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Abstract 

Huntington’s disease (HD) is a neurodegenerative disorder characterised by an unstable 

polyglutamine repeat expansion within the Huntingtin gene. Although clinical diagnosis 

of HD relies on the manifestation of a motor phenotype, cognitive symptoms often 

appear prior to diagnosis. This study has characterised the motor, cognitive and 

electrophysiological phenotypes of the homozygous and heterozygous Hdh
Q111

 mouse 

models of HD. Although the heterozygous Hdh
Q111 

mouse is more clinically relevant to 

the human disorder, it has received little attention in previous studies.  

 

Assessments of the motor phenotype of the Hdh
Q111 

mouse were inconclusive. 

However, Hdh
Q111

 mice exhibited a mild motor phenotype on the rotarod, showing 

hyperactivity at 2 and 3 months. Subtle changes within the hippocampus are thought to 

underlie the cognitive abnormalities that characterise the early stages of HD. A series of 

recognition tasks were used to assess the episodic memory of the Hdh
Q111

 mouse. 

Although these tasks had been used to assess the ability of rats to discriminate the 

‘what’, ‘where’ and ‘when’ of episodic memory, this was the first time that they had 

been successfully utilised in mice. Hdh
Q111

 mice showed impairments in episodic 

memory as early as 2 months. In mouse models, cognitive deficits are often 

accompanied by impairments in hippocampal synaptic plasticity, the molecular 

correlate of learning and memory. In agreement, Hdh
Q111 

mice showed impairments in 

long-term potentiation (LTP) at 2 months.  

 

A novel, shortened version of the protocol was developed to accurately assess the 

changes in cognition in the small development window available. A hippocampus-

dependent 24-hour novel object recognition task was also used to assess the integrity of 



xvi 

 

 

 

 

the hippocampus. Hippocampal function in 1 month old Hdh
Q111 

mice was not 

significantly different from that in wild type mice. The early cognitive deficits present 

in the Hdh
Q111

 mice were progressive, with cognitive deficits spreading to include the 

individual components of episodic memory by 13 months. Drugs inhibiting the function 

of α5-GABAA receptors are known to enhance cognition and hippocampal LTP. In 

agreement, the LTP and cognitive deficits of the Hdh
Q111 

mouse were rescued following 

treatment with the α5-GABAA receptors selective inverse agonist α5IA.  

 

Importantly, the clinically relevant heterozygous Hdh
Q111

 mice exhibited an identical 

phenotype to homozygous Hdh
Q111 

mice indicating that, reminiscent of the human 

disorder, only one copy of the mutant gene is necessary to produce abnormalities 

associated with the disorder, further supporting the validity of the Hdh
Q111

 mouse as a 

clinically relevant model of HD. Collectively, this thesis provides evidence that α5-

GABAA receptors antagonists have the potential to improve cognitive function in HD. 
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1: Huntington’s disease 

1.1: Introduction 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder that 

affects muscle coordination (chorea), and leads to cognitive decline and psychiatric 

problems (for more details on the symptoms of HD, see section 1.1.3). The disorder is 

characterised by an unstable glutamine (CAG) trinucleotide repeat expansion which 

occurs within the open reading frame of exon 1 of the Huntingtin gene (Cummings et 

al., 2006) (.NB. The following nomenclature is used throughout this thesis: huntingtin - 

mouse gene; huntingtin - mouse protein; Huntingtin - human gene; Huntingtin - human 

protein). Generally, unaffected individuals have less than 36 CAG repeats, however 

greater than 36 repeats results in the generation of HD. The age of onset and severity of 

the disease are determined by the length of the CAG repeat expansion (Duyao et al., 

1993). Although adult-onset HD most often occurs in middle age, juvenile onset HD 

results either from a CAG repeat length of more than 55 or in individuals who are 

homozygous for the Huntingtin mutation, and in these cases symptoms can appear 

before the age of 20 (Nance and Myers, 2001). In addition, if the gene is passed down 

the paternal germline genetic anticipation can occur, thereby increasing the number of 

CAG repeats and decreasing the age of onset as the gene is passed through the 

generations (Duyao et al., 1993). In Scotland 1: 10,000 people suffer from HD, 

although this figure varies between regions. Currently, there are approximately 850 

patients of HD in Scotland, with 4000 – 6000 people living with the risk of inheriting 

the disorder (Scottish Huntington’s Association).  
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1.1.1: The physiological role of huntingtin protein 

The physiological role of the Huntingtin protein is unclear, however various 

experimental approaches have been used to investigate normal Huntingtin function and 

its’ possible involvement in the pathogenesis of HD. In order to further elucidate the 

physiological role of Huntingtin during development, mice with a targeted deletion of 

the huntingtin gene were generated (Nasir et al., 1995; Duyao et al., 1995; Zietlin et al., 

1995). Homozygous knock-out of the huntingtin gene results in embryonic death, 

however mice heterozygous for the mutation survive until adulthood. Heterozygous 

knock-out mice showed significant neuronal loss in the subthalamic nuclei. In a set of 

behavioural tests it was found that heterozygous knock-out mice exhibited increased 

spontaneous motor activity when compared to control animals, echoing the chorea 

exhibited in human patients of the disorder (Nasir et al., 1995). The heterozygous mice 

showed impaired spatial learning in the Morris Water Maze (MWM) test (for more 

details on MWM, see section 6.1.2).  

 

Following on from these studies, a study by White et al. (1997) generated knock-in 

mice in which the polyglutamine tract of the murine huntingin gene was extended by 

introducing an expanded human CAG repeat to create mice that expressed either 

reduced levels of huntingtin by the introduction of a neomycin cassette (Hdh
neoQ50

), or 

wild type (Hdh
Q50

) levels of huntingtin with 50 CAG repeats (for more details on 

knock-in mice, see section 1.2.2 below). Mice homozygous for Hdh
neoQ50 

were either 

stillborn, or died shortly after birth (White et al., 1997). In addition, the subsequent 

examination of the homozygous pups revealed abnormal brain development. By 

contrast, brain development was normal in heterozygous and homozygous Hdh
Q50

 mice 
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suggesting that huntingtin, in the endogenous or mutated form is critical to the 

formation of the central nervous system (White et al., 1997). 

 

Again instead of completely deleting the huntingtin gene, a further study assessed the 

consequences of reducing huntingtin expression (Auerbach et al., 2001). Knock-in mice 

were generated in which the CAG length was reduced (CAG20) and/ or expanded 

(CAG111): Hdh
neoQ20

/Hdh
neoQ20

, Hdh
neoQ20

/Hdh
null

 and Hdh
neoQ20

/Hdh
 neoQ111

. Through 

careful breeding Hdh
neoQ20

/Hdh
null

 and Hdh
neoQ20

/Hdh
 neoQ111 

mice were able to survive 

until adulthood, but exhibited developmental defects as demonstrated by reduced body 

weight and enlarged cerebral ventricular volume (Auerbach et al., 2001). Movement 

abnormalities were evident in the Hdh
neoQ20

/Hdh
 neoQ111

 mice from 2 months of age, 

including hind-limb clasping, progressing to limb stiffness, difficulty “walking”, 

seizures and eventual paralysis as the mice aged. None of these abnormalities were 

present in control animals, or in any of the animals that expressed normal levels of 

huntingtin in at least one allele, demonstrating the critical role of huntingtin expression 

in embryonic development (Auerbach et al., 2001).  

 

Further studies have examined the localization of Huntingtin in the brain (DiFiglia et 

al., 1995; Gutekunst et al., 1995; Sharp et al., 1995; reviewed in Cattaneo et al., 2005). 

Results indicated that Huntingtin is expressed widely throughout the brain and 

peripheral tissue (DiFiglia et al., 1995; Sharp et al., 1995), with higher expression in the 

cortex and cerebellum than in the striatum (Gutekunst et al., 1995) The widespread 

distribution perhaps suggests that Huntingtin plays a general ‘housekeeping’ role in a 

variety of cells (DiFiglia et al., 1995; Sharp et al., 1995). Wild type Huntingtin is 

expressed in cell bodies, dendrites, axons and nerve terminals, but not in nuclei (Sharp 
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et al., 1995), with highest expression in the pyramidal cells of the cortex (Gutekunst et 

al., 1995). In addition, analysis of the subcellular localization of Huntingtin revealed 

that the protein is strongly associated with microtubules, perhaps indicating a role in the 

anchorage, or transport of intracellular proteins (Gutekunst et al., 1995). Furthermore, a 

small amount of staining at dendritic spines indicated that Huntingtin may perhaps play 

a role in neurotransmission (Gutekunst et al., 1995). DiFiglia et al. (1995) also 

demonstrated using sucrose density gradients that Huntingtin can be detected in 

fractions which are enriched with vesicle-associated proteins, including the vesicle 

membrane protein synaptophysin, perhaps indicating a role for Huntingtin in vesicular 

transport. 

 

Collectively these studies suggest that the normal function of the Huntingtin gene is 

required for embryonic development, neurogenesis and neurological development 

(Nasir et al., 1995; White et al., 1997; Auerbach et al., 2001). In addition, the 

widespread distribution throughout the brain, the periphery and its’ subcellular 

localisation indicates that Huntingtin may play a role in a variety of different cell types 

(DiFiglia et al., 1995; Sharp et al., 1995). Such roles may include the anchorage, or 

transport of intracellular proteins (Gutekunst et al., 1995), synaptic transmission 

(Gutekunst et al., 1995), or vesicular transport (DiFiglia et al., 1995). 

 

1.1.2: The pathology of HD  

HD is caused by the expansion of a CAG repeat in the Huntingtin gene. The embryonic 

lethal phenotype of the huntingtin knock-out mice (Duyao et al., 1995; Nasir et al., 

1995; see section 1.1.1) suggests a loss of function mechanism is unlikely. Therefore, in 

order to determine the mechanism by which the expanded CAG repeat causes HD, a 
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study by Davies et al (1997) assessed the neuropathology of the R6 transgenic mouse 

model of HD (for more details on the R6 mouse models, see section 1.2.1.1 and 

1.2.1.2). Immunohistochemical studies in control animals indicated that, in agreement 

with previous studies (DiFiglia et al., 1995; Sharp et al., 1995), Huntingtin is expressed 

in multiple regions throughout the brain including the cerebral cortex, striatum and 

cerebellum and expression is limited to the cytoplasm and membrane (Davies et al., 

1997). However, in contrast, immunohistochemical studies in the transgenic animals 

revealed that mutated Huntingtin formed dense inclusions within neuronal nuclei 

(Davies et al., 1997). These neuronal intranuclear inclusions (NIIs) were present in 

large numbers within neurons of the cerebral cortex, striatum, cerebellum, with fewer 

inclusions expressed in other areas, including the hippocampus, of transgenic mouse 

models (Davies et al., 1997). Furthermore these studies showed that in both transgenic 

mice and post mortem human patients with HD, antibodies detecting the C-terminus of 

Huntingtin showed staining only in the cytoplasm while antibodies detecting N-terminal 

Huntingtin demonstrated staining within the nucleus (Davies et al., 1997; DiFiglia et 

al., 1997). These studies suggest that the N-terminal fragment of mutant Huntingtin is 

cleaved and translocates to the nucleus to form NIIs. This proposal is supported by 

biochemical studies showing that N-terminal fragments of mutant Huntingtin form 

insoluble aggregates in the cortex and striatum (Davies et al., 1997; DiFiglia et al., 

1997; Scherzinger et al., 1997). Interestingly, the translocation of Huntingtin protein to 

the nucleus occurs just prior to the onset of the overt symptoms of HD, implicating a 

role for the NIIs in the generation of neurological dysfunction (for symptoms of HD, 

see section 1.1.3) (Davies et al., 1997). Furthermore, NIIs are present in symptomatic, 

but absent in pre-symptomatic patients of HD (DiFiglia et al., 1997). Collectively these 

studies suggest that the formation of aggregates within nuclei of transgenic 
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Huntington’s models and human Huntington’s before the appearance of motor 

symptoms is an important step in the development of HD (Davies et al., 1997; DiFiglia 

et al., 1997; Scherzinger et al., 1997). 

 

Although the pathogenesis of HD appears to involve the cytoplasmic cleavage, release 

and nuclear localisation of Huntingtin, it is not definitive that the protein aggregation is 

toxic and it is possible that the NIIs may instead act as a defence mechanism against 

huntingtin-induced cell death rather than being the cause of the disease (Saudou et al., 

1998). Saudou et al. (1998) have developed an in vitro model in order to assess the role 

of huntingtin expression in neuronal survival. Wild type or mutant huntingtin was 

transfected into striatal neurons and the survival rates of these were quantified. The 

study indicated that striatal neurons transfected with mutant huntingtin showed clear 

signs of neurodegeneration, the rate of which increased proportionally with the length 

of the CAG repeat (Saudou et al., 1998). In contrast, transfection of mutant huntingtin 

into hippocampal neurons maintained in cell culture did not result in an increased rate 

of neurodegeneration (Saudou et al., 1998). In addition, it was found that blocking 

components of the apoptotic pathway prevented neurodegeneration, indicating an 

apoptotic mechanism is involved in huntingtin-induced neurodegeneration (Saudou et 

al., 1998). In agreement with previous studies (Davies et al., 1997; DiFiglia et al., 1997; 

Scherzinger et al., 1997), Saudou et al. (1998) also demonstrated that fragments of 

mutant huntingtin are transported from the cytoplasm into the nucleus. However, in 

contrast to the previous studies which suggested that nuclear huntingtin accumulation 

leads to neurodegeneration through the formation of NIIs (Davies et al., 1997; DiFiglia 

et al., 1997; Scherzinger et al., 1997), Saudou et al. (1998) suggested that the formation 

of NIIs is instead a parallel process, unrelated to the mechanism that eventually results 
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in neurodegeneration. In agreement, results indicated that although NIIs developed in 

both striatal and hippocampal neurons in vitro, mutant huntingtin-induced apoptosis 

was only evident in striatal neurons, which shows that the presence of inclusions is not 

always sufficient to induce apoptosis (Saudou et al., 1998). Furthermore, when the 

formation of NII is suppressed, huntingtin-induced death is accelerated (Saudou et al., 

1998).  

 

Collectively, these studies suggest that mutant Huntingtin acts within the nucleus to 

induce neurodegeneration (Davies et al., 1997; DiFiglia et al., 1997; Scherzinger et al., 

1997; Saudou et al., 1998). However it is unknown whether the NIIs formed by mutant 

Huntingtin lead to neurodegeneration (Davies et al., 1997; DiFiglia et al., 1997; 

Scherzinger et al., 1997) or instead act as a protective mechanism against the toxic 

mutant Huntingtin protein (Saudou et al., 1998). 

 

1.1.3: Symptoms of HD 

In humans, symptoms of HD are progressive and usually appear in the third to fifth 

decades of life. HD produces 3 types of symptoms: (i) motor disturbances such as 

chorea, dystonia and clumsiness (ii) psychiatric features including mood swings and 

depression and (iii) cognitive impairment, characterised by attention difficulties and 

short- and long-term memory impairments which later on develop into dementia 

(Montoya et al., 2006). There is currently no treatment to halt the progression of HD, 

however medication is available that is able to manage the symptoms of the disorder 

(Killoran and Biglan, 2012). 
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The first motoric sign of HD is dystonia, which is characterised by slow movements 

with an increased muscle tone, leading to abnormal posture. These movement 

disturbances initially start as twitches of the fingers, toes and facial muscles but 

gradually spread to other muscles as the disease progresses. Involuntary choreatic 

movements develop in the latter stages of the disorder, and involve rapid and irregular 

movements of the limbs, trunk and face (Sturrock and Levitt, 2010). Patients also 

develop hypokinesia (decreased body movement) and akinesia (inability to initiate 

movement), which gradually leads to a slower pace of life (Roos, 2010). Impairments in 

voluntary movement also occur in HD with both hyperkinesia and hypokinesia, leading 

to difficulties in walking and standing, resulting in frequent falls (Sturrock and Levitt, 

2010). In addition, impaired voluntary control and worsening involuntary movement of 

the mouth, tongue and lips lead to problems with speech and swallowing, causing 

weight loss that may eventually lead to malnutrition (Sturrock and Levitt, 2010). For 

individuals with juvenile onset HD, the symptoms are similar but the age of onset is 

reduced. It is thought that the deficits in motor function are mediated predominantly by 

the prominent degeneration of neurons within in the striatum (Melone et al., 2005).  

 

Psychiatric features are also present in the early stages of the disease, often before any 

motor symptoms become evident, and are the most variable aspect of the clinical 

phenotype of HD. The most frequent warning sign of the disorder is depression. This is 

often complicated by additional environmental stressors, including fear of the future and 

alterations of family or relationship dynamics (Sturrock and Levitt, 2010). In the later 

stages of the disease psychosis may appear, often combined with cognitive decline 

(Roos, 2010). Other psychiatric symptoms include aggression and compulsive 

behaviour, the latter of which can exacerbate pre-existing addictive behaviours such as 
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gambling or alcoholism (Roos, 2010). For many sufferers and their families, these 

psychiatric symptoms are among the most distressing aspects of the disease, often 

affecting daily functioning and constituting reason for institutionalisation (Roos, 2010). 

 

Cognitive decline is another of the main indicators of HD and subtle changes in 

attention, semantic verbal fluency, working memory and episodic memory can be 

evident prior to the emergence of the more overt motor phenotype in patients (Hahn-

Barma et al., 1998; Lawrence et al., 1998; Kirkwood et al., 2000; Verny et al., 2007; 

see section 6.1.1) and mouse models of HD (Lione et al., 1999; Van Raamsdonk et al., 

2005; Brooks et al., 2006; Pang et al., 2006; Nithianantharajah et al., 2008; Simmons et 

al., 2009; see section 6.1.2).  

 

In the early stages of the disease patients demonstrate problems with concentration, 

working memory, episodic memory, attention and emotional processing (Montoya et 

al., 2006). Cognitive deficits become more severe as the disorder evolves. One of the 

earliest deficiencies in HD is the speed of thought processing and motor skills, with 

tasks that were previously menial becoming more tiring, with more effort required to 

achieve the same outcome (Paulsen, 2011). The cognitive deficits gradually deteriorate 

throughout the course of the disease, eventually resulting in dementia (Montoya et al., 

2006). Although the clinical manifestation of HD relies on the appearance of motor 

abnormalities, it has been suggested that the cognitive changes place the greatest burden 

on families that are affected by HD (Hamilton et al., 2003; Williams et al., 2010). In 

addition, the cognitive and behavioural symptoms of Huntington’s patients generally 

appear at least 15 years prior to diagnosis based on motor deficits (Paulsen et al., 2008). 

Subtle changes within the hippocampus are thought to underlie the cognitive 
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abnormalities that characterise the early stages of HD (Rosas et al., 2003). Furthermore, 

cognitive deficits in mouse models of HD are often accompanied by impairments in 

hippocampal synaptic plasticity, the molecular correlate of learning and memory (see 

section 2.3) (Hodgson et al., 1999; Usdin et al., 1999; Murphy et al., 2000; Milnerwood 

et al., 2006; Lynch et al., 2007). In order to identify possible drug targets, it would be 

beneficial to fully characterise the early cognitive changes that are associated with 

prodromal HD. As a result, it is the cognitive deficits (section 6.1) and abnormalities in 

synaptic plasticity (section 7.1) in HD that I will concentrate on and will be discussed in 

more detail in the relevant sections of this thesis.  

 

1.2: Rodent models of HD 

Since the mutation in the Huntingtin gene was first discovered in 1993 (MacDonald et 

al., 1993), HD research has been aided considerably by the generation of a variety of 

rodent genetic models, allowing the exploration of early pathological, molecular and 

cellular abnormalities associated with the disorder. Such approaches may lead to the 

identification of potential therapeutic targets and the preclinical evaluation of 

prospective therapies in the treatment of HD and other polyglutamine repeat diseases. 

The following section will summarise the most widely used mouse models of HD. The 

available rodent models are transgenic models (ectopic expression of the Huntingtin 

mutation; Table 1.1) and knock-in models (mutated Huntingtin is knocked into the 

endogenous murine huntingtin gene; Table 1.2). Transgenic models include the R6 

lines, which were the first genetic models of HD to be generated and still remain one of 

the most widely used (Mangiarini et al., 1996; Davies et al., 1997; Carter et al., 1999; 

Lione et al., 1999; Murphy et al., 2000; Lüesse et al., 2001; Sun et al., 2002; Naver et 

al., 2003; Hickey et al., 2005; Morton et al., 2000; Morton et al., 2005; Stack et al., 
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2005; Milnerwood et al., 2006; Pang et al., 2006; Nithianantharajah et al., 2008). In 

addition, there are 2 full length transgenic models of HD; one of the most studied is the 

yeast activated chromosome (YAC) expressing mutant (YAC72 and YAC128) human 

Huntingtin (Hodgson et al., 1999; Slow et al., 2003; Van Raamsdonk et al., 2005a/b) 

while the other uses a bacterial activated chromosome (BAC) and expresses mutant 

Huntingtin with 97 CAG repeats (Grey et al., 2008). There are classical knock-in 

models which differ mainly according to CAG repeat length (from 48 – 200) within the 

endogenous huntingtin gene of the mouse and include the Hdh
Q80

 (Shelbourne et al., 

1999; Usdin et al., 1999), Hdh
Q92 

(Wheeler et al., 2000), Hdh
Q111 

(Wheeler et al., 2000; 

Wheeler et al., 2002; Lynch et al., 2007), Hdh
Q140

 (Menalled et al., 2003; Simmons et 

al., 2009) and the Hdh
Q150 

(Lin et al., 2001; Yu et al., 2003; Brooks et al., 2006; Heng 

et al., 2007) mouse models of HD.  

 

1.2.1: Transgenic models of HD 

 

1.2.1.1: The R6/2 model 

The R6 mouse was the first successful transgenic model of HD and was created by 

Bates and colleagues by incorporating an exon 1 fragment of Huntingtin with a range of 

141 – 157 CAG repeats, expressed from different locations in the mouse genome. 

(Mangiarini et al., 1996; Table 1.1). The lines R6/1 and R6/0 contain 1 exon fragment 

integrated into the murine genome. The R6/2 line contains 3 inserted fragments, but due 

to deletions in the flanking regions, the inserted transgene functions as a single 

insertion. Finally the R6/5 line contains 4 fragment inserts (Mangiarini et al., 1996). 

The following section will discuss the R6/2 and R6/1 lines.  
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The R6/2 mouse expresses an aggressive phenotype and has been characterised 

extensively; behavioural abnormalities are evident by 5 weeks, neuronal cell loss in the 

striatum by 12 weeks, followed by death by 12 - 15 weeks (Mangiarini et al., 1999; 

Hickey et al., 2005; Morton et al., 2005; Stack et al., 2005). Studies have shown that 

NIIs are present from postnatal day 1, forming initially in the cortex and in the Cornu 

Ammonis 1 (CA1) region of the hippocampus by 3 weeks, spreading to other 

hippocampal regions and the striatum by 8 weeks of age (Davies et al., 1997; Morton et 

al., 2000; Murphy et al., 2000; Sun et al., 2002; Stack et al., 2005). By the end stage of 

the disease, the R6/2 mouse displays widespread NIIs and aggregates (Morton et al., 

2000; Stack et al., 2005). The appearance of the NIIs in the striatum correlates with the 

generation of motor abnormalities (Carter et al., 1999; Stack et al., 2005). In R6/2 mice 

motor impairments develop between 8 – 15 weeks including deficits in swimming, fore- 

and hind-limb coordination, balance, grip strength and sensorimotor gating (Carter et 

al., 1999; Lüesse et al., 2001; Stack et al., 2005). The R6/2 mice show a progressive 

decline in performance of the rotarod task as early as 6 weeks and are unable to 

maintain their balance on the beam for longer than 10 seconds by the age of 12 weeks 

(Lüesse et al., 2001; Hickey et al., 2005; Stack et al., 2005). In addition, R6/2 mice (8 

weeks) are smaller in weight when compared to wild type mice (Hickey et al., 2005; 

Stack et al., 2005) and exhibit stereotypical behaviours such as hind limb clasping (6 

weeks) (Mangiarini et al., 1996; Stack et al., 2005). However, prior to the emergence of 

the more overt motor impairments, cognitive testing has demonstrated that the R6/2 

mouse shows progressive cognitive decline in the MWM and the T-Maze as early as 3.5 

weeks (Lione et al., 1999; Lüesse et al., 2001; Morton et al., 2005; see section 6.1.2). 

Furthermore, R6/2 mice show impairments in hippocampal synaptic plasticity, the 
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molecular correlate of learning and memory, from 5 weeks (Murphy et al., 2000; see 

section 7.1).  

 

1.2.1.2: The R6/1 model 

Another model in the R6 line is the R6/1 mouse model of HD. As the R6/1 mouse 

contains only 116 CAG repeats (Mangiarini et al., 1996), the phenotype of this mouse is 

relatively mild when compared to the R6/2 mouse (Table 1.1). In common with the 

R6/2 mouse, NIIs form within the CA1 region of the hippocampus in 1 month old R6/1 

mice, spreading to the CA3 by 3 months and the dentate gyrus by 7 months 

(Milnerwood et al., 2006). The R6/1 mouse exhibits weight loss and hind-limb clasping 

by the age of 19 – 23 weeks (Milnerwood et al., 2006) and decreased anxiety in the plus 

maze (24 weeks) (Naver et al., 2003). The R6/1 mouse also demonstrates deficits in 

spatial learning (12 weeks) and novel object recognition (12 – 14 weeks) (Pang et al., 

2006; Nithianantharajah et al., 2008; see section 6.1). 

 

1.2.1.3 YAC models 

A further method of creating mouse models of HD is to express the entire human 

Huntingtin gene including the CAG repeats in the 5’end of the gene under the control of 

the human promoter in a yeast artificial chromosome (YAC) vector system. YAC 

mouse strains expressing mutant (YAC72 and YAC128) Huntingtin were generated 

(Hodgson et al., 1999; Slow et al., 2003; Van Raamsdonk et al., 2005a; Table 1.1). 

