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Chapter 1

Introduction

According to the World Heath Organisation, 7.6 million people died of cancer

in 2008. This makes cancer one of the leading causes of death in the world.

90% of these deaths are due to metastases (secondary tumours) that develop

from cells of the primary tumour which have invaded the surrounding tissue and

spread throughout the body. A prerequisite for this spread is the cells’ ability

to migrate. It is important for cells to be able to migrate during development

and wound healing and also in many other biological contexts. However, in

the pathological case of cancer a disturbed balance of cell-cell and cell-matrix

interactions leads to cell migration and invasion that can be fatal for the patient.

In this thesis we take a systems biology approach to study cell migration and

cancer cell invasion in an in vitro setting in order to shed more light on the

underlying mechanisms and causes. “Systems biology...is about putting together

rather than taking apart, integration rather than reduction. It requires that we

develop ways of thinking about integration that are as rigorous as our reductionist

programmes, but different....It means changing our philosophy, in the full sense

of the term” (Denis Noble) [Noble, 2006]. In accordance with this definition of

systems biology we develop a multiscale model of cell migration and cancer cell

invasion. A considerable number of models of these processes have been developed
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previously. However, generally the focus of these models is somewhat narrow and

the influence of only one factor on migration and invasion is considered. Such a

factor could for example be the interaction of the migrating cell or the mass of

invading cells with a continuous field of chemoattractants or extracellular matrix

elements or the loss of cell-cell adhesion. In this thesis, we explicitly couple

cell-matrix interactions with cell-cell interactions and intracellular dynamics in

order to study the combined influence of these different factors on migration

and invasion. We believe that only by considering all of these processes can the

observed behaviour of invading cancers be truly understood. We consider cells

and matrix fibres as individual elements, which have a mutual interaction. The

matrix fibres guide the cell movement but are in turn reorientated by the cells

moving across them. Additionally, we include intra- and intercellular dynamics

of cell-cell adhesion and repulsion and couple it with cell division. Furthermore,

Western Blot data concerning the integrin signalling pathway, which is important

in regulating cell-matrix interactions, is studied and used to develop a model of

part of this complex pathway for future integration in the cell migration model.

The model development is done in stages in the different chapters of this thesis.

Chapters 2 and 3 give an overview of the biological and mathematical background,

respectively. In Chapter 4 we develop a single cell migration model which is

extended to a two-cell migration model in Chapter 5. This work is used in

Chapter 6 as the basis of a multiscale model of cancer cell invasion. Finally

in Chapter 7 we study the integrin pathway. With each model, data analysis

techniques are developed in order to be able to quantify the simulation results

and make them comparable to experimental data. We conclude the thesis with

a chapter concerning further possible extensions of the models and future work.
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Chapter 2

Cell migration, Carcinogenesis

and Cancer Cell Invasion

2.1 The eukaryotic cell

The cell is the basic functional and structural unit of all living organisms. Cells

are very complex entities and whole books have been written on their evolution-

ary development and function (e.g. [Alberts et al., 2002, Lodish et al., 2012]).

There are two main groups of cells - prokaryotic and eukaryotic cells. Organisms

whose cells are eukaryotic are called eukaryotes. Animals as well as plants, fungi

and protozoans belong to the eukaryotes. Eukaryotic cells can vary in shape and

are generally between 10 -100µm in diameter. What defines a eukaryotic cell is

that it has a distinct nucleus which is surrounded by a membrane and is thus

set apart from the rest of the cell, the cytolasm. Figure 2.1 shows a schematic

diagram of a eukaryotic cell.

Animal cells are distinct from other eukaryotic cells in that they have a flexible

membrane surrounding the cytoplasm rather than a rigid cell wall. In addition
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Figure 2.1: Three dimensional schematic diagram showing the structure of a

general eukaryotic cell. Image taken from On-line Biology Book.

to being surrounded by a plasma membrane, they have several subcellular com-

partments, called organelles, enclosed by internal membranes. The nucleus is

the largest of these organelles and it contains the cell’s DNA. Not only does it

contain the DNA but it is also the place where sections of the DNA are tran-

scribed into m(essenger)RNA, which are then transported into the cytoplasm to

be translated into proteins at the endoplasmatic reticulum. The proteins are

in turn transported to specific sites in the cell where their function is required.

The transport is helped by an array of fibrous proteins, collectively called the

cytoskeleton, which forms a complex network in the cell’s cytoplasm. The dif-

ferent types of these proteins have different functions. One specific type, the

microtubules, for example, form the mitotic spindle which plays a major role in

dividing the DNA equally between the two daughter cells during cell division.

Thus without the cytoskeleton, cells could not reproduce. Correct cell division is
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Figure 2.2: Schematic representation of the four stages of the cell cycle. Image

taken from the Encyclopaedia of Science

however not only guided by this one type of protein, but also by the tightly con-

trolled activation, inhibition and degradation of a number of proteins giving rise

to the so called cell cycle which ensures the division into two equal daughter cells.

The cell cycle is generally subdivided into four stages (see Figure 2.2). There are

two gap phases, G1 and G2, during which the cell grows and mRNA and proteins

are produced. The S phase, which follows G1, is the synthesis phase. During this

time the structures which carry the DNA, the chromosomes, are duplicated. After

the second gap phase the cell divides. This process is called mitosis. Sometimes

a fifth stage is considered which is termed the G0 phase or the resting phase. In

other considerations G0 is encompassed in G1. Cells enter the resting phase if

they have developed and grown to their designated size but external or internal

factors do not favour cell division. Such factors are, for example, stresses like low

oxygen levels or anti-growth factors secreted into the environment by other cells

5



(a) (b)

Figure 2.3: Images showing the intracellular and extracellular scaffolding. (a)

Image of a sheet of epithelial cells, where keratin, an element of the cytoskeleton,

is detected with a keratin-specific antibody (green) and a plasma membrane protein

is bound by a second antibody (blue). Image reproduced with copyright permission

from Kathleen J. Green. (b) Image of the extracellular matrix meshwork in which

fibroblasts (connective tissue cells) are embedded. Image adapted from Weinberg

[2007].

to limit growth and thus preserve tissue integrity.

In addition to guiding the movement of structures within the cell, the cytoskele-

ton has many more functions, one of which is giving the cell strength and rigidity

to help it maintain its shape. It is also vitally important for organising individual

cells into multicellular tissues. The sheets or chains of cells that form these tis-

sues are held together by cell adhesion molecules which are, in turn, connected to,

and in part, controlled by, the cytoskeleton. Figure 2.3(a) shows a sheet of cells

where one specific cytoskeletal protein is tagged in green and the cell membrane

is shown in blue. It can be seen that the green fibrils exist at the sites where

6



the cells are linked together. Not only cell–cell adhesion but also cell–matrix

adhesion is controlled by the cytoskeleton. The cells in tissues are surrounded by

a complex meshwork of proteins and polysaccharides which are secreted by the

cells into spaces between them (see Figure 2.3(b)). This is called the extracellular

matrix (ECM).

2.2 The extracellular matrix

The extracellular matrix is very versatile. Depending on the relative amounts

of its various components, it can form a variety of shapes and have many differ-

ent characteristics, each adapted to the functional requirement of that particular

tissue. One of the roles of the ECM is to serve as a scaffold for the tissues but

it also affects their development and physiology as well as influencing the cell’s

migratory properties, function and proliferation. The different components of the

extracellular matrix fulfil different roles. Figure 2.4 shows a schematic image of

the extracellular matrix and its components. The major proteins in the ECM

are collagens. This is a family of fibrous proteins which is, for example, the main

component of skin and bone. Its role in the ECM is mainly structural and it

can form long fibrils which can assemble into highly ordered arrays. Another

structural component of the ECM is elastin, which forms the main part of the

elastic fibres, giving the tissues such as skin and blood vessels their elasticity.

Fibronectin and laminin, two further proteins found in the ECM, have mainly

adhesive functions. Fibronectin exists as both a soluble form in the blood and

as insoluble filaments on the surface of certain cells which then deposit it in the

matrix. Fibronectin is not only important for cell–matrix attachment but also

for guiding cell migration.

The meshwork of these ECM protein fibres is embedded in a hydrated gel con-

sisting of negatively charged polysaccharide chains covalently linked to proteins.
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Figure 2.4: Schematic image of a cell membrane and the extracellular matrix

surrounding the cell. Different components of the extracellular matrix are shown -

the proteins collagen, fibronectin and laminin as well as the proteoglycans. Image

adapted from the on-line course of cell biology by Sichuan University.

The complex of polysaccharide chains and a core protein forms a proteoglycan

molecule. The polysaccharide chains adopt very extended conformations and thus

fill a very large volume compared to their mass. Due to their negative charges,

they attract osmotically active cations. This leads to water moving into the ma-

trix and thus creates a swelling pressure that enables the matrix to withstand

compressive forces. In addition to keeping the space around the cells hydrated,

the proteoglycan molecules can also form porous gels of different pore sizes and

charge densities which allows them to regulate the traffic of molecules in the ex-

tracellular matrix. This can, for example have an effect on cell signalling [Alberts

et al., 2002].

Although cells are highly influenced by the surrounding ECM, the interaction is

not unidirectional. In addition to secreting extracellular matrix components, cells

also rearrange and organise the extracellular matrix just like the ECM guides and

influences the cells.
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2.3 Cell migration

The migration of individual cells occurs in a wide variety of biological contexts

ranging from development and wound healing to malignant diseases such as can-

cer [Lauffenburger and Horwitz, 1996, Yang and Weinberg, 2008, Baum et al.,

2008, Lee et al., 2006]. Figure 2.5 shows a schematic diagram of the four-step

movement cycle. In order to migrate, a cell first needs to acquire front-rear

polarity, which is in itself a very complex process [Etienne-Mannevielle, 2008,

Tanos and Rodriguez-Boulan, 2008]. The direction that a cell polarises in can

be determined by extracellular cues such as growth factors, chemical gradients

and extracellular matrix components through spatially limited activation of sig-

nalling complexes inside the cell [Huttenlocher, 2005]. The polarity is stabilised

and sustained during migration by multiple feedback mechanisms that include,

among others, integrins - cell–matrix adhesion molecules, which maintain the

spatial molecular asymmetry [Huttenlocher, 2005, Lauffenburger and Horwitz,

1996]. Complexes at the front of the cell interact with the actin filaments of

the cytoskeleton leading to polymerisation and extended membrane protrusions

[Huttenlocher, 2005, Mogilner, 2007]. This is achieved by controlling the pool of

free actin monomers as well as the number of free actin filament ends, for example

by preventing self-nucelation and by targeting monomers to the free ends [Ridley

et al., 2003]. Certain capping proteins terminate this process and also ensure that

it only occurs in filaments close to the membrane. A different set of complexes

ensures the disassembly of older filaments at the rear of the cell to ensure the

supply of monomers [Ridley et al., 2003]. The resulting protrusions can be large,

widespread lamellipodia or thin filopodia (see Figure 2.5). It is suggested that

these two structures have distinct functions. The broad ‘brush-like’ structure of

the lamellopodium can push on large areas of the plasma membrane thus induc-

ing directional migration whereas the spike-like filopodia might be acting more as

9



Figure 2.5: Image showing the four main steps of cell migration. Once a cell

has established front-rear polarity, protrusions are formed through actin polymeri-

sation. Then new adhesions are formed with the matrix at the front of the cell.

Subsequently contraction leads to translocation of the cell body and the rear is

retracted by breaking the cell–matrix bonds and disassembling the actin filaments.

Reproduced with copyright permission from Mattila and Lappalainen [2008].
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sensors to explore the environment [Ridley et al., 2003]. Both types of protrusions

bind to the extracellular matrix through integrins. Integrins are transmembrane

cell–matrix adhesion molecules which are activated by binding to the extracel-

lular matrix. These molecules consist of two subunits : an α and a β unit. In

mammals there are multiple types of both, the different combinations of which

lead to 24 different kinds of integrins. All of these different types bind to distinct

subsets of ECM ligand, although they are partially overlapping. Once integrins

are activated they cluster and initiate signalling processes on the inside of the cell

leading to the accumulation of adaptor proteins and proteins involved in actin

polymerisation which is why they can influence and initiate cell polarisation [Guo

and Giancotti, 2004]. Integrins bind to the actin filaments via these adaptor pro-

teins establishing a solid link between the cell’s cytoskeleton and the extracellular

matrix. The binding of adaptor molecules furthermore increases integrin activity

by changing its conformation to the high affinity state [Ridley et al., 2003]. This

process takes place over a period of a few minutes during which small focal com-

plexes stabilise to form focal contacts [Friedl and Wolf, 2003, Ridley et al., 2003,

Zamir and Geiger, 2001]. Depending on the type of cell these focal contacts are

more or less pronounced. Fast migrating leukocytes, for example, only have very

few visible integrin clusters. Thus very small adhesions are probably important

for their migration [Ridley et al., 2003]. The connection between the cytoskele-

ton and the ECM can be used for two purposes - it gives the cell traction to

migrate and it also enables the cell to gather mechanical information about the

environment it is in. Following focal contact formation, cell contraction leads to

the generation of traction forces and therefore the forward movement of the cell

body whereby any cell–matrix bonds at the rear of the cell are released [Friedl

and Wolf, 2003, 2009, DiMilla et al., 1991, Lauffenburger and Horwitz, 1996]. In a

three-dimensional matrix cells are surrounded by matrix elements and thus their
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movement is obstructed by the lack of space to move into. Cells have evolved

different mechanisms to deal with this, which depend on the cell’s characteristics

as well as the density and rigidity of the matrix [Friedl and Wolf, 2010]. Some

cells adapt to their environment by becoming highly deformable so that they can

squeeze through gaps in the matrix provided the matrix is pliable and the gaps

are of a reasonable size. This is called amoeboid migration. Other cells however

create a space to migrate into. They break down the matrix fibres that block

the preferred path. This process is called focalised proteolysis and the type of

migration is termed mesenchymal migration [Friedl and Wolf, 2009, 2010]. Figure

2.6 shows the different types of migration by which cells can migrate in two- and

three-dimensional tissues (Figure 2.6(a)) and the conditions under which cells

acquire these different migration modes (Figure 2.6(b)).

A key component of all cell migration is the interaction with the individual

fibres of the matrix. This becomes clear when closely examining the interac-

tions between a cell and the individual matrix fibres as is done, for example, in

the experiments shown in Figure 2.7. These images clearly show individual cells

interacting with single fibres and reorienting these fibres which changes the envi-

ronment for themselves and also for other cells. Recent experimental studies have

investigated in more detail the importance of this remodelling of individual fibres,

of cell adhesion and of force generation on two-dimensional surfaces [Friedrichs

et al., 2007, Ludwig et al., 2008, Kirmse et al., 2011, Jiang et al., 2004, Lo et al.,

2000, Poole et al., 2005]. It was shown, for example, that cells align the matrix

during migration by reorienting individual collagen fibrils. Surprisingly the de-

formation of the matrix occurred asymmetrically revealing a matrix anisotropy

which supports directional cellular traction and cell polarisation. Furthermore it

was found that the directional motility of certain cells on a two-dimensional col-

lagen matrix not only depends on the global structure given to the matrix by the
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(a)
Figure 2.6: Schematic diagram

showing the different types of mi-

gration cells can acquire.

(a) Representation of the differ-

ent migration modes in which

malignant tumour cells can in-

vade the surrounding tissues.

(b) Table of the determining fac-

tors for the different migration

modes. Images reproduced from

Friedl and Wolf [2010] in accor-

dance with RUP copyright policy.

(b)

individual collagen fibrils, but also on the molecular-scale structure of the fibrils.

These recent studies show that there is still a lot unknown about cell migration

even in the simplest setting of a single cell on a two-dimensional matrix and that

therefore this field sparks evermore biological and medical interest.
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Figure 2.7: Experimental images of individual cells interacting with collagen

matrices of differing fibre alignment. (a) D-periodic fibres (i.e. anisotropic) (b)

non periodic fibres (i.e. isotropic) (c) glutaraldehyde-fixed D-periodic fibres. Re-

produced with copyright permission from Friedrichs et al. [2007].

2.4 The epithelial phenotype

The human body is made up of trillions of cells all of which can be organised into

over 200 types. However, all of these different cell types can be grouped together

as components of five main classes of tissues: epithelial tissue, connective tissue,

muscular tissue, nervous tissue and blood [Lodish et al., 2012]. Epithelial cells

form sheets that line the hollow organs in the body, for example the lung, kid-

ney and the gallbladder and the external surface of organisms [Weinberg, 2007].

Through this they protect the underlying tissue from the contents of the cavity
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(a) (b)

Figure 2.8: The epithelium. (a) Schematic diagram of the epithelium with

the underlying basement membrane and loose connective tissue. Image taken

from Antranik.org. (b) Image of the endothelium lining the gall bladder with

the underlying basement membrane and loose connective tissue with blood vessels,

bar=100 µm. Image taken from the University of Kansas Medical Centre website.

and transport fluids and essential nutrients [Weinberg, 2007, Freshney, 1992]. The

skin is for example an epithelium which protects us from dehydration due to loss

of water as well as from any external factors. Beneath the sheet of epithelial cells

lies the basement membrane which serves as a scaffold for the cells and separates

them from the connective tissue underlying it [Weinberg, 2007]. The basement

membrane is a very dense layer of extracellular matrix. Epithelial cells that form

a sheet situated on a basement membrane are fully differentiated and generally

have a cuboid or columnar shape (see Figure 2.8)[Freshney, 1992]. Their nucleus

is located in the lower third of the cytoplasm. On the apical side, the side facing

inward into the lumen of a cavity, they have microvilli. The apicolateral surfaces

form strong adhesion bonds with their neighbours through multiple junctional

complexes. [Freshney, 1992]. There are strong gradients in the molecule concen-

trations from the apical to the basal side of the cell, and vice versa, which are
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initiated and maintained by the cell–cell adhesion complexes at the apicolateral

sides of the cell as well as the cell–matrix adhesion at the basal end. This gives the

cell a characteristic apical-basal polarity. Different types of junctions exist that

mediate the cell–cell interactions. The three main classes are anchoring junctions,

tight junctions and gap junctions. While gap junctions allow the fast transport

of small molecules between the cytoplasms of two neighbouring cells, anchor-

ing junctions and tight junctions are responsible for holding the tissue together.

Again there are multiple different types of anchoring junctions, the most studied

of which are probably the adherens junctions. This special type of junction con-

sists of adhesion proteins in the plasma membrane, called cadherins, which bind

to proteins on the neighbouring cell’s surface, adaptor proteins, which connect

the adhesion proteins with the cytoskeleton, and the cytoskeleton filaments them-

selves [Lodish et al., 2012]. Epithelial cells express E(pithelial)-cadherin which

is in this case not only a cell–cell adhesion protein but also a marker for the

epithelial phenotype as well as an inducer of the apical-basal polarity.

2.4.1 E-cadherin and β-catenin

E-cadherin is one of the most important adhesion molecules in epithelial tissues

[Pecina-Slaus, 2003]. It is a parallel homodimer with five cadherin repeats bound

together by calcium ions forming the “stiff, rod-like” [Gumbiner, 2005] extracellu-

lar region of the protein. The intracellular domain binds to a complex of different

catenins which link it to actin binding proteins and the actin cytoskeleton. Figure

2.9 gives a rough representation of this. In adherens junctions the extracellular

domain of one E-cadherin dimer forms a homotypic bond with an E-cadherin

dimer on the neighbouring cell (see Figure 2.9). One of the many roles of E-

cadherin is the binding of β-catenin. This not only forms a functioning cell–cell

adhesion site but it also prevents β-catenin from interacting with other proteins.
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Figure 2.9: Schematic diagram of an adherens junction and the proteins

involved. AJ=adherens junction, ED=extracellular domain, CM= cytoplas-

mic membrane, ID= intracellular domain, AC=actin cytoskeleton, 1=β-catenin,

2=α-catenin, 3=p120-catenin. Image reproduced from Pecina-Slaus [2003] in ac-

cordance with the Open Access license.

β-catenin exists in three pools in the cell: 1) bound to E-cadherin at the cell mem-

brane, 2) in the nucleus associated with the LEF/TCF transcription factors, 3) in

the cytoplasm where it can associate with the adenomatous polyposis coli (APC)

tumour suppressor gene product and other proteins which mark it for degrada-

tion [Juliano, 2002, Wong and Gumbiner, 2003]. It has been suggested that the

binding of β-catenin to E-cadherin and the binding to APC are processes that

cooperate to maintain tissue integrity and prevent tumour development [Huelsken

et al., 1994]. However the activity of β-catenin as transcription a factor has rather

opposite effects. Therefore the E-cadherin–β-catenin pathway has been studied

extensively. A brief overview over E-cadherin–β-catenin dynamics starts with E-

cadherin and β-catenin binding at the endoplasmatic reticulum immediatly after

production [Hinck et al., 1994]. The complex is then trafficked to the cell mem-

brane [Hinck et al., 1994, Chen et al., 1999]. Other molecules such as α-catenin
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can then bind and when cell–cell contact takes place the complex can form ad-

herens junctions with E-cadherin-β-catenin complexes on the neighbouring cell

[van Roy and Berx, 2008]. Junction disassembly followed by endocytosis lead

to the disruption of the E-cadherin-β-catenin complex and the components can

either be degraded, recycled for cell–cell adhesion or reused in different signalling

contexts. As mentioned above, the fate of the free β-catenin molecules needs to be

tightly regulated and is partly dependent on the presence or absence of proteins

of the Wnt family. Wnt proteins bind to the cell surface receptor Frizzled which

in turn activates the Dishevelled family proteins. Active Dishevelled proteins can

inactivate a complex of axin, GSK-3β and APC. This complex, when activated,

leads to the phosphorylation of β-catenin which can subsequently be ubiquinated

and thus marked for degradation. The presence of Wnt therefore inhibits the

degradation of free β-catenin and a cytoplasmic pool can stabilise. If the free

β-catenin level is above a certain threshhold, some β-catenin molecules can enter

the nucleus and can interact with the transcription factors of the TCF/LEF fam-

ily to promote the transcription of specific genes. These genes are pro-migratory

and pro-invasive (e.g. MMP7)[Hulsken and Behrens, 2000]. High levels of nuclear

β-catenin can be found at the invasive front of a tumour whereas in central areas

it is located at the membrane in E-cadherin–β-catenin complexes [Brabletz et al.,

2001]

2.4.2 Epithelial cell migration and the epithelial to mes-

enchymal transition

“Epithelial cells do not migrate!” This statement was made by a famous de-

velopmental biologist in 1990 [Quaranta, 2002]. The citation has been used to

introduce a paper on the motility cues of the tumour environment in which it is

explained that this statement is no longer seen as the ultimate truth and that it
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is now agreed that epithelial cell migration does occur for example in the context

of wound healing as well as in malignant cancer cell invasion [Quaranta, 2002]. In

order for the cell to migrate as explained above, changes in the actin cytoskeleton

and cell adhesion are required. It is now generally agreed that a prerequisite is for

the cell to undergo some measure of epithelial to mesenchymal transition which

includes loss of the characteristic apical-basal polarity and cell–cell adhesion. In

wound healing this transition generally only occurs in the leading cells and it is

only partial with minor loss of cell–cell contact. Malignant cells undergo a more

complete transition which leads to the migration of cell sheets and strands as well

as individual cells. Depending on their characteristics and their environment, the

single cells can migrate either in a mesenchymal or amoeboid fashion (see Fig-

ure 2.6). In migrating cell clusters, the leading cells are generally highly mobile

whereas the following cells are more passive.

The epithelial to mesenchymal transition (EMT) was first described in the context

of embryology. Here it plays a crucial role, for example, in the formation of the

multilayered structure from a single epithelial layer during gastrulation [Levayer

and Lecuit, 2008]. In order for this structure to form, epithelial cells have to lose

their epithelial characteristics and become motile mesenchymal cells. Similarly,

cells from epithelial cancers generally have to undergo EMT before they can start

invading and migrating through surrounding tissue.

Many molecular processes are involved in the transition from an epithelial to a

mesenchymal cell. Certain transcription factors are activated and, among others,

specific cell surface proteins as well as cytoskeletal proteins are expressed. One

of the main markers of epithelial cells, E-cadherin, is furthermore lost or down-

regulated. This can be seen at the periphery of many invasive cancers as well as in

embryonic cells undergoing EMT [Weinberg, 2007]. Instead, these cells acquire

mesenchymal properties such as front-rear polarity and spindle shape together
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Figure 2.10: Schematic diagram of the process of the epithelial to mesenchymal

transition and the biomarkers linked with each stage. Reproduced with copyright

permission from Kalluri and Weinberg [2009].

with the expression of mesenchymal markers such as N-cadherin and integrins.

All of these changes in the protein expression pattern are used as biomarkers for

the progression of the EMT (see Figure 2.10) [Kalluri and Weinberg, 2009].

Many different triggers for this switch have been suggested. Whereas a lot of

work has been focussed on identifying molecular players in the switch and many

E-cadherin antagonists have been found [Kang and Massague, 2004, Schmalhofer

et al., 2009], it has also been linked to the cells’ microenvironment. The role

of stromal cell types like fibroblasts, macrophages and inflammatory cells in in-

ducing up-regulation of EMT drivers has been shown [Weinberg, 2007]. Also the

possible importance of the extracellular matrix has been identified [Nakaya and

Sheng, 2008]. This work proposed that the disassembly of the basement mem-

brane rather than that of the adherens junctions formed by E-cadherin, is a key

driver of EMT. This was the conclusion after noticing that the breakdown of the

basement membrane was the first noticeable event during EMT in chick embryos

and thus preceded the loss of adherens junctions as well as that of epithelial mark-

ers such as E-cadherin. Whether the induction of EMT after basement membrane

breakdown is due to the changes in the mechanical forces or because the barrier

that holds back certain growth factors and other chemicals has been breached is
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not yet clear, as one can never be observed without the other [Ingber, 2002].

The EMT is seen as being completed when the basement membrane underlying

an epithelial layer is partly degraded and a mesenchymal cell has formed which

can migrate away from the layer it originated from [Kalluri and Weinberg, 2009].

However, this process is reversible. Not much is known about the mesenchymal

to epithelial transition (MET) but it is an important process during development

where cells within certain tissues move back and forth between epithelial and

mesenchymal phenotypes [Kalluri and Weinberg, 2009]. It has also been sug-

gested that it plays a part in the formation of metastases (secondary tumours).

Some of the cells in the primary tumour might turn into a more mesenchymal

phenotype after receiving EMT-inducing signals. This allows them to invade the

surrounding tissues and travel to other sites in the body. Here the EMT-inducing

signals might be absent which could lead to the reverse process, the MET. Thus

cells at metastatic sites revert to the phenotype shown by other cells inside the

primary tumour [Weinberg, 2007].

2.5 Carcinogenesis

Carcinogenesis is defined as “the process by which normal cells are transformed

into cancer cells” (NCI Dictionary of Cancer Terms). It is a multi-step process

which generally takes place over a series of decades. The progression sees normal

cells evolve and form benign tumours which are localised and non-invasive. They

then become more and more malignant through gaining the ability to invade the

local tissue and form metastases at distant sites in the body. Malignant tumours

are called cancers [Weinberg, 2007]. The metastases of these malignant tumours

are the main causes of death. About 90% of cancer deaths are due to these sec-

ondary tumours. The reason is that whereas the primary tumours generally have
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to be of a very large size in order to affect the normal tissue function, the metas-

tases often cause great devastation, most frequently by disrupting vital organs

like the brain or the liver. An example is breast cancer which usually would not

endanger life, but metastases arising from it are likely to form in the bone tissue

which can cause erosion and finally skeletal collapse [Weinberg, 2007].

Tumours are classified by their origin. The most common human tumours arise

from epithelial tissues and are called carcinomas. They are responsible for 80%

of cancer deaths. Most carcinomas fall into one of two categories that are asso-

ciated with the function of the epithelial cells. Squamous cell carcinomas arise

from epithelia whose main function is the lining of cavities and channels. These

cancers include those of the skin, the nasal cavity and the cervix. The second

category are the adenocarcinomas which arise from epithelia that contain spe-

cialised cells which secrete substances into the cavities that they line, mainly in

order to protect the epithelial cells (e.g. from the acidity in the stomach). These

include the colon, the breast, the pancreas and the stomach [Weinberg, 2007].

Different theories exist as to how tumours are initiated and promoted. The most

widely held view sees cancer development following darwinian evolution. In this

context the evolving entities are individual cells. Random mutations occur in the

different cells of a tissue leading to genetic variation in this cell population. In

this heterogeneous population selection may favour the prominence of an individ-

ual cell which has advantageous traits concerning proliferation and survival in the

existing microenvironment. This cell and its descendants form a clone which can

expand rapidly. Once this clone has reached a certain size another advantageous

mutation might occur in one of these cells leading to a new, doubly mutated

clone which can outgrow the clone it originated from and so on. Certain foods

and other external factors that have been shown to increase cancer development

might speed up the mutation rate and influence the development that way. This

22



is a very simplistic view of cancer development, yet it can easily be extended to

include new findings coherently.

Another theory sees cancer development not driven by mutations alone but also

by its environment. Thus cancer may be seen as a disease of deregulation of the

process of cell integration into tissue or tissue integration into organs [Ingber,

2002]. It should therefore be studied as a disease of the tissue and not of an in-

dividual cell [Sonnenschein and Soto, 2011]. Reasons for this are that the review

of experimental evidence has shown that at a genetic level, cancer cells cannot

in fact be distinguished from normal cells just as little as cells from malignant

tumours can be distinguished from those of benign tumours. In addition many

cell behaviours seen in cancer development (growth, motility etc.) are normal be-

haviours during embryonic development and can be induced in vitro by altering

the physical interactions between the cells and the extracellular matrix [Ingber,

2008]. Similarly it has been shown that the cancer phenotype can be reversed

by integrating cancer cells into normal tissue [Sonnenschein and Soto, 2011]. In

general, mechanical factors can lead to the diverse array of cell shapes and ar-

rangements occurring during organ development and thus have a strong influence

on cell behaviour at a tissue level.

A relatively new but quickly evolving concept is that of cancer stem cells. This

theory evolved due to the fact that tumours form tissue clones. Thus the cells

in a tumour are not as heterogeneous on a genetic, epigenic, phenotypic or any

other level as one would expect if the development was driven by the accumu-

lation of mutations in the cells and the concept of darwinian evolution. Normal

tissues are generated and maintained by stem cells. These cells undergo coordi-

nated processes to produce progeny that can either be stem cells or cells that will

become highly differentiated depending on the requirements. Cancer stem cells

are defined in the same way with the difference that they do not produce normal
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tissue cells but can generate a fully malignant cell population. Thus in order to

eradicate a cancer, the cancer stem cells have to be targeted by the therapies.

Whatever the precise underlying causes, the general progression in carcinogenesis

is the same. The development begins with abnormal cell proliferation. However

the cells are constrained to stay on the epithelial side of the basement membrane.

At this point carcinomas are still benign. Tumours at this stage are called hyper-

plastic or metaplastic. Hyperplastic tissues appear to be normal apart from an

excess number of cells. In metaplastic tissues, cells are reversibly replaced by an-

other differentiated cell type which is normal but usually not encountered at that

site. Dysplasia is the next step in carcinogenesis and forms the transition from

benign to premalignant tumours. Dysplastic tissues are cytologically abnormal

Figure 2.11: Schematic diagram showing the development of ductal carcinoma.

The normal cells first turn hyperplastic and then develop into a ductal carcinoma

in situ, a high grade dysplasia. Then they acquire the ability to breach the base-

ment membrane and lead to microinvasion before turning into a fully invasive

ductal carcinoma. Image taken from the BC Cancer Agency website.

24



but still benign as they respect the boundary created by the basement membrane.

A tumour turns malignant once it has gained the ability to breach the basement

membrane and invade the surrounding tissue. The final degree of abnormality

is reached when metastases are formed [Weinberg, 2007]. Figure 2.11 shows this

development in the case of a specific kind of breast cancer, ductal carcinoma.

Here the different stages can be seen very clearly. In bigger and flatter tissues

the process is the same (imagining cutting the ducts open and flattening them

out gives an image of the development in flat sheets).

The breach of the basement membrane in carcinogenesis is the beginning of the

”invasion-metastasis cascade” [Weinberg, 2007] (see Figure 2.12). Although most

avascular tumours are able to induce the growth of a vascular network on the

stromal side of the basement membrane and thus secure the nutrient and oxygen

supply, breaking through the membrane and moving through the extracellular

matrix enables them to get direct access to the blood vessels and lymphatic ves-

sels. This does not only mean that they have a better nutrient supply and can

thus proliferate even more, but it also means that some cells might be able to

force their way through the vessel wall, a process called intravasation. Once in-

side the blood stream (or lymph system), the cancer cells are transported around

the body. At distant sites they can extravasate (move through the vessel wall

into the tissue) and form secondary tumours. Only a small number of cells are

usually capable of surviving this journey and even fewer are able to lead to a

cell population of detectable size at a new site where the environment is different

to that at its site of origin [Weinberg, 2007]. However, enough cells successfully

manage this to lead to 157,275 cancer deaths in the UK alone in 2010 (according

to Cancer Research UK). Statistics show that cancer is one of the main causes of

death in the western world and understanding how cells migrate and invade local

tissues as well as how they get into the blood vessels is of utmost importance in
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Figure 2.12: Schematic diagram showing the invasion-metastasis cascade. Im-

age reproduced with copyright permission from Fidler [2003] as adapted by Wein-

berg [2007].

order to block the spread of cancer through the body.
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Chapter 3

Mathematical and

Computational Modelling of Cell

Migration and Invasion

As explained in the previous chapter, cell migration is a very important process in

many biological systems ranging from embryonic development to wound healing

to diseases such as cancer. Because of its complexity and importance in such a

wide range of processes, it has been studied and modelled mathematically and

computationally as part of different biological and medical scenarios as well as

independently of the specific context.

