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Chapter 1

Introduction

As the abundance of molecular data in the life sciences asei the use of mathe-
matical and computational tools to provide a deeper unaedstg of how gene reg-
ulatory networks (GRNSs) function is becoming both necgssad possible. In the
last 10 years or so, the field known as ‘systems biology’ hasrged which seeks
to understand complex systems comprised of many connetgetepts with corre-
lated behaviours and non-linear interactions. Systemsdpyds an inherently multi-
disciplinary field, combining expertise and techniquesrfrsubjects such as mathe-
matical biology, bioinformatics, image processing, biggibs, wet-lab biology and
computer science. A large component of systems biologynsemed with the for-

mulation, study and analysis of theoretical models.

There are many good reasons to develop and use models. Omnerofiain uses in
research is to predict how the system of interest will behaaer conditions not yet

tested experimentally. There are many examples in thealiez of computational

modelling successfully guiding biological experiments; €éxample see Locke etlal.

2005). Models may also be designed for communication otepts, for sharing

with collaborators, for re-use as components of larger nsp@dmd even for training



purposes (e.g. flight simulators, virtual surgery). We cso aise models to try to

unearth the causes of an event that has already happenexafople, the Northeast

America blackouts in 2003 (Bolouri, 2008).

The sheer size and complexity of the data from global, highttghput technologies is
such that unbiased and comprehensive data analysis cabhepgrformed via compu-
tational methods. Moreover, GRNs, and indeed most bioatedmetworks, are highly
nonlinear systems, so that it is often very difficult to pcédheir behaviours without
extensive modelling. Computational mathematical modetsnit the use of sophisti-
cated analyses and visualisation methods that can reveplydeidden properties of
complex systems. Another very attractive feature of matiteral and computational
modelling is that the models can be unambiguously descabddcommunicated. The
language of mathematics is universally understood, senhisgtion of mathemati-
cal models can be trivial. Furthermore, computational netleat conform to certain
standards can be automatically interpreted by a varietpfbivare tools (e.g. SMBL

models), allowing greater scrutiny and re-use while avgdnishandling.

Perhaps the strongest argument for using computatiortaliggees to model and anal-
yse GRNs is that the low cost and high performance of compatiws us to perform
large numbers oih-silico experimentsin-silico experiments (i.e., theoretical experi-
ments facilitated by the power of computers) can exploraages too costly (in terms
of time or money) or too complicated to explore in a labonatoFhey can help us
develop insights into the roles of different regulatoryenaictions within a system, and
guide experimental planningn-silico experiments can also highlight inconsistencies
in our assumptions, such as when a GRN model is shown to beadhtzof reproduc-
ing certain experimental observations (this is somethiag we will encounter in this

thesis, see sectign 8.5).

In addition to the above attractions, computational mode{SRNs provide a number



of serendipitous benefits. For example, in order to consawmmputational model,
one often has to make all assumptions explicit. If there ayepaovisos, gaps, or ar-
bitrarily defined values or interactions, their formal defon within a computational
model should bring them to light. Of course, such explicitldeations can still be
buried in pages of code or equations, but good practice fjnésecan help users iden-
tify such issues. Making assumptions explicit can alsagegrgnew lines of investi-
gation. The models also facilitate automated consisteheglding. Another benefit
of computational modelling is that such models can be storaethtabases and pro-
grammatically interrogated, thus allowing researcheeryavhere to quickly locate

and download a model. Indeed, the concept of ‘cloud biolagyjaining momen-

tum and many authors recognise its importance for the f maker et all., 2012).

As these technologies mature, one can envisage organnismgaor disease-specific
model repositories that allow users to share interim moaledsexplore the behaviour
of their model in the context of models of related processaldped by other re-

searchers.

Computational models of GRNs can take a variety of formsiluetently, modelling
studies have predominately used deterministic, tempgmaicaches. This includes
models comprised of directed and undirected graphs, boaletworks, generalised

logical networks, nonlinear ordinary differential equais, delay differential equa-

tions, stochastic differential equations and stochastaster equations (Jang, 2002).

Although these models have attempted to be quantitatieg,lthve often only yielded
qualitative insights into the underlying biological syste This situation can be ex-
plained by two major difficulties facing the field of systemelbgy. First of all, the

biochemical reaction mechanisms underlying regulatotgractions are usually not
known or are incompletely known. This means that detailegttic models cannot
be built and more approximate models are required. In thengkplace, quantitative

information regarding kinetic parameters and moleculaceatrations is only seldom



available. Unsurprisingly, the best modelling efforts éaged fine-grained, quantita-
tive and stochastic models which have been restricted tdatygy networks of small
size and modest complexity that have been already wellackerised through experi-
mental means. There has also been a marked lagpadfo-temporal modelsf GRNs

in the systems biology literature — such models form the $amithis thesis.

In comparison to temporal models there are few spatio-teatpoodels of intracellu-
lar signalling pathways in the literature, although theyotlwork is growing. Early
attempts at spatio-temporal modelling of intracellulathpaays containing negative
feedback loops were carried out by Glass and co-workers, nebognised the in-

herent spatial heterogeneity of cells and observed osmjlalynamics for activator-

4

inhibitor kinetics ¢

70; Shymko and<5| 1974). Mahaffy et
al. subsequently developed models to capture spatialréssafar such pathways, in-
troducing delays for transcription and translation andliasory dynamics were again

observed|(Mahaffy and PaJQ_lfa 4, Busenberg and Mahaffyg; ,01988).

7

More recently, Gordon et al. developed a partial diffe@ngiquation (PDE) model

for the p53-Mdm2 pathway (Gordon et/ al., 2009) includingagisl and which pro-

duced sustained oscillations. The model was solved in tvadiapdimensions, but
did not consider separate compartments for the nucleus yoglasm. Other PDE
models not containing delays have also appeared recewtlyding those of Terry et

al. who studied the Notch and NEB pathways, finding oscillatory behaviour that

closely resembles experimental results (Terry et al., [20&dry and Chaplain, 2011).

Spatio-temporal models of intracellular processes haea lievestigated not only in
the context of negative feedback loops. For instance, Kleslko and co-workers

have considered general reaction-diffusion models ofgimdtinase and phosphatase

activity within cells (Brown and Kholodenko, 1999; Khol ,.2006), Cangiani and

Natalini have examined active transport of proteins alomyatubules (Cangiani and

Natalini,[2010), and Dinh et al. have studied intracellutafficking of adenoviral




vectors [(Dinh et al., 2005). For a review of modelling inttalar spatio-temporal

interactions, see Rangamani and lyengar (2007) and Kh 5). Itis clear

from these early studies that the development of modelshnrieitect spatial and tem-
poral aspects of intracellular pathways can be regardediesst step towards an effec-
tive computational approach in investigating conditionder which pathways become

deregulated and in the optimising of targeted drug treatmen

The strength of models depends on the appropriateness widdelling assumptions.
Hence, in the next chapter we present background biologguhkaryotic cells, specif-
ically focusing on gene regulatory networks, the spatialcitire of the eukaryotic
cell and intracellular transport mechanisms. In this these will focus on two spe-

cific gene regulatory networks, the Hes1 GRN (which playsla o developmental

processes) and the p53-Mdm2 GRN (which is critical for raiu the cell-cycle).

Both can become deregulated in human cancer (San ; [R@Ae, 1992), so

their study is interesting both from a biological and a daliperspective. We present
background biology for the Hes1l GRN in chapter 3 as well asegaliure review of
previous mathematical modelling efforts. Importantly, @emonstrate that neglecting
spatial information can have major consequences in termspobducing experimen-
tal data. In chapter 4 we formulate and explore numericatgeation-diffusion model
of the Hes1 GRN which builds on and extends previous modgéiforts. Using our
PDE model we are able to reproduce the oscillatory dynanseed in experimental
data, as well as mimicking well-documented biological expents. We explore fur-
ther the importance of spatial considerations in chapter Baking model extensions
which are only possible under a spatial regime. Specifically study the influence
of the nuclear membrane, active transport and cell shapberiésl GRN. We find
our extended model is more robust to changes in parameterslieas being robust to
geometrical changes in our computational domain. We suggpessible biological

experiment that could distinguish which model (the one gmé=d in chapter 4 or the



one presented in chapter 5) is more accurate. We depart frerwointinuum PDE ap-
proach in chapter 6 and develop a spatial stochastic modehwlacounts for intrinsic
noise in the Hes1 GRN. We focus our modelling efforts on embity stem cells (due
to the abundance of expression data for this cell line) ankeragorediction regarding
the source of heterogeneity in embryonic stem cell diffeagion. In chapter 7 we
introduce the more complex p53-Mdm2 GRN. As we did for the HB&N in chap-
ter 3, we begin by introducing the background biology of tB&dm2 GRN and
a literature review of previous mathematical modellingpe#. Again, we are able to
demonstrate that the use of strictly temporal approachefi@ee certain limitations.
In chapter 8, a reaction-diffusion model of the p53-Mdm2 GRMrmulated and a nu-
merical simulation study is presented. Interestingly,cigasome inhibition numerical
experiment unearths an inconsistency between our sirnnkénd a biological exper-
iment, implying something is a askew with our modelling asptions. This problem
is rectified in chapter 9, where we consider the influence t¥@t¢ransport and the
nuclear membrane on the p53-Mdm2 GRN. By accounting fovad¢tansport we are
able to faithfully reproduce data produced by the proteasmibition biological ex-
periment. Finally, concluding remarks and directions fdufe research are given in

chapter 10. Some technical details are deferred to an Append



Chapter 2

Biological background

In this chapter we review the biology of intracellular sigttansduction. We focus on
gene regulatory networks, negative feedback loops andiieasstructure of eukary-

otic cells. We also discuss how molecules are transportddmthe cell.

2.1 Intracellular signal transduction

Intracellular signal transduction can be described as#msinission of molecular sig-
nals from a cell’s exterior to its interior. Molecular sigaare transmitted between
cells by the secretion of hormones and other chemical fectdhe ability of an or-
ganism to function normally is dependent on all the cellg®tlifferent organs com-
municating effectively with their surrounding environmi@md with each other — a
phenomenon known astercellular communication. Eukaryotic cells require stimula-
tion for cell division and survival, for example, it is knowmat in the absence of certain

growth factors, the cell will undergo apoptosis (QQIIinﬁg 1994). These extracellu-

lar stimulation requirements are necessary for cont@ltiell behaviour in unicellular

and multicellular organisms. In fact, signal transducipathways are perceived to be

7



so central to biological processes that a large number efdess are attributed to their

disregulation.

Once a cell picks up a hormonal or sensory signal, it mussiréinthis information
from the surface to the interior parts of the cell — for exampb the nucleus. This
occurs via signal transduction pathways that are very 8pgbbth in their activation
and in their downstream actions. Thus, the various orgaritkerbody respond in
an appropriate manner (only) to relevant signals. In euiarycells, most intracel-
lular proteins are activated by a ligand/receptor inteéoacand possess an enzymatic
activity — examples include tyrosine kinases and phospgleataSome of them cre-
ate second messengers such as cyclic AMP and IP3, the lattgolling the release
of intracellular calcium stores into the cytoplasm. In gahesecond messengers are
molecules that relay signals from receptors on the celbserto target molecules in-
side the cell, in the cytoplasm or nucleus. These secondangsss then bring into
play complex GRNs which control the levels of mMRNA and pnoteopy numbers
through various feedback loops. The changes in protein aRbAncopy numbers
can result in changes in cell behaviour, structure and thiee@mment. For example, a
yeast cell which is surrounded by sugar solution will swidcihgenes to make enzymes
that process the sugar and convert it to alcohol. This psyedsich we associate with
wine-making, is how the yeast cell survives, gaining engagsultiply, which under
normal circumstances would enhance its survival prospe&tsoverview of signal

transduction is given in the schematic diagram in Figure 2.1

2.1.1 Genes

The traditional definition of a gene is a region of DNA thatreniscribed as a single

unit and carries information for a discrete hereditary abtaristic, usually correspond-

ing to a single protein or a single RNA (Alberts et al., 200B)is definition has been




gene
regulatory
network

extracellular
signals

T

change in cell change in mRNA
behaviour and and protein
structures copy numbers

Figure 2.1: A schematic diagram presenting an overview of the main coews of intra-
cellular signal transduction. Signals from outside thel @eé processed by gene regulatory
networks which cause changes in mRNA and protein levelseTttenges can influence cell
behaviour and internal structure or initiate certain feed loops. The components of signal
transduction which are studied in this thesis are highleghby the blue rectangle.

challenged in recent years, and it appears that what cotestia gene often depends

on its context, hence there no longer exists a universatte@ted definition (Keller

and Harel| 2007). It has been discovered that a gene may emcoldiple transcrip-

tion start sites, overlapping coding regions, alternaspicing sites, untranslated and
regulatory RNAs, and enhancer binding sites hundreds otlialses away from the
basal promoter they act on. This new data has led to an updafedtion of a gene

as “a union of genomic sequences encoding a coherent set oftjaditeaverlapping

functional products( i [, 2007). This updated definition definesegdy

functional products, whether they are proteins or RNA,eathan specific DNA loci.

In this thesis, we are concerned with the functional proslatgenes and how they reg-
ulate the expression of other genes. Our focus is on thedthiearand computational
techniques that we can use to gain the deepest insights freraviilable expression
data. We are aided in this undertaking by the fact that mooleGRNs ultimately

make predictions about features digitally encoded in DNAicl can be tested unam-

biguously using DNA-based technologies.



2.1.2 Gene regulatory networks

A gene regulatory network or genetic regulatory network k¢ the core of intracel-
lular signal transduction. In brief, a GRN is a collection@fA segments in a cell
which interact with each other indirectly through their RIAd protein products (and
with other substances in the cell), thereby governing thesrat which genes in the
network are transcribed into mRNA. In Figurel2.2, a scheendiigram of a generic

gene regulatory network is presented.

extracellular signal

cytoplasm

receptor

cascade of interacting ~—————3» inactive transcription factor

proteins @ P -« — —
|

active transcription factor |

. protein —» cell
functions

nucleus

DNA
target
gene feedback
—— | loops

promoter RNA
region polymerase <« - — — — |

Figure 2.2: A schematic diagram presenting a generic GRN. This diaghastiates the chain
of intracellular events that occur when a cell receives atmeeellular signal.

The sequence of events illustrated in Figurd 2.2 can be suisedaas follows. The
cell receives an extracellular signal via specific receptoteins at the cell membrane.
This signal is carried through the cytoplasm by a cascadateifacting proteins which
often results in the activation of transcription factorsafiscription factors are a class
of molecules involved in regulating gene expression. Theyusually proteins, al-
though they can also consist of short, non-coding RNA. Teapson factors function

by recognising certain nucleotide sequences before or @itegene in the nucleus.

10



Eukaryotes often have a promoter region upstream from the,géth certain specific
motifs that are recognised by the various types of trangorigactor. By binding to

this region at the start of other genes (or even their own)géraascription factors can
switch the gene ‘on’ or ‘off’, or in other words, initiate anhibit the binding of RNA

polymerase. Transcription factors are also usually foundkimg in groups or com-

plexes, forming multiple configurations that allow for vemy degrees of control over
rates of transcription. Once RNA polymerase is bound, tbegss of transcription can
begin which yields mRNA. The newly formed mRNA is transpdréeross the nuclear
membrane and can then diffuse in the cytoplasm. In the cgsop| the process of
translation can take place, where mRNA molecules interdtt mbosomes (the pro-
tein production factories of the cell) to produce protetris Worth noting that a single
MRNA molecule can produce large quantities of protein. Tiwégin molecules can
be involved in numerous different events, such as feedlmgs| (positive or negative)

or protein cascades which can result in changes in cellutastion.

2.1.3 Negative feedback loops

Negative feedback loops controlling the concentrationkeyf intracellular proteins

are prevalent in a diverse range of important cellular pgses. Examples include

inflammation, meiosis, apoptosis and the heat shock ree ., 2008;
Lahav et a\. 2004; Fall et al., 2002). Experimental dateaévhat pathways con-

taining negative feedback loops can exhibit sustainedlasons (Hirata et all, 2002;

Q@@mwl 2006; Nelson et al OQ_ZL'_Shaukan'_aJ, 009). This is not

unexpected given the interactions involved in a negatiedtback loop.

A generic example of a negative feedback loop with variaklesd y is shown in
Figure[Z.B. The interactions involved in this negative fesak loop can be described

as follows. Anincrease in x causes y to increase, which mrtesults in the inhibition

11



y

Figure 2.3: A schematic diagram of a generic negative feedback loop.

of x. After x begins to decrease, this will also cause y leteldiminish, eventually
allowing x to increase again. This process repeats and ttaghipes oscillations in

both x and y.

2.2 The spatial structure of the eukaryaotic cell

Gene regulation is an inherently spatial process. In thamyokic cell, there are a
variety of internal compartments (see Figure 2.4) callefoelles, each of which has
its own lipid membrane. Organelle function can be dividdd three main categories:
information processing, energy processing, and packagfiegemical products. The
nucleus (the defining feature of the eukaryotic cell) is thgaoelle most associated
with information processing. It is surrounded by two menmiesawhich are referred
to as the nuclear envelope. Nuclear pore complexes detemviiere species move in
and out of the nucleus and how quickly they do so. The nucleasams long, sin-

gle strands of DNA called chromosomes, which become viglbleng cell division.

The key process of transcription occurs at specific sites rege— in the nucleus,

and some genes are located closer to the nuclear membranettiexs, increasing

their sensitivity to transcription factors le an Ic2006). Up to 25% of

the volume of the nucleus can be taken by structures callettolu Nucleoli are
a non-membrane bound structure where ribosomal RNA isdrdresi and ribosomal

subunits are assembled. Mitochondria (which break dowarsjgre associated with

12



energy processing and have their own internal structur@ ®&A. The set of packag-
ing organelles is collectively known as the endomembrastesy. Its most prominent
organelle is the endoplasmic reticulum. This system as denb@ collection of bio-

logical containers that can move, separate, package,amsport chemicals, similar to
a chemical manufacturing plant. Cell shape and size chavgetiome and are known

to influence intracellular signal transduction (Meversl&1200 ‘;MI 2008).

The cytoplasm is the gel-like substance that resides battfeecell membrane and
nuclear membrane, holding all the cell’s internal orgae®llThe cytoplasm is given
structure and shape by the cytoskeleton. The cytoskelstoomprised of three major
types of protein filaments: actin filaments, microtubuled artermediate filaments.
The centrosome, located a small distance outside the mehealope, is the primary
microtubule-organising centre of eukaryotic cells (whevierotubules originate). In
many organisms, the centrosome consists of a pair of cérgrieach one a hollow
tube formed by nine triplets of microtubules. Lysosomes p@idxisomes are small
membrane-bound organelles that contain digestive enzysexbto break down waste
materials and make use of molecular oxygen to oxidise ocganlecules respectively.
Also within the cytoplasm, another key process — transtatie occurs in the ribo-
somes. All of these observations regarding the spatiattsirel of the eukaryotic cell
serve to emphasise the fact the intracellular environngeakiremely heterogeneous
and mathematical models of GRNs will be more faithful the entbiey seek to account

for spatial features inherent to the eukaryotic cell.

2.3 Intracellular transport mechanisms

To help establish and maintain uneven distributions of ifipgaroteins, RNAs and or-
ganelles, eukaryotic cells employ several distinct merdmas for molecular transport.

The appropriate subcellular localisation of molecularcsge is critical for a cell to
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Figure 1-30 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)

Figure 2.4: The spatial structure of the eukaryotic cell. Copyright Gfbm Molecular Bi-
ology of the Cell, Fifth Edition by Alberts et al. Reprodudsdpermission of Garland Sci-
ence/Taylo& Francis LLC.

remain healthy (Kim et al., 2000; Johansson et al., 2008y&lbet al., 2005).

2.3.1 Diffusive transport

Diffusion is the main mechanism of transport for many impottmaterials in the cell
(e.g. amino acids). It is sometimes described as ‘passawesport’ as it does not re-
quire any energy. Simply put, it is the movement of molecties a region of high
concentration to a region of low concentration. Diffusikgisport has a number of im-
portant implications for cellular processes because ainthirected nature. Molecules
which undergo diffusion can create a stable gradient betvlee site of synthesis and
utilisation. Such gradients can have important impliaatiéor certain biological pro-
cesses, for example, the localisation of bcd mMRNA to theremtef the oocyte is

essential for setting up an antero-posterior axis when ttaisslated in the embryo.
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This mMRNA encodes a transcription factor that regulateg#peession of a hierarchy

of segmentation genes that define the details of anter@paspatterning (Wang and

Hazelrigg,. 1994). Bcd proteins diffuse away from their aiotesource, thus giving

rise to a gradient of nuclear protein with a high concergratiear the anterior and low

concentration at the posterior (Tekotte and Davis, 2002).

2.3.2 Active transport

Unlike molecular diffusion, active transport is directasdarequires energy. Active
transport is a broad term and can refer to two different frartgorocesses: molecular
transport across a membrane or molecular transport &teiitby motor proteins along

microtubules.

Active transport across a membrane is directional and reg@n input of energy to
move substances against their concentration gradients.allbws a cell to maintain

small molecules and ions at concentrations very differermfthose in the surround-
ing environment. There are two basic types of active trarisgoyoss a membrane:
primary active transport and secondary active transparmd?y active transport in-
volves the direct hydrolysis of ATP, which provides the g@yarequired for transport.
Secondary active transport does not use ATP directly. dalstiés energy is supplied
by an ion concentration and electrical gradient estabdistyeprimary active transport.
This transport system uses the energy of ATP indirectly taupethe gradient. Cal-
cium pumps are one mechanism cells use to shuttle calciuosacell membranes.
Calcium ATPases in the plasma membrane mediate activeptveinsf calcium out

of cells, serving to maintain the normal, low levels of frggoplasmic calcium. An-

other well studied example of a calcium ATPase is found irsdreoplasmic reticulum
of muscle cells, where it serves to pump calcium from the igigm into those spe-

cialised forms of endoplasmic reticulum after a period oole contraction.
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In section 2.2, we noted that microtubules could providacstire for the eukaryotic
cytoplasm. This is not their only function, as they are ats@lved in the trafficking of
intracellular molecules towards the nuclear membrane alldnembrane. Two fam-
ilies of motor proteins associate with the microtubulesnely and kinesin. Dynein
motors attach to proteins and transport them along micudésttowards the cell nu-
cleus whereas kinesin motors attach to proteins and trasgon along microtubules
towards the cell membrane. Active transport along microle® is involved in the

regulation of gene expression as it facilitates the (fast)dlocation of transcription

factors into the nucleus, where they modulate gene ac{amakin and Nadezhdina,

2010). Also, active transport along microtubules aids inNARexport within the cell

and helps localise mRNAs in particular zones of the cytoplas a good example

being bcd mMRNA which we mentioned in sectlon 2/ 3.1 (Schned €2005). We will

discuss active transport along microtubules in more dietaéctior 5.P.

2.3.3 Transport across the nuclear membrane

Transport across the nuclear membrane makes use of bothxgaisd active transport.
The nuclear envelope consists of an inner and an outer nuoleabrane. The outer
membrane is continuous with the endoplasmic reticulum nrangy and the space be-
tween it and the inner membrane is continuous with the erdopl reticulum lumen.
RNA molecules, which are made in the nucleus, and ribosontairsts, which are
assembled in the nucleolus, are exported to the cytoplasouritrast, all the proteins
that function in the nucleus are synthesised in the cytoplasd are then imported.
The extensive traffic of materials between the nucleus at@pasm occurs through
nuclear pore complexes (NPCs), which provide a direct pgesgay across the nuclear
envelope. The NPC is freely permeable to small moleculetalmoétes and ions, but

acts as a highly efficient molecular sieve for macromoleswethis being its main
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function. Proteins containing nuclear localisation slgraae actively transported in-
ward through NPCs, while RNA molecules and newly made ribedssubunits con-
tain nuclear export signals, which direct their outwardvactransport through NPCs.
Some proteins, including the nuclear import and exportptus, continually shuttle
between the cytoplasm and nucleus. Ran-GTPase providethiedree energy and the
directionality for nuclear transport. Cells regulate tramsport of nuclear proteins and
RNA molecules through the NPCs by controlling the acceshedgd molecules to the
transport machinery. Nuclear localisation signals are@&mioved, hence, nuclear pro-
teins can be imported repeatedly, as is required each tiaté¢ht@ nucleus reassembles
after mitosis. We will return to the subject of transportass the nuclear membrane

in more detail in section 5.2.
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The Hesl gene regulatory network
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Chapter 3

The Hesl gene regulatory network

3.1 Introduction

In this chapter, we review the biology and previous effartsiathematically model the
Hes1 gene regulatory network. We pay special attentionper@xents performed re-
cently and mathematical modelling efforts that the workspreged in this thesis builds

on.

3.2 Biological background

Hes1 is a member of the family of basic helix-loop-helix (dHLtranscription factors.
Hesl is known to play a role in somitogenesis, the developahprocess responsible
for segmentation of the vertebrate embryo. During somiteges, a “segmentation
clock” controls the timing of the assignment of mesoderngdliscto discrete blocks.
The segmentation clock depends on the oscillatory exmnessia complex network

of signalling pathways, including the Hes1 pathway whichtams a simple negative
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feedback loop (see Figure.B.1 for a schematic view of thid)is feedback loop is
formed through interactions of the Hes1 protein with its ayame, where the Hesl
protein binds to N-box sequences on the hesl promoter anessas the transcription
of hes1 mRNA. Specifically, Hes1 (in dimer form) binds to fburding sites upstream
of its transcriptional initiation site. Three of these himglsites are N-box sequences

and there is also a weak binding region around position :M_el_all 2007).

DNA

——— Hes1 protein

e

hesl mRNA

Figure 3.1: A schematic diagram of the negative feedback loop in the I&#l. From hesl
MRNA, Hesl protein is produced via the process of translatidesl protein then inhibits
transcription of hes1 mRNA.

Experiments have measured the levels of hes1 mRNA and Hegdirpm many differ-

ent cultured mouse cell lines (Hirata et al., 2002; .,.2006). In response

to a single serum treatment, it was found that levels of heBNAand Hes1 protein

exhibited oscillations with a regular period of approxisigt2 to 3 hours. This coin-

cides with the period observed for the mouse segmentatak cEhimojo et all (2008)
showed that Hes1 oscillations are also observed in neusgkpitor cells, again with
a period of about 2 to 3 hours. It was found that these osoillatwere responsible

for the maintenance of neural progenitors and that sustamerexpression of Hes1

inhibits proliferation and differentiation of these celldore recently, Kobayashi et al.

2009) monitored Hes1 expression in embryonic stem (ES3.cél was found that

Hes1 levels still oscillated in space and time, but with aqeeof 3 to 5 hours, longer

than that of other cell lines. This lengthened period is giduo be a result of the

increased stability of hesl mRNA in ES cells (Kobayashi £24109). Kobayashi and
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Kageyama continued to dissect the dynamics of the Hes1 GRi#n§ that Hes1 os-
cillations contributed to heterogeneous differentiatiesponses of the ES cells, with

cells expressing low and high levels of Hesl differentgiimo neural and mesoder-

mal cells respectively (Kobayashi and Kagey 2010, r011

3.3 Mathematical modelling of the Hes1 gene regula-
tory network
3.3.1 Literature review

Mathematical models of oscillatory dynamics in the Hes1 GiRMe taken a variety

of forms. The first attempt to model this pathway was presemehe experimen-

tal paper_Hirata et all (2002), where an ordinary differngiquation (ODE) model

was used. However, in order to reproduce the observed atsailk, a third unknown
species was introduced. At about the same time, it was désedvthat introducing

delays to ODE models of gene regulatory networks could predwstained oscilla-

tory dynamicsi(Tiana et al., 2002). Jensen et al. found thacetion of an unknown

species could be avoided via the introduction of delay teres model of the Hes1

GRN (representing the processes of transcription andl&iams) (Jensen et 2003).

