cormack, 2004, Hamada et al., 1998b,

1999). The signal for membrane retention are two basic amino acid residues in this

region (Caro et al., 1997, Frieman and Cormack, 2003), whilst GPI-CWPs either

lack these residues or carry hydrophobic residues instead (Frieman and Cormack,

2003, Hamada et al., 1998a, 1999). However, this is not a strict rule and proteins of
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either group have been found to be located in their "non-natural" location (Frieman

and Cormack, 2004). The location of a GPI-anchored protein can be important as

it has been shown for Ecm33, a protein that is necessary for growth at elevated

temperatures, which is only active when it remains attached to the plasma mem-

brane, and replacement of the (w(–)) region with a sequence for association of

Ecm33 with the cell wall results in the loss of function of this protein (Terashima

et al., 2003).

So far it is unclear how GPI-CWPs are released from the plasma membrane

and covalently linked to the b-1,6-glucan. Two mechanisms are possible: 1) in a

single-step reaction the GPI-anchored protein is hydrolysed and the reducing end

of the GPI remnant is transferred and covalently linked to b-1,6-glucan, or 2) the

reaction is carried out in multiple steps, performed by separate enzymes. The

two essential and homologous S. cerevisiae enzymes Dfg5 and Dcw1 are poten-

tial candidates for the cross-linking (Kitagaki et al., 2002, 2004). Both have been

identified based on sequence alignment with the a-1,6-mannosidase Aman6 from

Bacillus circulans TN-31, a member of the GH-76 family (Maruyama and Naka-

jima, 2000, Nakajima et al., 1976). Interestingly, the dfg5D dcw1D double knockout

is lethal and dcw1D cells are more sensitive to the cell wall digesting enzyme Zy-

molyase (Kitagaki et al., 2002). A first insight into the function of both proteins

was achieved by controlled depletion of either of the proteins in a double knock-

out background (Kitagaki et al., 2002, 2004). These cells showed increased cell

volume, delocalised chitin and the release of a GPI-CWP into the medium. Due

to these results and the possible mannosidase activity by homology to a bacterial

enzyme, it is believed that Dfg5 and/or Dcw1 are able to hydrolyse one of the a-

linked Man in the GPI-anchored proteins. If the enzymes are also involved in the

transglycosylation is unclear.
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Crosslinking of PIRs

PIRs are covalently linked to the b-1,3-glucan in the cell wall (Ecker et al., 2006).

The internal repeats are necessary for this link as deletion of them results in the re-

lease of the proteins into the medium (Castillo et al., 2003, Sumita et al., 2005). The

proteins are linked via an alkali-labile ester bond between the g-carboxyl group of

glutamate in the repeating sequence DGQ(hydrophobic residue)Q and a hydroxyl

group in the b-1,3-glucan (Ecker et al., 2006). It is unclear if an unknown trans-

glutaminase creates that link or if the PIRs are able to perform this reaction as the

amide hydrolysis itself could provide enough energy to form the ester bond (Ecker

et al., 2006).

Crosslinking of Chitin to Glucan

The homologous S. cerevisiae GPI-proteins Crh1 and Crh2, as well as Crr1, are

able to crosslink the reducing end of chitin to the non-reducing end of b-1,3-glucan

linked to b-1,6-glucan or b-1,3-glucan alone (Cabib, 2009, Cabib et al., 2007). All

three proteins are GH-16 members and Crh2, as well as Crr1, contain a chitin-

binding module (Cabib et al., 2008, Rodriguez-Pena et al., 2000).

Similar crosslinks have been identified in the cell wall of A. fumigatus (Gastebois

et al., 2009). Many of the enzymes that are involved in the remodelling of the

cell wall in S. cerevisiae have homologs in A. fumigatus, e. g. the Gas family,

Dfg5/Dcw1 and Crh1/Crh2 (Latgé, 1999). However, specific activities of any of

these enzymes have not been described in the filamentous fungus.

1.3 Glycosyltransferases

The plethora of oligosaccharides found in nature are the product of the directed

action of GTs, GHs, glycan phosphorylases and lyases (Lairson et al., 2008). GTs

form glycosidic bonds by the transfer of a sugar from an activated donor to an

acceptor. Such activated sugars contain a phosphate leaving group as found in
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UDP, GDP or Dol-P, for example. The acceptor is usually another sugar but can

also be a protein (e. g. N-linked glycosylation, O-GlcNAcylation), lipid (e. g. GPI-

anchor synthesis), nucleic acid or many other small molecules. The reaction of GTs

is regio- and stereospecific and GTs can be classified into inverting or retaining

GTs based on the anomeric configuration relative to the substrate donor.

1.3.1 Classification of GTs by Their Fold

Like many other enzymes, GTs can be grouped into different families by their

amino acid sequence similarity (Campbell et al., 1997, Coutinho et al., 2003). The

Carbohydrate-Active enZymes database (CAZy) (http://www.cazy.org) is a cu-

rated online resource to access the different families of GTs (Cantarel et al., 2009).

To date, the database contains over 100 000 entries which are classified ino 94

families.

Based on the known structures of GTs, they can be classified into three groups

based on their overall fold: GT-A, GT-B, or GT-C (Bourne and Henrissat, 2001)

(Fig. 1.7). All structures of nucleotide-sugar-dependent GTs solved so far either

adopt the GT-A or GT-B fold (Coutinho et al., 2003, Hu and Walker, 2002, Unligil

and Rini, 2000). Lipid-phosphate-dependent GTs (e. g. OST), however, can adopt

the more recently discovered GT-C fold (Henrissat et al., 2008, Lizak et al., 2011).

Because of the high similarity of their overall structure it is believed members of

the GT-A and GT-B families have evolved from only a few ancestors. The members

of GT-2 (~33 000) adopt the GT-A fold and members of the GT-4 (~25 000) fam-

ily adopt the GT-B fold. GT-As and GT-Bs are very similar, i. e. both contain two

Rossmann-like folds (b/a/b), a typical structural motif found in nucleotide-binding

proteins. However, in GT-As the two Rossmann-like folds are in close proximity

giving the impression of a single b-sheet. This was first observed in SpsA from

B. subtilis which defined the GT-As (Charnock and Davies, 1999) (Fig. 1.7A). Many

eukaryotic GT-As are membrane-bound with a short cytoplasmic N-terminus, fol-

lowed by the transmembrane domain, a linker region and the catalytically active

http://www.cazy.org
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A B

Figure 1.7: Overall fold of glycosyltransferases. A, Structure of SpsA from Bacillus subtilis
representing the GT-A fold (Charnock and Davies 1999, PDB ID: 1QGQ). B, Structure of b-
glucosyltransferase from bacteriophage T4 representing the GT-B fold (Vrielink et al. 1994, PDB
ID: 1JG7).

globular domain (Breton and Imberty, 1999). The majority of GT-As possess the

amino acid motif aspartate–any amino acid–aspartate (DXD). The carboxylates are

necessary for the coordination of a divalent cation and/or the ribose of the sugar-

nucleotide (Breton et al., 1998, Wiggins and Munro, 1998). The DXD motif used

to be considered the signature of GT-A members. However, a recently discovered

enzyme adopts the GT-A fold but does not contain the DXD motif (Pak et al., 2006).

The first ever structure of a GT was that of the b-glucosyltransferase from bac-

teriophage T4 (Vrielink et al., 1994) (Fig. 1.7B). In recent years with the establish-

ment of GT-A and GT-B fold families this GT has been classified as a GT-B and is

now considered as the model structure for this fold. Both Rossmann-like domains

are less tightly associated than in GT-A GTs. The active site of GT-Bs is in a groove

located between the two domains.

Because structures of GT-C GTs have only recently been solved, the definition

of the GT-C fold is not as detailed as for the other two folds. GT-Cs are predicted

to be large integral proteins with 8–13 transmembrane domains with the active site
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being located in a loop (Lizak et al., 2011, Maeda et al., 2001, Strahlbolsinger et al.,

1993, Takahashi et al., 1996). This is consistent with the observation that GTs that

are known or suggested to adopt the GT-C fold use lipid phosphate-activated donor

substrates (e. g. Dol-P-sugars). These reactions can only occur at membranes.

Besides the classification of GTs by their fold, these enzymes can also be grouped

based on stereochemistry of the glycosidic bond that is formed during the reaction

realtive to the donor substrate. To date, there are many examples of inverting and

retaining GTs adopting either the GT-A or the GT-B fold (Coutinho et al., 2003). In

contrast, all GTs adopting the GT-C fold characterised to date are inverting GTs.

The majority of inverting GTs perform the glycosyltransfer reaction via a single

SN2-like displacement reaction (Fig 1.8). In contrast, there is still much speculation

about the mechanism(s) of retaining GTs.

1.3.2 Inverting Glycosyltransferases

During the reaction of inverting GTs the stereochemistry at the anomeric centre

of the sugar in the product will be inverted with respect to the donor substrate.

Such a reaction is carried out by the chitin synthases, for example. Results from

the studies described below indicate that inverting GTs work via an SN2-like dis-

placement reaction mechanism. In such a reaction, an active-site residue acts as

a base deprotonating the nucleophile of the acceptor thereby promoting the SN-like

displacement of the phosphate leaving group. The side chains that are possibly

involved in the reaction have been identified in many enzymes.

Inverting GT-A GTs

SpsA from B. subtilis was the first structure to be solved for an inverting GT-A GT

(Charnock and Davies, 1999) (Fig. 1.9). The structure could not be solved with the

native acceptor in complex with SpsA. However, due to the presence of a glycerol

molecule that acted as cryoprotectant, it was speculated that D191 acts as the base

during the glycosyltransfer reaction (Charnock and Davies, 1999). The increased
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Figure 1.8: Mechanisms of inverting and retaining GTs. Inverting GTs use an SN2-like dis-
placement reaction. In contrast, the mechanism of retaining GTs is controversial. The reaction may
occur by double-displacement with an enzyme-glycosyl intermediate or via an SNi-like mechanism
in which the hydroxyl group of the acceptor attacks the anomeric carbon of the donor from the same
side as where the leaving group departs.
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availability of other GT-A structures later supported the idea of D191 being the base

catalyst in SpsA. By superpositioning these GT-As in complex with their substrate

on SpsA, it became evident that the other GTs have an aspartic acid similarly posi-

tioned and within hydrogen-bonding distance to the nucleophilic acceptor hydroxyl

group (Kakuda et al., 2004, Ohtsubo et al., 2000, Pedersen et al., 2000, 2002, Ra-

makrishnan and Qasba, 2001, Ramakrishnan et al., 2002, Ramasamy et al., 2005).

One example is the b-1,4-galactosyltransferase-7 from Drosophila melanogaster.

In this GT D211 may act as the base which deprotonates a hydroxyl group of the

xylose acceptor.

Most inverting GT-As that have been characterised to date are dependent on

a divalent cation, such as Mn2+ or Mg2+. The metal is, at least partially, coordi-

nated by the DXD motif. The metal is believed to be necessary to stabilise the

negative charge of the diphosphate after the reaction and to facilitate its departure.

Notable exceptions are metal-ion independent GTs such as GT-14 b-1,6-GlcNAc

transferases (Pak et al., 2006) and the GT-42 sialyltransferases (Chiu et al., 2004).

These enzymes use basic amino acids (Arg and Lys) or the ability to form hydrogen

bonds with the hydroxyl groups of tyrosine side chains to support the departure of

the leaving group, respectively.

The GT-2 family contains the transferases that synthesise cellulose, chitin, and

hyaluronan. There is still much controversy about the mechanism that is used to

extend the polysaccharides formed by these GTs. It is unclear if a UDP-mono-

saccharide is the donor that extends the oligosaccharide or if an UDP-activated

oligosaccharide is transferred onto a UDP-monosaccharide. Recent developments

suggest that both reactions are possible. In vitro experiments with hyaluronan

synthase from Streptococcus equisimilis indicate that the growing chain is trans-

ferred onto the UDP-monosaccharide (Hubbard et al., 2012). In contrast, the crys-

tal structure of Rhodobacter sphaeroides cellulose synthase shows a growing oli-

goglucose chain without UDP attached to it, suggesting that UDP-Glc acts as the

donor (Morgan et al., 2013). This is one of the many examples that shows how

little knowledge we currently have about the exact mechanisms of GTs.
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Mn2+D99

D98

BsSpsA

Figure 1.9: Active site of Bacillus subtilis SpsA. The pyrophosphate of UDP is coordinated by
the metal cation Mn2+ which in turn is coordinated by the carboxyl group of D99. Glycerol occupies
the site that is predicted to be the acceptor binding site.

Inverting GT-B GTs

The modes of glycosyl transfer in GT-Bs are much more diverse than in inverting

GT-As. This might be a result of the larger distance between the two Rossman-like

domains and the resulting flexibility of both domains.

The first GT-B structure, and nucleotide sugar GT structure in general, to be

solved was of the b-glucosyltransferase (BGT) from T4 bacteriophage (Vrielink

et al., 1994). The enzyme transfers glucose onto cytosine bases to prevent DNA

degradation by host nucleases (Kornberg et al., 1961). In contrast to SpsA, BGT

could be solved in complex with UDP and a DNA acceptor (Lariviere and Morera,

2002). The structure revealed that BGT is able to specifically flip out the DNA

stretch that will become glycosylated. The candidate for the base is residue D100.

This has been supported by mutagenesis of D100 to alanine which abolished ac-

tivity and the fact that a UDP-Glc complex was only observed in the mutant but

not in the wild type enzyme (Lariviere et al., 2003). Another observation was the

fact that short soaks of BGT crystals with UDP-Glc and an excess of metal did not

reveal any density for the metal in the active site (Lariviere et al., 2003). Positively

charged side chains neutralised the negative charge of the diphosphate instead.
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However, when BGT crystals were soaked with UDP and a metal, the metal was

found to coordinate the diphosphate. The authors concluded that the cation facili-

tates product release rather than cleavage of the donor substrate.

The GT-1 family has been extensively studied because its members glycosylate

organic molecules, such as terpenes, steroids, and antibiotics. Three GT-1s that

have been well structurally and biochemically characterised are GtfA, GtfB, and

GtfD (Mulichak et al., 2001, 2003, 2004). All three GTs are involved in the biosyn-

thesis of the antibiotic vancomycin. These enzymes use an aspartic acid residue

as the base and the departure of the leaving group is metal-independent. This is

achieved by stabilising the negative charge with hydroxyl and imidazole groups.

In contrast to the examples above, no catalytic base could be identified in the

Caenorhabditis elegans POFUT1 GT-65 (Lira-Navarrete et al., 2011). The enzyme

O-fucosylates proteins on serine or threonine side chains (Klinger et al., 1981).

Only two aspartic acid residues could be found close to the sugar donor site. How-

ever, upon mutation they showed only a moderate decrease in activity. Activity was

completely abolished by the mutation of R240. This led the authors to propose an

SN1-like mechanism for POFUT1 (Lira-Navarrete et al., 2011). In this scenario, the

b-phosphate of the sugar donor acts as the catalytic base via hydrogen bonds with

an incoming water or Ser/Thr side chains of the EGF repeat. R240 forms a hydro-

gen bond with the glycosidic bond oxygen, thereby hydrolysing the glycosidic bond

first. This creates an oxocarbenium ion transition state and the incoming acceptor

transfers a proton to the leaving phosphate resulting in the attack of the acceptor

substrate. However, the structure and mutagenesis of POFUT2 indicated that a

glutamic acid (E54) can act as the catalytic base (Chen et al., 2012).

Recently, there has been two controversial proposals for the mechanism of O-

GlcNAc transferase (OGT) (Lazarus et al., 2012, Schimpl et al., 2012). OGT is an

inverting GT-B in GT family 41. OGT transfers GlcNAc onto serine or threonine in

an acceptor protein substrate (Kreppel et al., 1997). Schimpl et al. (2012) propose

that the catalytic base is not a side chain of OGT, but instead the a-phosphate of

the nucleotide-sugar. Lazarus et al. (2012) claim that neither a carboxylate side
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chain nor the b-phosphate are at the right distance to perform the glycosyl transfer.

They also suggest that the a-phosphate is not involved in the reaction because

the basicity of one of the oxygens is attenuated by a peptide backbone hydrogen

bond. Instead, they propose an electrophilic migration mechanism in which the

anomeric carbon moves from bonding to the pyrophosphate to the nucleophilic

hydroxyl group of the acceptor serine – a mechanism that has so far only been

described for GHs.

1.3.3 Retaining Glycosyltransferases

Retaining GTs differ from inverting GTs in that the anomeric configuration of the

transferred sugar is retained. To date, two mechanisms have been proposed

to perform such a reaction (Lairson et al., 2008). One possibility is a double-

displacement mechanism in which the donor sugar and the transferase form an

enzyme-glycosyl intermediate (Koshland, 1953) (Fig. 1.8). For this mechanism to

work, a side chain has to be in the correct position to act as a nucleophile to create

the glycosyl-enzyme bond. The leaving group would work as a base and activate

the hydroxyl group of the acceptor for nucleophilic attack.

Alternatively, retaining GTs could use an SNi-like mechanism in which the nu-

cleophilic hydroxyl group of the acceptor attacks the anomeric carbon of the donor

from the same side as where the leaving group departs (Fig. 1.8). SNi-like reactions

are a form of SN1 reaction. In this special reaction a discrete ion pair intermediate

is formed that can either collapse or yield a product that retains the stereochemistry

of the reaction centre (Hughes et al., 1941, Lewis and Boozer, 1952). Retention of

the stereochemistry is achieved by decomposition of the leaving group that in turn

leads to the formation of a nucleophile which is positioned on the same face.

Retaining GT-A GTs

Many members of the family of retaining GT-As share structural and mechanis-

tic features. Only few ternary complexes of retaining GT-As have been solved so
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far. However, these are necessary to elucidate the mechanism of a given GT.

One example is the ternary complex of GT-8 galactosyltransferase LgtC from Neis-

seria meningitidis, the substrate analogue 5’-diphospho-(2-deoxy-2-fluoro)-a-D-

galactopyranose (UDP-2F-Gal), and the acceptor analogue 4’-deoxy lactose (Pers-

son et al., 2001). The structure showed a Mn2+ that is coordinated by the carboxy-

late groups in the DXD motif as well as the diphosphate of the leaving group. The

only functional group to activate the 4’-hydroxyl group that would be present in

the natural acceptor was an oxygen of the b-phosphate of the leaving group, an

indicator that the diphosphate acts as the base. The best positioned catalytic nu-

cleophile is Q189. However, the Q189A mutant retained 3 % activity, indicating that

Q189 is not essential for the reaction. The enzyme was also tested in experiments

with possible intermediates of a double-displacement mechanism (Persson et al.,

2001). However, these intermediates were not turned over and the possibility of this

mechanism for LgtC was discounted. Q189 was mutated into a glutamic acid which

was proposed would make it an even better nucleophile (Lairson et al., 2004). Sur-

prisingly, this substitution lead to a glycosyl-enzyme complex. However, instead of

residue E189, D190 was found to be glycosylated. Mutation of D190 to asparagine

showed 3000-fold slower catalytic activity. Interestingly, D190 is almost 9 Å away

from the anomeric centre. Based on the results, LgtC must undergo considerable

structural changes during the reaction to facilitate the proposed mechanism. Fur-

thermore the authors concluded that D190 is the catalytic nucleophile and that the

LgtC GT uses a double displacement mechanism during the transfer reaction.

The GT-6 bovine a-1,3-galactosyltransferase (a3GalT) has been extensively stud-

ied (Gastinel et al., 2001, Monegal and Planas, 2006). The most likely residue to

act as a nucleophile is E317, which is in a structurally similar position to Q189 of

LgtC (Gastinel et al., 2001). Firstly, it was believed that a glactosyl residue and

E317 formed a covalent bond. However, this idea was quickly discarded based on

the weak electron density around the possible covalent bond (Gastinel et al., 2001).

In contrast to LgtC, E317 was initially found to be predominantly required for cor-

rect acceptor substrate orientation. However, mutation of E317 led to a 2400-fold
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decrease in activity (Zhang et al., 2003). Eventually, the structure in complex with

UDP-2F-Gal was solved and showed that E317 was indeed in a good position to

act as a nucleophile during the reaction (Jamaluddin et al., 2007). Further stud-

ies with a3GalT by chemically rescuing the E317A mutant supported the double-

displacement mechanism.

Another pair of GT-6 family members are the human blood group GTs a-1,3-N-

acetylgalactosaminyltransferase (GTA) and a-1,3-galactosyltransferase (GTB) (Ya-

mamoto et al., 1990). Both GTs differ only in four out of 354 amino acids. The

distinction between the two substrates is achieved only by L266 and G268 in GTA

with M266 and A268 in GTB (Patenaude et al., 2002). Both enzymes have been

trapped in complex with donor as analysed by mass spectrometry, suggesting that

GTA and GTB work by the double-displacement mechanism (Soya et al., 2011).

Retaining GT-B GTs

As has been shown for inverting GT-Bs, retaining GT-Bs use a metal-independent

mechanism for leaving group departure.