Models which study cell migration itself, exist across a range of spatial scales from

the subcellular level to the level of tissues and organs. Models at the subcellu-

lar level include those that study actin and myosin dynamics during lamellipod

protrusion and cell contraction (e.g. [Novak et al., 2008, Mogilner and Edelstein-

Keshet, 2002, Peskin et al., 1993]). Actin filaments fill the lamellipod with a

rectangular network. The protrusion is driven by constant polymerisation and
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capping of the leading filaments. Polymerisation leads to the front end of the fil-

ament bending against the cell membrane creating an elastic force which leads to

the extension of it. Models of this process were, for example, able to predict that

the filaments at the front of the cell have to grow at an angle to the leading edge

as parallel growth can occur fast but does not lead to protrusions and normal

growing filaments are too rigid and do not bend enough to create the elastic force

needed. The models employ a variety of modelling techniques and are reviewed

extensively in Mogilner [2007].

Moving up to the cellular level, detailed models of single cell mechanics coupled

with adhesion receptor dynamics on the surface of the cell during migration have

been developed. One of these techniques models the cell as a chain of elastic

springs and viscous dashpods (e.g. [DiMilla et al., 1991]). With this type of

model it was possible to predict the speed of migrating cells and the biphasic

dependence on multiple factors such as receptor and ligand densities. The shape

change of a cell has also been modelled as a moving boundary problem [Mogilner,

2007].

Cell migration models that take into account the cell’s microenvironment by mod-

elling the structure and organisation of the extracellular matrix have also been

developed. These models generally fall into the two classes (1) hybrid discrete-

continuum (e.g. [Dallon et al., 1999, McDougall et al., 2006]) and (2) continuum

models (e.g. [Hillen, 2006, Chauviere et al., 2007, Painter, 2009]). The hybrid

discrete–continuum models consider cells as discrete entities but the microenvi-

ronment is modelled as a continuum. This technique has been used, for example,

to study cell migration in the context of wound healing in order to understand

why scar tissue shows a higher degree of alignment than unwounded, normal tis-

sue [Dallon et al., 1999]. Finding the answer to this question is important for the

development of anti-scarring therapies. In the model the cells move across the
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matrix by contact guidance and produce matrix elements as well as rearranging

the matrix locally. Studying different scenarios with this model led to the results

that the alignment of scar tissue is influenced by cell speed and initial matrix

orientation among other things. Although this model specifically concentrates on

the process of wound healing, it gave some initial ideas to the work developed in

this thesis concerning the modelling of cell–matrix interactions.

Continuum models do not consider individual cells but cell densities as well as

a continuous description of the matrix and thus study the problems at a tissue

level. With these models it has, for example, been studied how a group of cells

behaves under the influence of a chemotactic field in addition to a heterogeneous

fibrous matrix [Chauviere et al., 2007] and what patterns arise under the different

migration modes, amoeboid and mesenchymal [Painter, 2009].

Cell migration in the context of cancer cell invasion has also mainly been con-

sidered in discrete-continuum or continuum models which employ systems of

reaction-diffusion-taxis partial differential equations (e.g. [Ramis-Conde et al.,

2008a, Anderson et al., 2000, Chaplain and Lolas, 2005, Gatenby and Gawlin-

ski, 2006]). Here cell migration is generally governed by random motility and

a directed response to gradients in the extracellular matrix (haptotaxis). These

models clearly have the advantage of being computationally very efficient and

they thus offer the opportunity to study the influence of a number of different

factors, e.g. chemotaxis, haptotaxis, matrix degradation, on the cell’s behaviour

at an individual cell level (hybrid models) and at the tissue level (continuum

models). They however neglect the fact that these processes take place at the

level of single cells interacting with individual matrix fibres.

In this thesis models are developed that are based on specifically modelling the

individual elements. Other individual-based models of cell migration and invasion

can be found in the literature and a brief review of the different individual-based
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Figure 3.1: Schematic diagram illustrating different modelling techniques. (a)

Continuous models consider a mass of cells whereas individual-based models ((b)-

(e)) consider individual cells. The cells are modelled with different levels of de-

tail in the different individual-based modelling techniques. Image reproduced with

copyright permission from Rejniak and McCawley [2010].

modelling techniques and some specific applications are given in the next section.

3.1 Individual-based models

Two main categories of individual-based models exist, on- and off-lattice models.

Figure 3.1 illustrates the different techniques. The grid spaces of lattice-based

models are chosen either to be the size of a cell or a cellular sub-compartment

and can be either square or hexagonal. Cellular automaton models (see Figure

3.1(b)) were first proposed by John von Neumann and are probably the simplest

individual-based modelling approach. In these models a grid space generally rep-

resents one cell and rules govern how the cells move between grid points. Due

to its computational efficiency this modelling technique allows for the simula-

tion of very large systems. In addition intracellular signalling pathways can be

encoded in each cell and/or continuous descriptions of nutrient fields and other
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environmental factors that influence the cells’ behaviour can be added, leading

to hybrid and multiscale models. Although relatively simple, this approach can

provide models in which interesting collective behaviour can emerge at a tissue

level by bringing together interacting components governed by certain rules. The

draw-back is, however, that the cells are considered as points and thus the whole

set-up is rather artificial and the results can often be directly linked to the rules

employed or to the fact that important cellular characteristics (e.g. biomechani-

cal properties) are ignored. Cellular automaton models have however been used

to study cancer cell invasion and have, for example, been able to form hypothe-

ses as to how the branching tumour morphology develops and how metabolic

changes might lead to tumour invasion. A review of these models can be found

in Hatzikirou et al. [2009].

Another lattice-based modelling technique is the cellular Potts model (see Figure

3.1(d)) which can be seen as an extension of the cellular automaton model. Here

generally multiple lattice sites make up one cell and the overall idea is that the cell

behaves in a way that lowers its effective energy. This energy takes into account

the volume and shape of the cell, cell–cell and cell–environment interactions and

any further elements encoded in the model. Simulations of a cellular Potts model

are a series of attempts to extend the cells’ boundaries. If the extension lowers

the total effective energy it is accepted. However, if the extension increases the

effective energy it is only accepted with a certain probability according to the

Boltzman acceptance function. In contrast to the cellular automaton model, this

modelling technique takes into account that cells are spatially extended physical

objects rather than points and the behaviour of the cells is driven by the effective

energy rather than rules alone. It is however very difficult to link the parameters

used in the model to experimentally measured parameters and the fact that it is

lattice-based means that, similar to the cellular automaton model, it is quite an
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abstract modelling technique. Cellular Potts models of cancer cell invasion have

been developed. With one of these models the dependency of invasion on cell–

cell and cell–matrix adhesion has been investigated and it has been found that

cell–cell adhesion is less influential on the invasive behaviour than cell–matrix

adhesion and matrix proteolysis [Turner and Sherratt, 2002]. By extending the

model to include proliferation the simulations have furthermore allowed the for-

mation of the hypothesis that proliferation does not necessarily increase the depth

of invasion but may, in some cases, reduce invasiveness. A detailed description

of the cellular Potts model, its applications and also multiscale extensions can be

found in Scianna and Preziosi [2013].

Lattice-free models are generally computationally far more expensive than lattice-

based ones. They are, however, biologically more realistic and allow for the in-

clusion of cell mechanics. An example of a lattice-free model is the immersed

boundary method. The IBCell model (see Figure 3.1(e)), an immersed boundary

model of a cell, models the cell membrane as a network of linear elastic springs

whereas the cell’s interior, the cystoplasm, is modelled as an incompressible fluid

[Rejniak, 2005, 2007]. Discrete receptors on the boundary of the cell allow the in-

teraction between cells and also the cell and its environment [Rejniak, 2007]. This

model has the advantage of being very detailed concerning the cell mechanics,

especially the way the cells change shape. Due to the computational complex-

ity, however, only a very few cells can be considered in a given simulation. The

Subcellular Elements Model is another example of an off-lattice modelling tech-

nique [Newman, 2005]. In this technique each cell is represented by a number

of subcellular elements. The elements interact via intra - and intercellular po-

tentials. These interactions represent elastic responses to inter- and intracellular

biomechanical forces and each element moves according to them. This allows

the cells to have an adaptive shape, yet, depending on the number of subcellular
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elements, being computationally slightly less expensive than the IBCell model. A

third type of lattice free model has first been described in 2001 and is now widely

used, for example in the simulation package CHASTE [Pitt-Francis et al., 2009].

This modelling technique uses the cell centres as points of reference and the indi-

vidual cell centres are connected by linear, over-damped springs [Meineke et al.,

2001]. A Voronoi tessellation of the space the cells are situated in gives each cell

an individual shape. It is assumed that the cells aim to have an equal distance

from one another which is enforced by the viscoelastic forces of the springs. Cell

division unbalances this pattern and thus gives rise to cell migration. This mod-

elling technique has been used to study the colonic crypt and the development of

colorectal cancer [Mirams et al., 2012]. It is, however, unsuited to study individ-

ual cell migration and invasion as the shape and the movement of the cells depend

solely on their interactions with neighbouring cells and it is thus not applicable

to problems that study individual cells and cell-matrix interactions. Another

off-lattice technique is the particle centre-based or force-based model (see Figure

3.1(c)) which is more flexible than the one described last, but computationally

less expensive than the Subcellular Element Model and the IBCell model. It will

be explained in more detail as this is the technique used in the modelling work in

this thesis. For a more extensive review of individual-based modelling techniques

see Anderson and Rejniak [2007].

3.2 Force-based models

The particle centre-based or force-based modelling technique for simulations of

cell populations was originally developed by D. Drasdo. In these models cells are

represented by a fixed spherical shape and are numerically referred to by their

centre and radius. The movement of a cell takes place as a result of the forces

acting upon it which is why this technique is also called force-based. Newton’s
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second law of motion is applied to derive the equation governing the cell’s motion,

i.e.

F = ma (3.1)

where F is the net force acting on the body, m is its mass and a its acceleration.

The law states that the acceleration of a body is proportional to the net force

acting on it. Since the periods of time during which the cells start and stop

their movement are very short in comparison to the time they spend moving with

uniform velocity, these short phases of acceleration and deceleration shall not be

considered here and thus:

F = 0. (3.2)

This equation implies that all the forces acting on a cell j must balance. In gen-

eral, the forces acting on cells are drag forces Fdrag, cell–cell interaction forces Fij

for all neighbouring cells i, cell–matrix interaction forces Ffj for all neighbouring

matrix fibres f and any chemotactic or haptotactic forces Ftaxis. In addition a

noise term fj can be added to include further smaller influences on cell motion

that are not included in the forces mentioned above. Forces that can direct the

cell’s movement are positive if, when going back to the original form of Newton’s

law, they increase the acceleration whereas forces that decrease acceleration are

negative. This leads to the equation:

fj + Ftaxis +
∑
fnnj

Ffj +
∑
innj

Fij − Fdrag = 0, (3.3)

or

Fdrag =
∑
innj

Fij +
∑
fnnj

Ffj + Ftaxis + fj, (3.4)

where the summation term fnnj denotes all fibres f that are ‘nearest neighbours’

to cell j and similarly the term innj denotes all cells i that are ‘nearest neighbour’

to cell j. While any chemotactic and haptotactic forces are forces which may be

described in terms of a gradient of a prescribed external concentration field, the
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Figure 3.2: Illustration of the cell–cell interactions, adhesion and repulsion.

Initially when cells come into contact they can start adhering to each other via

cell–cell adhesion molecules. This pulls them closer together and increases the

cell–cell contact area which in turn increases the number of adhesive bonds and

thus the adhesive force. However the cytoskeleton is not limitlessly deformable

and thus repulsion sets in when cells come too close. A balance of these two

forces leads to a stable position of the two cells relative to each other.

other forces are slightly more complex. Cell–cell interactions exist in the form

of adhesion and repulsion. Due to the adhesion receptors that cells express on

their surfaces, they can start adhering to each other as soon as they come into

contact. The adhesion force between the two cells increases, pulling the cells

closer together as the contact area gets larger and the number of cell–cell bonds

increases. But given that the cells are spheroidal in isolation, a large contact

area stresses their cytoskeleton and their membranes. Furthermore it has been

shown that cells only have a small compressibility [Byrne and Drasdo, 2009].

These two elements cause a repulsive force to arise between the two cells, should

their contact area get too large. Thus the cell–cell interaction dynamics are

those of adhesion and repulsion (see Figure 3.2). To capture this, the cell–cell

interactions are modelled using potential functions which have been used in a

number of different models [Galle et al., 2005, Drasdo and Hoehme, 2005, Ramis-

Conde et al., 2008a,b, 2009, Macklin et al., 2012]. In this thesis we will use the
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extended Hertz model to formulate the potential function as has been done in

some previously published work [Galle et al., 2005, Ramis-Conde et al., 2008b,

2009]. The extended Hertz model calculates the cell’s positive potential due to

compression using the classic Hertz model [Hertz, 1881, Landau and Lifschitz,

1959]. Originally this model was developed for two elastic infinite semi-spheres

and thus the diameter of the area of contact is assumed to be much smaller than

the radius of the semi-spheres. Furthermore, it is assumed that the surfaces are

continuous and non-conforming. Thus in order to be able to use this model as an

approximation, cells have to be modelled as elastic spheres and the deformations

have to be small as this ensures that most of the assumptions the Hertz model

is based on hold. Adhesive interactions are governed by expression levels of cell–

cell adhesion proteins such as E-cadherin (see Ramis-Conde et al. [2008b]). The

potential Vij between two cells i and j with radius Ri and Rj respectively is

calculated as follows:

Vij = (Ri +Rj − dij)5/2 2

5Ẽij

√
RiRj

Ri +Rj︸ ︷︷ ︸
repulsive interaction

+ εij︸︷︷︸
adhesive interaction

. (3.5)

The first term on the right hand side is the repulsive interaction given by the

Hertz model with

Ẽij =
3

4

(
1− σ2

i

Ei
+

1− σ2
j

Ej

)
.

dij is the distance between the centres of the two cells, σi and σj are the Poisson

ratios of the spheres and Ei and Ej are the elastic moduli. ε is the adhesive

contribution which is, for example, determined by the number of E-cadherin-

β-catenin bonds at the site of cell–cell contact and the energy that is released

during bond formation. This term for the adhesive interaction is negative. Figure

3.3(a) shows a one-dimensional example of the shape of such a potential function.

The biophysical properties of the cells determine the exact values of the potential

depending on the distance between the cells. The force Fij acting on the cell
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Figure 3.3: Figures showing a one-dimensional example of the potential and

force between two cells of radius 5 µm. (a) Plot of the potential calculated using

the extended Hertz model. (b) Plot of the force calculated as the negative derivative

of the potential shown in (a).

due to interactions with its neighbours is given by the negative derivative of the

potential.

Fij = −(d(Vij)/d(dij))(∂dij/∂x, ∂dij/∂y, ∂dij/∂z) (3.6)

Figure 3.3(b) shows the dependence of this force on the distance between the

cells. As can be seen in this figure, the cell seeks to lower its potential and thus

the stress it is under and therefore is forced to move away from the other cell

(positive force) when the repulsion is higher than the adhesion and vice versa.

3.3 The model by Ramis-Conde et al.

Ramis-Conde et al. developed a multiscale force-based model of cancer cell inva-

sion by using the technique explained above and adding intracellular E-cadherin

and β-catenin dynamics to the model [Ramis-Conde et al., 2008b]. For simplicity,
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it is assumed in the model that E-cadherin and β-catenin bind at the cell mem-

brane. Therefore three different states exist for the E-cadherin molecules: free

E-cadherin in the cytoplasm ([Ec]), free E-cadherin at the membrane ([Em]) and

E-cadherin in complex with beta-catenin at the membrane ([E/β]). Upon cell–cell

contact, E-cadherin moves to the cell surface. The amount that is translocated

is proportional to the contact area. Once at the cell membrane, E-cadherin can

bind β-catenin and can then form bonds with the neighbouring cells. If the cells

detach again, the complexes are dissociated and its components are free in the

cytpoplasm. It is assumed that E-cadherin can be recycled and thus the total

E-cadherin concentration does not change over time (ET = [Ec] + [Em] + [E/β]).

β-catenin however, can be degraded after forming a complex with the protea-

some. The Wnt pathway is taken into account here by assuming that if Wnt is

activated, no degradation takes place. Furthermore β-catenin is also produced at

a constant rate.

These dynamics are modelled using ordinary differential equations governing the

concentrations of [Ec], [E/β], β-catenin and the proteasome–β-catenin complex.

For the equations of this model and more detail see Ramis-Conde et al. [2008b].

In the model cells in isolation are assumed to be spherical with a radius R. When

a cell divides, the two daughter cells have a radius R/2
1
3 for volume conservation.

They then grow up to radius R before they can divide again. Cell–cell interac-

tions are governed by equations (3.5) and (3.6). The adhesive contribution to the

extended Hertz model is controlled by the intracellular dynamics and is calcu-

lated by εs = %mAijWs where Ws is the energy of a single bond, Aij is the contact

area between two cells and %m is the density of [E/β] in the contact area.

The movement of the cells is then given by an equation of the same type as (3.4).

Γf
is
νi︸︷︷︸

c−sfriction

+
∑
jnni

Γf
ij

(νi − νj)︸ ︷︷ ︸
cell−−cellfriction

=
∑
jnni

F ij︸︷︷︸
forces

+ f
i
(t)︸︷︷︸

noise

+ χ∇Q(t)︸ ︷︷ ︸
chemotaxis

(3.7)
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Simulations using this model showed the increase in nuclear β-catenin concentra-

tion at the outer rim of a tumour and how this leads to invasion of the surrounding

tissue. For a detailed explanation of the equation terms, parameter values and

results, see Ramis-Conde et al. [2008b].

3.4 The modelling framework used in this thesis

In this thesis we will extend the work by Ramis-Conde et al. [2008b] that has

been described above. In addition to the cell-cell interactions in the model we

will consider explicit interactions between individual cells and individual matrix

fibres. As the review of cell migration and invasion models in the above section

shows, this is a process that has not been considered before. Therefore we will

first model the interactions of a single cell with individual matrix fibres before

moving on to studying two cells on a sheet of extracellular matrix and then fi-

nally including these cell-matrix interactions in the cell-cell interactions model

by Ramis-Conde et al. [2008b]. We will also take a closer look at the way the

cell-cell interactions are modelled and coupled to the intracellular dynamics and

will improve this part of the model by Ramis-Conde et al. [2008b]. This will al-

low us to investigate the role of cell-cell adhesion proteins and pathway dynamics

together with the role of cell-matrix interactions in invasive cell populations.
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Chapter 4

An Individual-Based Model of in

vitro Single Cell Migration on a

2D Matrix

4.1 Introduction

In this chapter we develop an individual-based model of single cell migration on

two-dimensional substrates which is driven by forces acting upon the cell. In ad-

dition individual matrix fibres are reoriented due to cell traction forces. Though

focussing only on the most fundamental processes that drive cell migration, the

model allows for running multiple computational ‘experiments’ by varying cell

and matrix characteristics. After describing the model and the computational

simulation algorithm, we will explain how the simulation data, which is a time

series of cell positions, can be analysed to produce quantitative measures that

can be compared to experimental data. These measures, namely persistence time

and cell speed, will also be compared for different matrix stiffnesses and architec-

tures, fibre lengths and fibre densities as well as different maximum cell speeds.
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Furthermore we will show that this model can reproduce the experimental results

that cells prefer stiff to soft matrices. Though biological research has focused on

the coupling of biomechanics with cell signalling to explain these observations,

our findings lead to the hypothesis that the simple physical interactions between

cells and matrix fibres and the reorientation of fibres, or lack thereof, captured

in this model might be sufficient to produce this behaviour.

4.2 Model description

The basis of the model is an individual cell which moves according to the forces

acting upon it. The modelling approach used is a force-based approach similar

to the one used to study epithelial cell populations [Galle et al., 2005], cancer

cell invasion [Ramis-Conde et al., 2008b], the process of intravasation [Ramis-

Conde et al., 2009] and also cell migration in three-dimensional matrices without

the explicit inclusion of matrix elements [Zaman et al., 2005]. In contrast to

these previous models, the forces considered here are those that a cell generates

through interactions with individual matrix fibres to pull itself forward on a layer

of extracellular matrix.

4.2.1 Modelling the cell and the extracellular matrix

The shape of an individual cell is relatively flat and hemispherical and we assume

that its base has a radius of 15µm and it has a height of 2.6µm as has been

measured for Madin-Darby Canine Kidney (MDCK) cells by Schneider et al.

[2000]. We explicitly model individual matrix fibres, which could represent fi-

bronectin, collagen, laminin or other fibrous matrix components. These fibres

are represented by thin cylinders, the lengths of which are normally distributed
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with mean 75µm and standard deviation 5µm and the widths are 200nm (as mea-

sured for collagen in Friedl et al. [1997]). We consider a spatial domain of size

1000×1000µm in which we place 15,000 fibres, where one of the end-points of

each fibre is randomly positioned following a uniform distribution in space. For

isotropic matrices, the direction of each fibre is given by a normalised vector with

uniformly distributed x and y components (see Figure 4.1(a)). Ordered matrices

are also generated where the matrix fibres are either biased in the sense that they

form an angle between 90 ◦ and 180 ◦ with the x-axis or are fully aligned so the

direction of the fibres forms a 135 ◦ angle with the x-axis (see Figure 4.1(b), (c)).

(a) (b) (c)

Figure 4.1: Figure showing the computer generated initial extracellular matrices

with (a) randomly distributed fibres (b) biased fibres (c) aligned fibres. The fig-

ures show a representative 150×150µm square sub-domain taken from the entire

domain of size 1000×1000µm.

4.2.2 Modelling the cell movement

Cell movement is governed by the total force acting on an individual cell. As

explained above, by calculating all the forces acting on a cell and then applying

Newton’s Second Law of Motion, an equation for the cell velocity is obtained

(see equation (3.4)). Hence, by integrating this equation the displacement of an
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individual cell over time can then be calculated.

The system we are modelling consists of an individual cell interacting with indi-

vidual matrix fibres and so the forces on the cell consist of a drag force which

is balanced by the overall force generated by an individual cell through contact

with the matrix fibres and a term accounting for underlying “noise”. The system

considered is an in vitro set up where chemotactic and haptotactic gradients can

be controlled and are non-existent at this instance. Thus taxis terms are not

included. Therefore the governing equation of motion has the general form:

Fdrag =
∑
fnnj

Ffj + fj(t), (4.1)

where Ffj is the force generated by an individual cell through contact with an

individual matrix fibre, with the sum taken over the fibres which are in contact

with the cell, and fj(t) is the term accounting for “noise”. These terms are de-

scribed in detail below.

We assume that as in in vitro set-ups, the layer of matrix fibres and the cells

migrating on the matrix are embedded in a gel-like suspension. Thus the drag

force that acts on the cell can be modelled using Stokes’ Law (cf. Zaman et al.

[2005]):

Fdrag = cηvj, (4.2)

where c is the shape factor which is 6πr, with r being the radius of a spherical

object, η the fluid viscosity and vj the velocity of cell j. However, here it is

important to remember that cells moving over a 2D substrate are not spherical,

whereas Stokes’ law is defined for spherical objects. We therefore use a variation

of Stokes’ law for nonspherical objects as developed in Leith [1987] and Payne

and Pell [1959] by assuming that the cell has a symmetric, almost hemispherical

shape with flat extension around the periphery. With this we can simplify the
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variation down to changing only the shape factor to c = 16.7× d, where d is the

radius of the frontal area circle and 16.7 is chosen to be between the estimated

factors for a hemispherical cup and a flat disk given in Payne and Pell [1959].

In order to calculate the radius of the circle with the same area as the area of

a slice of the cell perpendicular to its velocity, its height and width have to be

known. These have been measured for migrating MDCK cells by Schneider et al.

[2000]. From these measurements we know that the fontal area of a migrating

MDCK cell is approximately the area of half an ellipse with minor radius 2.6µm

and major radius 15µm and thus A 1
2
Ellipse = 1

2
π × 2.6µm×15µm. Therefore the

radius of the circle with the same area as the area of the biggest slice of the

cell perpendicular to its velocity is
(

1
2
× 2.6× 15

)1/2
µm for these measures. Or

more general
(

1
2
ab
)1/2

where a and b are the minor and major axes of the ellipse,

respectively. This leads to the following shape factor

c = 16.7

(
1

2
ab

)1/2

, (4.3)

where a and b are the minor and major axes of the ellipse that is given by a thin

slice of the cell at its highest point. For the fluid viscosity η we assume a value of

102 poise which is one order of magnitude lower than the viscosity of the three-

dimensional matrix used in Zaman et al. [2005]. This reflects the fact that the

cells considered here are embedded within a gel rather than a 3D matrix which

has many components that the cell interacts with which effectively increases the

viscosity.

Other factors can influence the migration of cells. Even in an in vitro setting

where no growth factors are added or chemical gradients set up, small fluctu-

ations in concentrations or small impurities can occur that will have a slight

influence on the cell’s behaviour. Therefore we add a noise term fj(t), which is

uncorrelated and has zero mean, to the equation of motion.

We now describe the calculation of the force
∑
fnnj

Ffj generated by an individual
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cell through contact with the nearby matrix fibres. In order to migrate a cell

needs to establish front-rear polarity and form focal contacts with the matrix.

The process of focal complex formation and its stabilisation to a focal contact,

which enables the cell to obtain the traction needed to move along the fibre, takes

place in the order of minutes [Friedl and Wolf, 2003]. In the model we assume

a time of 10 minutes for this process. In these single cell migration simulations

this process only occurs at the very start when an unpolarised cell is placed on

the matrix. In simulations with more cells in later chapters, a cell can lose its

polarity when it contacts another cell and cannot extend any more protrusions in

that direction (contact inhibition of locomotion). In this case the cell will have

to reestablish its front-rear polarity. Once a cell is polarised, the extracellular

matrix influences the cell’s movement through contact guidance. The distance

between the cell’s centre and the fibre determines whether a cell is in contact

with a fibre or not. If the distance is equal to or smaller than the cell’s radius

then the fibre and the cell are considered to be in contact.

A cell can move along a fibre in two directions. We assume, as Dallon et al. [1999],

that a cell contacting a fibre will chose the direction of the fibre that requires the

cell to make the smallest change in direction. The same is done when a cell is in

contact with more than one fibre. We again choose the orientation of each fibre

that would require the smallest directional change of the cell. Then a projection

of the cell’s previous polarity axis onto each of these orientated fibres is made (see

Figure 4.4(c)). Adding up the projections and normalising the resulting vector,

gives the cell’s new polarity axis, pnewj (t) for cell j as:

pnewj (t) =
1

‖pnewj (t)‖
∑
i

poldj (t).wi

|wi|2
wi, (4.4)

where wi is the direction of fibre i.
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The projections onto the fibre directions weight the ‘input stimuli’ that the cell

encounters so that more weight is given to fibres closely aligned with the cell’s

polarity axis. The reason for this procedure is that we assume a cell’s movement

to be biased towards continuing moving in the same direction, because all the

integrins and other pro-migratory proteins are already clustered here. On the

other hand, a change in direction would, in most cases, be due to a strong stim-

ulus that causes the intracellular machinery to rearrange itself.

Note that equation (4.4) gives a deterministic description of the cell’s polarity

axis. The stimulus that the cell encounters can however be stronger in one direc-

tion, not just due to the number of fibres, but also due to local fluctuations in

the fibronectin and integrin distributions. We incorporate this by adding noise

to the procedure explained above through the multiplication of the projection

onto each fibre by (1+χ), where χ is a Gaussian noise term with zero mean and

a standard deviation of one. This gives a higher stochasticity to the influence of

the fibres more closely aligned with the polarity axis than to those that are at a

greater angle, i.e.

pnewj (t) =
1

‖pnewj (t)‖
∑
i

poldj (t).wi

|wi|2
wi(1 + χji(t)). (4.5)

For cell j the net force generated through contact with the nearby matrix fibres

f is therefore given by: ∑
fnnj

Ffj = Mpnewj (t), (4.6)

where M is the magnitude of the force, the calculation of which we will explain

below.

We assume that for small time intervals t ∈ (ti, ti + δt), the cell maintains on

average a uniform movement following the direction determined by its interaction

with nearby fibres. This is modelled by the use of a constant force term K derived

from the contribution of each pseudopodium attached to a fibre i.e.
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∑
fnnj

Ffj = Kt∈(ti,ti+δt). (4.7)

Hence, the equation of motion is now:

Fdrag = Kt∈(ti,ti+δt) + fj(t). (4.8)

Since fj(t) has zero mean, by assuming the expected value, the force generated

by a cell through interaction with the matrix fibres is proportional to the cell’s

velocity:

Fdrag = cηvj = Kt∈(ti,ti+δt). (4.9)

The direction of the cell’s movement is given by the polarity axis and thus:

vj = |vj| × pnewj (t). (4.10)

The direction of the net force is also along the polarity axis. Thus for t ∈

(ti, ti + δt),

Kt = Mpnewj (t). (4.11)

From equations (4.9), (4.10) and (4.11) it can be seen that the magnitude of the

force, M , is proportional to the cell’s speed, i.e.

cη × |vj| = M. (4.12)

Therefore experimental measurements of the speed can be used to calculate the

magnitude of the force.

The speed at which a cell moves through extracellular matrix follows a bipha-

sic behaviour and depends on integrin and ligand concentrations and the precise

distribution of integrins over the cell surface [DiMilla et al., 1991, Palecek et al.,

1997, Zaman et al., 2005]. Apart from possible small local differences, we assume

that the ligand density is the same on all fibres and that 95% of expressed inte-

grins are at the front of the cell and therefore the speed is solely dependent on
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the integrin expression levels and the number of fibres a cell is in contact with.

We further assume in all simulations an integrin expression level of 50% which

leads to the maximum cell speed in respect to this parameter [Palecek et al.,

1997]. In two dimensions the maximum speed a cell can reach on fibronectin is

≈ 20 µm/h which happens at approximately half the maximum adhesion force

[Palecek et al., 1997]. In the simulations the effect of varying the value of this

maximum cell speed is however also investigated. We assume that the maximum

cell–matrix adhesion is reached when a cell is in contact with 120 fibres as this

would cover 80% of the cell–matrix contact area if the fibres were aligned.

Using this and the experimental measurements of cell speed dependent on adhe-

sion force, it is known how fast a cell should be moving given the number of fibres

it is in contact with. Thus the magnitude M of the net force that a cell has to

generate to pull itself forward at this speed is calculated from equation (4.12).

The plots in Figure 4.2 show the relationship between the number of fibres that

a cell is in contact with and its speed and the relationship between the speed and

the force.
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Figure 4.2: Plots showing the relationship between (a) the number of fibres a

cells is in contact with and it’s speed and (b) the speed and the force.
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4.2.3 Modelling the matrix rearrangement due to cell trac-

tion forces

When a cell contracts during migration, traction forces are transmitted to the

substrate through the adhesion complexes and the pulling on the fibres realigns

the matrix [Friedl and Wolf, 2009, Lauffenburger and Horwitz, 1996] (see Figure

2.7). These traction forces of a cell point towards its centre [Lemmon et al., 2009,

du Roure et al., 2005] and thus the fibre is pulled inward. We model the fibre as a

lever that is rotated about the axis of its moment of force. With this assumption,

the end of the fibre that is furthest away from the cell acts as the fulcrum. We

assume that the realignment of the fibre is proportional to the integrin expression

of the cell and it is also proportional to (1-S) where S is the matrix stiffness which

is a non-dimensional value between zero and one. The realignment decreases the

closer the fibre is to the cell’s midpoint as the traction forces decrease from the

cell’s periphery inwards [Lemmon et al., 2009, du Roure et al., 2005]. Hence, the

angle of rotation φ of a fibre is given by:

φ = Θ− arcsin

(
(1− 0.1× I · (1− S)) ·D

d

)
, (4.13)

where Θ is the current angle between the straight line connecting the fulcrum and

the cell’s midpoint and the fibre, I is the percentage of integrins expressed by the

cell, S is the matrix stiffness, D is the shortest distance between the fibre and

the cell and d is the distance of the fulcrum from the cell’s midpoint. The other

parameter used, the factor 0.1, was estimated to give an appropriate reduction of

the reorientation per time step. The influence of a 10% and 20% change in this

parameter is however investigated in Section 4.6.2.

The change in φ for different matrix stiffnesses can be seen in Figure 4.3(a). In

this figure the initial distance between the cell and the fibre (D) is taken to be

15µm which is the radius of the cell, the distance between the cell and the fulcrum
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(d) to be 50µm (which gives a Θ value of 17.1887 degrees or 0.3047 radians) and

the integrin expression (I) to be 0.5. The stiffness S varies between zero and one.

We follow the development over 5 consecutive simulation time steps. The change

of the angle between the fibre and the line connecting the fulcrum and the cell’s

centre (Θ) over these time steps can be seen in Figure 4.3(b).
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Figure 4.3: Graphs showing the effects of matrix stiffness on the realignment of

the fibre by equation (4.13) over five consecutive time steps. (a) Graphs showing

the angle of rotation φ depending on matrix stiffness. (b) Graphs showing the

angle between the straight line connecting the fulcrum and the cell’s midpoint and

the fibre (Θ) after the rotation.

The matrix stiffness S can either be a constant value throughout the domain or,

more realistically, we can calculate it for each fibre depending on the number of

fibres it has cross-links with. For less than 15 cross-links we assume a matrix

stiffness of the number of cross-links × 0.06. For more than 15 cross-links, the

fibre is assigned a stiffness of 0.95. This maximum of 15 cross-links was chosen

under the consideration of the number of cross-links the fibres generally have -

only a fraction of fibres has a higher number of intersections with other fibres.