Modest striatal neuronal loss is found at 12 months in the YAC128 model (Slow et al., 

2003). Although NIIs are not evident until 18 months (Hodgson et al., 1999; Slow et al., 

2003), both the YAC72 and YAC128 demonstrate increased nuclear Huntingtin staining 

within striatal neurons from 3 months (Van Raamsdonk et al., 2005a). Both models 
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show stereotypical behavioural abnormalities from 3 months, including circling, deficits 

in gait and hind-limb clasping (Hodgson et al., 1999; Slow et al., 2003). The YAC128 

model of HD also shows deficits in performance on the accelerating rotarod and 

reduced locomotion in the activity box (6 months) (Slow et al., 2003; Van Raamsdonk 

et al., 2005b). In addition, cognitive tests have demonstrated that the YAC128 model 

demonstrates deficits in spatial learning (8.5 months; Van Raamsdonk et al., 2005b; see 

section 6.1).  

 

1.2.1.4: BAC models 

An alternative method of creating mouse models of HD is to express the full length 

human Huntingtin under the control of the endogenous Huntingtin regulatory machinery 

on the bacterial artificial chromosome (BAC) vector system (BACHD; Gray et al., 

2008; Table 1.1). The BACHD mice generated had 97 CAG repeats and their brains 

demonstrated late onset atrophy (12 months) of the cortex and striatum (Gray et al., 

2008). NIIs were found in the deep and upper cortical layers, with a few aggregates 

forming in the striatum at 12 months (Gray et al., 2008). BACHD mice demonstrated 

subtle impairments in the rotarod from 2 months (Gray et al., 2008). BACHD mice 

therefore provide a subtle model that demonstrates a slower progressive presentation of 

HD, without the normal aggregation of mutant Huntingtin.  
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1.2.2: ‘Knock-in’models 

Due to the presence of both the mouse and human copies of the Huntingtin gene in the 

previously described models, it could be argued that transgenic models are not an 

accurate representation of the human disease. As a result, knock-in models of HD have 

been generated. Knock-in models are produced by replacing a portion of the mouse 

huntingtin gene with a mutant copy of the human gene, which contains a section with an 

expanded CAG repeat. Unlike the transgenic models, the knock-in mice only have 2 

copies of the huntingtin gene – 1 wild type and 1 mutant – both of which are under the 

control of the endogenous mouse huntingtin promoter. Knock-in mice that contain 48 – 

200 CAG repeats have been generated, a small selection of which will be discussed in 

the following section (Shelbourne et al., 1999; Usdin et al., 1999; Lin et al., 2001; 

Wheeler et al., 2000; Wheeler et al., 2002; Menalled et al., 2003; Yu et al., 2003; 

Brooks et al., 2006; Heng et al., 2007; Lynch et al., 2007; Simmons et al., 2009; Usdin 

et al., 2009) (Table 1.2). Generally, the phenotype of the knock-in mice is more subtle 

than the phenotype seen in transgenic models, however sensitive and careful testing can 

be utilised in order to demonstrate the early deficits associated with HD (Menalled et 

al., 2002; 2003). 

 

1.2.2.1: 80 CAG mouse model 

Mice expressing full-length mutant huntingtin protein were generated by replacing the 

endogenous mouse huntingtin gene with an expanded stretch of up to 80 CAG repeats, a 

length corresponding to that seen in juvenile-onset HD in humans (Shelbourne et al., 

1999). These mice do not develop detectable nuclear inclusions or motor disturbances 

(Shelbourne et al., 1999), but show a striking hyper-aggressive behaviour reminiscent 

of the behavioural abnormalities of early stage human patients of HD. In addition, these 
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mice demonstrate impairments in hippocampal synaptic plasticity (8 – 14 months) 

(Usdin et al., 1999; see section 7.1). 

 

1.2.2.2 : Hdh
Q92 

and Hdh
Q111 

mouse model 

Mice were generated in which exon 1 of the mouse huntingtin gene was replaced by a 

chimeric mouse/ human exon 1 including either 92 (Hdh
Q92

)
 
or 111 (Hdh

Q111
)
 
CAG 

repeats (Wheeler et al., 2000; Wheeler et al., 2002; Table 1.2). The striatum of the 

Hdh
Q92

 and Hdh
Q111 

mice was subsequently examined in order to detect the presence of 

neurodegeneration. Although neither of these models displayed overt striatal 

neurodegeneration, abnormal striatal pathology is evident. In young mutant Hdh
Q92

 and 

Hdh
Q111

 mice (1.5 months) huntingtin protein is confined to the cytoplasm of striatal 

neurons. However, by 4.5 months, the huntingtin protein has translocated to the nucleus 

in both the Hdh
Q92

 and Hdh
Q111 

mouse lines (Wheeler et al., 2000). In Hdh
Q111

 

heterozygous mice, prominent nuclear huntingtin immunoreactivity is observed at 5 

months of age. At 17 months both homozygous and heterozygous Hdh
Q111

 mice display 

prominent NIIs, and aggregates are found in the globus pallidus and substantia nigra 

pars reticulata (Wheeler et al., 2002). Behavioural tests carried out to assess weight 

gain, clasping, exploratory behaviour, gait and rotarod deficits did not produce any 

significant differences between wild type and mutant mice up to the age of 17 months 

(Wheeler et al., 2000). However footprint analysis demonstrated that subtle motor 

deficits are apparent by 24 months in the Hdh
Q111 

mouse (Wheeler et al., 2002). In 

addition, further studies have shown that Hdh
Q111 

mice also
 
display impairments in the 

long term potentiation of CA1 hippocampal neurons, from 2 months onwards (Lynch et 

al., 2007; see section 7.1). 
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1.2.2.3: Hdh
Q140 

mouse model 

A further knock-in model carrying 140 CAG repeats (Menalled et al., 2003; Table 1.2) 

displays weak nuclear staining and few aggregates within the striatum at 2 months. By 4 

months nuclear staining is clearly more intense and aggregates are more widely 

distributed when compared to younger mice, with aggregates spreading to the striatum 

and hippocampus, increasing in density by 6 months (Menalled et al., 2003). The 

Hdh
Q140

 mouse does not show any abnormal weight loss when compared to control. The 

Hdh
Q140

 mouse shows increased locomotor activity and rearing at the age of 1 month, 

which is significantly reduced at the age of 4 months. Furthermore, these mice present 

with overt gait abnormalities by 12 months of age as demonstrated by a decrease in 

stride length (Menalled et al., 2003). In addition the Hdh
Q140

 mouse model of HD also 

demonstrated cognitive deficits in the novel object recognition task (16 weeks; 

Simmons et al., 2009; see section 6.1). 

 

1.2.2.4: Hdh
Q150 

mouse model 

The Hdh
Q150

 knock-in mouse lacks foreign DNA sequences and has 150 CAG repeats 

inserted into exon 1 of the murine huntingtin homologue (Lin et al., 2001; Yu et al., 

2003; Brooks et al., 2006; Heng et al., 2007; Table 1.2). In agreement with the human 

disorder in which the age of onset and severity of the symptoms are characterised by the 

number of CAG repeats, the Hdh
Q150

 mouse model of HD displays a phenotype that is 

more severe than the aforementioned knock-in models. Nuclear huntingtin 

immunoreactivity is found at 27–29 weeks. At approximately 40 weeks of age, some 

striatal neurons express NIIs which gradually disperse so much so that, by 70 weeks of 

age, NIIs are expressed by most striatal neurons. The Hdh
Q150 

mice display increased 

striatal axonal degeneration at 14 months when compared to wild type (Yu et al., 2003). 
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At 100 weeks, homozygous Hdh
Q150

 mice exhibit weight loss, decreased motor activity, 

impaired performance on the accelerating rotarod, abnormal gait, clasping and abnormal 

performance on the balance beam (Heng et al., 2007). Tests to assess the cognitive 

performance demonstrated that Hdh
Q150

 mice show impairments in performance in a test 

of attention at 26 weeks (Brooks et al., 2006).  

 

1.2.3: Summary 

As stated previously, as the mutant huntingtin is under the control of the mouse 

promoter and there are only two huntingtin copies in these animals, knock-in models 

most accurately represent the human disorder. The behavioural deficits are not as 

pronounced in the knock-in models when compared to other transgenic models and are 

difficult to test due to the lack of refined behavioural testing. However, with new and 

more sophisticated test settings the phenotype of the knock-in models can be studied 

more carefully to reveal early deficits. The slow progression of the disorder in these 

animals certainly provides an ideal model for the study of therapeutic interventions. For 

these reasons I have chosen the Hdh
Q111

 mouse model of HD for this study and aim to 

characterise both motor and cognitive features in sophisticated test settings as well as to 

analyze potential electrophysiological deficits. In addition to the homozygous Hdh
Q111

 

mice, I will also assess the phenotype of the more clinically relevant heterozygous 

Hdh
Q111

 mouse model of HD, which has received little attention in previous studies. 
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2: The hippocampus and synaptic plasticity 

2.1: Introduction 

Damage to the hippocampus is considered to contribute to the early cognitive deficits 

associated with HD (Rosas et al., 2003). In addition, forms of synaptic plasticity such as 

long-term potentiation (LTP), considered to be a cellular correlate of memory (see 

section 2.3), have been widely studied in the hippocampus, and decreases in the 

magnitude of LTP in this brain region are thought to be associated with the cognitive 

deficits seen in mouse models of HD (Usdin et al., 1999; Murphy et al., 2000; Lynch et 

al., 2007; Simmons et al., 2009; see section 6.1). The following sections will describe 

the anatomy of the hippocampus and molecular mechanisms of synaptic plasticity.  

 

2.1.1: Structure and anatomy of the hippocampus 

The hippocampus is a brain region that is important in memory processes, including the 

retention of spatial information and memory for recent events. The role of the 

hippocampus in memory was brought to light in a landmark study by Scoville and 

Milner (1957). In this study, patient Henry Gustav Molaison (1926 – 2008), known 

worldwide only as H.M, underwent a bilateral removal of the medial temporal lobe, 

including the hippocampus, as a treatment for epilepsy. However, following the 

operation, H.M. developed severe anterograde and a partial retrograde amnesia (for 

more details see section 3.1.2). Interestingly, two additional case studies also underwent 

a bilateral medial temporal lobectomy. However, in these cases the hippocampus was 

spared. In contrast to H.M, short- and long-term semantic and episodic memory was 

spared when the hippocampus remained intact (Scoville and Milner, 1957). This 
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landmark study therefore demonstrated the importance of the hippocampal region in 

certain aspects of memory, in particular episodic memory (see section 3.1.2). 

The primary input to the hippocampus is via the entorhinal cortex (EC) which projects 

to the dentate gyrus (DG) through the perforant pathway. The dentate gyrus projects to 

the CA3 via the mossy fibres, which in turn innervates the CA1 via the Schaffer 

collateral pathway known as the “trisynaptic” circuit (Anderson et al., 1971; Amaral 

and Witter, 1989; Amaral & Lavenex, 2007). This tri-synaptic pathway is primarily uni-

directional (Figure 2.1). The CA1 neurons project to both the subiculum and to the 

deeper layers of the EC projecting widely to other brain regions including the temporal 

and frontal cortex, the amygdala and thalamus (Amaral et al., 1991; Amaral & Lavenex, 

2007). Although the primary granule cells and pyramidal neurons are glutamatergic, the 

hippocampus also contains a network of GABA-ergic interneurons which modulate 

neuronal transmission (Amaral & Lavenex, 2007; Kasugai et al., 2010).   

 

2.2: Synaptic plasticity in the hippocampus 

Synaptic plasticity is the alteration of the efficiency of synaptic transmission, which 

may involve increases, or decreases in synaptic strength. Short-term forms of plasticity 

include paired-pulse facilitation (PPF), which occurs on the scale of hundreds of 

milliseconds, and post-tetanic potentiation (PTP) which may last several minutes (Bliss 

et al., 2007). Long-term forms of plasticity include long-term potentiation (LTP) and 

depression (LTD) that manifest as sustained increases and decreases in synaptic 

strength respectively and may last for several hours or longer (Bliss et al., 2007).  
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Figure 2.1: A sagittal section of the rodent hippocampus. Input emanates from the 

entorhinal cortex via the perforant path where it subsequently synapses with DG 

granule cells. The granule cells project to the CA3 region via the mossy fibres and then 

synapse with the pyramidal cells in this region. CA3 pyramidal cells then project to the 

CA1 pyramidal cells via the Schaffer collateral-commissural pathway. 
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 2.2.1: LTP: A historical perspective 

At the end of the 19
th

 Century, neurobiologists recognised that the number of neurons in 

the adult brain did not significantly increase with age, leading to speculation that 

memories did not result from the production of new neurons. In 1894, Santiago Ramon 

y Cajal suggested that learning results from strengthening the connections between 

existing neurons to improve the effectiveness of their communication (see Kandel, 

2009). The Hebbian Theory introduced by Donald Hebb in 1949 (Cooke and Bliss, 

2006; reviewed in Bi and Poo, 2001) echoed these ideas, speculating that cells may 

grow new connections, or undergo metabolic changes to enhance their ability for 

communication: 

 

‘…when an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes place 

in one or both cells such that A’s efficiency, as one of the cells firing B, is increased’ 

(for review, see Bi and Poo, 2001). 

 

LTP was first discovered in the synapses between perforant path fibres and granule cells 

of the rabbit hippocampus (Bliss and Lømo, 1973). A single pulse of electrical 

stimulation to fibres of the perforant pathway caused the generation of excitatory 

postsynaptic potentials (EPSPs) in the cells of the DG. It was discovered that the 

postsynaptic cells’ response to the single-pulse stimuli could be enhanced for a long 

period of time if a high frequency train of stimuli was delivered to the presynaptic fibres 

(Bliss and Lømo, 1973). The application of high-frequency stimulation (HFS) produced 

a long-lived enhancement of the response of the postsynaptic cell to subsequent single-

pulse stimuli. 
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Since the discovery of LTP in the rabbit hippocampus, this form of synaptic 

strengthening has been observed in many pathways in the brain (reviewed in Cooke and 

Bliss, 2006). In the two most commonly studied pathways, the Schaffer collateral-

commissural pathway and the perforant pathway, induction of LTP is dependent upon 

the activation of the NMDA receptors (Collingridge et al., 1983; Figure 2.2). Under 

normal basal conditions the NMDA receptor is subject to a voltage-dependent Mg
2+ 

block and so a low frequency stimulus to the Schaffer collateral pathway results in the 

generation of an AMPA receptor-mediated EPSP (Collingridge et al., 1983; Davies and 

Collingridge, 1989; reviewed in Cooke and Bliss, 2006). However, in the presence of 

the enhanced glutamate release that occurs at higher frequencies of stimulation, the 

influx of Na
+ 

through postsynaptic AMPA receptors results in a sustained depolarisation 

of the postsynaptic spine, consequently relieving the NMDA receptor Mg
2+ 

block, 

allowing Ca
2+

 influx and the activation of Ca
2+

-dependent enzymes (Cooke and Bliss, 

2006). The importance of Ca
2+ 

in the induction of LTP was confirmed by Lynch and 

colleagues who demonstrated that injection of a Ca
2+ 

chelator into CA1 pyramidal cells 

blocks the induction of LTP (Lynch et al., 1983).  

 

Inhibitory GABAergic interneurons which act on the postsynaptic spine usually act to 

limit the depolarisation by curtailing the EPSP, however the sustained depolarisation 

caused by the LTP induction protocol, activates inhibitory GABAB autoreceptors which 

subsequently leads to a reduction in GABA-mediated hyperpolarisation of the 

postsynaptic cells (Davies & Collingridge, 1996). In addition, α5-GABAA receptors (see 

section 4.2.1) are located extrasynaptically at the base of the spines, which receive 

excitatory glutamatergic input via NMDA receptors. Thus, GABAA receptors 



26 

 

 

 

 

containing the α5-subunit are strategically located to modulate the processing of the 

excitatory input (reviewed by Möhler, 2007).  
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Figure 2.2: Mechanisms of LTP. A) Low frequency stimulation of the presynaptic cell releases 

glutamate (L-Glu) that then acts on AMPA receptors to evoke an EPSP. Low frequency stimulation also 

activates GABAergic interneurons, which release GABA that subsequently activates initially GABAA and 

then GABAB receptors, leading to the generation of an IPSP, which curtails the EPSP. α5-GABAA 

receptors are located extrasynaptically at the base of the spines, which receive excitatory glutamatergic 

input via NMDA receptors. At resting membrane potentials NMDA receptors are subject to Mg
2+ 

block 

and therefore provide little contribution to the synaptic response. B) High frequency stimulation results in 

the sustained depolarisation of the presynaptic cell, thus relieving the Mg
2+

 block of the NMDA 

receptors, while the persistent release of glutamate during the tetanus enhances their probability of 

opening. GABA-mediated synaptic inhibition is reduced, thereby shifting the excitatory/ inhibitory 

balance. The NMDA receptor Mg
2+ 

block is further reduced, causing the NMDA receptor-mediated 

EPSPs to summate, generating LTP (Figure based on Bliss and Collingridge, 1993 and modified).

B 

A 
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2.2.2: Paired-pulse facilitation 

Paired-pulse facilitation (PPF) occurs at CA1 hippocampal synapses when two 

presynaptic stimuli are given within 50 – 500 ms of each other and enhances the 

probability that neurotransmitter will be released (Debanne et al., 1996). The amplitude 

of the second synaptic response recorded is typically greater than that of the first 

stimulus. PPF is largely due to presynaptic mechanisms, in particular the transient 

increase in Ca
2+

 generated by an incoming action potential (Schulz et al., 1994). The 

residual Ca
2+

 remaining in the terminal after the first stimulus is combined with the Ca
2+ 

influx occurring from the second stimulus, thereby resulting in an enhancement in the 

magnitude of the second synaptic response. The magnitude of PPF is linearly related to 

the concentration of residual Ca
2+ 

within the terminal (Wu and Saggau, 1994).  

 

2.2.3: The induction of LTP 

In contrast to the in vivo preparations where the DG offers the most stable recording 

conditions, in vitro LTP has been most extensively studied in the Schaffer-commissural 

pathway. The hippocampal brain slice preparation (Skrede and Westgaard, 1971) has 

been a key experimental tool in advancing the understanding of both the pre- and post-

synaptic mechanisms underlying LTP. The orderly nature of the neuronal cell bodies 

and zones of conductivity of the hippocampus allow electrophysiological recordings to 

be obtained from well-defined anatomical layers. Furthermore, stable intra- and extra- 

cellular recordings can be maintained for long periods of time thereby allowing rapid 

pharmacological manipulation of the extracellular environment. As a result, the CA1 of 

the hippocampus has become the prototypical site of mammalian LTP study (Cooke and 

Bliss, 2006). 

 



29 

 

 

 

 

LTP has traditionally been induced by delivering a tetanic stimulus (a train of 50-100 

stimuli at 100 Hz or more) to the pathway of interest (Bliss and Collingridge, 1993). 

Additionally, LTP can also be induced by patterns of stimulations based on theta 

rhythms known to occur physiologically in the hippocampus of animals during learning 

(Bliss & Collingridge; 1993; Otto et al., 1991). LTP is expressed as a persistent increase 

in the size of the synaptic component of the neurally evoked response, recorded from 

individual cells, or a population of neurons. The increase in synaptic strength can be 

evaluated in terms of changes in the amplitude, or the slope of the extracellularly 

recorded field EPSP (fEPSP). 

 

2.3: LTP and memory 

Although LTP has primarily been studied in the hippocampus, it is also apparent in 

other regions of the brain such as cerebral cortex, cerebellum and amygdala in a variety 

of species (Rioult-Pedotti et al., 2000, Coesmans et al., 2004; reviewed in Cooke and 

Bliss, 2006). In the hippocampus, LTP has been proposed as a cellular and molecular 

correlate of learning and memory. A number of studies in rodents have correlated 

deficits in spatial memory with reductions in LTP both in vitro and in vivo (Morris et 

al., 1986; Tsien et al., 1996; Tang et al., 1999; Whitlock et al., 2006).  

 

In 1986 Richard Morris and colleagues provided some of the first evidence that there 

was an association between spatial memory and hippocampal LTP. The spatial memory 

of rodents can be assessed in the MWM test (Morris et al, 1986). In this test rodents are 

trained to find a hidden platform in an opaque pool of water, then the platform is 

removed during a spatial transfer test. Normal rats exhibit a memory for the original 

position of the platform and therefore spend more time swimming in that location. 



30 

 

 

 

 

During a reversal test the platform is moved to another location in the pool and the 

ability of the rodent to learn the new position is assessed. Morris et al. (1986) 

demonstrated that rats that were chronically infused with the NMDA receptor 

antagonist aminophosphonovaleric acid (AP5) via a cannula inserted into the right 

ventricle prior to training, took longer to locate the platform, and took more indirect 

routes when compared to the control group. Furthermore, in contrast to control animals, 

rats in the AP5 group were able unable to learn the new position of the platform during 

the reversal test. Importantly, if rats were trained in the MWM prior to intra-ventricular 

infusion with AP5, they performed as well as controls, indicating an involvement of 

NMDA receptors in processing and storage of information (Morris et al., 1989). 

Moreover, AP5 inhibited the induction of in vivo hippocampal LTP, indicated a role of 

NMDA receptors in LTP induction (Morris et al., 1986). 

 

 As AP5 was delivered to the entire brain, it is possible that NMDA receptors in the 

neighbouring neocortex and other brain regions were also inhibited to a varying degree. 

However in support of a causative association between CA1 hippocampal LTP and 

spatial memory, Tsien et al. (1996) developed and utilised a mouse in which the gene 

that encodes the essential subunit for the NMDA receptor, the NMDAR1 subunit 

(Moriyoshi et al., 1991), was exclusively deleted from the CA1 pyramidal cells in the 

mutant mouse (CA1-KO). Consistent with the knock out of the NMDA gene, whole-cell 

patch clamp techniques were utilised to demonstrate that the CA1-KO cell lacked the 

slow component of the excitatory postsynaptic current that is normally attributed to the 

NMDA receptor, whereas the early faster component, mediated through the AMPA 

receptor was intact (Tsien et al., 1996). Although basal synaptic transmission appeared 

normal in the CA1-KO mice, the application of tetanic stimulation failed to produce 
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LTP. In addition, it was evident that the CA1-KO mice were unable to demonstrate 

spatial learning in the MWM task (Tsien et al., 1996). Furthermore, when a transfer test 

was performed, in comparison to the control animals, CA1-KO mice did not 

demonstrate preference for the original position of the platform, further indicating 

deficits in spatial memory (Tsien et al., 1996). 

 

In addition, non-spatial learning and memory has also been linked to LTP (Tang et al., 

1999). In this study, transgenic mice were generated in which the NMDA receptor 2B 

(NR2B) was overexpressed in the forebrain. Previously it has been shown that 

inhibition of the NMDA receptors prevents the induction of LTP (Bliss and 

Collingridge, 1993; Morris et al., 1986). Although NR2B-containing receptors have 

been shown to exist at both synaptic and extrasynaptic locations (Thomas et al., 2006), 

specifically, it has been demonstrated that only synaptic NMDA receptors are required 

for LTP, whilst LTD relies on both synaptic and extrasynaptic NMDA receptors 

(Papouin et al., 2012). In agreement with increased NR2B expression, Tang et al. 

(1999) demonstrated that the isolated NMDA-receptor-mediated field responses were 

significantly greater in the transgenic mice when compared to control, while the 

AMPA-mediated field EPSP responses remained unchanged. Furthermore, following 

tetanic stimulation, the magnitude of LTP was significantly greater in recordings made 

from brain slices derived from the transgenic mouse and this enhanced LTP could be 

blocked by the application of AP5 (Tang et al., 1999). Tang et al. (1999) subsequently 

subjected the NR2B transgenic mice to a series of non-spatial tests. The mice were 

initially tested in the novel-object-recognition task (for more detail, see section 3.4.1). 

Results showed that, at the retention interval of 1 hour, both control and transgenic 

animals showed similar preference for the novel object. However, when the retention 
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interval was increased to 1 or 3 days, the transgenic animals exhibited a higher 

preference for the novel object when compared to control, indicating that the transgenic 

mice have enhanced long-term memory (Tang et al., 1999). In addition, Tang and 

colleagues (1999) assessed the effect of increased NR2B expression on contextual 

(hippocampus-dependent) and cued fear (hippocampus-independent) conditioning. 

Results showed that transgenic animals demonstrated heightened contextual fear 

conditioning (Tang et al., 1999). In summary, this study demonstrates that over-

expression of the NR2B subunit significantly enhances LTP and improves learning in 

the novel object recognition and fear conditioning tasks, indicating a role of LTP in 

non-spatial learning (Tang et al., 1999). 

 

Although the aforementioned studies have provided a link between LTP and memory, it 

was not until 2006 that direct evidence demonstrated that hippocampal LTP is actually 

induced by learning. In a study by Whitlock et al. (2006), rats were tested in the 

hippocampal-dependent one-trial inhibitory avoidance (IA) task. Previous studies have 

shown that the IA task creates a memory trace and increased gene expression within the 

CA1 region of the hippocampus after only 1 trial (Impey et al., 1998; Taubenfield et al., 

1999; Taubenfield et al., 2001). During the IA trial, the rats were placed within a light/ 

dark box, in which a foot shock was administered following entry into the dark side. 

Memory was quantified by measuring the subsequent avoidance of the dark chamber. 

Whitlock and colleagues (2006) demonstrated that, in common with LTP, acquisition of 

the avoidance response required the activation of NMDA receptors and the insertion of 

AMPA receptors into the synapse (Heynen et al., 2000). In agreement, Whitlock et al. 

(2006) also demonstrated that IA-trained animals showed increased protein levels of the 

GluR1 and GluR2 subunits of the AMPA receptor. Whitlock et al. (2006) used the 
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phosphorylation of serine residues in the GluR1 subunit of the AMPA receptor as a 

biomarker for LTP and demonstrated increased phosphorylation following IA training. 

Furthermore, this increased phosphorylation could be blocked by injection (i.p.) with an 

NMDA receptor antagonist (Whitlock et al., 2006). Whitlock et al. (2006) also 

examined fEPSPs in the CA1 region of the hippocampus and demonstrated that IA 

training produces an enhancement of fEPSP slope in vivo. In addition, in a small group 

of animals HFS was applied following IA training in an attempt to introduce saturating 

levels of LTP and it was determined that fEPSPs that showed enhancement following 

IA training showed less subsequent LTP in response to HFS. In summary, this study has 

demonstrated that IA training mimics the effects of HFS and causes an NMDA receptor 

dependent increase in AMPA receptor phosphorylation, delivery of AMPA receptors to 

the membrane and the subsequent increase in fEPSP slope. Furthermore the IA-induced 

increases in fEPSP slope occlude subsequent LTP by HFS in vivo. Collectively, these 

data suggests that IA-training induced LTP in the CA1 region of the hippocampus, 

providing further evidence for the link between LTP and memory (Whitlock et al., 

2006). 
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3: Episodic memory 

 

3.1: Introduction 

Cognitive decline is one of the major symptoms of HD. Specifically, deficits in short/ 

long term recognition and episodic memory have been demonstrated in human patients 

(see section 6.1.1) and mouse models of HD (see section 6.1.2). Furthermore, these 

deficits have been linked to changes within the hippocampus (Rosas et al., 2003). This 

section will therefore discuss the role of the hippocampus in memory, focusing in 

particular on recognition and episodic memory. 