A delay differential equation (DDE) model of the Hes1 GRN s studied in Monk

2003). The effect of low particle numbers in Monk’s DDE mbdéthe Hes1l GRN

was explored in Barrio et al. (2006). Here, the stochastiwation algorithm (SSA)
was extended to allow for delays. Zeiser et al. found thattienot much evidence

for synergistic binding in the regulatory region of Hesld@ave an estimate for the

Hill coefficient (Zeiser et all, 2007). The details of the Hemthway were scrutinised
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in greater depth in_Momiji and Monk (2008), again using a yaldferential equa-

tion system. In particular, an investigation into the etfeaf dimerisation and com-

partmentalisation was presented. The role of Gro/TLE1 veassidered in Bernard

et al. (2006). Other models have examined the role of the &l in somitogene-

sis (Agrawal et al., 2009). A spatio-temporal model of thsH&ERN (using a PDE

approach) was presented_ in Sturrock et al. (2011), the obofevhich forms the next

chapter. Extensions of this model were considered in Stkreb al. (2012) and we

present these in chaptier 5. A spatial stochastic model oH#®l GRN in embry-

onic stem cells was studied lin Sturrock et al. (2013) and tageral of this paper is

presented in chaptEr 6.

3.3.2 Ordinary differential equation model

Denoting by[m| and[p] the concentrations of hes1 mMRNA and Hes1 protein respec-
tively, the basic reaction kinetics for this system can beleled using ordinary dif-

ferential equations (ODES) as follows:

d[m] ah
ot W — Um[m, 3.1)
% = ap[m| — pip[p]. (3.2)

The first term on the right hand side of equatibn](3.1) is a fdifiction, which de-
creases as the protein concentration increases, modedprgssion of hes1 mRNA
transcription by Hes1 protein. The parametgyis the basal rate of transcription in
the absence of Hesl proteip.is"the concentration of Hes1 that reduces the rate of

initiation of hes1 transcription to half of its basal valdleg repression threshold). The
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second term represents the natural degradation of hesl m&Nérateu,. The first
term on the right hand side of equatign (3.2) is the Hes1 pr@eduction term from
translation of hesl mRNA at a ratg, and the second term represents Hes1 protein

degradation at a rafe,.

Given thatam, po, h, Um, ap, andpp are (strictly) positive constants, Dulac’s criterion
(stated in Appendik11.2.1) can be used to prove that pergmutions for this system
do not exist.

m — O o[m M
Proof. Letx = [m] andf(x) = | 1t(pl/p" Hmlm) ) . Hence we

[p] ap[M] — Hp[p]
can write equation$ (3.1, (3.2) more concisely as

gt = f(x).

Let us suppose a nontrivial closed orlalfy, exists with outward normah, and letdA
bound some nontrivial planar regi@n It follows from the divergence theorem in the

plane that

fona = ffoo

(3.3)
From the left hand side we have:
# 160-ndr = ¢ (vdip)—Pim)
_ [T ,dlp  dm]
B /(Md— Pt )4t
- /OT(MP—PM)dt:O. (3.4)



However, from the right hand side we have

Jlotemen =[] 555 (oo~ #rim) + g (o - ol ¢4
= —(um+up)//AdA< 0,

which produces a contradiction by the divergence theorem. O

Hence, although the model seems to account for the impdeanires of the nega-
tive feedback loop (MRNA production decreases as proteireases), it is unable to
reproduce the observed oscillatory dynamics. This imghes$ the model should be

reformulated and the modelling assumptions reconsidered.

3.3.3 Delay differential equation model

In an attempt to model the intracellular processes morerataly, Monk (2003) in-

troduced delays to equatioris (3.1}, (3.2) to account foptheesses of transcription,
translation and transport. This lead to a system of deldgréifitial equations, which

can be written as:

d[m| af
dt 1+ ([p(t—tm)]/P)N — [, (3.5)
% = ap[m(t—Tp)] — kp[pl, (3.6)

wherety, andt, represent delays. With the addition of these delay term$ik(2003)
showed that it was possible to obtain sustained oscillatwithout introducing extra
species. These results accurately reflect experimentaint but allow for few ques-
tions to be asked of the model. It was discovered recentlya (@milar GRN) that

there is no substantial delay introduced by the processaoktription itself, but it
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was suggested that splicing or nuclear export may causeag oethe negative feed-

back (Hanisch et al., 2013).
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Chapter 4

A reaction-diffusion model of the Hes1

gene regulatory network

4.1 Introduction

A spatio-temporal model of the Hes1 GRN is developed andiedud this chapter.
By simply accounting for the spatial structure of the celll &ime diffusion of intracel-
lular molecules we are able to reproduce observed oseiidehaviour without the

introduction of delays to the system.

4.2 Reaction-diffusion model formulation

We begin by introducing the PDE model developed in Sturr 2011) describ-

ing the intracellular interactions between hesl mMRNA andlHarotein. We adopt
the same notation as the previous chapter, rg..and [p] denote hes1 mRNA and

Hes1 protein concentrations respectively. Indeed, ash@dbme apparent, the model
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builds directly on the ODE system presented by equatiod® éhd [3.2). The model
is considered on a two-dimensional spatial domain reptegga cell, with a sepa-
rate nucleus and cytoplasm. In the equations below, a dpbscdenotes a nuclear

concentration and a subscriptienotes a cytoplasmic concentration.

We assume both protein and mMRNA are subject to diffusionqéhtced in section 2.3.1).
Diffusion coefficients are denoted depending on the typgeties (either a subscript
mfor mRNA or p for protein) and location (a subsubscnmpfor nuclear orc for cyto-
plasmic). For example, the diffusion coefficient for hes1MA#Rn the nucleus iDy,,.
Both protein and mRNA are assumed to undergo linear dec#ly,pgrametep, de-
noting mMRNA decay angl, denoting protein decay. Production of mRNA takes place
by the process of transcription in the nucleus. Our produactérm for nuclear hesl
MRNA is a Hill-like function which decreases as protein leve the nucleus increase.
In this function, the parameters andh represent, respectively, the concentration of
Hes1 protein that reduces the transcription rate to halfatsal value, and a Hill co-
efficient. any, defines the basal rate of mRNA production in the absence deauc
protein. It should be noted that this transcription rate lioigly accounts for post-
transcriptional modifications such as splicing, polyadatgn and editing, i.e.qm is

the rate by which fully formed messenger RNA is formed in thelaus. Proteins are
translated from mRNA by ribosomes in the cytoplasm, a pretest is likely to occur

at least some minimal distance from the nuclear membranecét&e assume protein
production occurs a small distance outside the nucleus pvitkduction rate propor-
tional to the amount of cytoplasmic hes1 mRNA, the constaptaportionality being

denoteday. The full system of equations is therefore given by:
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Om

T = DmnDZ[mn]-i-W—um[rnn]; (4.1)
transcription

% = Dm0%[Mg] — pm[me, (4.2)

IPd Dy lpd +Hxy) aplm — ol @)
translation

dg;”] = Dp,0%[pn] — Kp[prl, (4.4)

whereH (x,y) is a function accounting for the localisation of proteingwotion in the
ribosomes a distandefrom the centre of the nucleus (see Apperidix 1.1 for détails

and is defined as follows:

0, if xX2+y?<12,
H(Xx,y) = (4.5)
1, if x24+y?>12

We apply continuity of flux boundary conditions across theginal) nuclear mem-

brane and zero-flux boundary conditions at the outer cell bnane:

nhag:‘] = D%% and [my] =[m¢] atthe nuclear membrang4.6)
pna([;:]”] = Dpcags]c] and [pn] =[pc] atthe nuclear membrane (4.7)
d([}r:c] = 0 atthe cell membrane (4.8)
dg?]c] = 0 atthe cell membrane (4.9)

wheren is a unit normal. We also apply zero-initial conditions,,i.e

[Mp] = [mg] = [pn] = [pc] =0 at t=0. (4.10)
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Figure 4.1: The domain used in numerical simulations of the Hes1 readatiffusion model.
Spatial units here are non-dimensional, with one non-dsi@ral spatial unit corresponding
to 10um. The cellis an ellipse, centre (0,0), with major and minasof3 and2, respectively.
The nucleus is shown here as a blue circle, centre (0,0)us@B. The cytoplasm (shown in
green) is the part of the cell that is outside the nucleus.

4.3 Numerical simulation results

To numerically solve equations (#.1) =(4.4) subject to dimas (4.6) — [4.1D), we
used the following procedure. First we non-dimensiondlige model, details of
which are provided in Appendix 11.2.2. Then we chose nonedsional parameter
values which yielded oscillatory dynamics and were guidgaddn-dimensional val-

ues used bLLM_QnI«' (2003). We solved the model numericallygusie finite element

method as implemented in the software package COMSOL 3shag triangular basis
elements and Lagrange quadratic basis functions alonganithckward Euler time-
stepping method of integration. This numerical method @irapimating the solution
of PDEs is used in all 2-dimensional and 3-dimensional sathhs in this thesis. We
choose the finite element method due to its ability to handfepticated geometries
and boundaries with relative ease. The model equations saved on the domain
shown in Figuré 4]1, representing a cell with cytoplasmid anclear subdomains. A

typical simulation took approximately 55 seconds to run onMac with a 2.6 Ghz
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Intel core duo processor and 4gb of ram. Finally we calcdldienensional parame-
ter values — these are shown in the third column in Table 4He @alculations are
described in Appendik 11.2.2. For simplicity, all nucleadacytoplasmic diffusion
coefficients were set equal to the same constant; we deretiirttensional diffusion
coefficient byD;;, which indicates diffusion of specieémRNA or protein) in location

j (nucleus or cytoplasm).

We ran our simulations for a time corresponding to 720 mis\uidich is consistent

with the longest time for which oscillatory dynamics weresetved in the Hes1 GRN

following serum treatment (Hir al., 2002). We haventibtanges of values for all

of the parameters such that the system exhibits sustaimdthtts'y dynamics, where
we define such dynamics as being able to observe at least$iveatipeaks in the total
concentration of the transcription factor in the nucleukisTcriteria is motivated by

the fact that 3 to 6 cycles of Hes1 protein were observed iparse to serum treat-

ment (Hirata et al., 2002). These ranges are given in theifaalumn in Tablé 4]1.

In order to find the range for any particular parameter, weedahis parameter whilst
holding all the other parameters fixed at their ‘defaultuesd, the dimensional versions
of which are stated in the third column of Tablel4.1. For sigifyl we investigated

only integer Hill coefficients. The meaning and use of naeger Hill coefficients is

discussed in Zeiser et zJI. (2007) and Frinz (2010).

Figure[4.2h shows the dynamic evolution of the total conmetions of hesl mRNA
and Hesl1 protein over time in the nuclear compartment, Widere[4.2b shows the
total concentrations in the cytoplasmic compartment. Bbéhnuclear and cytoplas-
mic compartments show that solutions of the Hes1 reactiffastbn model exhibit
sustained oscillatory dynamics. Although the oscillasiappear damped, the numeri-
cal solution still displays at least 6 cycles of Hes1 protelmich is in keeping with our

biologically motivated criteria for ‘sustained oscillagadynamics’. The model yields

results in qualitative agreement with biological expemtse Hirata et al!, 2002).
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scaled concentration

0 200 400 600 0 200 400 600
time (min) time (min)

(a) nuclear compartment (b) cytoplasmic compartment

Figure 4.2: Plots of the total concentrations (in non-dimensional siniaf hesl MRNA (red)
and Hes1 protein (blue) in (a) the nucleus and (b) the cypléor the Hes1 reaction-diffusion
model. The period of oscillation is approximatdlQ0 minutes. Parameter values as per col-
umn 3, Tabl€ 4]1.

The plots presented in Figures 4.3a and ¥.3b show how the hBNA and Hesl1
protein distributions evolve spatially in the cell fram= 150 to 300 minutes. mMRNA

Is produced inside the nucleus and diffuses across thearutiembrane to enter the
cytoplasm (Figur€ 4.3a). In the cytoplasm, mRNA is tramglanto protein, which is
then able to diffuse back into the nucleus, where it repsegeproduction of its own
MRNA. The mRNA concentration has clearly depleted 5y180 and 300 minutes, re-
flecting the period of the temporal oscillation seen in Feg#.2h, and 4.2b. As can be
seen from Figure 4.3b, there is a delay in the rise of protententration after mMRNA
peaks, for example s¢e= 240 for both mRNA and protein. There appears to be a low
to moderate concentration of proteirt at 240 minutes, whereas one can observe large
quantities of MRNA present in the nucleus and the regionetstioplasm close to the
nucleus. It is not untit = 270 minutes that protein reaches high concentration levels
(as it did att = 150 to 180 minutes). This is because it takes time for mRNAetexs
ported and accumulate in the cytoplasmt At 300 minutes the protein concentration
has decreased significantly once again, due to inhibitionRINA transcription by the

protein. This process repeats, producing sustained aseiyl dynamics in space and
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Parameter| Description Value in simulations | Range over which oscillations are observed
Dj; Diffusion coefficient of speciesin | 3.13x 10 cnés ! | 2.67x 10 MenPs 1t0 1.25% 10 %cnmPs !
compartment
Om Basal transcription rate of hesfl 6.25x 10 11Ms™1 >3.87x 10 12ms 1
MRNA
p Critical concentration of Hes1 prof 1.00x 10~ °M 6.89x 10 1°M to 1.00x 10 5M
tein
h Hill coefficient 5 >4
Um Degradation rate of hes1 mRNA | 1.25x 103571 1.25x 104s1t0 1.50x 103571
ap Translation rate of Hes1 protein | 0.0555s% >0.0350s !
Up Degradation rate of Hes1 protein | 1.25x 103571 1.25x 104s 110 1.50x 103571
| Minimum radial distance of transla; 6.32um nuclear membrane (8n) to 6.63um
tion from centre of nucleus

Table 4.1: Description of parameters in the Hesl reaction-diffusiooded (defined in sec-
tion[4.2), values used in simulations, and ranges over whigtained oscillatory dynamics
are observed.

time.

4.4 Parameter values

Our range for the diffusion coefficient in Talyle 4.1 is cotesis with two recent spatio-
temporal modelling studies of intracellular signallingtipgays similar in scope to
ZJL._Z)J.LlemLanﬁ_Qha‘p ain
proteinshe tytoplasm to be in the

20 997), which

the present study (Terry et 20 Experimentalists

have found the diffusion coefficient of soluble

range 10%cn?s 1 to 10 8cm?s ! (Matsuda et all, . Seksek et al.,

is in agreement with the upper bound of our range. There Galgrowing body of
evidence suggesting that proteins and mRNA molecules ajeduio macromolecular

crowding, which generates an environment where diffussohindered by obstacles

and trapsl/(Mendez et BJL_Z 10). Taking this into accountlavbkely increase our

lower bound to be consistent with experimental measuresnent

The degradation ratgm for hes1 mRNA and the degradation ratefor Hes1 protein
have both been estimated from experiments. Hirata et amat&d i, to be 483 x

20

Hirata et al.

104s 1 andpp to be 516 x 10 4s 71 2). Our parameter ranges for
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(a) hes1 mRNA
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(b) Hes1 protein

Figure 4.3: Plots showing the spatio-temporal evolution of (a) hesl mRhd (b) Hes1 pro-
tein from times = 150to 300 minutes at30 minute intervals for the Hesl reaction-diffusion
model. The concentrations exhibit oscillatory dynamichkath time and space. Parameter
values as per column 3, Talile ¥.1.

33



HUm andpp in Table[4.1 contain these experimental estimates.

We mentioned previously in section 313.3 that a DDE modehefliesl GRN had

been explored in_Momnk (2003). Our range for the Hill coefintjenamelyh > 4,

is very similar to the ran

eh(> 4) producing sustained oscillatory dynamics in the

DDE model in Monk|(2003). Note that a larger Hill coefficiemresponds to greater

nonlinearity, or co-operativity, in the regulation of heasdnscription by Hes1 protein.

As we mentioned in sectidn 3.2, Hes1 acts as a dimer, whiatgrding tol Monk

2003

), IS enough to suggest thet 2. Hence, the requirement that> 2 implies that

there may be interactions between the four binding sitesléwl at the hes1 promoter.

Our value for the critical concentration of Hes1, nameky 10-°M, is the same as the

critical concentration for the zebrafish Herl protein mameid in_ Lewis|(2003). Herl

is similar to Hes1 in that both are believed to belong to semagative feedback loops.

The DDE model of the Hes1 GRN

in Morlk (2003) contains a paran{eamely,po)

analogous t@ but representing a number of molecules rather than a caatient

A sensible range is suggested as 10 to 100. By an elementantateon converting

concentration into number of molecules, we find that our @dbr p corresponds to

approximately 68 molecules, which clearly lies within thesfulated range i nk

2003

)-

Our estimate for the translation ratg of 0.0555s ! is similar to the rate mentioned

inBernard et al. (2006) of 1mift or 0.0167s1. The mRNA production rate, has

not been measured experimentally, so we leave our estirhét2®x 10" 1Ms 1 as a

prediction. The distandeof translation from the centre of the nucleus has been sludie

in Figures 9 - 11 in Sturrock et al.

(2

11) but a range of vakwesh that sustained os-

cillatory dynamics occur was not stated. The range fmesented in Table 4.1 reveals

that oscillatory dynamics can be obtained when the minimistadce of protein trans-

lation coincides with where the cytoplasm meets the nuclélmvever, increasing
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too much results in a loss of oscillatory dynamics, implythgt the precise spatial
location of the ribosome in the cytoplasm is important in @action-diffusion model

of the Hes1 GRN.

4.5 The influence of spatial dimension

In order to investigate whether the spatial dimension ofraodel influences its be-
haviour we must ensure that we vary only the spatial dimengtor this purpose, we
now consider a radially symmetric domain for our cell in 1n2I8 spatial dimensions.
In 1 spatial dimension, this is simply a line for both nuclaad cytoplasmic compart-
ments. In 2 spatial dimensions, the nucleus is represegtadiocle and the cytoplasm
is represented by an annulus. In 3 spatial dimensions, tbleuslis represented by a
sphere and the cytoplasm is represented by a spherical $hethermore, we scale
the production parameters so that the size of the domais playole. Hence, the tran-
scription rate g, is scaled by the length of the nucleus in 1D, the area of theenadn
2D and the volume of the nucleus in 3D. Similarly, the tratistarate,a is scaled by
the length of the cytoplasm in 1D, the area of the cytoplas@Drand the volume of
the cytoplasm in 3D. In addition, the spatial function lésialg translation of protein
(see equatioh 4.5) is adjusted appropriately depending@spatial dimension. We

use the same initial and boundary conditions as defined iatems (4.6) —[(4.10).

For 1-dimensional simulations we approximate the solutimmerically using a back-

ward time centred space finite difference method. This nigalecode was adapted

from work of Garvie |(2007). Figurds 4.4 ahd 4.5 reveal that model still yields

oscillatory behaviour when solved in 1 spatial dimensiaguFe[4.4 contains plots of
the total concentration of hes1 mMRNA and Hes1 protein in bo¢mucleus and cyto-

plasm. This Figure reveals the period of oscillation to bgrapimately 90 minutes. In
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Figure 4.4: Plots of the total concentrations (in non-dimensional siniaf hesl MRNA (red)
and Hesl1 protein (blue) in (a) the nucleus and (b) the cytmmléor the Hes1 reaction-diffusion
model solved in 1 spatial dimension. The period of osaillatis approximately 90 minutes.
Parameter values as per column 3, Teblg 4.1 withand ap scaled appropriately.

Figure[4.5 we present a plot of the entire spatio-tempormalugion the model in 1D.
This spatial plot shows clearly shows sustained oscilab@haviour for the duration
of the simulation. We now compare the 1-dimensional cask igher dimensional

simulations.

In Figured 4.6 and 417 we reveal that our model still yieldsltzgory behaviour when
solved in 2 spatial dimensions on a radially symmetric domdigure[4.6 contains
plots of the total concentration of hesl mRNA and Hesl pnateiboth the nucleus
and cytoplasm. Unlike, Figuie 4.2 we observe oscillatioith wonsistent amplitude,
i.e., the solution tends to a limit cycle and does not readbady state. Hence changes
in geometry can lead to qualitative changes in the behawbwur model (we will
return to this concept in sectidnb.7). In Figlrel 4.7 we prespatial snapshots of the
spatio-temporal evolution of the 2D radially symmetric rabdThe approximate 90
minute period can be seen by comparing150 and = 240 minutes for Hes1 protein
(Figure[4.7b). Qualitatively, there are no differencesneein the 1-dimensional and
2-dimensional cases. However, there are some minor qaawditdifferences. For

example, by comparing Figute 4l4a with Figlire %.6a, we discthat more protein
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Figure 4.5: Plots showing the spatio-temporal evolution of (a) hes1 mRhd (b) Hes1 pro-
tein for the Hes1 reaction-diffusion model solved in 1 sgatimension. The x-axis represents
space (non-dimensional units) and y-axis represents timmiQs). The concentrations exhibit
oscillatory dynamics in both time and space. Parameteresmhs per column 3, Talle 4.1 with
am and ap scaled appropriately.
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Figure 4.6: Plots of the total concentrations (in non-dimensional sindf hes1 MRNA (red)
and Hes1 protein (blue) in (a) the nucleus and (b) the cypléor the Hes1 reaction-diffusion
model solved in 2 spatial dimensions. The period of osmltats approximately90 minutes.
Parameter values as per column 3, Telble 4.1 withand ap scaled appropriately.

accumulates in the nucleus in the 1-dimensional case. $lise to the fact that there
exist less directions for protein to move into in 1 dimensimd hence it is more likely

that protein will reach the nucleus.

Our model retains oscillatory dynamics when solved in 3iapdimensions, see Fig-
ures[4.8 an@ 419. Figufe 4.8 contains plots of the total aunagon of hes1 mMRNA
and Hesl1 protein in both the nucleus and cytoplasm. In Figi#teve present spatial
shapshots of the spatio-temporal evolution of the 3D rd@immetric model. The
approximate 90 minute period can be seen by comparing10 and = 300 minutes
for hes1 mRNA (Figure 4.9a). Hence, the period of oscillaieems robust to changes
in spatial dimension. There are no qualitative differenoetsveen the 1-, 2- and 3-
dimensional cases. However, as we noted when comparing t#ed12-dimensional
cases, there exist some quantitative differences betweeh and 3-dimensional cases
and the 2- and 3-dimensional cases. In general, we find thatkgasing the spatial di-
mension, the amount of protein that accumulates in the nadéssens and the amount
that is retained in the cytoplasm increases. We offer théaegpion that as the cyto-

plasm increases in dimension, there are more directiongréidein to move into, and
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Figure 4.7: Plots showing the spatio-temporal evolution of (a) hesl WRNd (b) Hes1 pro-
tein from times = 150to 300 minutes at30 minute intervals for the Hes1 reaction-diffusion
model solved in 2 spatial dimensions. The concentratiohgiposcillatory dynamics in both
time and space. Parameter values as per column 3, Table #hlowiand ap, scaled appropri-
ately.
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Figure 4.8: Plots of the total concentrations (in non-dimensional sindf hes1 MRNA (red)
and Hes1 protein (blue) in (a) the nucleus and (b) the cypléor the Hes1 reaction-diffusion
model solved in 3 spatial dimensions. The period of osmitats approximately90 minutes.
Parameter values as per column 3, Telble 4.1 withand ap scaled appropriately.

hence it is less likely that protein will accumulate in theclews.

In order to further investigate how the spatial dimensidluances the Hes1 reaction-
diffusion model, we now present a study of the parameteraamghich are produced
by solving the model in different dimensions. In particulae will study the range
of diffusion coefficientsD;; (see Tablé 4]1), which yield oscillatory dynamics (5 or
more peaks of Hes1 protein in the nucleus). These rangesesented in Table 4.2.
We find that as the number of spatial dimensions is incredgbed;ange of diffusion
coefficients yielding oscillatory dynamics becomes breaddthough, we note that
the range for 2- and 3-dimensional simulations is almosttidal. Hence, for the rest

of the thesis we will use 2- or 3-dimensional simulations.

Given the small computational cost of solving a 1-dimensi@arabolic PDE system,
we are able to produce a numerical ‘bifurcation diagramlitssirate how changing
the diffusion coefficientD;; influences the behaviour of the system. We computed this
by plotting the maximum and minimum value of Hes1 proteirorded in the nuclear

compartment front = 360 to 720 mins for 1000 different diffusion coefficients.eTh
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Figure 4.9: Plots showing the spatio-temporal evolution of (a) hesl WRNd (b) Hes1 pro-
tein from times = 150to 300 minutes at30 minute intervals for the Hes1 reaction-diffusion
model solved in 3 spatial dimensions. The concentratiohg#oscillatory dynamics in both
time and space. Parameter values as per column 3, Table #hlowiand ap, scaled appropri-
ately.
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Spatial dimension| Range of diffusion coefficienDii

1 1.25% 10 Ycm?s 110 8.33x 10 0cmis 1
2 2.08x 10 HcmPs 110 196 x 10 %cmPs !
3 2.08x 10 Mcms 110 200x 10 %cmis 1

Table 4.2: List of spatial dimensions for which the Hesl reactionedibn GRN model is
solved, and ranges of diffusion coefficients which yieldlasary dynamics.

time period was chosen to avoid any transient behaviourcedly the zero initial
conditions — this time period also reflects the timespan owach oscillations were
observed (i.e., 3 to 6 120 minute cycles). Note that the rarigalues may appear
inconsistent with those presented in row 1, Tablé 4.2 becthessame criteria for os-
cillatory dynamics is not applied. As can be seen in Figuié 4f the diffusion coeffi-
cient is too small the maximum scaled concentration valtieegsame as the minimum
scaled concentration value, i.e., a steady state solugiobtained. By increasing the
diffusion coefficient a ‘Hopf’ bifurcation is produced anket system produces oscil-
latory dynamics (maximum and minimum concentration vakresno longer equal).
If we increase the diffusion coefficient further, the ostitbns cease, and once again
we find steady state values of Hes1 protein in the nucleus.céjahthe diffusion
coefficient is too small or too large we no longer observellagory behaviour. We
can understand this by considering the behaviour of thesyst two extreme cases.
WhenD;; is very small (i.e., less than the lower bound presented ltef&.2), protein
remains in the cytoplasm and mRNA remains in the nucleusthe species remain in
the compartment where they were originally synthesisedeVh; is very large (i.e.,
larger than the upper bound presented in Table 4.2), themsylsecomes ‘well-mixed’
and we know from sectiopn 3.3.2 that it is impossible for datilry dynamics to be

observed for a similar system.
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Figure 4.10: Plot showing how the maximum and minimum scaled concemtraif Hes1
protein in the nuclear compartment change as the diffusmefficient, D is varied.

4.6 Drug treatment

4.6.1 Inhibition of the proteasome

The proteasome is a large proteolytic protein complex foundll eukaryotic cells

that is the primary site for degradation of most intraceltyproteins

(Alberts et

2008). The proteolytic activities of the proteasome cannbebited by the class of

drugs known as proteasome inhibitars (Orlowski and Kuh©

200ur previous sim-

ulation results have shown that oscillatory dynamics inHes1 system occur only

for a suitable protein degradation ratg. Experiments have demonstrated that in the

presence of the proteasome inhibitor MG132, hes1 mRNA isieatly induced by a

irata et

.20

serum treatment, but is then suppressed persistent|yatitesr

2). We

now show the result of inhibiting the proteasome in the Hesttion-diffusion model

by reducing the decay rate for Hes1 protginby a factor of 100. In order to make
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Figure 4.11: Plots of the total concentrations (in non-dimensional sindf hes1 mMRNA (red)
and Hes1 protein (blue) in (a) the nucleus and (b) the cypléor the Hes1 reaction-diffusion
model when the proteasome is inhibited. No oscillationsadrgerved. Parameter values as
per column 3, Table4l1 with, reduced by a factot00

our simulation results more readily comparable with theeexpental data, we run our

simulation for 240 minutes.