However, the effect of a 10% and 20% change in this parameter is investigated in

Section 4.6.2.
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4.3 Computational simulation algorithm

The code used for the computational simulations of the model is implemented in

C++. The Mersenne Twister pseudorandom number generator is used for the

generation of random numbers in the simulations [Matsumoto and Nishimura,

1998]. The length of a time step has been chosen to ensure that the distance a

cell can travel during one time step is one magnitude smaller than 200nm which

is the width of a fibre and the smallest unit considered. Thus the length of a time

step is fixed at 3 seconds (which allows a maximum movement of ≈ 0.017µm per

time step for a cell that reaches a maximum speed of 20µm/h).

The procedure during each time step can be summarised as follows:

Step 1:

Each fibre is examined to see whether the cell was in contact with it during the

last time step and whether the cell is polarised. If both of these conditions are

met then it means that the cell has exerted force on it during that time step.

All the fibres for which this is the case are reorientated in the way explained in

equation (4.13).

Step 2:

All the fibres that the cell is in contact with are found. If it is in contact with

at least one fibre and has established front rear polarity either through previous

polarisation or through the new formation of focal contacts over 10 minutes, the

new polarity axis is calculated using equation (4.5).

Step 3:

If the cell is polarised, the net force that it generates for its movement on the

matrix is calculated, using the knowledge from the previous step of how many

fibres the cell is in contact with. In order to do so, the speed that the cell should

be moving at is first calculated using the given parameter determining the maxi-

mum speed the cell can reach and the number of fibres the cell is in contact with
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(see image 4.2(a)). From this the magnitude of the force the cell must generate

is derived (see Figure 4.2(b)). Equation (4.6) is then used to calculate the net

force.

Step 4:

The cell is moved according to the forces calculated in step 3. This is done by

first solving equation (4.1) for the cell velocity and then applying the Forward

Euler method. This gives the new position of the cell at the end of this time step.

This procedure is illustrated schematically in Figure 4.4

4.4 Data analysis

Experimentalists who study single cell track data and the influence of intra- and

extracellular components on cell migration generally use two measures to analyse

and compare their results, namely persistence time and root-mean-squared cell

speed [Harms et al., 2005, Gail and Boone, 1970, Bergman and Zygourakis, 1999,

Stokes and Lauffenburger, 1991]. Together these give a complete description of

the cell movement over a certain length of time. Thus we will use the same

measures here to quantify the results from our computational simulations.

Cell speed determines the total length of the cell path during the time interval

of interest whereas persistence time can be considered as the amount of time

the cell spends moving without changing its direction by more than 60◦ [Ware

et al., 1998]. Both, speed and persistence time, are related to the displacement of

the cell during a known time interval which can be calculated from the positions

of the cell at either end of that interval. In experiments these positions can be

determined from images taken at the beginning and the end of that time interval

by using image processing tools to find the x and y coordinates of the cell centroid
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Figure 4.4: Schematic diagram showing the re-orientation of fibres by an indi-

vidual cell and the subsequent calculation of the polarity axis and cell migration

in this new direction. (a) Re-orientation of the fibres by forces exerted by the cell

(forces shown by blue arrows). (b) Choice of fibre orientation with the polarity

axis of the cell being indicated by the dark red arrow. (c) Calculation of the new

polarity axis by adding up the projections of the old polarity axis over all the fibres

(blue arrows). (d) Movement of the cell along the new polarity axis according to

the forces calculated.

[Harms et al., 2005]. Producing the same kind of data from the simulations is

achieved by writing the coordinates of the cell position to an output file at the

time points of interest. Just as in experiments [Harms et al., 2005, Ware et al.,

1998], the mean-squared displacements are calculated from this cell track data

of the simulations using the method of non-overlapping intervals as described by

Dickinson and Tranquillo [1993]. Given N consecutive positions of the cell with

constant time interval ∆t, following this method, the mean-squared displacement
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Figure 4.5: Schematic diagram illustrating the method of non-overlapping in-

tervals for obtaining mean-squared displacements for i=1,2,3 from cell tracking

data. The two red circles show the cell at the first and the Nth (here 14th) posi-

tion. The small grey circles show the other given positions of the cell with constant

time interval ∆t and the black line is the actual cell path. The dotted orange lines

show the displacements δ(1+i(j−1))∆t→(1+ij)∆t for i = 1 and j = [1, ..., 13], the blue

dashed lines show the displacements for i = 2 and j = [1, .., 6] and the green

dotted lines show the displacements for i = 3 and j = [1, .., 4].

during a time interval of length ti=i∆t is calculated by:

< δ(ti)
2 >=

1

ni

ni∑
j=1

[δ(1+i(j−1))∆t→(1+ij)∆t]
2 (4.14)

where i = [1, 2, ..., N − 1] and ni = bN−1
i
c.

Figure 4.5 illustrates the term δ(1+i(j−1))∆t→(1+ij)∆t for i=1,2 and 3. It is deter-

mined in the same way for i = [4, ..., N − 1] to give an N − 1 dimensional vector

of displacement values. The vector of mean-squared displacements < δ(ti)
2 > is

derived from this as stated in equation (4.14).
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In order to calculate the root-mean squared cell speed s from these measurements,

the root mean-squared displacement for the case i = 1 is divided by the tracking

interval ∆t. The cell’s persistence time is then fitted to the persistent random

walk model [Othmer et al., 1988, Alt, 1990, Dickinson and Tranquillo, 1993] by

substituting its speed into the relationship:

< δ(ti)
2 >= 2s2P [t− P (1− e−t/P )], (4.15)

where s is the cell speed, P is the persistence time and < δ(ti)
2 > the mean-

squared displacement. The fitting is done using an unconstrained nonlinear opti-

misation routine. For this the inbuilt MATLAB ( MATLAB R2010a, The Math-

Works, Natick, MA) function ‘fminsearch’ is used which itself uses the Nelder-

Mead Simplex algorithm to find a parameter or a set of parameters that minimises

the objective function value. For a function of an n-dimensional variable, this al-

gorithm creates a simplex of n+1 vertices around the initial guess x0. It does this

by adding 5% to each component x0(i) and using these n vectors together with

the original x0. Then it continually either discards the point of the simplex with

the worst function value and replaces it by a new one which is generated by re-

flection and possibly also expansion or contraction of this point or, under certain

conditions, it discards all points and calculates new vertices by shrinking the old

simplex [Lagarias et al., 1998]. As an initial guess x0 we use a randomly generated

value for P . The function to minimise in this case is the N−1 dimensional vector

of the root-mean squared difference between the ‘measured’ root-mean-squared

displacements and the ones calculated from formula (4.15) using the actual cell

speed and the estimated persistence time. This is done component-wise, by fit-

ting the persistence time.

In the present model cell migration is studied in an in vitro situation where no

external chemical gradients and no growth factors etc. exist. In most published
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migration experiments, the cells are however kept in serum which most likely in-

fluences the migratory behaviour of the cells. Thus a specific set of experiments

by Harms et al. [2005] has been chosen to compare the simulation results to where

the cells were serum-starved and re-suspended in serum-free medium before the

migration assays were done. During the migration assays the cells were tracked

for six hours and imaged every 15 min. In order to be able to compare the sim-

ulation data to these experiments, we also use a time interval ∆t of 15 minutes

and a total cell tracking time of six hours to calculate the persistence time. For

most of the computational ‘experiments’ 15 simulations are run with 15 differ-

ent seeds for the random number generator used in the noise terms of the cell

movement. Thus the simulation results are 15 different sets of cell tracking data

for each ‘experiment’. The actual cell speed and persistence time are determined

for each of these 15 cell tracks. As outliers occur in the resulting persistence

times for certain sets of ‘experiments’ and the distribution of the results is partly

very asymmetric, box plots are used to visualise the data. They are done with

R (version 2.13.1, [R Core Team, 2012]). The default value of 1.5 is used for the

range, meaning that the whiskers extend to the most extreme data point which

is no more than 1.5 times the interquartile range from the box. Thus any data

points beyond that value are classified as outliers. For the cell speeds the mean

and the standard deviation give a good description of the data and are calculated

in all cases. This is visualised in plots using MATLAB. Whenever it can be of

additional interest to look at an image of the cell track or the underlying matrix

fibres, the images are produced with OpenGL.

4.5 Computational simulation results

In these single cell migration simulations the added noise term was initially ig-

nored. At the beginning of all simulations a non-polarised cell was placed in the
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middle of a 1000µm×1000µm area of extracellular matrix. The cell was then left

to polarise and start migrating over a time of 3 hours and was then tracked over

6 hours of real time to make it comparable to experiments which were run for

the same length of time [Harms et al., 2005]. All parameter values used in the

simulations are given in Table 4.1 along with the reference from where they were

obtained.

parameter value reference

Radius of a cell base (R) 15µm [Schneider et al., 2000]

Height of a cell 2.6µm [Schneider et al., 2000]

Matrix fibre diameter 200nm [Friedl et al., 1997]

Suspension viscosity (η) 102 Poise derived from [Zaman et al., 2005]

Maximum cell speed in 2D 20µm/h [Palecek et al., 1997]

Focal complex formation time 10 min [Friedl and Wolf, 2003]

Table 4.1: Table detailing the parameter values used in the computational sim-

ulations.

4.5.1 The influence of matrix stiffness on persistence and

migration speed

First we investigated the effect of matrix stiffness on cell migration. 15 simula-

tions were run for each of the following cases where the matrix composition was

varied: (i) a very loose matrix (S=0), (ii) a medium stiff matrix (S=0.5) and (iii)

a very stiff matrix that cannot be reorientated (S=1). In addition 15 simulations

were run in which the stiffness was calculated individually for each fibre as ex-

plained above. This was done for four different matrix architectures by seeding

the random number generator which is used to place the matrix fibres with four

different numbers. The random number generator used for the noise terms in the

cell movement was given the same 15 seeds in the four studies. The results are
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given in Figure 4.6 with outliers denoted by small circles.

It can be seen from Figure 4.6 that the persistence times on a stiff matrix have

the biggest variation over the four different sets of simulations which means that

the tracks of cells on a stiff matrix are the most dependent on the matrix architec-

ture. This is not unexpected. The least variation can be seen in the simulations

in which the stiffness of the matrix is calculated for each fibre independently.

Here persistence times between 3 and 109 minutes (apart from one outlier which

has a persistence time of 245 minutes) arise with the majority, the lower and

upper quartiles, being between 20 and 60 minutes. Experiments by Harms et al.

[2005] measured a persistence time of roughly 8 to 20 minutes in Chinese hamster

ovary (CHO) cells on fibronectin unstimulated by epidermal growth factor (EGF)

and a persistence time of about 19 to 50 minutes in cells stimulated by EGF [cf.

Figure 2D, pg. 1483, Harms et al. [2005]]. Thus although the simulations predict

a slightly higher persistence time than is observed in unstimulated cells, the val-

ues are of the correct order of magnitude. It is clear from the results, however,

that the reorientation of the matrix fibres is crucial for this. Similar values as

mentioned above are also found for a matrix stiffness of 0.5 and a very loose

matrix, but a stiff matrix that allows no reorientation gives much more variation

and much higher persistence times than observed in the experiments.

A more detailed study of the persistence time and mean actual speed of migration

on matrices of varying stiffness S between 0.5 and 1 is presented in Figure 4.7. For

these simulations the first matrix architecture from previous simulations was con-

sidered. The plots in Figure 4.7(a) and Figure 4.7(b) show that both persistence

time and mean speed are very similar between 0.5 and 0.9, but there appears to

be a transition to higher persistence times and lower cell speeds between 0.9 and

1. Interestingly, in all simulations it was found that cells on a very stiff matrix

move significantly more slowly than cells on a matrix that allows reorientation
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Figure 4.7: Plots showing (a) the persistence time and (b) mean actual speed

of migration of an individual cell on matrices of varying stiffness S between 0.5

and 1.

(Figures 4.6(e)-4.6(h), Figure 4.7(b)). Presumably this is due to the fact that

the cells are in contact with fewer matrix fibres in this case. This follows from

the fact that in soft matrices the re-orientation allows for preserving the contacts

between the fibre and the cell for longer time. Whether or not this is also true in

experiments remains to be seen, although the results of Lo et al. [2000] [Table 1,

pg. 148] appear to substantiate this.

In the simulations cells can also be tracked over longer periods of time and it can

be seen that they exhibit a random walk behaviour. The period of time chosen

was 3 days. In these simulations a specific seed was chosen for the random number

generator which produces the stochasticity in the cell movement. It was chosen

to be the seed which led to the median persistence time in previous simulations

of cells on a very stiff matrix and also in the simulations of cells on a matrix

where the stiffness for each fibre was calculated independently. Also here the

difference becomes clear between the path of a cell that reorients the matrix

(Figure 4.8(b)) and that of a cell that does not (Figure 4.8(a)). When matrix

reorientation occurs, it leads to very sharp, non-smooth turns in the cell path
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(denoted with green asterisks in the image). The movies of these simulations can

be found in the supporting material of Schlüter et al. [2012] as Movies S3 and S2,

respectively.

(a) (b)

Figure 4.8: Plots showing the cell paths which have developed over 3 days (a)

without and (b) with matrix reorientation (using matrix architecture 1 from previ-

ous Figure 4.6). In case (b), the matrix stiffness S is dependent on fibre connect-

edness. The plots show that without matrix reorientation, the cell path is much

smoother and does not contain any sharp turns by the cell (a). In contrast, if

the cell reorientates the matrix (b), it undertakes many more sharp turns and

changes of direction, denoted by asterisks. The black squares are each an area of

500×500µm.

4.5.2 On whether cell movement is guided by substrate

rigidity

Experiments carried out by Lo et al. [2000] have shown that individual cell move-

ment can be guided solely by physical interactions between the cells and the
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Figure 4.9: Figure showing experiments by Lo et al. [2000] where cells have

been placed close to the gradient on a matrix with two different stiffnesses. Panel

(a) shows a cell being placed on the softer side of the matrix which then over time

migrates onto the stiffer side of the matrix. Panel (b) shows a cell being placed

on the stiffer side of the matrix initially and how, over a period of time, it moved

towards the gradient but then stayed on the stiffer side of the matrix. Reproduced

with copyright permission from Lo et al. [2000].

underlying substrate. 3T3 fibroblasts were placed in the middle of a collagen-

coated polyacrylamide substrate sheet where one half of the sheet was “soft” and

the other half of the sheet was “stiff”. The results showed that the cells either

migrated onto the stiffer side when starting on the soft side or stayed on the stiff

side when starting there (see Figure 4.9) i.e. cells tend to prefer stiff matrices to

softer ones which has been termed “durotaxis”.

These experimental results provided a scenario that could be tested with this
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modelling approach. We created a two-dimensional domain similar to that used

in Lo et al. [2000] with a different stiffness of matrix in each half, creating a

“transition of rigidity” across the middle. This configuration is shown in Figure

4.10(a). A single cell was placed close to the transition zone, indicated by a red

asterisk in Figures 4.10(b) - (e). Initially the left side of the matrix was assigned

a stiffness of 0.25 and the right side of the matrix was assigned a stiffness of 0.75

which meant that the cell started out on the stiffer side. 15 simulations were run

over 3 days of real time using this configuration and the final locations of the

cell in the domain were noted. Then the stiffness properties of the matrix were

switched around leading to the cell starting on the softer side as the right side of

the matrix was then assigned a stiffness value of 0.25 and the left side a value of

0.75. The results are shown in Figure 4.10(b) and (c). It can be seen that there

is a slight preference for the stiffer side of the matrix as the cell stayed on the

stiffer side in eight of the 15 simulations where it started on the stiffer side and

it moved to the stiffer side in nine of the 15 simulations where it started on the

softer side. However, when the discontinuity in rigidity was increased, the results

became much clearer as can be seen in Figures 4.10(d) and (e). Here the soft side

was given a stiffness of 0.05 and the stiff side was given a value of 0.95. In the

simulations where the cell started on this very stiff side, the cell stayed on that

side in 12 out of the 15 simulations. In the set of simulations where it started on

the soft side, it still ended up on the stiffer side in 13 out of the 15 simulations.

Qualitatively, these results mirror those found in Lo et al. [2000] i.e. there is an

apparent preference of cells for a stiff substrate. The simulation results indicate

that the reorientation of the matrix or the lack thereof on stiffer matrices may

play an important role in durotaxis. The fact that we are able to reproduce these

results by using this computational model suggests that the physical structure of

the ECM is a sufficient condition for a cell to choose a particular location within
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(a)

Figure 4.10: (a) Figure showing how the

matrix was divided into two sides of differ-

ent stiffness on the left hand side and right

hand side of the domain with the cell being

placed initially just on the right hand side

of the domain (different stiffnesses denoted

by different colours.). The cell was always

placed initially in the same position but the

matrix properties were altered. Simulations

were run with the left side of the matrix be-

ing soft and very soft and the right side being

stiff and very stiff and vice versa. The results

are shown in plots (b)-(e). The squares are

end-points of the cells after 3 days and the

asterisks show the cell’s starting position.
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the surrounding environment. It is difficult to conclude this from biological ob-

servations alone, since in experiments the internal cell dynamics, internal cell

biomechanics, cell phenotypic properties, etc., are all factors that could possibly

play a role and these cannot be ignored experimentally. In this model the location

of the cell depends uniquely on the physical structure of the matrix and on the

cell movement. The findings do suggest that these are sufficient to explain the

cells’ preference for stiffer matrices.

4.5.3 Nonlinear dependencies of persistence time and cell

speed on matrix composition and architecture

In order to investigate the influence of cell speed and matrix characteristics on

persistence time, we ran a number of simulations of cells migrating on matrices,

where the cells were given different maximum cell speeds (denoted by smax) and

the composition of the matrices was varied in terms of different fibre lengths and

densities. In all of these simulations the matrix stiffness was calculated indepen-

dently for each fibre as explained above and the first matrix architecture from the

previous simulations was used. In the first set smax was increased from 10µm/h

to 20µm/h in steps of 2.5µm/h. At the same time the matrix fibre length was

varied between 25µm and 100µm in steps of 12.5µm, whereby the number of

matrix fibres was always increased or decreased accordingly so that the overall

density of matrix fibres is not altered. For each combination, 10 simulations were

run and the persistence times and mean actual speed were calculated. The results

can be seen in Figure 4.11. The plots in Figure 4.11(a) show that for “slow” cells

(maximum speeds of 10, 12.5, 15µm/h), those cells that migrate on shorter fibres

are more persistent than the cells migrating on longer fibres. For maximum cell

speeds of 17.5 and 20µm/h, fibre length becomes less important and persistence

times are more or less independent of fibre length. However, from the plot in
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Figure 4.11: Plots showing how the mean persistence time and actual mean

speed of cell migration vary with matrix fibre length and maximum cell speed.

(a) Plot of the mean persistence time in minutes varying with maximum cell

speed and mean fibre length; (b) Plot of the mean actual cell speed during the

same simulations varying with maximum cell speed and mean fibre length.

Figure 4.11(b), the mean actual speed of the cells seems to depend in a bimodal

manner on the fibre length.

In the second set of simulations the cell speed was again increased from 10µm/h to

20µm/h in steps of 2.5µm/h. However this time the matrix density was changed

by varying the total number of fibres in the domain. Specifically we placed a

number of fibres of length 75µm, ranging from a total of 7500 to 22500 using

increments of 3750, in the domain of size 1000×1000µm.
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Figure 4.12: Plots showing how the mean persistence time and mean actual

speed of cell migration vary with matrix density and maximum cell speed.

(a) Plot of the mean persistence time in minutes varying with maximum cell speed

and matrix density, i.e. number of matrix fibres; (b) Plot of the mean actual cell

speed during the same simulations varying with maximum cell speed and matrix

density.

Again 10 simulations were run for each combination and the persistence times

and the mean actual speed were calculated. The results can be seen in Figure

4.12. The plots in Figure 4.12(a) show that for cells moving at low maximum

speeds (10, 12.5, 15µm/h) there is an increase in persistence with the density be-

fore there is a drop at the highest density (22500 fibres in the domain). For high

maximum cell speeds (17.5 and 20µm/h) this effect is lost and persistence times
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are more or less independent of matrix density. From the plot in Fig.4.12(b) the

actual cell speed clearly shows a biphasic dependence on the matrix density, a

fact observed in experiments [Palecek et al., 1997].

Finally the behaviour of cells on matrices of varying degrees of anisotropy was in-

vestigated. Specifically, we compared the persistence of cells on a random matrix

to that on a biased matrix and to that on a fully aligned matrix (see Figure 4.1

for the initial conditions of each type of matrix). 15 simulations were run for each

matrix type and the cell tracks were examined in each case. Representative plots

are given in Figure 4.13. Comparing the cell tracks in each plot, it can be seen

that on average the cells persist in a given direction for a longer period of time on

the aligned and biased matrices than on the random (isotropic) matrices. These

results indicate that persistence in a given direction (unsurprisingly) decreases

with matrix randomness. A formal analysis using persistence time calculated

from equation (4.15) is not possible since this equation is derived only for motion

in isotropic environments [Alt, 1990].

(a) (b) (c)

Figure 4.13: Figures showing the plots of cell tracks over a period of 6 hours

on extracellular matrices with (a) randomly distributed fibres, (b) biased fibres,

(c) aligned fibres.
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4.6 Sensitivity of the results towards so far un-

considered parameters

4.6.1 Sensitivity towards the noise terms

The noise term in the calculation of the cell’s polarity axis as well as the noise

term fj(t) could potentially have a strong influence on the persistence of the

cell movement. Therefore we investigated these terms in more detail by running

multiple sets of simulations varying the standard deviations. First the sensitivity

of the results towards the noise term in the calculation of the polarity axis was

considered. This is the noise term χ that is added to the weight of each fibre in

the calculation of the cell’s polarity axis (see equation (4.5)), thus influencing the

cell’s direction of movement. In order to ensure that this does not have too big

an impact on the results, simulations were run with 25%, 50% and 100% increase

and decrease of the standard deviation used to generate normally distributed

numbers with zero mean. Again 15 simulations were run for each value of the

standard deviation and the persistence times were calculated. The results are

given in Figure 4.14.

0 0.5 0.75 1 1.25 1.5 2

0
50

10
0

15
0

standard deviation used in the polarity axis calculation

P
er
si
st
en
ce
(m
in
)

Figure 4.14: Plots showing the mean persistence time (in minutes) for different

values of the standard deviation used for generating χ.
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In the simulations with standard deviations close to one, the persistent times are

quite stable and no real impact of this parameter can be seen. If a bigger range

is taken into account, it becomes obvious that an increase in standard deviation

leads to a decrease in persistence although even here the difference is not very

pronounced as the range of persistence times measured is very similar in all cases.

Therefore it is clear that although this parameter has a slight influence on the

results, it is by no means the determining factor.

We also investigated the influence of the noise term fj(t) on the cell’s behaviour.

For this the standard deviation was increased from 0, which had been used so

far, to 0.0001, 0.001, 0.01, (which was then of the same order of magnitude as the

cell velocity per time step) and 0.1. Again 15 simulations were run per standard

deviation and the results for the persistence time can be seen in Figure 4.15.
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Figure 4.15: Plots of the persistence time (minutes) of cell migration where the

standard deviation in the noise term fj(t) is varied from 0 to 0.1.

For small standard deviations the influence of this noise term is minimal. Sur-

prisingly the range in which the persistence times lie decreases for a standard de-

viation of 0.01. However as soon as the standard deviation becomes higher than

the maximum cell speed per time step, the range of values for the persistence
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time increases which is what one would expect. Nonetheless, it is encouraging to

see that for smaller standard deviations up to the order of magnitude of the cell

velocity, the noise does not have a great influence on the results and the model

is thus insensitive to small perturbations in this parameter.

4.6.2 Influence of parameters in modelling the matrix re-

arrangement due to cell traction forces

Finally the influence of two further parameters on the results of the simulations

was investigated. The parameters in question are used in calculating the matrix

rearrangement due to cell traction forces. The first parameter to be considered

was the factor 0.1 which reduces the reorientation (equation (4.13)). The results

of varying this parameter by 10% and 20% are shown in Figure 4.16. It can be

seen that the results are not very sensitive to this parameter for, although the

spread increases by varying it, the median changes very little.
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Figure 4.16: Plots of the persistence time (minutes) of cell migration where

the factor that reduces the reorientation (given a value of 0.1 in equation 4.13) is

varied by 10% and 20%
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The second parameter to be investigated closer is the number of fibre cross-links

at which the maximum stiffness of 0.95 is reached. Again this number was varied

from its initial value of 15 by 10% and 20%. The results are shown in Figure 4.17.

In this case the spread of the results increases again but, similarly, the median

changes very little.
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Figure 4.17: Plots of the persistence time (minutes) of cell migration where the

number of fibre cross-links, at which the maximum stiffness is reached, is varied

by 10% and 20% above and below the original value 15.
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4.7 Discussion

In this chapter we have formulated a modelling framework for single cell migra-

tion on two-dimensional matrices in which the cell as well as the matrix fibres are

individual elements or agents. Using this approach, we investigated the influence

of matrix stiffness on cell migration and found that the reorientation of the ma-

trix fibres due to cell traction forces might be an important part of this process

as very stiff, non-reorientable, matrices led to very variable and occasionally very

high persistence times which do not agree with experiments. We also ran simu-

lations to test whether the model could reproduce experiments that showed the

preference of cells for stiffer matrices. The results agreed with these experiments

and suggest that matrix reorientation or the lack thereof on stiff matrices, may be

an important factor in durotaxis. This is particularly interesting as the physical

interactions between cells and matrix cannot be isolated in experimental settings.

Therefore in those set ups it is difficult to distinguish between the roles of the

physical interactions and the intracellular signalling pathways coupled to these.

The model makes it possible to ignore the intracellular signalling. It shows that

purely the interactions between cells and the matrix together with the physical

structure of the matrix, can explain the preference that cells have for stiffer rather

than softer matrices.

Furthermore we examined the relationship between persistence time as well as

actual cell speed, and maximum cell speed and matrix fibre length or matrix

density. In both cases we found that there is a nonlinear dependency of the per-

sistence time on the two factors, especially at low cell speeds, as well as a biphasic

dependency of the actual cell speed on the fibre length and matrix density. Addi-

tionally we looked at the influence of the matrix structure on the persistence and

found that, unsurprisingly, a more ordered matrix leads to a higher persistence.

Finally we also investigated the sensitivity of the results towards a change of
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certain, so far unconsidered, parameters. We examined the stability of the re-

sults depending on both noise terms which influence the movement of the cell

and found that they do not have a significant influence on the persistence times

measured. Similarly small perturbations in the parameters used to calculate the

rearrangement of the matrix fibres due to cell traction forces have little impact

on the results.

In this model the focus is on the most fundamental processes underlying cell mi-

gration at the level of cell–matrix interactions. Naturally certain simplifications

have therefore been made. One of these is that the extracellular matrix fibres

were modelled as rigid cylinders that were not connected. This means the cell’s

application of force onto one fibre does not affect other fibres in the closer en-

vironment. Similarly there is no counter force pulling the fibres back into their

original place after the cell has moved across them. These are clearly two aspects

that might have an impact on the results and are probably also the reason why

the results for very loose, medium stiff and variably stiff matrices are very similar.

Including matrix elasticity would most likely lead to less realignment in stiffer

matrices and might thus alter the results. However, some things can already

be learnt from this model or can at least give interesting hypotheses e.g. that

matrix remodelling might play an important part even in two dimensional mi-

gration. Also that durotaxis might be a process that does not necessarily require

intracellular signalling pathways. Furthermore other results indicate a non-linear

dependency of persistence time on cell speed and fibre length or cell speed and

matrix density. As the results are quantitative and measurable in the laboratory,

it would be very interesting to see whether these hypotheses can be confirmed

by experiments. This is especially the case as persistence time is often used to

characterise and compare cellular behaviour and it is therefore important to un-

derstand all the factors that can influence it in an experimental setting. However,
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a lot of parameters used in the model had to be estimated as no measurements

could be found in experimental literature, especially concerning the forces in-

volved in cell–matrix interactions. Therefore, although the results are a first step

towards gaining more insight into this process, the model should be seen mainly

as a framework that can lead to quantitative and predictive results given ‘real’

experimental input data.
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Chapter 5

Modelling Two Cells Migrating:

“Follow my Leader”

5.1 Introduction

In the previous chapter a computational model was developed for single cell mi-

gration on two dimensional surfaces. However, in experiments a single drop of a

suspension of hundreds or thousands of cells is generally placed on a petri dish

or well plate. Therefore in this chapter we extend the single cell migration model

to a two cell model, the results of which are exemplary for the most fundamental

building blocks that make up the behaviour of any number of cells migrating on

a two dimensional matrix. The simulations show that cells have a tendency to

follow each other. This behaviour can often be seen in experiments. In three di-

mensions, this ‘multicellular streaming’ [Friedl and Wolf, 2010] is well-described

and it is clear that it is a very efficient way for cells to migrate along the tracks

and tubes of individual ‘leader cells’. However, apart from statements from some

biologists (i.e. private communications), we could not find any evidence or ex-

planation of this in the literature available. Therefore, in this chapter, we will
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investigate which parameters have an influence on this behaviour by varying the

matrix stiffness, the initial distance between the cells, the fibre lengths and fibre

densities and by calculating the lengths of time the cells follow each other under

these conditions.

5.2 Model description

The basic model used here is the same as in the previous chapter. Again, individ-

ual cells are modelled as relatively flat and hemispherical objects with a radius

of the base of 15µm. A height of 2.6µm is assumed. Also the individual matrix

fibres are again represented by thin cylinders, the lengths of which are normally

distributed with mean 75µm and standard deviation 5µm and the widths are

200nm.

For each cell, its movement is again governed by equation (4.1) and the matrix

fibres are also reoriented as before using equation (4.13). Here the stiffness of the

matrix fibres is always calculated dependent on fibre interconnectedness. All the

parameters for which it was shown in the previous chapter that their variation

has little impact on the results, are given their original values, i.e. the number of

fibre cross-links at which the maximum stiffness is reached is given the value of

15, the factor that reduces the reorientation is given the value of 0.1, the standard

deviation used to generate fj(t) is 0.01, the standard deviation used to generate

χ is 1 and smax is 20µm/h. One of the only two differences between the model

here and the one in the previous chapter is that initially two cells are placed on

the matrix instead of one. This means that the contact inhibition of locomotion

(CIL) which is encoded in the model, now becomes important. As mentioned in

the previous chapter, cells have been found to change their direction after con-

tact with another cell [Mayor and Carmona-Fontaine, 2010]. Generally this is

due to the fact that the cell cannot extend protrusions in the direction in which
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it contacts another cell. Thus this can have an influence on the cell’s polarity

[Mayor and Carmona-Fontaine, 2010]. Just as in experiments, in the model-based

simulations, a cell can lose its polarity when it makes contact with another cell.

In this case the cell then has to re-establish its front-rear polarity. Unlike before,

when only one cell was considered and therefore CIL could not occur, here it is

an important part of the simulations. Furthermore we assume that the matrix

reorientation by one cell can be constrained by the presence of the second cell. If

both cells are in contact with the same fibre, we assume that one cell should not

be able to reorient that fibre in such a away that it loses contact with the other

cell. Thus, after calculating the reorientation angle, it is checked whether or not

the other cell is still in contact. If this is the case, the reorientation takes place

as before. Otherwise, the reorientation is reduced so that the other cell stays in

contact with the fibre.

5.3 Computational simulation algorithm

Similar to the previous simulations, the time step is chosen to be three seconds

and the procedure during each time step can be summarised as follows:

Step 1:

Each fibre is examined to see whether the cells were in contact with it during

the last time step and whether the cells are polarised. If both of these conditions

are true for at least one cell then it means that the cell(s) has exerted force

on the fibre during that time step. All the fibres for which this is the case are

reorientated by one cell at a time in the way explained in equation (4.13). After

each reorientation the fibre is checked to see that it has not lost contact with the

other cell and, if necessary, the reorientation is decreased.

Step 2:

For each cell all the fibres that the cell is in contact with are found and it is
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determined whether the two cells are in contact.

Option 1: If the cells are not in contact and the cell in question is in contact

with at least one fibre and has established front rear polarity either through

previous polarisation or through the new formation of focal contacts over 10

minutes, the new polarity axis is calculated using equation (4.5).

Option 2: If the cells are in contact and the cell in question has front-rear

polarity, defining the rear to be where the contact with the other cell is, and the

cell is in contact with at least one fibre, the new polarity axis is calculated using

equation (4.5).

Option 3: If the cells are in contact and the cell in question has front-rear

polarity, defining the front to be where the contact with the other cell is, the cell

loses its polarity. If the cells are in contact and the cell in question has already

lost its polarity and is re-polarising, then the direction of the fibres wi in equation

(4.5) is chosen to be pointing away from the contacting cell.

Step 3:

For each cell, if the cell is polarised, the net force that it generates for its movement

on the matrix is calculated. This is done using the knowledge from the previous

step of how many fibres the cell is in contact with. Together with the given

parameter determining the maximum speed the cell can reach, the calculation

of how fast the cell should be moving (see Fig. 4.2(a)) and the magnitude of

the force the cell must therefore be generating (see Fig. 4.2(b)) can be made.

Equation (4.6) is then used to calculate the net force.

Step 4:

Both cells are moved according to the forces calculated in step 3. This is done

by first solving equation (4.1) for the cell velocity and then applying the Forward

Euler method. This gives the new position of the cells at the end of this time

step.
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5.4 Data analysis

Initially it was observed that the cells follow each other in some simulations for

long periods of time and in some simulations only very briefly and very seldom.