 

3.1.1: What is memory? 

Memory is the storage and retrieval of information and experiences. Waugh and 

Norman (1965) segregated memory into primary (short term) and secondary (long term) 

memory. Primary memory was subsequently labelled as working memory (Baddeley 

and Hitch, 1974). During working memory, information is held transiently by the brain 

(short-term memory), long enough to make a decision, and is either consolidated by the 

brain for future retrieval (long-term memory), or lost. An example of working memory 

is memorising a phone number from a phone book immediately prior to dialing. Once 

dialing has been completed the numbers are forgotten. Long term memory includes both 

procedural (skill learning) and declarative (fact learning) aspects of memory. Procedural 

memory involves the unconscious storage of knowledge about the ability to perform a 

motor, or perceptual task, as in driving a car, or playing the piano. Once the skill has 

been learned over repeated practice sessions, these tasks can be completed implicitly, 

but are not necessarily easy to explain explicitly. On the other hand, declarative 
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memories are learned experiences that are accessible through a conscious awareness and 

encompass the ability to explicitly communicate facts and events to others.  

 

Declarative memory is made up of semantic and episodic memory (Tulving, 1972). 

Semantic memory is based on facts: knowledge about the world is registered and stored 

until retrieval is required. An example of semantic memory could be ‘Toyota 

manufactures cars’. This type of memory is explicit and can easily be communicated to 

others but does not necessarily contain any contextual information about the occasion 

where this fact was learned. Episodic memory requires an individual to remember a 

personal experience, i.e. ‘I have a Toyota Yaris, I drove to St Andrew’s last weekend 

and we had a picnic on the beach’. Episodic memory in humans requires an individual 

to be consciously aware of their self and their experiences. While a semantic memory is 

often formed by the repeated learning of facts, an episodic memory can be formed by a 

single exposure to a stimulus and therefore has not had the repeated exposures required 

in order to be established as a learned fact. 

 

As mentioned above, human patients (see section 6.1.1) and mouse models of HD (see 

section 6.1.2) demonstrate deficits in short-long term recognition and episodic memory. 

In order to fully characterise these early cognitive changes, this thesis will 

experimentally explore declarative memory, in particular episodic memory, in the 

Hdh
Q111

 mouse model of HD. Abnormalities within the hippocampus are thought to 

contribute to the early cognitive deficits in HD (Rosas et al., 2003). The following 

section will therefore discuss the role of the hippocampus in episodic memory. 
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3.1.2: The hippocampus and episodic memory 

As discussed previously, the role of the hippocampus in memory was determined when 

patient H.M developed amnesia following the removal of the medial temporal lobe, 

including the hippocampus (Scoville and Milner, 1957; see section 2.1). Further testing 

of H.M. revealed that he was unable to form new episodic memories for events 

(anterograde amnesia). He also was unable to demonstrate episodic memory for the 19 

months prior to the surgery (retrograde amnesia) and had impairments in some episodic 

memories for 3 years prior to the operation. He was able to remember parts of his 

childhood, however the memories could be considered as semantic as although he was 

able to give generalised information about his parents he was unable to provide any 

specific memories of a given episode. This retrograde amnesia fits in with a popular 

theory that the medial temporal lobe, including the hippocampus, only plays a 

temporary role in memory. Memory for events that occurred a short time before the 

damage is impaired, but memory for events that occurred a long time before the 

damage, i.e. H.M.’s childhood, is spared (Alvarez and Squire, 1994). However as time 

has progressed the definitions of semantic and episodic memory have been refined and 

it is now doubted that H.M. ever had post-operative episodic memory (Corkin, 2002). It 

is possible that the memories he had from his childhood were in fact based on personal 

experiences that were repeated to him by family and friends and could therefore 

considered to be semantic memories of a personal event. Memories that have been 

relayed back by ‘story-telling’ are likely to be retrieved semantically so even the most 

convincing episodic memories of H.M. are not likely to require the hippocampus for 

processing. This suggests that although H.M. is unable to demonstrate episodic 

memory, his semantic memory for facts and events prior to his operation is intact. 
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Results from patients like H.M. who show retrograde amnesia following damage to the 

hippocampal complex provide support for the idea of memory consolidation, which 

proposes that what has been encoded is not instantly made permanent. This led to the 

multiple trace theory of memory (Nadel and Moscovitch, 1997) which suggests that 

certain types of memory, in this case episodic memory, are stored in the cortex but the 

hippocampus and related structures are required for the encoding and recovery of the 

memory. It was proposed that information is encoded in a distributed group of 

hippocampal neurons which then act as an index in order to direct retrieval to the 

correct memory traces in the cortex. In the case of H.M. where some of his ‘episodic’ 

memories are in fact semantic memories due to repeated exposure to the same event, re-

activation of these memory traces would have resulted in the generation of newly 

encoded hippocampal memory traces, which are again sparsely distributed throughout 

the hippocampus. After the hippocampal damage that followed H.M.’s medial temporal 

lobe resection there is therefore more chance of any remaining hippocampal tissue to 

contain the index for that specific memory (Moscovitch et al., 2005). This is in contrast 

to an early theory of the ‘standard’ model of memory consolidation (Marr, 1971) which 

states that information is registered in the neocortex and is bound into a memory trace 

in the hippocampus and related structures in the medial temporal lobes and 

diencephalon (Squire and Morgan, 1991; Squire, 1992). At first the hippocampus and 

related structures are required for the storage and recovery of memories but their 

contribution diminishes as time passes, until the neocortex alone is capable of 

sustaining the permanent memory trace and mediating its retrieval. 

 

A further study by Vargha-Khadem et al. (1997) provided evidence for the role of the 

hippocampus in episodic but not semantic learning. The view of declarative memory as 
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a single unitary process suggests that any damage to the hippocampus would result in 

impairments in both semantic and episodic memory. However the study of patients who 

had sustained hippocampal damage early in life, before the knowledge base that 

characterises semantic memory had been established, demonstrated that this was not the 

case (Vargha-Khadem et al., 1997). All 3 patients involved in the study had normal 

intelligence and although they were able to demonstrate intact semantic memory as 

indicated by their ability to attain good general knowledge, all 3 patients were unable to 

retain information about events of their daily lives (i.e. impaired episodic memory). 

Deficits in spatial learning meant that they were unable to find their way around well 

experienced surroundings. Although ‘well-experienced’ surroundings imply the 

involvement of semantic memory, it is possible that the processing of spatial memory 

always requires the hippocampus, regardless of whether semantic or episodic memory is 

involved. One of the possible explanations of the apparent sparing of semantic memory 

but the absence of episodic memory in anterograde amnesia is that the basic memory 

functions of the underlying perirhinal and entorhinal cortices may be sufficient enough 

to process semantic information but the processing of context-rich episodic memories 

requires additional processing provided by the hippocampal circuit (Vargha-Khadem et 

al., 1997). 

 

3.2: Studies of memory dysfunction in animals 

Studies in amnesic patients led to animal models of memory dysfunction. In an attempt 

to replicate the lesions in H.M.’s operation (Scoville and Milner, 1957), Mishkin (1978) 

performed a complete medial temporal lobe lesion in monkeys. These monkeys were 

subsequently tested using the hippocampus-dependent delayed non-match to sample 

(DNMTS) task. In this task the monkey is presented with a sample stimulus. After a 
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short delay, 2 test stimuli are presented, one of which is identical to that seen previously 

whereas the other is novel and the monkey is rewarded if it is able to correctly identify 

the novel object. Results showed that monkeys with combined lesions of the 

hippocampus and amygdala are significantly impaired in their ability to identify the 

novel object in this task when compared to control animals (Mishkin, 1978). In 

agreement with a lack of memory impairments in a patient with bilateral lesions of the 

amygdala in the study of Scoville and Milner (1957), monkeys with lesions of amygdala 

were unimpaired in the DNMTS task (Mishkin, 1978). In addition, although no such 

equivalent information existed in amnesic patients, monkeys with hippocampal lesions 

were also unimpaired in the DNMTS task (Mishkin, 1978). With the knowledge of 

episodic memory that is available today, the lack of impairment following hippocampal 

lesions could indicate that the DNMTS task is not an accurate model of episodic 

memory but as there was no available data at the time to contradict the findings of 

Mishkin (1978) it was concluded that damage to both the amygdaloid and hippocampal 

systems was necessary to produce memory deficits and, in the case of the memory 

impairments of H.M, both systems were connected (Mishkin, 1978). 

 

However, later studies indicated that the technique used to produce the lesions in the 

original study by Mishkin (1978) had not only ablated the amygdaloid and hippocampal 

systems, but also the majority of the rhinal cortices too (Murray and Mishkin, 1986). 

Subsequently experiments were performed in which only the rhinal cortices were 

removed. Results indicated that it was in fact the perirhinal cortex that was critical for 

the successful completion of the DNMTS task. If lesions were restricted to the 

hippocampus and did not extend to the rhinal cortices, both monkeys (Meunier et al., 
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1993) and rats (Otto and Eichenbaum, 1992) were capable of identifying the novel 

object, emphasising the role of the perirhinal cortex in the DNMTS task. 

 

During the subsequent years, research focussed on the development of tests that would 

more accurately model episodic memory. Gaffan (1991) believed that the organisation 

of spatial stimuli was a critical determinant of human episodic memory. In humans, 

individual episodic memories can be discriminated between by reconstructing the scene 

in which that specific memory had occurred i.e. if an individual has lost their car keys 

they would picture the scene where they had last had the keys in order to locate them. 

As a result Gaffan’s scene memory followed the DNMTS task as the next model of 

episodic memory (Gaffan, 1994). In this study monkeys were presented with complex 

visual scenes after which they received lesions of the fornix. Results indicated that, after 

surgery, the monkeys were unable to recognise the visual scenes they had experienced 

before their fornix lesion. In addition, the fornix-lesioned monkeys were impaired in 

their ability to learn new scenes after surgery when compared to control animals. 

Further studies in more controlled conditions suggested that it was in fact the 

associations of objects and their positions in their environment that was sensitive to 

lesions of the fornix (Gaffan and Harrison, 1989). This deficit is also present in rats 

with lesions of the hippocampus and will be discussed in more detail later (Ennaceur et 

al., 1997; Mumby et al., 2002; see section 3.4.3). 

 

3.3: Do animals have episodic memory? 

It has long been a question whether non-human species have the ability to demonstrate 

episodic memory. Everyone remembers where they were when the Twin Towers came 

down; your semantic memory would tell you that it happened on September 11
th

 2001 
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in New York City, whereas your episodic memory would bring back memories of 

coming out of your English class to find all the teachers crowded round the television in 

the Geography department to watch the news unfold. However it has long been debated 

as to whether or not animals possess the same kind of ability to mentally travel back and 

forward in time that humans take for granted. Developmental psychologists have argued 

that young infants do not have a conscious sense of self until the age of 4 and it has 

been suggested that although these children, like animals, are able to learn the sequence 

of ordered events, they are “unable to represent events as happening in unique temporal 

locations in their past” (McCormack & Hoerl, 1999). Mackintosh (1983) suggested that, 

although it was little understood, animals had the ability to “represent different 

attributes of their environments, to respond in terms of spatial, and even of abstract 

relationships between events, to store and rehearse information for later use.” The 

guarded nature of this sentiment was echoed by Tulving (1983) who suggested that 

episodic memory was a uniquely human attribute and could not be possessed by 

animals. Although Tulving’s view point was more tentative in 1983, by 1998 he stated 

that “episodic memory is not for the birds but for man” (Tulving & Markowitsch, 

1998). They argue that animals are able to learn about the relationships between stimuli 

and events from specific episodes without having to encode temporal information that 

enables animals to locate these episodes in the past. Macphail (1982, 1998) held a rather 

sceptical view of the similarities between the memory processes of man and animals 

and presented arguments for doubting that animals possessed a sense of consciousness 

that allows them to mentally time travel, known as autonoetic consciousness. However 

as the world is full of unexpected dangers, e.g. predators, it could be considered 

beneficial for an animal to evolve in such a way that it develops a mechanism to enable 

the understanding of the world and its behaviours. Although this behaviour could be 
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considered to be implicit, it would be beneficial for the animal to encode, store and 

recollect information explicitly, i.e. the ability to identify a selection pressure and to 

react accordingly. He also argued that animals lack the knowledge of an overt language 

and due to the lack of agreed non-linguistic behavioural markers of conscious 

experience it makes it difficult to demonstrate episodic memory in animals. However 

one could argue that partaking and the subsequent recollection of an experience should 

be independent of the communication of the event to others, so knowledge of language 

should not be necessary for the possession of episodic memory. 

 

Tulving’s (1972) original definition stated that episodic memory ‘receives and stores 

information about temporally dated episodes or events, and temporal-spatial relations 

among these events’. Therefore episodic memory combines information about the 

‘what’ and ‘where’ of events as well as adding another dimension of ‘when’ the event 

occurred (temporally dated experiences). In episodic memory it is not only important 

that one is able to indicate a knowledge of the ‘what’, ‘where’ and ‘when’ but one must 

also be able to make a connection between the three features. This is particularly 

important as multiple events can occur in the same location but one must be able to 

separate each event according to ‘what’ happened and ‘when’. 

 

A landmark paper (Clayton & Dickinson, 1998) showed that scrub jays were in fact 

able to display the ‘what’, ‘where’ and ‘when’ of memory in an overt behavioural 

phenotype, in a phenomenon known as ‘episodic-like’ memory. Scatter hoarding birds 

scatter seeds across a large territory and rely on their memory to retrieve their hoards. 

Clayton and Dickinson’s study utilised the food caching ability of scrub jays, which are 
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able to remember their cache sites and do not return to sites from which the food has 

already been retrieved. 

 

In order to test whether the scrub jays had episodic-like memory the ‘degrade’ group 

were given perishable food (mealworms) and non-perishable food (peanuts) to cache in 

plastic, sand-filled ice-cube trays that served as individual caching sites.  The scrub jays 

were given one type of food (e.g. mealworms), and another food (e.g. peanuts) 120 

hours later to cache, followed by hoard retrieval 4 hours later. The birds showed a 

preference to cache, recover and eat perishable food while it was still fresh, and 

preferred mealworms to peanuts. If a long time had passed since their caching (124 

hours) the scrub jays soon learned to ignore the mealworms and instead retrieve the 

non-perishable peanuts. If the food was presented in a different order, the scrub jays 

learned that the mealworms would still be fresh and therefore would search 

preferentially in the mealworm locations and ignore the peanut cache sites (Clayton & 

Dickinson, 1998).  

 

Although the scrub jays in the ‘degrade’ group were able to recognise the trays in which 

they had cached the mealworms and peanuts earlier, it is possible that they had solved 

the task based on familiarity and had not necessarily remembered the ‘where’, ‘what’ 

and ‘when’ required for episodic-like memory. Therefore the performance of the 

‘degrade’ group was compared to a control ‘replenish’ group which had never 

experienced degradation of their preferred choice of mealworms. As predicted, the 

scrub jays searched preferentially for the mealworms, regardless of when they had been 

cached, demonstrating that the scrub jays in the original ‘degrade’ group were not just 

searching the most familiar site. This series of experiments showed that the birds were 
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able to successfully remember the ‘what’, ‘where’ and ‘when’ of their food caching, 

thereby fulfilling Tulving’s criteria for episodic-like memory. 

 

Bird et al. (2003) attempted to recreate Clayton and Dickinson’s scrub jay experiment 

in the common laboratory rat (Norway rat, Rattus norvegicus) in which rats were 

allowed to hide food items on an 8-arm radial maze (Olton and Samuelson, 1976). It 

had been shown previously that rats will carry items of food from the radial arms to 

produce a hoard at the centre of the maze (Whishaw And Tomie, 1989). The study by 

Bird et al. (2002) hypothesised that if rats could be persuaded to do the opposite and 

carry food from the centre of the radial maze to different arms then their memory for 

these storage locations could be assessed. Rats were placed within the centre of the 

radial maze and quickly learned to carry 4 pieces of food (cheese or pretzels) down the 

radial arms of the maze. Furthermore, rats also learned to retrieve the food items and, 

after a 1 min – 24 hour delay, showed a preference for returning accurately to arms in 

which they had stored food compared to arms where they had not. Like the scrub jays in 

Clayton and Dickinson’s study (1998) rats showed a food preference and searched 

selectively for cheese over pretzels, searching preferentially in the arms where they had 

previously stored cheese. In order to assess the ‘when’ component of episodic memory, 

Bird et al. (2003) attempted to teach the rats that cheese would be degraded after an 

hour, but edible 25 hours later. However unlike the scrub jays (Clayton and Dickinson, 

1998), the rats failed to show any evidence for memory for ‘when’ they had hidden 

different types of food, as demonstrated by their inability to switch preference to 

pretzels during trials where the cheese had degraded. However the validity of this test 

can be questioned as a rat with intrinsic knowledge of degradation would know that it is 

nonsensical for food that is degraded after 1 hour to be edible after 25 hours. In the 
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study by Clayton and Dickinson (1998), the scrub jays were divided into ‘degrade’ and 

‘replenish’ groups in which the latter group had never experienced degradation. It 

would perhaps have been more beneficial if Bird et al. (2003) had replicated this study 

more closely to more accurately measure the ability of the rats to display episodic-like 

memory. 

 

3.4: Using the intrinsic novelty seeking behaviour of rodents 

to investigate memory  

As mentioned above, Bird et al. (2003) were unable to demonstrate episodic-like 

memory in rats using a paradigm based in Clayton and Dickinson’s scrub jay study 

(1998). However, the spontaneous novelty exploration paradigm has been successfully 

used to examine recognition memory in rats, and has been extended in order to assess 

episodic memory. These tests will be described in more detail in the following section. 

 

3.4.1: Standard novel object recognition task 

Ennaceur and Delacour published a landmark paper in 1988 describing a behavioural 

paradigm used to assess a rat’s differential exploration of familiar and novel objects. 

Rats have an innate capacity to show preferential exploration of novel objects when 

compared to familiar objects, and this preference can be used as an index of memory. 

The standard novel object recognition task consisted of an exposure (sample) phase, a 

retention interval (between 1 minute – 24 hours), followed by a test phase (Figure 

3.1A). During the sample phase, 2 identical objects (A1 and A2) were placed in the back 

corners of the arena. The rat was placed within the arena and exploration at each of the 

objects was assessed for 3 minutes after which the rat was returned to a separate holding 
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box. After a retention interval, the rat was returned to the testing box which contained 

an object that was identical to that seen previously (A3) and a new object that the rat had 

not encountered before (B1). The rat was considered to have ‘remembered’ the 

previously encountered objects if more time was spent exploring the novel object. As 

this test relies on the spontaneous exploration of novelty it does not require multiple 

training trials and therefore has no ‘reference memory’ component such as learning 

which alternatives belong to a rewarded set and those that are always unrewarded. In 

addition it is not based on positive or negative reinforcers such as food or electric foot 

shocks that could otherwise make the interpretation of the results difficult and 

misleading, as it is possible that reinforcers could modify the natural behaviour of the 

animal. Due to these reasons, this standard novel object recognition task designed by 

Ennaceur and Delacour (1988) has become a favoured method for assessing memory in 

rodents and has provided a useful basis for the testing of more complex forms of 

memory. 

 

Research over the years has been to establish the differential roles of the hippocampus 

and the surrounding cortical regions in memory. The hippocampus, known to have a 

critical role in learning and memory, communicates with other brain regions via the 

fornix and via parahippocampal regions e.g. the perirhinal and postrhinal cortices. 

Various studies have assessed the effects of lesions in the perirhinal/ postrhinal cortices 

(Ennaceur et al., 1996; Bussey et al., 2000; Figure 3.1A), fornix (Ennaceur et al., 1996; 

Figure 3.1A) or hippocampus (Mumby et al., 2000 - Figure 3.1B; Langston and Wood, 

2010 - Figure 3.1A) on performance in the spontaneous novel object recognition task 

(Ennaceur and Delacour, 1988). Results showed that although intact and fornix/ 

hippocampus lesion rats were able to correctly identify the novel object in this task 
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(Ennaceur et al., 1996; Bussey et al., 2000; Mumby et al., 2002, Langston and Wood, 

2010), animals with perirhinal/ postrhinal cortex lesions (Ennaceur et al., 1996; Bussey 

et al., 2000) were impaired relative to control. Taken together, the findings of these 

studies have indicated a role of the perirhinal cortex, but not the hippocampus/ fornix in 

the standard novel object recognition task (Ennaceur et al., 1996; Bussey et al., 2000; 

Mumby et al., 2002, Langston and Wood, 2010). As the hippocampus and fornix are 

components of a single functional circuit, it is often assumed that damage at any point 

in the circuit should have similar effects on memory. Although some signals leave the 

hippocampus via the fornix, in rats and monkeys the hippocampal formation also sends 

major projections to the entorhinal cortex (Zola-Morgan et al., 1989). In addition, the 

entorhinal cortex enables the exchange of information between the hippocampus and the 

neocortex. Thus, it is important to remember that damage to the fornix does not 

necessarily impair information processing in the same way as direct damage to the 

hippocampus (Zola-Morgan et al., 1989). 

 

The lack of impairment in animals with hippocampal/ fornix lesions in the standard 

novel object recognition task (Ennaceur et al., 1996; Bussey et al., 2000; Mumby et al., 

2002; Langston and Wood, 2010) indicates that, under many conditions, the 

hippocampus is not required for novel object recognition. However, it must be 

emphasised that it has been found that, at long delays, novel object recognition can be 

dependent on the hippocampus. Several studies have assessed the memory of rats with 

lesions of the hippocampus or fornix at 5 different delay intervals, ranging from 10 

seconds to 24 hours (Clark et al., 2000; Broadbent et al., 2004; Ainge et al., 2006). It 

was found that all the operated rats performed similarly to control rats at the shorter 

retention times (10 seconds and 1 minute), but were impaired with respect to control 
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animals across longer delays (10 minute, 1, 3 and 24 hours; Clark et al., 2000; 

Broadbent et al., 2004; Ainge et al., 2006). During the trials with the longer retention 

intervals the animals are returned to their home cages. It is possibly the case that when 

the animals are given the opportunity to sleep between trials, the hippocampus plays a 

more important role in the novel object recognition task, therefore perhaps explaining 

the differences between the short- and long-term novel object recognition tasks 

following fornix/ hippocampal lesions. A 24 hour novel object recognition task will be 

used to assess the integrity of the hippocampus in the Hdh
Q111

 mouse model of HD 

(section 6.2.3 and 6.6). 

 

3.4.2: The ‘what’, ‘where’ and ‘which’ of episodic memory 

Tulving’s original (1972) definition focused on 3 key features of episodic memory, the 

‘what’, ‘where’ and ‘when’. Clayton and Dickinson (1998) stated that the ‘when’ 

component of episodic memory is particularly important: two individual episodes could 

potentially share the same ‘what’ and ‘where’ components, they cannot share the same 

‘when’.  It has proved difficult to assess the ability of animals to keep track of time and 

limited evidence exists that animals are capable of using more than relative familiarity 

to judge how long ago an event occurred. However in response to Clayton’s argument it 

is also possible to state that since any given episode cannot possibly have happened at 

the same time as another, it is therefore not necessary to encode an exact temporal 

marker for each event. As a result Eacott and Norman (2004) suggested that the ‘when’ 

part of Tulving’s criteria may not be critical for the demonstration of episodic-like 

memory in animals. They instead developed a new triad for the criteria of episodic 

memory that consisted of ‘what’, ‘where’ and ‘which’, with the ‘which’ providing a 

novel contextual environment as a unique discriminator for events, e.g. what event 
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happened, where the event occurred, and any contextual information e.g. the weather. 

Eacott and Norman (2004) subsequently designed a task, based on Ennaceur and 

Delacour’s (1988) standard novel object recognition task to examine a rat’s ability to 

demonstrate memory for objects, their spatial position and the context in which they 

appeared, and showed that rats were in fact able to display memory for the new ‘what’, 

‘where’ and ‘which’ triad. 

  

In the study by Eacott and Norman (2004) rats were exposed to different objects 

(‘what’) in different locations (‘where’) in different testing boxes (‘which’). In this task, 

the arena for the object-place-context task could be configured to provide 2 different 

contexts (X and Y). The object-place-context task consisted of 2 sample phases (sample 

1 and sample 2) followed by a test phase (Figure 3.1I). In sample 1 the arena that was 

configured as Context X and contained 2 different objects (A1 on the right and B1 on the 

left). In sample 2 the arena was configured as Context Y and contained the objects seen 

in sample 1 but the object identity at each location was reversed (B2 on the right and A2 

on the left). After a retention interval, the rat was placed back into the arena for the test 

phase in which the arena was configured as either Context X or Y, and contained 2 

identical copies of one of the objects seen in the sample phases (A3 and A4 or B3 and 

B4). As a result one of the objects is in a novel configuration of place and context which 

has not been seen in either of the previous sample phases.  

 

In addition, if the object-place-context task (Figure 3.1I) is a measurement of episodic-

like memory then it could be predicted that performance in this task should be impaired 

by lesions within the hippocampal system. Subsequently, studies have assessed the 

effect of perirhinal/ postrhinal cortices or fornix/ hippocampal lesions on performance 
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in the object-place-context task (Eacott and Norman, 2004; Langston and Wood, 2010). 

Only rats with the fornix/ hippocampal lesions were impaired in their ability to integrate 

the ‘what’, ‘where’ and ‘which’ components required for episodic-like memory (Eacott 

and Norman, 2004; Langston and Wood, 2010). These studies therefore emphasise the 

need for the hippocampus in the integration of multiple features of an event. 

Specifically, it has been demonstrated that the encoding of object, place and context 

information is unaffected by lesions of the hippocampus, thereby inferring that it is the 

storage and retrieval of such information that is dependent on the hippocampus 

(Langston et al., 2010). 