Our simulation results of the proteasome inhibition nuce®experiment are presented
in Figures[4.11l an@4.12. Figure 4.11a shows a plot of the ¢totacentrations of
hesl mRNA and Hes1 protein in the nucleus over time, whileifeig.IIb shows
the corresponding total concentrations in the cytoplasmFigure[4.1P we reveal
the spatio-temporal evolution of the mRNA and protein comicions (in response
to proteasome inhibition) respectively over the same tiergop. We make the local
concentration colour bars identical for mRNA and proteie@@s so a more direct
comparison can be made. We can see large quantities ofpedteost everywhere in
the cell and in contrast we can see almost no mMRNA anywhenghdfmore, as can

be seen from all these plots, no oscillations in the conaéotr levels are observed, in

line with the experimental results lof Hirata et al. (2002).
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Figure 4.12: Plots showing the spatio-temporal evolution of hesl mRNgt (Gw) and Hes1
protein (second row) from times=t 150to 210 minutes at30 minute intervals for the Hes1
reaction-diffusion model when the proteasome is inhibitédsl protein is distributed almost
evenly throughout the cell (with slightly lower concenioas at the tips) for each time point.
hesl mRNA concentration is so low it is not visible. Paramet¢ues as per column 3, Ta-
ble[4.1 withu, reduced by a factot 00,

4.6.2 Translation inhibition

Treating cells with the drug cycloheximide inhibits the kaycess of translation in
cells. Cycloheximide functions by interfering with theisdocation step in protein
synthesis (movement of two tRNA molecules and mRNA in relato the ribosome)
thus blocking translational elongation. Cycloheximideidely used in biomedical re-
search to inhibit protein synthesis in eukaryotic cellgl&din vitro. It is inexpensive
and works quickly. Experiments have been performed in filagitcells to monitor

levels of hesl mMRNA in response to this treatment. In the x@ats a sustained

increase of hesl mMRNA levels is reported (Hirata et al., 2002 mimic this experi-

ment with our model by decreasinmg, by a factor of 100 and running our simulation

for 300 minutes.

Our simulation results of the translation inhibition numat experiment are presented

in Figures[4.1B and4.14. Figure 4.13a shows a plot of theé tmtacentrations of
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Figure 4.13: Plots of the total concentrations (in non-dimensional sindf hes1 mMRNA (red)
and Hes1 protein (blue) in (a) the nucleus and (b) the cypléor the Hes1 reaction-diffusion
model when translation is inhibited. No oscillations aresetved. Parameter values as per
column 3, Tablé 4]1 witlr, reduced by a factot00

hesl mRNA and Hesl1 protein in the nucleus over time, whileféig. I1b shows the
corresponding total concentrations in the cytoplasm. IFinBigure[4.14 shows the
spatio-temporal evolution of the mRNA and protein concatiins respectively over
the same time period. Again, we use the same local conciemtreblour bars for

easier comparison between the two species. In contrasetprtiteasome inhibition
numerical experiment, we find large quantities of mMRNA witthie cell (particularly

in the nucleus and the part of the cytoplasm close to the nsglés can be observed

from all these plots, no oscillations in the concentratievels are observed, in line

with the experimental results of Hirata ef al. (2002).
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Figure 4.14: Plots showing the spatio-temporal evolution of hes1 mRNgt (6w) and Hes1
protein (second row) from times=t 150to 210 minutes at30 minute intervals for the Hes1
reaction-diffusion model when translation is inhibiteéisth mMRNA is found in high concentra-
tion in the nucleus. Hes1 protein concentration is so low itat visible. Parameter values as
per column 3, Table4l1 witt, reduced by a factot0Q

4.7 The influence of extrinsic noise: exploring model

dependence on initial conditions

Until now we have used zero initial conditions (ICs) for ownmerical simulations of
the Hes1 reaction-diffusion model. This may be inappraergven the highly het-
erogeneous nature of cells. To find two cells with the exattesamount and spatial
distribution of proteins and mRNAs at the same point in tiseary unlikely. Hence,
in this section a study of the influence of random initial ctinds is presented. Ini-
tial conditions are selected by the following procedurerst-ifrom our simulations
with zero initial conditions (see Figute 4.2), the mean ealfor the total concentra-
tions of hes1 mRNA and Hes1 protein in the nucleusdn,,, mear,) and cytoplasm

(mean,,, mearn,) are obtained. Using these mean values, we define randoial init
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condition vectorsrQin,;, » Mc,;. » Prinic » Pein ) @S-

Mn,,, ~ -/ (Meany,, mean,,/10), (4.11)
Mg, ~ -/ (Meany, mean,/10), (4.12)
Pnine ~ <4 (Mean,, mean,, /10), (4.13)
P ~ A (Meary,, mearn,/10). (4.14)

We then randomly generated initial conditions (usingrdred nfunction in MATLAB)
for each species, which are uniformly distributed throughbe appropriate compart-
ment. We performed 10 simulations of the Hes1 reactiorusiiéin model with random
initial conditions sampled from equations (4.12) — (4.T®)e result of integrating the
total protein concentration over the entire cell is preseimn Figuré 4.15a and the cor-
responding mRNA vs protein phase plane in Fidure 4.15a. r Afiteinitial transient
period (which appears dependent on initial conditions, ttal concentration level
settles into an oscillatory behaviour (or limit cycle). Tamplitude, period and even
phase are largely unaffected by the change in initial camdit Although this study
of random initial conditions is far from exhaustive, we cay she model behaviour

appears to be robust to changes in initial conditions.

4.8 Discussion

Dissecting the mechanisms by which transcription factoggegulated within cells is
critical to understanding cellular function in health ansedse and the opportunities
for therapeutic intervention. Results from previous mathgcal models have reflected
simplified experimental findings but have not distinguiskgplicitly between spatial
compartments within the cell and have not considered (eiigh spatial movement of

molecules. We showed in the previous chapter that an ODE Incodl not replicate
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Figure 4.15: Plots of the total concentrations Hes1 protein integratedrahe entire cell for

the Hes1 reaction-diffusion model with different initiaindlitions. After an initial transient pe-
riod induced by the initial conditions, the model appearsust to changes in initial conditions.
Parameter values as per column 3, Tablg 4.1.

the experimentally observed oscillatory dynamics. We moeed that previous mod-
ellers had worked around this problem by either introdu@ngunknown additional
species or adding delays into the system. Given that spat@lisation is particularly
important when modelling transcription factors, whichthaligh produced in the cy-
toplasm, must be translocated to the nucleus to functiomdRDESs, we can model

these aspects of GRNs explicitly.

The simulation results of this chapter have demonstratecxistence of oscillatory
dynamics in the canonical negative feedback system (th& B€&3\) and have been
able to focus on reactions occurring both in the cell nuckeud in the cytoplasm.
Undoubtedly, the main advantage of using systems of PDEsadmehintracellular
reactions is that the PDEs enable spatial effects to be eemhrexplicitly (we will

exploit this fact more in the next chapter).

We varied the diffusion coefficients of the mRNAs and prateand found a range of
values for these diffusion coefficients where the systenib@sioscillatory dynamics,

i.e., the results of the model have predicted a range ofsidfucoefficients for the
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molecules involved so that oscillations can be observedvaying the diffusion co-

efficients of the molecules, we can vary the flux rates acressticlear membrane
(equivalent to varying nuclear import and export rates)stgranting greater control
and allowing a much more in depth analysis of the systems. &e walso able to ma-
nipulate mathematically the location of the ribosomes (@ying the parametér thus

controlling where the proteins were synthesised withindyteplasm. The simulation
results revealed an ‘optimum’ distance outside the nudieuprotein production for

which sustained (undamped) oscillations of large ampéitwere observed. In other
words, if protein translation occurred too far from the cerdf the nucleus then sus-
tained oscillatory dynamics were lost. Similar results @vebtained by varying the
other model parameters, further demonstrating that thilaisans are robust to pa-

rameter changes.

We demonstrated that our model is robust to changes in sdatiansion and initial
conditions. Such features are desirable for any model —rgpin lower dimensions
can reduce computational cost and it is unlikely that twdsceill have the same
MRNA or protein distributions at any point in time. We alsonggked that changes
in geometry can have important consequences (we will rétuthis notion in more

detail in the next chapter).

The spatial models presented here reflect (qualitativedggemental findings botin

vitro (Hirata et al., 2002) anoh vivo (Hamstra et all, 2006) and mark a conceptual ad-
vance in the modelling of intracellular processes. Withéheergence of new imaging
technologies, validation of spatial models will be possibwith dynamic molecular

imaging of subcellular processes on the near horizon.
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Chapter 5

The influence of the nuclear
membrane, active transport and cell
shape on the Hesl gene regulatory

network

5.1 Introduction

In this chapter we consider extensions to the Hes1 readiftussion model presented
in chaptef#t. Taking advatange of the inherently spatiaineabf our modelling ap-

proach, we consider extensions that can only be explicidgefied in a spatial setting.
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5.2 Extended model formulation

We begin to extend the Hes1 reaction-diffusion model by &icsbunting for the struc-
ture of the nuclear membrane. Encapsulating the nucleasiublear membrane di-
vides the cell into two compartments, between which theeedenstant exchange of
molecular material. This physical separation of the nuglaod cytoplasm provides a
level of spatial regulation in signal transduction. As meméd in sectiof 2.313, nucle-
ocytoplasmic transport occurs through the nuclear porgptexn The NPCs perforate
the two lipid bilayers which form the nuclear membrane andvafor bidirectional

transport of a large number of RNA and protein cargoes whaeki in size from 1 kDa

~

to nearly 50 MDa (almost 40nm in diameter) (Weis, 2003). Thmber of functional

NPCs varies depending on the growth state of the cell, wini¢ctrn affects the overall

permeability of the nuclear membrane (Feldherr and /Aki®1}9

In order to model the nuclear membrane explicitly, we neexttmunt for its thickness
d (which is also the depth of the NPC) and the diffusion of moles across it. This

effectively allows us to model its permeability. The nucleeembrane thickness has

been estimated to be approximately 100nm_(Beck et al.,| 20Réyarding diffusion

across the nuclear membrane, note that since the NPCs atecateéd everywhere
within it, there exist some areas of it that cannot be traadrand this slows down the
average rate at which particles diffuse across it. Molecciawding may also slow
down this average rate. In the restricted space of an NP@granolecules, such as

proteins, will diffuse more slowly than smaller moleculssch as mRNA (Marfori

et al., 2010; Rodriguez et aJL_Z 04). A second explicit stemodelling the nuclear

membrane is therefore to assume that diffusion acrossldwees than in the cytoplasm
or nucleus, with protein diffusion slower than mRNA diffasiacross the membrane.

Although diffusion coefficients for cytoplasmic, nucleand nuclear-embedded pro-

[

teins have been estimated experimentally (Klonis et alD2?0we are not aware of
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experimental estimates for diffusion rates across the NBCses1 mRNA and Hes1
protein. Therefore, still assuming (as we did at the end ofiee[6.2) that the nu-
clear and cytoplasmic diffusion coefficients are the sanmstemtD;;, we shall simply
chooseDy, = Dij/5 andDp = Dij/15 for the nuclear membrane diffusion coefficients
for hesl mRNA and Hesl1 protein, respectively. In summarycavetake into account
nuclear membrane thickness and slower diffusion acrogsnélacing the boundary

conditions in[(4.6) and (4.7) by those for a thin boundargetayf widthd, defined by:

D%ag:]] _ Dm([”hc]j—[mcD, (5.1)
D%agzc] ~ Dm([mc(]j—[rfh]), (5.2)
Dpca([;:] _ Dp([ch—[pn]), (5.3)
Dpnagr)]n] _ Dp([an—[pc])_ (5.4)

The boundary conditiond, (3.1) E(5.4), describe the flupsethe nuclear membrane.
This flux can be thought of as a permeability coefficient (defias the diffusion co-

efficient of the species in the nuclear membrane divided byntembrane thickness)
multiplied by the concentration difference of the speci@®ss the nucleocytoplasmic

boundary.

Our second extension to the original reaction-diffusiondelids to consider active
transport. As we mentioned in section 2]3.2, it is imporfantiranscription factors
to be able to move quickly from the cytoplasm to the nucledsctvcan be achieved
by active transport along microtubules. The microtubutedifrous, hollow rods that
function primarily to help support and shape the cell. Fertiajority of the cell cy-
cle (i.e., the interphase period), the microtubules arenged in the cytoplasm as an
aster originating from the microtubule-organising ceriiid OC) located close to the

nucleus (see Figufe 2.4). The microtubules also play a nnajerin the intracellular
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trafficking of macromolecules and organelles (Cole and inpott-Schwartz, 1995;
Cangiani and Natali & 2010). This trafficking of cargo nlkes occurs as follows:

motor proteins bind to the cargoes and then actively tramgpem along microtubules.
Motor proteins can be split into two families — dyneins (Whimove molecules from
the cytoplasm towards the nuclear membrane) and kinesimslfwnove molecules to-
wards the cell membrane). Motor proteins interact with wigbules via their ATPase
domain, while their opposite terminus interacts with thegyoaeing transported. The
movement of proteins along microtubules towards the ngobam be viewed as a bi-
ased random walk. For example, although cargoes bound &rgmainly move in the
direction of the nucleus, there is evidence for detachmeatr@attachment of cargoes

to motor proteins, pauses, and simultaneous attachmerdtbodynein and kinesin

which can change the direction of movement through a “tugrad” (Muller et al

2008; i ' s, 2001). For simplicity, we shall slattive transport of

the transcription factor Hes1 as always being directed tdsvéne nucleus. We do this
by adding a convection term to the cytoplasmic Hes1 equatiamely equatiori (413),

which becomes:

022(:] = Dp.0%[pe] — O-(alpe]) +HXy)ap[me — p[pel, (5.5)

active transport

wherea is the convective velocity given by

—ax —ay

a= ,
VY2 R ty?

) (5.6)

and the parameteris the convection speed. The vector fialid depicted in Figure 5l 1.

Finally, in order to take into account the location of the MTQve modify the domain
on which our equations are solved. To be specific, we solvéhemidmain shown in

Figure[5.2. In this domain, the MTOC is located around theucnference of a circle
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Figure 5.1: Plot showing the vector field (defined in equatioft.8)) modelling the convective
effect of the microtubules on protein transport.

a small distance away from the nucleus. Since microtubulgsate from the MTOC

and not from the nucleus, we assume that active transporoe@y only in the green
region outside the MTOC. Hence, in the outer green regionasgeime cytoplasmic
Hes1 protein satisfies equatidn {5.5) but in the orange ndggdween the MTOC and

the nuclear membrane we assume it satisfies equatidn (4.3).

5.3 Numerical simulation results

We explore here numerically the extended Hes1 model givesghwgtions(4]1) £ (41.4)
and [&.5), subject to conditions (#.8)[=_(4.9) ahd](5.1) 4)(and solved on the do-
main shown in Figur€ 5l2. We retained the parameter valued te simulate the
original Hes1 model in sectidn 4.3. The diffusion coeffitgeacross the nuclear mem-
brane have already been defined in terms of the diffusiorficeeft in the nucleus

and cytoplasm, so did not need to be estimated. The nucleabra@e thickness was

chosen to be the same as the experimentally measured vali®oni (Beck et &

2004). The rate of active transport was chosen to producencatly stable sustained

oscillations. We summarise the dimensional parameteregalised for the extended
Hes1 model in the second column of Table|5.1. As in the prevahapter, the pa-

rameter values we used in numerical simulations are in mowasional form. The
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Figure 5.2: The domain used in numerical simulations of the extended Hexlel. Spatial
units here are non-dimensional, with one non-dimensiopatial unit corresponding ta0um.
The cell is an ellipse, centre (0,0), with major and minorseé 3 and 2, respectively. The
nucleus is shown as a blue circle, centre (0,0), radius Ol8 ficrotubule-organising centre
(MTOC) is located around the circumference of the circleytee (0,0), radius 0.35, which
surrounds the nucleus and is close to it. The cytoplasm ipdihieof the cell that is outside the
nucleus (the green and orange regions) and active transpoetirs only in the green region.
It does not occur in the orange region because microtubufiggnate from the MTOC and not
from the nucleus.

non-dimensionalistion calculations are described in Aplpe11.2.2. Ranges of val-
ues such that the model exhibits sustained oscillatory miyceawere also found and
are stated in the third column of Talplel5.1. We use preciselygame biologically mo-
tivated criteria for oscillatory dynamics that we used ie finevious chapter (5 distinct
peaks of Hes1 protein in the nucleus). We run our simulationg20 minutes which

corresponds to the maximum amount of time oscillatory dyinanvere observed for.

By comparing Tablels 4.1 and 5.1, we see that the parame@gesanelding sustained
oscillatory dynamics are widened by the addition of an elhliuclear membrane and
active transport. Our extended model is therefore both rfaitfeful to the underlying

biology and a more robust oscillator. Note in particulart festained oscillations may
occur in the extended model even when the Hill coefficleist as low as two. As we

mentioned above in sectibn #.4, Hes1 acts as a dimer, whgtdests that oscillations

should be possible with =2 (Monk,2003). We have now found that this is indeed

possible, and so it may not be necessary to seek evidencentbng site interactions

or other nonlinearities to faithfully model the Hes1 GRNrtlRermore, by fixingh = 2
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we studied parameter sensitivity and found ranges of thieaumembrane parameters
(i.e., permeability) and active transport speed which poadoscillatory dynamics.
As can be seen in Table 5.2, these ranges are quite broad ggéssuhat allowing
for a Hill coefficient of 2 could be a generic feature of syssamcluding a nuclear
membrane and active transport. Oscillatory dynamics aserold over a wider range
of the parametelr. This is due to the fact that active transport moves proteieated
close to the cell membrane towards the nucleus, ensuringgénarotein accumulates

in the nucleus to shut down hes1 mRNA production.

It has been estimated that motor proteins transport camogaticrotubules at a

speed of approximately.80 x 10~ °cms ! (Smith_and Simmons, 2001). Our value

for the rate of active transport in the second column of T&hle namelya = 1.25 x
10-%cms 1, is lower than this estimate, but it should be kept in mind tha value
incorporates not only transport but also implicitly incorates reactions required for
active transport, such as binding to and dissociation froieratubules, as well as
competition between newly synthesised molecules of Hestejprto attach to micro-
tubules. It should also be kept in mind that molecules caiectemporarily stuck

on microtubules, slowing down the average rate of activespart (Smith and Sim-

mons, 2001). A more advanced study of active transport waddire consideration

of stochastic effects, in which context it might be fruittol take a spatial stochastic

approach in a similar mannerito Hellander and Lotstedt@20h any case, our range

of values for the active transport rate such that sustaisedlaory dynamics occur
does include the estimate ofd® x 10-°cms™t. Moreover our range of values for the
nuclear membrane thickness indicate that the numericatisolis robust to variation

in this parameter, which is reassuring as this value isyikelhary between cells.

Figure[5.3h shows how the total nuclear concentrations &f heRNA and Hes1 pro-
tein vary over time, and Figufe 5]3b shows how the total dgipic concentrations

of hes1 mRNA and Hes1 protein vary over time. By comparingifég 5.3a and 5.8b

57



Parameter| Value in simulations | Range over which oscillations are observéed
D, 3.13x 10 enPst | 6.67x 10 2cmPs 110 1.13x 10 %cmPs !
am 6.25x 10 1Ms~?t >250x 10 2Mst

p 1.00x 10°M 317%x 10 1M t0 7.69x 10 'M

h 5 >2

Um 1.25%x 10 3s71 2.08x 10 %s 110 4.00x 10351

ap 0.0555s1 >250x 107 3s7?

Up 1.25x 103t 2.08x 10 4s1t0379x 103571

Dm 6.25x 10 12cnPs! | >2.50x 10 McmPst

Dp 2.08x 10 2cnPst | > 1.67x 10 YcnmPst

d 1x 10 %cm <4.70x 10 %cm

a 1.25x 10 %cms™? 7.50x 10 %cms ! to 1.08x 10 “cms ™t

| 6.32um nuclear membrane (8n) to 107um

Table 5.1: Parameter values used in simulations of the extended Hedg&lraad ranges over
which sustained oscillatory dynamics are observed.

a

1.25%x 10 %cms?

1.92x 10 %cms 1t0833x 10 °cms !

Parameter| Value in simulations | Range over which oscillations are observed
Dm 6.25x 10 2cnPs™ | >1.38x 10 cnPs?

Dp 2.08x 107 2cn?s™t | >7.92x 10 MemPst

d 1.00x 10~5cm <3.70x 10~%cm

Table 5.2: Nuclear membrane (permeability) and active transport paeger values used in
simulations of the extended Hes1 model with fixed Hill caeffiti= 2 and ranges over which
sustained oscillatory dynamics are observed.

with, respectively, Figurds 4.Pa and 4.2b, we see thatlasmiy dynamics are retained
in the model when a nuclear membrane and active transpoaidaied to it. Yet there
are some quantitative differences between our new plotstlzoge for the original
model. For example, a greater proportion of Hes1 entersubkeuns in our new plots,
for whereas in FigurE_4].2 the height of the peaks in nuclearlHeere only approx-
imately 15% of those in the cytoplasm, Figure 5.3 shows that they aneapprox-
imately 33% of those in the cytoplasm. Thus, although our assumption of slow
diffusion across the nuclear membrane hinders the entryesfLlihto the nucleus, our
other new assumption of cytoplasmic active transport oflHesnore than enough to
overcome this. The increased proportion of Hes1 proteihemtucleus influences the
production of hesl mRNA. To be specific, since Hes1 is a trgstgmn factor which
inhibits its own gene, hesl mRNA production is reduced byirtiseesased proportion
of nuclear Hes1 protein. In particular, hesl1 mRNA levelshi@a hucleus drop to zero

between consecutive peaks in Figure b.3a, a result not atead in Figuré4.2a.
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Figure 5.3: Plots of the total concentrations (in non-dimensional siiaf hesl MRNA (red)
and Hesl protein (blue) in (a) the nucleus and (b) the cy®pldor the extended Hes1 model.
The period of oscillation is approximately 120 minutes. dPaeter values as per column 2,
Table[5.1.

We have examined the dependence of the nuclear to cytomlaatiu of Hes1 on the
speed of active transport. Figurel5.4 shows 100 differeiniegaofa, plotted in incre-
ments of 208 x 10~ ‘cms ™! (the sixth value, 25x 10 %cms ! is the default value
used in simulations). All other parameter values are fonrmblumn 2, Table5]1. The
nuclear to cytoplasmic ratio is obtained by taking the mesneyof the total concen-
tration of Hes1 protein in the nucleus over a 1000 minute f@eod and dividing it
by the mean total value attained in the cytoplasm over theegane period. The plot
shows that the nuclear to cytoplasmic ratio of Hes1 protangases monotonically as
aisincreased and tends to a limiting value. We leave thesera@sons as predictions

for experimentalists to corroborate.

Figured5.5a and 5.5b show respectively how hesl mRNA and piedein concen-
trations vary spatially within the cell from timds= 150 to 300 minutes. At time
t = 150 minutes, we see that nuclear hesl mRNA levels are highthatdhere is
also hesl mRNA concentrated outside the nucleus. The mesdrhmesl mMRNA in
the cytoplasm causes the production by translation of Hesteip, which is actively

transported towards the nucleus (see times 150 and 180es)niWhen Hes1 reaches
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Figure 5.4: Graph showing nuclear to cytoplasmic (N/C) ratio of Hesltgio plotted against
a, the active transport speed. The plot shows that the nutteaytoplasmic ratio of Hes1
protein increases monotonically as a is increased and témddimiting value.

the MTOC directly outside the nucleus, it is no longer adyiveansported but moves
by diffusion alone. Hence Hes1 levels build up directly aleéghe nucleus. This build
up is exacerbated by the nuclear membrane, across whichrii@gds by slow diffu-

sion. As levels of Hes1 rise in the nucleus, the transcrippiches1 mRNA is inhibited
(see times 180 and 210 minutes). Without mRNA transcripti@nnew Hes1 protein
can be created by translation. Hence levels of Hes1 falltyitout the cell by natural
degradation (see times 210 and 240 minutes). In the abséntesd, mRNA tran-

scription is no longer inhibited and this process resumesirtee 240 minutes). The
cycle just described now repeats, and indeed the oscilariod of two hours (120
minutes) is clear from comparing times 150 and 180 minutdis tvhes 270 and 300

minutes respectively.

When compared to the spatial profiles of the original Hes1 eh(gke Figurek 4.8a
and4.3b) the spatial profiles for hes1 mMRNA are not changatitgtively by our new

extensions to the model — the local concentration in theeugcktill reaches a much
higher peak than in the cytoplasm. However, the behavioHiestfL protein is changed.

Instead of building up outside the nucleus as in Figurel5tspreads out across the
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cytoplasm in the absence of active transport and an explictear membrane (see

Figurel4.3b).

5.4 Modelling spatial effects in the nucleus

Until now we have assumed that the diffusion coefficientsafbspecies in each com-
partment are equal. While this assumption helps reduceuhwar of parameters in

the model, it may not be the most accurate approach. For dgaiip known that

proteins experience macromolecular crowding in the nsc(@&an al., 2009),

so a different nuclear protein diffusion coefficient may berenappropriate. To this
end, in Figurd 56 we present the results of simulationsceiyg the effect of vary-
ing the diffusion coefficients of the molecules in the nusleAs shown in the plots,
changing the diffusion coefficients causes a change in theitaie and period of the

oscillations.

We have also assumed that transcription of hes1 mRNA odetogghout the nucleus
(as if the gene is uniformly distributed). However, a morewaate way to model
transcription would be to localise mRNA production to a derasub-region of the

nucleus. This can be achieved in the model by modifying egud#.1) as follows:

% = Dppy, 0%[mn] + G(x,Y) <W) — Hm[Mn], (5.7)
where
1, ifx2+y?<r?
Gixy) = (5.8)

0, if X2+y?>r2
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(a) hes1 mRNA

t=150 t=180 t=210

t = 300

(b) Hes1 protein

Figure 5.5: Plots showing the spatio-temporal evolution of (a) hesl mRhd (b) Hes1 pro-
tein from times t = 150 to t = 300 minutes at 30 minute intenfalsthe extended Hes1 model.
The concentrations exhibit oscillatory dynamics in bothdiand space. Parameter values as
per column 2, Table 5l 1.
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and where is the production zone radius. Simulation results fromiislified model
are presented in Figure5.7. The plots in Fiduré 5.7(a) shewrtRNA concentration

in the nucleus over time as we reduce the production zoneisgdi and keep the
MRNA production rate dy,) constant. Oscillatory dynamics are maintained until a
critical value of the radius is reached between®@um and 049um. The lower three
plots show that there is a loss of oscillatory dynamics winerproduction zone is too
small. The plots in Figure 5.7(b) show the mRNA concentratiothe nucleus over
time as we decrease the production zone radius but increaseRNA production rate
(dividing the default value ofr, by the area of the production zone). It is revealed in

these plots that oscillatory dynamics can be maintainedrfaller values of.

5.5 Convection as the sole transport mechanism of cy-

toplasmic Hes1 protein

Our spatio-temporal modelling approach allows us to addgegstions which cannot
be answered using ODE or DDE models. For example, we cantigaés different
ratios of active transport and diffusion such that susthiwsillatory dynamics occur

in the extended Hes1 model. We begin to explore this by dsitrgdhe importance

of cytoplasmic protein diffusion relative to its activerisport. Setting the diffusion
coefficientDy, to zero we were still able to find sustained oscillatory dyitanfor a
range of active transport ratasRepresentative results are shown in Figuré 5.8 for two
different values ofa. Note that we run our simulations for 800 minutes here so that
we can ensure our predefined criteria for oscillatory dymarare satisfied. Consistent
with intuition, the plots shown in Figufe 5.8 show that a gee@roportion of protein
accumulates in the nucleus as the active transportaaseincreased. Our results

suggest that sustained oscillatory dynamics will occuroag las sufficient quantities
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Figure 5.6: Plots showing the effect on the concentration profiles ofivar the mRNA and
protein diffusion coefficients. In each row, the left plobwi the total concentrations in the
cytoplasm and the right plot shows the total concentrationghe nucleus (Hes1 protein in
blue, hes1 mRNA in red). Plots in the first row correspond éod&se where all four diffusion
coefficients are different, i.e., = 3.13x 10 en?s ™%, Dy, = 2Dy, Dp,= 5Dp,, Dy, =
Dy /10. Plots in the second row correspond to the case whereublear diffusion coefficients
are increased, i.e., R = D, = 3.13x 10 *cm?s ! and Dy, = Dy, = 10Dy, Plots in the
third row show the result of increasing the diffusion coedfits of MRNA compared with protein
diffusion coefficients, i.e., p=Dp, = 3.13x 10 t'cn?s ! and D, = Dy, = 10Dy, All other
parameter values are found in column 2, Tdbld 5.1.