Therefore, in order to try and understand the impact that certain parameters have

on this behaviour, it was necessary to find a way of quantifying the simulation

results. In order to do so a MATLAB code was written that calculated the

distribution of how long the two cells follow each other in each ‘experiment’

defined by varying one parameter. For each case, 15 simulations were run in each

of which a different seed for the random number generator was used for the cell

movement, as was done in previous simulations. In order to establish whether or

not cells were following each other, a distance matrix was determined for each

of the 15 simulations by calculating the distance between each point on the first

cell’s track to each point on the other cell’s track. Thus the value at position i, j

in the distance matrix is the distance between the first cell at time step i and

the second cell at time step j. Then the time points were searched for where the

cells were closer than two-cell radii. Once such a time point was found, it was

tracked to find out how long these episodes lasted. This was done by counting

the number of subsequent time points for i and j, for which the entry (i, j) stayed

smaller than two-cell radii. Those elements of the matrix that were counted once,

were then marked to ensure they were not counted again. This procedure was

followed for all 15 simulations in each set. Then the distribution was determined

by creating an array of ‘bins’ from 0 (cells only come closer than two-cell radii

for one time step) to the maximum number of time steps that cells were found

to stay closer than two-cell radii. The discovered timespans were then binned for

all 15 simulations. This gave the distribution of how long the two cells followed

each other in this particular ‘experiment’.

After first plotting the normalised distribution of the experiments (see Fig. 5.2), it
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became very clear that the distributions are difficult to compare in this way. Given

the skewness of the distributions and the long tail, varied width notched box plots

were chosen to be the best presentation of the results and were calculated in R.

The widths of the box plots give an indication of how big the data set is; in this

case how many instances were counted where cells followed each other. A wider

box represents a bigger data set than a thinner one as the width is proportional

to the square-root of the number of observations in that data set [R Core Team,

2012]. As in normal box plots, the median was drawn and the box encompasses

the 25%- and 75%-ile. Here the range of the whiskers was again 1.5 and outliers

were drawn as circles. In addition the boxes are ‘notched’ giving an indication of

the significant difference when comparing the medians between two ‘experiments’.

The notches extend to ±1.58× inter-quartiles-range√
sample number

[R Core Team, 2012]. If the

notches of the two box plots do not overlap, then this is an indication that the

difference between the two medians is statistically significant.

5.5 Computational simulation results

In the first simulation that was run with two cells, one cell was kept stationary

for 10 minutes while the neighbouring cell was allowed to polarise and start

migrating. In Figure 5.1(a) the stationary cell is shown in red and the other cell

in green. As soon as the second cell could polarise it started following its former

neighbour along the tracks the neighbouring cell had laid down (Figure 5.1(b)-

5.1(i)). It continued to do so until the two cells came into contact with each other

which made the following cell lose its polarised state and re-polarise in another

direction due to the contact inhibition of locomotion encoded in the model. This

behaviour could be observed a multiple of times during the simulation over 3

days of real time. A movie of this simulation can be found in the supporting

material of Schlüter et al. [2012] as Movie S1. However, when a more systematic
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(a) time = 50 min (b) time = 70 min (c) time = 90 min

(d) time = 110 min (e) time = 130 min (f) time = 150 min

(g) time = 170 min (h) time = 190 min (i) time = 210 min

Figure 5.1: Plots showing snapshots at times t = 50-210 minutes of two cells

following each other through the matrix. Green denotes a front-rear polarised

cell, while red denotes a non-polarised cell. The plots show that an initially non-

polarised cell (t = 50 minutes) becomes polarised (t = 70 minutes) and then

follows the path of the initial polarised cell.

82



approach was taken and the parameters were all chosen as mentioned in the model

description, the simulations did not necessarily show the two cells moving along

the same track for a period of time long enough for it to eliminate the notion

that this had happened coincidentally. Thus the different parameters which might

have an influence on the results were varied and the results are presented below.

5.5.1 The influence of matrix stiffness and initial cell–cell

distance on the migration patterns

In order to investigate the influence of certain parameters on the behaviour of the

two cells more thoroughly, four different sets of simulations with 15 simulations

per set were run. First two cells were placed immediately next to each other and

one of them was kept stationary for 10 minutes while the other could polarise and

start migrating as was done in the simulation seen in Figure 5.1. In the second set

of simulations the two cells were again placed next to each other but the matrix

used was a stiff, non-reorientable matrix. The results can be seen in Figure 5.2.

If the cells did not come close enough it was not counted at all, and therefore

zeros in these plots denote that the cells came together at just one point in time.

The plots in Figure 5.2 clearly show that cells on stiffer matrices follow each other

for longer periods of time - Figure 5.2(b) shows that cells can spend a time of

up to 1300 seconds close to each other (which is over 20 minutes), compared to

700 seconds in Figures 5.2(a). In order to compare the results more easily, varied

width notched box plots were generated from these distributions. In addition

to the two sets of simulations above, two further sets were added. Instead of

placing the cells very closely next to each other, they were placed with a little

more distance between them (i.e. the cells were not touching at the beginning

of the simulations). This means that there was a larger range of different fibres

either cell could have been in contact with. The box plots showing the results of
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Figure 5.2: Plots showing the distribution of the amount of time that cells

are closer than two cell radii. (a) Distribution of the time lengths for two cells

reorienting the matrix during movement. (b) Distribution of the time lengths for

two cells on a stiff, non-reorientable matrix.

these four ‘experiments’ are given in Figure 5.3. Considering the width of the box

plots, it can be seen that the size of the data sets (i.e. the number of occurrences

of one cell following the other), is largest for the cells initially being placed right

next to each other, both on a re-orientable and a stiff matrix. The smallest, by

quite some margin, is the one resulting from the simulations where the cells were

placed further apart on a stiff matrix.

The shape of the distributions and the long tails are captured in the large number

of outliers that exist for all four sets of simulations. The highest value is reached

on a stiff matrix at over 1200 sec as was also shown in Figure 5.2. The highest

values of the other three sets lie between ≈ 800 sec (original setup) and ≈ 500 sec

(distant). A summary of the other important values in these plots, the median,

the 25%ile, the 75%ile and the upper and lower end of the whiskers, are given

in Table 5.1. Apart from the lower end of the whisker which is at 3 seconds

(1 timestep) for each set of simulations, all the values are highest for the cells
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Figure 5.3: Varied width notched box plots generated from the distribution of the

amounts of time cells spend closer than 2 cell radii under the original conditions

( original), on a stiff matrix ( stiff), when the cells are placed on a matrix fur-

ther apart ( distant) and when the cells are placed further apart on a stiff matrix

( stiff&distant).

migrating on stiff matrices. This is followed by cells that were initially placed

further apart on stiff matrices which is interesting as this is the set of simulations

in which cells followed each other the least often compared to the other ones

in this group (see box plot width in Fig 5.3). On softer matrices the spread of

the length of time the cells follow each other is longer when cells start off close

together than when they are initially placed far apart. This is obvious from the

first quartile being much lower in the first case but then with all the other values

catching up with the results for the second case. The upper end of the whisker of

the box plot for cells starting off close together is considerably higher than that of

cells starting at a distance from each other. Whether or not these differences are

statistically significant is difficult to say from the present data. However, taking

into account the notches in the box plots, which are not much more than lines
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Table 5.1: A summary of the data of the box plots in Figure 5.3

.

original stiff distant stiff&distant

lower end of whisker 3 3 3 3

first quartile 3 36 36 36

median 42 66 54 57

third quartile 78 105 81 87

upper end of whisker 189 207 147 162

in the box plots given here, it can at least be said that there is a statistically

significant difference between the median of the original set of simulations and

that of the simulations where a stiff matrix was used.

5.5.2 The impact of fibre length on the cells’ behaviour

As in the previous chapter for single cell migration here the fibre length could

also have an important role to play. Thus, using the softer matrix from the pre-

vious simulations, the fibre lengths were varied from 25µm to 100µm in steps of

25µm. The number of fibres placed in the 1000µm×1000µm area was increased

or decreased accordingly to prevent a change in the matrix density. In all the

simulations the cells here were placed close together initially.

The results are shown in Figure 5.4. Here the sizes of the data sets look to be

very similar, with all box plots having similar widths. The longest times that

cells followed each other were reached by cells migrating on the longest fibres of

100µm. In these simulations the cells followed each other for maximum times of

≈ 800 seconds. A similar value was reached for cells migrating on fibres of length

75µm. In the other two cases the maximum length of time is between 500 and

600 seconds. Apart from these extreme outliers, the results can be divided into
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Figure 5.4: Varied width notched box plots generated from the distribution of

the amounts of time cells spend closer than 2 cell radii during migration on a

matrix made-up of fibres of mean length 25µm, 50µm, 75µm and 100µm.

two groups the first one being the results for fibres of length 25µm and 100µm

and the second one those for fibres of length 50µm and 75µm. This can also be

seen in Table 5.2.

Table 5.2: A summary of the data of the box plots in Figure 5.4

25 50 75 100

lower end of whisker 3 3 3 3

first quartile 39 24 3 27

median 66 48 42 60

third quartile 129 81 78 126

upper end of whisker 264 165 189 273

Especially the values for the third quartile and the upper end of the whiskers

show the divide clearly with the difference being almost 100 seconds. Also the

differences between the medians of the simulations using 100µm and 25µm fibres

and the results for simulations using 50µm and 75µm fibres are statistically sig-

nificant as can be seen in Figure 5.4. However, in both of these groups a similar

87



pattern exists. In both cases the resulting values for the shorter fibre in the

group are higher up to the third quartile where they become very similar and

then for the upper end of the whisker the values for the longer fibres are higher.

Thus, although there is a clear distinction between extreme (25 and 100 µm) and

moderate fibre lengths (50 and 75µm), in both of these groups, the spread of the

lengths of time that cells follow each other is larger for the cells migrating on the

longer fibres.

5.5.3 The impact of fibre density on the cells’ behaviour

Fibre density is another factor the variation of which might have an impact on

the modelling results. Thus again 3 sets of 15 simulations were run in which the

matrix density was altered. In one set the original matrix density was used by

placing 15000 fibres of mean length 75µm in a domain of 1000×1000µm. For the

other two sets the number of fibres was decreased to 7500 and increased to 22500.

Figure 5.5 shows the results of those simulations.

Figure 5.5: Varied width notched box plots generated from the distribution of the

amounts of time cells spend closer than 2 cell radii during migration on matrices

of different densities.

The width of the box decreases with increasing fibre number. Thus, cells are
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more likely to follow each other on less dense matrices than they are on very

dense matrices. This is not necessarily surprising as fewer fibres mean that the

cell has fewer contacts and therefore when encountering a track that is already

laid down in a certain way there are fewer stimuli steering it away in a different

direction. The maximum amount of time that cells spend following each other also

decreases with increasing fibre numbers from ≈ 1000 seconds to ≈ 600 seconds.

Table 5.3 shows however that the difference between the three sets of simulations

decreases for the upper end of the whiskers and the third quartile.

Table 5.3: A summary of the data of the box plots in Figure 5.4

7500 15000 22500

lower end of whisker 3 3 3

first quartile 15 3 15

median 42 42 48

third quartile 129 78 87

upper end of whisker 300 189 195

The median is almost the same in all three sets and also the notches in Figure

5.5, which are again not much more than lines in the box plots presented here,

show that there is no significant difference between them. Thus although the

range of the lengths of time that the two cells follow each other is greater when

the cells migrate on sparse matrices, the median is not different from when the

cells migrate on dense matrices.

89



5.5.4 The impact of the combined variation of fibre length

and density on the cells’ behaviour

When changing the fibre length previously, the number of fibres was increased

or decreased accordingly so that the density would be unchanged. Changing the

fibre length clearly still had an effect on the results. Thus it would be interesting

to see what influence a change in both of the parameters has on the results. To

this end, the fibre lengths were decreased to a mean of 25µm and the number of

fibres in the domain was varied. The highest number of fibres was 45000 which

gives the same density as placing 15000 fibres of length 75µm in the domain and

was thus used earlier. The next value chosen was 22500 which gives the same

density as having 7500 fibres of length 75µm. Also lower numbers of 15000 and

7500 fibres were placed in the domain for a set of simulations. The results are

shown in Figure 5.6.

Figure 5.6: Varied width notched box plots generated from the distribution of the

amounts of time cells spend closer than 2 cell radii during migration on matrices

of different densities constituted of fibres of mean length 25µm.

The data set is clearly the largest for the simulations on matrices of 7500 fibres.

The reason is probably the same as above, that the fewer contacts the cell has, the

fewer stimuli there are to move the cell off a path that has already been laid down.
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In the other three sets the width of the boxes is very similar. What is striking

is the spread of the outliers in the simulations with 22500 fibres. Cells follow

each other in these simulation for up to ≈ 2000 seconds. This is considerably

longer than in the simulations with 7500 fibres of mean length 75µm. Therefore

it must be the combination of fibre length and density and not the density alone

which leads to the results. Also all the percentile values are higher in these sets

of simulations than they are when varying the density alone and can be seen by

comparing Table 5.4 with Table 5.3.

Table 5.4: A summary of the data of the box plots in Figure 5.6

7500 15000 22500 45000

lower end of whisker 3 3 3 3

first quartile 21 33 45 39

median 54 69 60 66

third quartile 120 117 150 129

upper end of whisker 267 243 306 264

Apart from the value of the outliers, there is generally little difference between

all the different sets of simulations run with fibres of mean length 25µm. Thus it

seems as though it is the fibre length that generally determines the behaviour of

two cells placed next to each other on the matrix. The fibre density on the other

hand seems to have an influence on the overall range of the results. This can be

concluded from the variation of the maximum lengths of time for which the cells

follow each other between the different sets of simulations.
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5.6 Discussion

In this chapter we have presented a natural extension to the model in Chapter 4

by placing two cells in the domain. The cells were then tracked over three days

of real time and their behaviour classified by calculating the distribution of the

lengths of time that the cells followed each other. This was done under different

conditions. First the matrix stiffness and the initial distance between the cells was

altered. Then different fibre lengths and densities were considered before finally

both, the fibre lengths and densities, were varied. The results showed that ma-

trix stiffness has an impact on the cells behaviour. The cells followed each other

for longer periods of time on stiff matrices than they did on softer, re-orientable

ones. This was the case for both, cells which were initially close together and

cells which were initially further apart. Whether the matrix was soft or stiff, the

median of the length of time for which the cells followed each other was slightly

higher and the range was wider for cells that were initially close together rather

than further apart. In an experimental setting it is rather unlikely that cells

would start off very close together but it is possible that they ‘bump’ into each

other while migrating which then causes at least one of the cells to stop due to

CIL. Then the same situation could occur as at the beginning of the simulations,

that one cells keeps migrating (or starts migrating again) while the other one first

has to polarise. If both cells stop and have to re-polarise then they would move

away from each other afterwards, however if one cell keeps migrating then it is

possible for the other cell to re-establish the polarity axis in the same direction as

the other cell and thus follow this cell. Possibly by following each other initially,

a very well-established path is laid down which makes it more likely that the cells

follow each other along this track again at other times during the simulation.

This is the only reason we can find why there is an obvious difference between

cells starting off close together or further apart.
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The second set of investigations which focused on the impact of the fibre lengths

on the cells’ behaviour, showed that the maximum lengths of time that the cells

follow each other (the largest outliers) generally increased with fibre length. All

the other characteristic values behaved less linearly though. Cells migrating on

short fibres (25µm) and long fibres (100µm) spent longer following each other

than they did on matrices consisting of fibres of mean lengths 50µm or 75µm.

The spread was larger in these cases and also the median was higher with the dif-

ference between the medians from these sets and the ones with mean fibre lengths

of 50µm and 75µm being statistically significant. It is difficult to find an expla-

nation for this. One possibility is that very short fibres have fewer intersections

with other fibres and are therefore easier to reorient than longer ones. Similarly

in the case where long fibres are used, there are fewer of them in order to keep the

density unchanged which might also result in fewer cross-links. However previous

simulations showed that stiffer matrices led to longer timespans of cells following

each other which would contradict this explanation.

When varying fibre density, the maximum length of time that cells followed each

other for, decreased with increasing density. As explained above, this could possi-

bly be due to the fact that the cells have fewer contacts to different matrix fibres

on sparse matrices compared to dense matrices. Thus when a cell encounters a

track that has been laid down by the other cell, it is more likely to follow it on

a sparse matrix as there are fewer stimuli pulling the cell in a different direction.

However the observed effect is not mirrored in the value of the median, meaning

that it is just the range and the spread of the lengths of time that cells follow

each other that is larger on sparse matrices than on dense ones.

When combining a change in fibre length and fibre density it was difficult to find

a clear pattern. The most distinctive results from this were the high values for

the lengths of time that the cells followed each other in the case where 22500
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fibres of mean length 25µm were placed in the domain. Values of ≈ 2000 seconds

were reached which is higher than in any other set of simulations with fibres of

length 25µm and also far higher than in the simulations with 7500 fibres of mean

length 75µm which gives the same density as was considered here. Thus it must

have been this specific combination of fibre length and density which led to these

results. As before, here again it was just the range which showed this interesting

behaviour and little difference could be found between the medians of the dif-

ferent sets of simulations. Therefore this leads to the conclusion that the fibre

length determines the general cell behaviour and the fibre density influences the

range of the behaviour that can be observed.

In summary, one can say that fibre length and matrix stiffness seem to have an

impact on the behaviour of two cells placed on the extracellular matrix whereas

fibre density mainly affects the range of the lengths of time that cells follow each

other for rather than the median of these values. Unfortunately we could not

find any experimental or theoretical publications to compare this with and thus a

validation of these results is currently not possible. The way cells behave in this

context is rather important, though, since, for example, cells that invade their

environment during cancer development have been shown to follow each other’s

tracks. Although this is obviously generally an observation in three dimensions,

its two dimensional counterpart as considered here, could possibly complete the

picture and shed more light on the underlying factors. Thus hopefully there will

be experimental findings in the future to compare these results with.
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Chapter 6

A Multiscale Model of in vitro

Cancer Cell Invasion in a 2D

Domain

6.1 Introduction

Using the work from the previous chapters, we now formulate a model of cancer

cell invasion in a two dimensional in vitro setting. This is done by extending the

previous model to include cell–cell adhesion and repulsion and cell division. While

the repulsive forces between two cells are governed by their bio-mechanical prop-

erties, the strength of adhesion between two cells is determined by the number

of E-cadherin–β-catenin bonds they form. The intracellular dynamics underlying

the E-cadherin–β-catenin interactions happen on a much faster time scale than

the cellular components and are modelled using ordinary differential equations

giving the complete model a multiscale nature. In addition, compartmentalisa-

tion of the cell’s intracellular domain in terms of cell–cell contact areas, leads

to a spatial intracellular model. The parameters for this intracellular model are
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obtained from fitting the model to data from the available literature. We then use

this model to study the development of cell colonies dependent on internal and

external cell characteristics. This leads us to find cell behaviour and cell-matrix

interactions that trigger invasiveness as is seen in cancer cells.

6.2 The intracellular model

In Chapter 3.3 a brief description was given of the multiscale model published by

Ramis-Conde et al. [2008b]. The intracellular component of that model focusses

on E-cadherin–β-catenin dynamics as will be the case here. However, in order

to develop as simple a model as possible, Ramis-Conde et al. [2008b] made a

number of assumptions which do not reflect the recent findings of these dynamics

and, most importantly, highly influenced the outcome of the simulations. The

main simplification in this model is that the intracellular spatial aspect of the

dynamics is not taken into account. All the species - free E-cadherin, membrane

bound E-cadherin and E-cadherin–βcatenin complexes at the membrane which

form bonds with E-cadherin–β-catenin complexes on the surface of the neigh-

bouring cells - are modelled with one ordinary differential equation each. If a

cell has multiple neighbours, the model assumes that this one ordinary differ-

ential equation describes the dynamics of the number of E-cadherin–β-catenin

complexes, and therefore the number of cell–cell bonds, at each of the cell–cell

contact areas. Thus, if one of the neighbours starts detaching, the overall number

of E-cadherin–β-catenin complexes decreases in this model by Ramis-Conde et al.

[2008b]. Because of the nature of the model, the number of bonds and thus the

adhesion decreases between this cell and all its neighbours, although in reality it

should only be decreasing between this cell and the neighbouring cell that has

started detaching.

In order to address these concerns, in this chapter we develop a new, intracellular
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spatial model of the dynamics which will be parameterised by first translating the

number of E-cadherin–β-catenin bonds between cells into forces and then fitting

these to actual data of cell–cell adhesion forces found in the available literature.

6.2.1 The E-cadherin–β-catenin pathway: model descrip-

tion

As shown by Hinck et al. [1994], E-cadherin and β-catenin bind at the endoplas-

matic reticulum immediately after production. The complex is then trafficked

to the cell membrane [Hinck et al., 1994, Chen et al., 1999]. Other molecules

such as α-catenin can then bind to it and upon cell–cell contact, the complex

can form adherens junctions with E-cadherin–β-catenin complexes on the neigh-

bouring cell [van Roy and Berx, 2008]. The E-cadherin–β-catenin complex can

also be endocytosed and there are multiple possible scenarios for this [Bryant

and Stow, 2004]. Here, we assume that endocytosis has no effect on adhesion,

i.e. only those complexes that are not involved in adherens junctions are endocy-

tosed (as proposed by Le et al. [1999]) or endocytosed junctional complexes are

replaced almost immediately by exocytosis of a newly formed complex. Junction

disassembly followed by endocytosis leads to the disruption of the E-cadherin–β-

catenin complex and the components can either be degraded, recycled for cell–cell

adhesion or reused in different signalling contexts. Since production of neither

molecule is explicitly taken into account, the possibility of degradation is also not

considered but it is assumed that the overall amount of E-cadherin and β-catenin

is at a steady-state. The effect of down-regulation of E-cadherin will be studied by

decreasing the total amount of E-cadherin. The dynamics described are modelled

with a compartment model and ordinary differential equations that describe the

transition between compartments and interactions between the species as shown
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in Figure 6.1. Each cell–cell contact site, as well as the cell’s cytoplasm, is con-

sidered as a separate compartment. Free E-cadherin and free β-catenin only exist

in the cytoplasmic compartment. The cytoplasmic compartment can also hold E-

cadherin–β-catenin complexes which includes those complexes that are at the cell

membrane but not at a site of cell–cell contact. E-cadherin–β-catenin complexes

at a specific contact site are in the corresponding cell–cell contact compartment.

Figure 6.1: Schematic diagram showing the E-cadherin–β-catenin dynamics as

considered in the model. Free E-cadherin (E) and β-catenin (β) in the cytoplasm

bind to form a complex (E/β). In adherent cells, in addition to the general

transport to the cell surface, E-cadherin–β-catenin complexes are trafficked to the

contact area. If the complex is transported to a site of cell–cell contact (it is

denoted E/βi
c at cell contact site i) it can bind complexes on the neighbouring

cell’s surface. If there is no binding partner, the complex can be internalised

again and recycled. The same process takes place when bonds are broken due to

junction disassembly.
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The equations governing the described E-cadherin–β-catenin dynamics are as

follows:

dE

dt
= −νp ∗ E ∗ β + νn ∗ E/β +

#contacts∑
i=1

di(t) ∗ E/β
i
c, (6.1)

dβ

dt
= −νp ∗ E ∗ β + νn ∗ E/β +

#contacts∑
i=1

di(t) ∗ E/β
i
c, (6.2)

dE/β

dt
= νp ∗ E ∗ β − νn ∗ E/β −

#contacts∑
i=1

ci(t) ∗ E/β, (6.3)

dE/βi
c

dt
= ci(t) ∗ E/β − di(t) ∗ E/β

i
c , ∀i, (6.4)

where E is free E-cadherin, β is free β-catenin, E/β are non-adhesion effective

E-cadherin–β-catenin complexes in the cytosol or at the cell membrane at non-

contact sites and E/βi
c are E-cadherin–β-catenin complexes at the contact site

with cell i. νp is the E-cadherin–β-catenin binding rate and νn the complex

dissociation rate. The complex formation and dissociation terms have also been

considered by Ramis-Conde et al. [2008b]. The compartmentalisation of the cell

into a cytoplasmic compartment and individual compartments for each cell-cell

contact site is however a new concept and the terms associated with these are

therefore newly derived here.

Furthermore di(t) describes the endocytosis of E-cadherin–β-catenin complexes

due to either junctional disassembly or because there is no binding partner at the

surface of the neighbouring cell at this contact site. Thus

di(t) = ad,i ∗ ρd︸ ︷︷ ︸
internalisation due to
junctional disassembly

+ η ∗ 1

1 + exp(−2 ∗ (E/βi
c − E/βi

c,i))︸ ︷︷ ︸
internalisation due to non-binding

(6.5)

Here the first term on the right side of the equation represents the internalisation

due to junctional disassembly and the second term describes internalisation due to

non-binding. E/βi
c,i is the density of E-cadherin–β-catenin complexes at the site
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of contact with cell i, expressed by cell i. The second term is a smooth approx-

imation to a Heaviside function which is zero when E/βi
c is much smaller than

E/βi
c,i and one when E/βi

c is much greater than E/βi
c,i, thus giving an internal-

isation of E-cadherin–β-catenin complexes only when there are fewer complexes

at the cell-cell contact site in cell i than there are at that site in the cell currently

of interest. η is the internalisation rate in this case. ρd is the internalisation

rate of complexes freed by cell–cell detachment. The two rates are considered to

be different due to the fact that complexes involved in adherens junctions have

more binding partners and are also linked to the cytoskeleton and therefore their

dissociation is a much slower process [Miyashita and Ozawa, 2007]. ad,i gives the

loss of contact area with cell i at time t:

ad,i =

 ‖
∂
∂t
â(t)i‖, if ∂

∂t
â(t)i < 0,

0, otherwise,

where â(t)i is the contact area between the two cells at time t. This term for the

internalisation due to junctional disassembly is taken from Ramis-Conde et al.

[2008b].

Similarly ci(t) gives the exocytosis of E-cadherin–β-catenin complexes at the site

of contact with cell i. Different mechanisms are possible for this. Experiments

that study cell-cell adhesion only ever consider two cells and therefore, to our

knowledge, it is not known what happens when more cells adhere to each other.

Two different scenarios can be thought of. In the first case the adhesion between

two cells remains unchanged when a third cell attaches to them. This would

imply that the number of E-cadherin–β-catenin complexes that is trafficked to

a cell-cell contact site and forms bonds is limited. Thus if one assumes that

a cell should, for example, be able to have six neighbours, then the number of

E-cadherin–β-catenin complexes at a given cell-cell contact site could only be

a maximum of one sixth of the total possible number of E-cadherin–β-catenin

complexes. In the second case, the adhesion between two cells decreases when
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a third cell attaches to them and decreases again during the attachment of a

fourth cell and so on. This means that almost the total number of possible E-

cadherin–β-catenin complexes can be at a single cell-cell contact site, but as soon

as contact is made with another cell, the complexes are redistributed. We develop

an exocytosis term for both of these scenarios.

Model 1:

ci(t) = ac,i ∗ ρc ∗ (1− αi(t))︸ ︷︷ ︸
directed exocytosis

+ ι ∗
â(t)i

4 ∗ π ∗ r(t)2︸ ︷︷ ︸
undirected exocytosis

Model 2 :

ci(t) = ac,i ∗ ρc︸ ︷︷ ︸
directed exocytosis

+ ι ∗
â(t)i

4 ∗ π ∗ r(t)2︸ ︷︷ ︸
undirected exocytosis

We assume that two processes are involved in the exocytosis, (i) directed traf-

ficking to the contact site which is given by the first term on the right and, (ii)

undirected transport given by the second term. The assumption that undirected

transport occurs is based on the fact that E-cadherin–β-catenin complexes can

be found at the entire cell surface (not just at sites of contact) and also in non-

adherent cells [Le et al., 1999]. We model this undirected transport by assuming

it to be proportional to the ratio of the contact area to the total cell surface area,

with the proportionality constant being ι and r(t) being the cell’s radius at time

t. The directed trafficking is dependent on the increase in contact area given by:

ac,i =


∂
∂t
â(t)i, if ∂

∂t
â(t)i > 0,

0, otherwise.

ρc is the complex translocation rate. This term is again taken from Ramis-Conde

et al. [2008b]. As explained above, in Model 1 we assume that trafficking is fur-

thermore dependent on the number of E-cadherin–β-catenin complexes already

at the site of contact as the overall number is limited. If the number of complexes

at the cell-cell contact site is smaller than the maximum number allowed, then
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αi(t) is the ratio of complexes at the cell-cell contact site to the maximum number

allowed. Otherwise it is one.

In addition to the above dynamics, Model 2 has additional equations that govern

the redistribution of E-cadherin–β-catenin complexes between different cell-cell

contact sites. Two new variables have to be introduced for this: Ci
+ is the num-

ber of E-cadherin–β-catenin complexes that are translocated from other cell-cell

contact sites to the site of contact with cell i and Ci
− is the number of complexes

that is moved from cell-cell contact site i to other contact sites.

Ci
+ = γ ∗

#contacts∑
j=1,j6=i

E/β
j
c ∗

1−
E/βi

c

â(t)i

E/βj
c

â(t)j

 , (6.6)

Ci
− = γ ∗ E/βi

c ∗
#contacts∑

j=1,j6=i

1−
E/βj

c

â(t)j

E/βi
c

â(t)i

 . (6.7)

Ci
+ is added and Ci

− is subtracted from the right hand side of equation (5.4) in

Model 2 giving the equation

dE/βi
c

dt
= ci(t) ∗ E/β − di(t) ∗ E/β

i
c + Ci

+ − Ci
− , ∀i. (6.8)

In the following we will try to fit both models to published cell-cell adhesion data

in order to find good estimates for the parameters γ, η, ι, νn, νp, ρc and ρd.

6.2.2 The E-cadherin–β-catenin pathway: parameter es-

timation and model refinement

The data available from studies of cell-cell adhesion dynamics, are adhesion force

data. Therefore we translated the percentage of E-cadherin–β-catenin bonds

between two cells into an adhesion force. This is done by first assuming that the

number of bonds between two cells is equal to the minimum of the E-cadherin–β-

catenin complexes in either cell at the contact site. Published data that show the
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force it takes to separate two cells [Chu et al., 2004] are then used and it is assumed

that this is the adhesion force between the two cells. The data are interpreted

differently for the two intracellular models. In Model 1 it is assumed that only a

certain percentage of the total possible E-cadherin–β-catenin bonds can form at

any contact site. Assuming that each cell in a monolayer should be able to have

six neighbours and some free E-cadherin and β-catenin in the cytosol, only about

15% of the total possible number of complexes can be found at a cell-cell contact

site. Thus for this model we assume that in the given data from Chu et al. [2004]

only 15% of all possible E-cadherin–β-catenin complexes are at the contact site

and generate the measured separation force of 210nN (see Figure 6.2(a)). For

Model 2 we assume that 80% of the possible E-cadherin–β-catenin complexes in

a cell produce the force of 210nN. Chu et al. [2004] measure the separation force of

two cells using a dual pipette assay. As well as studying the influence of different

E-cadherin expression levels (100%, 58%, 41%, 38%, 14% and 2%) on the force,

they also look at the time course of the force during early cell-cell contact until its

maturation after about 60 minutes. The results of the experiments are shown in

Figure 6.2. Figure 6.2(a) shows the increase of force between two cells from 0nN

at the time of their initial contact, to just over 200nN after 60 minutes. We used

the force measurements after 5 minutes, 10 minutes, 30 minutes and 60 minutes

to fit the models to. The black curve in Figure 6.2(b) shows the separation force

of two cells dependent on the E-cadherin expression level. These measurements

were taken 30 minutes after the initial cell-cell contact. When comparing Figures

6.2(a) and (b) it is noticeable that the separation force of two cells that express

100% of E-cadherin after 30 minutes is not the same in both experiments. This

is most likely the case because different cells were used for these experiments and

for each one specific cells were selected as a control in comparison to which the

other cells in that experiment were analysed. In order to be able to use both sets
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(a) (b)

Figure 6.2: Plots showing the separation force (SF) or adhesion force as mea-

sured by Chu et al. [2004] under different conditions. Plot (a) shows the force

development after initial contact. The force reaches a steady-state after about

60 minutes. Plot (b) shows the dependency of cell-cell separation force on the

percentage of expressed E-cadherin after 30 minutes of the initial cell-cell con-

tact. Images reproduced from Chu et al. [2004] in accordance with RUP copyright

policy.

of data, we worked with the actual values of experiment (a) and scaled the results

of experiment (b) accordingly so that the results for cells with 100% E-cadherin

expression match those of experiment (a) after 30 minutes but the dependency

of the separation force on E-cadherin expression levels is taken from experiment

(b).