The current knowledge of the mechanisms and residues involved in the reac-

tion of retaining GT-Bs has been learned from the extensive structural studies of

the GT-35 glycogen and starch phosphorylases. These enzymes phosphorylate

glycogen or starch to Glc1P which in turn is isomerised to Glc6P and immediately

used in glycolysis (Fletterick and Sprang, 1982, Green and Cori, 1943, Raibaud

and Schwartz, 1984). The best studied GT-35 member is the rabbit muscle glyco-

gen phosphorylase (rmGP) (Mitchell et al., 1996, Watson et al., 1994). Glycogen

phosphorylases are unique as they have a phosphate bound via a Schiff base on a

lysine residue. This phosphate is able can protonate a inorganic phosphate, which

in turn will be deprotonated by the glycosidic bond oxygen of a-1,4-linked glyco-

gen. The deprotonated inorganic phosphate acts as a nucleophile resulting in the

release of Glc-1-P and a glycogen chain shortened by one glucose (reviewd in Li-

vanova et al. 2002). The binary complex of rmGP and the transition state analogue
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nojirimycin-tetrazole revealed that the main chain amide of H377 could act as the

catalytic nucleophile (Mitchell et al., 1996).

The E. coli trehalose b-phosphate synthase OtsA is member of the GT-20 fam-

ily of retaining GT-B GTs. OtsA synthesises the stress response molecule a-a-

trehalose-b-phosphate. Extensive studies have been performed on this GT to

elucidate its mechanism (Gibson et al., 2004). There is chemical and structural

evidence that OtsA works by a front-side SNi mechanism in which the nucleophile,

Glc-6-P, approaches the reaction from the same side as the leaving group (Ardèvol

and Rovira, 2011, Errey et al., 2010, Lee et al., 2011).

1.4 Glycoside Hydrolases

The hydrolysis of oligosaccharides is an important biological process to gain en-

ergy, degrade the fungal cell wall and to turn over signalling molecules. It has

been shown that a hexasaccharide can form more than 1012 different isoforms

(Laine, 1994). This explains the vast amount of glycoside hydrolases (GHs) (more

than 137 000 entries in 131 families according to CAZy) that hydrolyse the glyco-

sidic bond between two carbohydrates or between a carbohydrate and a non-sugar

molecule, such as a protein.

Historically, GHs were classified by their substrate specificity. Nowadays, GHs

are grouped into families based on their amino acid sequence similarities (Cantarel

et al., 2009, Henrissat, 1991, Henrissat and Bairoch, 1993). In contrast to GTs,

where only three major folds have been described to date (GT-A, B, and C), GHs

can be grouped into 14 clans (GH-A–N) that represent different folds (Henrissat

and Bairoch, 1996).

Because of the nature of oligosaccharides, GHs can be further classified as

endo- or exo-hydrolysing enzymes. Endo-GHs can cleave in the middle of an

oligosaccharide, whereas exo-GHs cleave, mostly, at the reducing end of a dis-

accharide or carbohydrate chain.

Furthermore, GHs can be classified according to their active site conformation
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(Davies and Henrissat, 1995):

• A pocket is usually found in exo-hydrolases in which the active site is buried

at the centre of the enzyme. One end of the carbohydrate substrate enters

the active site, hydrolysis occurs and the product(s) is/are released. Mem-

bers of this group are, for example, b-galactosidase and b-amylase.

• Clefts are common amongst endo-acting GHs, such as lysozymes, chiti-

nases and a-amylases. Due to the open conformation a cleft allows random

binding of the oligosaccharide.

• Tunnels have evolved from GHs with clefts that have long loops that cover

the cleft partially. The oligosaccharide will be moved through the tunnel dur-

ing the reaction. This conformation has been observed in cellobiohydrolases

(Rouvinen et al., 1990). The advantage is that the substrate remains bound

to the enzyme at all times.

The reaction of most GHs is carried out by two amino acid side chains, usually

aspartate or glutamate, that act as acid and base in inverting GHs and as acid/base

and nucleophile in retaining GHs (Koshland, 1953, Sinnott, 1990) (Fig. 1.10). The

result of the reaction is either an inversion or retention of stereochemistry of the

product relative to the substrate (Koshland, 1953). In both reactions, the proton

donor is within hydrogen bonding distance of the oxygen of the glycosidic bond. In-

terestingly, the base in inverting hydrolases is further away from the acid compared

to the distance between the acid/base and the nucleophile in retaining GHs. This is

because the active site of inverting GHs has to accomodate a water molecule while

the substrate is present. The distance between the two catalytic residues in invert-

ing GHs is about 10 Å, whereas in retaining GHs the distance is only about half

of this (McCarter and Withers, 1994). However, some GHs use mechanisms that

differ from this general acid/base reaction. Notable exceptions will be described in

the sections below.
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1.4.1 Inverting Glycoside Hydrolases

The hydrolysis of a glycosidic bond with the inversion of stereochemistry at the

anomeric centre of product relative to substrate is usually carried out via a one-

step, single-displacement mechanism with an oxocarbenium ion-like transition state

(Fig. 1.10).

Inverting GHs without a general acid. The Man-6-P-Man mannosidase from

Cellulosimicrobium cellulans is an exception of the GH-92 family of exo-acting a-

mannosidases because it lacks the necessary base that has been identified as

crucial for the reaction in other enzymes of this family. Instead, it carries a glu-

tamine in a structurally equivalent position (Tiels et al., 2012), which is not a good

proton donor. However, the phosphate of the substrate is a much better leaving

group than a sugar. This indicates that the reaction does not require a proton

donor.

1.4.2 Retaining Glycoside Hydrolases

Retaining GHs use a double-displacement reaction with a covalently bound enzyme-

glycosyl intermediate (McCarter and Withers, 1994, Sinnott, 1990, Vocadlo et al.,

2001) (Fig. 1.10). In the first step, one of the carboxyl groups (called acid/base)

acts as a general acid to protonate the glycosidic oxygen to aid leaving group de-

pature. The other carboxyl residue functions as a nucleophile to form the enzyme-

glycosyl intermediate. During the second step, the acid/base deprotonates an in-

coming water, which in turn attacks the anomeric centre to release the sugar.

Most GHs cleave their substrates based on this mechanism. However, several

retaining GHs have developed variations of this reaction to accomodate their sub-

strates. Some examples are listed below.

Neighbouring group participation. The substrates of GH families 18, 20, 25,

56, 84, and 85 contain an N-acetyl or N-glycolyl group at the 2’-position instead
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of a hydroxyl group (Fig. 1.11). These hydrolases have no catalytic nucleophile.

Instead, the 2’-acetamido group acts as an intramolecular nucleophile, leading to

the formation of an oxazolinium intermediate via substrate-assisted catalysis (Mark

and James, 2002, Terwisscha van Scheltinga et al., 1995, Vocadlo and Withers,

2005).

Use of exogenous base Some of the hydrolases of GH-1 cleave thioglyco-

sides found in plants. In these enzymes the acid/base is replaced by a glutamine

(Fig. 1.12). This might be beneficial in order to reduce the charge repulsion created

by an acid residue and the sulfate leaving group (Burmeister et al., 2000). Such

a mechanism has been proposed based on structural studies of the myrosinase

from Sinapis alba. The sulfate aglycon itself is a good leaving group that facilitates

hydrolysis and the formation of an enzyme-sugar intermediate. For the hydrolysis

of this intermediate, the enzyme uses the co-factor L-ascorbate as an alternative

base (Burmeister et al., 2000).

Other nucleophiles The sialidases and trans-sialidases of GH families 33 and 34

use a conserved tyrosine as a catalytic nucleophile instead of an acid (Fig. 1.13).

The tyrosine is activated by a neighbouring base (Amaya et al., 2003, Watts et al.,

2003). The structure of a covalent intermediate of a substrate analogue bound

to the tyrosine of Trypanosoma cruzi trans-sialidase has been solved, which sup-

ported the predicted mechanism (Amaya et al., 2004).

NAD-dependent hydrolysis The members of GH families 4 and 104 are remark-

ably different compared to any other GHs in two respects. Firstly, both families

contain GHs that are able to bind and/or cleave both a- and b-oligosaccharides.

Secondly, these hydrolases use a novel hydrolytic mechanism in which a tightly

bound NAD+ acts as a co-factor for the reaction (Fig. 1.14). The mechanism has

been proposed and described by Yip et al. (2004) for a b-glycosidase from Thermo-

toga maritima and by Rajan et al. (2004) for a phospho-a-glucosidase from B. sub-
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tilis. During the reaction, NAD abstracts a hydride from the 3’-OH of the substrate

in a redox reaction. An enzymatic base deprotonates C2 to form an unsaturated

intermediate while an acid protonates the glycosidic oxygen to aid leaving group

depature. The intermediate undergoes base-catalysed attack by a water to form

3’-keto glucose derivative which in turn is reduced by NADH to form the product

(Rajan et al., 2004).

A clinically important member of this group is GH-104, a a-N-acetylgalactosaminidase

from Elizabethkingia meningosepticum that is capable of hydrolysing the A and B

antigens on red blood cells (Liu et al., 2007). After purification of this enzyme from

E. coli it was shown that NAD was so tightly bound that addition of the co-factor in

enzyme assays was not necessary.

1.5 Inhibitors of Carbohydrate-Processing Enzymes

Inhibitors of GTs and GHs are essential tools in glycobiology to study the cellu-

lar roles of the glycans that these enzymes form or degrade. A major drawback

in the development of inhibitors for carbohydrate-processing enzymes is the vast

amount of possible combinations of different sugars attached to each other (Laine,

1994), making it difficult to identify specific and efficient inhibitors. Inhibitors act-

ing on glycan-processing enzymes can be classified into carbohydrate-based or

non-carbohydrate-based (Gloster and Vocadlo, 2012).

A large group of carbohydrate-based inhibitors are based on naturally occuring

compounds. Others are derivatives based on the structure of the catalytic transi-

tion states or the substrate. Much effort has gone into the design of such inhibitors

in the past (Leeson and Springthorpe, 2007) to produce potent inhibitors. In con-

trast, the high polarity and the often time-consuming synthesis of such inhibitors is

challenging.

In contrast, the list of non-carbohydrate-based inhibitors to date is comparably

small. Derivatisation of these molecules is usually simpler compared to carbohydrate-

based inhibitors. However, most of the non-carbohydrate-based inhibitors are very
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lipophilic, hence have a low solubility, making them less useful for in vivo studies.

With the advancements made in high-throughput screening, mass spectrometry,

structural biology and chemical techniques, the identification of potent, specific and

cell-permeable inhibitors may improve over the next decades.

1.5.1 Glycosyltransferase Inhibitors

The lack of a proper understanding of GT reaction mechanisms and their ability

to undergo dramatic structural changes during glycosyl transfer are only two of the

reasons for the lack of potent GT inhibitors (Breton et al., 2012, Qasba et al., 2005).

GT-A GTs in particular undergo many rearrangements of flexible loops during donor

binding. Furthermore, most GT inhibitors are donor or substrate analogues that

have only limited "drugability" for in vivo applications (Qian et al., 2008).

A novel class of galactosyltransferase (GalT) inhibitors has been described re-

cently (Descroix et al., 2012). GalT is important for the synthesis of human blood

group antigen B (Patenaude et al., 2002) and the lipopolysaccharide of some

Gram-negative bacteria (Zhu et al., 2006). Instead of modifying the sugar or py-

rophosphate moiety, the novel GalT inhibitor carries a modification of the uracil

of UDP-Gal (Descroix et al., 2012). It is believed that this addition interferes with

the reorganisation of an internal loop during catalysis (Pesnot et al., 2010). The

inhibitor had a K i one order of magnitude lower than the K m for the UDP-Gal sub-

strate (Descroix et al., 2012). Additionally, in vivo experiments suggested that this

inhibitor is taken up by cells and localises to the ER and Golgi, despite its polar na-

ture (Descroix et al., 2012). However, the molecular mechanism of inhibition could

not be elucidated because the binary complex of GalT and the inhibitor shows

no electron density for the loop that is supposed to be affected by the compound

(Descroix et al., 2012).

Another approach is the in silico design of a GalT inhibitor based on pentitol-

linked uric acid derivatives that are non-ionic analogues of the nucleotide donor

(Schaefer et al., 2012). The authors showed that the compound bound with similar
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affinity to GalT compared to the substrate UDP-galactose. The replacement of the

pyrophosphate could lead to the development of novel inhibitors that can penetrate

the cell membrane and are able to enter the Golgi (Schaefer et al., 2012).

Recently a MALDI-TOF high-throughput approach for the search of potent GT

inhibitors has been described (Hosoguchi et al., 2010). In this approach a li-

brary containing desired azidosugar nucleotides derivatised with different alkynes

was used to identify novel inhibitors for a range of GTs. Using this technique

the authors were able to identify a highly specific inhibitor for rat recombinant

a-2,3-(N)-sialyltransferase with good binding affinity. Additionally, two more se-

lective inhibitors for human recombinant a-1,3-fucosyltransferase V and a-1,6-

fucosyltransferase VIII were identified.

1.5.2 Glycoside Hydrolase Inhibitors

In contrast to GTs, the field of GH inhibitors has made better progress over recent

years. This is due to the extensive knowledge about transition states and substrate

specificity of many GHs. Hence, many potent GH inhibitors are carbohydrate-

based transition state analogues (Mader and Bartlett, 1997). However, similar to

GT inhibitors, the synthesis and class promiscuity of most GH inhibitors results in

limited biological applications.

O-GlcNAcase Inhibitors O-GlcNAcase (OGA) is the GH that removes O-linked

GlcNAc from proteins that had been attached by the O-GlcNAc transferase (OGT)

(Dong and Hart, 1994, Gao et al., 2001, Kreppel et al., 1997). This dynamic

post-translational modification has implications in cancer (Caldwell et al., 2010,

Shi et al., 2010) and neurodegenerative diseases (Lefebvre et al., 2003, Liu et al.,

2004, Yuzwa et al., 2008). To study the effects of O-GlcNAcylation, a lot of re-

search has been done to identify potent OGA inhibitors in order to increase cellular

levels of the post-translational modification. The first potent inhibitor described for

OGA was PUGNAc (Dong and Hart, 1994, Horsch et al., 1991), a nanomolar in-
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hibitor with poor selectivity. Selectivity was improved with NButGT (Macauley et al.,

2005) which was derivatised to thiamet-G, a low-nanomolar inhibitor with 37 000-

fold selectivity for OGA over other hexosaminidases (Yuzwa et al., 2008). Recently,

thiamet-G has been shown to slow the neurodegeneration in an Alzheimer’s mouse

model, showing the clinical relevance of potent and selective inhibitors (Yuzwa

et al., 2012). Coinciding with the development of thiamet-G, others identified an-

other potent OGA inhibitor, GlcNAcstatin (Dorfmueller et al., 2006), a low nanomo-

lar inhibitor with a 900 000-fold selectivity over other hexosaminidases (Dorfmueller

et al., 2010). The development of these potent inhibitors was facilitated by the use

of structure-based design and synthesis of derivatives of weak inhibitors (Dorf-

mueller et al., 2010, Rao et al., 2006). Further studies have been done to identify

new micromolar OGA inhibitors that could act as scaffolds for non-carbohydate-

based drugs (Dorfmueller and van Aalten, 2010).

GH-18 Chitinase Inhibitors Chitin is the second most abundant carbohydrate on

earth. Chitinases can cleave the glycosidic bond between two b-1,4-GlcNAc. Chiti-

nases of GH-18 are interesting drug targets, since they are present in pathogenic

fungi as well as in humans. In fungi, chitinases are needed for the breakdown of

the cell wall chitin during replication. The reason for the presence of chitinases in

humans is not understood, but they could be used to act as a defence mechanism

against pathogenic fungi. The human acidic mammalian chitinase (AMCase) is up-

regulated in lungs of asthma patients (Zhu et al., 2004). Therefore, GH-18 mem-

bers are potential drug targets against pathogenic fungi as well as against asthma.

The natural product argifin, a cyclic peptide, is a nanomolar inhibitor of GH-18 chiti-

nases. However, argifin is a large molecule that can not serve as a platform for drug

design. Interestingly, by linearisation of the peptide and gradually removing amino

acids, it could be shown that even a tripeptide is still a low micromolar inhibitor

of ChiB, a chitinase present in A. fumigatus, and of chitinase activity in a mouse

lung homogenate (Andersen et al., 2008). Rational design lead to the synthesis

of Bisdionin C (Schüttelkopf et al., 2011). Bisdionin C shows good inhibition of
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the A. fumigatus chitinase ChiB1 and moderate inhibition of AMCase. Hence, Bis-

dionin C can act as a starting point for the development of potent ChiB1 or AMCase

inhibitors. Recently the use of a fragment-based high-throughput screen identified

a high nanomolar inhibitor for AMCase (Cole et al., 2010). This compound can be

taken orally and shows reduced AMCase activity in an asthma mouse model.



2 Aims of the study

The fungal cell wall is an entity with unique features. Not only does it define the

size of the fungal cell but protects it from bursting due to turgor pressure and from

environmental stress factors, and masks the cell from detection by the host im-

mune system. Many components of and processes occuring in the cell wall are

present only in fungal cells and have no equivalent in human cells. This makes

the biosynthetic pathways involved in the formation and remodelling of the fun-

gal cell wall interesting drug targets. Recently approved antifungal drugs, such as

the echinocandins, specifically block the biosynthesis of cell wall components (Bal,

2010).

The outer layer of the fungal cell wall is formed by mannan. Mannan is composed

of O- and N-linked glycosylated proteins that are decorated with an extensive num-

ber of differently linked mannose residues (Kollár et al., 1997). The biochemical

processes involved in the formation of mannoproteins are well understood (Ballou

et al., 1980, 1991, Hernández et al., 1989, Jungmann and Munro, 1998, Raschke

et al., 1973, Stolz and Munro, 2002, Tsai et al., 1984) (see section 1.2.3, p. 19).

However, the processes that determine which type of mannosylation a protein will

receive are still unclear and may only be understood with structural information of

the enzymes involved (ScMnn9 and ScVan1). The structural information about the

proteins involved in these processes, however, is limited. The fungal commensal

C. albicans is the most common cause of mycotic infections in immunocompro-

mised patients (McNeil et al., 2001). The mannan layer of C. albicans has been

shown to be an important antigen to activate the host immune response (Cambi

et al., 2008, Gingras et al., 2011, Shibata et al., 2012). Additionally, several ad-
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herence factors of C. albicans, necessary to bind to epithelial cells, have been

shown to contain mannan structures (Kanbe and Cutler, 1998, Kanbe et al., 1993,

Miyakawa et al., 1992). This makes mannoproteins themselves and the enzymes

involved in their synthesis potential drug targets. It is interesting to study not only

the effects on host recognition upon altering the biosynthesis but also the possibility

of blocking adhesion factors of fungal pathogens, such as C. albicans.

Furthermore, the extracellular GPI-anchored proteins ScDfg5 and ScDcw1 are

homologs of the Bacillus circulans mannosidase (BcAman6) and seem to be in-

volved in the transglycosylation of mannoproteins in yeasts and filamentous fungi

(Kitagaki et al., 2002, 2004, Maddi et al., 2012, Spreghini et al., 2003, Trow and

Cormack, 2009) (see section 1.2.4, p. 25). Both proteins are essential in S. cere-

visiae and C. albicans, making them excellent drug targets. However, their catalytic

function and structure are unknown.

The aims of this study are to obtain structural and enzymatic insights into the for-

mation and remodelling of mannoproteins by solving the structure of ScMnn9 and

ScVan1, as well as ScDfg5, ScDcw1 or their bacterial homolog BcAman6. In par-

ticular, the structure of the GTs ScMnn9 and ScVan1 could serve as a foundation

for the characterisation of processes involved in the identification of mannoprotein

substrates and the formation of the mannose backbone formed by both enzymes.

Additionally, the structure of all proteins could aid the identification of potent in-

hibitors. In combination with fragment library screens of chemical compounds, the

development of such inhibitors could be significantly improved with structural in-

foramtion.



3 Materials and Methods

3.1 Reagents

3.1.1 Cloning

Oligonucleotides were obtained from in-house synthesis services (University of

Dundee, UoD) or Integrated DNA Technologies (Leuven, Belgium). Deoxyribonu-

cleotides (dNTPs) were purchased from Bioline (London, UK). All restriction en-

donucleases and T4 DNA ligase were purchased from Fermentas (Vilnius, Lithua-

nia). Agarose was purchased from Invitrogen (Paisley, UK). KOD hot start DNA

polymerase was purchased from Novagen (Merck, Darmstadt, Germany). Safe-

View DNA stain was bought from NBS Biologicals (Huntingdon, UK). DNA 1 kb

ladder was obtained from Promega (Southampton, UK). QIAGEN Mini-Prep plas-

mid kit and gel-extraction kit were obtained from Qiagen (Crawley, UK).