 

Although the integration of object, place and context configuration is required to 

display episodic memory, it is also important to determine that rodents are also capable 

of demonstrating memory for the individual components of episodic memory. The next 

section will therefore discuss the tests designed to assess memory for object in place 

(recognition that an object has swapped place with another object) and memory for 

object in context (recognition that a familiar object is in a different context to where it 

was previously encountered) (Eacott and Norman, 2004; Langston and Wood, 2010). 

 

3.4.3: Extending novelty detection to look at memory for place 

and context 

As stated previously the standard novel object recognition task was extended to include 

object-place memory (Eacott and Norman, 2004; Langston and Wood, 2010; Figure 

3.1C). In the sample phase of the object-place task, 2 objects (A1 and B1) were located 

in the 2 far corners of the box. In the test phase, there were 2 copies of one of the 

objects seen in the sample phase (e.g. A2 and A3). Therefore in the test phase, one of the 
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objects was in a novel object-place configuration. Rats received lesions of the fornix/ 

hippocampus or were sham operated. In this object-place task both the sample and test 

phases occur in the same context and there is therefore no requirement to use context as 

a cue. All rats showed a preference for the novel object-place configuration indicating 

that the hippocampus is not required to process information about object-place using 

this protocol (Eacott and Norman, 2004, Langston and Wood, 2010).  

 

However, this result is in contrast to the findings of 3 additional studies which tested 

rats with hippocampus/ fornix lesions in a test of location memory (Save et al., 1992; 

Ennaceur et al., 1997; Mumby et al., 2002) (Figure 3.1E and 3.1F).  The results of these 

studies showed that intact animals showed preferential exploration at the object in the 

novel location, whereas rats that had received lesions of the hippocampus/ fornix failed 

to discriminate between the novel and familiar object (Save et al., 1992; Ennaceur et al., 

1997; Mumby et al., 2002). The requirement for the hippocampus in these studies (Save 

et al., 1992; Ennaceur et al., 1997; Mumby et al., 2002) could be due to differences in 

experimental protocol when compared to the study by Eacott and Norman (2004) and 

Langston and Wood (2010).  In the initial studies the test was an object-place task, with 

the objects appearing in the same locations in both the sample and test phases (Eacott 

and Norman, 2004; Langston and Wood, 2010). In contrast, the tests devised by Save et 

al. (1992), Ennaceur et al. (1997) and Mumby et al. (2002) were testing purely location 

memory, with the same objects being presented in different locations in the sample and 

test phases. It is perhaps the case that there is an element of spatial processing required 

to process information that an object is in a novel location, therefore recruiting the 

hippocampus. However in the case of the object-place tasks, the information that an 

object has swapped places can perhaps be supported by the surrounding cortical areas.  
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The lack of impairment following hippocampal lesions in the studies by Eacott and 

Norman’s (2004) and Langston and Wood (2010) could also be due to the fact that the 

rats were always placed in the test arena in the same position, facing the same direction, 

therefore potentially allowing them to recognise each object-place configuration relative 

to their own starting position (Figure 3.1C). The previous studies (Ennaceur et al., 

1997; Save et al., 1992; Mumby et al., 2002) that have reported hippocampal deficits in 

location memory used multiple entry points, thereby promoting the use of an allocentric 

spatial framework to render the task hippocampal-dependent. In the study by Save et al. 

(1992), the entry points were randomised and differed for each trial, making it 

impossible to identify the novel location using an ‘egocentric’ approach (Figure 3.1F). 

Furthermore, in the tasks by Ennaceur et al. (1997) and Mumby et al. (2002), the rats 

were always placed in a position that was equidistant from both objects. However, in a 

task where one of the objects was placed in a novel location in the test phase, it follows 

that the point of entry was not consistent between each trial (Figure 3.1E). A further 

study (Langston and Wood, 2010) directly tested whether the object-place task could be 

forced to become hippocampal-dependent by introducing multiple entry points (Figure 

3.1D). This study consisted of testing the animals in an ‘allocentric’ and ‘egocentric’ 

version of the object-place task. The procedure for the egocentric object-place task was 

the same as stated previously (Eacott and Norman, 2004; Langston and Wood, 2010) 

but for 2 of the test phases the rats entered the box from the east and were placed facing 

the east wall, and on the other 2 trials the rat entered the box from the west and were 

placed facing the west wall (Figure 3.1D). The entry point for the sample and test 

phases was therefore different for each trial, forcing the animals to produce an 

allocentric framework to solve the object-place task. Results showed that rats with 
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hippocampal lesions performed at chance levels on the allocentric object-place task in 

which different start points were used during the sample and test phases. When the 

same entry point for the sample and test phases was used (egocentric object-place task), 

both the control and hippocampal lesion group were able to correctly identify the novel 

object-place configuration relative to the sample phase. These data suggests that the 

object-place task is hippocampus dependent when an allocentric representation of 

spatial locations is required (i.e. the location task NOT the object place task) (Mumby et 

al., 2002., Ennaceur et al., 1997) but not when an egocentric strategy can be employed 

(Eacott and Norman, 2004; Langston and Wood, 2010). 

 

Finally, the object-context task was designed in order to show that rodents were capable 

of demonstrating memory for context alone (Eacott and Norman, 2004; Langston and 

Wood, 2010). For this task each session was divided into 2 sample phases and a test 

phase (Figure 3.1G). Similar to the object-place-context task (section 3.4.2) the arena 

could be configured to provide 2 different contexts (X and Y). In sample 1, 2 identical 

objects (A1 and A2) were in Context X and in sample 2, 2 identical objects (B1 and B2) 

were in Context Y.  The test phase was configured as either Context X or Y with copies 

of both the objects seen in the sample phases (A3 and B3). Therefore in the test phase 

one object was in a novel object-context configuration. 

 

The effect of fornix/ hippocampal lesions on the object-context task was assessed in 

order to demonstrate that the impairment in the object-place-context task following 

hippocampal lesions was not secondary to an impairment in the memory for object and 

context (Norman and Eacott, 2005; Langston and Wood, 2010) (Figure 3.1G). Rats 

were given lesions of the fornix (Norman and Eacott, 2005), hippocampus (Langston 
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and Wood, 2010) or were sham-operated and were subsequently tested in the object-

context task as described previously (Figure 3.1G). Both studies show that control 

animals were able to identify the novel object-context configuration in this task. Rats 

with fornix lesions were slightly impaired in their ability to identify the novel object-

context configuration relative to sham operated controls but performed significantly 

above chance levels (Norman and Eacott, 2005) whereas animals with hippocampal 

lesions were unimpaired when compared to control animals (Langston and Wood, 

2010). These data suggests that the fornix/ hippocampus are not necessary to process 

information about the context in which an object is encountered (Norman and Eacott, 

2005; Langston and Wood, 2010). 

 

The findings of these studies are contradicted in a study by Mumby et al. (2002). 

However, the contrasting results could perhaps be explained by the differential 

protocols used in each study. As the context of the arena could be changed by inserting 

new floors and walls (Norman and Eacott, 2005; Langston and Wood, 2010), the arena 

in these studies occupied the same physical location in space and therefore had the same 

environmental cues (Figure 3.1G). In contrast, the object-context task performed by 

Mumby et al. (2002) involved 2 different contexts that were located in 2 different 

rooms (Figure 3.1H). The rooms differed in several ways, including the appearance of 

the ceiling and walls. Further cues were provided by strips of coloured cardboard which 

lined the top of the walls in one of the arena. The arenas were identical in every other 

way. Mumby et al. (2002) reported impairments in the object-context task following 

lesions of the hippocampus. The protocol differences in the current study when 

compared to previous studies (Norman and Eacott, 2005; Langston and Wood, 2010) in 

the context modification could therefore influence whether or not the object-context 
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task is hippocampus-dependent. The rats in the study by Mumby et al. (2002) did not 

have any cues within the test box and were instead required to use allocentric room 

cues. As stated previously, the study by Langston and Wood (2010) suggests that a task 

is rendered hippocampus dependent when an allocentric representation of spatial cues is 

required, perhaps providing an explanation for the deficit in object-context recognition 

in the study by Mumby et al. (2002). 

 

Impairments in short-/ long-term recognition and episodic memory have been 

demonstrated in human patients (see section 6.1.1) and mouse models of HD (see 

section 6.1.2). In order to assess episodic memory in the Hdh
Q111 

mouse model of HD it 

is also necessary to assess the individual components of memory in order to 

demonstrate that any deficits in episodic memory are not secondary to impairments in 

the recognition of object-place or object-context (see section 6.2.1). As a further 

measurement of the integrity of the hippocampus in the early stages of HD, the long-

term memory of the Hdh
Q111 

mouse will be assessed in a hippocampus-dependent 24 

hour novel object recognition task (see section 6.2.3). 
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Figure 3.1: Schematic diagrams representing novel object, object place, location memory, object 

context and object-place-context tasks. The corresponding references from the text are indicated. The 

coloured circles indicate the rodent entry point for each trial.  
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4: γ-aminobutyric acid (GABA) and HD 

 

4.1: Introduction 

The cognitive deficits, in particular episodic memory, associated with human patients 

(see section 6.1.1) and mouse models of HD (see section 6.1.2) have been linked to 

abnormalities within the hippocampus (Rosas et al., 2003). The α5-GABAA receptor is 

expressed primarily in the hippocampus, indicating a role in learning and memory 

(section 4.3). The following section will therefore provide an introduction to GABA and 

the GABAA receptor. The physiological role of the individual GABAA receptor subunits 

will be discussed, focusing particularly on α5-GABAA receptors. Furthermore, HD is 

associated with the major loss of striatal GABAergic medium spiny neurons (MSNs) 

(reviewed in Vonsattel and DiFiglia, 1998) and several studies have reported altered 

GABAergic synaptic transmission in mouse models of HD (Cepeda et al., 2004; 

Fujiyama et al., 2002; Cummings et al., 2009). The final section of this chapter will 

therefore discuss the role of GABAA receptors in HD (section 4.4).   

 

4.2: GABA and the GABAA receptor 

GABA is one of the main inhibitory neurotransmitters within the mammalian CNS. The 

GABAA receptor is a member of the Cys-loop family of ligand-gated ion channels, 

which also includes the nicotinic acetylcholine (nACh), glycine and 5-

hydroxytryptamine (5HT3) receptors. Arising from a common ancestral gene, the 

individual receptor subunits show amino acid sequence homology and possess several 

conserved features. Based on close analogy with the nACh receptor, it is thought that 

receptors in this family are comprised of 5 subunits arranged around a central ion-
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conducting channel (Sieghart and Sperk, 2002; Unwin, 2005). Molecular cloning 

revealed the potential for a pronounced heterogeneity of GABAA receptors based on the 

existence of at least 19 subunit isoforms which are divided by their sequence identity 

into 3 main classes: α (1-6), β (1-3), γ (1-3) and several more specialised forms: δ, ε, π, θ, 

and ρ (1-3) (Korpi et al., 2002; Rudolph and Möhler, 2006). GABAA receptors exist as 

heteromeric, pentameric complexes with a prevalent subunit ratio of 2α: 2β: 1γ (Farrar 

et al., 1999; Baumann et al., 2001; reviewed in Sarto-Jackson and Sieghart, 2008), with 

δ, ε and θ subunits occasionally substituting for the γ subunit (Nusser et al., 1996; 

Porcello et al., 2003; Sergeeva et al., 2005; reviewed in Sieghart and Sperk, 2002). 

Given the theoretical number of subunit combinations, multiple receptor isoforms are 

possible. However GABAA receptor heterogeneity is governed by spatial and temporal 

regulation of subunit composition and by rules that limit subunit assembly. Therefore, 

while receptors consisting of α (1-3), β 2/3 and γ2 are widely distributed throughout the 

CNS, other subunits (α (4-6), δ, ε and θ) display a more limited pattern of expression 

(reviewed in Sieghart and Sperk, 2002). The α1β2γ2 combination represents the most 

abundant receptor subtype, but α2β3γ2 and α3βxγ2 are also commonly expressed 

(reviewed in Sieghart et al., 1999; Möhler et al., 2002; Sieghart & Sperk, 2002). 

 

 4.2.1: Functional domains of GABAA receptors 

GABAA receptor subunits exhibit a similar topology and consist of a long hydrophilic 

extracellular N-terminal region, 4 transmembrane helical segments (M1 – M4), a large 

intracellular loop between M3 and M4, and a short extracellular C-terminal domain 

(reviewed in Olsen and Sieghart, 2008; Figure 4.1). 

 

http://www.ncbi.nlm.nih.gov/pubmed/16376150
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The large extracellular N-terminal contains two cysteine residues that form a 

disulphide-linked loop which is common to all members of the Cys-loop superfamily. 

The extracellular segment also contains the GABA binding domain (Sigel, 2002; Kittler 

and Moss, 2003). By modelling the structure of the GABAA receptor on the basis of a 

snail acetylcholine binding protein (AChBP), the nACh receptor and information 

known on residues involved in the formation of the binding sites and subunit interfaces, 

it was determined that the subunits were arranged γ-α-β-α-β (Cromer et al., 2002; 

Trudell, 2002). The GABA binding site is located in a pocket at the interface between 

each α subunit and the adjacent β subunit (for review see Sigel and Lüscher, 2011). The 

GABAA receptor has an anion selective pore, surrounded by an α-helical ring of 5 

subunits (α, β, γ or ε, δ). There are 4 predicted membrane-spanning regions within each 

subunit (M1 - 4), and the M2 α-helices line the channel pore to form a conduction 

channel (Miyazawa et al., 2003). The transmembrane sections (M1 – 4) in GABAA 

receptors are connected by intracellular loops. The large intracellular loop connecting 

M3 – M4 contains sites for protein-protein interactions, phosphorylation and 

intracellular scaffolding proteins interaction sites (Kittler and Moss, 2003).  
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Figure 4.1: Structure and heterogeneity of GABAA receptors. A) Schematic 

representation of the predicted quaternary structure of GABAA receptors. B) 

Topological organisation of an individual subunit, illustrating the extracellular N-

terminal domain, 4 transmembrane segments and the large intracellular loop between 

M3 – M4. C) Subunit repertoire of GABAA receptors. 
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4.2.2: Physiological role of GABAA receptors 

The subunit composition of GABAA receptors influence their physiological properties, 

their expression profile (which neurons are they expressed in and where: 

synaptic/extrasynaptic, presynaptic) and their pharmacological properties e.g. their 

interaction with benzodiazepines (Rudolph et al., 1999; Low et al., 2000; McKernan et 

al., 2000; Crestani et al., 2002; Yee et al., 2005). While the majority of GABAA 

receptors (those containing α1-, α2-, α3-, or α5-subunits in combination with a γ-subunit) 

are benzodiazepine sensitive, there exists a minority of GABAA receptors (α4- or α6-

subunit containing) which are insensitive to benzodiazepine due to the presence of an 

arginine cf. a histidine residue (found for α1, α2, α3 and α5 subunits) at a key extracellular 

location of the subunit (Derry et al., 2004) This finding has been exploited to create 

“knock in” mice, engineered to be benzodiazepine insensitive (see below; Rudolph et 

al., 1999; Low et al., 2000; Crestani et al., 2002). Benzodiazepines act as allosteric 

modulators of GABAA receptors, enhancing the action of GABA by increasing the 

frequency of GABAA receptor channel openings (MacDonald and Olsen, 1994). 

Allosteric modulators such as benzodiazepines display a broad range of behavioural 

actions including: anxiolytic, sedation, perturbations of memory/cognition, analgesia, 

muscle relaxant and anticonvulsant properties (Savić et al., 2010). GABAA receptor 

knock-in mice have provided an important insight into the distinct physiological/ 

pharmacological roles contributed by individual GABAA receptor subtypes (reviewed 

by Möhler, 2006). This strategy was developed by generating 4 lines of point-mutated 

mice in which receptors containing the α1, α2, α3 or α5 subunits were rendered 

diazepam-insensitive by the introduction of a histidine to arginine point mutation in the 

drug-binding domain, while the physiological function of the receptor remained 

unaffected. Various benzodiazepine-induced behavioural responses from the wild type 
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and knock-in mice were then compared to clarify the in vivo relevance of the GABAA 

receptor subtypes. Consequently it has been established that the sedative component of 

diazepam is mediated through neuronal circuits that contain the α1-GABAA receptor 

(Rudolph et al., 1999; McKernan et al., 2000), whereas the anxiolytic activity is 

mediated through α2-GABAA receptors (Low et al., 2000; Crestani et al., 2002). The 

extent to which α3-containing receptors contribute to the anxiolytic effect of diazepam 

has yet to be established. Although the anxiolytic activity of diazepam was 

undiminished in mice that lacked the α3-GABAA receptor (Yee et al., 2005), an inverse 

agonist at the α3-GABAA receptor was anxiolytic at high receptor occupancy (Dias et 

al., 2005).  

 

4.3: α5- containing GABAA receptors influence cognition 

GABAA receptors that contain the α5-subunit have a relatively restricted distribution 

throughout the brain and are expressed primarily in the hippocampus, indicating a role 

in learning and memory. Although α5-GABAA receptors account for less than 5% of the 

total GABAA receptor population in the brain, in the hippocampus they represent 20% 

of all GABAA receptors further indicating a role for the α5-subtype in learning and 

memory processes (Sieghart, 1995). 

 

A study by Collinson et al. (2002) demonstrated the role of the α5 subunit in learning 

and memory. Gene “knock-outs” or deletions of particular receptor subunits throughout 

the brain have proved useful in determining the roles of specific subunits, although 

compensatory mechanisms may complicate the interpretation of experiments utilising 

such mice. Homozygous mice were generated in which the α5 gene was deleted and 

such mice were subsequently tested for hippocampal function using tests of spatial 



65 

 

 

 

 

memory. In addition the performance of the mice in non-hippocampal-dependent 

learning tasks and anxiety tasks was also assessed. The mice were tested in the 

hippocampus-dependent ‘matching-to-place’ version of the MWM task. The results 

obtained showed a significant difference in the performance of the α5-knockout mice 

when compared to wild type, with the α5-knockout mice finding the platform 

significantly faster than the wild type mice (Collinson et al., 2002). Differences in 

anxiety levels could potentially have a confounding effect on learning and memory in 

animals. In order to exclude this possibility the anxiety of the mice was tested on the 

elevated platform. The results showed that the α5-knockout mice did not appear to 

display any differences in background anxiety levels when compared to wild type, with 

both genotypes spending comparable times in the open and closed arms of the elevated 

platform (Collinson et al., 2002). The results of this study therefore suggest that 

removal of α5-GABAA receptor expression results in disinhibition of the hippocampus, 

therefore promoting excitation and subsequently enhancing cognition. 

 

In addition to the behavioural tests, in vitro brain slices were prepared from wild type 

and α5-knockout mice and the electrophysiological phenotype of the mice was assessed. 

To determine if the α5-knockout mice had alterations in synaptic function within the 

hippocampus, PPF and paired pulse depression (PPD) in the CA1 and DG was assessed. 

LTP was also examined in wild type and α5-knockout mice. Following paired-pulse 

stimuli, α5-knockout mice showed an increased facilitation of the fEPSP amplitude in 

the CA1 region of the hippocampus when compared to wild type mice. In contrast PPD 

in the DG remained unaffected, reflecting the reduced expression of α5-containing 

receptors in the DG when compared to the CA1 region of the hippocampus. In contrast 

to the enhancement of PPF in α5-knockout mice, there was no significant enhancement 
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of LTP following the application of a theta burst induction protocol. Whole-cell 

voltage-clamp recordings were also obtained from the CA1 neurons in the presence of 

glutamate and GABAB receptor blockers and the kinetics of the isolated inhibitory 

postsynaptic currents (IPSCs) were subsequently assessed. Although the deletion of the 

α5-subunit had no effect on the frequency, rise time and decay time kinetics, the peak 

amplitudes of the IPSCs were significantly smaller in the α5-knockout mice, consistent 

with the loss of this receptor subtype in the hippocampus. The results of this study by 

Collinson et al. (2002) further emphasised the role of the α5-GABAA receptor in 

learning and memory as performance in the hippocampal dependent MWM task was 

significantly improved in the α5-knockout mice, whereas the anxiety levels of the mouse 

remained unchanged. Studies suggested that alterations in the synaptic transmission 

could underlie the enhanced performance of the α5-knockout mice in the spatial memory 

task as IPSCs recorded from the α5-knockout mice exhibited reduced IPSC peak 

amplitude when compared to wild type. Previous studies have associated enhancements 

of learning and memory with increases in LTP (Tsien et al., 1996; Tang et al., 1999; see 

section 2.3). However, in the study by Collinson et al. (2002), LTP remained unaltered 

in the α5-knockout mice. In this case, the enhancement of the PPF alone could perhaps 

be sufficient to promote hippocampal memory, or other forms of synaptic plasticity 

could also be contributing to the enhanced cognition of the α5-knockout mice.  

 

The role of the α5-subunit in memory was further demonstrated in a study by Crestani et 

al. (2002) where a point mutation (H105R) was introduced into the mouse α5-subunit 

gene. This knock-in mutation should have been silent, but immunohistochemical studies 

unexpectedly showed that the point mutation was associated with a specific reduction of 

hippocampal α5-GABAA receptors, whereas the pattern of distribution remained 
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unaffected (Crestani et al., 2002; Prut et al., 2010). The mice were subsequently tested 

on various behavioural tests to investigate the sedative, anticonvulsant and anxiolytic 

properties of diazepam (Crestani et al., 2002). The locomotor activity of the mice was 

tested in automated circular arenas subsequent to oral administration of diazepam. For 

anxiety, the effect of diazepam on the light-dark choice paradigm and the elevated plus 

maze was assessed. Fear conditioning was assessed by foot-shock studies. The 

investigation revealed that the behavioural responses to diazepam of both the wild type 

and α5 (H105R) point mutation mice were similar for the motor activity and locomotor 

activity tests. Furthermore, the anxiolytic action of diazepam remained unaltered in the 

α5 (H105R) point mutation mice as demonstrated by similar performances of both the 

wild type and knock-in mice in the elevated plus maze and in the light-dark choice test 

(Crestani et al., 2002).  

 

The hippocampus plays an important role in specific types of associative learning and 

memory. Trace conditioning is a hippocampal dependent task in which the conditional 

stimulus and the unconditional stimulus are separated by a certain time interval 

(Crestani et al., 2002). However, when the 2 stimuli terminate together or overlap, i.e. 

in delay conditioning or contextual fear conditioning, the hippocampus is not required 

(Crestani et al., 2002). When first exposed to the tone and shock in the first learning 

session, both wild type and α5 (H105R) mice displayed similar levels of freezing in 

response to the shock. However, when exposed to the tone 48 hours later the α5 

(H105R) mice showed an enhanced level of freezing when compared to the wild type 

mice, indicating that the α5-GABAA receptors are involved in associative memory 

(Crestani et al., 2002). 
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A further study by Prut et al. (2010) aimed to quantify the reduction of α5-GABAA 

receptor expression in the α5 (H105R) mice. In wild type brain slices, staining for α5-

GABAA receptors showed moderate – strong staining along the hippocampal formation 

and parahippocampal sections. However, in the α5 (H105R) mice there was a 30% 

reduction in α5-GABAA receptor immunoreactivity in the hippocampus, although the 

layer and area-specific α5-subunit expression was retained (Prut et al., 2010). 

Interestingly, α5-GABAA receptor staining in the neocortex and basal ganglia remained 

unchanged in the α5 (H105R) mice. As stated earlier, the α5 (H105R) mice demonstrated 

enhanced performance in the hippocampus-dependent trace fear conditioning task, 

providing further evidence for the involvement of α5-GABAA receptor in learning and 

memory (Crestani et al., 2002). 

 

4.3.1: Synaptic versus extrasynaptic receptors 

Among GABAA receptors in the brain, those that contain α1-, α2- and α3-subunits are 

normally present in the synapse (Nusser et al., 1996; Nyiri et al., 2001). These synaptic 

receptors are transiently activated by GABA and modulate ‘phasic’ inhibition. 

However, immunohistochemistry and in situ hybridisation studies have shown that α5-

subunit containing receptors are primarily expressed in extrasynaptic locations on 

pyramidal neurons in the CA1 and CA3 regions of the hippocampus (Crestani et al., 

2002; Brunig et al., 2002; Fritschy et al., 1998; Houser and Esclapez, 2003). Work from 

my host laboratory demonstrated that these extrasynaptic receptors are more sensitive to 

the actions of GABA, desensitise less and when activated by GABA, mediate a 

persistent ‘tonic’ form of inhibition (Caraiscos et al., 2004). The study revealed that the 

magnitude of GABA-mediated whole-cell currents of CA1 pyramidal neurons was 

greatly reduced for α5-knockout mice c.f. wild type indicating that the tonic current is 
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mediated through α5-GABAA receptors. In addition, there were no differences in the 

mIPSCs recorded from wild type and α5-knockout neurons, indicating that α5-GABAA 

receptors are not present at the synapse (Caraiscos et al., 2004). 

 

As α5-GABAA receptors display preferential expression in the hippocampus and due to 

the association of reduced α5-GABAA expression and improved memory performance in 

behavioural studies (Collinson et al., 2002; Crestani et al., 2002), it follows that the 

tonic inhibition mediated by the α5-GABAA in the pyramidal neurons may play a key 

role in cognitive processes (Caraiscos et al., 2004). Long-term potentiation of synaptic 

efficacy following HFS of afferent pathways had long been associated with learning and 

memory (see section 2.3). However, as indicated above, LTP in CA1 neurons generated 

from α5-knockout mice does not differ from wild type neurons, although PPF was 

increased in α5-knockout slices (Collinson et al., 2002). The enhanced PPF was 

restricted to the CA1 of the hippocampus of α5-knockout mice (Collinson et al., 2002). 

PPF can be attributed to reduced inhibition by postsynaptic GABAA receptors and as 

mIPSCs are unchanged in α5-knockout mice this implies that the reduced tonic 

inhibition underlies the enhanced PPF (Caraiscos et al., 2004). Taken together, these 

results indicate that α5-GABAA receptor mediate tonic inhibitory conductance in 

hippocampal pyramidal neurons and may regulate memory (Chambers et al., 2002; 

Collinson et al., 2002; Caraiscos et al., 2004). 