64



N w IS
Rl

. = ! ¢
O R UON O w o

scaled concentration

o

¢ = N w »
O UN O W oSO

scaled concentration

o

r= 3.00 um, a,= 6.25e-11 Ms™*

r= 1.64 um, a, = 6.25e-11 Ms™*

r= 0.90 ym, a, = 6.25e-11 Ms ™t

time (min)

r=0.49um, a_=6.25e-11 Ms™*

time (min)

r=027um, a_=6.25e-11 Ms™*

18 0.6
.16 - 05
£ 14 2
© ©
£ 12 £ 04
[7) [}
g 1 203
S o8 3
3 o6 302
8 o4 S
o= 01

0.2

0 0
0 200 400 600 0 200 400 600 0 200 400 600

time (min)

r=015um, a_=6.25e-11 Ms ™"

0.05
f= j=
i=) R=]
S 0.04 8
[= c
8 8
c 0.03 c
o o
o o
B 0.02 B
[+ [+
o o
® 0.01 @

0

0 200 400 600 0 200 400 600 0 200 400 600
time (min) time (min)

time (min)

(a) Parameter r varying, constant value of parametg

r= 3.00 um, a. = 6.25e-11 Ms™*

r= 1.64 um, a, = 2.08e-10 Ms~*

r= 0.90 um, a., = 6.94e-10 Ms*

(=]

N W A U O

scaled concentration

=

6
6
§° §s
8 8
g4 =
[ Q
2 2
g8 g3
32 3
@ @
a a
1 1
0
0 200 400 600 0 200 400 600 0 200 400 600
time (min) time (min) time (min)

r=049um, a_=231e-09 Ms™*

r=027um, a_=7.72e-09 Ms*

r=015um, a_=257e-08 Ms*

o

6
85 5
8 8
c 4 <
Q Q
o o
s 3 IS
o o
° k=3
QL2 L
@ @
@ &
1
0
0 200 400 600 0 200 400 600 0 200 400 600
time (min) time (min) time (min)

(b) Both parameter r and parametet, varying

65

Figure 5.7: Plots showing the effect on mRNA concentration in the nsabdélocalising tran-
scription. In these simulations transcription (i.e., mRpraduction) is localised to a region

in the nucleus defined by equatién {5.8). (a) The radius r efteduction zone is decreased
while the mRNA production rat@y, is kept constant. As can be seen, oscillatory dynamics are
present until r becomes too small. (b) The radius r of the patidn zone is decreased but
the mRNA production raten, is increased (dividing the baseline value af, by the area of

the production zone). As can be observed, oscillatory dycgare present for all values of r.
Parameter values as per column 2, Tablg 5.1.
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Figure 5.8: Plots of the total concentrations of hes1 mRNA (red) and hyestkin (blue) in (a)
the nucleus and (b) the cytoplasm for the extended Hes1 nrotled absence of cytoplasmic
protein diffusion. Parameter values are as in the secondoal of Tabld 5]1, except that
Dy, = 0. The solid lines represent the case where &67x 10~ cm s * and the dashed lines
represent the case where=a2.50x 10~ ’‘cm s'L.

of Hes1 protein reach the nucleus, regardless of the praeissport mechanism they
use to reach it. We leave this result as a prediction of thealmidce we are not aware
of any experiments which can demonstrate this. In the neticse we consider the
opposite situation to that considered here, decreasingip@tance of active transport

relative to diffusion.

5.6 Microtubule disruption numerical experiment

Microtubules are important in a diverse array of cellulardiions, ranging from cell

division to intracellular trafficking. Consequently mitubule-disrupting drugs are

used in cancer therapy and are studied experiment ilson, 2004;

Kavallaris, 2010; Carbonaro etlal., 2011). Although we aeaware of microtubule-

disrupting drugs being used on the Hes1 pathway, we shatidenthe effect of such
drugs in our extended Hes1 model and leave our observat®opsedictions. Clearly

microtubule-disrupting drugs will disrupt active transipalong microtubules, so we
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Parameter

Value in simulations

Range over which oscillations are obsery

3.13x 10 s ?
6.25x 10 11ms—1
1.00x 10°M

5

1.25%x 10 3s1
0.0555s1

1.25%x 10 3s 1
6.25x 10 %cnés 1
2.08x 10 2cmés 1!
1x 10 °cm

0

6.32um

3.33x 10 YemPs 1t0 146 x 10 %cmés 1
>6.87x 10 11Mms 1

1.05x 10 °M to 1.00x 10~°M

>6

1.25x 10 %s 1t01.21x 10 3s 1

> 0.0583s!

1.25x 10 %s 1t01.21x 10 3s1
>0.58x% 10 12cmés !

>6.25x 10 2cn?s 1

<8.00x 10 5cm

nuclear membrane (Bn) to 6.24um

ed

Table 5.3: Parameter values used in simulations of the extended Hedglrimothe case where
the active transport rate is set to zero, and ranges over lwhicstained oscillatory dynamics

are observed.

set the active transport radeequal to zero in our extended model and otherwise retain

the parameter values in the second column of Table 5.1 (foresvence, the complete

set of parameters is stated also in the second column of baB)e Figurd 5.9 shows

the total concentrations for Hes1 protein and hesl mRNA trer. The system no

longer satisfies the predefined criteria for sustainedlasaily dynamics (at least 5 dis-

tinct peaks in the total concentration of the transcripfextor in the nucleus); rather

the oscillations are damped. This marks a qualitative ckandhe dynamics. In a

general sense, this is an encouraging result — a qualiteti@age in dynamics is the

type of response we might seek from drug therapy.

Figure[5.9 also shows quantitative changes in the dynanfiosexample, a smaller

proportion of Hes1 now enters the nucleus (relative to FEuB) — the total concen-

tration of Hes1 in the nucleus is only roughly 1% of that in¢lrplasm in Figure 5]9.

This reduction is to be expected since Hesl1 is no longerdgtivansported towards

the nucleus.
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Figure 5.9: Plots of the total concentrations of hesl mRNA (red) and Hestein (blue) in
(a) the nucleus and (b) the cytoplasm for the extended Hesielnio the absence of active
transport. The concentrations exhibit damped oscillatioBarameter values as per column 2,
Table[5.3B.

The damped nature of the oscillations can be seen in Figdf® Shich, like Fig-
ured 4.8 an 515 shows the spatio-temporal evolution of trf®lIA and Hes1 protein
from timest = 150 to 300 minutes at 30 minute intervals. For the entire 15t
time interval mMRNA levels are high in the nucleus and protewels are high in the
cytoplasm. The nuclear membrane effectively restrictddbation of each species to
the compartment in which it is produced. Notice that somédefgdrotein has reached
the cell membrane, something that was not observed in thelmath active transport

(see FiguréXkls).

Although our set of parameter values (second column, TaB)erbthe extended model
without active transport did not yield sustained osciltgtdynamics, we found that by
varying each parameter individually then such dynamicétoccur. Ranges of values
for each parameter such that sustained oscillations ocewstated in the third column
of Table[5.8. Note that these ranges are narrower than thresernged in Tablds 4.1
and[5.1 and that, unlike in Tables 4.1 5.1, they do notadorihe experimental

measurements for the parametgrs and tp. Furthermore, unlike in Table 5.1, the

experimental measurement fibois not contained in the range fdrin Table[5.3.
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Figure 5.10: Plots showing the spatio-temporal evolution of (a) hesl wRNd (b) Hesl
protein from times t = 150 to t = 300 minutes at 30 minute ingdsvfor the extended Hesl
model in the absence of active transport. The concentrat@hibit damped oscillations in
time and space. Parameter values as per column 2, Table 5.3.
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5.7 The influence of cell shape

As mentioned in section 2.2, cell shape can influence inftdae signal transduc-

tion (Meyers et al., 2006; Neves et al., 2008). The influerfoseth geometry on the

Notch-Delta and NF«B pathways has recently been investigated by Terry and co-

workers, who found through spatio-temporal modelling thstillatory behaviour in

these pathways is to some extent robust to changes in theshag relative sizes of

the nucleus and cytoplasr\n (Terry et al., 2011; Terry and Lahia; 011). We have

performed numerous simulations to study the influence dfstelpe on the extended

Hes1 model, with parameters as in the second column of Tabl&& run our simula-
tions for long enough to check whether our predefined caten oscillatory dynamics
is satisfied. We present some of these results in Figurekahd®b.1?. It is clear from
these figures that sustained oscillatory dynamics aregraabust to changes in cell

shape. Such robustness is reassuring since the shape oj@idkeells is highly vari-

able (Baserga, 20017; Pincus and Theriot, 2007).

Only one of the geometries in Figufes 5.11 or 5.12 showsfgignit damping after the
initial peaks in Hes1 protein and hes1l mRNA total conceiutnat This occurs in the
second row in Figure 512, where the MTOC surrounding théemsds significantly
increased in size. The increased size of the MTOC reducesizbeof the region in
which active transport may occur. Hence the results in thersgrow in Figuré 5.12
are similar to those presented in secfiod 5.6 in which theettansport rate is set to

Z€ero.

In general, we found that the qualitative behaviour of thteeded Hes1 model is much
more robust to variety in cell shape than the quantitativeal®ur — oscillatory dy-

namics can be retained when the domain is altered whilseXample, the proportion
of Hes1 that enters the nucleus will change and also thegesems very sensitive

to cell shape. Hence, to obtain quantitatively accuratelt®sve should use a domain
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Figure 5.11: Plots showing the effect on the extended Hes1 model of gaifygmuclear shape.
In each row, the left plot shows the shape on which we sole tla@ middle and right plots
show the corresponding numerical results. Spatial unit® lzee non-dimensional, with one
non-dimensional spatial unit corresponding 16um. Total concentrations for Hes1 protein
are displayed in blue and for hes1 mRNA in red. Parameteresahs per column 2, Talle b.1.

that exactly matches a living cell.

We explore the effect of using a realistic cell shape in Fegls.1# and 5.15. For

this, we have used an image of an osteosarcoma cell sincesgiepgdthway is known

to play a critical role in the development of osteosarco

image of the osteosarcoma cell, taken from Davi

1, 20

8). The

on (204 $hown in Figuré5.13a,

and the imported domain used for simulations is shown infeiI3b. An additional

region was added to account for the MTOC.

The realistic cell domain does not change the solution tatadely - oscillations are
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Figure 5.12: Plots showing the effect on the extended Hesl model of atiim nucleus
position (first row), the MTOC position (second row), and tiedl shape (third row). In each
row, the left plot shows the shape on which we solve, and thdlenand right plots show
the corresponding numerical results. Spatial units here @on-dimensional, with one non-
dimensional spatial unit corresponding i@um. Total concentrations for Hes1 protein are
displayed in blue and for hes1 mRNA in red. Parameter valsgseacolumn 2, Table 5.1.
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Figure 5.13: Images of (a) an osteosarcoma cell (U-2 OS) (reproduced péimission
from|Davidson (2011)) and (b) an imported image of this cathvaxes displayed in non-
dimensional spatial units (one non-dimensional spatidat narresponds tdlOum), which is
used as a domain in numerical simulations. A third regioredily outside the nucleus was
added to the imported domain (shown as orange), the outendsoy of which represents the
MTOC cf. Figurd 5.P.
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Figure 5.14: Plots of the total concentrations of hes1 mRNA (red) and hbestkin (blue) in
(a) the nucleus and (b) the cytoplasm for the extended Heslelnsolved over an osteosar-
coma cell domain as shown in Figure 5.13b. The period of lagicih is approximatelyl125
minutes. Parameter values as per column 2, TRble 5.1.
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Figure 5.15: Plots showing the spatio-temporal evolution of (a) hesl WwRNd (b) Hesl
protein within the cell from times+ 150 to 300 minutes at30 minute intervals for the ex-
tended Hes1 model solved over an osteosarcoma cell domaihoaen in Figurd 5.13b. The
concentrations exhibit oscillatory dynamics in both timmelaspace. Parameter values as per
column 2, Table5I]1.
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evident from the total concentration plots of Figlre 5.14owdver, there are quan-
titative differences between the total concentrationlotFigure[5.T4 and those in
Figure[5.8 (where the only difference in the system beingesbls the domain used).
For instance, the total concentration of Hes1 protein i ltlo¢ nucleus and cytoplasm
is reduced in Figure 5.14 relative to Figlrel5.3, and theadsis a notable reduction in
Hes1 protein total concentration compared to hesl mRNA ¢otacentration in both

the nucleus and cytoplasm. Interestingly, the ratio of @aicto cytoplasmic protein is

retained.

Spatial profiles with the osteosarcoma cell domain are pteden Figuré 5.15. Com-
paring Figure$ 5.15 arld 5.5 allows us to see why the totakpratoncentration in
Figure[5.14 is significantly less than that in Figlrel 5.3. Mthprotein is produced
uniformly around the nucleus in Figure 5.5, this is not theeca the osteosarcoma
cell in Figure[5.1b because the nucleus is much nearer toglhenembrane and we
have made the assumption that protein is produced a smiahdesfrom the nucleus.
Protein is mainly produced in the osteosarcoma cell in thkasaabove and to the left

of the nucleus, where there is space for this to occur.

5.8 Drug treatment

5.8.1 Inhibition of the proteasome

Asin sectio4.6]1 we consider here the impact of proteasohilgition. \We now show
the result of inhibiting the proteasome in the extended Hastlel by reducing the
decay rate for Hes1 protejip, by a factor of 100. To aid comparison with experimental

data we run our simulations for 240 minutes.
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Figure 5.16: Plots of the total concentrations (in non-dimensional sindf hes1 mMRNA (red)
and Hesl1 protein (blue) in (a) the nucleus and (b) the cypldor the Hes1 extended model
when the proteasome is inhibited. No oscillations are ole@r Parameter values as per
column 2, Table5]1 witj, reduced by a factot00,

Our simulation results of the proteasome inhibition expent are presented in Fig-
ured5.Ib6 and5.17. Figure 5.16a shows a plot of the totakrdrations of hes1 mRNA
and Hesl1 protein in the nucleus over time, while Figure Gst@iws the corresponding
total concentrations in the cytoplasm. Finally, FigureZsshows the spatio-temporal
evolution of the mRNA and protein concentrations respettiover the same time

period. As in sectiofl 4.6.1 we do not find oscillations in tle@aentration levels,

which is in line with the experimental results|of Hirata tAQD_QJE). However, unlike

in section4.611 the protein accumulates mainly in the nusclgompare Figurie 4.112

with Figure[5.1V7). The spatial distribution of proteins ™ kommented on in Hirata
et al. EQQ

2), hence we leave the results of our numericatrax@nt as a prediction
of the model. We hope these results will inspire experimetsato conduct additional

experiments.
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Figure 5.17: Plots showing the spatio-temporal evolution of hesl mRNgt (Gw) and Hes1
protein (second row) from times=t 150to 210 minutes at30 minute intervals for the Hes1
extended model when the proteasome is inhibited. Hesliprstélistributed almost almost
exclusively in the nucleus and within the MTOC for each timiatp hes1 mRNA concentration
is so low it is not visible. Parameter values as per columnahld5.] withu, reduced by a
factor 100.
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5.8.2 Translation inhibition

Following sectiori 4.612 we now consider the effect of intiiy the key process of
translation for the extended Hes1 model. We mimic this expamt using model by

decreasingrp by a factor of 100 and running our simulation for 300 minutes.

Our simulation results of the translation inhibition expeent are presented in Fig-
ured5.1B and5.19. Figure 5.18a shows a plot of the totakrdrations of hes1 mRNA
and Hes1 protein in the nucleus over time, while Figure 3siiws the corresponding
total concentrations in the cytoplasm. Finally, Figurebshows the spatio-temporal
evolution of the mRNA and protein concentrations respettiover the same time pe-
riod. As can be seen from all these plots, no oscillationeé@cioncentration levels are
observed, in line with the experimental results|of (Hiratale 2002). Furthermore,
unlike in the proteasome inhibition experiment, noticet tie@re is good agreement

between the Hesl reaction-diffusion model and the extemtk=d model (compare
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Figure 5.18: Plots of the total concentrations (in non-dimensional sindf hes1 mMRNA (red)
and Hes1 protein (blue) in (a) the nucleus and (b) the cypléor the Hes1 reaction-diffusion
model when translation is inhibited. No oscillations aresetved. Parameter values as per
column 2, Table5]1 witlr, reduced by a factot00

Figurel4.T# and Figufe 5.19).

5.9 The influence of extrinsic noise: exploring model

dependence on initial conditions

We now exam the sensitivity of the extended Hes1 model togdsim initial con-
ditions. In order to vary the initial conditions, we adopé tsame procedure that we
used for the Hes1 reaction-diffusion model (see se€figh @iice again, Figufe 5.20a
shows the total concentration of protein over the entiréfoel10 simulations with
different initial conditions. After an initial transienepod (which appears dependent
on initial conditions), the total concentration level ktinto an oscillatory behaviour
(or limit cycle). The corresponding hesl mRNA versus Hegdtgin phase plane is
displayed in Figure 5.20b. The amplitude, period and pheséaegely unaffected by
the changes in initial conditions. Hence, although thegmwtsd study of random ini-

tial conditions is not comprehensive, from the simulatipresented it appears that the
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Figure 5.19: Plots showing the spatio-temporal evolution of hesl mRNg¢ (Gw) and Hes1
protein (second row) from times=t 150to 210 minutes at30 minute intervals for the Hes1
reaction-diffusion model when translation is inhibiteéisth mMRNA is found in high concentra-
tion in the nucleus. Hes1 protein concentration is so low itat visible. Parameter values as
per column 2, Table 51 witt, reduced by a factot 00

model behaviour is robust to changes in initial conditions.

5.10 Discussion

In this chapter we have extended the Hes1 reaction-diffusiodel presented in the
previous chapter. The model was extended by including aanochembrane and active
transport. We accounted for the permeability of the nualeambrane by considering
its thickness and the fact that diffusion across it is slotwan in the nucleus or cyto-
plasm, and we assumed that proteins were convected frongtiby@d@sm to the nucleus

in order to model translocation along microtubules.

Experiments have shown that stimulation of the Hes1 GRN aasehesl mRNA and
Hes1 protein levels to oscillate for up to 720 minutes. Thessallations are under-
stood to be driven by a negative feedback loop. Thereforen(dee previous chapter)

we explored numerically our extended model in the contexdusitained oscillatory

79



—ic1
—ic2
—Ic3
—ic4 a50b SR SR
“|—1Ics :

IC6
|—ic7
—Ic8
—Ic9

IC10

250

200

=
ol
(=]

150

scaled concentration
Hes1 protein

=
o
(=)

BOf v

0 200 400 600 5 10 15
time (min) hesl mRNA
(a) 10 simulations with different ICs (b) corresponding phase plane

Figure 5.20: Plots of the total concentrations Hes1 protein (blue) intdgd over the entire cell
for the extended Hes1 model with different initial condlitio After an initial transient period
induced by the initial conditions, the model appears roliosthanges in initial conditions.
Parameter values as per column 2, Tablg 5.1.

dynamics. We found ranges of values for the model paramstetsthat sustained os-
cillatory dynamics occurred, noting that these parametere consistent with avail-
able experimental measurements. We also found that ourInegtinsions acted to
broaden the parameter ranges that yielded oscillationpawed with the simple Hes1
reaction-diffusion model (see chapkér 4). Hence oscijabzhaviour is made more

robust by the inclusion of both the nuclear membrane angettnsport.

Given that cell shape can influence intracellular siqnallmlevers et all, 2006; Neves

et al.,[2008), we investigated the effect on the dynamicsaoious cell geometries,

finding for our extended Hes1 model that oscillatory dynanaiee strongly robust to
changes in the size and shape of the cell and its nucleus. r8salts are consistent

with other recent spatio-temporal modelling studies ofacellular signalling path-

ways (Terry et all, 2011; Terry and Chaplain, 2011). In therest of making accurate

guantitative statements, we explored more realistic dosydience we imported our

domain from an image of an osteosarcoma cell — the Hes1 GRNawik to play a

critical role in the development of osteosarcomas (Zhaiad) £2008). We were able to
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make quantitative observations regarding, for exampéeptbportion of Hes1 that en-
ters the nucleus. Our quantitative data serve as predstiotil accurate experimental

data become available.

We demonstrated that our extended model is robust to laoglisRNA production to
a small (gene like) region of the nucleus if the transcriptiate parameter is scaled
appropriately. It is unlikely that the diffusion coeffictegior molecules in the nucleus
would be the same for molecules in the cytoplasm and it is ahditely that the dif-
fusion coefficient for different molecular specifies wouklthe same. To this end, we
showed that our model still yields oscillatory dynamicswgsa number of differential
diffusion coefficient combinations. We also explored thersgio of protein trans-
port by pure convection in the cytoplasm (i.e., no diffugiand found that our model
could also yield oscillatory dynamics under this extremedition. This implies that
the precise transport mechanism is not important, what p@mntant is that the protein
reaches the nucleus sufficiently fast. Furthermore, we stdiat our model is robust

to changes in initial conditions.

Motivated by experiments involving microtubule-disruygtichemotherapeutic drugs

Jordan and Wilson, 2004; Kavallatis, 2010; Carbonaro.gf@ll1), we considered the

special case in our extended model where active transged veere set to zero. We
found that this narrowed the ranges of values for model parars such that sustained
oscillatory dynamics occurred. We also considered theetfeproteasome inhibitor

drugs and translation inhibition drugs. The model was ableeproduce known ex-

perimental data qualitatively (Hirata et al., 2002). Aldigh the translation inhibition

experiment yielded similar results for both the reactidifudion model and extended
model of the Hes1 GRN, the proteasome inhibition experigitled some interest-
ing differences. In particular, the extended model showedlHorotein levels only in
the nucleus after the proteasome inhibition numerical expnt. In contrast, the orig-

inal reaction-diffusion model showed Hes1 protein levpl®ad uniformly throughout
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the entire cell. Given the lack of direct experimental datadctive transport along
microtubules of Hes1, this numerical experiment proposeetihod for checking the
existence of active transport of Hes1. By simply treating dbll with proteasome in-
hibitors, the subsequent spatial distribution of Hes1gmotould indicate whether or

not Hesl1 is actively transported into the nucleus.
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Chapter 6

A spatial stochastic model of the Hes1l

gene regulatory network

6.1 Introduction

It is clear from the previous two chapters that mathematiwadels of the Hes1 GRN
can benefit from the inclusion of cell structure and accagnfor movement of in-

tracellular molecules. While these models were able tooeyce the qualitative be-
haviour of the Hes1l GRN, i.e., oscillatory dynamics, theyeveot able to account
for variability in period and amplitude that is found in thereesponding experimental

data.

In biological systems there are numerous sources of stociyasand heterogene-
ity, and these can have important consequences for unddnstgthe overall system

behaviour. Intrinsic noise is commonly found in many ingladar signalling path-

ways (Shahrezaei and Swdin, 2008; Barik et al., 2008, 20103. noise can arise due
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to low abundance of molecular species, randomness inod&&giprocesses (e.g. bind-

ing and unbinding of transcription factors to promotersjitstochasticity in produc-

tion processes (transcription, translation) and degraadavents | (Wilki 2009).

Clearly, mathematical models of GRNs with low copy numbeilsbe more faithful

the more they seek to account for stochastic and spatiairesadf these networks.

Very few spatial stochastic models exist in the literatwrethis is beginning to change.

Some of the first models of this kind were of the Min System irEagherichia coli

cell (Howard and Rutenberg, 2003; Fange and EIf, 2006). Hdw&a&Rutenberg used a
stochastic analogue of a 1D system of reaction-diffusiaraéigns and found that, for
some parameter values, the protein concentrations werenowgh that fluctuations
were essential for the generation of patterns. In the mddehoge & EIf trajectories
were generated using the next subvolume method (NSM), ametrnical simulations
were able to reproduce all documented Min phenotypes, wiheierministic or non-

spatial models could not. A spatial stochastic model of th&PM pathway was de-

veloped in Takahashi et aL(A 10). This model was impleetenumerically using a
Green'’s function reaction dynamics scheme, which allowsfdividual particle level

simulation of molecular species. Using this technique, MABsponses that could
not be observed using a mean-field approach were produceothémnrecent spatial

stochastic model was developed to study in detail a gerranstription factor binding

and unbinding to DNA/(van Zon et 06). Here, the spatiathastic model was

able to support the use of well-stirred, zero-dimensionadiets for describing noise
in gene expression. It is clear from these few examples thatiad stochastic mod-
elling can provide insight into intracellular signallingthways that other approaches

can not. For a comprehensive review of spatial stochastietting of intracellular

processes, see Burrage etial. (2011).

The development of mathematical models which reflect baticftemporal and stochas-

tic aspects of GRNs can be regarded as an important comgnaatool in making
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Figure 6.1: The negative feedback loop in the Hes1 GRN (with explicinpter states). When
the promoter site is free, hesl mRNA is transcribed at itsimmaxrate. hesl mRNA then
produces Hesl protein via the process of translation. Heasiejm occupies the promoter
and represses the transcription of its own mRNA. The ocdupiemoter site is still able to
produce hesl mRNA, but at a significantly reduced rate (Fakehi et al., 1994). Reaction
arrows displayed in red only occur at the promoter site, whilose in green occur only in the
cytoplasm and those in black occur everywhere within thie cel

predictions about the behaviours of GRNs and in the optigisf targeted drug treat-
ment. In this chapter we propose a novel spatial stochasigehrof the Hes1 GRN.
We focus our study on Hes1 oscillations observed in emboysteim (ES) cells, as the

quality and abundance of Hes1 expression data for thisinelfdr exceeds all others.

6.2 Spatial stochastic model formulation

We present here the formulation of the stochastic readtifnsion model, detailing

the reactions and how diffusion events are handled.

The basic assumptions concerning the molecular reactiotieiHes1 feedback loop

follow previous modelling efforts (Monk, 2003) and the pws two chapters. Fig-

ure[6.1 shows a revised schematic description of the netwdtk model explicitly
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considers the spatial distributions of the species soimacare now localised to sepa-
rate compartments of the cell, as indicated by the coloutisearrows. A key feature
of all previous models of the Hes1 GRN is that they rely on anphgenological Hill
function term, which approximates the reduction in hes1 rARKbduction caused by
Hes1 protein occupying its promoter site. The model preskmt this chapter now
assumes that the promoter site exists in two states — a faé® @t one occupied by
Hes1 protein, represented By andP, respectively. This is a first approximation, be-

cause — as we mentioned previously — there are actually pheifpromoter sites that

Hes1 dimers can bind to, see (Zeiser etlal., 2007). Hencegadtions are modelled

by elementary mass action kinetics. Since our model is etlglspatial and discrete,
we can model the switching of gene states easily, so a Hititfan approach is neither

necessary nor appropriate.

6.2.1 The reaction-diffusion master equation

To account for intrinsic stochasticity we model the reattitffusion kinetics as a
continuous-time, discrete-space Markov process. The stahe system is the discrete
number of molecules of each of the species as a function @&.tiflme likelihood of
a transition is described by its reaction propensity, wrdefines the probability of

transition from the stateto x + N, per unit time:

xMx-i— Ny, (6.1)

whereN; € ZS is the transition step and is defined as ttfecolumn in the stoichio-

metric matrixN andcy (X) is the reaction propensity function. When the system can be

considered well mixed, the stochastic simulation algani{&SA) (Gillespiel, 1976) or

variants of it are typically used to generate statisticadgict realisations of the process.
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To introduce molecular motion due to diffusion, the spadianain is subdivided into
non-overlapping voxels in a mesh, cf. Figlrel6.2. Diffus®modelled as first order
events where a specisin voxel ¢ moves to an adjacent voxg, i.e.,

Qiij Xi

wherex;; is the number of molecules of species voxel i, andq;j is a diffusion
rate constant that depends By, the diffusion coefficient of specids and on the
size and shapes of voxajs and ;. The equation that governs the time evolution of
the probability density of the system is called the reaetidfusion master equation

(RDME). We assume that both hes1 mRNA and Hes1 protein carsdifs described

above, with diffusion coefficienb = 6.00x 10 ¥m?min—! (Matsuda et al., 2008).

We do not allow promoter species to diffuse, rather we asshm@romoter species

remain in the gene subdomain.

For fine discretisations, the classical SSA becomes ineffici The NSM (EIf and

Ehrenberg, 2004) is an algorithm adapted for simulatiorte@RDME, and it inherits

good scaling properties from the Next Reaction Method (N%ﬂﬂ)_SD_D_a.D_d_B_LLL( K,

2000). For all following simulations, we have used NSM aslanpented in the UR-

DME (Unstructured Reaction-Diffusion Master Equationffsare framework (Draw-

ert et al.; 2012). URDME uses unstructured tetrahedral aaigular meshes such as

shown in Figuré 6]2, thus enabling simulations to be peréatron complex geome-

tries. The diffusion rate constardg; are automatically computed for the unstructured

mesh as described in more detail in earlier studies, seel&mgdi al. (2009) and Draw-

ert et al.|(2012).
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Figure 6.2: The 3D meshed domain used in humerical simulations of theasjgtochastic
Hesl model. The domain is discretised such that 10,946 yomeke up the domain. Axes
units here are inrum. The cell is represented by a sphere, centre (0,0), withusad5um. The
nucleus is shown here as a blue sphere, centre (0,0), r&lims. The cytoplasm (shown in
green) is the part of the cell that is outside the nucleus. Jémee subdomain is chosen to be
the voxel closest to the centre of the cell (0,0), a distarfoem the nuclear membrane (shown
in red).