3.1.2 Protein expression and purification

Tris base and sodium chloride were obtained from VWR (Lutterworth, UK). DNase I

was purchased from Sigma-Aldrich (Dorset, UK). Hydrochloric acid (HCl) was pur-

chased from BDH Chemicals Ltd. PreScission protease was expressed in the Daan

van Aalten (DvA) laboratory (UoD). Glutathione sepharose 4B (GSH sepharose),

HiTRAP IMAC FF, Q FF and Superdex 75 were all from Amersham Pharmacia

Biosciences (Bucks, UK).

53
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3.1.3 Sodium dodecyl sulphate polyacrylamide gel

electrophoresis

Reagents necessary for SDS-PAGE were 40 % (w/v) 29:1 acrylamide was pur-

chased from Flowgen Bioscience (Nottingham, UK). N,N,N’,N’-tetramethylethylenediamine

(TEMED) was purchased from Sigma-Aldrich (Dorset, UK). b-mercaptoethanol

(BME) was obtained from Fluka (Sigma-Aldrich, Dorset, UK). Sodium dodecyl sul-

phate (SDS) was bought from Melford (Ipswich, UK). Glycine was purchased from

VWR (Lutterworth, UK). Page-Ruler unstained and pre-strained protein ladder was

obtained from Fermentas (Paisley, UK).

3.1.4 Fluorophore-assisted carbohydrate gel electrophoresis

Samples for fluorophore-assisted carbohydrate gel electrophoresis (FACE) were

labelled using 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS) obtained from

Apollo Scientific and sodium cyanoborohydride (NaBH3CN) purchased from Sigma-

Aldrich.

3.1.5 Protein crystallisation

Ammonium sulphate, sodium malonate (Na-malonate), calcium chloride (CaCl2),

manganese chloride (MnCl2), guanosine diphosphate (GDP) and GDP-mannose

(GDP-Man) were all purchased from Sigma-Aldrich (Dorset, UK). 2-[4-(2-hydroxy-

ethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) was obtained from VWR (Lutter-

worth, UK). PEG 6000 was bought from Duchefa Biochemie (Haarlem, Nether-

lands). a-1,6-mannobiose (Man2) was purchased from Carbosynth (Compton,

UK). 4-methylumbelliferyl-a-1,6-mannobiose (4MU-Man2) was synthesised in the

DvA laboratory by Dr. Vladimir Borodkin (UoD).
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3.1.6 Enzyme kinetics

Bovine serum albumin was purchased from Thermo Scientific (Northumberland,UK).

4MU, pyruvate kinase/lactate dehydrogenase, potassium acetate (KAc), and dithio-

threitol (DTT) were all obtained from Sigma-Aldrich (Dorset, UK). 4-methylumbellif-

eryl-mannopyranoside (4MU-Man) was bought from Carbosynth. Reduced nicoti-

namide adenine dinucleotide (NADH) and phosphoenolpyruvate (PEP) were pur-

chased from Apollo Scientific (Stockport, UK).

3.1.7 Bio-layer interferometry fragment screen

5-amino-2-methylindole and 1-(4-chlorophenyl)-3-oxoisoindoline were purchased

from Sigma-Aldrich. 2-(4-methylpiperazin-1-yl)aniline, 2-(1H-imidazol-1-yl)aniline,

and (1-methyl-1H-pyrrol-2-yl)methylamine were bought from Maybridge (Tintagel,

UK).

3.2 Equipment

3.2.1 Cloning

Polymerase chain reactions (PCRs) were carried out in a Bio-Rad MyCycler Ther-

mocycler. Agarose DNA gel electrophoresis was performed in a Scie-plas HU10

mini-plus horizontal electrophoresis unit (Cambridge, UK). Concentration of DNA

was determined on a Thermo Scientific Nanodrop ND-1000.

3.2.2 Protein purification

The FPLC systems AKTA purifier and AKTA prime were from Amersham Pharma-

cia Biosciences (Bucks, UK). Centrifuges, centrifuge rotors, and centrifuge tubes

were all obtained from Beckmann Coulter (High Wycombe, UK). 15 ml Amicon

Ultra-15 centrifugal filter units with a molecular weight (MW) cut-off (MWCO) of
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10 000 units were purchased from Merck Millipore (Billerica, VA, USA). Vivaspin 20

and 500 centrifugal concentrators with a MWCO of 10 000 units, filters for syringes

and filter devices (GF-prefilter, 0.2 µm and 0.45 µm pore size) were bought from

Satorius (Surrey, UK). Disposable 25 ml EconoPac chromatography columns for

batch binding were obtained from BioRad (Herts, UK). Snake Skin dialysis tubing

with a MWCO of 10 000 units was purchased from Thermo-Pierce (Northumber-

land, UK). Protein concentration was determined on a Thermo Scientific Nanodrop

1000.

3.2.3 SDS-PAGE

SDS-PAGE was carried out in an ATTO AE-6450 dual mini slab kit electrophoresis

system (Tokyo, Japan) using an Invitrogen Zoom Dual Power power supply.

3.2.4 FACE

FACE was carried out in an ATTO AE-6450 dual mini slab kit electrophoresis sys-

tem using a Bio-Rad Powerpac Basic power supply.

3.2.5 Protein crystallisation

24-well hanging drop, pre-greased VDX plates, 18 mm circle cover slips, goniome-

ter heads and additional X-ray equipment and tools were from Hampton Research

(California, USA). 96-well sitting drop MRC plates were from Greiner Sciences

(Stonehouse, UK) and crystal clear sealing tape was from Douglas Research (Berk-

shire, UK). Two in-house diffractometers were used to test crystals prior to data

collection at a synchrotron. One diffractometer was a Rigaku (Sevenoaks, UK)

Micromax-007 rotating anode generator equipped with a R-AXIS IV++ image plate

detector and an Rigaku XStream nitrogen cryostream. The other diffractometer

was a Rigaku Micromax-007 HF equipped with a Saturn 944 HG CCD detector

and an ACTOR robot system.
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3.2.6 Enzyme kinetics

A Bio-Tek FLX 800 microtiterplate fluorescence reader (Vermont, USA) was used

to measure the release of 4MU. The oxidation of NADH and the growth of S. cere-

visiae were measured on a Bio-Tek Synergy 2 multi-mode microplate reader.

3.2.7 Bio-layer interferometry fragment screen

A Fortebio Octet RED384 (Menlo Park, CA, USA) machine was used to carry out

the bio-layer interferometry fragment screen.

3.3 Solutions and buffers

3.3.1 Tris-buffered saline

Tris-buffered saline (TBS) was prepared and kindly provided by the media kitchen

(UoD). TBS was prepared as a 10⇥ stock solution containing 500 mM Tris and

1.5 M NaCl. The pH was adjusted to 7.6 and the solution was autoclaved at 121 �C

for 20 min.

3.3.2 Bacterial media

Lysogeny broth (LB) (Bertani, 2004) medium was prepared and kindly provided

by the media kitchen (UoD) as follows: 1 % (w/v) tryptone, 0.5 % (w/v) yeast extract,

and 0.5 % (w/v) NaCl were dissolved in ddH2O, the pH was adjusted to 7.0 and the

solution was autoclaved at 121 �C for 20 min. LB-agar plates were prepared by the

addition of 1.5 % agar to the liquid medium before autoclaving. The liquid medium

containing agar was poured into petri dishes and left to settle.

Autoinduction medium was prepared and kindly provided by the media kitchen

(UoD) according to Studier (2005): 42 mM Na2HPO4, 22 mM KH2PO4, 85 mM

NaCl, 1 % (w/v) tryptone, and 0.5 % (w/v) yeast extract were dissolved in ddH2O,
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the pH was adjusted to 7.2 and the solution was autoclaved at 121 �C for 20 min.

After autoclaving, sterile filtered stock solutions were added to achieve the following

final concentrations: 0.5 % glycerol, 0.05 % glucose, and 0.2 % lactose.

Antibiotics were added to the medium after autoclaving to achieve the following

final concentrations: 100 µg/ml carbenicillin (from here on referred to as LB+Amp

or Autoinduction+Amp) and 20 µg/ml chloramphenicol (from hereon referred to as

LB+Amp+CML).

Super optimal broth with catabolite repression (SOC) medium was prepared

by the media kitchen (UoD) and contained 2 % (w/v) tryptone, 0.5 % (w/v) yeast

extract, 10 mM NaCl, 2.5 mM KCl, and 10 mM MgCl2 dissolved in ddH2O and au-

toclaved at 121 �C for 20 min. A sterile stock solution of glucose was added to

achieve a final concentration of 20 mM.

3.3.3 Yeast medium

YPD medium was prepared and kindly provided by the media kitchen (UoD) as

follow: 1 % (w/v) yeast extract, 2 % peptone (w/v). The solution was autoclaved

and sterile glucose (dextrose) was added to a final concentration of 1 % (w/v).

YPD-agar plates were prepared by the addition of 2 % agar.

DOA–Leu medium was a selection medium lacking the essential amino acid

leucine. It was prepared and kindly provided by the media kitchen (UoD) and con-

tained the following components: 0.7 % (w/v) yeast nitrogen base without amino

acids, 20 mg arginine, 30 mg isoleucine, 30 mg lysine, 20 mg methionine, 50 mg

phenylalanine, 200 mg threonine, 30 mg tyrosine, 200 mg uracil, 150 mg valine,

10 mg adenine, 10 mg histidine, 10 mg tryptophan. For plates, agar was added to

a final concentration of 2 % (w/v). The solution was autoclaved and sterile glucose

solution was added to a final concentration of 2 %.
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3.3.4 DNA agarose gel electrophoresis

The 50⇥ TAE stock solution was kindly provided by the media kitchen (UoD) and

contained 2 M Tris base, 950 mM acetic acid, and 50 mM EDTA (pH 8.0). A 50-fold

dilution was prepared in order to obtain a 1⇥ working solution. 6⇥ DNA loading

buffer (Promega, Southampton, UK) was mixed with sample containing DNA to

achieve a 1⇥ final concentration.

3.3.5 SDS-PAGE buffer

A 10⇥ stock solution of SDS-PAGE running buffer contained 250 mM Tris base,

192 mM glycine, and 0.1 % (w/v) SDS. The stock was diluted 10-fold to obtain a

1⇥ working solution prior to electrophoresis.

3.3.6 SDS-PAGE staining and destaining solution

Proteins on an SDS-PAGE gel were visualised using a solution containing 50 %

methanol, 20 % acetic acid, and 0.05 g/l Coomassie brilliant blue R250. The solu-

tion was filtered to remove colloidal Coomassie brilliant blue. After staining, the gel

was washed several times with the same solution lacking Coomassie brilliant blue.

3.3.7 Tris-borate EDTA buffer for FACE

FACE gels were prepared with an acrylamide concentration of 30 % using 10⇥ TBE

(890 mM Tris base, 890 mM boric acid, and 20 mM EDTA, pH 8.0). A 10⇥ stock

solution of TBE was diluted 10-fold to obtain a 1⇥ working solution for electrophore-

sis.

3.4 Bacterial strains

For cloning the Escherichia coli (E. coli) cell line DH5a (Promega, Southampton,

UK) was used, whilst E. coli BL21(DE3) pLysS cells (Promega, Southampton, UK)
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were used for recombinant protein expression.

3.5 Cell culture

3.5.1 Preparation of competent E. coli cells

E. coli DH5a or BL21(DE3) pLysS cells were streaked from a glycerol stock on a

fresh LB-agar plate and incubated for 16 h at 37 �C. A single colony was used to

inoculate 5 ml of SOC medium which was incubated for 8 h at 37 �C and 200 rpm.

The pre-culture was used to inoculate 1 L of SOC medium which was incubated

at 18 �C until the OD600 reached approximately 0.75. The cells were placed on

ice for 10 min and then harvested in a sterile centrifuge bottle by centrifugation for

20 min at 3300⇥ g and 4 �C. The pellet was re-suspended in 50 ml sterile, ice-

cold TB buffer (10 mM Pipes, 15 mM CaCl2, 250 mM KCl, 55 mM MnCl2, pH 6.7)

per OD600=0.1, incubated on ice for 10 min, and centrifuged again as before. The

pellet was re-suspended in 13 ml ice-cold TB buffer per OD600=0.1 and 7 % sterile

DMSO. The re-suspended cells were incubated for 5 min on ice and then aliquoted

into sterile tubes (100 µl per tube). The aliquots were flash frozen in liquid nitrogen

and stored at �80 �C.

3.5.2 Transformation of competent E. coli cells

To prepare large quantities of plasmid DNA or to recombinantly overexpress genes,

chemically competent E. coli DH5a or BL21(DE3) pLysS cells were, respectively,

transformed with plasmid DNA. Cells had been stored at �80 �C and thawed on

ice. An aliquot of 100 µl of cells was mixed with 200 plasmid DNA and left on

ice for 20 min. Cells were heat-shocked for 30 s at 42 �C and then left on ice for

another 2 min. Cells transformed with a plasmid containing a gene to confer ampi-

cillin resistance were spread onto LB+Amp plates and incubated at 37 �C for 16 h.

BL21(DE3) pLysS carrying an additional chloramphenicol resistance cassette on
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the pLysS plasmid were mixed with 500 µl SOC medium after transformation and

incubated for 60 min at 200 rpm and 37 �C. Cells were collected by centrifugation

at 4300⇥ g for 3 min. Five-hundred microlitre of supernatant was discarded, and

the cell pellet was resuspended in the remaining volume, spread on LB-agar plates

with the corresponding antibiotics and incubated at 37 �C for 16 h.

3.5.3 Transformation of S. cerevisiae

Transformation of S. cerevisiae cells was carried out according to a protocol devel-

oped by Gietz and Woods (2002). A single colony of S. cerevisiae was used to in-

oculate 20 ml YPDA medium and the cells were grown for 16 h at 30 �C at 220 rpm.

The culture was spun down for 5 min at 1000⇥ g, and the pellet was washed twice

in 5 ml sterile ddH2O. For a single transformation, 100 µl of resuspended cells was

mixed with 2 µg of the yeast expression plasmid pRS315 containing the gene of

interest and 300 µl of transformation buffer (40 % PEG 3350, 120 mM lithium ac-

etate, 0.8 mg/ml single-stranded salmon sperm DNA). The transformation mixture

was incubated at 42 �C for 45 min. Cells were spun down for 5 min at 6000⇥ g, the

supernatant was aspirated and the pellet was resuspended in 100 µl sterile ddH2O.

The transformed cells were spread on DOA-agar plates lacking leucine and incu-

bated for 48 h at 30 �C.

3.6 Molecular biology

3.6.1 DNA concentration determination

DNA concentration was determined by measuring the absorbance of a DNA sam-

ple at l=260 nm and with an extinction coefficient for double-stranded DNA of

0.020 (µg/ml)−1 cm−1.
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3.6.2 PCR

PCR was used to amplify DNA from genomic or plasmid templates in order to clone

the product into expression plasmids or to confirm a successful transformation.

Furthermore it was used to introduce mutations into genes leading to mutations in

the protein of interest. A DNA polymerase with 3’->5’ exonuclease activity, KOD

DNA polymerase (Novagen), was used to amplify the DNA. A typical 25 µl reaction

is shown in Table 3.1.

Table 3.1: Typical PCR reaction with KOD DNA polymerase

Component [stock] volume (µl) [final]

ddH2O — 16 —
Reaction buffer 10x 2.5 1x
MgSO4 25 µM 1.5 1.5 µM
dNTPs 25 mM 1.5 1.5 mM
sense/anti-sense primer 10 µM 1.0 0.4 µM
Template DNA 50 ng/µl 1.0 2 ng/µl
KOD DNA polymerase 1 U/µl 0.5 0.02 U/µl

Table 3.2 lists the oligonucleotides used to synthesise the DNA amplicons used

in this thesis.

Table 3.2: Oligonucleotides used for PCR to synthesise gene products of interest. Italic nucleotides
indicate the restriction site. F, forward. R, reverse.

ScMnn9

D92 F KasI ATGGCGCC GAAGGTCATATTGCACATTATGATT

TGAACAAATTGC

D92 R BamHI ATGGATCC ATCAATGGTTCTCTTCCTCTATGTG

ATAAACC

ScVan1

D86 F KasI GCGGCGCC ATGGGCATTGGTGTATCCACGC

D136 F KasI GCGGCGCC GATGGTGTGCAACATTATC

D146 F KasI GCGGCGCC TTTGGTTCAGAAGTGTTG

D156 F KasI GCGGCGCC GATGAAAAATACCAAAGGG



3 Materials and Methods 63

Construct Direction Restriction enzyme DNA sequence (5’!3’)

D166 F KasI GCGGCGCC CTTTTTGATTCCACTGTTGAGGAGT

ACGAC

x—513 R BamHI ATGGATCC ATAAATATGCCAAATAGTATAATGCG

x—535 R BamHI ATGGATCC ATTACTCTGATTGTCTTCTCTTCTC

TCTTTCCC

BcAman6

35–375 F Bgl II ATAGATCT TATACCGCATCAGATGGGGATAC

35–375 R Not I ATGCGGCCGC ACTAGATACCGTTTAAAGCTTG

The reaction was mixed, briefly centrifuged and transferred to a PCR thermocy-

cler which ran the program shown in Table 3.3.

Table 3.3: Thermocycler settings for a PCR with KOD DNA polymerase

Reaction temperature (�C) time (s)

1 Polymerase activation 94 240
2 Denaturation 94 30
3 Annealing 56 30
4 Elongation 70 20 per 1kb
5 Final elongation 70 600
6 Hold step 20 infinite

Steps 2–4 were repeated 25–30 times.

To confirm successful transformation by colony PCR, GoTAQ (Promega) was

used typically in a 15 µl reaction as shown in Table 3.4.

Table 3.4: PCR reaction with GoTAQ DNA polymerase

Component [stock] volume (µl) [final]

ddH2O 4.5
Reaction buffer 2x 7.5 1x
sense/anti-sense primer 10 µM 1 0.4 µM
Template DNA 50 ng/µl 1.0 2 ng/µl
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The reaction buffer contained the dNTPs and the GoTAQ DNA polymerase. After

a brief mix and collection of the sample at the bottom of the tube, a program, as

shown in Table 3.5, was run on a PCR thermocycler.

Table 3.5: Thermocycler settings for a PCR with GoTAQ DNA polymerase

Reaction temperature (�C) time (s)

1 Polymerase activation 94 240
2 Denaturation 94 30
3 Annealing 56 30
4 Elongation 72 60 per 1kb
5 Final elongation 70 600
6 Hold step 20 infinite

Steps 2–4 were repeated 18 times.

3.6.3 Mutagenesis PCR

In order to obtain point mutants of the proteins of interest, mutagenesis PCR was

carried out to introduce mutations in the corresponding genes. KOD hot start DNA

polymerase was used. A typical 25 µl PCR reaction is shown in Table 3.1, ex-

cept that only 5 ng/µl template PCR were used to obtain a final concentration of

0.2 ng/µl.

A list of the mutagenesis oligonucleotides used in this thesis is shown in Ta-

ble 3.6.