In order to fit Model 1 and Model 2 to the data, we wrote a MATLAB code that

solves each system of ODEs using the MATLAB ODE-solver ‘ode45 ’ and then

calculates the adhesion force
d(εij)

d(dij)
between two cells i and j from the number of

bonds between them using the following equations.
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Model 1:

d(εij)

d(dij)
= min(E/βi

c(t), E/βi
c,i(t)) ∗

210

15
nN (6.9)

Model 2:

d(εij)

d(dij)
= min(E/βi

c(t), E/βi
c,i(t)) ∗

210

80
nN (6.10)

The repulsion between the two cells is calculated using the Hertz model (see

Chapter 3.2). The extended Hertz model (see Chapter 3.2 ) is then used to

calculate the overall force the cells exert on each other and their movement is

derived from this. The cells’ resulting new position is then used in the next time

step to calculate the new size of the contact area between the two cells and the

change of the latter to feed into the ODEs. In order to simulate both models, the

procedure was followed for 100 minutes of real time and the force between two

cells was noted. The initial conditions were as follows:

E(0) = E-cadherin expression level, (6.11)

β(0) = 100, (6.12)

E/β(0) = 0, (6.13)

E/βi
c(0) = 0 , ∀i. (6.14)

The first round of fitting was done assuming that only two cells came into con-

tact. The radii of both cells was set to 5µm and the initial total contact area

between the two cells was set to 1µm2. As mentioned before, for Model 1 we

assumed that a maximum of 15% of all possible E-cadherin–β-catenin complexes

can be trafficked to one cell-cell contact site. Thus we also assumed that the

number of complexes at the cell-cell contact site in the neighbouring cell (E/βi
c,i)

is 15%. For Model 2 we set the number of complexes at the cell-cell contact

site in the neighbouring cell equal to 80%. The other parameters needed were

initially assigned numbers randomly generated by the inbuilt MATLAB random

number generator ‘rand ’ from the log space between 10−6 and 106. As only the
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attachment of two cells was considered in this round of fitting, only the param-

eters η, ι, νn, νp and ρc could be estimated for each model. As in Chapter 4.4,

we used the inbuilt MATLAB function ‘fminsearch’ to fit the cell adhesion data

from the simulations to the experimentally found cell adhesion data in Figure

6.2. Figure 6.3 shows the results for both Model 1 (Figure 6.3(a)) and Model 2

(Figure 6.3(b)) using the set of parameters that gave the best fit. It can be seen
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Figure 6.3: Graphs showing the best fits of Model 1 and Model 2 to the data

from Chu et al. [2004]. Plot (a) shows the best fit for Model 1 to the data. It

can be seen that the simulation results for E-cadherin expression levels of 14% to

58% after 30 minutes are reasonably close to the data but the time course of the

force for 100% E-cadherin expression does not fit the data. Plot (b) shows the

best fit for Model 2 to the data. Here the force time course for 100% E-cadherin

expression as well as the forces after 30 minutes at different expression levels fit

the data well.

very clearly that a good fit was found for Model 2 whereas the results of Model 1

produced a very poor fit to the data. This was surprising, as the main difference

between the two models, the fact that E-cadherin–β-catenin complexes have to
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be redistributed between cell-cell contact sites after the attachment of more cells

in Model 2, is not of importance at this stage. However, given the clear result

that the results of Model 2 provided a better fit to the data, we used this model

as the intracellular pathway of cells in our multiscale model. Running simulations

with two cells quickly showed however, that the model did not transfer well to

the multiscale model. The two cells only showed initial adhesion but then the

adhesion force displayed damped oscillatory behaviour until the cells separated.

Therefore it was obvious that some of the assumptions must be wrong. In the

multiscale simulations the intracellular dynamics of both cells started with the

same initial conditions as shown in equations (6.11)-(6.14). This means that, in

contrast to the assumptions made above, the percentage of E-cadhern–β-catenin

complexes at the contact site in the neighbouring cell was variable and very low to

start with. Thus this assumption had to be changed in the MATLAB code to find

parameters that also produce a good fit to the data in the multiscale model. We

therefore changed this part of the code so that instead of assigning E/βi
c,i a value

of 15% in Model 1 and 80% in Model 2, it varied and was assigned the same value

as was calculated for the percentage of E-cadherin–β-catenin complexes at the

cell-cell contact site in the current cell of interest. This new MATLAB code was

again run for both models as explained above, trying to find values for η, ι, νn, νp

and ρc that give the best fit of the models to the data. Figure 6.4 shows the

adhesion force between two cells produced by the new Model 1 (Figure 6.4(a))

and the new Model 2 (Figure 6.4(b)) using the sets of parameters that give the

best fit to the data in each case. Although producing a better fit to the data

than previously, it was clear that the results of Model 1 still did not fit the data

well. The results of Model 2 gave a reasonable fit to the actual data points but it

was obvious that the time course behaviour is very different to what one would

expect and it is very unlikely that cells show this oscillatory pattern. Therefore
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Figure 6.4: Graphs showing the best fits of Model 1 and Model 2 without the

assumption that 80% of E-cadherin are at the cell–cell contact site in the neigh-

bouring cell to the data from Chu et al.. Plot (a) shows the best fit for Model 1

to the data and plot (b) shows the best fit for Model 2. In both cases the simula-

tion results for E-cadherin expression levels of 14% to 58% after 30 minutes are

reasonably close to the data but the time course of the force for 100% E-cadherin

expression does not fit the data.

it seemed as though another adjustment of the model had to be made.

The internalisation of E-cadherin–β-catenin complexes due to non-binding obvi-

ously has a strong impact on the model dynamics as the differences between the

results in Figure 6.3 and Figure 6.4 are solely due to the fact that the value of

E/βi
c,i in this term was changed. Although the term describes a process that is

very likely to take place, its dynamics seem to be more complicated than captured

here and are possibly coupled with a time delay. As not enough data are available

to find the precise term necessary and in order to keep the model as simple as

possible, we decided to remove that term from both models. Again using the

MATLAB code from previous optimisations and only adjusting the models to
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this newest version, the simulation results were fitted to the data to find optimal

values for the parameters η, ι, νn, νp and ρc. Figure 6.5 shows the simulation re-

sults of both models using the optimal parameter set.

Similar to the previous optimisation and simulation results, Model 1 (Figure
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Figure 6.5: Graphs showing the best fits of the new Models 1 and 2 to the data

from Chu et al. [2004]. Plot (a) shows the best fit for Model 1 to the data. It can

be seen that the simulation results for E-cadherin expression levels of 14% to 58%

after 30 minutes are reasonably close to the data but the time course of the force

for 100% E-cadherin expression does not fit the data. Plot (b) shows the best fit

for Model 2 to the data. Here the tim course of the force for 100% E-cadherin

expression as well as the forces after 30 minutes at different expression levels fit

the data well.

6.5(a)) produced a very poor fit to the force data. However, Model 2 (Figure

6.5(b)) produced cell-cell adhesion forces that fit the data well. The parameter

109



values found are:

ι = 8.2/min,

νn = 0.6/min,

νp = 0.02/min and

ρc = 0.6/min.

In order to find an optimal value for the parameter γ as well, we ran another

round of optimisations for Model 2, this time for three cells. As no data are

published on the adhesion between cells in a group of three, we assumed that if

all three cells come into contact at the same point in time, the adhesion force

develops in the same way at both contact sites of a cell and that the adhesion force

reached is half the force measured for two cells in contact by Chu et al. [2004].

Furthermore, we assumed that if initially only two cells were in contact and then

a third cell came into contact with the cell of interest, the E-cadherin–β-catenin

complexes would be redistributed between the two contact sites, such that after

30 minutes the adhesion forces would be equal between the cell of interest and

both of its neighbouring cells.

Figure 6.6 shows the results of the simulations with three cells using the optimal

value for γ which is given as:

γ = 0.16/min.

Figure 6.6(a) shows the adhesion force between a cell and both its neighbours

which came into contact with the cell at the same point in time. It can be seen

that the adhesion force generated by the cell in the simulations fits the assumed

actual force well. Figure 6.6(b) shows the development of the adhesion force be-

tween a cell and both its neighbours where initially only one of the neighbouring

cells is in contact with the cell of interest, and a strong adhesion force develops

between the two cells. After 20 minutes the second cell comes into contact with
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Figure 6.6: Graphs showing the time course profiles of the forces at two contact

sites with two different neighbours. Plot (a) shows the forces over time in the case

where the two cells come into contact with the cell of interest at the same time.

The expected force at both contact sites is taken to be half of the force measured

by Chu et al. [2004]. The time course fits the expected data well. Plot (b) shows

the forces over time in the case where initially only one cell contacts the cell of

interest and after 20 minutes a second cell comes into contact with the cell. The

E-cadherin–β-catenin complexes are redistributed quickly so that the force at both

contact sites is very similar after 10 minutes and completely the same after 40

minutes.

the cell of interest and the adhesion between the initial two cells decreases whereas

the adhesion between the cell of interest and the new neighbour increases until

the force at both adhesion sites is equal after about 40 minutes. It can be seen

in 6.6(b) that the adhesion force between the cell of interest and the new neigh-

bour continues to increase for another 10 minutes when the increase abruptly

stops and the force levels out. The force between the cell of interest and the

initial neighbour on the other hand increases slowly during these 10 minutes and
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then has a sharp increase so the forces at the two contact sites are of the same

strength. This behaviour is most likely due to the three processes (i.e. directed

exocytosis, undirected exocytosis and redistribution) that lead to exocytosis of

the E-cadherin–β-catenin complexes. The force at the contact site between the

cell of interest and the new neighbour increases from the time point of contact on-

wards due to undirected exocytosis, directed exocytosis and the redistribution of

complexes from the other contact site. 40 minutes into the simulation the forces

at the two contact sites are the same and thus no more complexes are brought

to the new contact site due to redistribution. Directed exocytosis however still

takes place as the contact area is still growing. Thus the redistribution changes

direction at this point so that complexes are shifted from the new cell-cell contact

site to the old one. This happens at a very low rate as the density of complexes at

both contact sites are presumably very similar. However, at some point the redis-

tribution overcomes the directed exocytosis which stops the increase in contact

area and therefore stops the directed exocytosis altogether. This is most likely

the switching point in the time course profile of the forces which takes places

roughly 50 minutes into the simulation. This then leads to the levelling out of

the forces due to the redistribution of the E-cadherin–β-catenin complexes.

6.2.3 The E-cadherin–β-catenin pathway: the final model

and its dynamics

The model, the simulation of which fit the data by Chu et al. [2004] (see Figure

6.2) best, is the E-cadherin–β-catenin model which will be used in the rest of this

chapter. To recall, the equations governing the dynamics are:
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dE

dt
= −νp ∗ E ∗ β + νn ∗ E/β +

#contacts∑
i=0

di(t) ∗ E/β
i
c,

dβ

dt
= −νp ∗ E ∗ β + νn ∗ E/β +

#contacts∑
i=0

di(t) ∗ E/β
i
c,

dE/β

dt
= νp ∗ E ∗ β − νn ∗ E/β −

#contacts∑
i=0

ci(t) ∗ E/β,

dE/βi
c

dt
= ci(t) ∗ E/β − di(t) ∗ E/β

i
c + Ci

+ − Ci
− , ∀i,

with

di(t) = ad,i ∗ ρd︸ ︷︷ ︸
internalisation due to
junctional disassembly

, ad,i =

 ‖
∂
∂t
â(t)i‖, if ∂

∂t
â(t)i < 0,

0, otherwise,

ci(t) = ac,i ∗ ρc︸ ︷︷ ︸
directed exocytosis

+ ι ∗
â(t)i

4 ∗ π ∗ r(t)2︸ ︷︷ ︸
undirected exocytosis

, ac,i =


∂
∂t
â(t)i, if ∂

∂t
â(t)i > 0,

0, otherwise,

and

Ci
+ = γ ∗

#contacts∑
j=1,j6=i

E/β
j
c ∗

1−
E/βi

c

â(t)i

E/βj
c

â(t)j

 ,

Ci
− = γ ∗ E/βi

c ∗
#contacts∑

j=1,j6=i

1−
E/βj

c

â(t)j

E/βi
c

â(t)i

 .

The parameter values used in the following are given in Table 6.1.

The initial conditions are given in equations (6.11)-(6.14). ρd is estimated later

in the multiscale simulations as the effect of this parameter can only be seen

at the cell population level. In the following simulations it is initially set to 0.

In order to understand the dynamics of the model completely, we ran simulation

where 6 cells come into contact with the cell of interest at different points in time.

We also tested scenarios where different numbers of cells attached themselves and
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parameter value

undirected E/β translocation rate ι 8.2/min

E/β dissociation rate νn 0.6/min

E/β binding rate νp 0.02/min

directed E/β translocation rate ρc 0.6/min

E/βi
c redistribution rate γ 0.16/min

Table 6.1: Table showing parameter values used in the final version of the

intracellular E-cadherin–β-catenin model.

detached themselves from the cell of interest. The simulation results are shown

in Figure 6.7 in terms of the force between the cell of interest and its neigh-

bours. Figure 6.7(a) shows the force at different contact sites during and after

the consecutive attachment of six cells to the cell of interest. It can be seen that

independent of the length of time between attachments, the E-cadherin–β-catenin

complexes were redistributed successfully such that the forces were equal at all

cell-cell contact sites at the end of the simulation. Figure 6.7(b) shows the forces

at different contact sites during and after attachment and detachment processes

as well as the detachment of two cells simultaneously. Initially all six neighbours

were attached to the cell of interest. After 30 minutes we forced one of the cells

to detach itself and it can be seen in the plots that the E-cadherin–β-catenin

complexes that had been forming the bonds at this cell-cell contact site, were

internalised and then recycled to enforce the other cell-cell attachments. This

becomes clear as the graphs depicting the force at the different cell-cell contact

sites show a step-like increase in their values. The same can be seen for further

cell detachments after different time intervals. After the detachment of 4 cells

(cells 3-6), 80 minutes into the simulation, we forced cell number 3 to reattach

itself to the cell of interest and the graphs show the expected behaviour of the

redistribution of force. At 110 minutes, we forced two cells to detach themselves
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Figure 6.7: Graphs showing the time course of the forces at different cell–

cell contact sites after multiple cell–cell attachment and detachment processes.

Plots in figure (a) show the forces at different contact sites during and after the

consecutive attachment of six cells to the cell of interest. Plots in figure (b) show

the forces at different contact sites during and after attachment and detachment

processes as well as the detachment of two cells simultaneously.

and again, the graph of the final neighbour left, shows a smooth increase in force

at this cell-cell contact site.

These simulations show that the model exhibits the behaviour one would expect

to see at cell-cell contact sites during and after attachment and detachment pro-

cesses. It also fits the cell-cell adhesion data by Chu et al. [2004] well and is

stable in a variety of scenarios. Thus we will use this model as the intracellular

component of the multiscale model in the following.
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6.3 The multiscale cell model

The model we introduce here combines the intracellular dynamics from the pre-

vious section and a cell-level model to produce a multiscale model of individual

cells as well as cell-cell interactions. The cell-level model we will formulate is

again similar to the one found in the work by Ramis-Conde et al. [2008b]. How-

ever the model of the cell division is modified so that the growth curve of a small

cell population is a smooth exponential curve rather than a step-like function.

The cell-cell interactions are then modelled using the extended Hertz model as

explained in Chapter 3.2.

6.3.1 Modelling the cell

One biomarker of cells in an epithelial layer is the apical-basal polarity and the

columnar shape as explained in Chapter 2. Epithelial cells in isolation are gen-

erally of a spherical shape [Galle et al., 2005]. As we intend to model epithelial

cells specifically, a very detailed model would include a shape change of the cells

from a spherical shape of cells in isolation to a columnar shape of adhering cells

to a hemispherical shape of migrating cells which have emerged from the EMT.

However, so that we do no over-complicate the model, we assume a spherical

cell shape. Furthermore we assume the cells to be elastic as has been done in

previous modelling work [Ramis-Conde et al., 2008b, 2009, Drasdo and Hoehme,

2005]. This allows for a near columnar shape for cells in epithelial layers. In

order to be able to both use the migration model developed earlier and rely on

its previous validation and results, we choose the radius of the cell to be 5µm.

This ensures the volume to be roughly the same as the volume of the cells in

the previous chapters. In addition we ran 2 sets of 15 simulations each of the

single cell migration model in Chapter 4 over six hours of real time to investigate

the effect of having a spherical rather than a hemispherical cell shape. In one of
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these sets we used a hemispherical cell shape with a base radius of 15µm (as in

Chapters 4 and 5) and in the other set we used a spherical cell shape with a radius

of 5µm. All the model parameters were set to their default values which means

that the 15,000 matrix fibres were randomly orientated and of a mean length of

75µm. The stiffness was calculated independently for each fibre. The maximum

cell speed was set at 20µm/h, the standard deviation of fj(t) was set at 0.01 and

the standard deviation used in the calculation of the cell’s polarity axis was set at

1. Figure 6.8 shows the results of these simulations. The box plot summarising
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Figure 6.8: Notched box plots showing the persistence times of single cells mi-

grating on a 2D matrix. The left box plot summarises the results of simulations

where a cell is modelled as being relatively flat and hemispherical with a base ra-

dius of 15µm. The box plot on the right shows the results of simulations where

a cell is modelled as being spherical with a radius of 5µm. The notches indicate

that there is no statistically significant difference between the medians of the two

sets of simulations.

the results of the simulations with a spherical cell with a radius of 5µm shows

a slightly larger range of persistence times than the box plot representing the

simulation results with a hemispherical cell. The median persistence time of the

latter set of simulations is slightly higher than that of the former one, however,
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the notches of both box plots are overlapping. This means that the difference

of the median value is not statistically significant. Thus the simplification of

the model, which provides the possibility of avoiding the change of shape of the

cell during the EMT, does not have a significant impact on the cell migration

characteristics.

6.3.2 Modelling cell-cell interactions

We model the cell-cell interactions by the extended Hertz model as explained

in Chapter 3.2. The cell–cell adhesive forces are governed by the E-cadherin–β-

catenin complexes on the surface of two neighbouring cells at the contact site. The

smaller number of complexes on either cell’s surface at the contact site determines

how strong the adhesion is, as it limits the number of bonds that can be formed.

This number of E-cadherin–β-catenin complexes involved in cell-cell adhesion

bonds is given as a percentage of the maximum number of complexes that can

theoretically be formed (= 100%). As explained earlier, the number of bonds

between two cells is translated into a cell-cell adhesion force using the data by

Chu et al. [2004]. We again assume that the force, resulting from 80% of E-

cadherin–β-catenin complexes forming bonds with a neighbouring cell, is 210nN

as was measured by Chu et al. [2004]. Thus the adhesion force between two cells

is calculated by equation (6.10). The cell-cell repulsive forces, on the other hand,

are calculated using the Hertz model. As explained in Chapter 3.2 the Hertz

model calculates the repulsive force between two spherical objects dependent on

their biophysical properties. The parameters used for these properties are given

in Table 6.2. The resulting force between two cells is calculated by the extended

Hertz model using equations (3.5) and (3.6).
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parameter value reference

Radius of a cell R 5µm [Galle et al., 2005], [Ramis-Conde et al., 2008b]

Poisson ratio of cell i σi 1/3 [Galle et al., 2005], [Ramis-Conde et al., 2008b]

Elastic modulus of cell i Ei 1 kPa [Galle et al., 2005], [Ramis-Conde et al., 2008b]

Table 6.2: Table showing the parameter values used to calculate the repulsive

force between two cells with the Hertz model.

6.3.3 Inclusion of the intracellular dynamics in a two-cell

model

As mentioned above, the cell-cell adhesion forces are governed by the number

of E-cadherin–β-catenin bonds between cells which in turn is determined by the

number of E-cadherin–β-catenin complexes on the surface of each of the two cells

at the site of contact. This number of complexes at the contact site of two cells is

governed by the intracellular E-cadherin–β-catenin dynamics derived in Section

6.2. Thus we included these intracellular dynamics into the cell model explained

above and ran simulations with 2 of these cells. The movement of the cells was

calculated using equation (3.4) and, as only cell-cell interactions were considered

as present here, all terms on the right hand side except this one were ignored. This

gave the force balance equation Fdrag =
∑
innj

Fij. Fdrag was calculated as explained

in Chapter 3 but taking into account the spherical cell shape.
∑
innj

Fij results from

the extended Hertz model which is calculated as explained in the previous section.

In the simulations we tracked the time course development of the intracellular

components as well as that of the two cells. The results are shown in Figure

6.9. The top row of plots shows the development over 40 minutes at the cellular

level. In the figures it can be seen how the positions of the cells relative to each

other changes until a steady-state configuration is reached where the repulsive
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Figure 6.9: Figures showing the time course development of the multiscale cell

model at the cell as well as the intracellular level in a simulation with two cells.

In the top row of plots, E-cadherin in the cytosol is shown by the intensity of the

yellow colour. Thus the uptake of E-cadherin in cell-cell bonds can be followed

over time through the colour change of the cells in the figure from yellow to red.

At the same time it can be seen that the distance between the mid-points of the

two cells changes until the two cells are at a steady-state configuration. The

bottom row of plots shows the intracellular dynamics in both cells during these

simulations.

and adhesive forces balance each other out. At the same time these plots show

the amount of E-cadherin that is taken up in bonds at the cell-cell contact site -

the intensity of the yellow colour in the otherwise red cells is proportional to the

amount of E-cadherin in the cytosol. Thus the redder the image of the cell is, the

less E-cadherin is in the cytosol and the more E-cadherin is at the cell-cell contact
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site. The time course of the E-cadherin dynamics is also shown in the plots in

the bottom row of the figure. Here the dynamics of the intracellular components

in both cells are shown over 120 minutes. It can be seen that the dynamics are

the same in both cells. After initial complex formation and a fast increase of

E-cadherin–β-catenin complexes at the contact site, the dynamics slow down to

reach a steady-state. These simulations show that the intracellular dynamics are

well-modelled in the cell level model and provide a multiscale model of cell-cell

interaction dynamics.

6.3.4 Modelling cell division

In order to model whole cell populations, or colonies, it is important to not only

take cell-cell interactions into account but also cell division. We model the cell

cycle by assuming that the G1-phase has an average length of 7 hours, the M-

phase an average length of 2 hours and G0, S and G2 together have a length

uniformly distributed between 8 and 18 hours. This gives an overall cell cycle

length of 17- 27 hours which agrees well with published cell cycle lengths [Bernard

and Herzel, 2006, Drasdo and Hoehme, 2005]. Each time a cell enters the cell

cycle a new G0-S-G2 time is calculated for this cell to take into account the ran-

domness of biological systems. When a cell enters M-phase, it starts dividing

into two daughter cells. The division occurs along the axis of highest pressure

and at the end of M-phase, the division is complete and two new cells of radius

R/2
1
3 exist. The value of this new radius is chosen for volume conservation. This

is implemented by generating a new cell at the start of M-phase and by placing

the centre of the new cell immediately next to the centre of the original mother

cell. The original mother cell becomes the second daughter cell. Both daughter

cells have initially the same radius as the mother cell had. The same is the case

for the amount of intracellular proteins. During the 120 minutes of M-phase, the
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centres of the two daughter cells move further apart by a distance of 1.6 * time

step(min)/120 min * R/2
1
3µm per time step. This ensures that the centres have

a distance of 1.6 * R/2
1
3µm from one another at the completion of M-phase. A

cell’s radius shrinks monotonously by ((R- R/2
1
3 ) * time step(min)/120min)µm

in order to ensure a radius of R/2
1
3µm at the end of M-phase. This is done to

capture the slow shape change during the division of the mother cell into two

daughter cells. Since in reality the two daughter cells are not two completely

separate cells until the end of the M-phase, no cell-cell interactions are assumed

to take place. However, interactions with other cells can occur. The intracellular

dynamics and the adhesive and repulsive forces are calculated for all contacts

between one of the daughter cells and its neighbouring cells. Before calculating

the net force at these cell-cell contact sites the neighbouring cells are however

checked to see whether they are also in contact with the other daughter cell. If

this is the case, the force is halved as it would otherwise be counted twice when

considering the two daughter cells as the one mother cell. In addition, after the

two daughter cells have been moved according to these forces, they are checked

to ensure that they have not moved further apart than they should. If this is not

the case they are moved closer together. This adjustment is done to each cell

proportional to the movement they have just completed.

During G1 phase both daughter cells then grow up to their maximum radius R.

When cells are taken to exist on an extracellular matrix, a further consideration

has to be taken into account. It has been found for glioma cells that motile

cells have a decreased proliferation rate or do not proliferate at all [Giese et al.,

2003]. This has come to be known as the ‘go or grow’ mechanism or the mi-

gration/proliferation dichotomy. Although this has not been explicitly shown for

epihelial cells, the underlying molecular reasons given by Giese et al. [2003], also

hold for other cells than glioma cells. Therefore we also assume that cells with
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front-rear polarity, and thus the motile cells, cannot enter M-phase.

6.3.5 Constraints of the modelling technique

The general way by which the force that is generated by bonds between two cells

is measured, is by trying to separate the two cells and record the force it takes

to do this. Chu et al. [2004] call this force a ‘separation force’ which is indeed

exactly what it is. However, it is often also referred to as an ‘adhesion force’ as it

is also seen as the force that cells generate to adhere to each other. Adams et al.

[1996] showed the accumulation of E-cadherin at cell-cell contact sites over time

and the ‘zipping up’ of these contact sites. The E-cadherin bonds were clearly

exerting an adhesion force which led to the movement of the cells closer to each

other and thus an increase in the cell-cell contact site. Adams et al. [1998] show

images of the distribution of E-cadherin molecules tagged with green fluorescent

protein (GFP) during the formation of a monolayer. Here it can be seen that

although E-cadherin bonds form all along cell-cell contact sites, they seem to be

represented in higher densities at the end-points of the contact site. These are the

points where the cell-cell dynamics happen. The E-cadherin bonds here either

prevent the ‘unzipping’ and separation of the cells or try to extend the contact

site. If it is assumed that the natural state of epithelial cells is in a layer or sheet,

as this is the way they occur in the body, then the E-cadherin bonds try to restore

this natural state by preventing cell-cell separation. It can be assumed that cells

with mature cell-cell contacts are in their natural state and either no force or

little force is used in this case to keep the cells together. For that to be true,

the repulsive force originating from the cell’s cytoskeleton also has to be minimal

in this case. This assumption can be made as otherwise the cell would have to

produce enormous amounts of energy just to keep itself in its natural state which

is very unlikely. Thus the so called ‘adhesion force’ is only exerted when two cells
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are separated and their natural state is perturbed. Therefore calling it ‘separation

force’ may be more precise. The extended-Hertz modelling technique however,

models adhesion rather than separation forces. Here it is assumed that the cells

constantly exert adhesion and repulsion forces on one another. The assumption

of the model is that adhesive and repulsive forces balance each other out in cells

at an optimal distance from one another (see Figure 3.3). However, this is not

necessarily the case. One can also assume that with an increase in the cell-cell

contact site, the number of cell-cell adhesion bonds increases which in turn leads

to stronger adhesion and thus a further increase in the cell-cell contact site and so

on. Although the repulsion also increases with cell-cell closeness, the adhesion can

be larger until the two cells engulf each other. This is exactly what happened in

some test-simulations we ran. One could argue that it is due to a wrong choice of

parameters, but given that all the parameter values are either taken directly from

the literature available or are derived from fitting the intracellular dynamics to

the data, it rather highlights the problems arising from using potential functions

to model cell-cell interactions. In order to overcome these problems and adjust

the model to be more in line with the underlying biology, we assume that the

force between two cells is zero if the cells are in their natural state. Given that

a cell in a monolayer has on average six neighbours, we assume that the force

between two cells is zero if the cell-cell contact area has a diameter larger than or

equal to one sixth of the cells circumference. However as soon as the contact area

decreases, the separation force/adhesion force and repulsion force are calculated

as explained above in Section 6.3.2.
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6.3.6 The estimation of ρd

The only part missing in the multiscale cell model that we develop here, is the

value of the parameter ρd. This parameter describes the rate at which E-cadherin–

β-catenin complexes are endocytosed after bond breakage due to the separation

of two cells. Its effect can therefore only be seen in a multi-cell simulation where

dynamic detachment processes take place. For this reason we ran simulations

varying this parameter by five orders of magnitude to get some idea of the value

of this parameter before starting a more refined parameter search. We examined

the simulation results after three days and after seven days. To evaluate the

results we took note of the number of cells at these two time points, the number

of neighbours each cell had and the average adhesion force at the cell-cell contact

sites. Unfortunately we did not have any specific cell-colony data to compare the

results with. However, some basic assumptions helped to compare the simulation

results and decide on a good parameter value.

Firstly, without enforcing a particular growth law, we assumed that the cell colony

should grow considerably between day three and day seven. Secondly, we as-

sumed that the cell colony should have a near-circular shape. Thirdly, we used

histograms which show the distribution of the number of neighbours of cells in

a proliferating epithelial layer [Gibson et al., 2006, Sanderius et al., 2011], to

compare the results with. The histograms are shown in Figure 6.10. It can be

seen in both images that the distributions are very similar for this large variety

of species right across the range of the Metazoa. This means that it is a very

stable pattern and we assumed, therefore, that it is very similar in humans as

well. Thus we used this as the main marker to distinguish between a “good”

and a “not-so-good” parameter value. In addition to varying the value of ρd, we

also varied some constraints that influence the model dynamics. In the model
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Figure 6.10: Graphs showing the distribution of the number of neighbours of

cells in growing epithelial layers. (a) The distribution of the number of neighbours

in the proliferating metazoan epithelia of Drosophila, Xenopus and Hydra. (b)

The distribution of the number of neighbours of cells in a much broader range

of proliferating epithelia. In addition to the epithelia of Drosophila, Xenopus

and Hydra it also shows the distribution for epithelia of Anagallis, cucumber,

Arabidopsis, and chick (also the results of a model presented in that paper are

shown in black). Image (a) is reproduced with copyright permission from Gibson

et al. [2006]. Image (b) is reproduced from Sanderius et al. [2011] in accordance

with the Creative Commons Attribution License.

described so far, the cells grow and divide independently of one another. How-

ever, as explained in the introduction, the cell cycle can be arrested, or paused,

if the conditions for division are not right, e.g. if the cell is under stress. Such

stress could be cell compression. Thus, in one set of the simulations, we assumed

that, if the cell is exerting a repulsive force above a certain threshold, the cell’s

division cycle is paused and it does not enter M-phase. The threshold force cho-

sen is 13000pN which translates into a cell having six neighbours each with a

distance of ≈ 8.5µm from cell-midpoint to cell-midpoint. The second change we

made in one of the simulation sets, was to change the force between two cells
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which are considered to be in their natural state. Instead of assuming that the

force is zero between these cells, we assumed that the adhesion force is zero and

thus the overall force equalled the repulsive force in this case unless the two cells

were positioned relative to each other so that the diameter of the contact area

was exactly one sixth of the cell’s circumference. As well as having sets of simu-

lations with these two changes separately, we also ran a set of simulations with

both changes. Thus, in total we ran four sets of simulations, in each of which we

varied the value of ρd between 500 and 0.005 by one order of magnitude at a time.

The first set we called ‘original’ and in this we used no constraints on the cell

division and a force of zero between cells that are in their natural state or closer

than that. The second set we called ‘division constraints’, as here the division of

a cell was constrained by the pressure it was under. The third set has the name

‘repulsion btw cells closer than natural’ to note that in these simulations the force

was set to be equal to the repulsion in cells closer than their natural state. And

finally the fourth set is called ‘repulsion btw cells closer than natural and division

constraints’ to note that here both changes were made. The results, first after

three days and then after seven days, are shown in Table 6.3. Whenever a row

does not have any entries, that means that those simulations failed due to the

cells getting too close. As in Figure 6.9, the colours of the cells in the plots in the

second column of the table, are related to the amount of free E-cadherin which

is shown in yellow.
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Table 6.3: Table showing the results of varying ρd, the constraints under which

cells can enter M-phase and the force that cells generate between them if they are

closer than their natural state.

ρd Image #cells #neighbours average force

Behaviour after 3 days

original

500 18 0pN

50 23 13502.69pN

5 22 4781.9pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

0.5 19 7895.95pN

0.05 – – – –

0.005 – – – –

division constraints

500 18 0pN

50 23 13502.69pN

5 23 9857.29pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

0.5 6 52154.77pN

0.05 5 65414.28pN

0.005 – – – –

repulsion btw cells closer than natural

500 22 3079.32pN

50 24 0pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

5 21 323.56pN

0.5 24 5071.39pN

0.05 – – –

0.005 – – – –

repulsion btw cells closer than natural and division contraints

500 22 3079.32pN

50 24 6296.73pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

5 21 3782.98pN

0.5 22 4525.54pN

0.05 11 20528.58pN

0.005 7 37182.90pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

Behaviour after 7 days

original

500 552 4531.67pN

50 528 4808.33pN

5 – – – –

0.5 – – – –

0.05 – – – –

0.005 – – – –

division constraints

500 560 5080.04pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

50 648 5167.65pN

5 613 4611.23pN

0.5 6 52109.05pN

0.05 5 65454.69pN

0.005 – – – –

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

repulsion btw cells closer than natural

500 659 1770.12pN

50 650 1723.86pN

5 631 1956.04pN

0.5 640 6680.74pN

0.05 – – –

0.005 – – – –

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

repulsion btw cells closer than natural and division contraints

500 659 1783.20pN

50 639 1937.0pN

5 597 1972.87pN

0.5 581 6392.6pN

Table continues on next page...
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...Table continued from previous page.

ρd Image #cells #neighbours average force

0.05 58 18931.96pN

0.005 7 37380.47pN

The results in Table 6.3 show that a huge variation of behaviour can be ob-

served in the simulations and even in each individual set of simulations by chang-

ing just this one parameter ρd. The most obvious overall result is that when

assuming the active force is just the repulsive force in cells closer than their nat-

ural state and, even more so, constraining the division of cells dependent on the

pressure they are under, one can observe the behaviour for the whole range of

parameter values, whereas otherwise, the cells get too close and cause the code

to fail when ρd takes on small values. The colour-coding used shows that in all

the sets of simulations the amount of free E-cadherin is much lower for small ρd

values than it is for larger ones.