 

4.4: GABAA Receptors and HD 

As stated above, HD is associated with the major loss of striatal GABAergic medium 

spiny neurons (MSNs; reviewed in Vonsattel and DiFiglia, 1998) and several studies 

have examined GABAergic transmission in mouse models of HD (Cepeda et al., 2004; 
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Fujiyama et al., 2002; Cummings et al., 2009). A study by Cepeda et al. (2004) used 

voltage-clamp recordings to examine GABAergic synaptic currents in MSNs in striatal 

slices prepared from 2 mouse models of HD. Experiments were carried out on 3 age 

groups of the R6/2 mouse; pre-symptomatic animals (3 weeks old), when overt 

symptoms begin (5 – 7 weeks old) and when full behavioural phenotype has been 

expressed (9 – 14 weeks; for more phenotypic detail of the R6/2 mouse see section 

1.2.1.1). Examination of the spontaneous GABAergic synaptic currents demonstrated 

that, by 5 – 7 weeks, R6/2 mice showed a significant increase in the mean frequency of 

spontaneous GABAergic currents when compared to wild type mice. These data 

suggests that striatal GABAergic interneurons fire more frequently in the transgenic 

mice. Following treatment with TTX, GABAergic currents were similar to control, 

suggesting that the increase in frequency of GABA synaptic activity in the R6/2 mouse 

is dependent primarily on action potential generation. Furthermore, analysis of the 

sIPSCs in the 9 – 14 week age group showed significant faster rise and decay kinetics 

suggesting changes to the postsynaptic GABAA receptors. Studies with 

immunofluorescence indicated that staining for the α1-GABAA receptor was 

significantly increased in 12 week old R6/2 mice, perhaps explaining the faster kinetics 

and decay times observed in the MSNs from R6/2 mice. These studies indicate that 

changes in GABAA receptor function may contribute to HD. Several other studies have 

also observed an up-regulation of GABAA receptor expression, specifically an increase 

in β2/3-GABAA receptor expression in the substania nigra in mouse models (Fujiyama et 

al., 2002) and an increase in α1, β2/3 and γ2-GABAA receptor expression in the globus 

pallidus of human patients with HD (Thompson-Vest et al., 2003; Allen et al., 2009). 
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The study by Cepeda et al. (2004) demonstrated that the frequency of IPSCs increased 

in striatal MSNs from R6/2 mice. As the cerebral cortex provides the main excitatory 

drive to the striatum (Markram et al., 2004), a follow up study in 2009 (Cummings et 

al., 2009) examined synaptic currents within cortical pyramidal neurons of R6/2, 

YAC128 and CAG140 mouse models in order to gain a better understanding of how 

neurons are affected in HD (for more details on mouse models see section 1.2). Using 

whole-cell voltage-clamp techniques, it was established that, in common with MSNs of 

the striatum (Cepeda et al., 2004), the frequency of spontaneous IPSCs was also 

increased in the cortical pyramidal neurons of pre-symptomatic mouse models of HD. 

This increased frequency was sensitive to treatment with TTX, suggesting a presynaptic 

action, perhaps resulting from an increased action potential discharge or an increase in 

the probability of release or number of release sites. However, as no differences in the 

paired-pulse ratio were evident, it was speculated that the firing properties of 

GABAergic interneurons are altered in mouse models of HD, subsequently increasing 

inhibition in pyramidal neurons (Cummings et al., 2009). An increase in postsynaptic 

receptors was considered unlikely as there was no change in the amplitude of mIPSCs, 

or of the GABA-evoked currents recorded from dissociated neurons derived from such 

mice. A reduction in the frequency of IPSCs, that was insensitive to TTX and therefore 

independent of action potential firing, was observed in post-symptomatic R6/2 mice. 

Although the results indicated an increased probably of release, this was confounded by 

a depletion of available GABA-containing vesicles within the synaptic terminals, 

perhaps underlying the decrease in sIPSC frequency in symptomatic models of HD 

(Cummings et al., 2009). 
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4.4.1: GABAA receptor trafficking and the regulation of synaptic 

strength 

Synaptic inhibition plays an important role in regulating neuronal excitability and 

information processing in the brain. The number of GABAA receptors present at the 

plasma membrane is a critical determinant of inhibitory synaptic strength. Alterations of 

the excitatory/ inhibitory balance may lead to changes in neuronal excitability and/or 

disrupted memory processing (Jacob et al., 2008). In addition to the regulation of 

apoptosis and transcription, huntingtin may also have a neurotoxic role in HD by 

altering the intracellular transport of proteins including the NMDA receptor (Fan and 

Raymond, 2007). GABAA receptor function may also be impaired in HD. Following 

endocytosis, the fate of GABAA receptors may be subject to regulation by an interaction 

of the receptor with huntingtin-associated protein (HAP1), a binding partner of 

Huntingtin (Duyao et al., 1993; Li et al., 1995). HAP1 inhibits the degradation and 

facilitates the recycling of GABAA receptors following endocytosis, increasing the 

number of GABAA receptors expressed at the cell surface and synaptic receptor 

number. Therefore HAP1 may play a critical role in controlling fast synaptic inhibition 

by regulating the membrane trafficking of internalised GABAA receptors, leading to 

compromised inhibition and disruption of the excitatory/ inhibitory balance (Kittler et 

al., 2004). The next section will introduce HAP1 and discuss its role in GABAA 

receptor trafficking. 

 

4.4.2: HAP1 expression and function 

HAP1 is expressed predominantly within the CNS, especially in the forebrain, cerebral 

cortex and the cerebellum (Li et al., 1995). HAP1 is a cytoplasmic protein and 

associates with microtubules and membranous organelles e.g. mitochondria, 
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endoplasmic reticulum (Martin et al., 1999). The localisation of HAP1 and Huntingtin 

is similar which suggests that they both have a role in intracellular transport (Gutekunst 

et al., 1998). 

 

HAP1 acts as a scaffold protein, enabling the packaging of various proteins for transport 

along the microtubules. HAP1 acts as one of the components of cargo-motor molecules 

and participates in intracellular trafficking (Li & Li, 2005). HAP1 may regulate the 

turnover and stabilisation of membrane receptors at the cell surface to maintain 

neuronal responses to neurotransmitters by increasing expression of membrane 

receptors by inhibiting degradation via lysosomal pathways and enhancing recycling 

pathways. In addition, HAP1 has been shown to bind the β subunits of GABAA 

receptors (Kittler et al., 2004). Under basal conditions, synaptic GABAA receptors 

undergo clatherin-dependent endocytosis, and the internalised receptor is subsequently 

recycled back to the membrane surface or targeted for lysosomal degradation. HAP1 

inhibits receptor degradation, in turn facilitating the recycling of receptors back to the 

membrane. The overexpression of HAP1 results in an increase in GABAA receptor 

surface number, thereby increasing neuronal excitability (Kittler et al., 2004). 

 

4.4.3: HAP1 mediates delivery of GABAA receptors to the plasma 

membrane 

In order to understand the role of synaptic GABAA receptors in the regulation of 

inhibitory synaptic transmission, it is important to understand the molecular machinery 

that delivers the receptors to the synapses. It was recently established (Twelvetrees et 

al., 2010) that HAP1 acts as an adapter, linking GABAA receptors to the kinesin family 

of motor protein 5 (KIF5), forming a motor complex for rapid delivery of GABAA 
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receptors to synapses. Furthermore, mutant Huntingtin disrupts the formation of this 

complex, inhibiting KIF5-dependent GABAA receptor trafficking (Gauthier et al., 2004; 

Li et al., 1995). In electrophysiological studies utilising the whole-cell voltage-clamp 

technique, cortical neurons (maintained in cell culture) were dialysed, via the patch 

pipette, with an antibody (SUK4) to block KIF5 motor protein activity. When the 

activity of the KIF5 motor protein was inhibited, the amplitude of mIPSCs decreased, 

but mIPSC kinetics were not affected, suggesting that KIF5 does not selectively 

transport GABAA receptors to the receptor with particular kinetics (Twelvetrees et al., 

2010). It was hypothesised that the effect of SUK4 on inhibitory transmission was 

mediated by blocking KIF5-dependent GABAA receptor delivery to synapses. In order 

to test this, SUK4, or a control antibody, was introduced into neurons maintained in cell 

culture and the effect on GABAA receptor clustering was determined. Neurons treated 

with SUK4 showed a decrease in the GABAA receptor cluster area in dendrites when 

compared to mock-treated neurons, suggesting that blocking KIF5 activity decreases the 

delivery of GABAA receptors to the membrane (Twelvetrees et al., 2010). 

 

The expanded glutamine repeats present during HD enhance the function and trafficking 

of the NMDA receptor and it has been proposed that this effect exacerbates 

excitotoxicity (Fan et al., 2007). In addition, increased neurotransmission and neuronal 

excitability are also proposed to contribute to the neuronal degradation caused by the 

full-length polyglutamine huntingtin protein early in pathology (Romero et al., 2008). It 

has been suggested that NMDA receptors are transported by a second kinesin motor 

protein, KIF17 (Guillaud et al., 2003). When SUK4 was dialysed into the patch-pipette, 

although the GABAA receptor-mediated responses were decreased, the NMDA 
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receptor-mediated responses remained unaffected, suggesting a specificity of KIF5 for 

selectively transporting GABAA receptors to synapses (Twelvetrees et al., 2010).  

 

Immunoprecipitation experiments were performed in rat brain lysate to show that KIF5 

could readily be immunoprecipitated with GABAA receptors, indicating that KIF5 

motor proteins are closely associated with the GABAA receptor in vivo (Twelvetrees et 

al., 2010). It had already been established that HAP1 function is disrupted by the 

mutant polyglutamine version of huntingtin that causes HD (Gauthier et al., 2004., Li et 

al., 1995) suggesting that HAP1-KIF5-dependent trafficking could therefore be a likely 

target for disruption in HD, leading to pathological alterations in inhibition. To further 

investigate this possibility, live cell-imaging experiments were used in neuronal cells 

derived from homozygous knock-in mice in which an expanded glutamine repeat (109 

CAG) had been inserted into the endogenous mouse huntingtin gene (Trettel et al., 

2000). It was therefore possible to track the movement of vesicles and to demonstrate a 

significant decrease in the velocity of GABAA receptor transport vesicles. This 

observation suggested that mutant huntingtin decreased the accumulation of GABAA 

receptors at inhibitory synapses by altering the trafficking ability of HAP1-KIF5-

dependent GABAA receptor transport vesicles for receptor delivery to inhibitory 

synapses (Twelvetrees et al., 2010). In agreement, electrophysiological studies in 

transfected cortical neurons showed that, when compared to wild-type huntingtin 

transfected cells, expression of mutant huntingtin with an expanded polyglutamine 

repeat showed a significant decrease in the mIPSC amplitude (Twelvetrees et al., 2010). 

A recent study by Yuen and colleagues (2012) was performed to determine whether 

impaired synaptic inhibition in the N171-82Q (82 CAG repeats) mouse model of HD 

results from the loss of GABAA receptor transport due to the disruption of the 
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HAP1/KIF5/GABAA receptor complex in vivo. Results showed that, although synaptic 

inhibition was normal in pre-symptomatic mice, the amplitude of miniature IPSC was 

significantly decreased in both cortical and striatal neurons from post-symptomatic 

N171-82Q mice. In addition paired pulse ratios and IPSC frequencies were unchanged, 

indicating the depression of GABAergic functions in the N171-82Q mice is due to 

altered postsynaptic GABAA receptors and not caused by changes to presynaptic GABA 

release (Yuen et al., 2012). In agreement, it was demonstrated that cell surface GABAA 

receptor expression is reduced in symptomatic mice. It is known that HAP1 interacts 

with GABAA receptors (Kittler et al., 2004) and KIF5 (Twelvetrees et al., 2010), and 

due to the fact that mutant huntingtin binds to HAP1 with a greater affinity than to wild 

type huntingtin (Li et al., 1995), Yuen and colleagues (2012) speculated that kinesin-

dependent GABAA receptor transport could be impaired in the N171-82Q mice due to 

abnormal mutant huntingtin/ HAP1 interactions. This hypothesis was confirmed when it 

was demonstrated using co-immunoprecipitation that the expanded polyglutamine 

repeats in N171-82Q mice caused the dissociation of the KIF5/GABAA receptor 

complex from the microtubules and the dissociation of GABAA receptors from KIF5, 

thus providing a possible mechanism for disrupted GABAA receptor transport in HD 

(Yuen et al., 2012). 

 

Finally, in addition to  altered GABAergic inhibition, NMDA receptor function is also 

reported to be abnormal in striatal neurons of mouse models of HD (Zeron et al., 2002; 

Fan et al., 2007) More specifically, extrasynaptic NMDA receptors have been 

implicated in HD (Okamoto et al., 2009; Milnerwood et al., 2010). Differential roles for 

NMDA receptors have been uncovered depending upon their location (Papadia and 

Hardingham, 2007). Synaptic NMDA receptors activate cellular survival pathways 

http://www.ncbi.nlm.nih.gov/pubmed/18000068
http://www.ncbi.nlm.nih.gov/pubmed/18000068
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while extrasynaptic receptors activate apoptotic pathways, and an imbalance of activity 

or number of each type of NMDA receptor would therefore influence cell survival or 

cell death. Subsequently, Milnerwood et al (2010) demonstrated that this synaptic/ 

extrasynaptic balance is disrupted, with increased extrasynaptic NMDA receptor 

activity present in MSNs in the YAC128 mouse model of HD. It was determined that 

the increased activity of the extrasynaptic NMDA receptor required capase-6 cleavage, 

a step critical for the production of toxic huntingtin fragments (Milnerwood et al., 

2010). Similarly, an additional study noted that activation of synaptic NMDA receptors 

resulted in an increased resistance to cell death due to the formation of huntingtin 

inclusions. On the other hand, activation of extrasynaptic NMDA receptors reduced the 

formation of huntingtin inclusions, thereby increasing the vulnerability of mutant 

huntingtin expressing cortical neurons (Okamoto et al., 2009).  

 

Collectively, the above data suggests that altered KIF5 motor dependent-trafficking 

may directly contribute to reduced synaptic inhibition and altered information 

processing in HD. NMDA receptor function may also be altered, perhaps contributing 

to dysfunction of the excitatory/inhibitory balance (Yuen et al., 2012). It is therefore an 

interesting possibility that mutant Huntingtin could influence GABAergic 

neurotransmission and synapse development leading to disrupted GABAA receptor 

trafficking and altered synaptic inhibition and subsequently an enhanced neuronal 

excitability, contributed also by impaired NMDA receptor function, in HD. Of 

relevance to the current study, the impact of HD on the expression of extrasynaptic α5-

GABAA receptor expression is not known. 
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5: Experiment 1: Characterisation of the motor 

phenotype of the Hdh
Q111 

mouse model of HD. 

 

5.1: Introduction 

In humans, HD is diagnosed following the appearance of an overt motor phenotype 

(Sturrock and Levitt, 2010; see section 1.1.3). In addition, motor deficits are also 

evident in several mouse models of HD (Mangiarini et al., 1996; Carter et al., 1999; 

Lüesse et al., 2001; Wheeler et al., 2000; Wheeler et al., 2002; Menalled et al., 2003; 

Hickey et al., 2005; Stack et al., 2005; Milnerwood et al., 2006; Heng et al., 2007; Gray 

et al., 2008) (see section 1.2). In order to replicate the motor deficits seen in human 

patients, the following section of this thesis will assess the motor phenotype of the 

Hdh
Q111 

mouse model of HD. Although motor deficits are not as pronounced in knock-

in models when compared to other transgenic models, careful testing using refined test 

settings can be used reveal early deficits. The slow progression of the disorder in these 

models allows the evaluation of the early changes likely to be the most important to 

target therapeutically in order to prevent further progression of the disease. Thus the 

Hdh
Q111

 knock-in mice offer an ideal model in which behavioral testing can be used to 

evaluate new therapeutic approaches designed to delay the onset of HD. 

  

In an attempt to characterise the motor phenotype of the Hdh
Q111

 mouse model of HD, 

the rotarod was used to assess motor co-ordination (2  - 12 months) while the circular 

running tracks and the activity box were used to assess locomotor activity (both tested 

at 13 months).  
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5.2: Methods 

5.2.1: Breeding and genotyping 

The phenotype of the Hdh
Q111 

mouse model of HD was assessed in this thesis. 

Homozygous Hdh
Q111

 (Hdh
Q111+/+

) mice were purchased from the Jackson Laboratory, 

maintained in the laboratory as an inbred colony and used, in combination with wild 

type (WT) C57/BL6 mice, to produce heterozygous Hdh
Q111 

(Hdh
Q111+/-

) mice. Note, in 

all the subsequent results chapters, genotypes were evaluated using the NucleoSpin 

Tissue DNA purification kit (Macherey-Nagel) for DNA isolation and the Hot star 

TaqPlus polymerase kit (Qiagen) for DNA amplification. Agarose gels were used to 

separate the proteins showing a WT Huntingtin protein band at 424 basepairs and a 

knock-in Huntingtin protein band at 694 basepairs (Figure 5.1). 

 

5.2.2: Rotarod 

The rotarod has been specifically designed for making automated measurements of 

motor co-ordination in rodents and is one of the most commonly used tests of motor 

function in mice (Dunham and Miya, 1957; Jones and Roberts, 1968) (Figure 5.2). The 

rotarod (Ugo Basile, Italy) consists of horizontal beams with dividers to separate 

multiple mice being tested concurrently. Mice were tested on the accelerating rotarod 

paradigm (2 – 12 months). The mice were tested on the first week of every month: 1 

training day to allow acclimatisation to the rotarod apparatus, followed by 3 trials on 3 

consecutive days. During the test period, each mouse was placed on the rotarod with 

increasing speed, from 6 rpm to a maximum speed of 50 rpm, for a maximum time of 

10 minutes. A trip switch was located beneath the rod and recorded the latency until the 

mouse fell from the rotating rod. 
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Figure 5.1: Representation of genotyping results. 

Agarose gels were used to separate the proteins. WT mice show 1 WT band (424 base 

pairs).  Hdh
Q111+/+

 mice display 1 knock-in band (694 base pairs). Hdh
Q111+/-

 mice show 

1 WT band and 1 knock-in band.  
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Figure 5.2: Photograph of rotarod apparatus. 

The mice were placed on the accelerating rotarod (6 rpm – 50 rpm; maximum time of 

10 minutes). A trip switch was located beneath the rod and recorded the latency until 

the mouse fell from the rotating rod. 
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5.2.3: Circular runways 

Locomotor activity was assessed in individual polypropylene circular runways 

(diameter = 245 mm, corridor width = 65 mm) (13 months) (Figure 5.3). Mice were 

tested on 4 consecutive days. The runways were transected by eight photobeams spaced 

at regular intervals and forward locomotion was defined as consecutive breaks of 

adjacent beams. Photobeam breaks were counted in 30 second time samples, at 4 

minute intervals, and data was collected by an attached PC via a Med-PC interface 

(Med Associates, WT, USA) (Dixon et al., 2010). 

 

5.2.4: Activity Box 

The locomotor activity of mice was also measured using an Activity Monitor (Benwick 

Electronics, Norfolk, UK) using infrared beams to detect movement (13 months) 

(Figure 5.4). Mice were tested on 4 consecutive days. The mice were placed in a 

Perspex chamber (32 x 20 x 19 cm) in which two sets of beams were arranged in a grid 

formation covering the length and width of the chamber. The lower beams (2 cm above 

the floor) could detect the animals’ horizontal movement and the higher beams (7 cm 

above the floor) could detect any rearing. Movement was measured by beam breaks and 

recorded as counts of activity. A mouse was considered mobile if the movement of the 

animal broke two consecutive beams but not if the same beam was broken twice. The 

animal was placed in the activity box for 10 minutes over a series of 4 days and the 

locomotor activity was logged at the end of each 10 minute session. Habituation was 

said to have occurred when the rodent became familiar to the environment, as 

demonstrated by reaching a constant but reduced level of activity between sessions. 

This will occur if the animals have memory of the previous exposures to the testing 

environment.  



83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Photograph of the circular runway apparatus. 

Each circle represents an individual polypropylene circular runway. The runways were 

transected by photobeams; forward locomotion was defined as consecutive breaks of 

adjacent beams. 
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Figure 5.4: Photograph of the activity box apparatus. 

The mice were placed in the activity box (10 minutes, 4 consecutive days). Lower beams 

detected horizontal movement and higher beams detected rearing. Movement was 

measured by beam breaks and recorded as counts of activity.  
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5.3: Results: rotarod 

In order to determine whether the presence of the mutant Huntingtin gene resulted in the 

generation of any motor deficits, WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 11) 

were tested on the accelerating rotarod apparatus (2 – 12 months). Note that 1 Hdh
Q111+-

 

mouse died before the end of the 12 months so was not included in the analysis. 

 

5.3.1: Hdh
Q111

 mice show no progressive weight loss 

Mice were weighed at the beginning of each of their monthly rotarod trials. WT mice 

displayed a gradual weight increase from 3 months (26.9 ± 0.7 g) to 12 months (33.5 ± 

0.4 g; Figure 5.5A). Hdh
Q111+/+

 mice increased in weight from 26.2 ± 0.6 g at 3 months 

to 32.7 ± 0.5 g at 12 months, Hdh
Q111+/-

 mice increased from 25.3 ± 0.4 g to a final 

weight of 32.2 ± 0.6 g at 12 months (f (2, 29) = 1.222; P > 0.05). The weights of the mice 

were compared using a repeated measures ANOVA with genotype (WT vs. Hdh
Q111+/+

 

vs. Hdh
Q111+/-

) as the between subjects factor and age (3 - 12 months) as the within 

subjects factor. Results indicated a significant effect of age (f (9, 18) = 271.474, P < 0.05), 

but no significant effect of genotype (f (2, 26) = 2.491, P > 0.05) or age vs. genotype 

interaction (f (18, 234) = 1.205, P > 0.05). These data show that the presence of the mutant 

Huntingtin gene does not result in any discrepancies in weight between the genotypes 

up to the age of a year. 

 

5.3.2 : Hdh
Q111

 mice show a mild motor phenotype on the rotarod 

Mice were tested using the accelerating rotarod paradigm. The data was initially 

analysed in the raw form (Figure 5.5B). A repeated measures ANOVA was performed 

with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as the between subjects factor and age 

(2 - 12 months) as the within subjects factor. Results indicated no significant effect of 
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genotype (f (2, 26) = 1.332, P > 0.05), a significant effect of age (f (10, 260) = 4.033, P < 

0.05) and an age vs. genotype interaction (f (20, 260) = 2.385, P < 0.05). Bonferroni 

corrected pair-wise comparisons between groups confirmed that Hdh
Q111+/+ 

mice, but 

not Hdh
Q111+/-

 mice, showed an increased latency to fall from the beam when compared 

to WT mice (WT: 138.8 ± 11.1 sec; Hdh
Q111+/+

: 274.1 ± 33.5 sec; Hdh
Q111+/-

: 239.4 ± 

33.2 sec; P < 0.05) at 2 months. At 3 months, both Hdh
Q111+/+

 (253.8 ± 41.2 sec) and 

Hdh
Q111+/-

 (235.7 ± 18.8 sec) mice showed increased latency to fall from the rod when 

compared to WT mice (148.5 ± 14.4 sec; P < 0.05). For all of the subsequent months 

there were no differences between the performances of the three genotypes (all P > 

0.05).  

 

In order to further analyse the data the raw data was normalised to show the progression 

of the individual genotypes as they aged (Figure 5.5C). A mean latency to fall was 

calculated for each genotype at 2 months and for the following months each mouse was 

then plotted as a percentage of the original value at 2 months. A repeated measures 

ANOVA showed a significant effect of genotype (f (1, 26) = 6.622, P < 0.05), no 

significant effect of age (f (10, 260) = 1.178, P < 0.05) and an age vs. genotype interaction 

(f (20, 260) = 1.763, P < 0.05). Bonferroni corrected pair-wise comparisons indicated that 

the performance of Hdh
Q111+/+ 

and Hdh
Q111+/-

 mice was consistent up to the age of 5 

months (all P > 0.05). At 6 months Hdh
Q111+/+

 (P < 0.05) but not Hdh
Q111+/-

 (P > 0.05) 

mice spent significantly less time on the rod when compared to their performance at 2 

months. Both Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice show impairments by 7 months (P < 0.05). 

Bonferroni corrected pair-wise comparisons between groups confirmed that both the 

Hdh
Q111+/+

 and Hdh
Q111+/-

 mice show motor co-ordination deficits on the rotarod at 8, 11 

and 12 months, when compared to their performance at 2 months (all P < 0.05), whereas 
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only Hdh
Q111+/+

 mice show impairments at 9 and 10 months (P < 0.05). The 

performance of WT did not change over the course of the testing period (P > 0.05). The 

performance of Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice is similar at all ages (P > 0.05). These 

data show that Hdh
Q111+/+

 mice show impaired performance in the accelerating rotarod 

task by 6 months. Hdh
Q111+/- 

mice show deficits from 7 months, although this is not 

consistent at all the time points and would therefore perhaps advantageous to test a 

larger sample of mice. Additionally, the decreased locomotion on the rotarod over time 

is somewhat complicated by the apparent enhanced performance at 2 and 3 months, 

suggesting that the motor phenotype characterisation of the Hdh
Q111 

mouse would 

perhaps benefit from additional motor testing (see section 5.6). 