Table 3.6: Oligonucleotides used for mutagenesis PCR. F, forward. R, reverse

ScMnn9D92

Q124A F GCATATTTTGATATTGACTCCAATGGCAACATTTCATC

AACAATACTGGGAC

Q124A R GTCCCAGTATTGTTGATGAAATGTTGCCATTGGAGTCA

ATATCAAAATATGC

Q187A F CTCAAAGATTTAGTAAAATTACTATTTTGCGAGCTAAT

TCCCAGAGTTTTGATAAGTTGATGGAG

Continued on next page
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Mutagenesis Direction DNA sequence (5’!3’)

Q187A R CTCCATCAACTTATCAAAACTCTGGGAATTAGCTCGCA

AAATAGTAATTTTACTAAATCTTTGAG

R209A F GCTTTAGATGTTCAAAAGGAAGCTCGTGCAGCAATGGC

TTTGGCG

R209A R CGCCAAAGCCATTGCTGCACGAGCTTCCTTTTGAACAT

CTAAAGC

M213A F GGAAAGACGTGCAGCAGCGGCTTTGGCGCGCAATG

M213A R CATTGCGCGCCAAAGCCGCTGCTGCACGTCTTTCC

R217A F GTGCAGCAATGGCTTTGGCGGCCAATGAATTACTATTC

TCC

R217A R GGAGAATAGTAATTCATTGGCCGCCAAAGCCATTGCTG

CAC

D236N F GGTGCTGTGGCTAAATGCCGATATTATAGAGACACC

D236N R GGTGTCTCTATAATATCGGCATTTAGCCACAGCACC

Y267-P274_GGGG

(primer to remove hairpin loop)

F CATTTATCAAAGATTTGGTGGCGGAGGGTCAATCAGAC

Y267-P274_GGGG

(primer to remove hairpin loop)

R GTCTGATTGACCCTCCGCCACCAAATCTTTGATAAATG

Y279F F CAATCAGACCATTCGATTTCAAC

Y279F R GTTGAAATCGAATGGTCTGATTG

D280N F ATCAGACCATACAATTTCAACAACTGG

D280N R CCAGTTGTTGAAATTGTATGGTCTGAT

E305A F GAGATTATTGTCCAGGGTTATGCAGAA

E305A R TTCTGCATAACCCTGGACAATAATCTC

T365A F CCATTTTATCACTTGATTGAAGCAGAAGGTTTTGCTAA

GATGGC

T365A R GCCATCTTAGCAAAACCTTCTGCTTCAATCAAGTGATA

AAATGG

H389A F GGCTTACCAAACTATTTGGTTTATGCTATAGAGGAAGA

GAACCATTGATGGATCC

H389A R GGATCCATCAATGGTTCTCTTCCTCTATAGCATAAACC

AAATAGTTTGGTAAGCC

Continued on next page
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Mutagenesis Direction DNA sequence (5’!3’)

ScVan1

D361N F GGTTTATTGGAGAAATGCTGATGTAGAGCTGTGCCCTGG

D361N R CCAGGGCACAGCTCTACATCAGCATTTCTCCAATAAACC

BcAman6

F72A F CATCAAGACGCCTGGGTGGAG

F72A R CTCCACCCAGGCGTCTTGATG

W73A F CAAGACTTCGCGGTGGAGGCTG

W73A R CAGCCTCCACCGCGAAGTCTTG

N120A F TGGACGAATGCCCCGTTCAATG

N120A R CATTGAACGGGGCATTCGTCCA

F122A F AATAACCCGGCCAATGACGATATTATG

F122A R CATAATATCGTCATTGGCCGGGTTATT

D124N F CCGTTCAATAACGATATTATG

D124N R CATAATATCGTTATTGAACGG

D125N F GTTCAATGACAATATTATGTGG

D125N R CCACATAATATTGTCATTGAAC

D124/D125N F CCGTTCAATAACAATATTATGTGG

D124/D125N R CCACATAATATTGTTATTGAACGG

W128A F GATATTATGGCGTGGGCGATG

W128A R CATCGCCCACGCCATAATATC

W172A F GGCATTTGGGCGCTGAACAGC

W172A R GCTGTTCAGCGCCCAAATGCC

R229A F GTGTTCGACGCCATCGAAATTG

R229A R CAATTTCGATGGCGTCGAACAC

Y243A F GCCACTCACGCCAACCAGGGTAC

Y243A R GTACCCTGGTTGGCGTGAGTGGC

N292A F GAAGGTCCCGCCGGGGATCTG

N292A R CAGATCCCCGGCGGGACCTTC

D294N F CCCAACGGGAATCTGAAAGGC

D294N R GCCTTTCAGATTCCCGTTGGG

The reaction was mixed, briefly centrifuged and transferred to a PCR thermocy-
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cler which ran the program shown in Table 3.4, except that the time of the elonga-

tion step (step 4) was increased to 30 s per 1kb.

Steps 2–4 were repeated 16 times. The reaction was mixed with 10 U DpnI, to

degrade the parental strand used as template, and incubated at 37 �C for 60 min.

Five microlitre of the product was used to transform E. coli DH5a cells.

3.6.4 Cloning

PCR amplicons were inserted into expression vectors (Table 3.7). The help of Dr.

Andrew Ferenbach for many cloning experiments was very welcome and appreci-

ated. An aliquot of the gene amplification reaction containing PCR was separated

on a DNA agarose gel in order to confirm the correct length of the product. The

amplicon and the target vector were incubated with the appropriate restriction en-

donucleases according to manufacturer’s guidelines. In order to remove the en-

donucleases and the excised fragment of the vector after digest, the PCR product

and the vector were run on a DNA agarose gel. Gel pieces of both, the vector and

the insert, were excised from the gel and the gel piece containing the amplicon

and vector were combined and purified as described in section 3.6.7. Both DNA

products were eluted into 20 µl ddH2O. Thirteen microlitres of the eluate were com-

bined with 1.5 µl 10⇥ ligation buffer and 0.5 µl T4 ligase. Ligation occurred at room

temperature (RT) for 60 min. E. coli DH5a cells were transformed with 5 µl of the

ligation mixture according to the protocol described in section 3.5.2.

3.6.5 DNA preparation

In order to obtain pure plasmid DNA, the QIAGEN plasmid mini-prep kit was used.

Briefly, a single colony of E. coli DH5 a containing the plasmid of interest was

used to inoculate 5 ml LB-medium containing the appropriate antibiotic. The cells

were grown for 16 h at 37 �C and 200 rpm. The cells were harvested for 5 min at

3500⇥ g. The plasmid DNA was extracted according to the manufacturer’s hand-

book. DNA was eluted into 40 µl ddH2O.



3 Materials and Methods 68

Table 3.7: Expression vectors used in this thesis. R, selection by resistance against the antibiotic
indicated.

Vector name Backbone Selection Features

E. coli expression vectors

pNIFTY/MBP pST35 (Tan, 2001) AmpR Introduces a maltose binding protein
(MBP), 6xHis tag and a tobacco etch
virus (TEV) protease cleavage site at the
N-terminus of the protein of interest

pGEX-6P-1 pBR322 AmpR Introcuces a gluthathione-S-transferase
(GST) and a PreScission protease cle-
vage site at the N-terminus of the protein
of interest

Pichia pastoris expression vectors

pPIC9 pBR322 His(–) Introduces a cleavable secretion signal at
the N-terminus of the gene of interest.

pPICZa pUC ZeocinR Introduces a cleavable secretion signal at
the N-terminus of the gene of interest.

S. cerevisiae expression vectors

pRS315 pBLUESCRIPT Leu(–) Contains a centromere sequence and
an autonomously replicating sequence
(Sikorski and Hieter, 1989)

3.6.6 Agarose DNA gel electrophoresis

Agarose DNA gel electrophoresis was used to separate DNA fragments by size.

Agarose (Invitrogen) was dissolved in 1⇥ TAE to a final concentration of 1 % by

bringing the suspension to a boil. The solution was left until it cooled down to ap-

proximately 70 �C when it was mixed with 5 µl SafeView (NBS Biologicals) DNA

stain. The solution was poured into a gel cradle and a comb was inserted to form

sample pockets. A gel formed after 30 min at ambient temperature. The comb

was removed and the gel was transferred to an electrophoresis chamber and sub-

merged in 1⇥ TAE. Samples were mixed with 6⇥ DNA loading buffer prior to load-

ing them in the sample pockets. The samples were run from the anode to the

cathode alongside a DNA standard ladder (Promega) for 25 min at 120 V. DNA

was visualised on a UV transilluminator (Bio-Rad) and images were taken digitally

for further processing.
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3.6.7 DNA extraction from agarose gels

A QIAGEN gel extraction kit was used to extract DNA according to the manufac-

turer’s handbook. Briefly, a gel piece containing the DNA of interest was solubilised

and DNA was bound to a binding resin. The DNA was washed and eluted with

ddH2O.

3.7 Protein expression, analysis and purification

3.7.1 Preparation of gels for SDS-PAGE

In order to prepare SDS-PAGE gels, two glass plates were assembled with rubber

gaskets and clamps according to the manufacturer’s protocol. First, the separation

gel was prepared by mixing the individual chemicals shown in Table 3.8. Six millil-

itre of the solution was poured between the two glass plates per gel. In order to

avoid air bubbles and to create a smooth surface, the solution was covered with

iso-propanol. The mixture was left to polymerise for at least 20 min at RT. The iso-

propanol was thoroughly washed away with water and any remaining water was

removed using Whatman filter paper. The stacking gel solution was prepared as

shown in Table 3.8, mixed and poured on top of the polymerised separation gel.

A comb was inserted to create sample pockets. The stacking gel was left to poly-

merise for at least 20 min. Gels were used immediately or stored in a humid bag at

4 �C.
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Table 3.8: Recipe for the stacking and separating solutions for a 10 % SDS-PAGE gel, volumes per
gel is shown.

Stacking gel Separation gel

Component [stock] volume volume

ddH2O — 2.4 ml 3.4 ml
bis-acrylamide (29:1) 40 % 284 µl 1.8 ml
Tris-HCl, pH 6.8 2.0 M 186 ml —
Tris-HCl, pH 8.6 1.5 M — 1.8 ml
SDS 10 % (w/v) 30 µl 70 µl
TEMED — 3 µl 6 µl
APS 10 % (w/v) 26 µl 24 µl

3.7.2 SDS-PAGE

SDS-PAGE was performed in order to judge the level of protein expression or to

follow protein enrichment. The sample of interest was mixed with 4⇥ Laemmli

buffer (Laemmli, 1970). The samples were heated to 95 �C for 5 min and then

centrifuged for 1 min at 12 000⇥ g to remove any precipitation. The sample was

loaded into a pocket formed by the comb during gel polymerisation on a gel that

was submerged in Tris-glycine running buffer in the electrophoresis system. A pro-

tein molecular weight standard ladder was run alongside. The gel was run at 200 V

until the bromophenol blue running front reached the bottom end of the gel. The

gel was removed from the electrophoresis system and the glass plates were sepa-

rated to gain access to the gel. The proteins were visualised with staining solution

for 30 min under constant agitation. To remove excess stain, the gel was rinsed

three times with water and subsequently washed several times for at least 10 min

each time in destaining solution until a good contrast between the background and

the proteins on the gel was achieved.
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3.7.3 Protein concentration determination

Protein concentration was determined by measuring the absorbance of a protein

sample at l=280 nm and its calculated extinction coefficient (ProtParam, Wilkins

et al. 1999) using formula 3.1:

c =
A

Eb
(3.1)

where c is the concentration of the protein, A is the absorbance at l=280 nm, E

is the extinction coefficient, and b is the path length.

3.7.4 Glycerol stocks of bacterial expression cells

A single colony of E. coli BL21(DE3) pLysS cells containing the plasmid of interest

was used to inoculate 2 ml of LB medium containing the appropriate antibiotic. The

culture was incubated for 16 h at 37 �C and 200 rpm. Cells were mixed with the

equivalent volume of sterile 80 % glycerol and flash frozen in liquid nitrogen. The

frozen cells were transferred to �80 �C for long-term storage.

3.7.5 Expression conditions of ScMnn9D92

E. coli BL21(DE3) pLysS cells were transformed with pNIFTY/MBP containing the

gene encoding ScMnn9D92. A fresh overnight culture of E. coli BL21 transfor-

mants was diluted 1:50 in autoinduction medium (Studier, 2005) containing 100 µg/ml

carbenicillin and grown at 18 �C for 24 h. Cells were harvested by centrifugation at

3300⇥ g for 30 min at 4 �C and the pellet was resuspended in lysis buffer (25 mM

Tris-HCl, pH 7.5, 250 mM NaCl, 30 mM imidazole) and kept frozen at �80 �C until

lysis.
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3.7.6 Cell lysis and purification of ScMnn9D92

Resuspended cells were supplemented and DNase I (Sigma-Aldrich, 1 mg/l of ex-

pression culture) and lysed on a constant cell disruptor system at 15 kpsi (Avestin).

The lysate was spun down for 30 min at 31 000⇥ g and 4 �C. The soluble frac-

tion was passed through a 0.2 µm filter and bound to Ni2+ charged immobilised

metal-affinity chromatography (IMAC) resin (GE Healthcare) by batch binding for

45 min at 4 �C. Unspecific proteins were washed off by applying ten column vol-

umes (CV) of lysis buffer. The protein of interest was eluted with three CV lysis

of buffer supplemented with 200 mM imidazole. The eluate was dialysed against

buffer A (25 mM Tris-HCl, pH 7.5) for 2 h at RT. The MBP-6xHis-tag was cleaved

off by adding 500 µg TEV protease and incubating for 16 h at 4 �C. Cleaved pro-

tein was injected onto a 5 ml HiTRAP Q FF column (GE Healthcare) equilibrated in

buffer A. The MBP-6xHis tag was removed by washing with two CV buffer A con-

taining 150 mM NaCl. ScMnn9D92 was eluted using three CV buffer A containing

400 mM NaCl. Fractions containing the protein of interest were pooled and dial-

ysed against buffer B (25 mM Tris-HCl, pH 7.5, 150 mM NaCl and 2 mM MnCl2) for

2 h at RT. The sample was concentrated to 1 ml and injected onto a Superdex 75

size exclusion column equilibrated in buffer B. Fractions containing ScMnn9D92

were pooled, concentrated to 5 mg/ml, flash frozen in liquid nitrogen and stored at

�80 �C.

3.7.7 Expression conditions, cell lysis and purification of

ScVan1D86

Expression of ScVan1D86 in E. coli BL21(DE3) pLysS cells, cell lysis and purifica-

tion was essentially carried out as described for ScMnn9D92 in sections 3.7.5 and

3.7.6.
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3.7.8 Expression conditions of BcAman6

E. coli BL21(DE3) pLysS cells were transformed with pGEX-6P-1 (GE Healthcare),

introducing an N-termainl GST-tag and a PreScission protease cleavage site, and

containing the gene encoding BcAman6. A fresh overnight culture of E. coli BL21

transformants was diluted 1:50 in autoinduction medium (Studier, 2005) contain-

ing 100 µg/ml carbenicillin and grown for 24 h at 20 �C and 130 rpm. Cells were

harvested by centrifugation at 3300⇥ g for 30 min at 4 �C and the pellet was resus-

pended in lysis buffer (25 mM Tris-HCl, pH 7.5, 300 mM NaCl) and kept frozen at

�80 �C until lysis.

3.7.9 Cell lysis and purification of BcAman6

Resuspended cells were supplemented with DNase I (Sigma-Aldrich, 1 mg/l of ex-

pression culture) and lysed on a constant cell disruptor system (Avestin) at 15 kpsi.

The lysate was spun down for 30 min at 31 000⇥ g and 4 �C. The soluble frac-

tion was passed through a 0.2 µm filter and bound to glutathione sepharose 4B

resin (GE Healthcare) for 45 min at 4 �C. Unspecific proteins were washed off by

applying ten CV of lysis buffer. The protein of interest was eluted with three CV ly-

sis buffer supplemented with 50 mM glutathione. The eluate was dialysed against

lysis buffer for 2 h at RT. The GST tag was cleaved off by adding 20 µg PreScis-

sion protease and incubated for 16 h at 4 �C. Cleaved protein was mixed with

glutathione sepharose 4B resin and incubated for 30 min at 4 �C. The unbound

material, containing cleaved BcAman6, was collected, concentrated and injected

onto a Superdex 75 size exclusion column equilibrated in lysis buffer. Fractions

containing BcAman6 were pooled, concentrated to 40 mg/ml, flash frozen in liquid

nitrogen and stored at �80 �C.
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3.8 Enzymology

3.8.1 Steady state kinetics of ScMnn9D92

A description of the assay used to determine steady-state kinetics of ScMnn9D92

can be found in section 4.3 and Fig. 4.9A. Briefly, ScMnn9D92 transfers man-

nose from GDP-Man to the acceptor analogue 4-methylumbelliferyl-a-D-manno-

pyranoside (4MU-Man) to form 4MU-Man2. This product is the substrate for the

mannosidase BcAman6 which releases 4MU. To determine steady state kinetics of

ScMnn9D92 and the two substrates GDP-Man and 4MU-Man, 500 nM ScMnn9D92

was incubated in 20 mM HEPES, pH 7.5, 10 mM MnCl2, 0.2 mg/ml BSA, 10 µM

BcAman6 with GDP-Man and 4MU-Man in a total volume of 50 µl. Initial rates

of mannotriose formation were measured with substrate concentrations ranging

from 0–1.2 mM GDP-Man with 10 mM 4MU-Man, and from 0–10 mM 4MU-Man

with 1.2 mM GDP-Man. Product formation was determined fluorimetrically by de-

tection of 4MU at lex=360 nM and lem=460 nM over a time course that was within

the linear range of the reaction and during which less than 10 % of the substrate

was converted. The data were corrected for background emission from the buffer

and the substrate alone and Michaelis-Menten parameters were obtained using

GraphPad Prism 5.

3.8.2 In vitro mannosyltransferase assay

Mannosyltransferase assays containing 500 nM ScMnn9D92 and/or 500 nM ScVan1,

20 mM HEPES, pH 7.5, 10 mM MnCl2, 10 mM a-1,6-D-mannobiose (Man2), and

1.2 mM GDP-Man were incubated for 16 h at 30 �C, and stopped by adding 3 vol-

umes of ice-cold ethanol. The reaction products were labeled with 750 nmol 8-

Aminonaphthalene-1,3,6-trisulphonic acid (ANTS) and used in FACE based on a

published protocol (Jackson, 1990) and described in section 3.8.3.
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3.8.3 FACE

FACE was used to visualise the reaction products after in vitro mannosyltransfer.

In order to separate the reaction products according to their molecular weight, an

8 % stacking gel and a 30 % separation gel were used. The preparation was similar

to an SDS-PAGE gel (section 3.7.1). However, the components and volumes used

for the gel were different and a are shown in Table 3.9. The polymerised gel was

transferred to a electrophoresis system filled with 1⇥ TBE buffer and pre-run for

20 min at 4 �C and 300 V.

Table 3.9: Recipe for the stacking and 30 % separating solutions for a FACE gel, volumes per gel
is shown.

Stacking gel Separation gel

Component [stock] volume volume

ddH2O — 2.3 ml 1.0 ml
bis-acrylamide (29:1) 40 % 375 µl 5.3 ml
TBE 10⇥ 300 µl 700 µl
TEMED — 3 µl 3 µl
APS 10 % (w/v) 30 µl 70 µl

Meanwhile, the excess of DMSO and NaBH3CN of the ANTS-labelled samples

was removed in a vacuum centrifuge at 45 �C for 60 min. The samples were re-

suspended in 30 µl FACE loading buffer (1:4 glycerol:water), and loaded onto the

pre-run gel. Electrophoresis occurred for 90 min at 300 V and 4 �C. After elec-

torphoresis, the glass plates were separated, the gel was transferred between

two plastic sheets and the ANTS-labelled carbohydrates were visualised on a UV-

transilluminator. A digital copy of the gel was saved for further processing.

3.8.4 Steady state kinetics of BcAman6

To determine enzyme kinetics of BcAman6 with the substrate analogue 4MU-

Man2, 500 nM BcAman6 was incubated in 100 mM HEPES, pH 7.0, 10 mM CaCl2,

0.2 mg/ml BSA and 4MU-Man2 in a total volume of 50 µl. Initial rates of a-1,6-
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mannobiose-4MU hydrolysis were measured with substrate concentrations in the

range of 0–5 mM in 3.8 % DMSO. This concentration of DMSO was necessary to

achieve substrate solubility and did not effect enzyme activity. The liberation of

4MU was measured fluorimetrically at lex=360 nm and lem=460 nm over a time

course that was within the linear range of the reaction and during which less than

10 % of the substrate was converted. The data were corrected for background

emission from the buffer and the substrate alone and Michaelis-Menten parame-

ters were obtained using GraphPad Prism 5.

3.8.5 Bio-layer interferometry fragment screen

To identify chemical compounds that bind to BcAman6 a novel bio-layer interferom-

etry fragment screen was used. BcAman6 was biotinylated with Thermo Scientific

EZ-Link NHS-PEG4-Biotin according to manufacturer’s instructions in an equimo-

lar ratio in 100 mM HEPES, pH 7.0, 10 mM CaCl2 (buffer A). The help obtained

from Dr. David Robinson (DDU) in order to carry out the fragment screen is appre-

ciated. Biotinylated BcAman6 at a final concentration of 12.5 µg/ml was bound to

superstreptavidin-coated biosensors and free streptavidin sites were blocked with

10 µg/ml biocytin. All fragments were used at a final concentration of 200 µM.

Streptavidin-bound BcAman6 was first equilibrated in buffer A for 60 s, followed

by a 60 s association step in the fragment solution and a 60 s dissociation step in

buffer A. Good binders were selected by using fragments that showed a higher than

3s response compared to the median. The compounds that fulfilled this criterium

were further analysed by testing five concentrations each at a 3-fold serial dilution

starting at 500 µM to confirm hits, determine stoichiometry and characterise initial

kinetic parameters.
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3.9 Protein crystallography

3.9.1 Crystallisation methods

Crystals of proteins described in this thesis were grown by two different tech-

niques: sitting-drop vapour diffusion (ScMnn9D92) and hanging-drop vapour dif-

fusion (BcAman6). For sitting-drop vapour diffusion a 96-well MRC plate was used

and the reservoir well was filled with 60 µl of mother liquor from a crystal screen

kit or of the known crystallisation condition. Half a microlitre of the protein was

manually pipetted onto the sitting-drop platform and mixed with the same volume

of mother liquor from the reservoir and/or another additive. Finally, the plate was

sealed air-tight with Crystal Clear tape.

For the hanging-drop vapour diffusion method a 24-well pre-greased, VDX plate

was used. Each well was filled with 500 µl mother liquor. One microlitre of protein

solution was pipetted onto a circular glass cover slip and mixed with the same

volume of mother liquor from the well and/or another additive. The glass cover slip

was inverted and used to seal the well air-tight. Crystals were grown at 20 �C.