When considering the behaviour after three days, values of 500 and 50 for ρd lead

to very extended shapes of the cell colonies and to only a small number of neigh-

bours, between 1 and 4 for each cell. For small parameter values of 0.5, 0.05 and

0.005 the behaviour is very much dependent on the set of simulations. Whenever
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the simulations could finish though, the colonies look to be circular, generally

with a relatively low number of cells. For parameter values of 5, the shapes of

the colony are somewhere between circular and extended. In the original set of

simulations, the simulations failed for parameter values of 0.005 and 0.05. For a

value of 0.5 it can already be seen that the cells had unnaturally high numbers of

neighbours which can only result from them being squashed together. The image

of the cell colony for a ρd value of 5 already looks very irregular and for values of

50 and 500 the colonies are very extended.

When division constraints were introduced in the second set of simulations, again

very extended colonies were the result of the simulations with parameter values

500 and 50. Also the colony resulting from a parameter value of 5 once again

had a very irregular shape. However, the simulations using parameter values of

0.5 and 0.05 could both finish in this set and they both showed a stable circle of

6 and 5 cells which all had 5 and 4 neighbours, respectively.

In the third set of simulations, extended and irregular shapes of the cell colonies

could again be observed for parameter values of 5, 50 and 500. Also the image of

the simulation results using a value of 0.5 for ρd shows a slightly irregular shape

although the irregularity decreases and the number of neighbours the cells have

increases with decreasing parameter value. The simulations for parameter values

of 0.05 and 0.005 did not complete.

The fourth set of simulations, which had both, a constraint on the cell division

and a force set to the repulsive force for cells closer than their natural state should

allow, was the only set of simulations where the results after three days could be

gathered for all parameter values. Again extended and irregular shapes of the

cell colonies were found for parameter values of 5, 50 and 500. For values of 0.5,

0.05 and 0.005 the cell colonies were near circular. However, as previously seen

in simulations with values of 0.5 and 0.05, the number of cells was very small in
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the simulations with parameter values of 0.05 and 0.005.

Based not only on the colony shape and the number of cells but also excluding

simulations that have an extreme distribution of the number of neighbours, the

most favourable combination of parameter value and constraints after three days

is the one used in the fourth simulation of the last set of simulations. Here, a

value of 0.5 is used for ρd, a constraint is put on the cell division and the active

force between two cells that are closer than their assumed natural state is just

the repulsive force.

For the original set, only the simulations using parameter values of 500 and 50

finished running over seven days. The colonies in both simulations had grown

considerably between day three and day seven. Both generally look to be near

circular, but they do have areas of extended rows of individual cells. This is

mirrored in the distribution of neighbours with about 5% of cells having no, or

only one, neighbour.

In the next set of simulations, which included the constraints on cell division,

the colonies generated using the parameter values 5, 50 and 500 have even more

irregular shapes than the results from the first set of simulations. Especially the

colony resulting from using a parameter value of 5 in the simulations appears

almost to be an invasive colony. There was no growth at all between day three

and day seven in the simulations that used ρd values of 0.5 and 0.05. In the third

set of simulations all the colonies look near circular. For the higher parameter

values of 500 and 50, a few irregularities can be seen and there are still cells that

are not in contact with any other cell. However, the simulations resulting from

using parameter values of 5 or 0.5, produce good shapes and the distribution of

neighbours is also similar to those shown in Figure 6.10.

The final set of simulations shows a very clear decrease in free E-cadherin for

decreasing parameter values. Similar to the third set of simulations, the overall
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geometry of the colonies is almost circular for parameter values 0.005, 0.5, 5, 50

and 500. The only real irregular shape can be seen for a value of 0.05. However,

in both the simulations with a ρd value of 0.005 and 0.05, the amount of free

E-cadherin is very low and the colonies have hardly grown or not grown at all

since day three. In addition, the distribution of the number of neighbours the

cells have is very different to the ones shown in Figure 6.10. For high parameter

values of 50 and 500, the circumferences of the cell colonies have slight irregular-

ities and again some cells exist that are not in contact with any other cell. The

results of the simulations using the parameter values 5 and 0.5 both show rela-

tively circular cell colonies as well as a distribution of the number of neighbours

that is comparable to the ones shown in Figure 6.10. The distribution resulting

from simulations with ρd equal to 0.5 however gives a slightly better fit to the

distributions found from experiments, as the difference between the frequency

with which 5 and 7 neighbours are observed is not so drastic. There is also less

free E-cadherin present in the cells which is what one would expect.

Given that this combination of parameter value and changes to the original model

was also the most favourable in the results of the simulations after three days, we

examined parameter values around 0.5 more closely again, using the constraint

on the cell division as well as assuming a force equal to the repulsive force if cells

get closer than their assumed natural state. The results of varying ρd between 0.1

and 0.9 using increments of 0.1 are given in Table 6.4. In contrast to the results

presented in Table 6.3, unsurprisingly only little variation can be seen between

the results of the simulations with the different parameter values.
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Table 6.4: Table showing the results of varying ρd between 0.1 and 0.9 with

increments of 0.1 and using both, constraints on cell division and a force equal to

the repulsive force if cells get closer than their assumed natural state

ρd Image #cells #neighbours average force

Behaviour after 3 days

0.9 19 3553.33pN

0.8 22 3970.7pN

0.7 24 4000.27pN

0.6 22 4375.13pN
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ρd Image #cells #neighbours average force

0.5 22 4525.54pN

0.4 19 5500.54pN

0.3 19 5920.43pN

0.2 19 8250.23pN

0.1 12 15786.24pN
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ρd Image #cells #neighbours average force

Behaviour after 7 days

0.9 594 3898.86pN

0.8 647 4503.34pN

0.7 662 4905.28pN

0.6 661 5714.5pN
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ρd Image #cells #neighbours average force

0.5 581 6392.59pN

0.4 569 7413.07pN

0.3 543 8672.28pN

0.2 – – – –

0.1 93 14794.69pN

The results for the parameter value 0.1 show unexpected distributions in the

number of neighbours cells have. The results of the simulation where a parameter

value of 0.2 was used, do not exist because the simulations failed. Apart from

these two cases, the results show nearly circular colonies both after three days and
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after seven days. However, a careful comparison of the distributions of the number

of neighbours the cells have after seven days shows that the distribution resulting

from the simulation with a ρd value of 0.6 is closest to the distribution found

through experiments in Figure 6.10. The only difference between the distributions

is that a small number of cells in the simulation have between 1 and 3 neighbours

which is lower than what can be seen in the experimental findings. This is most

likely due to the fact that in the simulation all the cells are counted whereas in

the experiments only a segment of the inner part of the proliferating epithelial

layer is considered. Thus the low number of neighbours arises most likely from

cells at the colony’s circumference. Other than that, the results of the simulation

fit the experimental finding both qualitatively and quantitatively.

As mentioned above, we assumed that the cell colony should grow considerably

between day three and day seven. In this particular simulation this was clearly

the case. In order to get a more precise idea of the growth law underlying these

results, we plotted the number of cells against time. The results can be seen in

Figure 6.11. The results of the simulation are shown in red. It can be seen that

the curve they form looks like an exponential growth curve. When trying to fit an

exponential curve to the results by varying the growth constant, we found that

the curve of the function

y(t) = 2× e0.83t, t in days (6.15)

fits the results well. This can be seen in Figure 6.11 where the curve of equa-

tion (6.15) is shown in black. This agrees with the well-established assumption

that cell monolayers grow exponentially on short time scales [Freshney, 1992, Bru

et al., 2003, Drasdo and Hoehme, 2005]. Given the description in Freshney [1992]

and Drasdo and Hoehme [2005], seven days are seen to be a short time-scale and

within the exponential growth regime. Thus concerning multiple different mea-

sures, this parameter choice and the choice of model changes, show results that
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Figure 6.11: Graph showing the growth of the cell colony arising from the

simulation where ρd is set to 0.6, cell division is constrained and the force is set

to equal the repulsive force between two cells closer than their natural state should

allow. The growth curve of the simulated cell colony is plotted in red. This is very

close to an exponential growth curve with growth rate 0.83/day which is shown in

black.

fit the data well. It is surprising, however, to see that in order to obtain these

fits, the parameters of a simulation have to be chosen where the amount of free

E-cadherin is relatively high and the average force at cell-cell contact sites is only

just under 6000pN. Given the single-cell adhesion/separation experiments by Chu

et al. [2004] and extrapolating to a cell that has more than one neighbour, one

would expect a much higher cell-cell adhesion/separation force and hardly any

free E-cadherin. To our knowledge there are unfortunately no data in the avail-

able literature that we can compare this with as, although experiments that use

fluorescence staining of E-cadherin exist, they are difficult to quantify. Thus this

comparatively low separation force in cells in the epithelial monolayer compared

to the separation force of two individual epithelial cells, can only be hypothesised

to exist and it would be interesting to find a way of setting up experiments that
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can test this. For further simulations we will use the parameter value of 0.6 for

ρd as well as the constraints on the cell division and the adjustment of the force

between two cells that are closer than their natural state is assumed to allow.

6.4 Modelling the extracellular matrix and cell-

matrix interactions

To complete the model, the extracellular matrix and the cell-matrix interactions

are modelled as in previous chapters. The individual matrix fibres are again rep-

resented by thin cylinders, the lengths of which are normally distributed with

mean 75µm and standard deviation 5µm and the widths are 200nm. Cells also

reorientate the matrix fibres as before and the fibre rotation is again calculated

using equation (4.13). Here the stiffness of the matrix fibres is always calcu-

lated dependent on fibre inter-connectedness. All the parameters are chosen as

in Chapters 4 and 5, i.e. the number of fibre cross-links at which the maximum

stiffness is reached is given the value of 15, the factor that reduces the reorien-

tation is given the value of 0.1, the standard deviation used to generate fj(t) is

0.01, the standard deviation used to generate χ is 1 and smax is 20µm/h. Similar

to the model in the previous chapter, the matrix reorientation by one cell can be

constrained by the presence of other cells. If multiple cells are in contact with the

same fibre, we assume again that a cell should not be able to reorient that fibre

in such a way that it loses contact with the other cells. Thus, after calculating

the reorientation angle, the other cells are checked to see whether or not they are

still in contact with the fibre. If they are in contact, the reorientation takes place

as before. Otherwise, the reorientation is reduced such that the other cells stay

in contact with the fibre.
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6.5 Modelling the cell movement

Just as before, the cell movement is governed by the total force acting on the

individual cell. Here, in addition to the force the cell generates to move itself

forward on the matrix, the drag force and the random movement, the cell-cell

interactions have to be taken into account. Thus the equation of motion from

previous chapters has to be extended to

Fdrag =
∑
innj

Fij +
∑
fnnj

Ffj + fj(t), (6.16)

where Fij is the force generated between two cells i and j with the sum taken over

all cells that cell j is in contact with, Ffj is the force generated by an individual

cell through contact with an individual matrix fibre, with the sum taken over

the fibres which are in contact with the cell, and fj(t) is the term accounting for

noise.

6.6 Computational simulation algorithm

Similar to the previous simulations, the time step was chosen to be three seconds

and the procedure during each time step can be summarised as follows:

Step 1:

Each fibre is examined to see whether cells were in contact with it during the

previous time step and whether those cells are polarised. If both of these condi-

tions are true for at least one cell, then it means that the cell(s) has exerted force

on the fibre during that time step. All the fibres for which this is the case are

reorientated by one cell at a time in the way explained in equation (4.13). After

each reorientation, the fibre is checked to see that it has not lost contact with

another cell and, if necessary, the reorientation is decreased.
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Step 2:

All the fibres that the cell is in contact with are found for each cell that is not

in the M-phase and it is determined whether the cell is in contact with any other

cell.

Option 1: If the cell is not in contact with any other cell and the cell in

question is in contact with at least one fibre and has established front-rear po-

larity, either through previous polarisation or through the new formation of focal

contacts over 10 minutes, the new polarity axis is calculated using equation (4.5).

Option 2: If the cell is in contact with at least one other cell and the cell in

question has front-rear polarity, defining the rear to be where the contacts with

all the other cells are, and the cell is in contact with at least one fibre, the new

polarity axis is calculated using equation (4.5).

Option 3: If the cell is in contact with at least one other cell and the cell in

question has front-rear polarity, defining the front to be where the contact with

at least one other cell is, the cell loses its polarity. If those cells at the front of the

cell were in contact with the cell in question in the previous time step and the cell

in question has already lost its polarity and is re-polarising, then the direction of

the fibres wi in equation (4.5) is chosen to be pointing away from the contacting

cell(s).

Step 3:

For each cell all its neighbouring cells are found and their distances are noted.

Then the intracellular dynamics are run and the adhesive force is calculated

for each cell-cell contact site using equation (6.10). The repulsive force is also

calculated for each cell-cell contact site and, using equations (3.5) and (3.6), the

cell-cell interaction force is calculated. If cells are closer than their natural state

should allow, this force is set equal to the repulsive force alone.

If the cell has front-rear polarity, the net force that it generates for its movement
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on the matrix is also calculated. This is done using the knowledge from the

previous step of how many fibres the cell is in contact with. Together with

the given parameter determining the maximum speed the cell can reach, the

calculation of how fast the cell should be moving (see Figure 4.2(a)) and the

magnitude of the force the cell must therefore be generating (see Figure 4.2(b))

can be made. Equation (4.6) is then used to calculate the net force.

Step 4:

Each cell is moved according to the forces calculated in Step 3. This is done by

first solving equation (6.16) for the cell velocity and then applying the Forward

Euler method. This gives the new position of the cells at the end of this time

step.

Step 5:

For each cell that is in the M-phase, the distance that the two daughter cells’

centres should have from the each other in order to give a smooth cell division,

is calculated and their movement is adjusted accordingly.

Step 6:

Each cell is checked to see whether it should be entering M-phase during this

time step and if this is the case, the cell is marked as being in this phase and the

daughter cell is generated.

Each cell that is already in M-phase is checked to see whether this cell cycle phase

should have finished in this time step. If this is the case the cell is reset to not

being in M-phase and a new G0-S-G2 time is generated for it. If this is not the

case, the cell’s radius is decreased accordingly.

Each cell that is in G1 phase is checked to see whether its radius is smaller than

R. If this is the case, the radius is increased by (R-R/2
1
3 )/8400.
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6.7 Data analysis

The idea behind carrying out the simulations explained above, is to find individ-

ual parameters or parameter combinations that can transform a normal epithelial

cell colony into an invasive colony that reflects the behaviour of cancer cells. Just

as in the previous chapters, 15 simulations are run for each combination of pa-

rameters. In each of these 15 simulations a different seed is used for the random

number generator for the cell movement. The data generated by the simulations

is a list of all the cells and their positions in each time step. In order to be able to

compare these data of the different sets of simulations objectively, it is important

to introduce ways of measuring the results. Probably the most distinctive charac-

teristics of a cell colony are how fast it grows and whether it grows as one cohesive

colony or whether it splits into small groups or individual cells just as cancer cells

do when they invade the tissue. Thus, here we introduce two algorithms which

we use to analyse the data concerning those two characteristics.

6.7.1 Colony growth analysis

Figure 6.11 shows the exponential growth of a simulated cell colony. In that sim-

ulation, the colony started with 2 cells and grew up to a number of 661 cells. This

is still within the range of a colony size which has also experimentally been shown

to follow an exponential growth law. However, as a colony grows larger, it has

been shown that it switches from an exponential to a linear growth law [Freshney,

1992, Bru et al., 2003, Drasdo and Hoehme, 2005]. In our simulations we start

with a colony of 50 cells in order to be able to study a cell colony of considerable

size. This means that it is possible that also in the simulations the colony does

not grow exponentially the entire time but switches to a linear growth regime.

In order to take this into account, we try to fit an exponential growth rate, a

switching time, a linear growth rate and a y-intercept to the growth of the colony
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in each simulation. The MATLAB code used starts off by reading in the number

of cells that exists in each time step. Then we generate random numbers as start-

ing points for the fitting process. For the exponential growth rate we generate

a random number between 0 and 1, for the switching point a number between 3

and 7 days, for the linear growth rate a number between 1,000 and 10,000 and for

the y-intercept a number between -30,000 and 0. As mentioned previously, the

cell cycle times are uniformly distributed between 17 and 27 hours, or 0.7083 and

1.125 days. Thus if the entire cell population had the fastest cell cycle possible,

the population would double in 0.7083 days and therefore the exponential growth

constant would be ln(2)
0.7083

/day which is equal to 0.9786/day. Given that the cell

cycle times of most of the population will be longer and also cells might enter

G0 for longer periods of time, the exponential growth rate will be smaller than

0.9786 and thus approximately smaller than 1. As the population is growing the

growth constant will be greater than 0. This gives the upper and lower limit of

1 and 0, respectively, for the exponential growth constant.

Similarly, estimates for the upper and lower limits of the linear growth constant

and the y-intercept can be found. Assuming that the smallest number of cells at

which exponential growth switches to linear growth is 1,000 and that the entire

cell population has the fastest cell cycle time possible of 17 hours, the switching

point is reached after approximately 3 days. If the cell population was to grow

exponentially at that rate over the whole 7 days it would reach a cell number

of approximately 47,000. This is of course a large overestimation. However, the

fitting of a linear growth function to the population between day 3 (when there

are 1,000 cells) and day 7 (when there are 47,000 cells), gives a linear growth

constant of approximately 11,000 and a y-intercept of -32,000. Thus the value

used as an upper limit for the linear growth constant is 10,000 and the values

used as a lower limit for the y-intercept it is -30,000. The lower bound for the
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linear growth constant is chosen to be 1,000 because the cell number reached

after 7 days is more likely to be an order of magnitude smaller than it would be

in an exponentially growing population. In addition, the time it will take the

population to grow up to 1000 cells will most likely be longer and the switching

point might happen at a larger number of cells which in turn would increase the

linear growth constant. Thus we can assume that it will be between 1,000 and

10,000.

Unlike in previous chapters we use a constrained optimisation routine. Thus the

estimated upper and lower limits of the parameters are not only used for the

generation of initial guesses for the fitting process but are also used as upper and

lower bounds in the optimisation routine. After generating starting points, the

optimisation routine ‘fminsearchbnd’ (by John d’Errico, MATLAB file exchange)

is used to find optimal parameter values. Here, the set of optimal parameter val-

ues is defined to minimise the largest residual between the simulated population

size over time and the population size calculated by the generated growth func-

tion. This procedure is carried out for 30 initial guesses and then the parameter

set, which gives the overall minimal largest residual in the 30 optimisations, is

chosen as the optimal parameter set. This is done to eliminate the possibility of

choosing a parameter set that leads to a local rather than a global minimum.

In order to be able to to compare the results for the different simulation sets,

the average and standard deviation are calculated for all four parameters found

for each set of 15 simulations. We ensure that the average and the standard

deviation represent the data well by generating a log-log plot for each set of sim-

ulations in which the simulated number of cells is plotted against the number

of cells calculated by the growth function resulting from the average values of

the exponential growth constant, the switching time, the linear growth constant

and the y-intercept. The number of cells is plotted at five uniformly distributed
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points in time, generated by the MATLAB random number generator ‘rand’, for

each of the 15 simulations in the set.

6.7.2 Colony dispersal and spread analysis

For the analysis of the colony’s dispersal and its spread, only the data from

the final time step are considered. Thus the MATLAB code used reads in the

cell position and radius data from that time step. Then clusters of cells are

identified using the idea of hierarchical clustering. Initially each cell is seen as a

cluster. Then a while-loop is started which, in each run, loops over the number of

clusters and fuses two clusters together if they have at least one cell-cell contact

site. This is done until all the clusters in the list are spatially separate and

thus no more fusions can be made. The number of the resulting clusters gives

a measurement of the dispersal of the colony. During the clustering process the

number of cells per cluster is also saved which gives further information of the

cell colony’s characteristics. In order to classify the clusters by their number of

cells, the code also calculates the frequency of clusters with one cell, clusters of

less than or exactly 10 cells and so on for each order of magnitude. Furthermore

the minimum distance from cell centre to cell centre can be calculated between

each pair of clusters. From this the code calculates the maximum distance and

the average distance between clusters which gives a measurement of the spread

of the cell colony.

Once again all of these calculations are carried out for each simulation in each

set of 15. Then the average and the standard deviation are calculated for each

set regarding the number of clusters, the largest distance between clusters and

the average distance between clusters. The distribution of the number of cells

per cluster (i.e. cluster size) is calculated from all 15 simulations in one set.
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6.8 Computational simulation results

For all the simulations, a group of 50 non-polarised cells and 15000 fibres were ini-

tially placed in the 1000x1000µm domain. This initial setup is displayed in Figure

6.12 where the cells are shown in red and the matrix fibres are shown in yellow.

The cells were left to polarise, migrate, divide and interact over 7 days of real time

Figure 6.12: Image of the central region of the initial setup for the simulations.

50 cells are positioned in the middle of the domain and 15000 fibres are placed

throughout the domain to make up a layer of matrix.

according to the equations of the model and the simulation-specific parameters.

The simulations were run on two 2.26 GHz quadcore Intel Xeon processors. 15

simulations could be run simultaneously. Depending on the simulation-specific

parameters these simulations took between four days and two weeks. Due to

this computational complexity and the time scope of this thesis, we were only

able to look at a subset of all the possible combinations of the parameters. We
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considered cell populations with a homogeneous E-cadherin expression level of

75% and 50% as well as cell populations with heterogeneous E-cadherin expres-

sion levels between 100% and 0%. For each of the E-cadherin expression profiles,

we increased the pressure threshold under which the cells can still divide from

13000pN to 20125pN to 36966pN to 56916pN. A pressure threshold of 13000pN

is equivalent to a cell with a radius of 5µm having six neighbours of the same

size each at a cell-centre to cell-centre distance of 8.5µm. A pressure threshold

of 20125pN is equivalent to a cell having six neighbours each at a distance of

8µm. A threshold of 36966pN is equivalent to a cell having six neighbours each

at a distance of 7µm and a pressure threshold of 56916pN is equivalent to a cell

having six neighbours each at a distance of 6µm. Thus the increase in the pres-

sure threshold allows cells to proliferate under increasing stress resulting from

a lack of space. One of the characteristics of cancer cells is that they prolifer-

ate under conditions that normal, healthy cells would not proliferate under, e.g.

space constraints. Changing this parameter therefore allows us to change the

cell phenotype to a more aggressive, cancer-like phenotype. Combining this with

another process that occurs during the EMT in cancer development, the down-

regulation of E-cadherin, gave us the opportunity to study not only the impact of

the individual factors but also their combined effect on cell colony development.

Finally, for all of the different combinations of E-cadherin expression profiles and

the pressure threshold for division, we ran a set of 15 simulations each with a

10% integrin expression and a 50% integrin expression level. We considered this

variation in integrin expression as, again, it is well known that up-regulation of

integrins plays a role in cancer invasion. For all of these simulations the analysis

was done as described in Section 6.7.
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6.8.1 The development of cell colonies with a homoge-

neous E-cadherin expression level of 75%

First we considered cell populations in which all cells express E-cadherin at a 75%

level (compared to the expression levels in Section 6.1). In these populations we

studied the effect of increased ability of the cells to proliferate under pressure and

combined this with different levels of integrin expression. For each combination

of parameters we again ran 15 simulations each of which used a different seed for

the random number generator that controls the cell movement. All the simula-

tions of the first set, which used a threshold on the pressure of 56916pN under

which the cells could still divide and an integrin expression level of 10%, failed

due to the cells coming too close. This shows that in a setting where the cells

are free to move in any direction, these cells would most likely move out of the

layer. Depending on whether or not they could survive without anchorage to the

matrix, the development could lead to hyperplastic phenomena. However, as our

focus lies on two dimensional cell colony development, we do not study this here.

In the following we can therefore not include this combination of parameters. For

the remaining 7 sets we observed the colony development over a period of 7 days

and the configuration of the colony at the end of the 7th day. Figure 6.13 shows

images of the cell colonies for the first simulation of each set after 7 days. The

images show the entire domain. The matrix fibres are not shown as they are

too small in size to be properly detectable in the images. As in Sections 6.3.3

and 6.3.6, the intensity of the yellow colour in the otherwise red cells depicts

the amount of E-cadherin in the cytosol. Only very little difference can be seen

between the images of the different simulations. In the following we thus first

study the colony growth and then the spread and dispersal for the different sets

of simulations.
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10% integrin expression 50% integrin expression

56916pN (a) —– (b)

36966pN (c) (d)

20124pN (e) (f)

13000pN (g) (h)

Figure 6.13: Images of the cell colonies of the first simulation in each set with

a 75% E-cadherin expression level after 7 days. The matrix fibres are not shown

here as they are too small in size to be properly detectable in the images.
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Colony Growth Results

Here we consider the growth of the cell colony over 7 days. For each of the 15

simulations in each set, an exponential growth rate, a switching point between

exponential and linear growth regimes and a linear growth rate were estimated as

described in Section 6.7.1. The average was calculated for each set and plotted as

a bar chart. Error bars were plotted to show the standard deviation within the

sets. Figure 6.14 shows the results. Figure 6.14(a) shows the average value and

standard deviation of the exponential growth rates per day. It can be seen that

these growth rates are very much the same for the different pressure thresholds

for the cell division. There is a slight difference in the growth rates between the
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Figure 6.14: Bar charts of the average

exponential growth rate (a), the average

switching point between growth regimes

(b) and the average linear growth rate (c)

for cell colonies with different pressure

thresholds for division and different in-

tegrin expression levels. Error bars show

the standard deviation in all three plots.
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simulations with 10% integrin expression level and those with 50% integrin ex-

pression level for all the different pressure thresholds. A 10% integrin expression

level leaves the cells less mobile than a 50% expression level and thus the cells

cluster closer together which leads to higher pressure and therefore less prolifera-

tion. However, it can be seen (Figure 6.14(b)) that the switching between growth

regimes happens slightly earlier in those populations with a 50% integrin expres-

sion level than in those with a 10% integrin expression level. Furthermore, the

switching between growth regimes shifts to earlier points in time with decreasing

pressure threshold. Similarly there seems to be an overall decrease in the linear

growth rates with decrease in the pressure threshold (see Figure 6.14(c)). How-

ever, these results are statistically not significant as the error bars overlap here.

It is also not entirely clear in this case how the integrin expression level affects

the results as in the case of a high pressure threshold of 36966pN, the average

linear growth rate in cells with a 10% integrin expression level is higher than it

is in cells with a 50% integrin expression level. In the simulations with lower

pressure thresholds of 20124pN and 13000pN the reverse is the case. However, in

all of these results the error bars are overlapping thus showing that from these

simulations no statistically significant difference can be found between the linear

growth rates of populations with 10% and 50% integrin expression level, inde-

pendent of the pressure threshold.

Overall we can say, that these results indicate that in cell colonies with a 75%

E-cadherin expression level, a high integrin expression level of 50% may lead to

faster growth of the cell colony than a lower integrin expression level of 10%.

Unsurprisingly, a higher threshold on the pressure under which cells still divide,

leads, on average, to faster growth that a lower one. However, the noise in the

system regarding cell migration affects the linear growth rate more in these cases

of higher pressure thresholds that in the cases of lower ones and thus a larger
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variability in the growth of these colonies can be observed.

In order to ensure that these results are truly representative of the simulations,

we generated log-log plots of the simulation data against the data resulting from

the growth function that combines the average exponential growth rate, the aver-

age time point for switching between an exponential growth regime and a linear

growth regime, the average linear growth rate and the matching y-intercept. The

results are shown for all seven sets of simulations in Figure 6.15. As explained in

Section 6.7.1, 5 time points were randomly selected from a uniform distribution

and the number of cells that existed in the simulation at these time points were

plotted against the number of cells that the constructed growth function would

predict for these time points. This was done for each simulation in each set. In

the plots in Figure 6.15 these points are shown as squares. It can be seen that

in all cases all the squares are very close to the diagonal which means that the

constructed function gives a good fit to all the simulations in a set. Therefore

the averages and standard deviations that we considered in Figure 6.14 represent

the data very well.

Colony Dispersal and Spread Results

We also investigated the dispersal and spread of the cell colonies using the pro-

cedure explained in Section 6.7.2. We first calculated the number of cell clusters

that the cell colony formed after the simulation of 7 days of real time. The results

can be seen in Figure 6.16(a). The figure shows that in all simulations with all

the different parameter combinations, the colony formed one contiguous cluster.

This shows that the ‘normal’ development of epithelial cell colonies as cohesive

cell clusters is robust to some fluctuations in the E-cadherin expression level. An
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Figure 6.15: Log-log plots showing the goodness of fit of the simulated data to the

growth function constructed from the average exponential growth rate, the average

switching point, the average linear growth rate and the matching y-intercept. For

each simulation in each set 5 uniformly distributed time points were randomly

chosen and the number of cells at each of these time points in the simulation were

plotted against the number of cells predicted by the constructed growth function.
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Figure 6.16: Figure showing the number of clusters (a) and the frequency of

clusters of a certain size (b) for cell colonies with the different thresholds on the

pressure for division and a 10% and 50% integrin expression level.

expression level of 75% still leads to this ‘normal’ behaviour independent of inte-

grin up regulation and increased proliferation. As there was only one cell cluster

in all cases there was no need to calculate any distances between clusters. We

did however calculate the distribution of the cluster sizes in the different sets of

simulations. Figure 6.16(b) shows the results. The plot shows that in all the

simulations of each set the cells formed a cluster of between 103 and 104 cells.

6.8.2 The development of cell colonies with a homoge-

neous E-cadherin expression level of 50%

Secondly we considered cell populations in which all cells express E-cadherin at a

50% level. Again we studied the effect of increased ability of the cells to prolifer-

ate under pressure and combined this with different levels of integrin expression.

Just as before, we ran 15 simulations for each of the different parameter combina-

tions. We observed the development of the colony over time and the configuration
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of the colony after 7 days. Figure 6.17 shows images of the cell colonies for the

first simulation of each set after 7 days. The main mass of the growing cell colony

looks vey similar in all the simulations. However, close examination shows that

there is a difference between the simulations of colonies which express integrins

at a 10% levels and those which express integrins at a 50% level. In the simu-

lations with low integrin expression the cell colonies grow contiguously whereas

the colonies in the simulations with high integrin expression, seem to have some

individual cells or small cell clusters invading the environment. We can also see

in some of the images, especially image 6.17(e), that the circumference of the cell

mass is quite rough with small extensions into the environment.

In order to shed more light on the differences between the different simulations,

we again study first the growth of the colony and then the spread and dispersal

for the different sets of simulations.

Colony Growth Results

Here we again considered the growth of the cell colony over 7 days. We esti-

mated an exponential growth rate, a switching point between exponential and

linear growth regimes and a linear growth rate for each of the 15 simulations in

each set as described in Section 6.7.1. The average was calculated for each set

and plotted as a bar chart. Error bars were plotted to show the standard devi-

ation within the sets. Figure 6.18 shows the results. Figure 6.18(a) shows the

average value and standard deviation of the exponential growth rates per day.

Similar to previous results, the figure shows that in the cell colonies considered

here the exponential growth rate is again independent of the pressure threshold

for proliferation. There is, however, again a dependence of the growth rate on

the integrin expression level. Cell colonies which express integrins at a 10% level,

have a decreased exponential growth rate compared to cell colonies with a 50%
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10% integrin expression 50% integrin expression

56916pN (a) (b)

36966pN (c) (d)

20124pN (e) (f)

13000pN (g) (h)

Figure 6.17: Images of the cell colonies of the first simulation in each set with

a 50% E-cadherin expression level after 7 days. The matrix fibres are not shown

here as they are too small in size to be properly detectable in the images.
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Figure 6.18: Bar charts of the average

exponential growth rate (a), the average

switching point between growth regimes

(b) and the average linear growth rate (c)

for cell colonies with different pressure

thresholds for division and different in-

tegrin expression levels. Error bars show

the standard deviation in all three plots.

integrin expression level.

The point in time at which the switching between growth regimes takes place is

shown in Figure 6.18(b). These time points are very similar for high pressure

thresholds but seem to be shifted slightly to earlier points in time for pressure

thresholds of 20124pN and 13000pN. In addition, the switching between growth

regimes takes place slightly earlier in cell colonies with low integrin expression

compared to those with high integrin expression except in colonies with a pressure

threshold of 13000pN where the switching time point is independent of integrin

expression. The linear growth rates show a similar pattern in Figure 6.18(c).

Here the average of the growth rates is also roughly the same in colonies with
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high pressure thresholds of 56916pN and 36966pN whereas it decreases with fur-

ther decreasing pressure threshold. Furthermore, the averages of these growth

rates are also lower for colonies with low integrin expression levels compared to

those with high integrin expression levels. However, the standard deviations are

relatively large for the linear growth rates and thus the pattern found is statis-

tically not significant. Figure 6.19 does show, though, that the growth function

which combines the average exponential growth rate, the average time point for

switching growth regimes, the average linear growth rate and the matching y-

intercept fits the simulated data well.

Overall this indicates again that a high integrin expression level may lead to faster

growth of the cell colony than low integrin expression levels.

Colony Dispersal and Spread Results

As in the previous section, we again investigated the spread and dispersal of

the cell colonies according to the algorithm explained in Section 6.7.2. First we

calculated the number of cell clusters that the cell colony formed after 7 days.