  



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Hdh
Q111 

mice demonstrate a mild motor phenotype on the rotarod. A) WT 

(n = 9), Hdh
Q111+/+ 

(n = 10) and Hdh
Q111+/-

 (n = 11) mice exhibit similar gradual 

increases in weight over the course of the experiment indicating that the presence of the 

mutant Huntington protein does not produce any weight discrepancies (P > 0.05). B) 

Hdh
Q111 

mice show an increased latency to fall from the beam when compared to WT 

mice at 2 (P < 0.05) and 3 months (P < 0.05). For all of the subsequent months there 

was no difference between the performances of the three genotypes (all P > 0.05). C) 

When the data is normalised to baseline performance at 2 months, Hdh
Q111+/+ 

and 

Hdh
Q111+/-

 mice show a consistant performance up to the age of 5 months when 

compared to their performance at 2 months (all P > 0.05). Hdh
Q111+/+

 mice show an 

impaired performance by 6 months (P < 0.05), whereas Hdh
Q111+/-

 mice are impaired at 

7 months (P < 0.05) when compared to their performance at 2 months. Both Hdh
Q111+/+ 

and Hdh
Q111+/-

 mice are impaired at the rotarod task at 8, 11 and 12 months, when 

compared to their performance at 2 months, whereas only Hdh
Q111+/+ 

 mice are 

impaired at 9 and 10 months (P < 0.05). WT mice show consistant performance on the 

rotorod as they age (P > 0.05). 
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5.4: Results: Circular runway 

 

5.4.1: Hdh
Q111

 mice show no locomotor deficits at 13 months 

The locomotor activity of WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice 

was assessed in circular runways (Figure 5.6). A repeated measures ANOVA was 

performed on the total distances travelled with group (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) 

as the between subjects factor and day (1 - 4) as the within subjects factor. This showed 

no overall significant effect of genotype (f (2, 19) = 0.243, P > 0.05) but a significant 

effect of day (f (3, 57) = 2.576, P < 0.05) and a significant day vs. genotype interaction (f 

(6, 57) = 2.576, P < 0.05). Bonferroni corrected pair-wise comparisons between groups for 

each day confirmed that the locomotion of Hdh
Q111+/+

 and Hdh
Q111+/- 

mice was similar to 

WT mice on each of the 4 days (all P > 0.05). A mouse was considered to have 

habituated to the circular runways if the distance travelled by the mice reached a steady 

but reduced level of activity on each consecutive day. The distance travelled by the WT 

mice on Day 2 was significantly lower than that travelled on Day 1 (P < 0.05), but the 

distances travelled on Days 3 and 4 were not significantly different from Day 1 (all P > 

0.05). The WT mice travelled similar distances on Days 2 – 4 (P > 0.05). Hdh
Q111+/+

 

mice travelled significantly less on Day 2 when compared to Day 1 (P < 0.05) but the 

distances travelled on Days 3 and 4 were not significantly different from Day 1 (P > 

0.05). The Hdh
Q111+/+

 mice travelled similar distances on Days 2 – 4 (P > 0.05). 

Hdh
Q111+/-

 mice travelled significantly less on Days 2 - 4 (P < 0.05) when compared to 

Day 1. Similar distances were travelled on Days 2 - 4 (all P > 0.05). In summary, these 

data show that, at 13 months, Hdh
Q111

 mice show no locomotor deficits in the circular 

runways. 
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Figure 5.6: Hdh
Q111

 mice show no locomotor deficits in the circular runways at 13 

months. A repeated measures ANOVA indicated no effect of genotype (f (2, 19) = 0.243, P 

> 0.05), an effect of day ((f (3, 57) = 2.576, P < 0.05) and a day vs. genotype interaction 

(f (6, 57) = 2.576, P < 0.05). 

(A) WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) travel similar distances on 

Days 1-4. The distance travelled by all 3 genotypes differs over the 4 days (P < 0.05). 

(B & C) WT and Hdh
Q111+/+

 mice travel significantly less on Day 2 when compared to 

Day 1 (P < 0.05) but the distances travelled on Days 3 and 4 are not significantly 

different from Day 1. Similar distances are travelled on Days 2 – 4 (all P > 0.05). D) 

Hdh
Q111+/-

 mice travel significantly less on Days 2 - 4 (P < 0.05), when compared to 

Day 1. Similar distances are travelled on Days 2-4 (all P > 0.05). 
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5.5: Results: Activity box 

The activity box was also used as a measure of locomotor activity in WT (n = 9), 

Hdh
Q111+/+ 

(n = 10) and Hdh
Q111+/-

 (n = 10) mice (13 months). Measurements taken 

include the mobile counts and mobile time (measurement of how much the mouse is 

moving around), exploratory rearing (exploration), static counts (freezing behaviour), 

and active time (measurement of all activity e.g. grooming, head dipping and other 

stereotypical behaviours).  

 

5.5.1: Mobile Counts 

The total number of mobile counts at the end of the 4 days was assessed. A repeated 

measures ANOVA was performed with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as 

the between subjects factor and day (1 - 4) as the within subjects factor. Results 

demonstrated that there was no effect of genotype (f (2, 26) = 0.759, P > 0.05; Figure 

5.7A) or day vs. genotype interaction (f (6, 78) = 1.531, P > 0.05) (Figure 5.8B). There 

was an effect of day (f (3, 78) = 7.009, P < 0.05; Figure 5.7B) revealing a general decrease 

in activity over the four days of testing suggesting inter-session habituation.  
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Figure 5.7: Hdh
Q111

 mice show similar mobile counts in the activity box (13 months) 

A repeated measures ANOVA indicated no effect of genotype (f (2, 26) = 0.759, P > 0.05) 

or day vs. genotype interaction (f (6, 78) = 1.531, P > 0.05) but an effect of day (f (3, 78) = 

7.009, P < 0.05). 

A) Histograms showing mean number (± SEM) of mobile counts as measured by beam 

breaks in WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice at the end of a 4 

day period.  

B) Line graph showing the mean number (± SEM) of mobile counts as measured by 

beam breaks on Days 1 to 4 in WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice.  
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5.5.2: Exploratory Rearing 

The total number of rearing counts at the end of the 4 days was assessed. A repeated 

measures ANOVA was performed with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as 

the between subjects factor and day (1 - 4) as the within subjects factor. Results 

indicated that there was no significant effect of genotype (f (2, 26) = 1.200, P > 0.05; 

Figure 5.8A). There was an effect of day (f (3, 78) = 26.170, P < 0.05; Figure 5.8B) 

revealing a general decrease in activity over the four days of testing suggesting inter-

session habituation. There was no day vs. genotype interaction (f (6, 78) = 0.165, P > 

0.05) (Figure 5.8B). 

 

5.5.3: Static counts 

The total number of static counts at the end of the 4 days was assessed. A repeated 

measures ANOVA was performed with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as 

the between subjects factor and day (1 - 4) as the within subjects factor. Results 

indicated that there was a significant effect of genotype (f (2, 26) = 6.006, P < 0.05; 

Figure 5.9A). Bonferroni corrected pair-wise comparisons between groups confirmed 

that the Hdh
Q111+/+

 mice had significantly more static counts than WT and Hdh
Q111+/-

 

mice (both P < 0.05). WT and Hdh
Q111+/-

 mice showed similar static counts (P > 0.05). 

There was no significant effect of day (f (3, 78) = 1.574, P > 0.05) or day vs. genotype 

interaction (f (6, 78) = 1.613, P > 0.05; Figure 5.9B). 
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Figure 5.8: Hdh
Q111

 mice show similar exploratory rearing in the activity box (13 

months) 

A repeated measures ANOVA indicated no effect of genotype (f (2, 26) = 1.200, P > 0.05), 

an effect of day (f (3, 78) = 26.170, P < 0.05) and no day vs. genotype interaction (f (6, 78) 

= 0.165, P > 0.05). 

A) Histograms showing mean number (± SEM) of rearing counts as measured by beam 

breaks in WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice at the end of a 4 

day period.  

B) Line graph showing the mean number (± SEM) of rearing counts as measured by 

beam breaks on Days 1 to 4 in WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice.  
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Figure 5.9: Hdh
Q111+/+

 mice show increased freezing in the activity box (13 months) 

A repeated measures ANOVA indicated an effect of genotype (f (2, 26) = 6.006, P < 0.05), 

no effect of day (f (3, 78) = 1.574, P > 0.05) and no day vs. genotype interaction (f (6, 78) = 

1.613, P > 0.05). 

A) Histograms showing mean number (± SEM) of static counts as measured by beam 

breaks in WT (n = 9), Hdh
Q111+/-

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice at the end of a 4 

day period. Bonferroni pairwise comparisons Hdh
Q111+/+

 mice had significantly more 

static counts than WT and Hdh
Q111+/-

 mice (both P < 0.05), WT and Hdh
Q111+/-

 mice had 

similar static counts (P > 0.05). 

B) Line graph showing the mean number (± SEM) of static counts as measured by beam 

breaks on Days 1 to 4 in WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice.  
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5.5.4: Active time 

The total number of active time counts at the end of the 4 days was assessed. A repeated 

measures ANOVA was performed with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as 

the between subjects factor and day (1 - 4) as the within subjects factor. Results 

indicated that there were no effect of genotype (f (2, 26) = 0.279, P > 0.05; Figure 5.10A). 

There was an effect of day (f (3, 78) = 3.040, P < 0.05) revealing a general decrease in 

activity over the four days of testing suggesting inter-session habituation. There was no 

day vs. genotype interaction (f (6, 78) = 0.984, P > 0.05) (Figure 5. 10B). 

 

5.5.5: Mobile time 

The total number of mobile time counts at the end of the 4 days was assessed. A 

repeated measures ANOVA was performed with genotype (WT vs. Hdh
Q111+/+

 vs. 

Hdh
Q111+/-

) as the between subjects factor and day (1 - 4) as the within subjects factor. 

Results indicated that there was no effect of genotype (f (2, 26) = 0.219, P > 0.05; Figure 

5.11A). There was an effect of day (f (3, 78) = 18.466, P < 0.05) revealing a general 

decrease in activity over the four days of testing suggesting inter-session habituation. 

There was no day vs. genotype interaction (f (6, 78) = 1.037, P > 0.05) (Figure 5.11B). 
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Figure 5.10: Hdh
Q111

 mice show similar active time counts in the activity box (13 

months) 

A repeated measures ANOVA indicated no effect of genotype (f (2, 26) = 0.279, P > 0.05), 

an effect of day (f (3, 78) = 3.040, P < 0.05) and no day vs. genotype interaction (f (6, 78) = 

0.984, P > 0.05). 

A) Histograms showing mean number (± SEM) of active time counts as measured by 

beam breaks in WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice at the end 

of a 4 day period.  

B) Line graph showing the mean number (± SEM) of active time counts as measured by 

beam breaks on Days 1 to 4 in WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice.  
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Figure 5.11: Hdh
Q111

 mice show similar mobile time counts in the activity box (13 

months) 

A repeated measures ANOVA indicated no effect of genotype (f (2, 26) = 0.219, P > 0.05), 

an effect of day (f (3, 78) = 18.466, P < 0.05) and no day vs. genotype interaction (f (6, 78) 

= 1.037, P > 0.05). 

A) Histograms showing mean number (± SEM) of mobile time counts as measured by 

beam breaks in WT (n = 9), Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice at the end 

of a 4 day period.  

B) Line graph showing the mean number (± SEM) of mobile time counts as measured by 

beam breaks on Days 1 to 4 in WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice.  
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5.6: Discussion 

Although they are considered by some to be more relevant genetic models, knock-in 

mouse models have received relatively little attention in comparison to transgenic 

models of HD. This is mainly to do with the lack of an obvious motor phenotype in 

knock-in mouse models at an early age (Shelbourne et al., 1999; Wheeler et al., 2000; 

Lin et al., 2001). In an attempt to characterise the motor phenotype of the Hdh
Q111

 

mouse model of HD, the rotarod was used to assess motor co-ordination, while the 

circular running tracks and the activity box were used to assess locomotor activity. 

 

The motor co-ordination of the Hdh
Q111 

mouse was assessed using the accelerating 

rotarod paradigm. Analysis of the raw data suggested that, in agreement with Mennalled 

and colleagues (2009), Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice demonstrated an increased 

latency to fall from the rotating rod when compared to WT animals, suggesting an 

enhanced performance in the Hdh
Q111+/+ 

mice at early ages. However, analysis of the 

normalised data indicated a slight reduction in rotarod performance in Hdh
Q111+/+ 

and 

Hdh
Q111+/- 

mice from 6 and 7 months respectively, although this was not consistent at all 

the subsequent ages. However it must be emphasised that as the Hdh
Q111 

mice showed 

evidence of an enhanced performance at 2 and 3 months, the subsequent reduction in 

performance on the rotarod could perhaps be indicative of a return to a ‘normal’ motor 

phenotype, rather than a display of a motor deficit. Subsequently there is a need for 

more sensitive tests to be used to more accurately assess the motor phenotype of the 

Hdh
Q111 

mouse. 

 

The motor co-ordination of rodents can also be tested using a fixed speed protocol, in 

which subjects are placed on the rotating rod at fixed, increasing speeds. Furthermore, 



100 

 

 

 

 

the fixed speed rotarod has been shown to be more sensitive to striatal dysfunction, a 

pathological phenotype of HD (Monville et al., 2006). In agreement, Hickey et al. 

(2008) demonstrated that while the CAG140 mouse model of HD was not impaired in 

the accelerating rotarod paradigm, subsequent testing using the fixed speed rotarod 

protocol revealed deficits when compared to control animals. It would therefore perhaps 

be beneficial to test the Hdh
Q111

 mice using a fixed speed rotarod protocol in order to 

determine if a more robust motor deficit can be displayed. 

 

However, even in the more severe transgenic models of HD, e.g. the R6/2 mouse, the 

rotarod does not reveal deficits until after the synaptic, molecular and pathological 

abnormalities have been detected (Hickey et al., 2005; Stack et al., 2005). Therefore it 

would perhaps be of value if the Hdh
Q111 

mouse could be tested using more sensitive 

tests in an attempt to detect anomalies at an earlier age. Other tests, including the 

balance beam and foot print analysis, have been used to assess fine motor co-ordination 

and balance in other mouse models of HD (Carter et al., 1999; Hickey et al., 2005; 

Stack et al., 2005; Hickey et al., 2008) and could perhaps be used to further examine the 

early motor phenotype of the Hdh
Q111 

mouse model of HD. 

 

The spontaneous locomotor activity was assessed in the circular runways and activity 

box. The use of circular runways to assess locomotor dysfunction in rodents is 

advantageous as there are no corners, thereby encouraging spontaneous locomotion in 

rodents. The lack of abnormalities in the Hdh
Q111 

mouse at 13 months is in agreement 

with other studies who have demonstrated no differences in exploratory behaviours in 

the open field test up to the age of 17 months (Wheeler et al., 2000; Menalled et al., 
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2009). However, it is possible that a motor phenotype could perhaps emerge if testing 

had been extended to include older mice. 

 

Of specific interest, it was demonstrated that the static counts in the activity box 

differed in the Hdh
Q111+/+ 

mice. Analysis of the static counts demonstrated that 

Hdh
Q111+/+ 

mice exhibited an increased freezing response, as indicated by a significant 

increase in the static counts when compared to WT and Hdh
Q111+/- 

mice. In addition, 

distinct from both WT and Hdh
Q111+/-

 mice that demonstrated a decrease their static 

counts over the 4 days, the Hdh
Q111+/+ 

mice showed similar “freezing” responses over 

the course of the experiment. These data indicates that the Hdh
Q111+/+ 

mouse may exhibit 

a slightly anxiogenic phenotype. In order to determine if this is a true phenotype it 

would be advantageous to assess the anxiogenic phenotype of the Hdh
Q111

 mouse in 

more depth. Previous studies have identified an anxiogenic phenotype in other rodent 

models of HD by utilising the open field test and light-dark box (Hickey et al., 2005; 

Mennalled et al., 2009; Pang et al., 2009; Pouladi et al., 2009). In particular, a study 

utilising a novelty suppressed feeding task has recently shown that an anxiogenic 

phenotype has been observed in the Hdh
Q111 

mouse prior to the emergence of an overt 

motor phenotype (Orvoen et al., 2012). Collectively these studies suggest that anxiety 

may be an early feature of HD (Hickey et al., 2005; Mennalled et al., 2009; Pang et al., 

2009; Pouladi et al., 2009; Orvoen et al., 2012), a psychiatric feature which is also 

present in human patients of HD (Sturrock and Leavitt, 2010). As a possible anxiogenic 

phenotype is suggested by the increased freeze response of the Hdh
Q111+/+ 

mice in the 

activity box, it would perhaps be valuable to assess the anxiogenic phenotype by 

utilising the light-dark box and novelty suppressed feeding task, to examine this 

phenotype more thoroughly. 
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6: Experiment 2: Characterisation of the cognitive 

phenotype of the Hdh
Q111 

mouse 

 

6.1: Introduction: HD and memory 

 

6.1.1: Cognitive deficits in human patients of HD 

A number of studies have attempted to characterise the early subtle cognitive changes in 

human patients with HD (Hahn-Barma et al., 1998; Lawrence et al., 1998; Kirkwood et 

al., 2000; Verny et al., 2007). All subjects in these studies were prodromal and free of 

the psychiatric (i.e. depression and anxiety) and motor deficits associated with HD, 

including chorea and tremors. In these studies the memory of carriers and non-carriers 

of the Huntingtin gene was assessed using either the Wechsler memory scale (WMS) 

(Hahn-Barma et al., 1998; Lawrence et al., 1998; Kirkwood et al., 2000; Verny et al., 

2007), the California verbal learning test (CVLT; Hahn-Barma et al., 1999; Verny et 

al., 2007), or the Cambridge Neuropsychological Test Automated Battery (CANTAB; 

Lawrence et al., 1998). The WMS is designed to test multiple features of human 

memory, which are categorised into auditory memory, visual memory, visual working 

memory, immediate memory, and delayed memory whereas CVLT tests allows the 

quantification and qualification of short and long term recognition and recall (Hahn-

Barma et al., 1999). The CNTB test examines various aspects of cognitive function, 

including working memory and executive function, visual memory, attention and 

reaction time, semantic memory, decision making and episodic memory (Lawrence et 

al., 1998). In addition, the subjects were tested with the Wechsler Adult Intelligence 

Scale-Revised (WAIS-R), a psychometric test used to assess basic linguistic function 
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(Hahn-Barma et al., 1999; Lawrence et al., 1998; Kirkwood et al., 2000; Verny et al., 

2007). Results indicated that there were significant differences in the cognitive 

performance of non-carriers and carriers of the Huntingtin gene, including impairments 

in logical memory, short/long term recall and recognition, episodic memory, attention 

and verbal fluency (Hahn-Barma et al., 1998; Lawrence et al., 1998; Kirkwood et al., 

2000; Verny et al., 2007). The results of these studies therefore suggest that cognitive 

changes, without overt motor, or psychiatric disturbances, represent the first stages of 

HD (Hahn-Barma et al., 1998; Lawrence et al., 1998; Kirkwood et al., 2000; Verny et 

al., 2007). It is these cognitive deficits in short/ long term recognition and episodic 

memory that I aim to test in the Hdh
Q111

 mouse in order to demonstrate that the Hdh
Q111

 

mouse is an accurate cognitive model of HD (see section 6.2). 

 

6.1.2: Cognitive deficits in animal models of HD 

Several studies have assessed the cognitive performance of animal models of HD in an 

attempt to detect the early cognitive deficits associated with the human disorder (Lione 

et al, 1999; Van Raamsdonk et al., 2005; Pang et al., 2006; Nithianantharajah et al., 

2008; Simmons et al., 2009). For more details on the genetics of the mouse models 

described in this section, please see section 1.2.  

 

Many studies have demonstrated a role of the hippocampus in spatial memory. The 

MWM has been used to test the spatial learning in the R6/2 mouse (testing from 3 

weeks of age, over 19 days) (Lione et al., 1999). In this study the mouse was trained to 

find a visible platform within a circular pool. Following training, the platform was 

submerged and the mouse was trained to swim to the hidden platform. The platform 

was subsequently removed and the swimming path of the mouse was examined to 
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assess memory for the original location of the platform. During a reversal test the 

platform was moved to another location in the pool, and the ability of the mouse to 

learn the new position of the platform was assessed. Results indicated that R6/2 mice 

showed similar performance in the visible platform version of the MWM task (Lione et 

al., 1999). However, when the platform was removed, the R6/2 mouse spent 

significantly less time in the original location of the platform when compared to control 

(Lione et al., 1999). Furthermore, R6/2 mice took less direct routes and took longer to 

locate the new platform position during the reversal learning phase and spent less time 

in the location of the platform when it was removed for the reversal test. Although the 

visible platform version of the MWM is a test of spatial memory, it is not dependent on 

the hippocampus. On the other hand, the impairments of the R6/2 mice in the 

hippocampus-dependent hidden platform and reversal test versions of the MWM 

emphasise the role of the hippocampus in the early cognitive deficits of HD (Rosas et 

al., 2003). Considering the role of the hippocampus in episodic memory (see section 

3.1.2), it is possible that, using appropriate behavioural testing, episodic memory 

deficits could be displayed in the Hdh
Q111 

model of HD. 

 

The T-maze has been used to test spatial learning in the R6/2 (5 – 6.5 weeks; Lione et 

al., 1999), R6/1 (14 weeks; Pang et al., 2006) and YAC128 (8.5 months; Van 

Raamsdonk et al., 2005) mouse models of HD. During ‘forced’ alteration training, one 

of the T-Maze arms was blocked (e.g. the right arm), forcing the mouse to enter the 

other arm to receive a food reward (e.g. the left arm; Lione et al., 1999; Pang et al., 

2006). During the first trial the mouse had a ‘free choice’ and a reward was placed at 

the end of both arms. On each subsequent trial the mouse was considered to have made 

a correct choice if it entered the arm that it had not previously visited. The process was 
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repeated until the mouse had successfully completed the required number of trials with 

the number of correct trials/ errors being used as an indication of memory. In the study 

by Van Raamsdonk et al. (2005), a swimming T-Maze was used and the mouse was 

trained to locate a floating platform in alternate arms of the T-Maze. The results of all 3 

of these studies indicated that the mouse models of HD made more errors when 

compared to control animals in the T-maze (Lione et al., 1999; Pang et al., 2006; Van 

Raamsdonk et al., 2005). Similar deficits were found in studies in which the short-term 

spatial memory of the R6/1 mouse was tested using the Y-Maze (Pang et al., 2006; 

Nithianantharajah et al., 2008). Similar to the T-Maze, in the Y-Maze task the mice 

were tested for their ability to identify the arm they had not previously entered (i.e. the 

novel arm), although in this test the length of time spent in the novel arm was used as an 

indication of memory. Results indicated that while at 12 - 14 weeks, control animals 

spent an increased amount of time in the novel arm, the R6/1 mouse showed no 

preference, spending an equal amount of time in all 3 arms (Pang et al., 2006; 

Nithianantharajah et al., 2008). These studies therefore provide evidence of short-term 

hippocampal-dependent memory deficits in mouse models of HD (Lione et al., 1999; 

Pang et al., 2006; Van Raamsdonk et al., 2005; Nithianantharajah et al., 2008). 

However, as the T-maze required training in which forced alteration behaviour was 

rewarded, it can be argued that it is not necessarily the spontaneous behaviour of the 

animal that is being assessed. As episodic memory is formed by a single exposure to an 

event (section 3.1.1 and 3.1.2.), the development of a hippocampal-dependent test that 

assesses spontaneous cognitive behaviour, without the need for training and/ or a 

reward would therefore benefit the assessment of episodic memory in the Hdh
Q111 

mouse.  
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Interestingly, the cognitive processes of the R6/1 (12 and 14 weeks; Nithianantharajah 

et al., 2008) and CAG140 (16 weeks; Simmons et al., 2009) mouse models of HD have 

been tested using the novel object recognition task (see sections 3.4.1 and 6.1.2). The 

novel object recognition task does not require any training and assesses memory by 

utilising the spontaneous novelty seeking behaviour of rodents and therefore does not 

rely on positive reinforcement, such as rewards, that could alter behaviour. In the study 

by Nithianantharajah and colleagues (2008), the short-term memory of the mice was 

tested using the novel object recognition task (section 3.4.1, Figure 3.1A). Results 

indicated that, at 12 and 14 weeks, both the R6/1 and control animals show similar 

preference for the novel object. However, R6/1 mice show impairments in location 

memory (see section 3.4.3, Figure 3.1E; Nithianantharajah et al., 2008). Previous 

studies have suggested that location memory is heavily dependent on the hippocampus 

(Ennaceur et al., 1997; Mumby et al., 2002 – see section 3.4.3), while the novel object 

task is not hippocampus-dependent (Bussey et al., 2000; Mumby et al., 2002; Langston 

and Wood, 2010 – see section 3.4.1), perhaps providing a reason for the differences in 

cognitive impairments in this study and again implicating the hippocampus in the early 

cognitive deficits of HD (Nithianantharajah et al., 2008). 

 

Previous studies have also indicated that the hippocampus could be involved in long-

term novel object recognition tasks (Clark et al., 2000; Broadbent et al., 2004 – see 

section 3.4.1). In the study by Simmons and colleagues (2009) Hdh
Q140

 mice were 

tested for 60 minutes over 4 consecutive days in an open-field environment. On Day 1 

the open field did not contain any objects. On testing Days 2 and 3 two identical objects 

were added to the arena. On Day 4 one of the objects was replaced with a novel object. 

Although wild type mice showed increased exploration at the novel object, Hdh
Q140
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mice were impaired in their ability to identify the novel object when compared to wild 

type mice following a 24 hour delay. These data indicates that a long-term recognition 

memory deficit is present in the Hdh
Q140

 mouse model of HD at 16 weeks. 

 

In summary these studies indicate that the cognitive decline occurs in human patients 

and mouse models of HD prior to the onset of motor abnormalities. Cognition deficits 

in human patients of HD include impairments in short/long term recognition memory 

and episodic memory. Furthermore, these cognitive deficits are also seen in various 

rodent models of HD, specifically in tests that have been shown to involve the 

hippocampus. Collectively, these studies suggest that cognitive decline could act as an 

early marker of HD in mouse models, mirroring the progression of the clinical 

symptoms seen in humans. In this thesis the cognitive performance of the Hdh
Q111 

mouse model of HD will be assessed by utilising the intrinsic novelty-seeking 

behaviour characteristic of rodents. As no training and/ or positive reinforcers are 

required, it can be argued that tests assessing the spontaneous behaviour of mice are 

therefore more indicative of natural behaviour of the mouse. Similar to the studies 

discussed previously (Nithianantharajah et al., 2008; Simmons et al., 2009) the short- 

and long-term memory of Hdh
Q111

 mice will be assessed using the novel object 

recognition task in order to model the recognition memory deficits seen in HD patients. 

Furthermore, in an attempt to replicate the episodic memory deficits associated with 

HD, the novel object recognition test will be extended to test the ‘what’, ‘where’ and 

‘which’ of episodic-like memory (Eacott and Norman, 2004; Langston and Wood, 

2010; see section 3.4.2).  
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6.2: Methods 

 

6.2.1: Assessment of episodic memory: long protocol 

In order to assess episodic memory, it is necessary to demonstrate that Hdh
Q111 

mice are 

also capable of demonstrating memory for the individual components of episodic 

memory. The following section will present the methods for the novel-object, object-

place, object-context and object-place-context (episodic memory) tasks.  

 

6.2.1.1: Subjects 

WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (male and female, 2 and 13 months) were used as 

subjects. Note, in the cognition experiments in the following chapters, the age stated at 

the beginning of each section represents the age at which the cognition testing 

commenced. All mice were housed in groups of 2-6 and kept on a 12 hour light/ 12 hour 

dark cycle (dawn at 5am, dusk at 5pm). All mice had unrestricted access to water and 

food throughout the experiment. 