6.2.2 Domain, initial and boundary conditions

The computational domain is shown in Figlrel6.2. The celefmesented by two
concentric spheres with centre (0,0) and radiggiih and 34m respectively. The inner
sphere models the nucleus. These values are chosen to igeonsith experimental

measurements of ES ceIL_(ZhQ_u_et al., 2001). The promdteraigene subdomain,

is taken to be a single voxel at a radial distanéem the nuclear membrane. Unless
otherwise stated we choose the promoter site to be=&8um, i.e., the voxel closest to
the centre of the cell (0,0). We arbitrarily choose initiahditions such that 60 Hes1
proteins are uniformly distributed in the cytoplasmic soiméin, 10 mRNA molecules
in the nuclear subdomain and a single free promoter is fonride gene subdomain
(our model does not appear to be sensitive to initial coonsi— see section 6.6).
Zero-flux boundary conditions are applied at the cell memé@nd continuity of flux

boundary conditions are applied at the nuclear membraneresas of modelling the
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Reaction Description Localisation Parameter values

Ps + protein t;:‘ P, Binding/unbinding of Hes1 protein to promoter ~ Promotee sitk; = 1.00x 10°M ~!min~1 k, = 0.1min"?1
P 7 mRNA Basal transcription of hes1 mRNA Promoter siteay, = 3.00min!

Po M mRNA Repressed transcription of hes1 mMRNA Promoter sitep, = 3.00min" 1, y = 30.00

MRNA% mRNA+ protein  Translation of Hes1 protein Cytoplasm  ap = 1.00min !

mRNAM, 0] Degradation of hes1 mRNA Entire cell  pm = 0.015mirr !

proteinﬂ 0] Degradation of Hes1 protein Entire cell  pp = 0.043min 1

Si LN Sj Molecular diffusion Entire cell D =6.00x 10 13m?min—1

Radial distance of gene from nuclear membrane  Nucleus r =3um

Table 6.1: Description of reactions in the stochastic spatial Hes1 aiptheir localisation,
and initial parameter values used.

transport in and out of the nucleus. A summary of the reastidimeir sub-cellular

localisation, and the initial parameters used in the sitraria are found in Table G.1.

6.3 Numerical simulation results

6.3.1 The model reproduces quantitative and qualitative bieaviour

of wild-type ES cells

We performed simulations of the Hes1 GRN model using therpater values in Ta-

ble[6.1 and in order to be consistent with biological expernts, we ran our simula-

tions for 1200 minutes (Kobayashi et al., 2009). Five repméstive trajectories are
displayed in Figuré 613 (first row), along with corresporidperiods (second row).
The instantaneous period presented in the second rowmsatstl using a Morlet con-

tinuous time wavelet transform (CWT) as implemented in a MAB toolbox called

WAVOS, see Harang et al. (2012) for details. Given the higidgillatory and noisy

nature of our trajectories, the use of standard Fouriemigcies can lead to inaccurate

estimates of the period, as Fourier analysis assumesrsatipof the signal and its

basis functions are unbounded in time (Mallat, 1999). W&teelin contrast, are lo-

calised in both time and frequency. This localises the amslallowing the changes in
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signal properties to be tracked over time (Torrence and oLﬁ@QB). Furthermore,
we make use of gaussian edge elimination to minimise attefathe approximation

of the period.

The evolution of the total number of proteins is in close agrent with recent experi-
mental studies, in terms of qualitative behaviour and qgtativie values for the period.
Although there have been many experiments performed tysm#he oscillatory na-
ture of the Hes1 protein, it is not clear what units are usaddasure protein expres-
sion levels, hence it is difficult to compare the numbers adHgrotein predicted from
our model with real experimental values. However, we hageived estimates of the

copy number of hesl mRNA in ES cells from experimentaliste (fable S3 of the

electronic supplementary materiallof Sturrock etlal. (0@®ich fall in the range 0

to 465, and our mRNA values also fall in this range as showngnre[6.4(d). Notice
that although there are large amplitude oscillations oratians in the protein copy
number levels, the hes1 mMRNA copy numbers are relativeblestd his phenomenon

of small variations in mRNA copy number leading to large &ians in protein copy

number is consistent with other studies, for example, sestyHat al. [(2000). It is

reasonable to assume that protein levels will be higher thRINA levels (see Kar

et al. (2000) and Fusco etlal. (2003)), hence the valuesgteedby our model (see
Figure[6.8) may be consistent with experimental valued..4ga§ we illustrate how
the signal is amplified from a single promoter site switchirggm a free or occupied
state to a large drop or increase in protein copy number. i€t@m$ with intuition,

as the protein levels increase the likelihood of the promsite becoming occupied
also increases and so it is not surprising that peaks iniprtgeels are followed by

occupation of the promoter site. Unlike the copy number a§Herotein, values for
its period can be found in the literature. Experimentakstgmated that the period for
Hes1 protein in ES cells lies in the range of 180 to 300 minukks periods from 100

different trajectories of our model are displayed in Fida/g, and many of these lie in
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Figure 6.3: In the first row, plots of the total numbers of Hesl proteiruffd by summing

the number of proteins over the entire cell domain) are presgk against time for 5 different
trajectories of the Hes1 model. The mean copy numbers gukagied in the titles of row 1. The
green vertical line represents the transference of cells h@ural differentiation medium. The
number highlighted in green is the copy number of Hes1 attitme. The second row shows
the corresponding time varying period as approximated byaal® continuous time wavelet
transform with gaussian edge elimination. The mean perazdglisplayed in the titles of row

2. Baseline parameter values are used, see column 4, [Tdble 6.

the same range reported by biologists (compare Figute Gbsupplemental Figure

S1 oflKobayashi et ¢

(2009)). Since our model accountsnfimimisic noise, it is able
to reproduce the highly variable period and amplitude fouritie expression of Hes1
protein in ES cells. This is a feature that the reactionugdifin model and extended

model were not able to reproduce.

Furthermore, we include a plot of spatial snapshots of tladigpemporal evolution
of Hes1 protein in Figure_8.6. Such spatial plots can be coetpaith experimental

movie clips of bioluminescence imaging of Hes1 protein indéffs (see supplemental

movie file ofi K hi IL (2009) for example).

X
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Figure 6.4: Plots showing the total copy number of all species ovaetfor 5 different
trajectories of the Hes1 model (see Tdbld 6.1 for parameikres). It can be seen from these
plots that the time in which the promoter site is occupiedgfrcorresponds to troughs (peaks)
in the copy number of hesl mRNA and consequently trough&qpeathe copy number of
Hes1 protein[ (B) Plots showing the total copy number of Heslein and the corresponding
value of the free promoter,;Pover time. It can be seen from this plot that if the promoger i
free for a long enough period of time, then this produces &pedlesl expression. This is
particularly evident at approximatel§00 minutes.
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6.3.2 Intrinsic noise can explain variability in ES cell differentia-

tion

Our model produces some trajectories that either have adg#rat is unrealistically
long (> 400 minutes) or simply do not oscillate with non-negligialaplitude. We
shall label these trajectories as cells exhibiting ‘péesisexpression’ (PE) of Hes1.
For example, in Figure_6.5 we can observe 15 trajectoridimdainto this category.
In ES cells, as stated earlier, persistent high levels ofil ks indicative of cells that
would differentiate into mesodermal cells. Hence, our nhode yield predictions con-
cerning the differentiation response of ES cells. In paléig given a batch of ES cells,
itis possible to predict how many would differentiate intunal and mesodermal cells
at a specific time. We have illustrated this idea in the top 0bWigure[6.8. The green
vertical line indicates the time at which cells are transférto a neural differentiation
medium (900 minutes) with the copy number of Hes1 at this tiven beside the
line. Cells with high expression of Hes1 protein at this tweuld differentiate into
mesodermal cells while those displaying low expressioaltewould differentiate into
neurons. If we define high and low expression as the copy nub#eg greater than
or less than the mean respectively, then we suggest thaedfdjectories displayed
in Figure[6.3, cells 2, 4 and 5 would differentiate into mesmdhl cells and cells 1
and 3 would differentiate into neurons. Hence, by accognfiom intrinsic noise, our
simple model is able to reproduce the variability encowedexperimentally in ES cell

differentiation.

6.4 Parameter sweeps

Here we explore the parameter space of our model in a bid tatimanain sources

of stochasticity and variability exhibited in its trajeges. We achieve this mainly
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Figure 6.5: Plot showing the period of 100 different trajectories. Theripds were calcu-
lated using a Morlet continuous wavelet transform with gaais edge elimination. Baseline
parameter values are used, see column 4, Table 6.1.

through parameter sweeps. A parameter sweep is performéoldyng all param-
eter values at their baseline values (see column 4, Tab)e thdn varying a single
parameter over some finite range and recording one hundijedtories for each new
parameter set produced. For each trajectory recorded, mpute its mean period (as
in Figure[6.5) and visualise the output in a histogram. Wéoper parameter sweeps
for all parameters in the model and those figures that arexpiicély discussed here
are deferred to sectidn 11.2.3 of the Appendix. We discuss the two parameters
for which we do not have experimental measurements, narkebndk, as well as
two spatial parameter§) andr. Note that by only varying one parameter at a time,
we are neglecting most of the parameter space. A future stilbiywestigate the full

parameter space of our model using data clustering tecbsiqu

In general we found from the parameter sweeps that the maddupes broad dis-
tributions of periods whenever oscillatory dynamics arenfih. Provided the sweep
does not yield trajectories entirely exhibiting persistexpression of Hes1 then we

find great variety in the mean periods computed.
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Figure 6.6:[(a) Plot showing the total Hes1 protein copy humber over aqoeof 600 minutes
from a single trajectory of the Hes1 model, (b) Plots shgwvthe corresponding spatial
distributions of Hes1 protein. Baseline parameter valuesused, see column 4, Talhlel6.1.
The times for these spatial snapshots were chosen to comdsip the peaks and troughs of
oscillations in Hesl protein copy number showr il (a) aboVéese times are highlighted
by the red asterisks in_(g). [n_(b) blue voxels indicate regiof the cell which contain Hes1
protein.
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6.4.1 Hesl must bind to the promoter sufficiently fast for ositia-

tions to be observed

The rate at which Hes1 protein binds to the promoter regiothefhesl gene is an
important parameter in our model. It is responsible for tegative feedback Hesl
protein exhibits on its own mRNA production. We vagyover the rangé1.00x 107 —

1.00 x 10'% M~tmin~2, which is in line with experimental measurements of protein

DNA binding rates|(Tafvizi et all, 2011). The histogram d#sfing the mean periods

from the parameter sweep kf is displayed in Figure 617. The results are consistent
with intuition — if k; is too small, Hes1 protein is unlikely to bind to the promoter
site and so the majority of trajectories display PE. Expentalists have compared the
expression levels of wild-type Hesl1 and a functionally de¥e Hes1l mutant, which

is unable to bind to the N or E box DNA sequence, in hematojogoebgenitor cells.

The authors reported no repression of Hes1 when the mutagis levere monitored,

in contrast to the wild-type case (Yu et al., 2006). This isparable to low values of
ki1 in our model, which produce trajectories which mainly extylersistent expression
(i.e., no repression of Hes1 levels). Hence, using our magetan investigate both
mutant and wild-type Hes1 genes. If we &et= 0 then all trajectories are found to
display PE, with high values of protein. As is increased, we obtain a broad range of
periods, which appear to be quite robust to change prowgdedabove approximately

250%x 1BM " Imin—1,

The parameter value for which we have the least informatioour model isky, the
rate at which protein unbinds from the promoter site, makimggpromoter free again.
We varyks in the interval 01 — 1min~! and the histogram containing this parameter
sweep is displayed in Figure 6.8. For lower valuek0f0.01min 1 to 0.34min 1) we
can observe a broad range of periods, bukoais increased, we find more and more

trajectories displaying PE of Hes1. This can be interprbielbgically as the promoter
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Figure 6.7: Histogram plot showing the effect on the period of osciiai of changing the
parameter k, the rate of Hes1 protein binding to the promoter sit€ values of k from the
range 1.00 x 10’ M~ Imin~1 to 1.00 x 101°M~!min~—! were chosen, and00 trajectories for
each different value were recorded. All other parametetfémodel (see column 4, Tablel6.1)
were held constant. The mean periods were computed anckdiirtb ‘bins’ varying froni.00
mins to persistent expression (PE), i.e., greater thBAmins. For lower values ofik most of
the computed mean periods fall into the PE bin. Askncreased, less and less mean periods
are found in the PE bin. Provided, ks greater than approximatel2.50 x 1M —tmin~1, it
appears to be relatively robust to change, with broad rangfgseriods found.
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Figure 6.8: Histogram plot showing the effect on the period of osciiai of changing the
parameter k, the rate of Hesl protein unbinding from the promoter sit® values of k
from the range(0 — 1)min—! were chosen, andl00 trajectories for each different value were
recorded. All other parameters in the model (see column #JeT&.1) were held constant.
The mean periods were computed and divided into ‘bins’ waryiom 100 mins to persistent
expression (PE), i.e., greater tha®0 mins. Consistent with intuition and in contrast to the
case of k, for larger values of K, most of the computed mean periods fall into the PE bin.
As k is decreased, less and less mean periods are found in the ieERwovided k is less
than approximately.56 min1, it appears to be robust to change, with broad ranges of isrio
recorded.

site becoming free too quickly, which would prevent the riegdeedback from taking
effect. As in the case of parameteyr, if we setk, = 0 we find no oscillations in the

trajectories of our model. However, in contraskipwe find low protein levels.

6.4.2 Oscillatory dynamics are only found for sufficiently arge dif-

fusion coefficients

We found in chapteris|4 arid 5 that PDE models of Hes1 oscifiatéxhibited oscil-
latory dynamics for a finite range of values of the diffusiarefficient, i.e., if the

diffusion coefficient was too large or too small then ostiitlas ceased. We investigate
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a range of values for the diffusion coefficient in our modelorder to see if the same
properties are retained in our stochastic model (see Fi@@réor the corresponding
parameter sweep). Interestingly, in the context of obsgrascillatory dynamics, it
appears that D is bounded below, but not above. No matter amye lthe diffusion
coefficient is made, the model still yields oscillations.isTts likely to be a result of
the stochastic nature of our model. Even if the diffusionfib@ent is very large, it is
still not a certainty that the protein will find the gene sibmast instantly, which is the
case in the corresponding continuum model. However, if iffiesiion coefficient is too
small, then mRNA and protein will stay in the subdomain wtikey originated, which
is reflective of the continuum case. Overall, our spatiatisastic model is more robust
to changes in the diffusion coefficient than a continuum rhofi¢ghe same GRN. In
particular. oscillatory dynamics are observed for anyudiibn coefficient greater than

or equal toD = 5.00x 10~ *m?min—1.

6.4.3 Oscillatory behaviour is robust to changes in the pogson of

the promoter site if the diffusion coefficient is large enoud

It is known that some genes are located closer to the nucleanbrane than oth-

ers, which increases their sensitivity to transcriptiootdas (Cole and Lippincott-

Schwartz, 1995). Evidence of precisely where the Hesl gehecated within the

nucleus is lacking, and in any case this is likely to changenfcell to cell. Hence,
given the symmetry of our domain, we investigate the infleesfosarying the distance

r of the promoter site from the nuclear membrane for 3 diffedsfifusion coefficients
(see Figur€6.10 for the parameter sweeps). For a low valtheafiffusion coefficient
(D =1.00x 10~ “m?min—1), we find that the location of the promoter site strongly in-
fluences the oscillatory behaviour observed. Persistgmessgion of Hes1 is observed

when the promoter site is placed further away from the nuctemmbrane, and as the
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Figure 6.9: Histogram plot showing the effect on the period of oscitlasi of changing the pa-
rameter D, the diffusion coefficientl0 values of D from the rang&.50 x 10~ °m?min—1
to 1.00 x 10 1°m2min—1 were chosen, and 100 trajectories for each different val@sew
recorded. All other parameters in the model (see column #JeTB.1) were held constant.
The mean periods were computed and divided into ‘bins’ waryiom 100 mins to persistent
expression (PE), i.e., greater tha®0mins. For lower values of D, most of the computed mean
periods fall into the PE bin. As D is increased, less meangariare found in the PE bin.
Provided D is greater than approximate$/00 x 10~ *m?min—!, D appears to be robust to
change, with broad ranges of periods recorded.
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promoter site is moved closer to the nuclear membrane, waflirdader distribution
of periods. A slight dependence on promoter site locatiavbserved for the default
value of the diffusion coefficienD = 6.00 x 10~ ¥m?min—1. Here, if the promoter
site is too close to the nuclear membrane, more trajectexbibiting PE are found.
Finally, for larger diffusion coefficients, specifically = 1.00 x 10~ m?min~1, we

find a broad range of oscillatory dynamics which are robugrtonoter site location.

6.5 Controlling differentiation responses via drug treat-

ment

We explore here the influence of inhibiting the proteasonthercontext of our spatial
stochastic model in a similar manner to the previous two t#rap The proteasome
is a large proteolytic protein complex found in all eukargatells that is the primary
site for degradation of most intracellular proteins. Thetolytic activities of the pro-
teasome can be inhibited by the class of drugs known as gateainhibitors. It is
known that exposing fibroblast cells to proteasome inhibi{specifically 10QuM of
ALLN) results in increased levels of Hes1 protein and desgddevels of hes1 mRNA.

In particular, it was shown that hes1 mRNA levels peak 1 héter proteasome inhi-

bition treatment (Hirata et al., 2002). We reproduce thisezdnent using our model

by decreasingip by a factor of 100 and running our simulation for 240 minutse(
Figurel6.11). The model is able to reproduce the experimastitgtively, i.e., mMRNA
levels peak quickly then stabilise at a low number while @irotevels saturate at high
levels. We performed 100 simulations withy decreased by a factor 100 and found
that the average time for hesl mRNA levels to peak wa3@fninutes (shorter than

that of fibroblast cells and similar to the peak times we foforxdhe PDE models, see
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Figure 6.10: Histogram plots showing the effect on the period of osaile of changing
the parameter r, the distance of the promoter site from the#dear membrane for 3 different
values of D, the diffusion coefficient. The second histog[@} corresponds to the default
value for D, so in this case we only varied r, all other paraenstwere held constant (see
column 4, Tablg¢€l1). In the case[of](a), we chose a fastarsiliffi coefficient (D= 1.00 x
10~ m?min—1) and in(c) we chose a slower diffusion coefficient£0.00x 10~ *m?min~1).
For all 3 histograms displayed,0 values of r from the rangé0 — 3)um were chosen, anti00
trajectories for each different value were recorded. Theamperiods were computed and
divided into ‘bins’ varying from 150 mins to persistent eegsion (PE), i.e., greater tha400
mins. I (@) and (B) we see little variation in the mean pesiogcorded, suggesting r is robust
to change and not a sensitive parameter. Howevel, ih (c),nwthe diffusion coefficient is
slower, we find the position of the promoter site is imporfantdetermining the mean period
distribution. We find that with a slower diffusion coeffitighis possible to observe oscillatory
dynamics if the promoter site is located closer to the nualeambrane.
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Figure 6.11: A single trajectory from a proteasome inhibition numeriexiperiment. The
total numbers of hesl mRNA (red) and Hes1 protein (blue) el against time. Baseline
parameter values are used, with the exceptiopoivhich is reduced by a factdrO0,

Figured 4.1l and 5.16). We are not aware of proteasome figmk@xperiments per-
formed in ES cells, and so leave this result as a quantitptiediction of the model.
Using our model, we can also make the prediction that ES trelé&ged with protea-

some inhibitors are more likely to differentiate into mesodal cells.

Treating cells with cycloheximide inhibits the key proce$sranslation in cells. Ex-
periments have been performed in fibroblast cells to motéweels of hesl mMRNA

in response to this treatment. In the experiments a sustaicecase of hesl mMRNA

levels is reported (Hirata et 2002). We mimic this expent with our spatial

stochastic model by decreasing by a factor of 100 and running our simulation for
300 minutes. The results of this numerical experiment aogvehin Figured 6.IP (and
can be compared with Figures 4.13 and 5.18). Our model istalvproduce qualita-
tive behaviour, i.e., an increase in hesl mMRNA numbers ringef exact numbers, we
recorded the mean copy number of hesl mRNA produced by ouelnooder trans-
lation inhibition conditions and compared it with the wilgpe case (recording 100
means for each case then taking the average of the meansjrafkktion inhibition

experiment caused mean mRNA levels to increase from 50 t¢rh8&: than threefold
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Figure 6.12: A single trajectory from a translation inhibition numericaxperiment. The to-
tal numbers of hes1 mRNA (red) and Hes1 protein (blue) argguicagainst time. Baseline
parameter values are used with the exceptionptvhich is reduced by a factdrOQ,

increase). We leave this result as a quantitative predicifahe model. Furthermore,
we observe that protein levels are persistently low, sogusimr model we can make
the prediction that ES cells undergoing translation irtfobiwould be more likely to

differentiate into neuronal cells.

6.6 The influence of extrinsic noise: exploring model

dependence on initial conditions

In this section we present the results of an initial conditsensitivity analysis. We
choose ten different arbitrary initial conditions as staite Table[6.2. In Figure 6.13
the mean periods of 100 realisations for each differentainibndition is plotted in a
histogram. There are only small differences in the mearogdatistributions. Hence,
we conclude that our spatial stochastic model of the Hes1 @pfi¢ars to be robust to

changes in initial condition.
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Ps P, protein MRNA
ic1 |0,--/1,-,-|0,600,0 |0,0,0
c2 |1,-,-10,-,-/0,0,0 0,0, 60
Ic3 |0,--/1,-,-/0,0,0 0,0,0
ic4 |1,-,-/0,-,-|0,600,0 |O0,0,60
IC5 |0,--|1,--]| 0,600, 600 0, 60, 60
ICé6 |0,-,-|1,-,-/0,60,0 1,0,0
ic7v |1,-,-10,-,-/0,0,0 0,0,120
iIcg |0,-,-/1,-,-/1,0,0 1,0,0
ico |1,-,-/0,-,-/10,0,0 0,0,120
|IcCi0|0,--|1,-,-/0,60,60 |O0,120,120

Table 6.2: Table showing thd 0 different initial conditions used to test the model sewsiti
ity/robustness to different initial conditions. The valwee the initial number of free promoter,
occupied promoter and the copy number of proteins and mRNAeirpromoter, nucleus or
cytoplasm respectively.

N N W
o a S

i
o

cell count

10

period (min) 100 IC1

initial conditions

Figure 6.13: Histogram plot showing the effect on the mean period of lasich of using the
10different initial conditions defined in column 4, Tablel6The initial conditions were chosen
arbitrarily. The results of the plot show that the model ibuist to changes in initial condition.
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6.7 Discussion

ES cells are pluripotent stem cells with the ability to diffietiate into various cell types
belonging to all three germ layers: ectoderm, mesodermatod=rm. Application of
these differentiated cells is highly anticipated for regyative medicine, but ES cells
respond heterogeneously to different cues, resulting inxéune of various types of
differentiated cells. The basic mechanism governing swtbrbgeneity in the differ-
entiation of ES cells is not well understood but recent gisitiave suggested the cyclic

expression of Hes1 plays a role.

In this chapter, we have presented a spatial stochasticlrobdee Hes1l GRN that
yields results in close agreement with experimental studieanscriptional feedback
systems in eukaryotic cells are inherently stochastic patla and the work presented
here emphasises the need for mathematical models to acfmyuhis. With these
modelling assumptions, we were able to propose intrinsisenas the main driving

force for the heterogeneity observed in ES cell differdittraresponses.

In contrast to the PDE models of the Hes1 oscillator preskeimehe previous two
chapters, our spatial stochastic model is able to reprotheceariability in period and

amplitude of Hes1 oscillations observed in experiments. Wiee able to ask more

questions of our model than recent stochastic DDE modelgi(Bat al., 2006), as

well as being able to directly compare our numerical simaietwith bioluminescence
movies ofin vivo Hes1 expression. Additionally, our model does not rely onila H

function approximation to the negative feedback that Hesien exerts on its own

MRNA, the validity of which has been cast into doubt in regggdrs (Weiss, 2009).

Our model was able to produce the observed highly varialgeassion levels of Hes1
under a wide range of conditions. To this end, we presentéehsixe parameter

sweeps in which we varied a single parameter at a time aneémues (in histogram
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format) the mean period distributions. We focussed on patars for which we had
the least information and also spatial parameters suchedsd¢htion of the gene site
within the nucleus. We were also able to demonstrate thathmdel is robust to

changes in initial conditions.

Given the potential application for regenerative medicmehave also proposed meth-
ods of controlling differentiation responses via drug tmeent. Our model has pre-
dicted that applying proteasome inhibitors to an ES cella¢tgield a mesodermal cell
while applying translation inhibitors could yield a neuabeell. Our model was also
able to reproduce experimental results in which hesl temesgwere introduced to

hematopoietic progenitor cell which encoded a mutant Hestejm lacking the DNA-

binding domaini(Yu et al., 2006).
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Chapter 7

The p53-Mdm2 gene regulatory

network

7.1 Introduction

We begin this chapter by reviewing the background biologshefp53-Mdm2 GRN.

We go on to discuss some recent experimental data that hagesne this area as
well as reviewing mathematical modelling efforts. As in tase of the Hesl GRN,
we are able to demonstrate that using a strictly temporabagp can have limitations

in modelling the p53-Mdm2 GRN.

7.2 Biological background

The pleiotropic p53 tumour suppressor protein is a webldgigghed regulator of the

cell cycle (Levine| 1997). In response to a variety of celtudtresses, such as DNA
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damage, ribosome biogenesis defects, oncogene activhtipoxia and chemothera-
peutic drugs, p53 is activated and induces a range of respansluding cell cycle

es, 2009;

arrest, senescence or apoptosis (programmed cell d

|

Vogelstein et al!, 2000). The central role of p53 as a cellecy@gulator is highlighted

in human cancers. Mutations that inactivate p53 functiorehzeen detected in more

than 50% of human cancers (Bennet et al., 1999). Importaawin tumours with wild

type p53 have defects in upstream regulators or downstréfastas of p53. There-

fore, inactivation of the p53 GRN is a common event in can@etbpment (Zilfou

and Lowe| 2009; Toledo and Wahl, 2006).

In normal unstressed conditions, the levels and activitgG# remain low, but in re-
sponse to cellular stress, p53 levels are increased and&pgthway is activated. A
vital negative regulator of p53 function in cells is the Mdor®ogene product. Mdm2
suppresses p53 function by at least two mechanisms. Fikétlgn2 interacts with the
transactivation domain of p53 in the N-terminus inhibitpis transcriptional activity
and secondly, Mdm2 acts as a ubiquitin E3-ligase, promaibyubiquitination and

proteasomal degradation. Mdm2 is also a target gene for pai8.creates a negative
(;;ut;; i ll.,

feedback loop which provides tight regulation of p53 fuaitin cells

2009; Carter and Vousden, 2009). This negative feedbagkikbdepicted schemati-
cally in Figure[Z1.

p53 — Mdm2m

N/

Mdm?2

Figure 7.1: Schematic diagram of the p53-Mdm2 gene regulatory netwpB8 mRNA pro-
duces p53 protein, which then upregulates Mdm2 mRNA (stat&ddm?2m?” in the schematic)
expression. Mdmz2 then enhances degradation of p53 (thrthegprocess of ubiquitination).