3.9.2 Crystal handling

Crystals were handled with nylon loops matching the crystal’s size. In order to ob-

tain structures in complex with substrate(s), product(s) and/or a heavy metal deriva-

tive, protein crystals were soaked in a solution containing the mother liquor and

the substrate(s), product(s), and/or heavy metal derivative of interest for a given

time. Prior to freezing, the crystal was transferred into a solution containing the

mother liquor, the substrate(s) and/or the product(s), and an appropriate cryopro-

tectant. The cryoprotectant was identified by mixing the mother liquor with various

concentrations of known protectants such as glycerol, low-molecular weight PEG,

isopropanol, ethylene-glycol, or 2-methyl-2,4-pentanediol (MPD). The suitability of

the protectant was tested by putting a loop containing mother liquor and cryopro-

tectant into a cryostream at a temperature of 100 K. If the solution remained clear
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the cryoprotectant was deemed suitable to avoid the formation of ice. However,

further testing was done to identify if the cryoprotectant affected the diffraction of

the protein crystal. Diffraction data were solely collected from crystals frozen in

liquid nitrogen and kept in a cryostream at 100 K during data collection.

3.9.3 Determination of the ScMnn9D92-GDP complex structure

Octahedral ScMnn9D92 crystals were grown by vapour diffusion in 1 µl sitting drops

containing 0.5 µl protein and 0.5 µl mother liquor (0.1 M HEPES, pH 7.5 and 2 M

ammonium sulphate). Crystals were transferred to 50 % Na-malonate, pH 7.5 con-

taining 100 mM mersalyl acid and soaked for 16 h at 20 �C. Soaked crystals were

frozen directly in liquid nitrogen since the Na-malonate acted as a cryoprotectant

(Holyoak et al., 2003). A 38-fold redundant 2.2 Å data set, collected at beamline

ID14-4 at the European Synchrotron Radiation Facility (ESRF, Grenoble, France),

which was used for single-wavelength anomalous dispersion (SAD) phasing. Ini-

tial phases were calculated from a single Hg-site using the SHELX program suite

(Sheldrick, 2010). Solvent flattening was also performed with SHELX, which gave a

good quality map showing protein/solvent boundaries and some secondary struc-

ture elements. The map was used as input for warpNtrace (Perrakis et al., 1999)

which built 200 out of 305 residues. There is one molecule in the asymmetric

unit. Model building and refinement was continued in COOT (Emsley and Cow-

tan, 2004) and REFMAC (Murshudov et al., 1997), yielding the final model with

statistics shown in Table 4.1.

Crystals of ScMnn9D92 D236N were transferred to 50 % Na-malonate, pH 7.5

and soaked with 3 mM GDP and 10 mM MnCl2 for 10 min at 20 �C and then flash

frozen in liquid nitrogen. Diffraction data were collected at beamline ID14-4 at

the ESRF to 2.0 Å. Refinement was initiated from the native structure using rigid

body refinement. This revealed well defined |FO|�|FC| electron density for GDP and

Mn2+. Model building and refinement was performed as described above. Statistics

of the final model are shown in Table 4.1.
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3.9.4 Determination of the BcAman6 structure

Rod shaped crystals of BcAman6 were grown by vapour diffusion in 2 µl hanging

drops containing 1 µl protein and 1 µl mother liquor (0.1 M HEPES, pH 7.0, 0.2 M

CaCl2 and 20 % (w/v) PEG 6000). Crystals were transferred to a drop containing

the original condition supplemented with 20 % glycerol prior to freezing in liquid

nitrogen. A 12-fold redundant data set was collected at beamline I-24 at the Dia-

mond Light Source (Didcot, UK). The structure was solved by molecular replace-

ment with the coordinates of a model of BcAman6 produced by RaptorX (Källberg

et al., 2012) and Phaser (McCoy et al., 2007). The resulting model was refined

using REFMAC (Murshudov et al., 1997). The refined model was used as input for

Phenix AutoBuild (Adams et al., 2010). Stretches of amino acids without clear den-

sity from the resulting model were removed in COOT (Emsley and Cowtan, 2004).

The trimmed model was used as input for warpNtrace (Perrakis et al., 1999). The

output gave a better model of BcAman6 in agreement with the electron density.

Model building and refinement was continued in COOT and REFMAC, yielding the

final refinement statistics shown in Table 6.1.

3.10 Figures

3.10.1 Structure representation

All figures representing protein structures were created with the molecular visual-

isation program PyMOL. Alignments were carried out with the programme ALINE

(Bond and Schüttelkopf, 2009). Structures of chemical compounds were drawn

with CS ChemDraw Ultra 12 (CambridgeSoft, Cambridge, MA, USA).

3.10.2 Structure superimposition

Structure superpositions were made with the SSM Superpose command in COOT

(Emsley and Cowtan, 2004).
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3.10.3 Data analysis and enzymological figures

All non-linear regression analysis was carried out using the programme Prism 5

(GraphPad, La Jolla, CA, USA).

3.10.4 Image annotation

Images shown in this thesis were annotated using Apple Pages (Apple, Cupertino,

CA, USA).



4 Mannosyltransferase ScMnn9 –

Results and Discussion

4.1 Cloning, heterologous expression and

purification of ScMnn9D92

Mnn9 from yeasts and filamentous fungi possess high levels of sequence conser-

vation, in particular in the C-terminal globular domain that forms the active site

(Fig. 4.1). The S. cerevisiae Mnn9 was used for the experiments described here

because of the extensive knowledge about its in vivo and in vitro activity. This in-

formation was useful for the determination of a construct that was both active and

likely to crystallise due to the lack of membrane domains or disordered regions.

In order to membrane domains and disordered regions at the protein level, the

amino acid sequence of ScMnn9 was used as input to several prediction tools avail-

able on the world wide web. The TMHMM server (Krogh et al., 2001) was used to

predict the transmembrane domain, which isnecessary to anchor ScMnn9 in the

Golgi membrane (Fig. 4.1) To identify the disordered linker region, the secondary

structure of ScMnn9 was predicted by PORTER (Pollastri and McLysaght, 2005)

(Fig 4.1). Using this information and the alignment across several fungal species,

the mnn9 gene encoding for amino acid residues 93–395 (ScMnn9D92) was am-

plified from the genomic DNA of S. cerevisiae (Fig. 4.1). The gene was cloned

into an E. coli expression vector (pNIFTY/MBP), which introduced an N-terminal

maltose-binding protein (MBP)-tag, followed by a hexahistidine tag and a tobacco

81
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Figure 4.1: Alignment of Mnn9 from different fungal species. The amino acid sequences were
aligned and conservation and similarity is shown in grey scale with black being identical between all
species. The secondary structure prediction of ScMnn9 is shown above the amino acid sequence,
where red cylinders represent a-helices and blue arrows represent b-strands. The predicted N-
terminal transmembrane domain is indicated by a box with a green line, whereas the canonical
DXD motif is indicated by a filled green box. The star indicates the start of the construct of ScMnn9
used for this thesis (ScMnn9D92).

etch virus (TEV) protease cleavage site. E. coli BL21(DE3) pLysS cells were trans-

formed with the expression plasmid containing the mnn9 gene and the protein

was expressed in autoinduction medium (Studier, 2005). After lysis, the protein

was bound to immobilised metal affinity chromatography (IMAC) resin charged

with Ni2+ and eluted with imidazole (Fig. 4.2). After dialysis, the MBP-6⇥His-TEV

tag was cleaved off by TEV protease and the tag was completely removed from

cleaved ScMnn9D92 by anion exchange chromatography. Uncleaved and cleaved

ScMnn9D92 were separated by size-exclusion chromatography and the enriched

cleaved protein was concentrated to 5 mg/ml. Overall a yield of 2 mg of protein per

litre of bacterial culture was obtained (Fig. 4.2).

Crystals grew from the protein at a concentration of 5 mg/ml within 24 h in a

condition containing ammonium sulphate as precipitant (Fig. 4.3A). A 2.2 Å diffrac-

tion data set of a mersalyl acid soaked crystal was collected and used for single-

wavelength anomalous dispersion (SAD) phasing in order to determine the struc-

ture of ScMnn9D92 (Fig. 4.3B, Table 4.1). The structure of ScMnn9D92 D236N, a

mutation similar to D236A that has been shown to be inactive (Stolz and Munro,

2002), in complex with GDP and Mn2+ was solved using the initial model from the

SAD experiment and a 2.0 Å data set of the mutant (Fig. 4.4A). Refinement of this

complex yielded a final R/Rfree of 0.19/0.24 (Table 4.1).
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Figure 4.3: Crystallisation and diffraction of ScMnn9D92. A, Crystal of ScMnn9D92 grown in
a solution containing ammonium sulphate as precipitant. B, Diffraction of a crystal of ScMnn9D92
collected at the ESRF (Grenoble, France). The right frame is a 100 % crop of the area indicated in
the left frame.
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4.2 ScMnn9D92 is structurally similar to GT-15 and

GT-78 mannosyltransferases

The structure reveals that ScMnn9D92, and by extension the entire GT-62 gly-

cosyltransferase family, is a GT-A fold GT as it was previously proposed by se-

quence analysis (Liu and Mushegian, 2003) (Fig. 4.4A). Ten b-strands form a sheet

that is covered on both sides by seven a-helices. This arrangement is the result

of two Rossmann-like domains that are in close proximity. As most GT-A GTs

have a high structural similarity around the active site, the identification of struc-

tural homologs was crucial to spot novel features of ScMnn9D92. Using the DALI

server (Holm and Rosenström, 2010) the Rhodothermus marinus mannosylglycer-

ate synthase from GT-76 (RmMGS, PDB: 2Y4M, Fig. 4.4B) (Nielsen et al., 2011)

as well as the S. cerevisiae a-1,2-mannosyltransferase Kre2p/Mnt1p from GT-15

(PDB: 1S4O, Fig. 4.4C) (Lobsanov et al., 2004) were identified as structural ho-

mologs (Z-score=13.7, RMSD=3.4 Å on 188 equivalent Ca atoms for RmMGS and

Z-score=9.8, RMSD=3.8 Å on 185 equivalent Ca atoms for Kre2p/Mnt1p). Despite

the fact that neither of the structures were among the top ten hits, they were used

because both GTs use GDP-Man as the donor substrate which may be important

for the architecture of the active site. RmMGS uses GDP-Man to transfer man-

nose onto D-glycerate, D-lactate or glycolate (Borges et al., 2004, Martins et al.,

1999). ScKre2p/Mnt1p synthesises O-linked oligomannose and the terminal oligo-

mannose decorations on mannoproteins (Lussier et al., 1999). Superposition of

ScMnn9D92, RmMGS and ScKre2p/Mnt1p reveals the structural similarity derived

from the GT-A fold around the catalytic site (Fig. 4.4). However, ScMnn9D92 has

a unique hairpin loop formed by the two elongated b-strands 6 and 7 (residues

262–283, Fig. 4.4A). The loop clearly stands out from the globular active site do-

main opposite the N-terminus (Fig. 4.4A). This loop is positioned in line with the

active site and could serve a number of purposes. It could act as a molecular

ruler for the formation of a mannose backbone of defined length or act as a guide

to recognise and correctly position protein N-linked glycans for to which mannose
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is added. Alternatively, it could serve as a dimerisation domain for ScMnn9 and

ScVan1. In contrast, RmMGS has a more extended C-terminus formed by six he-

lices and a short b-strand whilst ScKre2p/Mnt1p does not contain any protruding

features. Interestingly, the interactions between GDP and the enzymes are very

similar (Fig. 4.5). The guanine forms hydrogen bonds between the N1 amine and

the amide oxygen of a glutamine (ScMnn9D92 and RmMGS) or an aspartic acid

(ScKre2p/Mnt1p). In all three enzymes the guanine is buried by residues with rel-

atively long side chains, e. g. Q124 in ScMnn9D92, K9 in RmMGS and R130 in

ScKre2p/Mnt1p (Fig. 4.5). The ribofuranose forms extensive hydrogen bonds with

the side chains of residues in the active site. Manganese is coordinated by a histi-

dine side chain, a carboxylate and the pyrophosphate moiety of GDP. The histidine,

common to many retaining GT-A GTs, occupies a similar position within the active

site of all three transferases (Fig. 4.5) and is one of the very few (five) conserved

residues in the sequences of the GT-15, GT-62 and GT-76 glycosyltransferases

compared here (Fig. 4.5). The carboxylate metal ligand is part of the canonical GT-

A fold DXD motif (Figs. 4.1, 4.5). Both the a and b-phosphates of the GDP interact

with the metal in ScMnn9, which is similar to the RmMGS enzyme (Fig. 4.5).

Despite the fact that ScMnn9D92 D236N was soaked or co-crystallized with

GDP-Man, electron density for mannose was not observed. The mannose of GDP-

Man in the RmMGS complex forms hydrogen bonds with K76 and D192 and sev-

eral backbone amides (Fig. 4.5B). In order to identify potential residues involved in

the co-ordination and the glycosyl transfer of mannose in ScMnn9D92, the struc-

tures of ScMnn9D92 and RmMGS were superimposed using GDP as the reference

(Fig. 4.6). Based on this superpositioning it appears that mannose is in hydrogen

bonding distance to residues N(D)236, R210 and D280. D280 is the acid potentially

involved in the glycosyl transfer. In fact, expression and purification of a D280N mu-

tant usually led to considerably lower yields compared to WT and other mutants.

This may indicate that the residue also has important effects on the folding of the

protein during expression. Misfolded protein could be subject to degradation in

E. coli after expression. In RmMGS, D192 is located at the opposite side of man-
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Figure 4.4: Stereoscopic images and topology of ScMnn9D92, GT-78 RmMGS, and GT-15
ScKre2p/Mnt1p. All structures are shown with the same viewing matrix applied. A, ScMnn9D92
in complex with GDP and Mn2+. B, RmMGS in complex with GDP-Man and Mg2+ (PDB: 2Y4M). C,
ScKre2p/Mnt1p in complex with GDP and Mn2+ (PDB: 1S4O). Red indicates secondary structure
elements that are struturally similiar between all three GTs. Cyan indicates the protruding loop found
in ScMnn9d92. Purple shows the C-terminal dimerisation domain of RmMGS. Grey represents
secondary structure elements that are not structurally similar between the GTs.
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Figure 4.5: Stereoscopic images of the active sites of ScMnn9D92, GT-78 RmMGS, and GT-15
ScKre2p/Mnt1p. A, ScMnn9D92 in complex with GDP and Mn2+. Residues within 6 Å distance of
GDP as sticks with purple carbon atoms. The unbiased |FO|�|FC| map (1.75s) is shown as cyan
mesh around GDP and Mn2+. B, RmMGS in complex with GDP-Man and Mg2+ (PDB: 2Y4M).
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Mg2+ are shown as brown spheres. Hydrogen bonds are shown as dashed black lines.
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nose, forming hydrogen bonds with OH3 and OH4, instead of OH2 as is the case

for D280 in ScMnn9D92 (Fig. 4.5A, B). D192 is essential for activity in RmMGS

(Nielsen et al., 2011). D280 in ScMnn9D92 could have similar importance for the

activity of the yeast GT.

4.3 Recombinant ScMnn9D92 possesses

mannosyltransferase activity in vitro

To date, enzyme activity of ScMnn9 has only been demonstrated in the presence

of ScVan1p (Rodionov et al., 2009, Stolz and Munro, 2002). Hence, it was nec-

essary to test the activity of bacterially expressed ScMnn9D92 in the presence

of manganese, GDP-Man and a model acceptor substrate, a-1,6-linked manno-

biose. This model acceptor has been used before (Rodionov et al., 2009, Stolz and

Munro, 2002) and was chosen because of its nature to mimic the reaction product

of the Och1 GT. Och1 transfers a mannose to the a-1,3-Man in the N-linked glycan

core forming an a-1,6-mannobiose (Nakayama et al., 1997) (Fig. 1.5. Reaction

products were separated and visualised by fluorophore-assisted carbohydrate gel

electrophoresis (FACE) (Fig. 4.7A), which showed that ScMnn9D92 alone is able

to transfer mannose from the sugar donor onto a disaccharide acceptor substrate,

forming mannotriose.

Furthermore, manganese is required for activity, and cannot be substituted by

other divalent cations, such as magnesium or calcium (Fig. 4.7B).

Structure guided point mutations of ScMnn9D92 were designed, cloned, ex-

pressed, and tested in an activity assay (Figs. 4.5A and 4.7C). R209 lines the pu-

tative mannose binding site and mutation to alanine results in loss of ScMnn9D92

activity (Fig. 4.7C). Similar effects were reported for the equivalent K76A mutation

in RmMGS (Nielsen et al., 2011). ScMnn9D92 D236 is the first aspartic acid in

the canonical GT-A DXD catalytic motif and mutation to an isosteric asparagine

results in loss of activity (Fig. 4.7C), similar to the previously reported less conser-
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Figure 4.6: Stereo images of ScMnn9D92 and GDP-Man modelled based on the superposi-
tion with RmMGS GDP-Man. The structures of ScMnn9D92 D236N in complex with GDP (grey
sticks) and RmMGS in complex with GDP-Man (orange sticks) were superimposed using GDP as
the reference. Potential hydrogen bonds formed between GDP-Man and ScMnn9D92 D236N are
shown as dashed lines.

vative D236A mutation (Stolz and Munro, 2002). Interestingly, the D236N mutant

is still able to form a hydrogen bond with mannose as suggested by the super-

position of GDP-Man on to the ScMnn9DD236N structure (Fig. 4.6). It is possi-

ble that the carboxyl group of the native aspartic acid is involved in the reaction.

The equivalent residue in RmMGS, D100, forms a hydrogen bond with the man-

nose O3 hydroxyl (Fig. 4.5B). Extensive attempts to obtain a binary complex of

ScMnn9D92 and GDP-Man were not successful. However, inspection of the su-

perimposed RmMGS complex suggests that ScMnn9D92 D280 would also line the

putative mannose binding site, positioned close to the O2 hydroxyl group. Mu-

tation of this aspartic acid to asparagine (D280N) results in an inactive enzyme

(Fig. 4.7C). ScMnn9D92 H389 coordinates the manganese and is indispensable

for catalytic activity (Fig. 4.7C).

ScMnn9D92 is able to hydrolyse GDP-Man in the absence of an acceptor (Fig.

4.7D). Several point mutants were also tested in an assay in which the acceptor

a-1,6-mannobiose was missing. The mutants Q187A and E305Q showed a com-

parable ability to hydrolyse GDP-Man compared to WT, as determined by semi-

quantitative analysis. The D280N mutant was able to hydrolyse 50 % GDP-Man

compared to WT. This can be taken as an indicator that D280 is at least partially
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involved in the transfer. The mutant is still able to hydrolyse GDP-Man, but is

not able to transfer it onto an acceptor (Figs. 4.7C and 4.7D). In contrast, mu-

tants R209A and H389A lose 86 % and 90 % of the hydrolytic activity compared

to WT, respectively. From the GDP complex and the superpositioned GDP-Man

(Figs. 4.5A and 4.6) it does not appear as if R209 is involved in the co-ordination

or binding of the substrate which would explain this loss in activity. However, it has

to be mentioned, that the superposition of GDP-Man onto ScMnn9D92 could be

wrong and that if mannose is positioned differently in the active site there may be

an important interaction of R209 and mannose. The loss in activity of the H389A

mutant can be explained by the loss of the co-ordination of the manganese ion.

The metal is potentially needed to neutralise the pyrophosphate leaving group. In

the absence of H389 this can not be achieved, rendering ScMnn9D92 inactive.

In order to obtain information about the importance of the extension formed by

b-strands 6 and 7, a construct was designed in which residues 267–274 were re-

placed with four glycine residues (ScMnn9D267–274_GGGG, Fig. 4.1). The pro-

tein expressed in a similar yield and could be purified equally well as ScMnn9D92

WT. This indicated that the protein was still in a folded state. However, crystals of

this protein did not grow in the condition used for the WT protein and could not be

obtained in any other crystallisation condition tested, suggesting that folding and/or

packing of the protein was influenced by the removal of the extension. The mutant

protein was used in an activity assay and the products were labelled with ANTS

and separated on a FACE gel (Fig. 4.7E). ScMnn9D267–274_GGGG showed no

formation of mannotriose, indicating that the extension is important for activity.