 

6.2.1.2: Apparatus 

All testing was carried out in a rectangular arena (width = 24 cm; length = 28 cm; depth 

= 20 cm) (Figure 6.1). The walls of the arena were interchangeable in order to create 

two different contexts. Context 1 consisted of a floor and wipeable white walls. Context 

2 consisted of a white plastic floor insert with holes across its surface. The original floor 

of context 1 remained exposed through these holes to emphasise that it was the same 

arena in the same location and that only local features had been altered. The walls of 

context 2 consisted of 4 cardboard inserts, covered with a wipeable green tile-effect 

wall paper. Reusuable Velcro strips were placed in the same location on each of the 
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floor inserts on which the objects were always presented. These locations were centrally 

located within the north-west and north-east quadrants of the box. At the north-west and 

north-east corners of the box, large 3D visual cues were hung from the wall. These cues 

were maintained in a constant position in the testing room relative to the testing box. 

The wall and floor inserts were always placed in the same location and orientation to 

control for any local cues present on the testing apparatus. The configuration of the box 

as either context 1 or context 2 was counterbalanced across the genotypes for each task. 

In addition, each context was wiped down with lemon antibacterial wipes (Tesco) in 

between each time a mouse entered the testing box. 

 

For each task, the exploration times of the mice at each object were recorded. 

Exploration was defined as the mouse being within approximately 2 cm of the object, 

directing its nose at the object and being actively involved in exploration e.g. sniffing or 

whiskers twitching. If the mouse was sitting on or next to the object with no signs of 

exploration, these time periods were not included. Objects for exploration were 

collected from a variety of sources but had to fulfil the criteria of being easily cleaned, 

made from nonporous materials and either heavy enough that the mice could not push 

them over or having a suitable base where a Velcro strip could be attached. Objects 

were always presented in the same locations and orientations in the testing box (see 

Figure 6.1). 

 

6.2.1.3: Behavioural testing 

All tests were carried out in the light phase 4 days a week. The mice were tested on the 

novel-object, object-place, object-context, and then object-place-context task.  
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6.2.1.4: Habituation 

Prior to experimentation, the mice were removed from their home cage and handled in 

order to ensure that the mice were used to the experimenter. Initial habituation sessions 

were carried out before behavioural testing commenced to familiarise the mice with the 

arena, the two different contextual configurations of the testing arena and the locations 

in which these objects would be placed. Each day, the mice were brought into the 

testing room in their home cage (2 – 6 mice), which was placed on a trolley near the test 

arena. On Day 1 the mice were placed within the arena, which was arranged in 1 of the 

2 contexts, for 15 minutes in their cage groups. The animals were then removed and 

placed back into the home cage, while the context configuration was changed. The 

animals were then replaced back into the arena in their cage groups for a further 15 

minutes before being returned to their home cage. On Day 2, the mice were placed in 

one of the two contexts individually for 5 minutes, placed in a holding chamber, an 

opaque bucket containing sawdust, while the context was changed and then placed back 

in the arena for the second context for an additional 5 minutes before being returned to 

their home cage. Care was taken to ensure that the mouse was placed within the arena at 

the same position, facing the south wall, as would happen during testing. No objects 

were present in the testing arena on Days 1 and 2. On Day 3 and 4, mice were placed in 

one of the two contexts and two objects were placed within the arena in the north-west 

and north-east corners; alternate contexts and different objects were used on each day. 

Days 3 and 4 ensured that the mice were familiar with the locations in which the objects 

would appear. Each object was presented only once during habituation and did not 

appear at any later stage of testing. 
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6.2.1.5: Object recognition task 

Two days after the end of habituation, mice were tested on the novel object recognition 

test to ensure that the animals in both groups were able to discriminate between objects 

(Figure 6.1A).  

 

On each trial, the mouse to be tested was removed from its home cage and placed in the 

holding box next to the test arena. In the sample phase, the mouse was timed exploring 

the two identical objects in the testing box for 3 minutes after which the mouse was 

removed from the arena and placed in the holding box. After a short delay (~2 minutes), 

the mouse was presented with one object that was a third copy of the objects seen in the 

sample phase while the other object was completely novel. This test phase was carried 

out using the same procedures as the sample phase. After each test phase, the animal 

was returned to its home cage. Each mouse received four trials of the novel object 

recognition task with an inter-trial interval of 24 hours. Two trials took place in context 

1 and two trials took place in context 2. For two trials, one in each context, the novel 

object occurred on the left and for the other two it occurred on the right. 

 

6.2.1.6: Object-place task 

The procedure for the mice in the object-place task was similar to that used in the object 

recognition task, except that the objects in the sample and test phases were manipulated 

differently (Figure 6.1B). During the sample phase, two different objects were present 

in the test arena. During the test phase, which occurred in the same context as the 

sample phase, a further two copies of one of the two objects presented in the sample 

phase was presented. Thus, during the test phase, one of the objects was presented in the 

same place as it had previously been in the sample phase, whereas the other was in a 
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place that had previously been occupied by a different object. In this situation, both the 

objects and the places were familiar but for one object the object-place configuration 

was novel. Each mouse received four trials on the object-place task with an inter-trial 

interval of 24 hours. Two trials took place in context 1 and two trials took place in 

context 2. For two trials, one in each context, the novel object-place configuration 

occurred on the left and for the other two it occurred on the right. 

 

6.2.1.7: Object-context task 

The procedure for the mice in the object-context task was similar to that used in the 

previous tasks but there were two sample phases, one in each context, followed by a 

single test phase (Figure 6.1C). Between each sample phase the mouse was removed 

and placed in the holding box while the test arena was cleaned and reconfigured. During 

the first sample phase (Sample 1), two identical copies of an object were placed within 

the test arena, which was configured as either context 1 or 2. For the second sample 

phase (Sample 2), the testing arena was reconfigured as the opposite context and two 

identical copies of another object were presented. For the test phase, the test arena was 

reconfigured as either the context from Sample 1 or remained in the same context as 

Sample 2. One copy of the object from Sample 1 and one copy of the object from 

Sample 2 were present. Thus, the objects, their absolute locations, and the contexts were 

all familiar by the test phase, but for one object the object-context configuration was 

novel. Each mouse received four trials on the object-context task. The trials were 

arranged in such a way that counterbalanced for the effects of relative recency on 

memory for the objects or the contexts. For two trials, one in each context, the novel 

object-context configuration occurred on the left and for the other two it occurred on the 

right. 
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6.2.1.8: Object-place-context task 

The procedure for the mice in the object-place-context task was similar to that used in 

the object-context task. During the first sample phase (Sample 1), the test arena was 

configured as either context 1 or context 2, and two different objects were placed in the 

test arena (e.g. object A on the left and object B on the right) (Figure 6.1D). During 

Sample 2, the box was configured as the context not used in Sample 1, and identical 

copies of the same two objects used during Sample 1 were present, but their locations 

were swapped relative to Sample 1 (e.g. object B on the left and object A on the right). 

For the test phase, the test arena was either reconfigured as the context used in Sample 1 

or remained in the same context as Sample 2. During the test phase, two identical copies 

of one of the objects from the sample phases were present. Thus, one of the object 

copies was in an object-place-context configuration in which it had not been previously 

experienced (novel). Each mouse received four trials on the object-place-context task. 

The trials were arranged in such a way that counterbalanced for the effects of relative 

recency on memory for the objects or the contexts. Again, for two trials, one in each 

context, the novel object-place-context configuration occurred on the left and for the 

other two it occurred on the right. 

 

6.2.1.9: Data collection and analysis 

The mice were monitored by an overhead video camera (Sony HandyCam) and viewed 

by the experimenter on a television monitor (LG). The time spent exploring was 

recorded manually, using key press-activated timers to time exploration at the left and 

right objects before being entered into a Microsoft Excel spreadsheet, in which further 

analysis was performed. SPSS software was used for all statistical analysis. Note, in all 

the following results chapters, the statistical test used is defined in the appropriate 

section. The exploration times at each object was noted in both the sample and test 
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phases in order to provide a comparison of exploration between genotypes. In the 

object-context and object-place-context tasks, the exploration times from each sample 

phase were combined and used to calculate a mean exploration. In addition, the raw 

times spent at each object in the test phase were converted into a discrimination index 

for each mouse using the formula (time at novel – time at familiar) / (time at novel + 

time at familiar) where novel refers to the novel object and familiar refers to the other 

object. A value of zero indicates no preference, whereas as a positive value indicates 

preferential exploration of the novel configuration. For each mouse, a discrimination 

score for each task was obtained by calculating the mean of the discrimination indices 

for the four trials on that task 
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A: Novel Object   (Apparatus dimensions w=24 cm; l=28 cm; d=20 cm) 

 

 

 

 

 

 

 

 

        Sample         Test  

B: Object-place 
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C: Object-context 

 

 

 

 

 

 

 

 

 

     Sample 1                             Sample 2             Test  

 

D: Object-place -context 

 

 

 

 

 

 

 

  

          Sample 1                             Sample 2              Test  

 

Figure 6.1: Representation of the apparatus used to show episodic memory. (A), 

object-place (B), object-context (C) and object-place-context task (D). Context 1 

consisted of a wooden floor and wipeable white walls. Context 2 consisted of a white 

plastic floor insert with holes across its surface. Objects were presented in the same 

locations for each trial. Mice were placed into the testing apparatus from the south 

side, facing the south wall for each sample and test phase. 

SAMPLE PHASE 1 SAMPLE PHASE 2 TEST PHASE

SAMPLE PHASE 1 SAMPLE PHASE 2 TEST PHASE

SAMPLE PHASE TEST PHASE

SAMPLE PHASE TEST PHASE
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6.2.2: Assessment of episodic memory: short protocol 

As it was important to identify cognitive deficits at the earliest possible time point, it 

was necessary to assess cognition in a precise time-specific manner. Therefore, in 

addition to the long protocol, a shorter protocol was also used to assess episodic 

memory. The general protocol was similar to that stated previously (section 6.2.1) but 

differed in the way that instead of taking 5 weeks to complete, the mice had completed 

all 4 tasks in 3 days (Figure 6.1).  

 

Mice were habituated to the test arena in the same way as stated previously (section 

6.2.1.4), although habituation was over the course of 1 day, instead 4. The mice were 

subsequently tested on the spontaneous recognition memory tasks on Days 2 and 3. The 

testing process was identical to that of the long protocol but instead of each mouse 

carrying out each task 4 times and an average calculated, each task was only carried out 

by each mouse once. On Day 2 the mice were tested on the novel-object recognition 

task in the morning and the object-context task in the afternoon. On Day 3 the mice 

were tested on the object-place task in the morning and the object-place-context task in 

the afternoon. Discrimination indices from each task were calculated as stated 

previously (section 6.2.1.9).  

 

 

6.2.3: 24 hour novel object recognition task 
 

The hippocampus has been linked to the early cognitive deficits in HD (Rosas et al., 

2003). Studies have demonstrated that, at long delays, novel object recognition can be 

dependent on the hippocampus (section 3.4.1). In order to provide another cognitive test 

that could assess the integrity of the hippocampus in HD, the 24 hour novel object 

recognition test was used to assess long-term memory in Hdh
Q111 

mice. 
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6.2.3.1: Subjects 

WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (1 and 2 months) were used as subjects. Mice were 

kept in the same conditions as stated previously (section 6.2.1.1) 

 

6.2.3.2: Apparatus 

Due to the fact that some of the mice participating in the 24 hour novel object 

recognition task were also tested using the previous recognition tasks (section 6.2.1 and 

6.2.2), it was necessary to produce a different arena in order to avoid interference 

between tests. Therefore the 24 hour novel object task was carried out in a circular 

arena (width = 37 cm; depth = 19 cm; Figure 6.2). The walls of the arena were covered 

in a wipeable brown laminate effect paper. Re-usuable Velcro strips were placed in the 

same location on each of the floor inserts on which the objects were always presented. 

These locations were located centrally within the north-west and north-east quadrants of 

the box (Figure 6.2). 

 

6.2.3.3: Habituation 

Initial habituation sessions were carried out before behavioural testing commenced to 

familiarise the mice with the test arena. Each day, the mice were brought into the testing 

room in their home cage (2 - 6 mice), which was placed on a trolley near the test arena. 

On Day 1 the mice were removed from their home cage and handled in order to ensure 

that the mice were used to the experimenter. On the morning of Day 2, the mice were 

placed within the arena in their home cage groups for 15 minutes. The animals were 

then removed and placed back into their home cage. In the afternoon of Day 2 the mice 

were placed into the empty arena individually for 10 minutes each before being 

removed and placed back in their home cage. 
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6.2.3.4: 24 hour novel object recognition task 

After habituation the mice were tested in the 24 novel object recognition task. The 24 

hour novel object task differed from that stated previously (section 6.2.1.5) in as far as 

each mouse participated in 2 sample phases over 2 days (Days 3 and 4; Figure 6.2). The 

mouse was timed exploring the two identical objects in the test arena for 10 minutes. On 

Day 5 (Test phase), 24 hours after sample 2, one object was replaced with a novel 

object and again the time spent exploring each object was recorded for 10 minutes.  

 

6.2.3.5: Data collection 

Data was collected as stated in section 6.2.1.9. A record of the exploration at each 

object was made half way through the experiment (5 minutes) and at the end (10 

minutes) of the test phase. The discrimination index was calculated as indicated in 

section 6.2.1.9. 
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(Apparatus dimensions w=37 cm; d=19 cm) 

 

Figure 6.2: Representation of the apparatus used in the 24 hour novel object 

recognition task. Following habituation on Day 1, the sample phases (10 minutes) on 

Days 2 and 3 consist of 2 identical objects (A and B). In the test phase on Day 4 (C), 

one of the objects is replaced with a novel object. Exploration at each of the objects was 

recorded, taking note of the exploration times at both 5 and 10 minutes. 

Sample 1

(10 minutes)

Sample 2

(10 minutes)

Test

(10 minutes)

A: Sample 1 B: Sample 2 

C: Test phase 
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6.3: Results: Assessment of episodic memory (2 months) 

Episodic memory requires the integration of the ‘what’, ‘where’ and ‘when’ 

components of memory (Tulving, 1972; section 3.3). Previous studies have 

demonstrated that rats are capable of identifying the ‘what’, ‘where’ and ‘which’ of 

episodic-like memory (Eacott and Norman, 2004; Langston and Wood, 2010; section 

3.4.2). However, this study is the first time this test has been utilised in mice. In order to 

assess episodic memory in Hdh
Q111

 mice, it is necessary to demonstrate that they are 

also capable of demonstrating memory for the individual components of episodic 

memory. Hdh
Q111 

mice were tested in the novel-object, object-place, object-context and 

object-place-context (episodic memory) tasks. The discrimination indices of WT (n = 

24), Hdh
Q111+/+

 (n = 16) and Hdh
Q111+/-

 (n = 24) mice in each of these tasks were 

evaluated (2 months). A repeated measures ANOVA was performed on discrimination 

scores with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as the between subjects factor 

and task (novel-object vs. object-place vs. object-context vs. object-place-context) as the 

within subjects factor. Results showed a significant effect of genotype (f (2, 59) = 41.097, 

P < 0.05), task (f (3, 59) = 162.329, P < 0.05) and a significant task vs. genotype 

interaction (f (6, 59) = 35.381, P < 0.05) (2 months). The next section will report the 

performance of Hdh
Q111+/+

, Hdh
Q111+/-

 and WT mice in each individual task at 2 months. 

 

6.3.1: Object recognition task  

WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (2 months) were initially tested in an object 

recognition test. Bonferroni corrected pair-wise comparisons between groups confirmed 

that the performance of Hdh
Q111+/+

 and Hdh
Q111+/-

 mice did not differ from WT mice in 

the object recognition task (P > 0.05; Figure 6.3A). In addition, one-sample t-tests 

showed that all three genotypes explored the novel object significantly more than 
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expected by chance. These data show that the presence of the mutant Huntingtin gene 

does not impair the ability of the mice to recognise a novel object/remember a familiar 

object  at 2 months.  

 

The exploration times in the object recognition task were assessed. One way ANOVAs 

showed there were no significant differences in the exploration patterns of the mice in 

the sample (f (2, 61) = 0.064, P > 0.05) and test phase (f (2, 61) = 0.998, P > 0.05; 2 months) 

indicating that the Huntingtin mutation does not affect exploration (Figure 6.4A).  

 

6.3.2: Object-place and object-context 

The mice were then tested in the object-place and object-context tasks. Bonferroni 

corrected pair-wise comparisons between groups for each task confirmed that 

Hdh
Q111+/+

 and Hdh
Q111+/-

 mice did not differ from WT mice in the object-place or 

object-context tasks (P > 0.05) at 2 months (Figure 6.3B and 6.3C). In addition, the 

performance of Hdh
Q111+/+

 and Hdh
Q111+/-

 mice was similar in both of these tasks (P > 

0.05). Finally, one-sample t-tests showed that all three genotypes explored the novel 

configuration significantly more than expected by chance in both the object-place and 

object-context tasks (P < 0.05). These data show that the presence of the mutant 

Huntingtin gene does not impair the ability of the mice to recognise a novel/remember a 

familiar place or context configuration at 2 months.  

 

The exploration times in the associative memory tasks were assessed. One way 

ANOVAs showed no significant differences in the exploration patterns of the mice in 

the sample (f (2, 60) = 0.257, P > 0.05) and test phase (f (2, 60) = 1.001, P > 0.05) of the 

object-place task (2 months; Figure 6.4B). In addition, one way ANOVAs demonstrated 
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no significant differences in the exploration patterns of the mice in the sample (f (2, 61) = 

1.517, P > 0.05) and test phase (f (2, 61) = 1.698, P > 0.05) of the object-context task (2 

months) again demonstrating that the Huntingtin mutation does not affect exploration 

(Figure 6.4C).  

 

6.3.3: Object-place-context task: Episodic memory 

The mice were then tested for episodic memory in the object-place-context task. 

Bonferroni corrected pair-wise comparisons between groups for each task confirmed 

that the performance of Hdh
Q111+/+

 and Hdh
Q111+/-

 mice significantly differed from WT 

mice in the object-place-context task at 2 months (both P < 0.05; Figure 6.3D). 

Bonferroni corrected pair-wise comparisons between each pair of task for the WT mice 

indicated no significant differences between tasks (all P > 0.05). In contrast, the 

Hdh
Q111+/+

 and Hdh
Q111+/-

 mice performed significantly worse in the object-place-

context task when compared to the other tasks (both P < 0.05), with no difference 

between the object-place and object-context tasks (P > 0.05). Finally, one-sample t-tests 

showed that the WT mice (P < 0.05), but not Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (P > 0.05), 

explored the novel configuration significantly more than expected by chance in the 

object-place-context task.  These data show that the presence of the mutant Huntingtin 

gene impairs the ability of the mice to recognise a novel/remember a familiar object-

place-context configuration. These data therefore implies that an episodic memory 

deficit exists in the Hdh
Q111 

mouse at 2 months. 

 

The exploration times in the object-place-context task were assessed. One way 

ANOVAs showed no significant difference in the exploration patterns of the three 

genotypes in the sample (f (2, 61) = 0.031, P > 0.05 and test phase (f (2, 61) = 0.177, P > 
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0.05) of the object-place-context task (2 months) (Figure 6.4D). The lack of exploration 

differences between genotypes is particularly important in this task as it indicates that 

the selective impairment in the object-place-context task is not due to secondary 

changes in exploratory behavior in the Hdh
Q111

 mice. Interestingly, although assessment 

of the motor phenotype of Hdh
Q111 

mice revealed enhanced performance on the rotarod 

at 2 and 3 months (section 5.3.2), the lack of differences in the exploration patterns of 

the Hdh
Q111 

using this paradigm again suggests that further motor testing in the Hdh
Q111 

mouse is required to elucidate a more accurate motor phenotype. 
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Figure 6.3: Hdh
Q111 

mice show impairments in episodic memory at 2 months.  

For each panel: Top shows schematic representation of the task. Bottom shows 

discrimination ratios of WT (n = 24), Hdh
Q111+/+

 (n = 16) and Hdh
Q111+/-

 (n = 24) mice 

(2 months). All genotypes show similar ability to identify the novel configuration in the 

(A) novel object, (B) object-place (C) and object-context tasks (all P > 0.05). (D) 

Hdh
Q111+/+

 and Hdh
Q111+/-

 mice are significantly impaired in their ability to identify the 

novel configuration in the object-place-context task when compared to WT mice (P < 

0.05).  
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Figure 6.4: The exploration behaviours of Hdh
Q111 

mice are unaffected at 2 months. 

For each panel: Top shows schematic representation of the task. Bottom left and right 

shows total exploration times of WT (n = 24), Hdh
Q111+/+

 (n = 16) and Hdh
Q111+/-

 (n = 

24) mice (2 months) in the sample and test phases respectively. A) Novel object 

recognition task B) Object-place task. C) Object-context task D) Object-place-context 

task. All genotypes show similar exploration patterns in the sample and test phases of 

all four tasks (one way ANOVAs; P > 0.05). 
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6.4: Result: Assessment of episodic memory (13 months). 

In order to determine whether the cognitive deficits of Hdh
Q111

 mice were progressive, 

the spontaneous recognition tests were also used to assess the cognition of WT (n = 9), 

Hdh
Q111+/+

 (n = 10) and Hdh
Q111+/-

 (n = 10) mice at 13 months. The discrimination 

indices of the mice were evaluated. A repeated measures ANOVA was performed on 

discrimination scores with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as the between 

subjects factor and task (novel-object vs. object-place vs. object-context vs. object-

place-context) as the within subjects factor. Results indicated that there was a 

significant effect of genotype (f (2, 24) = 35.227, P < 0.05), task (f (3, 24) = 16.686, P < 

0.05) and a significant task vs. genotype interaction (f (6, 24) = 4.544, P < 0.05) (13 

months). The following section will discuss the performance of Hdh
Q111+/+

, Hdh
Q111+/-

 

and WT mice in each individual task at 13 months. 

 

6.4.1: Object recognition task  

WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (13 months) were initially tested in an object 

recognition test. Bonferroni corrected pair-wise comparisons between groups confirmed 

that the performance of Hdh
Q111+/+

 and Hdh
Q111+/-

 mice did not differ from WT mice in 

the object recognition task (P > 0.05) (Figure 6.5A). In addition, one-sample t-tests 

showed that all three genotypes explored the novel object significantly more than 

expected by chance. These data show that the presence of the mutant Huntingtin gene 

does not impair the ability of the mice to recognise a novel object/ remember a novel 

object at 13 months.  

 

The exploration times in the object recognition task were assessed. One-way ANOVAs 

showed there were no significant differences in the exploration patterns of the mice in 
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the sample (f (2, 28) = 0.350, P > 0.05) and test phase (f (2, 28) = 0.406, P > 0.05) in the 

object recognition task (13 months) (Figure 6.6A). Although inconclusive due to 

enhanced performance at early ages, it was previously demonstrated that Hdh
Q111

 mice 

displayed a mild phenotype on the rotarod from 6 months (see section 5.3.2). However, 

assessment of the exploration patterns in this task suggest that exploration is unaffected 

by the Huntingtin mutation at 13 months.    

 

6.4.2: Object-place and object-context 

The mice were then tested in the object-place and object-context tasks. Hdh
Q111+/+

 and 

Hdh
Q111+/-

 mice were impaired in both the object-place and object-context task with 

respect to WT mice (13 months) (Figure 6.5B and 6.5C). Bonferroni corrected pair-wise 

comparisons between groups for each task confirmed that Hdh
Q111+/-

 and Hdh
Q111+/-

 

mice differed from WT mice in both the object-place and object-context (P < 0.05) 

tasks (13 months). In addition, the performance of Hdh
Q111+/+

 and Hdh
Q111+/-

 mice was 

similar in both these tasks (P > 0.05). Bonferroni corrected pair-wise comparisons 

indicated no significant differences in the performance of the WT mice over the object-

place and object-context tasks (P > 0.05). In contrast, the Hdh
Q111+/-

 mice performed 

significantly worse in the object-context (P < 0.05), but not the object-place task (P > 

0.05). Hdh
Q111+/+

 mice performed significantly worse in both the object-place and 

object-context tasks when compared to performance in the object recognition task (P < 

0.05). Finally, one-sample t-tests showed that WT mice explored the novel 

configuration significantly more than expected by chance in both the object-place and 

object-context tasks (P < 0.05). In contrast, both the Hdh
Q111+/+

 and Hdh
Q111+/-

 mice 

explored the novel configuration significantly more than expected by chance in the 

object-place (P < 0.05), but not the object-context task (P > 0.05). These data show that 
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although performance is impaired when compared to the WT, the Hdh
Q111+/+

 and 

Hdh
Q111+/- 

mice are still able to identify the novel configuration in the object-place task. 

However, data show that the presence of the mutant Huntingtin gene impairs the ability 

of the mice to recognise a novel /remember a familiar context configuration at 13 

months. 

The exploration times in the associative memory tasks were assessed. One way 

ANOVAs showed significant differences in the exploration patterns of the three 

genotypes in the sample (f (2, 28) = 3.848, P < 0.05) and test phase (f (2, 28) = 5.302, P < 

0.05) of the object-place task (13 months; Figure 6.6B). Bonferroni corrected pair-wise 

comparisons indicated that Hdh
Q111+/+

 (P < 0.05), but not Hdh
Q111+/-

 (P > 0.05) mice 

explored significantly less than WT mice in both the sample and test phases. The 

Hdh
Q111+/+

 and Hdh
Q111+/-

 mice showed similar exploration patterns throughout the 

object-place task (P > 0.05) (Figure 6.6B). However, only Hdh
Q111+/+ 

mice showed 

reduced exploration, and as Hdh
Q111+/+

 and Hdh
Q111+/-

 mice showed similar preference 

for the novel object-place configuration, it can be assumed that the impairment in the 

object-place task is not due to reduced exploration. 