The importance of the p53-Mdm2 negative feedback loop watdiemonstrated in
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mouse animal model systems where deletion of Mdm2 causedyemnib lethality

that was rescued by concomitant p53 deletion (Jone ;e Oca Luna et al.,

1995). Mdm2 is overexpressed in tumours with wild type p5&fion, which could

account for suppression of p53 function (Toledo and Wahdg2®larine and Jochem-

sen, 2003). It has also been observed that Mdm2 proteirslevamatically decrease

within the first 5 minutes after DNA damage, which allows fbe taccumulation of

p53 (Stommel and Wahl, 2004). Therefore, a key activity oin&dn cells is to sup-
press p53 function. Given the importance of p53 in contnglitell cycle and tumour
development, it is not surprising that the p53-Mdm?2 fee#baap is very tightly con-

trolled in cells. The spatial localisation of p53 is alsaical to maintaining cellular
homeostasis. It is known that mislocalisation of p53, dpeily cytoplasmic seques-

tration, is found in various tumour types, such as colote@etacinoma, undifferentiated

neuroblastoma and breast carcinoma (O’Brate and Giano ).

Experimental data have revealed that in response to gamadigtion, p53 and Mdm2

concentrations exhibit oscillatory dynamics, both spigtend temporally (Geva-Zatorsky

et al./ 20086, 2010). It was found that isogenic cells in theesanvironment behaved in

highly variable ways following DNA damaging gamma irradbat In some cells more

than 10 peaks in p53 and Mdm2 levels were observed, whileharstiow-frequency

fluctuations that did not resemble oscillations were foi&eMa-Zatorskv et al., 2006).

These results have been confirmedityivo experiments (Hamstra etigl., 2006) but

the precise function of these oscillations is still undeestigation|/(Zhang et al., 2007,

Batchelor et al!, 2009).
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7.3 Mathematical modelling of the p53-Mdm2 gene reg-

ulatory network

7.3.1 Literature review

Mathematical models of the p53-Mdm2 system have taken atyawsf forms. One of

the earliest models was thatlof Bar-Or et al. (2000), whickuitled an unknown inter-

mediary component to the system representing the delaygdesis of Mdm2 by p53

(despite extensive research into p53-Mdmz2 interactiomspieh intermediary has been

identified to date). In the experimental paper of Geva-Zkipet al. [(2006), six tem-
poral models were presented which could explain the osmilfadynamic observed.
The first of these models contained the basic structure g@iBeMdm2 negative feed-
back loop and failed to reproduce the oscillatory dynamiee flest relied on delays or
the introduction of nonlinearities to produce the obsermvsdillatory dynamic. Other

authors have chosen different approaches, such as comlpaositive feedback loops

with negative feedback loops in ODE metapopulation-likedeis (Ciliberto et al.,

2005;/ Zhang et all, 2007). These models were the first to makemportant dis-

tinction between nuclear and cytoplasmic concentratiddsme models have taken

stochastic effects into account (Puszynski et al m_&[avﬂ)_& QOuat-

tara et al., 2010) while others have used time delays (Tiaag, 21 Monk, 2003;

,.2006; Ma et 5; Batchelor et al., 20083 manner similar to that

discussed for the Hes1 GRN previously. A stochastic boohedwork approach was

formulated and applied to the p53-Mdm2 GRNLin Liang and/H&1#). The main

advantage of this approach is the cheap computational abgtrbay lack the predic-

tive power of other approaches. An attempt was made to mbdedpatial aspect of

the system in_Gordon et lal. (2009), where an extra speciesad@sd to account for

112



a time delay. A spatio-temporal model of the p53-Mdm2 GRN vexently devel-

oped in_Sturrock et al. (2011) and extensions were presemiguirrock 1.(2012)

(from which the contents of the next two chapters are taklémgn more recently, an-
other spatio-temporal model of the p53-Mdm2 GRN appeard¢hlariiterature which
took into account more biology (specifically, post-tratisiaal modifications and uni-

directional nuclear transport) and yielded oscillatorynamics for larger ranges of

spatial parameters (Dimitrio etlal., 2013).

7.3.2 Ordinary differential equation model

Let us denote concentrations of p53, Mdm2 mRNA and MdmBg|, [Mdm2m| and
[Mdm2] respectively. One possible way of translating the react@ematic presented

in Figure[7.1 into an ODE model is as follows:

dPS3 _ g |y | Mdme P53, (7.D)
dt Mdm2 " + [Mdm2]h

dMdmem] Ah[p53]h2 — g[Mdrem, (7.2)
dt P53~ -+ [p53he

% — y[Mdnen] — pMdne], (7.3)

where, u, v, hy, m, a, hy, HFE% @, ¥, andp are (strictly) positive constants.
The ODE describing p53 is composed of a production tgtrfollowed by a natural
degradation term of ratg, and finally a degradation term which is a bounded mono-
tonically increasing function of Mdm2, with parameterHill coefficienth; and acti-

vation thresholddn2. The second ODE, modelling Mdm2 mRNA, has a production
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term with basal ratex, followed by an enhanced production term dependent on the
amount of p53 (taking the form of a Hill-like function), witaten, Hill coefficienthy,

and critical concentratiop/S\s, modelling the activity of p53 as a transcription factor,
and finally a natural degradation term of rgte The final ODE is for Mdm2 protein,
which simply has a production term dependent on the amouvitiofi2 mRNA, ratey,

and a natural degradation term, rateAfter performing a large number of numerical
simulations under a wide range of parameter sets we werebh®t@find sustained
oscillatory dynamics for equations (¥.1)[=(7.3). For thistem, we are not able to

apply the classical Dulac’s criterion to prove the non-&xise of periodic solutions.

Instead we adopt the approach outlined. i e [(1993), which

was first demonstrated [n_Busenberg and Driessche (1990 approach extends
Dulac’s criterion to systems iR3. For a full account of Busenberg’s criterion, see
AppendixXI1.3.11. We now apply this criterion to the systenegdiations[(7]1) £(713)

in order to prove that oscillatory dynamics can not exist.

Proof. Let 7 be an invariant region of the phase space angllg53, Mdn2m, Mdm2) =
[01(p53,Mdm2m, MdnR2), go( p53, Mdn2m, Mdn®), g3(p53, Mdm2m, Mdn2)| be a vec-

tor field which is piecewise smooth an which satisfies the conditions
g-f=0and(0xg)-(1,1,1)<00onZ2°=2—-09,

wheredZ is the boundary of7, and wherd = (fq, fp, f3) is a Lipschitz continuous

field on 2°. Then the differential equation systeff>d — f;, AMITM _ £, and

at
d[MdtirTQ] = f3, has no periodic solutions .
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Let fy, fp, f3 denote the right hand side 6f (V.1), (7.2), dndl(7.3) respeyti.e.,

hy
W= B- u+v(/\[Tﬂdm2] ) P53,
Mdn2 * -+ [Mdme]h

532
fo = a+n /\rEzp ] — @Mdm2m,
P53~ + [p53|h

f3 = y[Mdm2m| — p[Mdn2].

Let g take the following form:

_ 1
gl - f17
1
_ 1
O3 = 2ty

Clearly,g-f = 0 on 2°, and some symbolic calculations yield the expression:

y
2 (yMdmem| — p Mdne])”

_—h
v[Mdnme)mhyMdn2 " [p53

(Ox0)-(1,11) = -

2
Mdre] ((—[3 4 (P53 + [p53) Mdne)"™ + Mdm2 ™ (—B + [p53]u)>

N [p53*h,p53 °

2
2[p53 ((—a + @[Mdnem] — ) [p53" + 53" (—a + rp[MdmZm])>

<0,

which is negative or®°. Therefore by Corollary 1 (shown in Appendix 11]3.1), there

are no periodic solutions iZ®. The invariance of the regiof is easily obtain by
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noting that the field given by the right hand side df (7.1) E(I7.3), when evaluated o

the boundary 2 of &, never points towards the exterior &f. O

Hence, although the ODE model seems to account for the ipof¢atures of the
negative feedback loop (Mdm2 enhances degradation of g&8ynable to reproduce

the observed oscillatory dynamics.

7.3.3 Delay differential equation model

As in the case of the Hes1 ordinary differential equatiortesyg Monk (2003) added
a delay (represented hy to equations[(7]11) £(71.3) in order to account for transport

transcription and translation, yielding the following s3r® of DDES:

dipsy - _ B—|u+v /\[Tdmz]hl [p53], (7.4)
dt Mdm2 " + [Mdng)h:

A g | PO ) ganem, 25)
dt P53 " +[p53(t —1)|™

d['\"d‘imz] —  y[Mdn2m| — p[Mdn2]. (7.6)

Numerical simulations of systein (¥.4)[=(7.6) produce testtiins (Monk/| 2003), but

do not distinguish between events taking place in the ngcéd cytoplasm. The
grouping of many processes into one delay term also limgsitiimber of questions
that can be asked of the model. Given the success we had witbllng the relatively

simple Hes1 GRN, we now adopt a partial differential equaéipproach to modelling

the more complex p53-Mdm2 GRN.
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Chapter 8

A reaction-diffusion model of the

pP53-Mdm2 gene regulatory network

8.1 Introduction

In this chapter, we develop and study a novel spatio-tenhpowdel of the p53-Mdm?2
GRN. In a similar manner to chapter 4 we advance previous edgeaccounting
for space, the basic structure of the eukaryotic cell (aegugland cytoplasm) and
diffusion of intracellular molecules. By accounting foree fundamental features
of the eukaryotic cell, we are able to reproduce the osoijatlynamics observed in

experiments without the introduction of delays or addiiloinknown species.

8.2 Reaction-diffusion model formulation

In our formulation of a PDE model of the p53-Mdm2 GRN, we firstdify the sys-
tem of equations presented in equatidnsl(7.1) 4 (7.3) tadechn additional species,
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Figure 8.1: Detailed schematic diagram of the p53-Mdm2 GRN. p53 mRNAuges p53
protein, which then upregulates Mdm2 mRNA expression. Mber2enhances degradation of
p53 (through ubiquitination) and inhibits the transcrigti of Mdm2 mRNA.

namely, p53 mRNA. This allows for the accurate modelling 8 pranslation in the
cytoplasm. We also account for inhibition of p53 transaeoipal activity by Mdm2;
which means our model now accounts for the two main mechanigmp53 repression

by Mdm2 (Thut et al., 1997). However, we wish to stress thitignot necessary to

produce oscillatory dynamics. Indeed, by simply addindudibn and appropriately
compartmentalising the ODE system defined by equatlonk 7(Z.3) we can repro-
duce the oscillatory dynamics observed in the p53-Mdm2 ex@atal data. In fact,

this model was presented and explored in Sturrock e (Here we present the

model developed in_Sturrock et/al. (2012) which is displagedematically in Fig-
ure[8.1.

We use the variablel53m|, [p53], [Mdm2m|, and[Mdn®2] to represent the concen-
trations of, respectively, p53 mRNA, p53 protein, Mdm2 mRNAd Mdm2 protein.
In keeping with the notation used for the Hes1 GRN models bs&iptn denotes a

nuclear concentration and a subscajienotes a cytoplasmic concentration.

As we did for the Hes1 model, we assume all species are subjddtusion, mRNA
is produced only in the nucleus, and protein is produced ontize cytoplasm. Dif-

fusion coefficients are denoted in a similar manner to thelkgstem: a subscript
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indicates the localisation of the species, witlor ¢ denoting a nuclear or cytoplas-
mic concentration and a subsubscript 1, 2, 3 or 4 referrimgh®mMRNA, p53, Mdm2
MRNA, or Mdm2 respectively. We assume all species are sutgjéioear decay, with
parameterg, u andp denoting mMRNA decay, p53 protein decay, and Mdm2 protein
decay respectively. In addition, we assume p53 undergoeaMikpendent degra-
dation in both the nucleus and cytoplasm. This is consistétht experimental data

which shows that co-compartmentalisation of p53 and Mdrs@lte in Mdm2 depen-

dent degradation of p53 (Xirodimas et al., 2001). We assurmaethis degradation

term is equal to a linear decay term with parametescaled by a bounded monoton-
ically increasing function of Mdm2 protein concentratioritwHill coefficienth; and
activation threshol®drr2. We make the assumption that p53 mRNA is produced at a
constant rat&€ and Mdm2 mRNA is produced at a constant rateFurthermore, we
assume Mdm2 mRNA undergoes nuclear p53 dependent prod{tdiang the form

of a Hill-like function), with raten, Hill coefficienth,, and critical concentratioﬁ?f%.

This enhanced production term is also assumed to decreaselasr Mdm2 protein

levels increase, with paramet@r This assumption takes into account the fact that

Mdm2 protein inhibits the transcriptional activity of p5BHhut et al.) 1997). Finally,

we assume protein production occurs a small distance eutsa& nucleus (as in the
case of the Hes1l model) and is dependent on the relevant rdoaiten of mMRNA,

occurring at ratg8 for p53 protein and/ for Mdm2 protein.
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The complete system of equations is given by:

OSSN _ by, 253 + — plpsam) (8.1)
PO _ b, Pfpsamy - gipsamd| 82)
d[%‘:t’&] = D, [?[p53] + H(x,y) B[p53my]
hy
- u+v(/\[“h”1dm2d ) P53, 83
Mdn2 * + [Mdn2 ]
h
5] b, 253 — [ v | e [PS3], (8.4)
ot Mdm2 " + [Mdr2,]™
oMdmem,] 2 P53,
— g[Mdmenmy), (8.5)
% — D¢, 02Mdnem] — gMdmemy), (8.6)
oM [M;'tmz‘?] = Dc,02[Mdm2c] + H(x,y)y[Mdnm2me] — p[Mdn], (8.7)
% = Dp,02Mdn2, — p[Mdn2,), (8.8)

whereH (x,y) is the function controlling cytoplasmic protein productio ribosomes

defined in equation 4.5.

We apply zero initial conditions, zero-flux boundary corais at the cell membrane,
and continuity of flux boundary conditions across the nuale@ambrane:

(P53 = [P53My] = [p53,] = [P53] = [Mdm2m,] = [Mdn2me] = [Mdn2,] = [Mdm2g =0 at t=0,
(8.9)
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Dnld[pgrf?nh] = qu[p::mc] and [p53my] = [p53m| at nuclear membrane (8.10)
D@% = Dczd[gi‘%] and [p53,] = [p53;] at nuclear membrane (8.11)
Dnsa[M(yr:Qw] = D¢, 7&[M({19r:2mc] and [Mdm2m,] = [Mdnm2m] at nuclear membrane
(8.12)
DHAW = DMW and [Mdn2,] = [Mdn2¢] at nuclear membrane (8.13)
% = 0 atcellmembrane (8.14)
% = 0 atcellmembrane (8.15)
% = 0 atcellmembrane (8.16)
% = 0 atcellmembrane (8.17)

As the p53 pathway is known to play a role in the developmeost#osarcomas (Diller

et al.,[1990), we choose the imported shape of an osteosarcelinshown in Fig-

ure[5.I3 as our domain. Our objective is to study sustainedlaisry dynamics,
so we must find non-dimensional parameter values such thianhodel yields such
dynamics. Nearly all of the parameters in our new modified @h@de contained

(2

Sturrock et/ al

in the original p53-Mdm2 model i 11), aihihas already been
studied in the context of oscillations. Hence, for theseapeaters, we choose the
non-dimensional values used for the original model, whiehstiated in equation (60)

S_ILLLLO_QK_el_a‘l. (20

found appropriate values by a simulation study. From ourdiomensional parameter

in

1). The remaining parameterséaeand 6, for which we have

values, we have calculated dimensional values and thestadeel in the third column
of Table[8.1. Details regarding non-dimensionalisatiod tre calculation of dimen-
sional parameter values can be found in Appehdix111.3.2nAsctio 4.3, all nuclear
and cytoplasmic diffusion coefficients are made equal th @tlcer, and we retain the
notationD;; to indicate diffusion of speciegmRNA or protein) in locatiorj (nucleus

or cytoplasm).
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Figure 8.2: Plots of the total concentrations of p53 mRNA (black), p38g}) Mdm2 mRNA
(green), and Mdm2 (red) in (a) the nucleus and (b) the cywmplgfor the p53-Mdm2 reaction-
diffusion model. The period of oscillation is approximgt2lL5 minutes. Parameter values as
per column 2, Table 8 1.

8.3 Numerical simulation results

We present here the numerical solutions of the PDE systemedilfiy equation§ (8.1) —
(8.8) subject to condition$ (8.9) £(8117) and parametarmfthe third column of
Table[8.1. Figuré 812 shows the total concentrations of pB\dm2 in the nucleus

and cytoplasm.

As in the case of numerical simulations of our Hes1 GRN reaetiiffusion model,
we find that our spatio-temporal model of the p53-Mdm?2 GRNdgesustained oscil-
latory dynamics. In addition, the period of oscillationslie the 3 to 7 hour range of

experimentally measured periods (Bar-Or et al 73_0_0;_€ealaLskLe_t_a‘I 2006). We

note that p53 MRNA levels reach a steady state because theptinvolved directly

in a negative feedback loop. These total concentratiors peaeal that the mRNA con-
centration (for both p53 and Mdmz2) is higher in the nucleusjgared to the protein
concentrations and vice versa for the cytoplasmic comgartnor the particular pa-
rameter set we chose (see column 3, Table 8.1) we find largaitade oscillations for

p53 protein rather than Mdm2 protein — this is a phenomendnnoonsistent with
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time course data for some cells presentediuﬁ_amm 010). We present

plots in Figurd 8.8 of how the dynamics of the p53-Mdm2 sysésaive in space as

well as time.

The spatial snapshots of Figure8.3 can readily be comparttdtime-lapse mi-

croscopy images of individual cells with p53 and Mdm2 pnaesdiuorescently tagged

(for example, a comparison can be made with Figure' 1 of 3 [..(2010).
In Figure[8.3h, we see that p53 has accumulated in the cgtopdét = 300 minutes.
p53 then begins to diffuse across the nuclear boundary aedtbe nucleus dt= 360

minutes. The presence of p53 in the nucleus upregulatexghession of Mdm2 (via
Mdm2 mRNA) which results in enhanced decay of p53 (see420 minutes). By
t = 540 minutes, the p53 concentration begins to increase againg a period of

oscillation of approximately 3 hours.

Figure[8.3b shows the plots of Mdm2 protein concentratioer dime. Notice that
Mdm2 appears in abundance at 420 minutes, 60 minutes after p53 appears in abun-
dance, reflecting the time for Mdm2 mRNA production, expooti the nucleus and
translation in the cytoplasm. The presence of Mdm2 in theazelses the enhance-
ment of p53 degradation which in turn causes the down-régulaf Mdm2 expres-
sion. This is shown dt= 540 minutes where Mdm?2 levels have depleted considerably.
The negative feedback Mdm2 exerts on p53 is made clear ie Syial plots by the

fact that wherever Mdm2 levels are high in the cell, p53 Ieae€ low and vice versa.

8.4 Parameter values

We have found ranges of values for all of the parameters inreaction-diffusion
model of the p53-Mdm2 GRN such that it exhibits sustainedllasary dynamics,

where (as in sectidn4.3) we define such dynamics as at leastrictipeaks in the total

123



t =240 t = 300 t= 360

W

t= 540

t =360

t= 540

10
8
6
4
2

(b) Mdm2

Figure 8.3: Plots showing the spatio-temporal evolution of (a) p53 dndMdmz2 within the
osteosarcoma cell domain from times 240to t = 540 minutes a0 minute intervals for the
reaction-diffusion p53-Mdm2 model. The concentratiortsteioscillatory dynamics in both
time and space. Parameter values as per column 3, Table 8.1.
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concentration of the transcription factor (in this case3)ph the nucleus. Choosing

this criteria rules out any heavily damped oscillatory sols of our model but does

not ignore solutions exhibiting sustained oscillatory @yncs. These ranges are given

in the fourth column in Table 8.1. To find the range for eaclapwater, we varied it

whilst holding all the other parameters fixed at their ‘défaralues, the dimensional

versions of which are stated in the third column of Tablé 8.1.

Parameter| Description Value in simulations | Range over which oscillations are observed
Dj; Diffusion coefficient of speciesin | 3.00x 10-*cnPs~t | 1.00x 10~ MemPs 1 to 1.67x 10 8cmPs !
compartment
4 Basal rate of p53 mRNA transcrip} 2.92x 10-10Ms~1 >5.83x 10 1Mst
tion
1) Degradation rate of mMRNA 5.83x 10 4s7! 1.00x 10 %s 110 1.10x 10 3s7 1
B Translation rate of p53 0.33s? >513x102%s!
u Degradation rate of p53 1.00x 10 4s1 <4.33x10 %71
v Mdm2 dependent degradation ¢f3.33x 102571 1.67x103s1t0333s?!
p53
hy Hill coefficient for Mdm2 depen-| 2 >1
dent degradation of p53
Mdrm2 Activation threshold for Mdm2 de{ 3.20x 10-°M 320x 1085 1t0210x 107 4s1
pendent degradation of p53
a Basal rate of Mdm2 mRNA tran{ 2.92x 10~ Ms1 < 225x 10 19Mms1
scription
n Maximal p53 dependent transcrig- 1.67 x 10-%Ms~! >2.08x 10 10Mms~1
tion of Mdm2 mRNA
hy Hill coefficient for p53 dependent 4 >1
transcription
P53 Threshold parameter of p53 2.50% 10 M <1.65x10°°M
6 Mdmz2 inhibition of p53 transcrip-| 4.00 >1560x% 1073
tion
y Translation rate of Mdm2 0.67s 1 >0.10s!
P Degradation rate of Mdm2 8.33x 10 %s1 1.33x10%s 110 7.00x 103571
| Minimum radial distance of transla; 6.32um 3.46um to 927um
tion from centre of nucleus

Table 8.1: Description of parameters in the p53-Mdm2 reaction-diinsmodel defined in

sectior 8.1, values used in simulations, and ranges oveshwhistained oscillatory dynamics
are observed.

The p53-Mdm2 model permits oscillatory dynamics for a widege of diffusion co-
efficients, which include the experimentally measured WWAMa&udaﬂJal. (2008)
Seksek et

an (1997). Only two of the parameters in Talllé@/e been measured

X

experimentally, namely the degradation ratef p53 protein and the degradation rate

(19

Finl

p of Mdm2 protein. According t 3), these degramatates are approx-
imately 385x 10~4s~! for both p53 and Mdm2. This value lies within the ranges

calculated which produce oscillatory dynamics (see TableeBtries foru and p).
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Assuming that the decay rates of p53 mMRNA and Mdm2 mRNA areoghly the

same order as the decay rate of hes1 mRNA, which has beeragsdiexperimentally

at 483 x 10 *s™1 (Hirata et al.) 2002), then the range presented¢fas in agree-

ment with experimentally measured values. To calculatevéihge and range for the
parametet, defined in Tabl€ 8]1 as the minimum radial distance of tedimsi from
the centre of the nucleus, we took the centre of the nuclele tthe origin in the
non-dimensional domain in Figure 5]13. Interestingly, we fihat protein translation
must begin a small distance from the nuclear membrane ferctige. Our ranges of

values for the remaining parameters in Tdblé 8.1 are camistith the values found

in the modelling literature, where analogous parametass @roctor and Gray, 2008;

Ciliberto et al.| 2005; Puszynski et al., 2008; Geva-Zskwet al.| 2006).

8.5 Proteasome inhibition numerical experiment

In this section, we consider the implications of treating p&3-Mdm2 GRN with pro-

teasome inhibitors. It is known that exposing cells to paetane inhibitors results in

increased levels of p53 and Mdmz2. In particular, it was sh i . (1996)

that gamma-irradiated cells treated with the proteasomibitor MG115 caused in-

creased expression of p53. More recently, experimentsuzed by Xirodimas et al.

2001) revealed that by treating cells with proteasomebidri MG132, both p53 and

Mdm2 levels increased. Furthermore, both proteins loedlis the nucleus. To model
this effect, we decrease the protein degradation parasyeter, andp by a factor
A, which we will refer to as thénhibition factor. All other parameter values used for
the simulations are as detailed in column 3, Tablé 8.1, butlwiee u, v, andp by

A = 300 so that their values become:
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p=333x10""st v=111x10%1 p=278x10"51. (8.18)

In Figure[8.4 we can see how the decrease in protein degoadadrameters has af-
fected the total concentrations of the variables in our pkBn2 GRN model. The
numerical solutions no longer display oscillatory dynasniaut instead Mdm?2 levels
increase monotonically and p53 levels appear to saturatesach a steady state. The
total concentrations quickly exceed the levels in FiguBvhere the proteasome was
not inhibited. Both p53 and Mdm2 appear in larger quantitieghe cytoplasm as
opposed to the nucleus. Mdm2 mRNA levels remain low in spitancreased lev-
els of p53 as a result of Mdm2 protein directly inhibiting pB&nscriptional activity.

Unsurprisingly, p53 mRNA levels are unaffected by this nuos experiment.

The spatial plots presented in Figlre]8.5 show the spatstfillitions of p53 and
Mdm2 concentrations &= 1500 minutes. Mdm2 concentrations are distributed evenly
throughout the cell by this time and p53 concentrations@rated mainly in the cyto-
plasm (where they are originally created). Although Mdm@etedent degradation of
p53 is decreased, it is not zero, so p53 is more likely to bedauhere it is initially
made (i.e., the cytoplasm). Hence, our model was not ablepgmduce the observed
experimental phenomenon of p53 and Mdm?2 localising in thedeus. This implies
our modelling assumptions are in some way flawed or not falitiof the underlying

biology.

8.6 Discussion

The p53-Mdm2 GRN is known to have a central role in the resparighe cell to

cytotoxic or radiotoxic insults resulting in DNA damage. eTtocalisation of p53 is

127



1] S S asis

BOF oo e

scaled concentration
scaled concentration

ok N [ 20 o

G0 500 1000 1500 C’0 500 1000 1500
time (min) time (min)
(a) nuclear compartment (b) cytoplasmic compartment

Figure 8.4: Plots of the total concentrations of p53 mRNA (black), p38g}) Mdm2 mRNA
(green) and Mdm2 (red) in (a) the nucleus and (b) the cytoplder the p53-Mdm2 reaction-
diffusion model. Parameter values as per column 3, Tableth the exception of parameters
u, v, and p which are specified in equatiof@.18) The total concentrations of Mdm2 con-
tinue to increase over thE500minute time interval and accumulate mainly in the cytoplasm
compartment, whereas p53 levels saturate aftera50 minutes, accumulating mainly in the
cytoplasmic compartment.
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Figure 8.5: Plots showing the spatial distribution of (a) p53 and (b) Mtiwithin the osteosar-
coma cell domain of Figufe 5.1.3 at time-t1500minutes, for the p53-Mdm2 reaction-diffusion
model. The concentrations of p53 are localised mainly indyi@plasm whereas Mdm2 is
almost homogeneously distributed throughout the cell. aReater values as per column 3,
Table[8.1, with the exception of parametgrsv, andp which are specified in equatid@.18)
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very important for maintaining cellular homeostasis and known to be mislocalised

in many forms of human cancer (for a complete list, see Tabte@Brate and Gi-

annakakou (2003) and references therein). Furthermodehing p53 translocation to

the nucleus alters the transcriptome of the cell and cartgto carcinogenesis (Vous-

den and Prives, 2009). Hence a spatio-temporal model of3BeMdm2 GRN could

shed light on processes that have clinical significance.

In this chapter, we have presented a reaction-diffusionehafithe p53-Mdm2 GRN.
It is known that p53 and Mdm2 concentrations can exhibit aadyical, oscillatory re-

sponse to gamma irradiation at the single cell level. Ourenigal simulations reflect

experimental findings botin vitro (Hirata et al., 2002; Geva-Zatorsky et al., 2006) and

in vivo (Hamstra et &ll, 2006) and mark a conceptual advance in thielimg of in-

tracellular processes. Furthermore, our period of os$iitg3.6 hours) fell within the

3 to 7 hour range measured in experiments (Bar-Or et al. ;2 - l.,

2006). Additional complexities of post-transcriptionaRIMA and post-translational

protein modifications, while not explicitly incorporateatdé the model, occur within
the timescales modelled and do not fundamentally changeeifijgence or timing of

events.

Where possible, parameter values were taken from expetain@easurements, oth-
erwise they were chosen to be in agreement with other recedeling efforts. As
in the case of the Hes1 GRN, we demonstrated that the modabustto changes in

parameter values (when varying one parameter at a time).

Our proteasome inhibition numerical experiment highleghén inconsistency between
our numerical simulations and real biological data. In ddgcal experiment, treat-

ment of a cell with proteasome inhibitor MG132 resulted ithga53 and Mdm2 pro-

teins localising in the nucleus Xirodimas et al. (2001). ldwer, our numerical exper-

iment predicted p53 to localise mainly in the cytoplasm ardii2 to distribute itself
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almost evenly throughout the cell. This led us to rethink madelling assumptions
and the next chapter contains a modified model of the p53-M@RIX that extends the
one presented in this chapter and rectifies the inconsisfenad in the proteasome

inhibition experiment.
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Chapter 9

The influence of the nuclear
membrane and active transport on the

pP53-Mdm2 gene regulatory network

9.1 Introduction

In this chapter we consider extensions to the p53-Mdm2 ieadiffusion model pre-
sented in chaptér 8. The extensions we consider can only e maan explicitly

spatial setting and provide insight into the way p53 is tpamted into the nucleus.