Previously, it has been shown that ScMnn9 is able to add an a-1,2-mannose

to the a-1,6-mannobiose substrate analogue (Stolz and Munro, 2002). Hence,

the product of the glycosyl transfer reaction of ScMnn9D92 and a-1,6-mannobiose

was incubated with an a-1,2-specific mannosidase and the reaction products were

labelled with ANTS and speparated on a FACE gel (Fig. 4.8). The product formed

by ScMnn9D92 was resistant to the mannosidase suggesting that the product does

not have an a-1,2-linked mannose.
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Figure 4.7: FACE gels showing activity of ScMnn9D92 WT and mutants. A, FACE gel of ANTS-
labelled products after the transferase reaction in the presence and/or absence of ScMnn9D92, a-
1,6-mannobiose (Man2), and GDP-Man. MnCl2 was present in all reactions. B, Metal-dependency
of ScMnn9D92. Reactions as in A, lane 1, however here in the presence of 10 mM of EDTA or metal
indicated above the gel at 10 mM. C, Activity of ScMnn9D92 WT and point mutants. Reactions as
in A, either in absence of ScMnn9D92 WT or in presence of ScMnn9D92 WT and mutants. D,
Hydrolysis of GDP-Man by ScMnn9D92 WT and point mutants. Reactions were carried out in the
absence of the acceptor a-1,6-Man2. The relative hydrolysis of GDP-Man was determined by semi-
quantitative measurements. E, FACE gel of ANTS-labelled products after the transferase reaction
in the presence and/or absence of ScMnn9D92, ScMnn9D267–274_GGGG, and GDP-Man. a-1,6-
Man2 and MnCl2 were present in all reactions.
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Figure 4.8: a-1,2-mannosidase treatment of the ScMnn9D92, GDP-Man and Man2 reaction
product. FACE gel of ANTS-labelled ScMnn9D92 reaction products after incubation in the absence
or presence of a-1,2-specific mannosidase from A. saitoi.

To study ScMnn9D92 steady state kinetics, a novel coupled enzyme assay was

developed that involves only one additional enzyme, in contrast to the established

glycosyltransferase assays where the release of GDP is measured by NADH oxi-

dation through pyruvate kinase and lactate dehydrogenase (Gosselin et al., 1994).

Here, the gene product of Bacillus subtilis TN-31 aman6 (BcAman6), an a-1,6-

mannosidase (Maruyama and Nakajima, 2000, Nakajima et al., 1976), was used

as a coupling enzyme (Fig. 4.9A). This mannosidase has been reported to act

on mannotriose as a minimal substrate (Nakajima et al., 1976). This enzyme is

also able to liberate 4-methylumbelliferone (4-MU) from 4MU-a-1,6-mannobiose

(4MU-Man2), but crucially not from 4MU-Man. Thus, only in the presence of ac-

tive ScMnn9D92, which transfers a mannose onto 4MU-Man, would the BcAman6

mannosidase be able to liberate fluorescent 4MU from the resultant 4MU-Man2

product (Fig. 4.9B). This assay was used to establish steady state kinetics for wild

type ScMnn9D92 (Figs. 4.9C and D). The K m,app determined for the 4MU-Man ac-

ceptor is 6.5 (±0.3) mM with an V max of 77.7 (±2) nM/min resulting in a k cat of 0.2

s−1. The K m,app for GDP-Man is 0.54 (±0.2) mM, V max of 1.9 (±0.3) µM/min result-

ing in a k cat of 3.8 min−1. Compared to the K m and V max of RmMGS using glycerate

as acceptor (Flint et al., 2005, Nielsen et al., 2011), ScMnn9D92 seems to have low

affinity for both of its substrate. Interestingly, the k cat for ScMnn9D92 and GDP-Man

is comparable to RmMGS and GDP-Man (1.9 min−1). In contrast, Kre2p/Mnt1p is
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considerably faster than ScMnn9D92 with k cat of 12.8 s−1 for GDP-Man and 10.8

s−1 for methyl-a-mannoside, whilst the K m,app of 26 mM for the Kre2p/Mnt1p accep-

tor substrate analogue methyl-a-mannoside can be interpreted as a sign of poor

substrate binding. The low substrate affinity of ScMnn9D92 and ScKre2p/Mnt1p

in vitro might be a result of the artificial acceptor substrates used. Whilst for

ScKre2p/Mnt1p the physiological substrate is an a-1,2-mannobiose attached to

a serine or threonine (Häusler and Robbins, 1992, Häusler et al., 1992), the sub-

strate of ScMnn9 is an N-linked core glycan extended with a mannose attached

by Och1p (Jungmann and Munro, 1998) – structurally rather dissimilar from the

4MU-Man pseudo-acceptor used here. Furthermore, ScMnn9 is found in the mul-

timeric glycosyltransferase complexes M-Pol I and II (Jungmann and Munro, 1998,

Jungmann et al., 1999) and intermolecular interactions in these complexes may

well increase affinity of ScMnn9 for its substrates. It is also possible that ScMnn9

has a comparatively low affinity for its substrates in order to limit its consumption

of cellular GDP-Man, which may be particularly important as M-Pol I activity is the

starting point of extensive additional mannosylation (Jungmann et al., 1999), re-

quiring large amounts of additional GDP-Man. Another explanation is the absence

of the predicted disordered linker in this construct of ScMnn9. This linker may have

an impact on activity of the GT.

4.4 ScMnn9D92 catalytic activity is indispensable for

mannoprotein synthesis in yeast

Strains of S. cerevisiae and C. albicans with defects in mannan synthesis show

hypersensitivity to hygromycin B and reduced sensitivity to sodium orthovanadate

(Ballou et al., 1991, Dean, 1995). Guided by the crystal structure, catalytically

inactive mutants of ScMnn9D92 were identified (Fig. 4.5A and 4.7C) that could

be used to dissect the function of the protein with the help of a Dmnn9 strain of

S. cerevisiae. Wild type and point mutants Q124A, R209A, D236N, D280N, and
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Figure 4.9: Fluorescent assay to determine steady state kinetics of ScMnn9D92. A, Man-4MU
is a substrate analogue for ScMnn9D92. It is extended to Mana-1,6-Man-4MU in the presence
of the transferase, GDP-Man and MnCl2. The bacterial a-1,6-specific mannosidase BcAman6 lib-
erates 4MU. The release can be measured at lex=360 nm and lem=460 nm. B, The release of
4MU was measured in the presence or absence of components of the reaction or point mutants
of ScMnn9D92. C, Steady state kinetics of ScMnn9D92 in the presence of 1.2 mM GDP-Man and
variable concentrations of Man-4MU. D, Steady state kinetics of ScMnn9D92 in the presence of
10 mM Man-4MU and variable concentrations of GDP-Man. All error bars represent the standard
error of the mean, n=3.
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H389A of the gene encoding ScMnn9, including the 5’- and 3’-untranslated region

(UTR), were cloned into the yeast expression vector pRS315 (a kind gift from Prof.

Mike Stark, Division of Gene Regulation and Expression, UoD) (Sikorski and Hi-

eter, 1989). S. cerevisiae BY4741 wild type and Dmnn9 cells were transformed

with these plasmids. Successfully transformed cells were selected on DOA-Leu(–)

plates. Dmnn9 cells transformed with wild type MNN9 grew at a similar rate, but

to slightly lower density, in yeast peptone dextrose medium (YPD) compared to

wild type cells carrying the empty pRS315 vector control (Fig. 4.10A). Similar ob-

servations were made in complementation experiments of the C. albicans Dmnn9

mutant (Southard et al., 1999). Indistinguishable growth to the reconstituted WT

ScMnn9 was observed for cells carrying the plasmid encoding for the Q124A mu-

tant, a mutant used as a control. Based on the structure Q124 did not seem to

be involved in substrate binding or glycosyl transfer (Fig. 4.5A). In contrast, cells

lacking ScMnn9 grew noticeably slower and to lower densities than wild type cells.

Interestingly, S. cerevisiae cells expressing ScMnn9 with the inactivating mutations

showed a delay in growth, but ultimately reached similar densities to the cells com-

plemented with wild type ScMnn9 (Fig. 4.10A). Thus, catalytically inactive ScMnn9

can partially rescue the Dmnn9 growth phenotype. On YPDA plates, the Dmnn9

phenotype is presented as an increased sensitivity to hygromycin B and reduced

susceptibility to Na3VO4 (Fig. 4.10B). Cells complemented with the catalytically im-

pairing ScMnn9 point mutations were able to grow on plates with concentrations

of Na3VO4 at which wild type cells or cells reconstituted with wild type ScMnn9

and ScMnn9 Q124A did not grow, or grew to lower density (Fig. 4.10B). However,

cells lacking ScMnn9 or carrying the point mutations, except Q124A, were suscep-

tible to lower concentrations of hygromycin B than wild type or reconstituted cells

(Fig. 4.10B). Notably, cells expressing ScMnn9 with a point mutation did not grow

at the lowest concentration of hygromycin B tested while ScMnn9 knockout cells

were still able to grow, suggesting that the complete loss of ScMnn9 may activate

rescue pathways for cell survival whilst these pathways are not being activated in

the presence of inactive ScMnn9. This result indicates that the presence of an in-
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active form of ScMnn9 has a more severe impact on cell wall architecture than the

complete absence of the transferase. This is similar to previous reports, although

these only covered tested knockouts or a single point mutant (Southard et al., 1999,

Stolz and Munro, 2002).

4.5 Concluding Remarks

The structural basis of mannoprotein synthesis is poorly understood. The results

presented in this work show for the first time the structure of a GT-62, ScMnn9.

The overall fold of Mnn9 resembles a GT-A fold. However, in comparison with

close structural homologs, it becomes evident that Mnn9 carries an extension of

two b-strands as a unique feature (Fig. 4.4A). In absence of a structure of ScMnn9

with a substrate, or heterodimeric complex with Van1, or a heterodimeric complex

with an acceptor protein, the purpose of this extension remains unclear. However,

a dimerisation domain is one of the most likely options as the extension is in close

proximity to the active site and is in fact partly involved in the formation of the active

site. In the presence of Van1 it could be helpful to have both active sites in close

proximity in order to facilitate the rapid extension of mannotriose to oligomannose.

The absence of a substrate complex is not unusual for GTs. These enzymes

can undergo tremendous structural rearrangements upon substrate binding. Soaks

with the substrate analogue GDP-S-Man in the presence of MnCl2 resulted in the

apo structure only, indicating that substrate binding is not favourable in the crys-

tallisation condition obtained. Another objective of future experiments could be the

co-crystallisation of Mnn9 with an acceptor analogue, such as mannobiose or even

parts of the N-glycan, as well as with a putative acceptor protein. The extension

observed in Mnn9 could also act as a dimerisation domain for the acceptor protein

rather than Van1.

Structure-guided mutagenesis lead to the identification of residues important for

the activity of Mnn9. The discrimination between residues involved in the hydrolysis

and in the transfer gave novel insights into the molecular mechanism of this GT.
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Furthermore with the development of a novel coupled enzyme assay (Fig. 4.9A)

it could be possible to screen for fragments that may inhibit the activity of Mnn9.

Since mannoproteins can act as adherence factors of fungal pathogens to epithelial

cells (Kanbe and Cutler, 1998, Kanbe et al., 1993, Miyakawa et al., 1992), the

inhibition of their synthesis can be exploited as a drug target. Additionally, the

addition of mannose in the Golgi has not been shown in human cells, making Mnn9

and other GTs in the mannoprotein biosynthetic pathway fungal-specific targets.



5 Mannosyltransferase ScVan1 –

Results and Discussion

5.1 Cloning, heterologous expression and

purification of ScVan1

Van1, like Mnn9, is highly conserved amongst yeasts and filamentous fungi (Fig.

5.1). Several prediction programmes were used in order to identify features that

may interfere with expression and crystallisation of ScVan1 (Fig. 5.1). The trans-

membrane prediction server TMHMM (Krogh et al., 2001) identified residues 65–91

form a transmembrane helix, to integrate ScVan1 in the Golgi membrane. Sec-

ondary structure prediction by PORTER (Pollastri and McLysaght, 2005) helped to

identify a potentially disordered region between residues 86–128 (Fig. 5.1), which

may act as a linker between the membrane and the globular domain of ScVan1.

Residues 129–166 potentially form three a-helices that, however, are part of an

unconserved region before the well conserved globular domain.

Based on these results a multitude of constructs of ScVan1 were designed that

encoded for the corresponding ScVan1 expression products (Table 5.1). The ma-

jority of these expression products differed in the length of their N-terminus com-

pared to full length ScVan1 .

The primary target was to express ScVan1 and ScMnn9 in P. pastoris. The

reasons for that were two-fold: 1) ScVan1 has been shown to be N-linked glyco-

sylated (Rodionov et al., 2009). The post-translational modification is often related

100
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Figure 5.1: Alignment of Van1 of different fungal species. The amino acid sequences were
aligned and conservation and similarity is shown in grey scale with black being identical between all
species. The secondary structure prediction of ScVan1 is shown above the amino acid sequence,
where red cylinders represent a-helices and blue arrows represent b-strands. The predicted N-
terminal transmembrane domain is indicated by a box with a green line, whereas the canonical
DXD motif is indicated by a filled green box. The red star indicates the start of the construct of
ScVan1 mainly used for this thesis (ScVan1D86). The green stars indicate the starts and ends of
different truncations of ScVan1 used in the thesis as well.

Table 5.1: Constructs of ScVan1 used throughout the thesis

Construct name Residues Features

ScVan1D86 87–535 Lacks: Cytosolic tail, transmembrane domain. Includes:
Linker region, globular domain.

ScVan1D136 137–535 Lack: Cytosolic tail, transmembrane domain, parts of the
linker region. Include: Globular domain.ScVan1D146 147–535

ScVan1D156 157–535

ScVan1D166 167–535 Lacks: Cytosolic tail, transmembrane domain, linker region.
Includes: Globular domain.

ScVan1_87–513 87–513

As the constructs shown above. However, these constructs
additionally lack residues 514–535.

ScVan1_137–513 137–513
ScVan1_147–513 147–513
ScVan1_157–513 157–513
ScVan1_167–513 167–513
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to correct protein folding and could therefore be crucial for solubility and activity.

2) ScVan1 and ScMnn9 have been shown to co-express recombinantly in P. pas-

toris (Rodionov et al., 2009). This was achieved by co-transforming two different

expression vectors (pPIC9 and pPICZaA). The authors were not able to express

either of the proteins separately, suggesting that instability of either of the trans-

ferases is high in the absence of the other GT. Hence, the use of a prokaryotic

expression system was not considered with a high priority. The genes encoding

ScVan1D86 and ScMnn9D36 were cloned into the P. pastoris expression vectors

pPICZaA and pPIC9, respectively. The vectors introduce an N-terminal secretion

signal, which leads to the export of the expression product into the medium, pro-

tecting it from cellular proteases. P. pastoris cells were transformed first with the

Mnn9/pPIC9 plasmid, selected and the successful transformation was confirmed

by colony PCR. Positive clones were transformed with the Van1/pPICZaA plasmid.

After selection on YPDA plates containing 100 µg/ml zeocin and confirmation of

the insertion of the DNA into genome by colony PCR (Fig. 5.2A), positive double-

transformants were used for expression upon methanol induction. The medium,

containing the expression products, was concentrated 40-fold. However, no ex-

pression products were visible after 48 h of induction (Fig. 5.2B). Several other

constructs as well as expression of the single proteins, were tried without success.

P. pastoris was not a suitable expression system under these conditions.

The gene encoding ScVan1 was amplified from the genomic DNA of S. cere-

visiae by PCR and various truncations of the gene were cloned into the E. coli

expression vector pNIFTY/MBP, which introduces an N-terminal MBP, a hexahis-

tidine tag and a TEV protease cleavage sequence. After transformation, E. coli

BL21(DE3) pLysS cells were used for recombinant expression at 20 �C for 24 h

in autoinduction medium (Studier, 2005). After expression, cells were lysed and

ScVan1 was enriched using Ni2+-IMAC (Fig. 5.3). The MBP-6⇥His-TEV tag was

removed in the presence of TEV protease which was incubated overnight. Fur-

ther enrichment was carried out using IEX chromatography and SEC to remove

the MBP-6⇥His-TEV tag and residual unwanted proteins. Fractions containing
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Figure 5.2: Transformation and expression of ScVan1D86 and ScMnn9D36 in P. pastoris. A,
P. pastoris cells were first transformed with mnn9/pPIC9, screened and successful transformants
were transformed with van1/pPICZaA. The products of the colony PCR of two selected clones was
run on a DNA agarose gel. M, molecular weight standard ladder; 1 and 2, clone 1 and 2. B, Clone
1 from panel A was used for expression. A sample of the expression medium was taken before (UI)
and after (IN) induction with 2 % methanol. The medium was concentrated 40-fold. All samples
were run on an SDS-PAGE gel gel.

ScVan1 were pooled and concentrated to 5.5 mg/ml (Fig. 5.3).

It must be noted that early attempts to purify ScVan1D166 failed due to the loss

of the protein during the concentration step prior to SEC. This led to the design

of another expression construct (ScVan1D86) of ScVan1 as it was assumed that

the protein precipitated after exceeding a certain critical concentration. However,

this protein was lost during the concentration step as well. This led to a change

of the filter concentrator used from Sartorius Vivaspin20, containing a filter mem-

brane made of polyethersulfone, to Millipore Amicon Ultra-15, containing a filter

membrane made of regenerated cellulose. Only after this change was it possible

to purify ScVan1D86 further by SEC. It is unclear what caused the possible inter-

action of ScVan1D86 with the polyethersulfone since the highly similar ScMnn9

did not show this effect. However, the yield of ScMnn9 was improved using the

cellulose-based filter concentrators.
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Figure 5.3: Enrichment of ScVan1D86. Coomassie-blue stained SDS-PAGE of different steps
during the enrichment of ScVan1D86. This protein serves as an example for the purification of all
ScVan1 constructs used throughout this thesis. The eluate from the IEX containing ScVan1D86
was concentrated and used as SEC input. M, molecular weight ladder; IMAC, immobilised metal
affinity chromatography; TEVp, tobacco etch virus protease; IEX, anion exchange chromatography;
SEC, size exclusion chromatography.
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5.2 Formation of a-1,6-oligomannose by ScVan1 is

ScMnn9-dependent

Enzymatic activity of a protein is an indicator for correct folding after recombinant

expression. ScVan1 has high similarity to ScMnn9 (Fig. 5.4) and forms the man-

nosyltransferase complex M-Pol I with ScMnn9 (Jungmann and Munro, 1998). Pu-

rified ScVan1D86 was incubated with GDP-Man, a-1,6-mannobiose and MnCl2 at

30 �C for 16 h. The reaction products were labelled with ANTS and separated on

a FACE gel (Fig. 5.5A). Surprisingly, ScVan1D86 alone showed no product forma-

tion. However, in the presence of ScMnn9D92 the formation of a ladder, represent-

ing different oligomers of mannose was observed. The amount of the oligoman-

nose products could be controlled by changing the concentration of ScVan1D86

present in the reaction. It appeared that once ScMnn9D92 had formed man-

notriose, only ScVan1D86 was necessary for the extension of this product to longer

mannose chains (Fig. 5.5A). This dependency was further underlined by incubat-

ing ScMnn9D92 with the ScVan1D86 D361N point mutant. The mutated aspartic

acid is the first residue in the canonical DXD motif and most likely involved in the

substrate binding and/or the transfer reaction (Fig. 5.1). This mutation abolished

the formation of the mannose products completely but did not affect the formation

of mannotriose by ScMnn9D92 (Fig. 5.5B).

Strikingly, attempts to co-express the genes for ScVan1D86 and ScMnn9D92

from a co-expression plasmid in E. coli BL21(DE3) pLysS cells in autoinduction

medium failed (Fig. 5.6). This was tried multiple times, and in parallel with cells

expressing the genes individually. The lack of growth may suggest that both pro-

teins are active in the E. coli cytosol. It is possible that both proteins consume

GDP-Man that may be necessary for E. coli metabolism or that the formation of

the oligomannose products within the cells interferes with the integrity of the bac-

terial cells. Using IPTG induction in LB medium resulted in a lower yield of cell

mass compared to IPTG induction in LB medium of the single genes, and poor

expression levels of both genes.
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Figure 5.4: Alignment of ScVan1 and ScMnn9. The amino acid sequences were aligned and
conservation and similarity is shown in grey scale with black being identical between both proteins.
The secondary structure prediction is shown above (ScMnn9) and below (ScVan1) the correspond-
ing sequence with the same colour code as in Fig. 5.1. The purple boxes in the ScVan1 sequence
indicate regions important for activity.
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Figure 5.5: FACE gels of ScVan1D86 and ScMnn9D92. A, FACE gel of ANTS-labelled products
of reactions containing ScVan1D86, ScMnn9D92, GDP-Man, a-1,6-mannobiose, and MnCl2. The
numbers above the gel indicate relative molarity of both GTs in the reaction. B, FACE gel of ANTS-
labelled products of the reaction as described in panel A, lane 3, but additionally in the presence of
the ScVan1D86 D361N point mutant.
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Figure 5.6: Expression of ScVan1D86 alone or with ScMnn9D92. E. coli BL21(DE3) pLysS
cells were transformed either with pNIFTY/MBP containing the gene for ScVan1D86 or with pOPC
containing the genes for ScVan1D86 and ScMnn9D92. Transformed cells were used to inoculate
autoinduction medium and incubated for at 20 �C for 24 h.
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The product of the reaction containing ScVan1D86 and ScMnn9D92 was treated

with two specific glycoside hydrolases: the a-1,6-linked mannose specific man-

nosidase Aman6 from B. circulans and the a-1,2-linked mannose specific man-

nosidase from Aspergillus saitoi. The reaction products were labelled with ANTS

and separated on a FACE gel (Fig. 5.7). The oligomannose products formed by

ScVan1D86 and ScMnn9D92 (corresponding to M-Pol I) could only be degraded in

the presence of the a-1,6-mannose specific BcAman6, indicating that the products

are made of a-1,6-linked oligomannose. This is in agreement with previous results

(Stolz and Munro, 2002) and shows that the truncated expression products of both

transferases are still capable of performing their native reaction.