The results are shown in Figure 6.20(a). The figure shows a definite difference

between the number of cell clusters that arise in simulations with different integrin

expression levels. Independent of the pressure threshold for proliferation, the cell

colonies, which express low levels of integrin, grow as contiguous clusters. Cell

colonies, which express high levels of integrin, on the other hand, can form more

than one cluster after 7 days. The average of the number of clusters formed by

these colonies decreases with decreasing pressure threshold. This is however a

difference that is statistically not significant. The results highlight the impact

of the stochasticity on the simulations, since it is clear that in some of the 15

simulations in each set, only one cell cluster arises whereas in others the cells

form more than one cluster after 7 days. Figure 6.20(b) shows that whenever
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Figure 6.19: Log-log plots showing the goodness of fit of the simulated data to the

growth function constructed from the average exponential growth rate, the average

switching point, the average linear growth rate and the matching y-intercept. For

each simulation in each set 5 uniformly distributed time points were randomly

chosen and the number of cells at each of these time points in the simulation were

plotted against the number of cells predicted by the constructed growth function.
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Figure 6.20: Plots showing the number

of clusters (a), the frequency of clusters

of a certain size (b) and the average as

well as maximum distances between clus-

ters (c) for cell colonies with the differ-

ent thresholds on the pressure for divi-

sion and a 10% and 50% integrin expres-

sion level.

more than one cell cluster arises, these additional clusters are single migrating

cells. Their maximum and average distance from the main cell mass is shown in

Figure 6.20(c). We found very large standard deviations for these values, most

likely due to the small number of cases in which additional clusters arose and the

fact that they only arose in very small numbers. When considering the average

values, the individual cells seem to have been less motile over the course of the 7

days in cell colonies with lower pressure thresholds. However, due to the large and

overlapping standard deviations, we cannot interpret them as significant results.
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6.8.3 The development of cell colonies with heterogeneous

E-cadherin expression levels

Lastly we considered cell populations with heterogeneous E-cadherin expression

profiles. We assumed the level of heterogeneity to be as high as possible and thus

each cell in the population could express between 100% and 0% of E-cadherin.

The cell-specific levels were randomly generated when cells were initialised. The

levels of the 50 cells that were initially placed in the domain, were generated at

the start of each simulation and stayed fixed throughout the simulation. For each

cell that was generated during a simulation, the E-cadherin level was computed

immediately at the start of the cell division process and was independent of the

expression level of the ‘mother cell’.

Again we studied the effect of increased ability of the cells to proliferate under

pressure and combined this with different levels of integrin expression. Just as

before, we ran 15 simulations for each of the different parameter combinations.

The development of the colony was observed over a period of 7 days and the

configuration of the colony at the end of the 7th day. Figure 6.21 shows images

of the cell colonies for the first simulation of each set after 7 days. The intensity

of the yellow colour again shows the amount of E-cadherin in the cytosol. In

Section 6.3.3 the cells changed their colour from yellow to red as the E-cadherin

was sequestered in adhesive bonds. However, here it seems that the cells, which

express a high amount of E-cadherin, show a higher intensity of the yellow colour

than those which express low levels of E-cadherin. This is due to the fact that,

because of the heterogeneous E-cadherin expression, less E-cadherin can be taken

up in bonds in a cell that has a high expression level if some of the neighbouring

cells have low expression levels, than if all cells had a homogenous high expression

level. Thus there is more E-cadherin left in the cytosol in cells with a high expres-

sion level. The images in Figure 6.21 therefore show the E-cadherin expression
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10% integrin expression 50% integrin expression

56916pN (a) (b)

36966pN (c) (d)

20124pN (e) (f)

13000pN (g) (h)

Figure 6.21: Images of the cell colonies of the first simulation in each set after

7 days. The matrix fibres are not shown here as they are too small in size to be

properly detectable in the images. The colour of the cells is proportional to the

amount of E-cadherin in the cytosol.
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profile and its effects on the E-cadherin dynamics well. They, furthermore, show

the dispersal of individual cells from the main cell cluster. This behaviour can

be observed to a much higher extend in colonies with a 50% integrin expression

level compared to those with a 10% expression level.

Colony Growth Results

In order to analyse the growth characteristics of the colonies over 7 days, we

again calculated the average and standard deviation of the exponential growth

rate, the switching time between growth regimes and the linear growth rate from

all 15 simulations in a set. The results are shown in Figure 6.22. Figure 6.22(a)
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Figure 6.22: Bar charts of the average

exponential growth rate (a), the average

switching point between growth regimes

(b) and the average linear growth rate (c)

for cell colonies with different pressure

thresholds for division and different in-

tegrin expression levels. Error bars show

the standard deviation in all three plots.
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shows the average value and standard deviation of the exponential growth rates

per day. It can be seen that the growth rates are quite low, at roughly 0.3/day.

Just as in previous sections there is a slight difference between the exponential

growth rates in colonies that express low levels of integrin and those that express

high levels. Lower integrin expression levels lead to lower exponential growth

rates. However, the pressure threshold, under which cell division can occur, does

not seem to influence these growth rates. Figure 6.22(b) shows the average value

and standard deviation of the point in time when the colonies switch from an

exponential to a linear growth regime. In all the simulations with the different

parameter combinations the switching point is very close to the end of the 7th

day. It is possible that longer simulations would show that these colonies can

grow exponentially for even longer than 7 days. Therefore, and also due to the

large standard deviations, the linear growth rates shown in Figure 6.22(c) can

not be seen to hold any meaningful information.

We can conclude by saying that cell populations with extremely heterogeneous

E-cadherin expression levels grow exponentially over periods of at least 7 days.

Therefore they follow an exponential growth regime longer than populations

with medium to high homogenous E-cadherin expression levels. The exponen-

tial growth rates are however relatively low and are not influenced by pressure

thresholds on the proliferative activity. Low integrin expression, however, slows

growth down slightly.

As in the previous sections, we produced a log-log plot of the simulation data

against the data resulting from the growth function that combines the average

exponential growth rate, the average time point for switching growth regimes,

the average linear growth rate and the matching y-intercept. Figure 6.23 shows

these plots. It can be seen in all the plots that the growth function fits the data

well. Therefore the growth characteristics displayed in Figure 6.22 give a good
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Figure 6.23: Log-log plots showing the goodness of fit of the simulated data to the

growth function constructed from the average exponential growth rate, the average

switching point, the average linear growth rate and the matching y-intercept. For

each simulation in each set 5 uniformly distributed time points were randomly

chosen and the number of cells at each of these time points in the simulation were

plotted against the number of cells predicted by the constructed growth function.
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description of the colonies’ growth dynamics.

Colony Dispersal an Spread Results

We again investigated the dispersal and spread of the cell colonies using the

procedure explained in Section 6.7.2. Doing so, we first calculated the number of

cell clusters that the colonies formed after the simulations of 7 days of real time.

The results are shown in Figure 6.24(a). There is a striking difference between the
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Figure 6.24: Plots showing the number

of clusters (a), the frequency of clusters

of a certain size (b) and the average as

well as maximum distances between clus-

ters (c) for cell colonies with the differ-

ent thresholds on the pressure for divi-

sion and a 10% and 50% integrin expres-

sion level.

number of cell clusters that colonies with a 10% integrin expression level form and

the number of cell clusters that colonies with a 50% integrin expression level form.
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Unsurprisingly, the number of clusters is higher for colonies with a 50% integrin

expression level. The pressure threshold for cell proliferation does not affect these

results very much. The only influence of this parameter that can be seen is that

colonies with higher pressure thresholds of 56916pN and 36966pN seem to form

slightly fewer cluster than those with lower pressure thresholds. This is the case

for both, high and low integrin expression levels. What is even more interesting

than the number of clusters that the colonies form is the distribution of the cluster

size. Figure 6.24(b) shows this. It can be seen that, for low pressure thresholds,

the colonies with a 50% integrin expression level form either clusters of a single

cell, or of 102 to 103 cells. Given the images in Figure 6.21, these colonies form one

large cluster and have a number of single cells migrating away from the cluster.

Colonies with a 10% integrin expression profile, on the other hand, seem to form

small clusters with 2 to 10 cells as well as clusters of individual cells and those of

102 to103 cells. For a pressure threshold of 36966pN both, the colonies with high

and those with low integrin expression levels, disperse into one cluster of 102 to

103 cells and individually migrating cells. The number of individually migrating

cells is however higher for colonies with higher integrin expression levels than for

those with low integrin expression levels. In the case of a pressure threshold of

56919pN both, high and low integrin expression levels, lead to colonies consisting

of one large cell cluster, individually migrating cells and small clusters of 2-10

cells. Figure 6.24(c) shows the average and maximum distance between these

different clusters in the different colonies. It is unsurprising to see that both, the

maximum and the average distance between cell clusters of a colony are greater

in colonies that express high levels of integrin compared to those that express low

levels of integrin. The maximum distance achieved between clusters of colonies

with a 10% integrin expression levels is, however, still considerably greater than

the average distance between clusters in population with a 50% integrin expression
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levels.

Overall, we can say that colony dispersal and spread is generally independent

of any pressure threshold for proliferation in cell populations with heterogeneous

E-cadherin expression profiles. Integrin expression however plays a major role in

this. Low integrin expression leads to fewer clusters and thus less dispersal as well

as less spread of these cluster but it does allow the formation of large and small

cell clusters as well as individually migrating cells at low pressure thresholds for

division. Higher integrin expression leads to more dispersal and spread but only

allows the growth of the original large cluster and individually migrating cells in

most cases.

6.8.4 A comparison of the cell colonies with different E-

cadherin expressions profiles

In the previous sections we studied the impact of different integrin expression

levels and different pressure thresholds on proliferation, on the development of

cell colonies with a homogenous 75% E-cadherin expression level, a homogenous

50% integrin expression level and a heterogeneous E-cadherin expression level.

The images of the cell colonies after 7 days (see Figures 6.13, 6.17 and 6.21) al-

ready show that there are big differences between the development of the colonies

with the different E-cadherin expression profiles. All the colonies with a 75% E-

cadherin expression level form contiguous cell clusters. In the case where we

examined colonies with a 50% expression level, only those colonies with a low in-

tegrin expression level consistently formed one contiguous cluster. Colonies with

high integrin expression level showed the appearance of some individually migrat-

ing cells in addition to the main cell cluster. When comparing the colour of the

cells between the simulations of colonies with a 75% expression level and those

with a 50% expression level, it is obvious that the cells with lower E-cadherin
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expression level are darker and thus have less E-cadherin in the cytosol. This is

most likely due to the lower E-cadherin expression level but a similar uptake of

E-cadherin in the cell-cell bonds.

Unsurprisingly, the cell colonies had a very different appearance after 7 days in

the case when heterogeneous E-cadherin levels were considered compared to when

homogenous E-cadherin levels were considered. In both cases, high and low in-

tegrin expression levels, many individually migrating cells arose in addition to a

main cell cluster in these simulations with heterogeneous E-cadherin expression

profiles.

Although the physical structure of the colonies varies highly with E-cadherin ex-

pression levels, the overall growth patterns are similar. The exponential growth

rates of the cell colonies are smaller when the cells express integrins at a low

level in comparison to when they express integrins at a high level. The pressure

threshold had no significant influence on this behaviour in any of the sets of sim-

ulations. In addition, in both of the cases where we considered homogenous cell

populations regarding the E-cadherin expression, the point of time, at which the

the switch between growth regimes occured, seems to be shifted to earlier time

points for decreasing pressure threshold. This is unsurprising as a lower pressure

threshold decreases the possibility of cell division in the centre of the colony, lead-

ing to a switch of the growth regime from exponential to linear. This switching

time point does, however, seem to be influenced differently by the integrin ex-

pression level in the two cases. In the populations with a 75% integrin expression

level switching between growth regimes happens slightly later in cells express-

ing low levels of integrin whereas in populations with a 50% integrin expression

levels switching occurs slightly earlier in cells expressing low levels of integrin

compared to those, which express high levels of integrin. The differences are very

small so it is possible that they should not be taken too closely into consideration.
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However given that the results are consistent throughout the simulations, there

might be a fundamental difference between the influence of integrin expression

levels on the switching between growth regimes in cell populations with different

levels of E-cadherin expression. The linear growth rates show similar patterns

again for the cell populations with 75% and 50% E-cadherin expression levels.

The average is in both cases lower for low integrin expression for all the different

pressure thresholds. While a clear decrease in the average growth rates with the

pressure threshold is seen in the cases of 75% E-cadherin expression levels, only

slight differences can be noticed in cell populations with a 50% expression level.

The standard deviations are high in all the cases so that most of the results are

statistically not significant. This is also the case for the linear growth rates of

the heterogeneous cell populations.

The results concerning the colony spread and dispersal show the greatest differ-

ences between the colonies with the different E-cadherin expression profiles. They

confirm the observation from the images of the colonies that a 75% E-cadherin

expression always leads to the development of one contiguous cell cluster. They

also confirm that, dependent on the integrin expression level and the noise in

the system, a 50% E-cadherin expression level can lead to either single contigu-

ous clusters or the additional development of individually migrating cells. In the

case of heterogeneous E-cadherin expression profiles, the cell populations develop

more than one cell cluster in all cases. Low integrin expression levels lead to fewer

clusters than high integrin expression levels, but in addition to one large cluster

and single migrating cells, they allow the development of small cell clusters in

the case of low pressure thresholds for division and also at a very high pressure

threshold. In colonies with high integrin expression levels this could only be ob-

served in colonies with high pressure thresholds for division. The spread of the

entire colony is much larger in the case of a heterogeneous cell populations than
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in the case of the cell populations with a homogenous E-cadherin profile of 50%.

Overall the results show that the phenotype of the cell populations does not

change for some level of perturbation in the E-cadherin expression level. How-

ever, further down-regulation of E-cadherin allows individual cells to leave the

main mass of cells and invade the environment. This process is also highly de-

pendent on the integrin expression level. Heterogeneous E-cadherin expression

levels can, furthermore, lead to the invasion of the environment by not just single

cells but also by small groups of cells. This is however again dependent on the

integrin expression level. In addition, the integrin expression level also seems to

have an influence on the growth of a cell colony where high integrin expression

levels lead to faster colony growth.

6.9 Discussion

In this chapter we have formulated a multiscale model of cell colonies and used

it to study the transition from healthy cell behaviour to invasive, cancer-like be-

haviour by introducing parameter changes that are in accordance with changes

happening during the epithelial to mesenchymal transition.

We developed the model on the basis of the cell migration model from previ-

ous chapters by including cell division as well as intra- and intercellular cell-cell

interaction dynamics. To this end, we first studied the intracellular E-cadherin–

β-catenin dynamics and developed an ordinary differential equation model to

describe the E-cadherin–β-catenin complex formation and disruption as well as

the transition of these complexes between the cell’s interior and the different cell-

cell contact sites. The model parameters were estimated by fitting the number of

E-cadherin–β-catenin bonds between two cells to cell-cell separation force data.

Two possible models were considered. In the first one we assumed that the num-

ber of E-cadherin bonds that can form at one cell-cell contact site is limited and
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thus only a certain percentage of all possible E-cadherin–β-catenin complexes in a

cell will be translocated to this site. In the second model we assumed that there is

no limit on the number of bonds that can form between two cells, however, in or-

der to ensure that more cells can bind to a pair of cells, the E-cadherin–β-catenin

complexes are redistributed upon attachment of further cells to either cell. This

leads to the assumption that the forces that are measured between a pair of cells

in isolation is higher than the forces between any two cells in an epithelial layer.

Interestingly much better fits to the data could be found for this second model.

It would be very fascinating to investigate this experimentally and see whether

this really is the case. The search for a model that fits the data best also showed

that there might be interesting dynamics occurring in cells concerning the inter-

nalisation of E-cadherin–β-catenin complexes that cannot bind to a complex on

the neighbouring cell. It made a big difference whether or not this process was

included in the models tested here. The simple description of the process as a

function proportional to a smooth approximation to a Heaviside function which

is zero when there are more E-cadherin–β-catenin complexes on the neighbouring

cell at the contact site than at the contact site in the cell of interest and a certain

proportionality factor otherwise, lead to bad fits to the data for the models. Thus

this process is likely to be more complex and might involve time delays in such

a way that E-cadherin–β-catenin complexes stay available on the surface of one

cell for short periods of time to enable binding to complexes on a neighbouring

cell which are exocytosed slightly later. However, in order to keep the model as

simple as possible and given how little data there are available to help estimate

parameter values, we ignored this process in the final version of the intracellular

model and obtained good fits to the data. It is possible that this is due to the

redistribution of complexes between cell-cell contact sites which automatically

also redistributes the unbound complexes. Fitting this final version of the model
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of the intracellular dynamics to the data produced a set of parameters that gave

the best fit. Surprisingly, the undirected E-cadherin–β-catenin complex translo-

cation rate ι has the highest value of all the fitted rate constants. Thus it is

also higher than the directed translocation rate. This might be the case because

it allows a much faster binding-reaction when cells come into contact initially.

However, it is possible that this is not the case in live cells and that it is due to

the simplifications of the model or the specific data we are fitting to. In any case,

the rate constants themselves are not of very great importance here, as it is the

overall dynamics at a cell level that we are aiming to capture and reproduce.

In addition to the intracellular dynamics and resulting adhesion, we included a

simple cell cycle in each cell, which allows the cells to divide when they are in

M-phase, and cell-cell repulsion governed by the Hertz model. Thus we could

consider growing cell colonies. We ran simulations of these growing colonies and

varied the value of the endocytosis rate of E-cadherin–β-catenin complexes. We

also introduced a threshold for the level of pressure, i.e. the magnitude of the

repulsive force, under which a cell could still divide, and studied its effects on

colony growth. Thirdly, we worked around possible discrepancies between the

modelling technique and the biology by assuming that the active force between

two cells whose contact site had a diameter larger than one sixth of the cell’s

circumference was either zero or equal to the repulsive force alone. These three

variations of the model were combined in simulations and the colonies were stud-

ied after three and after seven days. The results were compared to experimental

findings regarding the distribution of the number of neighbours of cells in an

epithelial layer. They were also examined as regards the expectation that the

colonies should be growing considerably between day three and day seven and

that they should be growing in a near-circular fashion. These considerations led

to the observation that there indeed has to be a threshold on the pressure under
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which cells divide. Also they showed that the active force between two cells has

to be just the repulsive force when cells get too close and zero when they are at

a distance that we consider to be their ‘natural state’ in epithelia. This means

that the forces exerted by the E-cadherin–β-catenin bonds are only active when

the cells are further apart than they would be in naturally occurring epithelial

sheets and thus the forces prevent separation rather than leading to closer adhe-

sion. From a biological point of view this is a sensible conclusion as a constant

tugging by the adhesion and repulsion forces to keep a balance would be wasting

the cell’s energy. In future work a new model could be formulated to replace the

extended Hertz model which takes these thoughts into account. However, for the

rest of this work we enforced both, a threshold for the pressure under which the

cell can divide and an active force equal to the repulsive force between cells closer

than their natural state, by additional rules. From the simulations of the colony

growth we furthermore saw that in order for the simulations to fit the expecta-

tions and the data best, we had to choose a parameter value for ρd that led to

a much lower average adhesion force between any two cells in the colony than

one would expect by extrapolation of the adhesion force data between two cells.

This highlights again that it would be very interesting to devise experiments that

allow the measurement of adhesion forces between cells in a layer rather than just

a pair of cells in isolation.

When running the simulations of growing cell colonies and analysing their results,

we were mainly interested in finding a good estimate for ρd as well as determining

final model modifications. However from the simulations we could also get some

ideas regarding the development of invasive colonies. In the results of the ‘origi-

nal’ set and the ‘division constraints’ set we could see that strands of invasive cells

could form from the outer cells of the growing colony. This happened at medium
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to high values for ρd and even more so when a threshold was put on the cell divi-

sion. This was especially the case for a ρd value of 5 in the ‘division constraints’

set. Thus it seems as though there are ways that invasion can be initiated where

down regulation of E-cadherin and up regulation of cell-matrix interactions are

not necessary. A relatively fast internalisation of E-cadherin–β-catenin complexes

after cell-cell bond disruption and a highly deformable cytoskeleton seem to be

the main requirements. As mentioned in Chapter 2, cancer cells have multiple

ways of invading the tissue and one of them is using the amoeboid migration

mode which indicates that the cells become highly deformable. This is generally

only seen as being important for squeezing through holes in a three-dimensional

matrix, however, the simulations here indicate that the deformability of cells

might also have an impact on other stages of the invasive process and together

with slight changes in the E-cadherin–β-catenin dynamics, i.e. an increased rate

of internalisation of complexes, this might lead to the fingering patterns seen in

invasive tumours. Due to the lack of cell-matrix interactions in these simulations,

this behaviour here is most likely regulated by cell division, however it would be

very interesting to undertake a more detailed study of this phenomenon in the

future.

Finally we conducted simulations in which we combined the multiscale model of

cell-cell interactions with the model of cell-matrix interactions. In these simula-

tions we varied the E-cadherin expression level and profile, the integrin expression

level as well as the pressure threshold for proliferation. In the first set of simu-

lations we considered cell colonies with homogenous E-cadherin expression levels

of 75%. We ran 15 simulations for each combination of integrin expression levels

of 10% and 50% with pressure thresholds on proliferation of 13000pN, 20124pN,

36966pN and 56916pN. The simulations of cell colonies with a 10% integrin ex-

pression level and a pressure threshold of 56916pN failed due to cells coming
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too close. This indicates that this combination of parameters would lead to a

multilayered structure, with cells moving up out of the layer due to a lack of

space, if a three dimensional domain was considered in these simulations. Thus

we could simulate the development of hyperplastic tissue simply by creating this

insensitivity to space constraints in cells of an epithelial layer. The simulations

of cell colonies with the other combinations of parameters were all successful and

we analysed the growth of the colony as well as its dispersal and spread. The

results indicated that, as expected, a decreasing threshold on proliferation, which

allows cells to divide only if the overall repulsive force they generate is smaller

than the threshold, may lead to a slower colony growth. In addition they showed

that high integrin expression levels seem to speed up this process slightly. This is

unsurprising, as a higher integrin expression level allows the cells to migrate out

from the centre of the colony thus relieving the pressure and allowing more cells

to proliferate. The analysis of the colony dispersal and spread showed that the

cell colonies formed one contiguous cluster in all simulations. This highlighted the

robustness of cells to fluctuations in their characteristic parameters. Even with

the decrease of the E-cadherin expression level to 75% the simulated colonies did

not show any invasive behaviour independent of aberrant proliferation activity

and integrin up-regulation.

Next we considered cell populations with a homogenous E-cadherin expression

level of 50%. The pressure threshold on proliferation showed very little impact

on the colony developments. A slight shift to earlier switching points and a slight

decrease in the linear growth rates with decreasing thresholds were the only effects

that could be seen. The integrin expression level, however, had a much greater

impact on the results. Not only did a higher integrin expression level speed up

the growth of these populations, but it also influenced their physical structure.

Cell colonies with a 10% integrin expression level showed the development of one
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contiguous cell cluster whereas a high integrin expression level of 50% allowed the

additional formation of some individually migrating cells. This process was not

only influenced by the integrin expression level but also by the added noise as the

development of single cell clusters was not observable in all of the 15 simulations

in each set with a high integrin expression level after 7 days. This shows that

the down-regulation of E-cadherin to a 50% level moves the cell populations to

the verge of the epithelial to mesenchymal transition where an additional up-

regulation of integrin expression levels can lead to single cells splitting off of the

main cell mass and invading the surrounding environment. Furthermore, we ob-

served in especially one simulation (see Figure 6.17(e)), that in cell colonies with

a low integrin expression level, very rough circumferences develop which seem to

have small invading strands of cells sticking out into the environment which is a

pattern seen in cancer cells.

Lastly we considered cell populations with a heterogeneous E-cadherin expression

profile. The results of these simulations showed that colonies with heterogeneous

E-cadhein expression levels grow with a low exponential growth rate but in turn

continue growing exponentially for at least 7 days. The low exponential growth

rates are most likely due to a high number of motile cells which express low lev-

els of E-cadherin. This could be the case as the model assumes that cells with

established front-rear polarity cannot divide. The slow growth over time most

likely leads to the longer period of exponential growth. The pressure thresholds

on proliferation did not seem have any influence on this behaviour. Interestingly,

a lower integin expression level still led to even further decreased growth. The

study of the colony dispersal and spread highlighted further differences between

cell colonies with different integrin expression levels. Again, there was little dif-

ference between the results for cell colonies with different pressure threshold for

division, however, cell colonies with a low integrin expression levels dispersed
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into fewer clusters than those with high integrin expression levels. Interestingly,

the colonies with a lower integrin expression level showed more variability in the

sizes of the emerging clusters, generating clusters of single cells, small clusters

of two to ten cells and large clusters (most likely just one large cluster) in most

simulations, compared to those with high expression levels. Only a large cluster

and single migrating cells emerged in most cases from the simulations of colonies

with a high integrin expression level. Only for very high pressure thresholds on

division could additional small clusters be observed. Unsurprisingly, the average

and maximum distance between the clusters was higher in those colonies with a

higher integrin expression level than in those with a low intergin expression level.

The simulations of the multiscale model revealed a large variety of behaviours

from the development of large, contiguous cell clusters to the invasion of the

environment by small fingering patterns, small cell clusters and single cells. It

is clear from these results that, unsurprisingly, especially the combination of E-

cadherin and integrin expression levels control the integrity or invasiveness of the

cell colonies. In future we shall explore the parameter space more thoroughly to

get an even better idea of the combinations of the different parameters and char-

acteristics that lead to the different invasive patterns. In order to do so it would

also be very useful to include an explicit integrin pathway in the model and take

into account the integrin–E-cadherin crosstalk. Furthermore it would be very

interesting to study the additional effects of the different matrix characteristics

that have shown to influence cell migration in Chapters 4 and 5.
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Chapter 7

Modelling the Integrin Pathway

7.1 Introduction

In the previous chapter we examined the E-cadherin–β-catenin dynamics and

their impact on cell migration and invasion. However, equally as important in

regulating cell migration is integrin expression and activation as mentioned in

Chapter 2 and as we also saw in Chapter 6. Not only are integrins up-regulated

during the EMT and control the speed cells move at [Palecek et al., 1997], but

they are most likely also highly important during the intravasation and extrava-

sation processes which lead to metastases. In all of these processes cancer cells

behave very similarly to leukocytes (white blood cells). Leukocytes are trans-

ported through the body in the blood vessels. At sites of inflammation the sur-

face of the endothelial cells lining the blood vessel is altered and this can be

recognised by proteins on the surface of the leukocytes. A signalling cascade is

started inside the leukocytes which leads to the activation of integrins through

inside-out signalling. Thus the integrins start adhering to the vessel wall, slowing

down the leukocyte movement from flowing with the blood to rolling along the

endothelial layer. Through engagement with their ligands on the endothelial cells

and through the external forces originating from the blood flow, the integrins are
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activated even further. This leads to the arrest of the leukocytes on the vessel

wall where they engage with the endothelial cells, squeeze through the cell layer

and break down the surrounding membrane and are then able to migrate through

the tissue to the site of inflammation [Alon and Ley, 2008, Sahai and Madsen,

2010].

The group of Dr Susanna Fagerholm at the Division of Cancer Research, Univer-

sity of Dundee is focussing its research on the adhesion of B-cells, a specific type

of leukocyte. They have carried out multiple studies on B-cell adhesion under

static and under flow conditions as well as Western Blot assays of possibly im-

portant proteins in the integrin pathway under different conditions. Figure 7.1

shows the signalling pathway of how the transmembrane B-cell receptor (BCR),

located on the outer surface of B-cells, triggers integrin activation. This figure

was given to us by Hwee San Lek (a PhD student in Dr. Fagerholm’s group) and

Dr Fagerholm to build a model for the integrin pathway which fits their data and

can be used to study certain scenarios to help to understand their experimental

results. Furthermore such a model could also be used as a starting point for an

integrin pathway which can be included in the multi-cell invasion model of the

previous chapter.

7.2 The experiments and the available data

The first part of the BCR pathway up to Akt and PKC activation is well-

established and can be found in this form in most representations of the pathway

(see for example cellsignal.com). Therefore the interest of Dr Fagerholm’s

group is focussed on Akt and PKC and the pathway downstream from there.

Thus Hwee San Lek has carried out a series of Western Blot assays linked with

adhesion assays. A Western Blot assay is an analytical technique to detect spe-

cific proteins in a cell extract. Here it was used to be able to compare the amount
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Figure 7.1: Schematic diagram of the currently known integrin pathway in B

cells. The B cell receptor (BCR) is the naturally occurring receptor the stimulation

of which initiates the signalling. In experiments it can be substituted by SDF-1

or, if only the lower part of the pathway is studied, by Phobolester (PDBu).

of activated Akt and PKC under different conditions. In Western Blotting the

cells are first lysed and homogenised. Then they are generally covered in a nega-

tively charged buffer. The samples are then placed into wells at the top of a plate

covered in gel. When a voltage is applied to the gel, the proteins move towards

the positive electrode at the bottom of the gel. The smaller the proteins are,

the faster they can move. Thus, this gives a separation of the proteins by size

(measured in kDa). Several steps make the detection of the proteins of interest

in the different bands, defined by protein size, possible (see images 7.3 and 7.4 as

examples of Western Blotting results).

In the experiments by Hwee San Lek, B-cells were exposed to different stimulants

and inhibitors for two minutes before the Western Blotting. Three inhibitors
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were used: AktVIII, Gö6976 and Ro-31-8220. AktVIII is an Akt inhibitor which

selectively, allosterically and reversibly inhibits Akt1 and Akt2. In the present

pathway it is Akt1 that is of interest and AktVIII has been shown to potently

inhibit it. The other two inhibitors used are PKC inhibitors. Gö6976 inhibits

only the classical PKC isoforms PKCα and PKCβ. Ro-31-8220 on the other hand

also inhibits the novel isoforms PKCγ and PKCε.

Cells were exposed to these inhibitors at different concentration and also to a

combination of AktVIII and either one of the two PKC inhibitors. After two

minutes cells were homogenised and Western Blots were run for phospho-Akt

(activated Akt) and total Akt as well as phospho- and total PKC and Rap-1.

For the adhesion assays, cells were first exposed to the same stimulants and con-

centrations and combinations of the inhibitors as for the Western Blots. In the

static assays the cells were then plated onto surfaces covered with integrin lig-

ands (ICAM and fibronectin). After 30 minutes the cells that had not bound to

the surfaces were washed off and the number of cells that were still stuck noted.

In the flow assays, the leukocytes were transported over a surface covered with

integrin ligands in similar conditions as in blood vessels. Images were taken at

certain time intervals and the number of leukocytes that were rolling or had come

to arrest on the surface were counted.

A lot of the experiments are still on-going so we only have access to a limited

amount of data. The data available are Western Blot data of PKC and Akt

(see Figures 7.3 and 7.4) in unstimulated cells, under BCR stimulation and after

PDBu treatment. There are also some Western Blot data for Rap-1. However,

the Rap-1 data are not complete and the results were different for cells from a

mouse cancer B cell line as apposed to wild type mouse cells and thus not quite

as easily usable for the modelling. Also adhesion data from static adhesion assays

of unstimulated cells, BCR stimulated cells and PDBu treated cells are available.
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As there are no data available upstream of Akt and PKC, the pathway can be

simplified for modelling as shown in Figure 7.2. Also, no data are available for

Figure 7.2: Schematic diagram of the first step towards a simplified model of

the integrin pathway. Due to the lack of raw data from Dr. Fagerholm’s group

for any of the elements in the signalling cascade between BCR and PKC / Akt,

those elements can be neglected to decrease the degrees of freedom when trying to

parameterise the model.

species between Rap-1 and integrin. Thus this part can also be simplified.

7.3 Western Blot analysis and formulation of a

mathematical model

Before starting to model the integrin pathway, the data had to be analysed and

understood. So we decided to start by just considering the Western Blot data for

Akt and PKC and understanding the underlying dynamics.

7.3.1 Western Blots analysis

The Western Blot data for PKC and Akt are shown in Figures 7.3 and 7.4 re-

spectively. Initially only the control data, i.e. the data from cells that were not
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Figure 7.3: Western Blots showing the influence of a specific PKC inhibitor

(Gö 6976), a less specific PKC inhibitor (Ro-31-8220) and an Akt inhibitor (Akt

VIII) on PKC activity. The bands marked with arrows on the left represent phos-

phorylated PKC in unstimulated B cells (bottom) , PDBu treated cells (middle)

and BCR (top) stimulated cells after treatment with different combinations of the

inhibitors (see bottom of panel). The bands on the right show the total PKC un-

der the same conditions. Image provided by Hwee San Lek from Dr Fagerholm’s

group at the Division of Cancer Research, University of Dundee.
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Figure 7.4: Western Blots showing the influence of a specific PKC inhibitor (Gö

6976), a less specific PKC inhibitor (Ro-31-8220) and an Akt inhibitor (Akt VIII)

on Akt activity. The bands in the left panel at 56kDa represent phosphorylated Akt

in unstimulated cells (top), cells treated with PDBu (middle) and BCR stimulated

cells (bottom) after treatment with different combinations of the inhibitors (see

bottom of the panel). The bands on the right at a little less than 56kDa show the

total Akt under the same conditions. Image provided by Hwee San Lek from Dr

Fagerholm’s group at the Division of Cancer Research, University of Dundee.
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exposed to inhibitors before the blotting, are taken into account. These data are

shown in the right-hand band of the left panel in both figures. When looking

at the PKC data, it can be seen that in unstimulated cells as well as in BCR

stimulated cells, very little PKC is activated. However, the amount of activated

PKC is increased and is very similar to the total PKC amount (right-hand band

on right panel) after treatment with PDBu. The activation of Akt follows a

different pattern. In unstimulated cells and BCR stimulated cells, about 50%

of Akt seems to be activated (when compared to the total Akt). However after

treatment with PDBu the activity decreases dramatically. Western Blots are very

difficult to quantify. Thus in the following we will only consider three levels: no

activation–low activation, medium activation, high activation. Using this, the

data can be summarised as in Table 7.1. The surprising thing about these data

Stimulation/Treatment phosphoAkt phosphoPKC

unstimulated medium low

BCR medium low

PDBu low high

Table 7.1: Summary of the Western Blots in Figures 7.3 and 7.4 under the

condition that the cells are not exposed to inhibitors before the blotting.

is that one would expect from the pathway (Figures 7.1, 7.2), that the amount

of phospho-Akt would increase or stay the same after PDBu treatment. This is

because Akt is activated in unstimulated cells to about the same extend as it is in

BCR stimulated cells. Thus during PDBu treatment, which does not directly ef-

fect Akt, Akt activity should be at the same level as in unstimulated cells. Given

that PDBu however leads to high activity of PKC and PKC activates Akt, higher

activity of Akt would be plausible. However, Akt activity decreases.