9.2 Extended p53-Mdm2 model formulation

We now extend the p53-Mdm2 model defined in sedfioh 8.1 taidech nuclear mem-
brane and active transport. The importance of modellingittidear membrane explic-

itly has been made clear in sectlon|5.2 but, in terms of theM8612 GRN specifically,
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it is worth noting that p53 nucleocytoplasmic transportnswn to be tightly regulated

and that disruption to this transport can play a role in tugesresis/(Ryan et al., 2001).

We define the explicit nuclear membrane boundary conditiossimilar manner to
the Hes1 model in sectidn 5.2. Thus, recalling our notatiomfsectiori 8]1 thaﬁ)ij
indicates diffusion of speciegmRNA or protein) in locatiorj (nucleus or cytoplasm),
and still assuming thdd;; is constant (independent band j), we define mRNA and
protein diffusion coefficients in the nuclear membrane aspectivelyDmy, = Dj; /5
and Dy, = Dj, /15 to reflect slow mRNA diffusion across the nuclear membiame
even slower protein diffusion, and we replace boundary itmms (8.10) —[(8.113) with
boundary conditions appropriate for a permeable thin bagnthyer of thicknessl

defined by:

0[p53my] Dm([p53my] — [p53m¢])

D, 215 _ d , (9.1)
Dq@ ~ Dm([p53rfb(]j—[p53”h]), 9.2)
nza[gisn] _ Dp([p53ﬂ(]j_[p530])7 (9.3)
DC20[S?,3°] _ Dp([p53clj—[p53n]), (9.4)
Dm% ~ Dm([ManrThc]j—[Md”Q”b]), (9.5)
D%% ~ Dm([MdnﬂﬁhL—[Md”QWh]), (9.6)
me _ Dp([MdmZn(]j—[Md”Qc])7 9.7)
me _ Dp([MdchL—[Mdn’Qn]). 9.8)

In terms of active transport, it is known that p53 is shutti®dards the nucleus along

microtubules|(O’Brate and Giannakakou, 2003; Lomakin andé¢hdina, 2010). Al-

though there is no direct evidence for Mdm2 transport alomgratubules, there is

evidence to suggest that Mdm2 can be actively transportédtetaucleus (Mayo and
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Donner, 2001). Therefore, as we did in seclion 5.2 for thelhiesdel, we shall include

convection terms in the cytoplasmic protein equations tmaot for active transport,

which changes equatioris (8.3) ahd18.7) to the following:

d[%?gc] = D¢, 0%[p53] — O- (a[p53]) + H(x,y)B[p53m]
hy
. ,J+v(/\[“h’jdm2°] ) P53 (9:9)
Mdn2 "~ + [Mdme ]
% — D, D2 Mdn2g] — O+ (a[Mdmg]) + H (x, y)yiMdm2m]

—p[Mdn2g], (9.10)

where the convective velociy is defined as in equatiof (5.6) and is plotted in Fig-
ure[5.1. As we did for the extended Hes1 model, we assumedhgection does not
occur in the region between the MTOC and the nuclear memliftheerange region

in Figure[5.2). Hence, in this region, equations](8.3) and)(@pply.

9.3 Numerical simulation results

We performed simulations of the extended p53-Mdm2 modelrgby equation$ (8.1) —
(8.8) and[(9.P) -{(9.10) subject to conditiohs {8.9), (B448.17) and[(9J1) L (916).
We retained the parameter values used to simulate the p382Mdaction-diffusion

model stated in sectidn 8.4 and for the additional paramsétéroduced by extending
the model we chose values to give numerically stable swedanscillations. Our pa-
rameter values are summarised in the second column of [Tahlé\9 in the previous

chapter, details regarding non-dimensionalisation aedcticulation of dimensional

parameter values can be found in Apperldix 11.3.2. Paramatges such that the
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extended model exhibits sustained oscillatory dynamiefi{dd as at least 5 peaks of

p53 in the nucleus) were found and are stated in the thirchwolof Tabld 9.1L.

Notice that most of the ranges in Table]9.1 are wider thanetiodable 8.1, and in
particular this is true for the diffusion coefficient. Henes we found for the Hesl
model, extending the p53-Mdm2 model to include a nuclear brane and active
transport makes it a more robust oscillator. Our rate ovadtiansport in the second
column of Tabld 9.1 is similar to the rate of active transpmed in the Hes1 model
in Table[5.1. However, notice that, unlike in Table]5.1, camge of values for the
active transport rate in Table 9.1 includes zero. Hencer@ttansport is not needed
for sustained oscillatory dynamics in the extended p53-dnodel (see sectidn 9.4
below). The parametérpermits oscillations over a larger range than in Tablé 5t1 bu

still does not permit sustained oscillations when traimhabccurs too close to the

nucleus.
Parameter| Value in simulations | Range over which oscillations are observed
D, 3.00x 10 Mems ! | 3.67x 10 2cnPs 11t0533x 10 8cmis !
14 2.92x 10 10Ms1 >912x 10 12ms1
10) 5.83x 10 %st 200x10*s1t0187x 10 4s?!
B 0.33s?! >0.33x103s71
u 1.00x 10 4s1 <1.67x103s71
v 3.33x102%s! 6.67x10%s1t0117s?!
hy 2 >1
Mdn2 3.2x10°°M 5.60x 10-%M t0 8.00 x 10~*M
a 2.92x 10 1ms?t <1.50x 10 1%Mst
n 1.67x 10 %Ms~ ! >1.04x 10 10vs1
hy 4 >1
p53 2.50x 10-°M <1.13x 104M
] 4.00 >1.56x 1072
y 0.67s? >0.05st
P 8.33x 10 %st 2.33x10%s1t0367x 10357t
Dm 6.00x 10 12cnPst | >2.22x 10 MemPst
Dp 2.00x 1072cn?s™t | >7.43x 10 cn?st
d 1.00x 10~%cm <1.00x 10~3cm
a 1.00x 10 -6cms™t <5.83x10%cms?
| 6.32um 3.87umto 118um

Table 9.1: Parameter values used in the extended p53-Mdm2 model amg@saover which
sustained oscillatory dynamics are observed.

Figure[9.1 shows how the total concentrations of the vagmbi the extended p53-

Mdm2 model vary over time in both the nucleus and cytoplasnie model has
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changed significantly from that which was presented in tlevipus chapter but the
solution still exhibits oscillatory dynamics (compare &igs 9.Th and 9.1b with Fig-
ures 8.2k and 8.2b). However, there are numerous quarditdifferences in the nu-
merical solution. For instance, a far larger proportionhef p53 and Mdm2 proteins
now enters the nucleus, on account of being actively tramsgdowards it and despite
the barrier of slower diffusion across the nuclear memhr@ode more specific, Fig-
ure[8.2 show that peaks in nuclear p53 total concentratierapproximately 8% the
height of peaks in cytoplasmic p53 total concentration, neig in Figuré 911 in our
new results this has changed to 33%. For Mdmz2, the changeris dpproximately

2.5% to 33%. The peaks in p53 total nuclear concentration dex tand narrower in

our new results, exhibiting pulsatile-like dynamics andpgring to zero between con-

secutive peaks. Such dynamics are consistent with receetiexental data showing

that, in response to DNA damage, p53 exhibits sharp p [, 2009;

.,.2010). The period of oscillation is now shottan the period observed

for the reaction-diffusion model of the previous chaptene Dbserved period for the
(E;[;;[ ;t lal

extended model is 3 hours, which is consistent with expertaiaata

2000; Geva-Zatorsky et 2006). As we mentioned in the&ipus chapter, p53

MRNA does not exhibit oscillations since it is not involvedi negative feedback loop
and is not coupled to any other equations — this is why we carstwady state levels

of p53 mMRNA in Figuré 9]1.

In Figure[9.2 we show spatial profiles for p53 and Mdm?2 frometiin= 240 minutes
to t = 540 minutes at 60 minute intervals. At= 240 minutes, it can be observed
that p53 has accumulated in the cytoplasm and nucleus. Inutieus it upregulates
Mdm2 mRNA transcription, which leads to increased producthf Mdm2 in the cy-
toplasm { = 300 minutes). Mdm2 enhances degradation of p53, both inytioglasm
and in the nucleus. In particular, since Mdm2 is activelys$gorted to the nucleus,

then Mdm2 dependent degradation of p53 is sufficiently gftoreradicate p53 there
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(t =360 minutes). Mdm2 levels fall through natural degradatimch frees p53 from
Mdm2 dependent degradation and allows levels of p53 tomified cytoplasm. Levels
of p53 quickly then rise in the nucleus through active tramsf = 420 minutes). The
process just described now repeats, producing oscillaipmamics. The 180 minute
period of oscillations is clear from Figure 9.2. It is alseal that the nuclear mem-
brane retards the nuclear entry of p53 and Mdm2 — the locatexmmnations reach

their highest levels in or next to the nuclear membrane. fi@salt reinforces the idea,

discussed in_Gasiorowski and Dean (2003) and Chahine amdeH2009), that the

nuclear pore complex is an attractive site for deliveringmabtherapeutic drugs to dis-
rupt or enhance intracellular signalling. Exploiting theasal nature of our approach,
we created ‘computational animations’ of the numericaliBoh of the extended p53-

Mdm2 model. These animations can be readily compared watlxtperimental results

obtained by Lahav et al. (2004) (supporting online matgvidlere fluorescent fusion

proteins were employed to visualise the protein conceatrétvels inside single cells.
Upon doing this we find good qualitative agreement betweemtimerical solution

and the experimental data.

As was the case with the extended Hes1 model in selctidon 5.fume in the extended
p53-Mdm2 model that oscillatory dynamics could occur evéremvthe cytoplasmic
protein diffusion coefficients were all set to zero (resalb$ shown). In other words,
it is possible to observe sustained oscillatory dynamicsmjbroteins are transported

to the nucleus by convection alone.
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Figure 9.1: Plots of the total concentrations of p53 mRNA (black), p38g}y Mdm2 mRNA
(green), and Mdm2 (red) in (a) the nucleus and (b) the cy&plafor the extended p53-Mdm2
model. The period of oscillation is approximatdl@0 minutes. Parameter values as per col-
umn 2, Tabl€ 9]1.

9.4 Microtubule disruption numerical experiment

In section(5.b we mentioned that microtubules are seen ast@ttave target for
chemotherapeutic drugs. Hence we now consider the effestidf drugs in our ex-
tended p53-Mdm2 model. The effect of such drugs will be tougisactive transport
and therefore we set the active transport etxjual to zero in our extended model.
All other parameter values are as per the second column ¢ [®ab (for convenience,

the complete set of parameters is also stated in the sectumdicof Tabld 9.2 below).

Figure[9.8 shows the total concentrations for all model igseaver time. Sustained
oscillatory dynamics can be seen but the oscillations anesmoother than when ac-
tive transport was permitted, levels of nuclear p53 no lordyep to zero between
successive peaks, the amplitude of p53 oscillations hagrgemormously relative to

Mdm?2 oscillations in both the nucleus and the cytoplasmthedscillatory period has

significantly increased (compare Figlre]9.3 with Figuré).9The period is still in the
Ei; ;Bar-Qr

tal., 200®eTare also reductions in

range of experimental measureme

the overall amounts of nuclear p53 and nuclear Mdmz2. For p&8ks in total nuclear
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Figure 9.2: Plots showing the spatio-temporal evolution of (a) p53 dndMdmz2 within the

osteosarcoma cell domain from times 240to t = 540 minutes ab0 minute intervals for the

extended p53-Mdm2 model. The concentrations exhibitlasey dynamics in both time and
space. Parameter values as per column 2, Table 9.1.
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concentration are approximately 6% of the height of peakstal cytoplasmic concen-
tration in Figurd 9.3, reduced from 33% in Figlre]9.1, whde Mdm2 the reduction
is from 33% in Figuré 9]1 to.83% in Figure 9.B. These latter findings are consistent

with in vivo experiments showing that the microtubule-depolymerizggnt nocoda-

v

zole causes levels of nuclear p53 to fall (Roth et al., 20879, is also consistent with

experiments showing that the treatment of cells with midoate-disrupting agents be-
fore subjecting these cells to DNA damage causes both myz&and nuclear Mdm2
levels to fall (Giannakakou et aJI_.‘LCOO).

Figure[9.4 shows spatial profiles for p53 and Mdm2 from tirnes240 minutes to
t = 540 minutes at 60 minute intervals. These proteins are gexlin the cytoplasm
by the process of translation, a process which we earlienasd to occur at least some
minimal distance from the nuclear membrane. This assumpias a clear impact on
the local concentrations of p53 and Mdm2 in Figlurd 9.4. Newdpction of p53 and
Mdm2 is maximal at this minimal distance where, by our asdionp, p53 mMRNA
and Mdm2 mRNA molecules diffusing outwards from the nuchetlkfirst encounter
ribosomes. Newly synthesised p53 and Mdm?2 diffuse outwantdsthe cytoplasm,

reaching the cell membrane in many places.

The spatial profiles in Figurie 9.4 are quite different to thos Figurd 9.2 where ac-
tive transport was permitted and forced newly synthesig&lgmd Mdm2 to rapidly
translocate towards the nucleus. In the absence of diréctedport towards the nu-
cleus, the local concentrations of p53 and Mdm2 within ortnexhe nuclear mem-
brane are hugely reduced. There is a chemotherapeuticatipln. Chemotherapeutic

drugs are often used in combination, a practice known as w@tibn chemother-

apy (Ferrari and Palmerini, 2007; Robati et al., 2008). Tiggdst advantage to this

practice is that it minimises the chances of resistanceldpeve to any one agent.

Drugs which target proteins at the nuclear membrane willnafective if little of

139



W A

[uny
[$3]

scaled concentration
scaled concentration
[
o

()]

0 N A
0 500 1000 1500
time (min) time (min)

(a) nuclear compartment (b) cytoplasmic compartment

Figure 9.3: Plots of the total concentrations of p53 mRNA (black), p38g}) Mdm2 mRNA
(green) and Mdm2 (red) in (a) the nucleus and (b) the cytaopldsr the extended p53-Mdm2
model in the absence of active transport. The period of lasicih is approximately2425
minutes. Parameter values as per column 2, Table 9.2.

the protein reaches the nuclear membrane, but Figute 9\@sstimt microtubule-

disrupting drugs may cause comparatively little of the @rotto reach the nuclear
membrane. Hence the effectiveness of drugs designed toraatlaar pore complexes
may be compromised by microtubule-disrupting drugs, aredcttimbination of these

two types of drug may not always represent an optimal treatisteategy.

Table[9.2 contains ranges of parameter values which pesuiliaory dynamics in
the extended p53-Mdm2 model with no active transport. Thasges are narrower
than those in Table_8.1 where there was no active transpdrharexplicit nuclear
membrane, and are also narrower than the ranges in Tableh&tethere was both
active transport and an explicit nuclear membrane. Thesdtseare consistent with
our findings for the Hes1 model in sectiion]5.6. The parameiege forl now allows
for protein translation to occur directly outside the nusle This is a result of the
nuclear membrane slowing the entry of p53 to the nucleusepteng Mdm2 levels

from spiking too quickly.
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Figure 9.4: Plots showing the spatio-temporal evolution of (a) p53 dndMdmz2 within the
osteosarcoma cell domain from times-240to t = 540 minutes at60 minute intervals, for
the extended p53-Mdm2 model in the absence of active trenspiee concentrations exhibit
oscillatory dynamics in both time and space. Parameterasks per column 2, Talle ®.2.
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Parameter| Value in simulations | Range over which oscillations are observed
Dj; 3.00x 10 enPs ! | 1.16x 10 MenPs 1 to 5.00x 10 8cnPst
14 2.92x 10 0Ms 1 >583x10 MMms !

10) 5.83x 10 %s ! 1.00x 10 4s1t01.03x 10351

B 0.33s? >0.0651

u 1.00x 10 4st <367x10%s!

v 3.33x10%s7t 1.33x103s 1t0 3675t

hy 2 >1

Mdm2 3.2x10°°M 3.00x 10-6M to 2.40x 10~*M

a 2.92x10 MMst <233x10 MMms?t

n 1.67x 10 %Ms™! >217x 10 10Mms 1

hy 4 >1

p53 2.50x 10-°M <1.35x 10°5M

] 4.00 >1.60x 1073

y 067st >0.09s1

P 8.33x 10 %s ! 1.33x10%s 1t06.67x 10351

Dm 6.00x 10~ 2cnPs! | >1.50x 10 18cmPs 1

Dp 2.00x 10 *2cnPst | >250x 10 *cnmPst

d 1.00x 10 5cm <2.00x 10 *cm

a 0 —

| 6.32um nuclear membrane (approx. 2 tp@) to 894um

Table 9.2: Parameter values used in the extended p53-Mdm2 model inatbe where ac-
tive transport rates are set to zero, and ranges over whictasned oscillatory dynamics are
observed.

9.5 Proteasome inhibition numerical experiment

We repeat here the proteasome inhibition numerical exmarirwhich we performed
on the reaction-diffusion model of the p53 GRN in secfion f85our extended p53-

Mdm2 GRN model. In section 8.5, we noted that we were not ableeproduce

the experiments conducted by Xirodimas et al. (2001), inctvhiarge levels of p53

and Mdm2 were recorded in the nucleus after treatment witttepsome inhibitor
MG132. Following the same approach in secfion 8.5, we dithdgrotein degradation
parametersy, v, andp byA, the inhibition factor. All other parameter values used for
the simulations are as detailed in Tablel 9.1, but we diyide, andp by A = 300

so that their values become those shown in equaltion](8.18)ddhot reduce these
protein degradation parameters to zero because proteasbibiors are not 100%

2000).

efficient (Lightcap et &l

In Figure[9.b we can see how the decrease in protein degoadadrameters has af-

fected the total concentrations of the variables in the |giBr2 model including a
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nuclear membrane and active transport. The system no l@xgéits oscillatory dy-
namics, but instead p53 and Mdm2 levels increase monotbnigaickly exceeding
the levels in Figuré 9]1 where there was no proteasome tignbi\We can now see
the level of protein in the nucleus exceeds that of the cgpl Furthermore, the pro-
tein levels in the cytoplasm are actually largely concdatt@n the region between the
nucleus and the MTOC, i.e., very close to the nucleus. Thisfiscted in the spatial
plots presented in Figute 9.6, where we can see high locaerrations of p53 and
Mdmz2 in the nucleus at time t = 1500 minutes which accuratefiects the experi-

mental findings of Xirodimas et al. (2001) aLd Maki et al. (JBQThe reason p53

and Mdm2 accumulate in the nucleus is due to active transii@dting both species
towards the nucleus. Mdm2 levels rapidly increase becaweselégradation rate of
Mdm2 protein is decreased. Notice that p53 levels also asaebut not as rapidly
as Mdmz2. As there is a higher concentration of Mdmz2 in the tlei$ increases the
likelihood of p53 being degraded via Mdm?2 (althougltmas been decreased, it is not
zero). Mdm2 mRNA levels remain low in spite of increased lewd p53 as a result
of Mdm2 protein directly inhibiting p53 transcriptionaltadaty. p53 mRNA levels are

unaffected by this numerical experiment.

Combination chemotherapy was mentioned in se¢tion 9.4yandoted that the com-
bination of microtubule-disrupting drugs and drugs des@yto act at nuclear pore
complexes may not always represent an optimal treatmeategir. We can now add
to this discussion. Figufe 9.6 suggests that when proteatsare actively transported
towards the nucleus are influenced by proteasome inhibitaysi their local concen-
tration will rise significantly at the nuclear membrane. Eethe combination of drugs
designed to act at nuclear pore complexes with proteasadmi@tior drugs may repre-

sent a potentially fruitful avenue for new chemotherapeexiperimental studies.

In Figure[9.T we explore the relationship between the nudteaytoplasmic ratio of

protein and the inhibition factor). We achieved this by first calculating the total
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Figure 9.5: Plots of the total concentrations of p53 mRNA (black), p38g}) Mdm2 mRNA
(green) and Mdm?2 (red) in (a) the nucleus and (b) the cytapldsr the extended p53-Mdm2
model. We also note that the proteins in the cytoplasm agelgrconcentrated in the region
between the nucleus and the MTOC, i.e., very close to theeusichs can be seen in Fig-
ure[5.9. Parameter values as per column 2, Tdblé 9.1, withetteption of parameters,

v, and p which are specified in equatio@.18) The total concentrations of p53 and Mdm2
continue to increase over tHb00minute time interval and accumulate mainly in the nuclear
compartment.

concentrations of nuclear and cytoplasmic protein over@0Xbinute time period for
different values ofA. We then calculated the mean of these total concentratimhdia
vided the nuclear mean by the cytoplasmic mean. Finally, lattgal this ratio against
the value ofA. As can be seen from the plots, the nuclear to cytoplasmiz 0&p53
monotonically increases asis increased, whereas the nuclear to cytoplasmic ratio of
Mdm?2 saturates oncereaches a value of approximately 150. From Figurk 9.7, we can
make the quantitative prediction that the proteasome itdnimust effectively reduce
the degradation rates by a factor of 200 before more p53 and2Malill accumulate

in the nucleus than in the cytoplasm.
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Figure 9.6: Plots showing the spatial distribution of (a) p53 and (b) Mtmithin the os-
teosarcoma cell domain at time=t 1500 minutes, for the extended p53-Mdm2 model. The
concentrations of p53 and Mdm?2 are localised mainly in thelews and between the nuclear
membrane and the MTOC. Parameter values as per column 2[®ab| with the exception of
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Figure 9.7: Plots of the nuclear to cytoplasmic (N/C) ratio against thhibition factorA for
(a) p53 and (b) Mdm2. Values afare plotted in increments &0, starting withl and ending
with 1001 Parameter values are found in column 2, Tdblé 9.1, with ¥oegtion of parameters
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9.6 Discussion

In this chapter we have extended the spatio-temporal mddeegp53-Mdm2 GRN
presented in chaptéf 8. Our extensions consisted of intindwan explicit nuclear
membrane and allowing active transport of proteins. We @atisal for the permeability
of the nuclear membrane by considering its thickness anththié¢hat diffusion across
it is slower than in the nucleus or cytoplasm, and assumegthteins were convected

from the cytoplasm to the nucleus in order to model transionalong microtubules.

Experiments have shown that stimulation of the p53-Mdm2 GfaN cause p53 and
Mdm2 concentrations to exhibit oscillatory dynamics, dnvby a negative feedback

loop._The concentrations oscillate with a period rangirmanr3 to 7 hours (Bar-Or

a

et al.,[2000; Geva-Zatorsky etial., 2006), which our extdntedel was able to re-
produce. Furthermore, we found ranges of values for the hpatameters such that
sustained oscillatory dynamics occurred, noting thatefmasges were consistent with
available experimental measurements. We also found thiahodel extensions acted
to broaden the parameter ranges that yielded oscillatiompared with the previous
results of chaptér 8. Hence oscillatory behaviour is madeenabust by the inclusion

of both the nuclear membrane and active transport.

In the interests of making accurate quantitative statesyeve explored our extended
p53-Mdm2 model on a domain that was imported from an image afsteosarcoma
cell — the p53 pathway is known to be deregulated in osteosaas. We were able
to make quantitative observations regarding, for exantpke proportion of p53 that
enters the nucleus. In particular, we saw that peaks innoizkar concentration were
33% the height of peaks in total cytoplasmic concentratiamereas this proportion
was only 8% in the reaction-diffusion model. Hence, althotlge nuclear membrane
acts as a barrier to p53 nuclear localisation, active tramspevertheless increases

this localisation. Our quantitative data serve as preshstuntil accurate experimental
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data become available. We made qualitative observatiangting that our new p53-

Mdm2 model exhibited pulsatile-like dynamics in keepinghseveral experimental

studies|(Batchelor et 9; Loewer etlal., 2010).

Motivated by experiments involving microtubule-disruggtichemotherapeutic drugs

Jordan and Wilson, 2004; Kavallaris, 2010; Carbonaro gR8l11), we considered

the special case in our new models where active transpes veg¢re set to zero. We
found that this narrowed the ranges of values for model patars such that sustained
oscillatory dynamics occurred. For our p53-Mdm2 model, aa reductions in the

levels of nuclear p53 and nuclear Mdm2, in qualitative agret with experimental

data in Roth et all (2007) and Giannakakou et al. (2000). We@nsidered the effect

of proteasome inhibitor drugs in our p53-Mdm2 model by redg@rotein degrada-

tion rates. This increased levels of p53 and Mdm2, espgadialthe nucleus, and

again these results matched experimental data (Maki ;.Xirodimas et al.,

2001). Hence, we were able to overcome the shortcomingsrafeagtion-diffusion

model presented in chapfer 8. The active transport modedlssumption is critical
for our proteasome inhibition numerical experiment to ogluce real biological data.
Ignoring our nuclear membrane assumption results in evgerlguantities of p53 and

Mdm2 accumulating in the nucleus (plots not shown).

From the spatial profiles for the p53-Mdm2 model, we obsethatthe nuclear mem-
brane retards the nuclear entry of p53 and Mdm2, with thd tmogcentrations of these
species reaching their highest levels in or next to the muncteembrane. Such results

indicate that the nuclear pore complex is an attractivefeitéelivering chemothera-

peutic drugs to disrupt or enhance intracellular signgllas discussed in Gasiorowski
‘EZOL 3) arﬂLha.hjne_a.nd_Ei‘e ce (2009). Our spatfiiegralso suggested

that microtubule-disrupting drugs may cause comparatikle protein to reach the

and Dean

nuclear membrane whereas proteasome inhibitor drugs ntagase protein levels

both at the nuclear membrane and in the nucleus. We drewuwsook in terms of
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combination chemotherapy, suggesting that the effeatisenf drugs designed to act at
nuclear pore complexes may be limited by microtubule-gisng drugs but enhanced

by proteasome inhibitor drugs. Computational animatidrsuo spatio-temporal sim-

ulations closely matched the experimental result . (2004) where con-

centration profiles of proteins in single cells were imag#lising fluorescent fusion

proteins. With the continuing advance of imaging techngjnéndividual cells (Kher-

lopian et al., 2008; Michalet et 2005), it will becomer@asingly important to

model intracellular dynamics using a spatio-temporal femrk.
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Chapter 10

Discussion and future directions

We conclude this thesis with a brief summary of the major {soamd some possible
avenues of future exploration. Of course, this is by no meahaustive, and we refer

the reader to the appropriate chapters for a more detaitzmhat

10.1 Discussion

The primary message arising from the work presented in thasis is that spatio-
temporal modelling of gene regulatory networks is a valeglirsuit. Spatio-temporal
modelling has significant advantages over more tradititemaporal approaches — not
only is it more faithful to the underlying biology but spatemporal simulations can
be more readily compared with experimental data. Furthesntbe approach allows

for more questions to be asked of the GRNs under study.

Results from previous mathematical models have reflectegldied experimental
findings but have not distinguished explicitly between gpatompartments within

the cell and have not considered (explicit) spatial movdamémolecules. We have
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developed novel spatio-temporal models of two well chargstd GRNs: the Hesl
GRN and the p53-Mdm2 GRN. The Hes1 GRN plays a role in somitegje and em-
bryonic stem cell differentiation, whereas the p53-Mdm2\aRcritical for regulating

the cell-cycle. Both are implicated in human cancer and baea the subject of inten-
sive research over the past decade. This research has behrctd via two parallel

(complementary) streams: biological experimentationraathematical modelling.