5.3 ScMnn9 has an allosteric effect on ScVan1

activity

To date, it has been assumed that an N-linked glycosylated substrate protein ar-

rives at the M-Pol I complex and based on unknown features in the acceptor pro-

tein, M-Pol I can catalyse either an a-1,2 or an a-1,6 transfer on the mannose at-

tached by Och1 (Stolz and Munro, 2002). However, so far it is unknown if ScVan1

alone can extend the single a-1,6-linked mannose to form the oligomannose back-

bone because all studies have looked only at the complex of both transferases

(Rodionov et al., 2009, Stolz and Munro, 2002). Furthermore, the ScVan1 and

ScMnn9 used in those studies were either immunoprecipitated from S. cerevisiae

or expressed in P. pastoris with the possibility of other yeast glycosyltransferases

contaminating the activity assays. Being able to express both transferases individ-

ually provided the opportunity to identify if the product of ScMnn9, mannotriose,

and/or the presence of ScMnn9 is necessary for ScVan1 to be active.

To do so, the reaction of ScMnn9D92 and ScVanD86 was split into two steps.

This provided the ability to be able to separate mannotriose, the ScMnn9D92 reac-

tion product, from ScMnn9 and use it to incubate it with ScVanD86 and GDP-Man
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Figure 5.7: FACE gel of mannosidase treated products of the reaction of ScVan1D86
and ScMnn9D92. The product of the reaction of ScVan1D86, ScMnn9D92, GDP-Man, a-1,6-
mannobiose, and MnCl2 was treated with an a-1,2 or a-1,6-specific mannosidase and the reaction
products were labelled with ANTS and separated on a FACE gel.

either in the presence or absence of the inactive ScMnn9D92 D236N mutation.

(Fig. 5.8). In the presence of inactive ScMnn9D92 neither mannotriose nor oligo-

mannose was formed, indicating that the activity of ScVan1D86 is dependent on

the product of the ScMnn9D92 reaction. After removing ScMnn9D92 and incubat-

ing mannotriose with ScVan1D86 in the presence of GDP-Man, no formation of

oligomannose could be detected, indicating that mannotriose alone is not enough

for ScVan1D86 to form its product. Oligomannose could only be detected when

mannotriose, ScVan1D86, inactive ScMnn9D92, and GDP-Man were incubated to-

gether (Fig. 5.8). This indicates that the enzymatic activity of ScVan1D86 is not

only depends on the product of the ScMnn9D92 reaction but also on the dimeri-

sation of ScVan1D86 with ScMnn9D92, even if inactive, making ScMnn9D92 an

allosteric affector of ScVan1D86.

The enzymatic assay that was developed to determine steady-state kinetics of

ScMnn9D92 (Section 4.3, page 95) was initially used to measure the activity of

ScVan1D86 alone or in the presence of ScMnn9D92 (Fig. 5.9). No 4MU was lib-

erated in the presence of ScVan1D86 alone, indicating that ScVan1D86is not able

to transfer mannose onto 4MU-Man. This supports the data obtained by FACE gel

analysis where no formation of mannotriose or even longer chains was observed.

In presence of both transferases, the 4MU released was equal to the amount re-
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Figure 5.8: FACE gel of two step reaction of ScMnn9D92 and ScVan1D86, GDP-Man, a-1,6-
mannobiose (Man2) and MnCl2. First lane: ScMnn9D92 D236N and ScVan1D86 wild type were
incubated together, the reaction was stopped and the products were labeled before the separa-
tion on a FACE gel. Second and third lane: ScMnn9D92 D236N was in absence of ScVan1D86,
ScMnn9D92 was removed using a 10,000 MWCO filter and ScVan1D86 wild type alone (second
lane) or ScMnn9D92 D236N and ScVan1D86 wild type (third lane) were added to the reaction.
Fourth lane: The first step contained only GDP-Man and Man2. The GTs were added in the sec-
ond step. This acted as postive control for the passage of the substrates through the filter. Fifth
lane: ScMnn9D92 and ScVan1D86 were incubated in absence of GDP-Man but presence of Man2.
GDP-Man was only added after the filter step, acting as control for the reliable removal of the GTs
by the filter. The second step of the reaction was stopped and the products were labeled before
being separated on a FACE gel.
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leased by BcAman6 in the presence of ScMnn9D92 alone (Fig. 5.9). The most

likely explanation for this result is the fact that only one 4MU will be released per

oligomannose chain. Hence, the amount of 4MU is not stoichiometrically equal to

the amount of mannose incorporated into oligomannose synthesised by M-Pol I.

This is in contrast to the reaction that occurs in the presence of ScMnn9D92 alone,

because mannotriose only product of the reaction in which a single mannose is

added to the mannobiose substrate. As a consequence, the 4MU-based assay

was unsuitable to determine enzyme kinetics for the complex of ScVan1D86 and

ScMnn9D92.

Another coupled enzyme assay to determine enzyme kinetics of glycosyltrans-

ferases has been described by Gosselin et al. (1994) (Fig. 5.10A). Briefly, the assay

relies on the liberation of a nucleotide-diphosphate after the transfer of the sugar

from the activated substrate. The diphosphate-nucleotide is phosphorylated by

pyruvate kinase by converting phosphoenolpyruvate to pyruvate. In a redox reac-

tion, pyruvate is reduced to lactate by lactate dehydrogenase whilst NADH is oxi-

dised to NAD+. The oxidation of NADH can be followed by the loss in absorbance

at l=340 nm. The loss in signal can be converted to a concentration, and repre-

sents the amount of mannose that has been incorporated into the oligomannose

chain formed by M-Pol I.

This assay was used to compare the activity of the two transferases of M-Pol I

separately or in complex (Fig. 5.10B). Similar to the 4MU-based assay, ScVan1D86

alone did not lead to any signal above background. In contrast, in the pres-

ence of ScMnn9D92 and ScVan1D86 the change in absorbance over time was

28-fold higher than compared to ScMnn9D92 alone. This showed that the NADH-

dependent assay is suitable to characterise the activity of M-Pol I. However, it is

unclear if the increase in activity of both GTs compared to ScMnn9D92 alone is

the result of a faster enzymatic reaction of the complex or the result of the release

of more molecules of GDP due to the formation of the oligomannose products.
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Figure 5.9: Coupled enzyme assay using Man-4MU as substrate analogue. ScVan1D86
was incubated with GDP-Man, MnCl2, Man-4MU and BcAman6 in the presence or absence of
ScMnn9D92. The release of 4MU by Aman6 was measured at lex=360 nm and lem=460 nm.
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Figure 5.10: Coupled enzyme assay to determine enzyme kinetics of M-Pol I. A, Diagram of
the coupled enzyme assay used for determination of enzyme kinetics of M-Pol I. B, Oxidation of
NADH over time in the absence and presence of M-Pol I or its individual transferases. Error bars
represent standard error of the mean, n=3.
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5.4 The N-terminus and C-terminus of ScVan1 are

important for activity

Extensive trials to crystallise ScVan1D86, ScVan1D166 and to co-crystallise these

proteins with ScMnn9D92 were carried out, but no protein crystals formed over the

course of the available experimental time.

In order to obtain information about the interaction between ScVan1 and ScMnn9,

several different constructs of ScVan1 were designed and expressed (Table 5.1).

First, the N-terminus was systematically truncated to remove the linker region with-

out any predicted secondary structure elements, followed by the removal of pre-

dicted a-helices that are part of an unconserved region (Fig. 5.1). Each of these

truncated proteins was tested in activity assays in the presence of ScMnn9D92,

GDP-Man, a-1,6-mannobiose and MnCl2 (Fig. 5.11A).

The truncation of the N-terminus between residues 87 and 157 did not affect the

formation of the a-1,6-oligomannose (Fig. 5.11A). However, after removal of the

first 166 N-terminal residues, activity of ScVan1D166 could not be detected any

more, indicating that the predicted a-helix formed between residues 158–166 is

important for the transfer activity of ScVan1 (Fig. 5.1).

After attempts to crystallise any of the N-terminal truncations of ScVan1 failed,

another prediction server (RONN, Yang et al. 2005) was used in order to identify

possible disordered and flexible regions that may interfere with crystal formation.

The prediction program identified the last 22 C-terminal residues (514–535) to be

disordered (Fig. 5.11B and 5.1). The prediction also identified several regions up

to residue 165 as being disordered, supporting the design of the N-terminal trunca-

tions described (Table 5.1). Based on the RONN server result, C-terminal trunca-

tions of ScVan1 lacking residues 514–535 were designed, expressed and tested in

activity assays. Each of the C-terminal truncations of ScVan1 lost the ability to syn-

thesise a-1,6-oligomannose, indicating that the C-terminus is involved in activity of

the ScVan1. It is unlikely the inactivity is caused by misfolded protein, because all

truncations gave similar elution profiles during SEC compared to the proteins that
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included the C-terminal residues.

The loss in activity of ScVan1 in the truncations described could be due to two

reasons: 1) Residues 158–166 and 514–535 have both been predicted to form a-

helices, contradicting the disordered region prediction. These helices could be nec-

essary to form the active site of ScVan1, e.g. for the formation of the Rossmann-

like fold. Many GT-As undergo considerable conformational changes upon sub-

strate binding and during the transfer reaction. Lacking either of these helices may

disrupt the substrate binding site formation. 2) Both regions could be involved in

the formation of the heterodimeric complex of ScVan1 and ScMnn9. The complex

is necessary for ScVan1 activity as shown in section 5.3. Strikingly, the ScVan1

amino acid sequences 158–166 and 514–535 have no sequences homology in

ScMnn9 (Fig. 5.4, purple boxes), i.e. they are absent in a sequence alignment.

This can be taken as an indicator that these sequences may be necessary for

dimerisation of ScVan1 with ScMnn9. However, these extra regions in ScVan1

could also be necessary for the recognition of mannotriose and the accomodation

of the oligomannose products formed by ScVan1.

5.5 Concluding Remarks

One of the main aims for the experiments conducted on ScVan1 was the crystalli-

sation and structural characterisation of the GT alone and in complex with ScMnn9.

This aim was not achieved. The results from the experiments presented in this

chapter, however, may give rise to possible explanations. In my hands, ScVan1

only shows activity in the presence of ScMnn9 and the ScMnn9 product, man-

notriose (Fig. 5.8). Glycosyltransferases can undergo considerable conformational

changes upon binding of their substrate. It is possible that ScVan1 is not in a

properly folded conformation in the absence of ScMnn9 and mannotriose. This

could be one explanation why even co-crystallisation attempts of both GTs, but in

absence of mannotriose, did not lead to the formation of crystals. This is further

supported by the experiments carried out with the N- and C-terminal truncations.
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Figure 5.11: FACE gels of N- and C-terminal truncations of ScVan1 and prediction of a C-
terminal disordered region. A, N- and C-terminal truncations of ScVan1, as indicated above the
gels, were incubated with ScMnn9D92, GDP-Man, a-1,6-mannobiose and MnCl2. The reaction
products were labelled with ANTS and separated on a FACE gel. B, Output of the disordered
region prediction programme RONN (Yang et al., 2005) using the full length amino acid sequence
of ScVan1.
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Two predicted a-helices are either directly involved in the glycosyl transfer activ-

ity of ScVan1 or important for the formation of the dimer between ScVan1 and

ScMnn9 (Fig. 5.11A).

The cooperative effect of ScMnn9 on ScVan1 could be the result of a general

allosteric effect of ScMnn9 in the biosynthesis of mannoproteins. ScMnn9 is not

only present in the heterodimeric complex M-Pol I but also in the heteropentameric

complex M-Pol II (Jungmann and Munro, 1998, Jungmann et al., 1999, Kojima

et al., 1999). This is surprising as ScMnn9 alone only produces mannotriose, the

substrate for ScVan1. The presence of ScMnn9 in M-Pol II could be due to two

reasons: 1) ScMnn9 in M-Pol II could serve a similar purpose as it does in M-

Pol I, that is, to have an allosteric effect on other GTs present in the complex.

2) ScMnn9 could participate in the elongation of the oligomannose backbone. The

results shown in Fig. 5.8 (lane 3) are not clear in regards to the number of mannose

residues attached, i. e. if the mannose backbone is elongated greater than Man4.

Due to the absence of active ScMnn9 in the second reaction one interpretation of

the results could be that ScVan1 and ScMnn9 act in an alternating mechanism.

That means that ScMnn9 forms Man3, ScVan1 forms Man4, ScMnn9 forms Van5,

and so on. A similar mechanism could be true for the presence of ScMnn9 in

M-Pol II.

The results gained from the experimental work on ScVan1 can be used to de-

velop new approaches to obtain a crystal structure of M-Pol I. If large amounts of

a-1,6-linked mannotriose are available, co-crystallisation trials with ScVan1D156

and ScMnn9D92 may lead to a stable complex between the components and ul-

timately to crystals of the complex. Further experiments will have to be carried

out to identify whether the formation of the a-1,6-oligomannose backbone (Man4,

Man5, and so on) is carried out by ScVan1 alone or if ScMnn9 and ScVan1 work

in concert, alternatingly adding a-1,6-mannose.



6 Mannosidase BcAman6 – Results

and Discussion

6.1 BcAman6 is a bacterial homologue of the yeast

enzymes ScDfg5 and ScDcw1

ScDfg5 and ScDcw1 show moderate amino acid conservation to two GH-76 fam-

ily members, the endo-a-1,6-mannosidase Aman6 from Bacillus circulans TN-31

(Kitagaki et al., 2002, Nakajima et al., 1976) and the structurally characterised Lis-

teria innocua Lin0763 (LiLin0763 protein of unknown function (PDB code: 3K7X)

(Fig. 6.1). The conservation between ScDfg5 and BcAman6 is 26 % and be-

tween ScDcw1 and BcAman6 it is 21 % (Kitagaki et al., 2002). The mannosidase

BcAman6 has been found to be active on the a-1,6-mannose backbone present

in yeast mannoproteins (Maruyama and Nakajima, 2000, Nakajima et al., 1976).

So far, BcAman6 is the only protein with a known function in the GH-76 hydrolase

family. Hence, BcAman6 could serve as a model for this class of mannosidases.

Structural insights into the binding and hydrolysis of its substrate could be pro-

jected onto its yeast homologues and could serve as a model for the identification

of potent inhibitors of this class of GH. Importantly, the aspartic acid residues 124

and 125, that could potentially serve as the general acid/base and nucleophile in

the hydrolytic activity of BcAman6, are conserved as well as many other hydropho-

bic residues that could aid binding of the mannose polymer (Fig. 6.1). BcAman6

was used as a model for GH-76 enzymes because of its known activity and be-

116
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cause extensive attempts to express DFG5 and/or DCW1 in heterologous expres-

sion systems (Escherichia coli BL21(DE3) pLysS cells and Pichia pastoris) did not

result in considerable yields. Both ScDfg5 and ScDcw1 have been shown to be

N-linked glycosylated (Kitagaki et al., 2002, Spreghini et al., 2003) and the lack of

the post-translational modification may have led to misfolding of the proteins during

translation in a prokaryotic expression system.

6.2 Cloning, heterologous expression and

purification of BcAman6

Several programs were used to predict the secondary structure, a possible sig-

nal sequence and the location of a carbohydrate-binding motif (CBM) of Aman6

(Finn et al., 2010, Petersen et al., 2011, Pollastri and McLysaght, 2005) (Fig. 6.1).

Based on these results a construct lacking the N-terminal residues 1–34 contain-

ing the the predicted signal peptide and the C-terminal residues 376–589 contain-

ing a predicted CBM (CBM)-6 was designed. The gene encoding for this trun-

cated protein was amplified from genomic DNA obtained from B. circulans TN-31

cells (ATCC© 29101™) and cloned into the pGEX-6P-1 E. coli expression plasmid,

which introduces an N-terminal glutathione-S-transferase (GST) tag followed by a

PreScission protease cleavage site. The gene encoding BcAman6 was expressed

in E. coli BL21(DE3) pLysS cells at 20 �C for 24 h in autoinduction medium. After

lysis the protein was enriched using glutathione (GSH) resin and the GST tag was

removed by PreScission protease cleavage (Fig. 6.2). Most of the cleaved GST

tag was removed by rebinding to GSH resin and the unbound material, containing

cleaved BcAman6 was collected. Size exclusion chromatography was used to re-

move minor contaminations. Purified BcAman6 was concentrated to 40 mg/ml and

used for activity assays and crystallography.

textitVmax of 77.7 (±2) nM/min resulting in a k cat of 0.2 s−1
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Figure 6.1: Alignment of selected GH-76 GH family members. The amino acid sequences of
fungal and bacterial GH-76 GHs were aligned and conservation and similarity is shown in grey scale
with black being identical between all species. The secondary structure prediction of BcAman6 is
shown above the amino acid sequence, where red and seagreen cylinders represent a-helices
(outer and inner helices, respectively) and blue arrows represent b-strands. The predicted signal
sequence is indicated by a box with a blue line. The purple open rectangle indicates the start of the
predicted CBM-6 and the remaining residues 448–589 of BcAman6 have been removed from the
figure for simplification. The red stars indicate start and end of the construct of BcAman6 used for
this thesis. Green arrowheads indicate the aspartic acid residues most likely involved in hydrolysis.
Green and purple arrowheads indicate residues that form part of the active site and have been
mutated.
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6.3 The carbohydrate-binding domain is

dispensable for BcAman6 activity

To determine if the truncations have an impact on the activity of BcAman6 com-

pared to the full-length protein (Nakajima et al., 1976), a fluorescent based enzyme

assay was used to determine steady state kinetics (Fig. 6.3A). The minimum length

of substrate of BcAman6 is a-1,6-linked mannotriose (Maruyama and Nakajima,

2000, Nakajima et al., 1976). This led to the design of the substrate analogue

a-1,6-mannobiose-4MU (Man2-4MU) that was synthesised and kindly provided by

Dr. Vladimir Borodkin in our group. The release of 4MU was used to measure the

enzyme activity of BcAman6, which when fitted could be used to determine the K m

which was 1.0 (±0.1) mM Man2-4MU, the V max of 0.5 (±0.02) µM/min and the k cat

of 1.1 (±0.04) min−1 (Fig. 6.3B and Table 6.2). This is in agreement with previous

results obtained using a-1,6-mannotriose (K m = 1.0 mM, Nakajima et al. 1976) and

the full length BcAman6 including the CBM-6. This result indicates that Man2-4MU

binds similarly well to BcAman6 as the natural substrate. Hence, Man2-4MU is a

good substrate analogue that can be used in this activity assay. Furthermore, the

lack of the CBM of BcAman6 does not affect the ability to bind Man2-4MU.

6.4 BcAman6 possesses an a6/a6 helix barrel fold

In order to characterise potential inhibitors of BcAman6, to determine the mode

of binding of a BcAman6 substrate and to understand the hydrolytic mechanism,

the X-ray crystal structure of the BcAman6 was solved. Crystallisation trials were

set up with BcAman6 at a concentration of 40 mg/ml in 480 different conditions.

Crystals of BcAman6 grew in a solution containing 0.1 M HEPES, pH 7.0, 0.2 M

CaCl2 and 20 % (w/v) PEG 6000 (Fig. 6.4A). The crystal structure of BcAman6 was

determined from a 2.0 Å dataset by molecular replacement using the co-ordinates

of a predicted structure of BcAman6 obtained by the structure prediction server
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Figure 6.3: Fluorescent enzyme assay to determine BcAman6 activity. A, a-1,6-linked
mannobiose-4MU is a substrate analogue of a-1,6-linked mannotriose and can be processed by
BcAman6. The release of 4MU can be measured at an excitation wavelength of 360 nm and an
emission wavelength of 460 nm. B, Steady state kinetics of BcAman6 WT. Error bars indicate stan-
dard error of the mean, n=3.

RaptorX (Källberg et al., 2012). The model was refined to a final Rwork/Rfree of

0.16/0.22 (Table 6.1). BcAman6 consists of 12 helices that are tightly packed to

form an a6/a6-barrel (Fig. 6.5A). The barrel is formed by six outer helices (a1, a3,

a5, a7, a9, and a11) and six inner helices (a2, a4, a6, a8, a10, and a12). The

helices are arranged along a plane with alternating directions. Two short b-strands

(b1 and b2) form a small b-sheet that is located in a loop-rich part of BcAman6

(Fig. 6.5A). It is possible that the flexibility resulting from these loops is necessary

for substrate recognition and binding.
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A B

Figure 6.4: Crystallisation and diffraction of BcAman6. A, Crystals of BcAman6 grown in a
solution containing PEG 6000 as precipitant. B, Diffraction of a crystal of BcAman6 collected at the
Diamond Light Source (Didcot, UK). The right frame is a 100 % crop of the area indicated in the left
frame.