To understand this behaviour, the blots from the experiments with inhibitors
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have to be considered. Just as before, the results of the blots can be summarised

in tables (see Tables 7.2(a),(b),(c)).

Stimulation/Treatment phosphoAkt phosphoPKC

unstimulated + AktVIII low low

BCR + AktVIII low low

PDBu + AktVIII low high

(a)

Stimulation/Treatment phosphoAkt phosphoPKC

unstimulated + Gö6976 low low

BCR + Gö6976 low low

PDBu + Gö6976 low medium

(b)

Stimulation/Treatment phosphoAkt phosphoPKC

unstimulated + Ro-31-8220 high low

BCR + Ro-31-8220 high low

PDBu + Ro-31-8220 medium medium

(c)

Table 7.2: Summary of the Western Blots in Figures 7.3 and 7.4 under the

condition that the cells are exposed to (a) AktVIII, (b) to Gö6976 and (c) Ro-31-

8220 before the blotting.

Table 7.2(a) shows the inhibition of Akt by the Akt inhibitor and that AktVIII

has no effect on PKC activity. This is what one would expect and does not help

understand the dynamics but only shows the specifity of the inhibitor. Table

7.2(b) shows that the exposure of cells to Gö6976 lowers not only PKC activity
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but also Akt activity. This is easily explained by the pathway in Figures 7.1 and

7.2. Here it is shown that PKC activates Akt and thus the inhibition of PKC

can decrease Akt activity. Therefore those blots confirm the pathway structure.

However, the results shown in Table 7.2(c) are surprising. They show that Ro-

31-8220 decreases PKC activity as it should but it also increases Akt activity.

The difference between the two PKC inhibitors Gö6976 and Ro-31-8220 is that

Gö6976 only inhibits the classical PKC isoforms whereas Ro-31-8220 also inhibits

the novel isoforms PKCγ and PKCε. Thus the easiest explanation for this is that

the classical PKC isoforms activate Akt as is shown in the pathways above but

the novel isoforms inhibit Akt activation. This also explains why Akt decreases

with PKC activation as in Table 7.1. Thus the BCR-PKC-Akt section of the

pathway should be drawn as shown in Figure 7.5.

Figure 7.5: Schematic diagram of the BCR-PKC-Akt section of the integrin

pathway. The activation of Akt and atypical PKC by BCR and the inhibition of

Akt by atypical PKC forms a feed-forward-loop.

Something else can be learnt about this pathway from Table 7.1. As far as it is

known, PDBu acts on classical, as well as novel, PKC isoforms. However activa-

tion of both together leads to a decrease in Akt activity which means that either

more novel PKC isoforms are activated, or these novel isoforms have a higher

affinity towards Akt leading to a higher inhibition rate than can be balanced out

by the activation of Akt through the classical PKCs. Ignoring the weak activa-

tion of Akt leaves the signalling network of BCR, novel PKC and Akt. These

three species form an interesting signalling network motif, the feed-forward loop
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[Alon, 2007]. Given that the rest of the pathway is probably mainly linear, the

modelling, simulation and analysis of this feed-forward loop might already give

some insight into the integrin pathway dynamics.

7.3.2 Modelling the BCR-PKC-Akt feed-forward loop

The feed forward loop can be modelled using ordinary differential equations and

the law of mass action. Because no quantifications of any species in the network

is given, non-dimensional values between zero and one are used for the amount of

protein. As specific stimulation of the BCR does not lead to an increase in Akt

or PKC activity, it can be assumed that the receptor is fully activated, even when

the cell is exposed to serum only. Thus it is assigned a constant value of one.

Furthermore a constantly active phosphatase (Phos) is added to the network

that dephosphorylises and thus inactivated PKC as this exists for all proteins

that are activated by phosphorylation to ensure that activation only occurs after

stimulation. The other species in the network are Akt, phospho-Akt (pAkt),

novel PKC (nPKC) and phospho-novel-PKC (pnPKC) and their dynamics are

governed by the following equations.

dAkt
dt

= −k1 ∗BCR ∗ Akt+ k2 ∗ pnPKC ∗ pAkt,
dpAkt

dt
= k1 ∗BCR ∗ Akt− k2 ∗ pnPKC ∗ pAkt,

dnPKC
dt

= −k3 ∗BCR ∗ nPKC + k4 ∗ Phos ∗ pnPKC,
dpnPKC

dt
= k3 ∗BCR ∗ nPKC − k4 ∗ Phos ∗ pnPKC.

(7.1)

As neither production nor degradation of PKC and Akt are considered, the fol-

lowing assumption can be made:

nPKCtotal = nPKC + pnPKC = 1

Akttotal = Akt+ pAkt = 1
(7.2)
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With the equations (7.2), the system of four ordinary differential equations (7.1)

can be simplified to a systems of two equations:

dpAkt
dt

= k1 ∗BCR ∗ (1− pAkt)− k2 ∗ pnPKC ∗ pAkt,
dpnPKC

dt
= k3 ∗BCR ∗ (1− pnPKC)− k4 ∗ Phos ∗ pnPKC

(7.3)

The Western Blots were started after two minutes as the system had supposedly

reached its steady-state at that time. Thus we will also assume that a steady-

state is reached after two minutes and we will solve the steady-state equations to

find conditions for the parameters k1 to k4 under which phosphoAkt and phospho-

novel-PKC reach the levels that were found in the Western Blots (see Table 7.1).

In order to do so the activity levels have to be quantified. This is shown in Table

7.3.

level non-dimensional values

no activity – low activity 0 – 0.33

medium activity 0.33 – 0.66

high activity 0.66 – 1

Table 7.3: Quantification of the levels that are used to summarise the results of

the Western Blots

The steady-state system of (7.3) is given by:

0 = k1 ∗BCR ∗ (1− pAkt)− k2 ∗ pnPKC ∗ pAkt,

0 = k3 ∗BCR ∗ (1− pnPKC)− k4 ∗ Phos ∗ pnPKC.
(7.4)

First the second equation of the system (7.4) is solved for phospho-novel-PKC.

This gives

pnPKC =
k3 ∗BCR ∗ nPKCtotal

k3 ∗BCR + k4 ∗ Phos
. (7.5)

Given that BCR = nPKCtotal = Phos = 1,

pnPKC =
k3

k3 + k4

. (7.6)
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From the Western Blots it is known that at steady-state phospho-novel-PKC

should exist at low levels, thus pnPKC ∈ [0, 0.33]. In the following we will

consider only the ends of the interval. If pnPKC = 0, either k3 has to be zero or

k4 has to tend towards infinity, both of which seem unlikely. Assigning pnPKC

the upper value of the interval gives

k4 =
0.66 ∗ k3

0.33
= 2 ∗ k3. (7.7)

Using this condition (7.7) on k4 ensures that phospho-novel-PKC reaches a steady-

state of 0.33. How fast this happens depends on the value of k3. A similar

condition can be found for k1 and k2 by solving the first equation of (7.4) for

pAkt.

pAkt =
k1 ∗BCR ∗ Akttotal

k1 ∗BCR + k2 ∗ pnPKC
. (7.8)

Again using BCR = Akttotal = 1, equation (7.8) can be simplified to give

pAkt =
k1

k1 + k2 ∗ pnPKC
. (7.9)

Thus, the steady-state value of phospho-Akt depends on the steady-state level of

phospho-novel-PKC as well as k1 and k2. Assuming again that pnPKC = 0.33 at

steady-state, and that phospho-Akt also reaches the highest possible steady-state

value: pAkt = 0.66, the relationship between k1 and k2 is

k2 =
k1

0.66
− k1

0.33
. (7.10)

Taking into account these two conditions (7.7) and (7.10), the solutions of (7.3)

can be simulated over two minutes of real time. This can be done using a range of

values for k1 and k3 to investigate the network dynamics leading to the required

steady-states.
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7.4 Computational simulation results

The system of equations (7.3) and conditions (7.7) and (7.10) were coded up

in MATLAB and solved using the inbuilt function ‘ode45’ which is based on an

explicit Runge-Kutta algorithm. Both the parameters k1 and k3 were varied and

it was apparent that it was not the values of these two parameters themselves

but the ratio k1
k3

that is decisive for the network dynamics.

7.4.1 The time course profiles of phospho-Akt and phospho-

novel-PKC

Figure 7.6 shows the time course of the solutions of (7.3) for k3 = 1 and k1 = 2

(Figure 7.6(a)) and k3 = 1 and k1 = 5 (Figure 7.6(b)). Although the steady-
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Figure 7.6: Time course plots of the solutions of equations (7.3) using condi-

tions (7.7) and (7.10). (a) Plot of the solution of 7.3 with k1 = 2 and k3 = 1.

(b) Plot of the solution of 7.3 with k1 = 5 and k3 = 1.

states reached after two minutes of real time are the same in both cases, the time

course of the solutions for phospho-Akt is very different. For k1 = 2, the amount
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of active Akt slowly increases until the steady-state value is reached. However,

for k1 = 5 the amount of active Akt grows beyond its steady-state value initially

before dropping again to the steady-state. In Figure 7.7 the solutions of (7.3) are

plotted for k1 ranging from 1 to 10 in 60 steps (step size≈ 0.167 ) (red curves)

and k3 = 1 (black curve). Here it can be clearly seen that for high values of k1 the
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Figure 7.7: Time course plots of the solutions of equations (7.3) using condi-

tions (7.7) and (7.10) with k1 ranging from 1 to 10 in 60 steps (step size ≈ 0.167)

(red curves) and k3 = 1 (black curve).

amount of active Akt always grows beyond its steady-state value initially before

dropping again. This ‘hump’ increases with increasing k1. The occurrence of it

depends on the speed at which Akt is activated compared to the speed at which

novel PKC is activated and can inhibit phospho-Akt. Thus it is dependent on

the ratio k1
k3

.
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7.4.2 Varying BCR activity profiles

In in vivo situations, the stimulation of BCR does, most likely, not happen at a

constant level over a prolonged length of time. Due to the need for a tight con-

trol of signalling networks, inhibitors very often turn off the signal at the receptor

level as soon as it has been passed on in order to prevent constant signalling and

keep the cell sensitive to environmental cues. Thus the solution of the system
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Figure 7.8: Time course plots of the solutions of equations (7.3) where the

profile of the amount of activated BCR follows a sine curve. It can be seen

that the oscillatory behaviour of the amount of activated BCR is mirrored more

strongly in the profile of phospho-Akt where k1 = 10 than in the case where k1 = 1.

k3 is again chosen to be one.

of equations (7.3) was simulated using a sine curve, y(t) = 0.5 ∗ sin(2πt) + 1, to

represent BCR activity. This was done using a parameter for k1 that led to a

‘hump’ in the phospho-Akt profile as well as one that did not. The parameters

were k1 = 10 and k1 = 1, respectively. The results are shown in Figure 7.8. It

can be seen in this figure that phospho-Akt and phospho-novel-PKC follow the

oscillatory behaviour of active BCR. However, dependent on the value of k1 the
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oscillations of phospho-Akt are more or less pronounced. In the case of k1 = 1

the amplitude of the oscillations is very small, whereas in the case of k1 = 10, the

amplitude of the oscillations is about a quarter of the amplitude of the oscillations

of active BCR and they show a hump again at early points in time.

A pulse of BCR activity is probably even more realistic than an oscillatory be-

haviour of active BCR. Figure 7.9 shows the results of simulations where this

is the case. Here BCR is fully activated for one minute and then completely
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Figure 7.9: Time course plots of the solutions of equations (7.3) where the

profile of the amount of activated BCR follows a step function. This is a repre-

sentation of what happens in vivo when short pulses of stimulation are given. It

can be seen that the step-like behaviour of the amount of activated BCR is mir-

rored in the profile of phospho-Akt where k1 = 10, however for k1 = 1 the initial

increase of activity is not as strong as in the former case but there is also hardly

any decrease in activity after BCR is turned off.

turned off. In the case where k1 = 10, Akt activity increases very quickly before

dropping slightly due to the influence of active PKC. However, as soon as BCR

is inactivated, Akt activity drops to a very low level. In the case of k1 = 1 the
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time course profile of Akt is entirely different. Akt activity increases slowly dur-

ing the time that BCR is fully active and then only drops slightly when BCR is

inactivated before reaching a steady-state of activity which is still greater than

40%. These different types of behaviour can easily be explained. Akt activity

responds quickly to BCR activity changes when k1 = 10 and thus it increases

quickly when BCR is active. Due to the second term in the first equation of

(7.3), it also decreases quickly when active BCR equals zero and phospho-Akt

and phospho-novel-PKC levels are high. In contrast, Akt activity increases much

more slowly under active BCR with k1 = 1 and thus its levels are not so high

when BCR is inactivated. Therefore less phospho-Akt is inactivated by phospho-

novel-PKC. Phospho-novel-PKC levels decrease as well due to the loss of BCR

activity and high levels of active Akt remain. Though the behaviour is very easy

to explain in terms of the model, it is still very interesting and might hold some

real insight into biological behaviour.

7.5 Discussion

In this chapter a pathway model was developed for a crucial part of the ‘inside-

out’ activation of integrins. The idea was that this model should be based on

on existing data for leukocyte adhesion processes. To start off with as simple a

model as possible, the adhesion data was not taken into account, but only the

Western Blot data for Akt and PKC was modelled under different conditions.

However, even the data of just these two species could not be explained by the

structure of the pathway which was assumed to be true (see Figure 7.1). It was

clear that PKC could not just have an activating role but must also have an

inhibiting role upstream of Akt. The literature concerning this subject confirmed

that classical as well as novel PKC isoforms exist and given the inhibitors used

in the experiments it all pointed towards the hypothesis that novel PKC isoforms
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inhibit Akt. Taking this into account, the simplest model that could explain the

given data, was a BCR-Akt-novel-PKC feed-forward loop.

Since the system was said to have reached a steady-state after two minutes, the

point of time when the Western Blots were started, the steady-state equations

were solved for phospho-Akt and phospho-novel-PKC. Using the levels of activity

shown by the Western Blots for these two species, conditions for the parameters

k2 and k4 were found depending on k1 and k3, respectively. As the values of k1

and k3 themselves did not determine the behaviour of the results, but the ratio

of k1 to k3, the equations were solved in MATLAB and plotted for a variety of k1

to k3 ratios, where k3 equals one. Two different types of behaviour were found.

For low ratios, the amount of phospho-Akt increased until it reached the steady-

state value. However for high ratios, the amount of phospho-Akt increased much

more quickly, growing beyond its steady-state value and then dropped again to

steady-state.

The difference between these two cases became clearer when including more re-

alistic oscillatory and pulse-like activity profiles of BCR rather than constant

activation. Here we found that an oscillatory activity profile of BCR also leads to

oscillations in phospho-Akt. The amplitude of these oscillations was much larger

in the case of high k1 to k3 ratios rather than small ones. Even more interest-

ing were the simulation results when a step function was used as BCR activity

profile to resemble a pulse of BCR activity. For k1 = 10, Akt activity increased

very quickly during the pulse of BCR activity before dropping slightly due to the

influence of active PKC. However, as soon as BCR was inactivated, Akt activity

dropped to a very low level. In the case of k1 = 1, Akt activity increased slowly

during the time that BCR was fully activated and decreased only slightly after

BCR was inactivated. Although the behaviour is very easy to explain in terms

of the model and thus not counterintuitive, it is still very interesting and might
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hold some real insight into biological behaviour.

It has been shown in a different context that the Akt pathway has low-pass fil-

ter characteristics [Fujita et al., 2010]. A low-pass filter is an electronic filter

that passes low-frequency signals but reduces the amplitude of signals with fre-

quencies higher than a cut-off frequency. Fujita et al. [2010] demonstrated with

experiments, as well as with mathematical modelling, that the Akt pathway ex-

hibits this behaviour. Their work shows that high frequency signals of the EGF

receptor travel downstream and result in a similar time course profile in phospho-

Akt. However, phospho-Akt’s downstream target is poorly induced. On the other

hand, weak, sustained signalling by EGFR strongly induces the Akt target. If

this is also the case in the pathway considered here, the parameter k1 could be

highly relevant to characterise certain cell phenotypes. Cells with a low value for

k1, relative to k3, translate a pulse of BCR activity to weaker but sustained Akt

activity, which would lead to high activity of downstream targets, in this case

Rap-1 and further downstream integrin. However, cells with high values for k1,

translate a pulse of BCR activity into a pulse of Akt activity which would lead

to only weak induction of the downstream target Rap-1 and thus only a weak

induction of integrin. Thus gathering time-course data of different cells under

BCR stimulation and identifying those with a high or low ratio k1
k3

might help to

understand the results of the adhesion assays more easily.

This model might also help to understand the different cell behaviours seen in

vivo in terms of cell adhesions and the integrin pathway. Even if the pathway here

does not have low-pass filter characteristics, the emerging behaviour is nonethe-

less interesting as the Akt signal generated in cells where the k1 to k3 ratio is

small is much greater when seen over longer periods of time than when it is large.

Thus, depending on how the signal is passed on downstream, the cell specific

parameters might be decisive for the cell phenotype.
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What the modelling in this chapter has shown is that in order to understand cell

behaviour, steady-state data is not sufficient in a lot of cases. Time-course data

also needs to be gathered. It would be very interesting to get time course data for

the pathway modelled here and compare the modelling results to it. Hopefully

this will be possible in the near future. Once this simple pathway is verified,

it can be extended to include the treatment with PDBu as has been done in

experiments and other species such as classical PKC, Rap-1 and integrin. The

adhesion data available can then also be used to further parameterise the model

which could then help to explain more about the experimental results.

In order to develop a complete model of integrin signalling in leukocytes, outside-

in signalling under static and flow conditions will also have to be studied in detail

and added to the current model. Including this in the single-cell model of Chap-

ter 4 would give a multiscale model of leukocyte movement through tissue. The

replacement of the matrix elements by endothelial cells lining a blood vessel could

further give a modelling environment to study leukocyte rolling, adhesion, arrest

and extravasation. A complete model of the integrin pathway would also be very

useful to be included in the multi-cell model of the previous chapter. In addition,

not only the signalling which is important in leukocytes, but also E-cadherin and

integrin cross-talk would have to be taken into account in order to study the

processes involved in cancer cell adhesion more accurately and in more detail.
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Chapter 8

Conclusions and Future Work

The aim of this thesis was to develop a multiscale model of cell migration and

cancer cell invasion in a two-dimensional domain by extending the work of Ramis-

Conde et al. [2008b]. This model was supposed to couple explicit cell-matrix in-

teractions with cell-cell interactions and intracellular dynamics in order to study

the combined influence of these different factors on migration and invasion. The

idea was to consider cells and matrix fibres as individual elements, which have a

mutual interaction such that the matrix fibres guide the cell movement but are

in turn reorientated by the cells moving across them. Additionally, intra- and

intercellular dynamics of cell-cell adhesion, repulsion and cell division were to

be taken into account. This has been done in stages in the different chapters of

this thesis and with each model, data analysis techniques have been developed

in order to be able to quantify the simulation results and make them comparable

to experimental data. Furthermore, Western Blot data concerning the integrin

signalling pathway has been studied and used to develop a model of part of this

complex pathway.

In Chapter 4 we formulated a modelling framework for single cell migration on
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two-dimensional matrices in which the cell as well as the matrix fibres are indi-

vidual elements or agents. In this model the focus was on the most fundamental

processes underlying cell migration at the level of cell–matrix interactions. Using

this approach, we investigated the influence of matrix stiffness on cell migration

and found that the reorientation of the matrix fibres due to cell traction forces

might be an important part of this process. We also ran simulations to test

whether the model could reproduce experiments that showed the preference of

cells for stiffer matrices. The results agreed with these experiments and sug-

gest that matrix reorientation, or the lack thereof on stiff matrices, may be an

important factor in durotaxis. This is particularly interesting as the physical in-

teractions between cells and matrix cannot be isolated in experimental settings.

Therefore in those setups it is difficult to distinguish between the roles of the

physical interactions and the intracellular signalling pathways coupled to these.

The model makes it possible to ignore the intracellular signalling. It shows that

purely the interactions between cells and the matrix, together with the physical

structure of the matrix, can explain the preference that cells have for stiffer rather

than softer matrices.

Furthermore the relationship between persistence time as well as actual cell speed,

and maximum cell speed and matrix fibre length or matrix density were examined

and showed a nonlinear relationship. Finally we also investigated the sensitivity

of the results towards a change of certain, so far unconsidered, parameters and

found that perturbations in those parameters had little impact on the results.

In Chapter 5 we presented a natural extension to the model in Chapter 4 by

placing two cells into the domain. The cells were then tracked over three days

of real time and their behaviour classified by calculating the distribution of the

lengths of time that the cells followed each other. This was done under different

210



conditions. First the matrix stiffness and the initial distance between the cells

were altered. Then different fibre lengths and densities were considered before fi-

nally both, the fibre lengths and densities, were varied. Summing up the results,

the simulations showed that fibre length and matrix stiffness seem to have an

impact on the behaviour of two cells placed on the extracellular matrix whereas

fibre density mainly affects the variability of the lengths of time that cells follow

each other rather than the median of these values.

In Chapter 6 we formulated a multiscale model of cell colonies and used it to study

the transition from healthy cell behaviour to invasive, cancer-like behaviour. We

developed the model on the basis of the cell migration model from previous chap-

ters by including cell division as well as intra- and intercellular cell-cell interaction

dynamics. First we studied the intracellular E-cadherin–β-catenin dynamics and

developed an ordinary differential equation model to describe the E-cadherin–

β-catenin complex formation and disruption as well as the transition of these

complexes between the cell’s interior and the different cell-cell contact sites. The

model parameters were estimated by fitting the number of E-cadherin–β-catenin

bonds between two cells to cell-cell separation force data. We obtained a good fit

to the data after some adjustments to the model and it proved essential to assume

that there is no limit on the number of bonds that can form between two cells

and that the E-cadherin–β-catenin complexes are redistributed upon attachment

of further cells. This led to the assumption that the forces that are measured

between a pair of cells in isolation is higher than the forces between any two cells

in an epithelial layer.

In addition to the intracellular dynamics and resulting adhesion, we included a

simple cell cycle in each cell, which allows the cells to divide when they are in

M-phase, and cell-cell repulsion governed by the Hertz model. Thus we could
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consider growing cell colonies. We ran simulations of these growing colonies and

varied the value of the endocytosis rate of E-cadherin–β-catenin complexes. We

also introduced a threshold for the level of pressure, i.e. the magnitude of the

repulsive force, under which a cell could still divide and studied its effects on

colony growth. Thirdly, we worked around possible discrepancies between the

modelling technique and the biology by assuming that the active force between

two cells whose contact site had a diameter larger than one sixth of the cell’s

circumference was either zero or equal to the repulsive force alone. These three

variations of the model were combined in simulations and the colonies were stud-

ied after three and after seven days. The results were compared to experimental

findings regarding the distribution of the number of neighbours of cells in an ep-

ithelial layer. This led to the observation that there indeed has to be a threshold

on the pressure under which cells divide. Furthermore, the results showed that

the active force between two cells has to be just the repulsive force when cells

get too close and zero when they are at a distance that we consider to be their

‘natural state’ in epithelia. This means that the forces exerted by the E-cadherin–

β-catenin bonds are only active when the cells are further apart than they would

be in naturally occurring epithelial sheets and thus the forces prevent separation

rather than leading to closer adhesion. From a biological point of view this is a

sensible conclusion as a constant tugging by the adhesion and repulsion forces to

keep a balance would be wasting the cell’s energy.

The simulations also gave some ideas regarding the development of invasive

colonies. Some of the computational simulation results showed that invasion

could be initiated without the down-regulation of E-cadherin and up-regulation of

cell-matrix interactions. A relatively fast internalisation of E-cadherin–β-catenin

complexes after cell-cell bond disruption and a highly deformable cytoskeleton

seemed to be the main requirements. Due to the lack of cell-matrix interactions
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in these simulations, this observed behaviour was, however most likely regulated

by cell division and would have to be investigated further.

Finally we conducted simulations in which we combined the multiscale model of

cell-cell interactions with the model of cell-matrix interactions. In these simula-

tions we varied the E-cadherin expression level and profile, the integrin expression

level as well as the pressure threshold for proliferation. For cell populations with

homogenous expression levels of 75% and 50% as well as those with heteroge-

neous expression profiles, we ran 15 simulations for each combination of integrin

expression levels of 10% and 50% with pressure thresholds on proliferation of

13000pN, 20124pN, 36966pN and 56916pN. These simulations revealed a large

variety of behaviours from the development of large, contiguous cell clusters to

the invasion of the environment by small fingering patterns, small cell clusters

and single cells. It was clear from these results that especially the combination

of E-cadherin and integrin expression levels control the integrity or invasiveness

of the cell colonies and that the proliferative activity of the cells has little impact

on the cell colony development. Only in the case of a high E-cadherin expression

level, a low integrin expression level and a high pressure threshold for division,

did the cells divide too much for the two dimensional space they were occupying

and led to failure of the simulations. In a three dimensional setting this would

have probably led to the formation of a hyperplastic cell colony.

In Chapter 7 a pathway model was built for a crucial part of the ‘inside-out’

activation of integrins. The idea was that this model should be based on exist-

ing data for leukocyte adhesion processes. The data clearly showed that PKC

could not just have an activating role but must also have an inhibiting role up-

stream of Akt. Taking this into account, the simplest model that could explain
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the given data, was a BCR-Akt-novel-PKC feed-forward loop. Solving the ordi-

nary differential equations of this model numerically led to two different types

of behaviour. Either the amount of phospho-Akt increased until it reached the

steady-state value or the amount of phospho-Akt increased much more quickly,

growing beyond its steady-state value and then dropping again to steady-state.

The difference between these two cases became clearer when including more re-

alistic oscillatory and pulse-like activity profiles of BCR rather than constant

activation. Here we found that an oscillatory activity profile of BCR also leads

to oscillations in phospho-Akt with their amplitude varying in size for different

parameter values. Even more interesting were the results of the simulation when

a step function was used as BCR activity profile to resemble a pulse of BCR

activity. For some parameter values, Akt activity increased very quickly during

the pulse of BCR activity before dropping slightly due to the influence of active

PKC. However, as soon as BCR was inactivated, Akt activity dropped to a very

low level. For other values Akt activity increased slowly during the time that

BCR was fully activated and decreased only slightly after BCR was inactivated.

As has been shown in previous work, it is possible that also here the Akt pathway

has low-pass filter characteristics. If this is the case, the parameter choice could

be highly relevant to characterise certain cell phenotypes. This model might help

to understand the different cell behaviours seen in vivo in terms of cell adhesions

and the integrin pathway. Even if the specific pathway considered here does not

have low-pass filter characteristics, the emerging behaviour is nonetheless inter-

esting and highlights that the cell specific kinetic parameters might be decisive

for the cell phenotype. This model definitely showed the importance of gather-

ing not only steady-state data but also time course data in order to understand

signalling pathways.
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A lot of extensions are possible to the work presented here to make it easily

adjustable to different in vitro setting and also to move it towards in vivo.

Firstly, there are many more possibilities to explore with the multiscale cell inva-

sion model presented in Chapter 6. Due to the computational constraints, not all

the possible combinations of the varied key parameter values could be simulated.

This is definitely something that will be done in the future. It will be interesting

to see how further combinations of different levels of E-cadherin expression, inte-

grin expression and proliferative activity in homogenous cell populations and cell

populations with different levels of heterogeneity will effect colony growth and

spread in the surrounding matrix. In experiments this spread has been shown to

not only occur in terms of individual cells or small clusters, but also as prolonged

‘fingers’ extending from the main mass of cells. We saw patterns resembling

this at a very initial stage in some simulations but it would be interesting to

see whether the simulations can also generate more mature and definite fingering

patterns. For this it will be necessary to use or develop a further data analy-

sis technique which can give a measure of the shape of a cell colony. Fractal

dimensions of cell colony-matrix interfaces and scaling analysis have been used

in previous work [Bru et al., 2003] and might be applicable here as well. It has

been mentioned (private communications with biologists) that cells might have to

polarise in groups in order for these strands or sheets of invading cells to appear.

The way this seems to be controlled is by intracellular signalling that encourages

cells to follow certain leader cells. This is something that can also be tested with

the model. We have done some preliminary work on this and Figure 8.1 shows the

results. Figure 8.1(a) shows the invasion of the matrix by a small group of cells

which is led by three cells polarised in the same direction and other cells which

simply follow the cells leading them. The group detaches due to down-regulation

of E-cadherin at contact sites between those cells that are affected by this group
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(a) (b)

Figure 8.1: Images of preliminary work that includes group polarisation in

the cell invasion model. (a) shows a close-up image of a small group of cells

that has polarised as a cluster and has down-regulated the E-cadherin at contact

sites between cells belonging to the cluster and cells of the remaining colony.

Cells coloured in green have acquired front-rear polarity whereas the red cells have

apical-basal polarity. (b) shows an image of a large cell colony in which some

cells at the right hand rim have polarised and signal to a large group of cells to

follow their lead. In this case the E-cadherin bonds stay intact between cells of the

polarised group and the remaining colony. Here no distinction is made in colour

between the differently polarised cells in order to increase visibility of the colony

shape.
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polarisation and those that are not. Figure 8.1(b) shows the extension of the mass

of cells towards one side. Here again some cells polarise in the same direction

and signal to other cells within a certain distance of them to follow them. In this

case that happens without E-cadherin down-regulation. This group polarisation

is a process that can be extended and included in the model in more detail to tie

in with the current experimental interest in this area.

Clearly integrin expression is an important factor and the model in Chapter 7

showed how different the behaviour of the signalling pathway can be in different

cells. Therefore extending this pathway model to a complete model of integrin

signalling also including the integrin-E-cadherin crosstalk [Tsai and Kam, 2009,

Danen, 2012, Goitre et al., 2012] and embedding it in the multiscale cell model

will lead to the possibility of simulating cell populations with even more refined

heterogeneity.

It would, furthermore, be interesting to vary the matrix characteristics that have

been found to have an effect on cell migration in Chapters 4 and 5, in the multi-

scale cell population model. For example a change in stiffness in different parts of

the matrix would add another layer of complexity and could give very interesting

results. It would also be very interesting to explore the effect of a more detailed

model of the extracellular matrix on the simulation results. Such a model could,

for example, take into account fibre-fibre interactions and the resulting matrix

deformability and elasticity at a non-local level.

It will, however, be important to have more experimental data from different cell

lines and tumours in order to run simulations that are biologically meaningful and

can help understand the behaviour of cancerous cells. As mentioned in Chapters

4 and 5, more data on microscopic details on the extracellular matrix in different

tissues and measurements of cell-matrix fibre interactions would also be useful to

validate or adjust the model further to enhance the predictive potential. Such
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a model could then also be used for the testing of different drugs and also for

predicting combinations that inhibit cell movement and invasion while also de-

creasing the main cell mass.

When considering the testing of treatments and predicting patient outcome, the

next natural step would be to consider the model in thee dimensions and we

have examined this possibility. However, multiple problems arise when adding

the third dimension. In the current model it is assumed that the domain in

which the cell-matrix interactions take place is the circular base of the cell. In

the multiscale model in which cells are modelled as spheres, the deformation of

the migrating cells is not taken into account and the cell-matrix contact area

is implicitly assumed to be a circular region of the same diameter as the cell.

However, if this were to be moved to a three dimensional setting, the surface of

the spheres representing the cells would be the contact areas and thus the math-

ematical problem of cell-matrix contacts would be a different one.

Not unrelated is also the problem that potential functions would have to be de-

veloped for the cell-matrix interactions. This could not be based on the Hertz

model as it does not extend to the interactions of spheres with much thinner

cylindrical elements. Thus, although moving this model to a three dimensional

setting would be very interesting and has a lot of potential to help understand

in vivo cancer growth and spread and could give the possibility of testing treat-

ments and surgery, it would require quite extensive further modelling efforts. In

addition, the simulations of the multiscale model in Chapter 6 have highlighted

the drawback of this modelling technique by leading to simulations that take a

very long time to run in the case of the development of large cell colonies. When

considering the growth of actual tumours, whether in 3D or as a two-dimensional

slice, the number of cells in the simulations would grow to millions. This would

no longer be feasible without recourse to a supercomputer. Therefore, in future,
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the model could be extended to a hybrid model. This has been done in previous

work by Kim et al. [2007]. In their approach the central region of the tumour is

modelled using a continuous description and only the outer rim is modelled at

the single cell-level. This could lead to a model that still shows the details of

the tumour-matrix interface but loses some of the details on the level of cell-cell

interactions as a trade-off for computational speed and efficiency. Another ap-

proach could be to use all the information from the mechanistic model developed

here, of how the results depend on the parameter values, and use this to develop

an empirical model. This might be useful when investigating drug action on a

regular basis or as a large scale study.

In conclusion, the models developed in this thesis have been able to give insight

into cell migration, invasion and processes related to these. However, further

investigations with, and validations of, these models are necessary in order to

expand their capabilities from being descriptive to being predictive. Further ex-

tensions are possible which will allow the work developed here to be used as a

tool for understanding a wide range of in vitro experiments and predicting their

outcome. In future these models might even help to understand and predict in

vivo cell migration and cancer spread.

Finally, data analysis techniques have been developed in this thesis in order to

quantify single and two cell migration characteristics as well as analyse cell colony

data. These techniques are universally usable for simulation as well as experi-

mental data.
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