Building on directly from previous DDE models, we formulatequivalent PDE mod-
els on cell-like domains with separate nuclear and cytopi@gompartments (with
reactions localised appropriately). In general, we sothednodels numerically using
the finite element method as implemented in the softwarequeciCOMSOL 3.5a, us-
ing triangular basis elements and Lagrange quadratic fiasiions along with a back-
ward Euler time-stepping method of integration. We chossfithite element method
due to its ability to handle complicated geometries (theaeybtic cell usually takes
an irregular shape) and boundaries with relative ease. timernical simulation results
of our spatio-temporal reaction-diffusion models (preéednn chapters 4 and 8) have
demonstrated the existence of oscillatory dynamics intnegBeedback systems both
for relatively simple (Hes1) and more complex (p53-Mdm2)N&Rand have been able
to focus on reactions occurring both in the cell nucleus arttié cytoplasm. The use
of PDEs allows spatial effects to be examined explicitly #adllitates the study of
how protein localisation is regulated. In chapter 4 we itgesed the effect of spatial
dimension on the Hes1 GRN, something that can only be domg asspatial model.
We found that for 1D, 2D, and 3D simulations our model yieldedlitatively similar

results and quantitatively similar results for 2D and 3Ddations.

In chapters 5 and 9 we extended our reaction-diffusion nsooleincluding a nuclear
membrane and active transport. We accounted for the perlieabthe nuclear mem-
brane by considering its thickness and the fact that diffusicross it is slower than

in the nucleus or cytoplasm, and we assumed that proteins eagwvected from the
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cytoplasm to the nucleus in order to model translocation@lmicrotubules. The ex-

tended models were able to produce sustained oscillatidhg@riods consistent with

experimental data (Hirata et al., 2002; Bar-Or et al., 2 - 2006).
We found ranges of values for the model parameters suchubttised oscillatory dy-
namics occurred, noting that these ranges were consistémavailable experimental
measurements. We also found that our model extensions axteaden the pa-
rameter ranges that yielded oscillations compared withréhetion-diffusion models.
Hence oscillatory behaviour is made more robust by the giciuof both the nuclear

membrane and active transport.

Given that cell shape can influence intracellular siqnallmlevers et all, 2006; Neves

et al.,[2008), we investigated the influence on the numesicaulations of varying

the cell domain, finding for our extended Hes1 model thatllasery dynamics are

strongly robust to changes in the size and shape of the agitganucleus. In general
we found that qualitative dynamics were unaffected by vayyhe cell shape but quan-
titative dynamics were affected quite substantially. Henno the interests of making
accurate quantitative statements, we explored our extgpisie-Mdm2 model on a do-
main that was imported from a high resolution microscopygemef an osteosarcoma

cell — the p53-Mdm2 pathway is known to be deregulated inasstiecomas.

Motivated by experiments involving microtubule-disruqgtichemotherapeutic drugs,
we considered the special case in our extended models wheve &ransport rates
were set to zero. Strikingly, we found that this experimead Imajor implications
for the extended Hesl GRN model. The numerical simulatiosglalyed a qualita-
tive change — damped oscillations were now observed. Wnfately, we can not
corroborate our findings with experimental data in this chseinstead leave this nu-
merical experiment as a prediction of the model. For our piBr2 extended model,
we found reductions in the levels of nuclear p53 and nucledmi® in qualitative

agreement with experimental data. We found that this nagdothie ranges of values
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for model parameters such that sustained oscillatory dyssaotcurred.

We also investigated the influence of proteasome inhib@onsoth the p53-Mdm2 and
Hes1l GRNs. We achieved this by decreasing the protein datipadgparameters in our
models. In each case, interesting biological insights waieed. For the case of the
Hes1l GRN, both of our reaction-diffusion (chapter 4) aneéteged model (chapter 5)
were able to reflect temporal data regarding the how the carateon of Hes1 pro-
tein changed once the cell was treated with a proteasomiaitioihi Given the spatial
nature of our models, we were also able to make predictionstaiiow proteasome
inhibition influenced the spatial distribution of Hes1 miois. We left our spatial dis-
tribution plots as predictions of the model. Importanthg treaction-diffusion model
with continuity of flux boundary conditions yields differiespatial distributions to the
extended model. Hence, once corroborated with experirhevidence, we will be
able to find out which model is more accurate and gain an ih&ngt how transport
of Hesl protein is regulated. For the case of p53-Mdm2, exyggrtal evidence of
how p53 and Mdm?2 localise following proteasome inhibitisravailable. We found
that our reaction-diffusion model fell short of reprodugitihe experimental data but
that our extended model succeeded. Furthermore, for the B8N we investigated
the influence of translation inhibitors. Here, we were ablesproduce temporal data
concerning the total concentrations of hes1 mMRNA and Hestejorin the cell. In
this case, the spatial distributions for both the reactidfusion model and extended

model were consistent.

Encouraged by the results from our PDE approach, we foredikt equivalent stochas-
tic reaction-diffusion model of the Hes1l GRN in chapter 6.olr spatial stochastic
model, all reactions are modelled using elementary massnakinetics. This is in
contrast to all previous modelling efforts where a Hill ftioo approximation was
used for Hes1 binding to the promoter site. Since our modeticitly spatial, such

an approach is neither appropriate nor necessary.
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We computed trajectories of the reaction-diffusion maetgration using a spatially

extended Gillespie algorithm (the next subvolume methadinglemented in UR-

DME ( ,.2012). We estimated the period of our eltidjectories using a

continuous time wavelet transform (as implemented in WAY®BIATLAB toolbox).

In the case of the Hes1l GRN, in contrast to our PDE models, patisd stochastic
model is able to reproduce the variability in period and atagé of Hes1 oscilla-
tions observed in experiments. As a result of this, we haatedtthat intrinsic noise
can explain heterogeneity in ES cell differentiation (Seapter 6 for details). We also
showed our model was robust to parameter changes througlhis@arameter sweeps.
We were able to ask more questions of our model than recesttastic DDE models,
as well as being able to directly compare our numerical satmards with biolumines-

cence movies oh vivo Hes1 expression.

As there is potential application for regenerative mediciwe have also proposed
methods of controlling differentiation responses via diigatment. Our model has
predicted that applying proteasome inhibitors to an ESamlld yield a mesodermal
cell while applying translation inhibitors could yield aurenal cell. Our model was
also able to reproduce experimental results in which hesistyenes were introduced

to hematopoietic progenitor cell which encoded a mutantlHaetein lacking the

DNA-binding domain|(Yu et all, 2006).

Computational animations of our spatio-temporal simalaiclosely matched the ex-

perimental results of Geva-Zatorsky et al. (2010) ' .1(2009) where

concentration profiles of proteins in single cells were isthgtilising fluorescent fu-
sion proteins. With the continuing advance of imaging téghes in individual cells,
it will become increasingly important to model intraceludynamics using a spatio-

temporal framework.
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10.2 Future directions

The work we have presented in this thesis has merely ‘sedttie surface’ of what
can be done with spatio-temporal modelling of GRNs. Futuoekwill consider ex-
tending the models further in several ways, as well as pmifay detailed analysis of

the current models.

10.2.1 Partial differential equation models

We are currently undertaking a nonlinear analysis of thelleaction-diffusion model
which has led to the study of a nonlinear and nonlocal eigaevaroblem. Cells can
change shape on the same timescale as oscillatory nuglegrasmic translocation
of Hes1 or p53, and so we may develop a model with a moving benyrah an evolv-
ing domain. Based on cell imagery, we will consider moreiséialsupport functions
for our translation and active transport terms. We may aigdysthe interactions be-
tween different signalling pathways, i.e., “cross-tall€or example, it is known that

the p53-Mdm2 GRN can co-operate with and antagonise th&BIGRN, which is

central to many stressful, inflammatory, and innate immespeonses (Pommier et al.,

2004; Perkins, 2007). We are not aware of any spatio-terhpavdelling studies of

interacting GRNSs, though there have been temporal stuBh hski et all, 2009).
Our p53-Mdm2 model is based on a reduced description of th8,GRd we may
explore the consequences of including more reactions aeclespin the model. We
may also explore the effect of different chemotherapeutigs on the Hes1 and p53-
Mdm2 GRNSs. One aspect of intracellular dynamics which weehreot included in our
current models, but which is of relevance to our studiesias of molecular crowding,
I.e., volume exclusion events due to other molecules omaiis. Molecular crowding

generates an environment where diffusion is hindered btaoles and traps, resulting
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in a form of molecular movement called “anomalous diﬁuéi&ﬂ&n@zﬂA. 2010).

Anomalous diffusion refers to a form of molecular movementihich the mean-

square displacement of a molecule is not linear in time ardkimd of movement

has been observed in many experimental studies (Weis Wachsmuth et al.,

2000; Caspi et all, 2000). In order to account for molecutawding in mathemati-

cal models, numerous different approaches have been takeeterministic models,

fractional partial differential equations have been emgtbwith success in simplified

settings but have proved challenging in more realistidregst(Yadav et al., 2008).
Many authors have taken a spatial stochastic approach emactor macromolecular

crowding, and numerical studies have proven more tractable in the deterministic

case — for a recent example, see Marquez-Lago et al. (201@0cd] in the future

we may explore the influence of anomalous diffusion on bothRIDE and spatial

stochastic models of GRNS.

10.2.2 Spatial stochastic Hes1 gene regulatory network metl

Future work will consider extending the Hes1 spatial ststbhanodel in various ways.
In particular, we will explicitly account for transport ass the nuclear membrane and
dimerisation of Hes1 monomers. We aim to use our spatio-beahpnodelling ap-
proach to shed light on the localisation of the Hes1 dim&asaeaction. This reac-
tion has been identified as a possible target for cancemmfa&_s_aw .. 2010). As

mentioned in chapter 6, we will also conduct a global paramsensitivity analysis

of our model using data clustering techniques. We may alssider cell-cell com-

munication in future work to see if this acts to stabilise aydchronise oscillatory

behaviour as was found experimentally in Masamizu eLaDA)Zand in a mathemati-

cal model of Notch signalling iL] lerry et aJL_(Z( 11).
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10.2.3 Spatial stochastic p53-Mdm2 gene regulatory netwkmodel

We are currently formulating and exploring a spatial steticamodel of the p53-
Mdm2 GRN. Preliminary results are encouraging and we ptek#ajectories in Fig-
ure[I0.1 which display the total copy number of p53 (red) arthia (blue). This

Figure bears a striking resemblance to the correspondipgremrental data, see Figure

2 inlGeva-Zatorsky et al. (2010). Using a spatial stochagifroach makes it possi-

ble to replicate the noisy oscillatory dynamic displayedha experimental data. In

addition, we also present a plot (Figlre 10.2) showing haevsihatio-temporal evo-

lution of a sample trajectory evolves. This plot also agnee8 with the equivalent

experimental Figure (see Figure 1 of Geva-Zatorsky e

Once we have thoroughly examined a spatial stochastic nobtlet p53-Mdm2 GRN,
we plan to extend it in various ways. Some examples includewatting for dimerisa-
tion and tetramerisation of p53, active transport of pS3iglmicrotubules and mod-
elling transport across the nuclear membrane in greateil d&he spatial-stochastic
p53-Mdm2 model can be adapted to study possible mutatiopstential drug treat-
ments by simply changing parameter sets. Using this appreamparisons of mutant

and wild-type cells under a range of drug treatment comlminats also possible.
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Figure 10.1: Four trajectories from preliminary simulations of our sgtstochastic p53 GRN
model. Plots show how the copy number of p53 (red) and Mdm2)lelvolve over a 50 hour
time period.

Figure 10.2: Spatial snapshots of p53 protein distributions from prati@any simulations of
our spatial stochastic model. Time between sequentialdsaisi20 minutes.
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Chapter 11

Appendix

11.1 Proteintranslation and synthesisin the cytoplasm:
consideration of the location of the endoplasmic

reticulum

The endoplasmic reticulum (ER) is a network of flattened sackbranching tubules
that extends throughout the cytoplasm in eukaryotic cd@lleese sacs and tubules are
all interconnected by a single continuous membrane soltieairiganelle has only one
large and intricately arranged lumen. The ER is divided tato distinct zones, the
rough ER and the smooth ER. The surface of the rough ER is esiedesith many ri-
bosomes giving it a ‘rough’ appearance (hence its name)rdingh ER is involved in
the synthesis of proteins and is also a membrane factorjéocell, while the smooth
ER is involved in the metabolising of carbohydrates, regoiteof calcium concentra-
tion and the synthesis of lipids. The proteins made in the EEReaher exported to the

exterior of the cell or are transported to other membranetires such as the Golgi

apparatus, lysosomes and endoso s et all, ZDO&@3.proteins made in the
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endoplasmic reticulum are unlikely to translocate to thelews.

In our PDE models of the Hes1 and p53 GRNs, we have made alé@rfan the en-

doplasmic reticulum by assuming that proteins made in theptgsm are translated
a certain radial distance outside the nucleus. Beyond allisirdistance, we have as-
sumed that free-floating ribosomes are found in sufficieandbnce and distributed
homogeneously so that a step-function is suitable to acdouriheir presence (see

equatio 4.5). This is not unreasonable to assume as deygemaihe protein produc-

tion level of a particular cell, ribosomes may number in th#ioms (Alberts et al.,

2008). The Heaviside functidd (x,y) states that in a region close to the nucleus (rep-

resenting the location of the ER), the function is zero, nreathere is no protein
synthesis in this region. In a region further away from theleus (outside the ER) the
function takes the value of one, representing the regiohetytoplasm where we al-
low the translation of protein to occur. The Heaviside fumtis illustrated graphically

in Figure[11.1.
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Figure 11.1: A schematic representation of equation]4.5. The grey regfaime cytoplasm
depicts where we allow constant protein synthesis to ocepresenting the region where the
Heaviside function K, y) = 1. The white regions represent the nucleus and ER, where the
Heaviside function ki,y) = 0 (no protein synthesis takes place). The ER has a major axis of
length+/2 units and minor axis of length 1 unit.

11.2 The Hesl gene regulatory network

11.2.1 Dulac’s criterion

We state here Dulac’s criterion for proving the non-existeof periodic orbits in some
regions of the phase space. We begin by recalling th@fifs a simple closed curve
with outward normah enclosing a regiod andf : R? — R? is a continuously differ-
entiable vector field and : R2 — R is a continuously differentiable function then the

divergence theorem of the plane states that

(f-n)drz//AD-(gf)dxdy

g
oA
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wheredf is a vectorg(x,y)f(x,y), and is not to be confused with the compositiomgof

andf (i.e.,gof).

Theorem 1. If there exists a continuously differentiable functign R? — R such
that - (gf) is continuous and non-zero on some simply connected domaheb no

periodic orbit can lie entirely in D.

Proof. Suppose a periodic orbitA does lie entirely irD. Then

/[0 (@haxayo.

where A is the area bounded bW, sincel- (gf) is either strictly greater than zero
or strictly less than zero throughout A. However, a periamtigit is a trajectory, and
hence tangential to the vector field,So,f-n = 0, wheren is the outward normal to
the periodic orbit. Hence,

g(f-n)dr=0,
oA

producing a contradiction by the divergence theorem. O

If g= 1 then this result is sometimes referred to as Bendixsoitsrion. Hence, in
sectior. 3.3.2 it could be said that we applied Bendixsoriteroon to rule out periodic

solutions in the Hes1 ODE model.

11.2.2 Non-dimensionalisation of reaction-diffusion moels

We summarise our non-dimensionalisation of the Hes1 @actiffusion models (de-

scribed in sectioris 4.2 ahd b.2). To non-dimensionalisextended Hes1 model given
by equations(4]1) £(4.4) and (5.5), subject to the conastio equations (418) £(3.4),
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we first define re-scaled variables by dividing each varialyle reference value. Re-
scaled variables are given overlines to distinguish thesmfrariables that are not
re-scaled. Thus we can write:

(M) meg

[_rnn] = m7 [mc] - m7 [pn] =T [pc] - —7f:

where the right hand side of each equation is a dimensiomabla divided by its

reference value. From equatidn (11.1), we can write vaembi terms of re-scaled
variables and then substitute these expressions intoiegad#.l) —[(4.4) and_(5.5),
and into the conditions in equatioris (4.8] —(5.4). This gi@enodel defined in terms
of re-scaled variables which has the same form as the dim@aisnodel but now the
parameters are all non-dimensional. Denoting the non-aémeal parameters with an

asterisk, they are related to dimensional parameters lasviol

D;; TOm [po] T[mo]ar
Df:—“a*:—?p*: A,H*:Tll,a*: p’
2T Iy prrm TP Ipg)
. + ™Mm . ™MWy ., d_, 12, |
up— T“p, Dm—?, Dp— ?,d —_— E,a —_— T,I —_— E. (11.2)

We solve the non-dimensional model using the method destiitb sectioh 4]3. We
simulate the model in COMSOL 3.5a, finding non-dimensiorzabmeter values that

yield_oscillatory dynamics. We chose the same values asuatem (25) in Sturrock

et al. (2011) except for those parameters which were newuseaaf our extension to

the model. These latter values were chosen as folld\s= Di*j/5, Dy = Di*j/15,

d*=0.01,a" = 0.03,1* = 0.63.

Finally, we calculated the dimensional parameter valuesiorthis, we needed to esti-
mate the reference values. Since Herl in zebrafish and Hesiténare both pathways

connected with somitogenesis, we used the reference ciatiens for Herl protein

and herl mRNA in Terry et al. (2011) as our reference conagatrs for Hes1 protein
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and hes1 mRNA. Thus, we chogay)] = 1.5 x 10~°M and[po] = 10-°M. We assumed
a cell to be of width 3@m. But from Figure§ 4]1 arid 3.2, the cell width is equal to 3
non-dimensional spatial units ot 8limensional units (using equatidn (111.1)). Hence

we set & = 30um, so thatL = 10um. The experimentally observed period of os-

cillations of Hes1 is approximately 2 hours (Hirata et ). Our simulations of

the non-dimensionalised model gave oscillations with @openf approximately 300
non-dimensional time units or 3@@imensional units (using equatidn (111.1)). Hence
we set 300 = 2 hours= 7200 seconds, so that= 24 seconds. Using our references
values and non-dimensional parameter values, we founddiioeal parameter values

from equation[(11]2).

Note that we chose our reference time= 24 seconds based on simulations of the
extended Hes1 model since this was our most realistic Hesleim&or the original
Hes1l model and for all special cases of the Hes1 model (fanpbeg setting active

transport rates to zero), we retained the reference tim&4 seconds.

11.2.3 Parameter sweeps of spatial stochastic model

In this section we present parameters sweeps for the remggparameters in the spatial
stochastic model which we did not discuss in secfion 6.4. Jdrametersyy, (the
rate of transcription) and,, (the rate of translation) do not influence the mean period
distribution when varied (see Figufes 11.2 and111.4). leiddr3 reveals that provided
the scale of transcription repressiof (s greater than or equal to 12, a broad range of
mean periods are found. The degradation parametgyaitd L1p) permit broad mean
period distributions for a range of parameter values (shiovigured 11.6 and 11.6).

If the degradation rates are too high or too low, the broadmpesiod distribution is

lost.
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Figure 11.2: Histogram plot showing the effect on the period of oscifiai of changing the

parameteran,, the basal transcription rate of hesl mRN&.values ofan, were chosen from

the range(0.01— 10)min—! were chosen, and00 trajectories for each different value were
recorded. All other parameters in the model (see column #JeT&.1) were held constant.
The mean periods were computed and divided into ‘bins’ waryiom 150 mins to persistent

expression (PE) i.e. greater tha#tD0 mins. It is clear thatay, is robust to change, with no
significant changes in the mean periods observed when ttzereder is varied.
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Figure 11.3: Histogram plot showing the effect on the period of oscifiai of changing the
parametery, the scale of transcriptional repressiohO values ofy were chosen from the range
(1— 100 were chosen, antlOOtrajectories for each different value were recorded. Ahert
parameters in the model (see column 4, Tdblé 6.1) were heaidtaot. The mean periods
were computed and divided into ‘bins’ varying fratb0 mins to persistent expression (PE)
i.e. greater thart00 mins. As may be expectedyifs too small (corresponding to no or little
negative feedback) no oscillations are observed and almlbstajectories exhibit persistent
expression. Provideg is greater than or equal td2 we find that this parameter is robust to
change, with a broad range of periods found for each diffevatue ofy.
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Figure 11.4: Histogram plot showing the effect on the period of oscifiai of changing the
parametera,, the basal translation rate of hes1 mRNA.values ofa, from the range(0.1 —

10) min—! were chosen, anti0Otrajectories for each different value were recorded. Ahet
parameters in the model (see column 4, Tdblé 6.1) were heidtaot. The mean periods
were computed and divided into ‘bins’ varying frdifi0 mins to persistent expression (PE) i.e.
greater thar400mins. Itis clear thatxy, is robust to change, with no significant changes in the
mean periods observed when the parameter is varied.
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Figure 11.5: Histogram plot showing the effect on the period of osciblasi of changing the pa-
rameterpm, the degradation rate of hes1 mRN®values ofuiy, from the rangg0— 1.0) min—?

were chosen, antiOOtrajectories for each different value were recorded. All@tparameters

in the model (see column 4, Tahlel6.1)) were held constarg.niéan periods were computed
and divided into ‘bins’ varying from 100 mins to persisterpeession (PE) i.e. greater than
400 mins. Low values ofi, result in huge quantities of hesl mRNA and subsequently Hesl
protein in the cell. Hence, it is not surprising that low vesuofpuy, result in persistent expres-
sion of Hesl1. Agly, is increased, we can see how the distribution of periods gbsnWe find

that for larger values ofi,, many mean periods are found in the short period bit0({o 200
mins). Only foru, = 0.01 do we find a broad range of mean periods.
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Figure 11.6: Histogram plot showing the effect on the period of oscifiai of changing the
parameteri, the degradation rate of Hes1 proteih0 values ofu, from the rangg0.00043—

1.0) min—! were chosen, anti0Otrajectories for each different value were recorded. Ahet
parameters in the model (see column 4, Tdblé 6.1) were heaidtaot. The mean periods
were computed and divided into ‘bins’ varying frdifi0 mins to persistent expression (PE) i.e.
greater thar400mins. Low values qfi, result in huge quantities of Hes1 protein present in the
cell. Hence, it is not surprising that low values results inghmean periods being placed in
the PE bin. Aqy, is increased, fewer mean periods are found to exhibit pexrsisexpression.
We find thatyy is relatively robust to change, with broad ranges of meariqukr recorded,
provided it takes a value greater than or equalt@25mirr 2.
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11.3 The p53-Mdm2 gene regulatory network

11.3.1 Busenberg’s criterion

We present here an extension of Dulac’s criterion to systerR$ as appears in Busen-

berg and Driessche (1990). This criterion is used for rubogperiodic solutions to

ordinary differential equation systems. We applied it teteyn of equationg (7.1) —
(Z.3), which models the p53-Mdm2 GRN.

Theorem 2. Letf : R® — RS be a Lipschitz continuous vector field and yét) be a
closed, piecewise smooth, curve which is the boundary ofiantable smooth surface
Sc RS, Suppose thaj: R® — R3is defined and piecewise smooth in a neighbourhood

of S, and that it satisfies
g(y(t))-f(y(t)) < 0 (or > 0) for all t, (11.3)

(Oxg)-n>0(<0)onS,and0xg)-n>0 (< 0) for some pointon S, (11.4)

wheren is the unit normal to S. They(t) is not the finite union of solution trajectories
of

X' (t) = F(x(t)) (11.5)

which are traversed in the positive sense relative to thedtiion ofn.

Proof. We first note thaw/t) is an orbit of solutions of (1115) if, and only if, it is an
orbit of the systenx’(t) = —f(x(t)), which is traversed in the opposite direction. Thus,
the two sets of inequalities i (11.3) aid (11.4) are eqaivialand we give the proof
only for the first set. By[(11]4) and using Stokes’ theorem aech

O<//S(D><g)-ndA: /yg(y(t))-)/(t)dt. (11.6)
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Now, if y(t) is piecewise smooth witly/'(t) = f(y(t)), except for a finite number of

points, then from[(11]3)

[ atviv)-y)dt= [ gvv)-f(ytt) dt<o.
y y
This contradicts(11]16) and the theorem is proved. ]

An immediate corollary of this theorem yields the criteribiat we used in the proof
that the p53-Mdm2 system (given by equatidns|(7.1) = (7 &))rot produce periodic

solutions.

Corollary 1. Let Sc R® be a smooth, orientable surface such that any piecewise
smooth closed curvigt) € S is the boundary of a surfacé 8 S. Ify: R3 — R3is

smoothf : y(t) — R3 is Lipschitz, and andg satisfy

a(y(t)) - f(y(t)) =0, (11.7)

and

(Oxg)-n>00nS(<0on§, (11.8)
wheren is the unit normal to S, thep(t) is not a phase polygon of the differential

equationx’(t) = f(x(t)).

Proof. If y(t) was a phase polygon &f(t) =f(x(t)), then{y(t), t > 0} = dS for some
oriented smooth surfac c S wheny is a given positive orientation relative to the

normaln to S. Now, apply Theorem 2 tg(t) andS to see that this is not possiblel]
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It is easy to see that this corollary generalises Dulactigon (presented in sec-

tion[I1.2.1). In fact, if

X = fl(x7y)7
y, = fz(X,y),

is a planar system, we extend it trivially & by

= fi(xy),
y, - f2(X7 y>7
Z = 0,

and we ChOOSg(X, y) = (_ fZ(X7y)’ fl(x7y)’0)' Theng(x7y) ’ (fl(x7y)7 f2(x7y)70) =0,
and letting S be the x, y plane, we have (0,0,1). Assumind1(x,y) and fa(x,y) are
smooth, we havéd x g)-n = 0O- (f1(x,y), f2(Xx,y)) > 0 (<0), in this special case of

Corollary 1.

We note that both Theorem 1 and Corollary 1 do not requirettieatieldf be smooth
or even differentiable. In fact, even the Lipschitz coratitonf, which implies thaf
is differentiable almost everywhere, can be replaced byirggy thatf be continuous

and that the problerd (t) = f(x(t)), x(0) = Xo, has a unique solution.

11.3.2 Non-dimensionalisation of reaction-diffusion modls

We non-dimensionalised the p53-Mdm2 model defined in se@i®, and the extended
p53-Mdm2 model defined in sectibn P.2, using the technigseritezed above for non-
dimensionalising the extended Hes1 model. We present mexfedetails of our non-

dimensionalisation of the extended p53-Mdm2 model.
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To non-dimensionalise the extended p53-Mdm2 model giveztjozxations[(811) £(81.8)
and [9.9) —{(9.70) subject to conditions (8.9), (8.14) —®Bdnd [9.1) {(9.8), we define

re-scaled variables (denoted by overlines) by dividingheeariable by a reference

value:

g1 [PS3M] . [PS3My] [PS3| [P53]
[Mdr2my)] [Md2my]
[Mdrmem,] = Midnam" [Mdm2m] = Mdnamg (11.9)
Mdm2,] —— Mdm2g] = t _ x _ vy

Substituting the scaling in equatidn (111.9) into the exeshp53-Mdm2 model gives a
non-dimensionalised model with non-dimensional paramsdtehich we denote with

asterisks) that are related to dimensional parameterdlas/$o

O = TLZII’Z* - [p5T3Zmo]’ v =105 = %,u* =T, V" =TV,
Md”ﬂ*:[ww”ér“*zm’”*zm’p - el
d*:g,a*—%‘w—'t.

We solve the non-dimensional model using COMSOL 3.5a, fopdion-dimensional

parameter values that yield oscillatory dynamics. We chlibsesame values as in

equation (60) in_Sturrock et al. (2011) except for those patars which were new

because of our extension to the model. These latter values etmsen as follows:

6*=1,{"=0.35D}, = Di*,- /5,Dp = Di*j/15, d*=0.01,a* =0.03,I* = 0.63.
Finally, we calculated the dimensional parameter valuesldlthis, we had to estimate
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the reference values. We found a reference concentratiofp$3] of 0.5uM and
estimated reference concentrations for rest of the modsliep as follows{p53| =
0.5uM, [Mdm2mp] = 0.05uM, [Mdm2g] = 2uM, and [p53mp] = 0.025uM. As with

the Hes1 model, we assumed a cell to be of widtpr80 which again leads to the
reference length = 10um. Our simulations of the non-dimensionalised model gave
oscillations with a period of approximately 360 non-dimensl time units or 360

dimensional units (using equatidn (11.10)) and the expamially observed period is

approximately 3 hours (Monk, 2003). Hence we set363 hours= 10800 seconds,

so thatt = 30s. The reference time = 30 seconds was based on simulations of
the extended p53-Mdm2 model since this was our most reap&B-Mdm?2 model.
For all variants of this model (for example, setting actiransport rates to zero), we
retained the reference tinre= 30 seconds for ease of comparison of the numerical
results. Using our references values and non-dimensi@mahpeter values, we found

dimensional parameter values from equation (11.10).
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