Table 6.1: Details of data collection and structure refinement. Numbers in parenthesis represent
the values in the highest resolution shell.

BcAman6 apo

Space group P212121

Cell dimensions
a, b, c (Å) 50.9, 65.1, 90.2
a, b, g (°) 90, 90, 90

Resolution range (Å) 45.0–2.0 (2.1-2.0)
Number of observed reflections 238 674
Number of unique reflections 19 462 (1857)
Redundancy 12.2 (11.8)
I/s(I) 18.8 (6.1)
Completeness (%) 99.7 (97.1)
Rmerge 0.12 (0.45)
Number of protein residues 340
Number of water molecules 214
Rwork, Rfree 0.16/0.22
RMSD from ideal geometry
bond lengths (Å) 0.007
bond angles (°) 0.96
B-factors (Å2)

protein 19.6
water 25.5
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6.5 BcAman6 is structurally similar to GH-88

glycoside hydrolases

The a6/a6-helix barrel fold is common across GHs. It can be found in GHs of the

families 8, 9, 15, 37, 48, 63, 65, 78, 88, 94, 95, and 125. The DALI server (Holm

and Rosenström, 2010) was used to find structural homologs in a GH family other

than GH-76. The prediction identified unsaturated glucuronyl hydrolase (UGL) from

Bacillus spp. as a structural homolog (PDB: 2AHG, Z-score = 23.5, RMSD = 3.4 Å,

302 Ca atoms) (Itoh et al., 2006) (Fig. 6.5B). This hydrolase cleaves oligosac-

charides containing an a-linked unsaturated D-glucuronic acid (GlcA) (Hashimoto

et al., 1999). UGL belongs to the six-hairpin superfamily according to the SCOP

database (number: 48208, Murzin et al. 1995) (Itoh et al., 2004). Other members

of this family are N-acetylglucosamine 2-epimerase (AGE) (Itoh et al., 2000) and

unsaturated rhamnogalacturonyl hydrolase (YteR) (Itoh et al., 2006, Zhang et al.,

2005), both of which have been identified as structural homologs of BcAman6 by

DALI too (AGE: Z-score = 24.2, RMSD = 3.2 Å, 309 Ca atoms; YteR: Z-score =

23.4, RMSD = 3.1 Å, 292 Ca atoms). Strikingly, despite the moderate similarity of

the fold between BcAman6 and UGL, the active site groove is considerably different

(Fig. 6.6). This may be the result of the UGL catalytic mechanism in which a vinyl

ether group is hydrated to hydrolyse the glycosidic bond. This is a novel mech-

anism for GHs (Itoh et al., 2006) and unlikely to be the reaction mechanism of

BcAman6. The residues involved in this reaction are on helix a3 (N(D)88) and he-

lix a4 (D149) in UGL, at a distance of 7.1 Å apart (Fig. 6.5B and 6.6B). In contrast,

the proposed active site residues D124 and D125 of BcAman6 are both located on

helix a4 (Fig. 6.5A and 6.6A). Extensive trials to soak and co-crystallise BcAman6

with the weak inhibitor a-1,6-mannobiose (Nakajima et al., 1976) or the substrate

analogue Man2-4MU did not lead to observable electron density in the active site.

This may be the result of the tight packing of the protein crystals. The solvent

content of BcAman6 crystals was as low as 30 %. Additionally, the active site of

monomeric BcAman6 was partly blocked by R341 of a symmetry related molecule
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(Fig. 6.6C). This could also explain why soaking experiments did not lead to com-

plexes of BcAman6 with its substrate or product. No other crystals appeared in the

conditions that were tested with BcAman6. Hence, it was not possible to explore

an alternative crystal form with a more advantageous packing.

6.6 BcAman6 possesses a putative substrate

binding groove

A channel is formed around residues D124 and D125 that point towards the solvent

(Fig. 6.5A and 6.6A). Because both residues are conserved between BcAman6,

ScDfg5, ScDcw1 and LiLin0763 (Fig. 6.1) they are likely to act as the general

acid/base and nucleophile that are necessary for the action of retaining GHs (Sin-

nott, 1990). Due to the lack of NMR data it is unknown if BcAman6 acts as a

retaining or inverting hydrolase. However, the distance between D124 and D125

is 5 Å, which is a suitable distance for a retaining GH (average distance 5.5 Å)

(McCarter and Withers, 1994). The active site groove spans the entire surface of

BcAman6 (approx. 30 Å). This is in agreement with the length of a mannohexaose

molecule. It has been shown that a longer substrate than a-1,6-mannotriose binds

better and is hydrolysed faster by BcAman6 (Nakajima et al., 1976). It is possible

that a longer substrate chain changes the conformation of BcAman6 and has an

allosteric effect on activity. This conformational change may be achieved through

the flexible loops around the b-sheet (Fig. 6.5A). The high structural similarity be-

tween BcAman6 and LiLin0763 (DALI Z-score = 41.5, RMSD = 2.1 Å over 321

backbone Ca atoms) (Holm and Rosenström, 2010) shows the conservation of

this fold between the members of the GH-76 family. From sequence alignments

between BcAman6, LiLin0763, ScDfg5, and ScDcw1 it can be predicted that the

yeast proteins also adopt this fold.
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Figure 6.5: Stereoscopic images and topology of GH-76 BcAman6 and GH-88 BsUGL. A,
BcAman6 apo structure and topology. B, BsUGL in complex with unsaturated chondroitin disac-
charide (DGlcA-GalNAc) and its topology. Both GHs form an a6/a6 barrel with six inner and six
outer a-helices. Structures are shown with the same viewing matrix applied.
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DGlcA-GalNAc (UCD). Residues N(D)88 and N149, which are involved in hydrolysis, are shown in
green. C, Arginine 341 (R314’, green carbon atoms) of a symmetry related molecule of BcAman6
interacts with residues D124 and D125 (magenta carbon atoms) and blocks access to the active
site of the enzyme.
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6.7 The D124/D125 motif and interacting active site

residues are required for catalytic activity

As noted above, complexes of BcAman6 with the substrate analogue Man2-4MU

could not be obtained. However, the sequence alignment between BcAman6,

ScDfg5, ScDcw1, and LiLin0763 identified D124 and D125 as potential residues

involved in the hydrolysis of the substrate since both residues are conserved across

all four proteins. In order to test their involvement in activity, both aspartic acid

residues were mutated to asparagine. Additionally, the structure was used to de-

sign mutants of other nearby residues (W73, W128, W172, and Y243) (Fig. 6.7A)

that may be involved in hydrolysis or substrate binding. All mutants expressed

equally well as compared to the BcAman6 WT protein (Fig. 6.7B), indicating that

no mutation leads to unfolded protein that becomes degraded. The point mutants

were used to determine steady state kinetics (Table 6.2 and Fig. 6.8). K m and k cat

could not be determined for the W73A and W128A mutants, nor for the D124N and

D125N single and double mutants even after 16 h assay time instead of 20 min.

These mutants have to be considered as inactive, highlighting the importance of

all four residues for activity of BcAman6. In particular, the abolishment of activity

of BcAman6 in the D124N and D125N mutants supports the idea that these side

chains act as the general base/acid and nucleophile in the hydrolytic reaction. The

other residues are possibly not directly involved in the hydrolase activity. Instead,

they are likely to be involved in binding and co-ordination of the substrate. Both

residues W73 and W128 can provide a platform for the correct co-ordination of the

substrate due to the hydrophobic nature of their aromatic side chains. Residues

W172 and Y243 show a considerable decrease in activity (Table 6.2), however

substrate binding does not seem to be affected as both K m are comparable to

BcAman6 WT.



6 Mannosidase BcAman6 – Results and Discussion 127

A

W73

Y243

D124

D125

W172

B

60

50

40

30

25

70

85
100
kDa F7

2A

GST-PP

BcAman6

W7
3A
N1
20
A
F1
22
A
D1
24
N
D1
25
N
D1
24
N/
D1
25
N

W1
28
A

W1
72
A

R2
29
A
Y2
43
A
N2
92
A
D2
94
N

WT

Figure 6.7: Conserved residues that form the active site of BcAman6 and expression of
point mutations. A, Surface representation of BcAman6 with residues (red) around D124 and
D125 that are conserved across the species compared in this thesis (Fig. 6.1). B, SDS-PAGE gel
of BcAman6 WT and point mutants after enrichment on GSH resin and cleavage with PreScission
protease. GST-PP, GST-PreScission protease cleavage site tag.

Table 6.2: Steady state kinetics of BcAman6 WT and point mutants. An asterisk indicates reactions
that have been performed for 16 h instead of 20 min. N. D.=not detectable. Error is standard error
of the mean, n = 3.

K m (mM) kcat (min−1) kcat/K m (mM−1 min−1) relative kcat/K m (%)

WT 1.0 ± 0.1 1.096 ± 0.0378 1.096 100.0
F72A 0.6 ± 0.2 0.002 ± 0.0002 0.003 0.3
W73A* N. D. N. D. N. D. N. D.
N120A 1.0 ± 0.2 0.005 ± 0.0003 0.005 0.5
F122A 1.1 ± 0.1 0.021 ± 0.0005 0.019 1.9
D124N* N. D. N. D. N. D. N. D.
D125N* N. D. N. D. N. D. N. D.
D124N/D125N* N. D. N. D. N. D. N. D.
W128A* N. D. N. D. N. D. N. D.
W172A* 1.4 ± 0.6 0.002 ± 0.0003 0.001 0.2
R229A* 1.1 ± 0.2 0.461 ± 0.0270 0.419 42.1
Y243A 1.0 ± 0.5 0.001 ± 0.0002 0.001 0.1
N292A 1.1 ± 0.2 0.331 ± 0.0198 0.301 30.2
D294N 0.5 ± 0.1 0.419 ± 0.0138 0.838 38.2
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Figure 6.8: Steady state kinetics of BcAman6 WT and point mutants. BcAman6 WT or mutants
were incubated with different concentrations of Man2-4MU to determine steady state kinetics.

6.8 Solvent exposed aromatic amino acids in the

groove are indispensable for substrate binding

In addition to the residues that seemed to be directly involved in hydrolysis, residues

important for substrate binding were identified. Using the structure of BcAman6

several mutations of side chains along the active site groove were made and steady

state kinetics for these mutants were established (Table 6.2 and Fig. 6.8). The re-

sults can be grouped into two categories when compared with BcAman6 WT: 1)

mutations with comparable binding constants but considerably reduced catalytic

activity (F72A, N120A, F122A, W172A, and Y243), and 2) mutations with compa-

rable binding constants and activity (R229A, N292A, D294N). Due to the lack of a

substrate complex of BcAman6 it is difficult to explain the notable loss in activity

of the mutations in group 1. The residues may be involved in the co-ordination of

the substrate during the reaction as the binding is not affected by the mutations.

This observation can also be the result of the synthetic substrate used in this as-

say. The group 2 mutations do not affect the steady state kinetics as substantially



6 Mannosidase BcAman6 – Results and Discussion 129

as the mutations in group 1. The residues in group 2 may only provide weaker

hydrogen-bond interactions that is not vital for binding. Additionally, they may pro-

vide non-essential interactions with the residues in their surrounding that, however,

are beneficial for the rate of BcAman6 hydrolysis.

6.9 Identification of small fragment binders of

BcAman6 as potential inhibitors

A bio-layer interferometry fragment screen approach (using an Octet RED384) was

used to identify molecules that inhibit the activity of BcAman6 in order to obtain

potential inhibitors for the two essential, extracellular yeast homologs ScDfg5p

and ScDcw1p. This work was done in collaboration with Dr. David Robinson

(Drug Discovery Unit, UoD). Six compounds were identified as reasonable binders

with association and dissociation constants, and coefficients of determination (R2)

that result in fast binding and low dissociation (Fig. 6.9 and Table 6.3): 5-amino-

2-methylindole, (1-methyl-1H-pyrrol-2-yl)methylamine, 2-(1H-imidazol-1-yl)aniline,

1-(4-chlorophenyl)-3-oxoisoindoline, and 2-(4-methylpiperazin-1-yl)aniline. These

compounds were used for initial experiments to determine their inhibitory effect on

BcAman6. Due to limitations in the supply of two of the six compounds, only four

compounds were tested in an BcAman6 activity assay at concentrations of 0.1 mM

and 1 mM (Table 6.4). None of the compounds resulted in a considerable inhibition

of BcAman6 activity. This result shows one major drawback of the approach to

identify inhibitors by bio-layer interferometry. This technique measures binding of

a compound independent from its binding site and impact on activity, which is in

contrast to classical high-throughput screens of large fragment libraries which are

based on an activity assay. However, the advantage of the bio-layer interferom-

etry is that a library of compounds can be rapidly decreased to only compounds

that bind to the enzyme. This is very useful if components of an activity assay for

the enzyme are limited. This is the case for Man2-4MU which is not commercially
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available and can only be produced in moderate amounts in our group.

6.10 Concluding Remarks

The aim of the work on BcAman6 was to use the bacterial mannosidase as a model

for the essential yeast proteins ScDfg5 and ScDcw1. The enzymatic activity of the

fungal proteins is still unknown and even very recent research in the filamentous

fungi Neurospora crassa does not reveal their mode of action (Maddi et al., 2012).

The structure of BcAman6 is the second in the GH-76 family, however it is the first

with a known function. The a6/a6 barrel is a common fold across many different GH

families, including GH-125 which also consists of mannosidases. Structure-guided

mutagenesis identified D124 and D125 as the side chains that are potentially in-

volved in the hydrolysis of the BcAman6 substrates. Both residues, and many other

residues around both aspartic acids, are conserved between BcAman6, ScDfg5

and ScDcw1 (Fig. 6.1). These observations make BcAman6 a good model for the

yeast proteins. However, the lack of a substrate or product complex or NMR data

results in the inability to speculate about the mechanism of hydrolysis. Attempts

to crystallise the mutants D124N, D125N and the double mutant did not result in

crystals in the established condition. New screens for a different crystallisation

condition will have to be carried out, since the mutations seem to result in a differ-

ence in packing of BcAman6. Attempts to obtain substrate complexes by others,

Table 6.3: Kinetics of compounds binding to BcAman6 during bio-layer interferometry.

K d (mM) K on (1/Ms) K off (1/s) R2

5-amino-2-methylindole 0.14 48.0 0.00676 0.94
(1-methyl-1H-pyrrol-2-yl)methylamine 0.19 47.9 0.00911 0.80
2-(1H-imidazol-1-yl)aniline 2.41 6.6 0.01590 0.93
2-(4-methylpiperazin-1-yl)aniline 0.14 1950.0 0.2790 0.76
1-(4-chlorophenyl)-3-oxoisoindoline 1.49 298.0 0.443 0.92
N-methyl-3,4-dihydro-2H-1,4-benzoxazine-2-
carboxamide

57.90 0.3 0.0175 0.91
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Figure 6.9: Chemical compounds identified to bind BcAman6. The compounds have been
identified by bio-layer interferometry to be reasonable binders of BcAman6. Only compounds that
showed a higher than 3s above median response and where coefficients of determination (R2)
were above 0.75 were selected.

Table 6.4: Kinetics of BcAman6 with the compounds identified by bio-layer interferometry. Error
indicates standard error of mean, n = 3.

Compound Concentration (mM) V, (nM/min)

– – 102.8 ± 2.9
(1-methyl-1H-pyrrol-2-yl)methylamine 0.1 101.3 ± 2.5

1.0 85.7 ± 0.5
2-(1H-imidazol-1-yl)aniline 0.1 84.4 ± 0.3

1.0 76.5 ± 1.5
2-(4-methylpiperazin-1-yl)aniline 0.1 80.7 ± 2.0

1.0 72.7 ± 1.5
1-(4-chlorophenyl)-3-oxoisoindoline 0.1 76.2 ± 1.3

1.0 76.5 ± 2.2
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such as replacing the oxygen in the glycosidic bond of mannobiose with a sulfur,

have been proven useful (Gregg et al., 2011).

The enzyme assay using Man2-4MU has been shown to give similar kinetic pa-

rameters for BcAman6 compared to previous work (Nakajima et al., 1976). The

limiting factor of the assay, however, is the availability of the substrate analogue,

which is not commercially available. Nevertheless, the assay can still be consid-

ered as a strong tool to aid identification of inhibitors of the mannosidase. It is

rapid (incubation times of approx. 10 min were enough to obtain an acceptable

signal/background ratio) and does not involve any coupled enzymes that have to

be screened independently after the identification of a good inhibitor of BcAman6.

This work will be done in the future as the similarity of the active site between

BcAman6, ScDfg5 and ScDcw1 is most likely the only exploitable target. The use

of bio-layer interferometry is a useful technique if an activity assay for a target is not

available and/or if costs for either a component of the assay or for a large screen

are an issue. However, it should be noted that this approach is mainly useful if

the protein tested is the target from the organism of interest. This is particularly

important if a fragment binds to the protein in a region of low conservation.

The results presented here should be used for further investigations and screen-

ings for inhibitors of the yeast proteins ScDfg5 and ScDcw1. Furthermore, more

effort should be put into the expression and purification of both proteins as they

still represent interesting drug targets without a known enzymatic function. With

high yields of recombinant ScDfg5 and ScDcw1 it should be feasible to use micro

array binding to identify potential substrates and elucidate the function the these

two essential proteins.



7 Conclusions and Future

Directions

In conclusion, the results in this thesis present the first structure of the GT-62 family,

defining the fold of the entire GT family. ScMnn9D92 adapts the GT-A fold and car-

ries an unusual loop formed by two b-strands in the C-terminus of the GT. The func-

tion is unknown but the loop could serve as a dimerisation domain for other GTs in

the yeast Golgi (e. g. ScVan1) or for the acceptor protein that will become manno-

sylated by ScMnn9. Through the development of a novel coupled enzyme assay,

the steady-state kinetics for ScMnn9D92 could be determined. Compared with GTs

that are structurally similar and use GDP-Man as the donor substrate, ScMnn9D92

shows comparatively weak binding to the substrate analogue 4MU-Man and the

donor GDP-Man. However, the speed of the reaction of ScMnn9D92 is compa-

rable to some the similar GTs explored in this thesis. Furthermore, ScMnn9D92

is not able to form a-1,2-glycosidic bonds in vitro. This is in contrast to previous

data that suggests that ScMnn9 has the ability to form either an a-1,6- or a-1,2-

glycosidic bond between two mannose residues (Rodionov et al., 2009, Stolz and

Munro, 2002). Additionally, ScVan1D86 is only able to form oligomannose products

in the presence of the product of ScMnn9D92, mannotriose, and ScMnn9D92. The

activity of ScMnn9D92 for the formation of mannose oligomers is not necessary.

This indicates, that the dimerisation between the two GTs transfers ScVan1D86

into an activated state. However, activity is abolished in the absence of parts of

the N-terminal linker region and the C-terminus of ScVan1. These regions may

be necessary for dimerisation of ScVan1 with ScMnn9. The products formed by
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ScVan1D86 and ScMnn9D92 are solely linked via a-1,6-glycosidic bonds. This

indicates that neither of the components of the M-Pol I complex appears to have a-

1,2-transferase ability in vitro. Taken these results together, it is unlikely that M-Pol I

is the complex that can differentiate between mannoproteins and core-type proteins

where upon the GT complex changes its transferase activity accordingly. It is more

likely that an unknown GT or a complex of GTs transfers the a-1,2-mannose onto

core-type proteins.

The results in this thesis can be used for further attempts to crystallise M-Pol I in

complex with a substrate analogue or the donor substrate and an acceptor protein.

This could lead to the identification of the mechanism that results in the synergetic

effect of ScMnn9 on ScVan1 activity. The assay developed to measure steady-

state kinetics of ScMnn9 could be used to screen for inhibitors of the mannosylation

pathway in yeasts and other fungi. It has been shown that the absence of the highly

decorated mannose structure abolishes virulence in a C. albicans mouse model

completely (Hall et al., 2013), making the mannosylation pathway a potential and

interesting drug target.

Furthermore, this thesis reports the first crystal structure of a GH-76 GH with

known enzymatic activity. Using a fluorescent enzyme assay important and con-

served residues were identified that are involved in the hydrolysis of a-1,6-mannose.

The combination of the structure and the assay can serve as a model for the identi-

fication of potent inhibitors for the essential fungal GH-76 members Dfg5 and Dcw1

that can be found in S. cerevisiae but also in the human pathogens C. albicans and

A. fumigatus. This is in particular interesting, giving the fact that the active site

residues are very well conserved across all species.

The assay developed in this thesis for the GH-76 BcAman6 is compatible with

high-throughput inhibitor screens and should be used in such a screen to identify

potent inhibitors. These inhibitors could also negatively affect the activity of the

fungal proteins Dfg5 and Dcw1. Since both proteins are extracellular proteins,

inhibitors that can effectively inhibit the activity of both enzymes could lead to the

development of new anti-fungal drugs.
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