 

The exploration times in the object-context task were also assessed. One-way ANOVAs 

showed there were no significant difference in the exploration patterns of the mice in 

the sample (f (2, 26) = 2.923, P > 0.05) and test phases (f (2, 26) = 1.273, P > 0.05) of the 

object-context task (Figure 6.6C). As Hdh
Q111

 mice are impaired in the object-context 

task in the absence of any differences in exploration, this supports the suggestion that 

the cognitive abnormalities in the object-place task are independent of the reduced 

exploratory behavior in the Hdh
Q111+/+

 mice. 
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Figure 6.5: The cognitive deficits of Hdh
Q111 

mice are progressive 

For each panel: Top shows schematic representation of the task. Bottom shows 

discrimination ratios. All genotypes show similar ability to identify the novel 

configuration in the object recognition task (P > 0.05) (A). Hdh
Q111+/+

 and Hdh
Q111+/-

 

mice are impaired at the object-place task (B) object-context (C) and object-place-

context tasks (D) when compared to WT (P < 0.05) 
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Figure 6.6: Hdh
Q111

mice do not show any major differences in exploration at 13 

months 

For each panel: Top shows schematic representation of the task. Bottom left and right 

shows total exploration times in the sample and test phases respectively. A) Object 

recognition task. All genotypes show similar exploration patterns in the sample and test 

phases (one way ANOVAs, P > 0.05). B) Object-place task. Hdh
Q111+/+

 mice show 

reduced exploration in the sample and test phases (one way ANOVAs, P < 0.05) when 

compared to WT mice. C) Object-context. All genotypes show similar exploration in 

both the sample and test phases. D) Object-place-context. Hdh
Q111+/+

 mice explore 

significantly more than WT and Hdh
Q111+/-

 mice in the sample phase (one way ANOVAs, 

P < 0.05). Hdh
Q111+/+

 mice explore significantly more than WT mice (one way ANOVAs, 

P < 0.05) in the test phase.  
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6.4.3: Object-place-context task: Episodic memory 

The mice were then tested for episodic memory in the object-place-context task. 

Bonferroni corrected pair-wise comparisons between groups for each task confirmed 

that the Hdh
Q111+/+

 and Hdh
Q111+/-

 mice were impaired when compared to WT mice in 

the object-place-context task at 13 months (both P < 0.05; Figure 6.5D). The Hdh
Q111+/+

 

and Hdh
Q111+/-

 mice performed similarly in this task (P > 0.05). Finally, one-sample t-

tests showed that the WT mice (P < 0.05), but not Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (P > 

0.05), explored the novel configuration significantly more than expected by chance in 

the object-place-context task (13 months). These results indicate that, at 13 months, the 

Hdh
Q111+/+ 

and Hdh
Q111+/-

 mice are impaired at the object-place-context task. This 

impairment is to be expected as I have shown previously that Hdh
Q111 

mice are impaired 

at many of the component parts of episodic memory when compared to wild type at 13 

months (section 6.4.2). 

 

The exploration times in the episodic memory task were assessed. One way ANOVAs 

showed a significant difference in the exploration patterns of the three genotypes in the 

sample (f (2, 28) = 11.824, P < 0.05) and test phases (f (2, 28) = 9.398, P < 0.05) at 13 

months (Figure 6.6D). Bonferroni pair-wise corrected comparisons showed that 

Hdh
Q111+/+

 mice explored significantly more than WT and Hdh
Q111+/-

 mice in both the 

sample and test phases (P < 0.05) of the object-place-context task. The exploration 

patterns of the Hdh
Q111+/-

 mice did not differ from WT mice throughout the object-

place-context task (both P > 0.05). 
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6.5 : Results : Assessment of episodic memory: Short protocol 

Episodic memory was also assessed using a novel shortened protocol based on the 

episodic task described earlier (for more details, see section 6.2.1 and 6.2.2). This 

shortened protocol was used in order to determine whether similar patterns of cognitive 

abnormalities seen using the longer protocol could be displayed over a shorter testing 

period. If successful, such a behavioural test would be a valuable tool in determining 

when early cognitive deficits present. The discrimination indices of WT (n = 14) and 

Hdh
Q111+/-

 (n = 12) mice were evaluated. A repeated measures ANOVA was performed 

on discrimination indices with genotype (WT vs. Hdh
Q111+/-

) as the between subjects 

factor and task (novel-object vs. object-place vs. object-context vs. object-place-context) 

as the within subjects factor. Results showed a significant effect of genotype (f (2, 21) = 

18.667, P < 0.05), task (f (3, 21) = 9.727, P < 0.05) and a significant task vs. genotype 

interaction (f (3, 21) = 6.641, P < 0.05; 2 months). The next section will discuss the 

performance of WT and Hdh
Q111+/-

 mice in each individual task, using the shortened 

protocol. 

 

6.5.1: Object recognition task 

WT and Hdh
Q111+/-

 mice (2 months) were tested in an object recognition test. Bonferroni 

corrected pair-wise comparisons between groups confirmed that the performance of 

Hdh
Q111+/- 

mice did not differ from WT in the object recognition task (P > 0.05) (Figure 

6.7A). In addition, one-sample t-tests showed that both genotypes explored the novel 

object significantly more than expected by chance. These data show that the presence of 

the mutant Huntingtin gene does not impair the ability of the mice to recognise a novel 

object/ remember a familiar object at 2 months.  

 



133 

 

 

 

 

The exploration times in the non-associative memory task were assessed. One way 

ANOVAs showed Hdh
Q111+/- 

mice explored significantly less than WT mice in both the 

sample (f (1, 25) = 6.087, P < 0.05) and test phase (f (1, 25) = 5.163, P < 0.05) (Figure 

6.8A). However, as demonstrated by the discrimination indices, the reduced exploration 

of the Hdh
Q111+/-

 mice has not affected the performance of the mice in this task. 

 

6.5.2: Object-place and object-context 

The mice were then tested in the object-place and object-context task. Bonferroni 

corrected pair-wise comparisons between groups for each task confirmed that Hdh
Q111+/-

 

mice did not differ from WT mice in the object-place or object-context tasks (P > 0.05) 

at 2 months (Figure 6.7B and 6.7C). The performance of Hdh
Q111+/-

 mice was similar in 

both of these tasks (P > 0.05). One-sample t-tests showed that both genotypes explored 

the novel configuration significantly more than expected by chance in both the object-

place and object-context tasks (P < 0.05).  These data show that the presence of the 

mutant Huntingtin gene does not impair the ability of the mice to identify the novel/ 

remember the familiar novel place and context configurations at 2 months.  

 

The exploration times were assessed. One way ANOVAs showed no significant 

difference in the exploration patterns in the sample (f (2, 25) = 1.166, P > 0.05) and test 

phase (f (1, 25) = 0.018, P > 0.05) of the object-place task (2 months; Figure 6.8B). In 

addition, one way ANOVAs demonstrated no significant differences in the sample (f (1, 

22) = 0.026, P > 0.05) and test phase (f (1, 22) = 0.369, P > 0.05) of the object-context task 

(2 months) demonstrating that the huntingtin mutation does not affect exploration in 

either of these tasks (Figure 6.8C). 
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6.5.3: Object-place-context task: Episodic memory  

The mice were then tested for episodic memory in the object-place-context task. 

Bonferroni corrected pair-wise comparisons between groups for each task confirmed 

that the performance of Hdh
Q111+/-

 mice significantly differed from WT mice in the 

object-place-context task at 2 months (P < 0.05; Figure 6.7D). Bonferroni corrected 

pair-wise comparisons between each pair of tasks indicated that WT mice showed no 

significant differences between tasks (all P > 0.05). In contrast, the Hdh
Q111+/+

 and 

Hdh
Q111+/-

 mice performed significantly worse in the object-place-context task when 

compared to the other tasks (both P < 0.05), with no difference between the object-place 

and object-context tasks. Finally, one-sample t-tests showed that WT mice (P < 0.05), 

but not Hdh
Q111+/-

 mice (P > 0.05), explored the novel configuration significantly more 

than expected by chance in the object-place-context task. These data show that the 

presence of the mutant Huntingtin gene impairs the ability of the mice to identify the 

novel/remember the familiar object-place-configuration at 2 months. Importantly, the 

results of this study provide similar results to those obtained using the longer protocol 

(section 6.3). It is therefore possible that this novel shortened protocol could be used to 

assess early cognitive abnormalities when the developmental window is brief. 

 

The exploration times in the object-place-context task were assessed. One way 

ANOVAs showed no significant differences in the exploration patterns in the sample (f 

(1, 24) = 0.015, P > 0.05) and test phase (f (1, 24) = 0.262, P > 0.05) of the object-place-

context task (2 months; Figure 6.8D). The lack of exploration differences between 

genotypes further emphasises the fact that the impairments in episodic memory are not 

secondary to any deficits in exploration. 
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Figure 6.7: The shortened protocol can be used to assess impairments in episodic 

memory in Hdh
Q111 

mice at 2 months. 

For each panel: Top shows schematic representation of the task. Bottom shows 

discrimination ratios of 2 month old WT (n = 14) and Hdh
Q111+/-

 (n = 12) mice. Both 

genotypes show similar ability to identify the novel objects in the (A) novel object, (B) 

object-place, (C) and object-context tasks (P > 0.05). (D) Hdh
Q111+/-

 mice are 

significantly impaired in their ability to identify the novel configuration in the object-

place-context task when compared to WT mice (P < 0.05).  
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Figure 6.8: The exploration behaviours of Hdh
Q111 

mice are unaffected at 2 months 

For each panel: Top shows schematic representation of the task. Bottom left and right 

shows total exploration times of the WT (n = 14) and Hdh
Q111+/-

 (n = 12) mice the 

sample and test phases respectively. A) Object recognition task B) Object-place task. C) 

Object-context task D) Object-place-context task. Hdh
Q111+/-

 mice show reduced 

exploration in the sample and test phases of the novel object task when compared to WT 

(one way ANOVAs, P < 0.05) Both genotypes show similar exploration patterns in the 

sample and test phases of the object-place, object-context and object-place-context 

tasks (One way ANOVAs, P > 0.05). 
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 6.6: Results: 24 hour novel object recognition task 

In order to provide another cognitive test that could assess the integrity of the 

hippocampus in HD, the 24 hour novel object recognition test was used to assess long-

term memory in Hdh
Q111 

mice. Exploration times were assessed at both 5 and 10 

minutes to determine whether the mice explored significantly more over 10 minutes, or 

whether exploration diminished after 5 minutes. One way ANOVAs demonstrated that 

although WT and Hdh
Q111

 mice explored significantly more after 10 minutes (all P < 

0.05), the discrimination indices calculated at 5 minutes and 10 minutes were similar 

(all P > 0.05). As a result, all the data presented in the following section represents the 

data obtained at the end of 10 minutes. 

 

6.6.1: 24 novel object recognition task (2 months) 

WT (n = 14), Hdh
Q111+/+

 (n = 11) and Hdh
Q111+/-

 (n = 14) mice (2 months) were tested in 

a 24 hour novel object recognition test. A one-way ANOVA was performed on 

discrimination scores and showed a significant effect of genotype (f (2, 38) = 79.468, P < 

0.05; 2 months). Bonferroni corrected pair-wise comparisons between groups confirmed 

that the Hdh
Q111+/+

 and Hdh
Q111+/-

 mice were impaired when compared to the WT in 

their ability to identify the novel object after a 24 hour delay (P < 0.05; Figure 6.9A). 

Finally, one-sample t-tests showed that WT mice performed significantly better than 

chance in the 24 hour novel object recognition task (P < 0.05), whereas the Hdh
Q111+/+

 

and Hdh
Q111+/-

 mice did not (P > 0.05). 

 

The exploration times in the 24 novel object recognition task were assessed. One way 

ANOVAs showed that there was no significant differences in the exploration patterns of 
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the mice in either Sample 1 (f (2, 38) = 1.091, P > 0.05), Sample 2 (f (2, 38) = 0.096, P > 

0.05) or the test phase (f (2, 38) = 0.292, P > 0.05) (Figure 6.9B). 

 

6.6.2: 24 hour novel object recognition task (1 month) 

Following the identification of impairments in episodic memory (section 6.3) and long-

term memory (section 6.5) in Hdh
Q111 

mice at 2 months, it was necessary to determine 

the age at which the cognitive deficits appeared in the Hdh
Q111

 mice. As a result, long-

term memory was also assessed at the age of 1 month.  

 

WT (n = 12) and Hdh
Q111+/-

 (n = 12) mice (1 month) were tested in a 24 hour novel 

object recognition test. WT and Hdh
Q111+/-

 mice showed similar performance in their 

ability to identify the novel object after a 24 hour delay (Figure 6.10A). A one-way 

ANOVA was performed on discrimination scores and showed no significant effect of 

genotype (f (1, 23) = 0.021, P > 0.05) at 1 month. One-sample t-tests showed that both the 

WT and Hdh
Q111+/-

 mice performed significantly better than expected by chance in the 

24 hour novel object task (P < 0.05) indicating that no cognitive deficits existed in 

Hdh
Q111+/- 

mice at 1 month. 

 

The exploration patterns were assessed. One way ANOVAs showed that there was no 

significant differences in the exploration patterns of the mice in either Sample 1 (f (1, 22) 

= 0.062, P > 0.05), Sample 2 (f (1, 23) = 1.508, P > 0.05) or the Test Phase (f (1, 23) = 

0.024, P > 0.05) (Figure 6.10B). The lack of exploration differences between genotypes 

is particularly important in this experiment as this suggests that the lack of cognitive 

impairment in Hdh
Q111

 mice is not due to altered exploratory behaviour. 
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Figure 6.9: Hdh
Q111 

mice show impairments in long-term memory at 2 months 

A) Hdh
Q111+/+ 

(n = 11) and Hdh
Q111+/-

 (n = 14) mice are significantly impaired in their 

ability to identify the novel object when compared to WT (n = 14; one way ANOVA, P < 

0.05) B) All genotypes show similar exploration patterns in both the sample phases and 

the test phase (one-way ANOVA, P > 0.05). 

 

 

B 

A 



140 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Hdh
Q111+/- 

mice show no cognitive deficits in the 24 hour object 

recognition task at the age of 1 month. 

A) WT (n = 12) and Hdh
Q111+/-

 (n = 12) mice have a similar performance in their ability 

to identify the novel object when compared to WT at 1 month (one-way ANOVA, P > 

0.05) B) Both genotypes show similar exploration patterns in both the sample phases 

and the test phase (one-way ANOVA, P > 0.05) 

A 

B 
Sample 1 Sample 2 Test 
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6.7: Discussion 

The episodic memory of WT, Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice (2 months) was assessed 

using recognition tasks that have been previously used in rodents (Ennaceur & 

Delacour, 1988; Bussey et al., 2000; Eacott & Norman, 2004; Dere et al., 2005; 

Norman and Eacott, 2005; Langston and Wood, 2010). These tasks assess the ability of 

rodents to discriminate the various aspects of episodic memory, the ‘what’, ‘where’ and 

‘when’, as defined by Tulving (1972) (see section 3.3). Studies in rodents have 

previously demonstrated that rats are capable of displaying episodic-like memory. 

‘what’, ‘where’ and ‘which’ (Eacott and Norman, 2004; Langston and Wood, 2010; see 

section 3.4.2). However, the present study is the first time that this episodic-like 

memory task has been successfully utilised in mice. As many studies use mice for 

genetic manipulations in the development of rodent models of human diseases, this 

study has therefore provided an important novel tool for assessing cognitive 

impairments in mice. Results indicated that, at 2 months, both Hdh
Q111+/+

 and Hdh
Q111+/- 

mice showed
 

a deficit in episodic memory as demonstrated by the impaired 

performance in the object-place-context task. Due to the fact that each mouse was tested 

in all 4 recognition tasks, I was able to confirm that the impairment in the object-place-

context task in the Hdh
Q111 

mice could not be attributed to secondary impairments in the 

recognition of object-place or object-context configurations and was not caused by a 

general lack of propensity to explore novelty. Therefore these data indicates that the 

deficit in the Hdh
Q111 

mice
 
can be specifically attributed to the object-place-context task, 

our model of episodic-like memory. The deficit in performance of the object-place-

context task suggests that, at 2 months of age, Hdh
Q111 

mice show impairments in 

episodic memory. Importantly, episodic memory is reported to be impaired in HD 

patients (Montoya et al., 2006; Solomon et al., 2007). Crucially, the cognitive 
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impairments in the homozygous and heterozygous Hdh
Q111 

mice are similar, indicating 

that, reminiscent of the human disorder, only one copy of the mutant gene is necessary 

to produce cognitive abnormalities, further supporting the validity of the Hdh
Q111

 mouse 

as a clinically relevant model of HD.  

 

Due to the early cognitive impairments found in Hdh
Q111

 mice at 2 months old, it was 

necessary to develop a novel protocol that could assess cognitive processes in a reduced 

time frame. To test this novel protocol, the episodic memory of Hdh
Q111

 mice (2 

months) was also assessed using a shortened version of the long episodic memory 

protocol (section 6.2.1), but instead of taking 5 weeks to complete, the mice had 

completed all 4 tasks in 3 days. Although this protocol has never been used in mice 

before, I was able to demonstrate that it could be used to produce similar results to those 

obtained using the longer protocol. This shortened protocol could therefore allow the 

cognitive abilities of mice to be examined over a shorter period of time, which is 

beneficial in a study where early cognitive abnormalities are being examined. In 

addition, a 24 hour novel object recognition task was used to demonstrate that the 

Hdh
Q111 

show no cognitive impairments at the age of 1 month. With such a narrow 

developmental window in which the cognitive deficits become apparent, both the 

shortened version of the episodic memory task and 24 hour novel object recognition 

task would therefore be useful in order to determine the specific age at which the 

cognitive deficits occur in the Hdh
Q111 

mouse model of HD, and also to assess the 

effectiveness of potential cognitive therapies. Although the 24 hour novel object 

recognition task is not a model of episodic memory, previous studies have indicated a 

role of the hippocampus in long-term novel object recognition (Clark et al, 2000; 

Broadbent et al, 2004; Ainge et al., 2006 – see section 3.4.1). As a result, the 24 hour 
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novel object task was used in order to provide a second, efficient cognition test that 

could assess the integrity of the hippocampus in the early stages of HD.  

 

The lack of a short-term memory impairment in the performance of the Hdh
Q111 

mouse 

(2 months) in the object recognition task agrees with a previous study which indicated 

that, at 12 and 14 weeks, the R6/1 transgenic model of HD shows similar preference for 

the novel object when compared to control animals (Nithianantharajah et al., 2008). 

However, in contrast to the lack of impairment of the Hdh
Q111 

mice in the object-place 

task (2 months), R6/1 mice show impairments in a test used to assess location memory 

(12 – 14 weeks; Nithianantharajah et al., 2008). These contrasting results could perhaps 

be explained by protocol differences (see section 3.4.3). However, the contrasting 

results could also be explained by the fact that the R6/1 displays a more severe 

phenotype than the Hdh
Q111

 mouse (see section 1.2.1.2). This suggestion is supported by 

the observation that the Hdh
Q111

 shows deficits in the object-place task by the age of 13 

months. Neuronal cell loss is evident in the hippocampus and it is thought that it is the 

changes within the hippocampus that underlie the cognitive abnormalities that 

characterise the early stages of HD (Rosas et al., 2003). It is perhaps the case that, in the 

early stages of the disorder, deficits only result in tasks that recruit the hippocampus. 

Rat lesions studies assessing the differential role of the hippocampus in memory could 

perhaps provide an insight behind the cognitive deficits in Hdh
Q111

 mice at 2 months 

(Ennaceur et al., 1997; Clark et al., 2000; Mumby et al., 2002; Broadbent et al., 2004; 

Eacott and Norman, 2004; Ainge et al., 2006; see section 3.4). Lesion studies have 

shown that the hippocampus is only required for the integration of object, place and 

context configurations, as memory for the individual components of episodic memory 

remain intact following lesions of the fornix/ hippocampus (Eacott and Norman, 2004; 
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Langston and Wood, 2010; section 3.4.2 and 3.4.3). In addition, lesion studies have 

indicated that the hippocampus could be important in novel object recognition at long 

delays (Clark et al, 2000; Broadbent et al, 2004; Ainge et al., 2006 – see section 3.4.1). 

The lack of impairment in the 24 hour novel object recognition task at 1 month 

therefore suggests that the hippocampus is functioning normally in the Hdh
Q111

 mouse 

early in development. 

 

The long-term memory of Hdh
Q111

 mice was assessed at 2 months. In contrast to the 

results of the short-term novel object recognition task, Hdh
Q111+/+

 and Hdh
Q111+/- 

mice 

were unable to identify the novel object following a 24 hour retention time, whereas 

WT animals had no problem successfully completing this task. Therefore, in order to 

gain a better understanding of the contrasting results in the short- and long-term 

recognition tasks, a task could be designed in which short-term recognition memory (2 

minute retention) and long-term recognition memory (24 hour retention) protocols 

could be more accurately compared i.e. with identical sample and test times. In 

addition, the retention times could also be varied in attempt to determine at which point 

at which recognition memory becomes impaired. If it is indeed the case that 

abnormalities within the hippocampus contribute to the early cognitive deficits in HD, it 

would be beneficial to assess the point at which recognition memory recruits the 

hippocampus, thus resulting in the development of cognitive impairments in HD.  

 

An alternative explanation could also perhaps explain the contrasting results. Previous 

studies have demonstrated that patients of HD are unable to recall information (Butters 

and Grady, 1977; Butters et al., 1978; Caine et al., 1978), and several studies have 

shown that although human patients are able to store and retain new information, they 
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are unable to retrieve the information at a later date (Butters et al., 1983; Butters et al., 

1985; Moss et al., 1986; Delis et al., 1991; Lundervold et al., 1994). If this is indeed the 

case, it is possible that in the test of short-term recognition memory, the Hdh
Q111 

mice 

are using working memory to identify the novel object. However, when longer retention 

intervals are used, i.e. 24 hours, there is requirement for the storage of the encoded 

information, which the Hdh
Q111 

mice are subsequently unable to retrieve, thereby 

displaying a cognitive deficit at longer retention intervals. In the case of the short-term 

cognitive impairment in object-place-task, as a model of episodic memory this task 

should recruit the hippocampus. Importantly, rat lesion studies have demonstrated that 

this is indeed the case (Eacott and Norman, 2004; Langston and Wood, 2010 – see 

section 3.4.2). It is possible that the deficits in episodic memory occur as a result of 

damage to the hippocampus in the early stages of HD, thus explaining why the short-

term recognition memory of object-place and object-context is intact. 

 

The results from the assessment of cognitive processes in the older animals suggest that 

the early cognitive deficits present in the Hdh
Q111

 mice are progressive, perhaps 

spreading to different regions of the brain by the age of 13 months. It would therefore 

be beneficial to know which brain regions are involved in each of the tests used to 

assess short-term recognition memory. Lesion studies have indicated a role of the 

perirhinal cortex in the object recognition task (Ennaceur et al., 1996., Bussey et al., 

2000), but not the object-place memory (Ennaceur et al., 1997; Eacott and Norman, 

2004). In addition, lesions of the perirhinal cortex only cause relatively mild, delay-

dependent impairments of object–context memory (Norman and Eacott, 2005). 

However, lesions of the postrhinal cortex impair memory for object–context 

associations (Norman and Eacott, 2005). In addition, unpublished data has 
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demonstrated that the entorhinal cortex is involved in the processing of object-context 

configurations (Ainge and Langston, 2010). In agreement, the entorhinal cortex is one 

of the earliest brain regions to be affected in Alzheimer’s disease (Van Hoesen et al., 

1991; Gomez-Isla et al., 1996; Du et al., 2001; Mega, 2001) so it is possible that the 

cognitive deficits in the Hdh
Q111 

mouse could also link to the abnormalities within the 

entorhinal cortex. 

 

In order to determine which brain regions are specifically activated during each test it is 

possible to examine Fos protein expression within specific brain regions. The 

expression of c-fos, an early gene-product marker of Fos, can be used as an indirect 

marker of neuronal activity as expression reflects an intracellular state of cells that 

varies primarily as a result of recent activation by intercellular signals. If, for example, 

the perirhinal/ postrhinal or entorhinal cortices are involved in any of the short-term 

spontaneous recognition memory tasks in mice, that particular brain region would show 

an upregulation of c-fos mRNA expression (Dragunow and Faull, 1989; Day et al., 

2008; Van Elzakker et al., 2008). Following these studies, if any brain regions show Fos 

expression, lesion studies specifically targeting these regions could be performed in 

control animals in order to assess which brain regions are critical for cognitive 

processing of the object-place and object-context tasks.  
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7: Experiment 3: Characterisation of the 

electrophysiological phenotype of the Hdh
Q111 

mouse 

Hippocampal synaptic plasticity has been proposed as a correlate of learning and 

memory (see section 2.3). Impairments in synaptic plasticity have been demonstrated in 

mouse models of HD prior to the appearance of an overt motor phenotype (Usdin et al., 

1999; Murphy et al., 2000; Lynch et al., 2007; Simmons et al., 2009). Subsequently, it 

is possible that changes in synaptic plasticity in the Hdh
Q111 

mouse could underlie 

cognitive deficits seen in HD (Lione et al., 1999; Mazarakis et al., 2005; Van 

Raamsdonk et al., 2005; see section 6.1). The following section will therefore discuss 

the hippocampal synaptic plasticity deficits in the Hdh
Q111

 mouse model of HD.  

 

7.1: HD and deficits in LTP 

The following section will introduce synaptic plasticity deficits that have been 

demonstrated in mouse models of HD (Usdin et al., 1999; Murphy et al., 2000; Lynch 

et al., 2007; Simmons et al., 2009). The synaptic physiology of hippocampal slices 

derived from wild type and heterozygous mutant 80 CAG mice was assessed (8 – 14 

months; for more information on the 80 CAG mouse model, see section 1.2.2.1) (Usdin 

et al., 1999). Although baseline synaptic function (i.e. control fEPSPs) was similar to 

that of control mice, LTP was significantly reduced for the mutant animals when 

compared to control (Usdin et al., 1999). However, the LTP deficit in this model of HD 

could be rescued by applying a stronger LTP induction protocol. Therefore, Usdin et al. 

(1999) speculated that instead of disabling the LTP mechanism, the huntingtin mutation 

in the 80 CAG mouse increased the threshold for LTP induction. 
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In addition, a study by Lynch et al. (2007) investigated synaptic plasticity in pre-

symptomatic homozygous Hdh
Q92

 and Hdh
Q111

 knock-in mice (2 months; for more 

information on the Hdh
Q92 

and Hdh
Q111 

mice, see Section 1.2.2.2). Basal synaptic 

properties were comparable for WT, Hdh
Q92 

and Hdh
Q111 

mice. Furthermore, paired-

pulse facilitation did not differ between the genotypes, suggesting that there are no 

presynaptic abnormalities in this mouse model. However LTP, assessed 60 minutes 

post-theta burst stimulation (TBS), was significantly reduced in the slices from the 

knock-in mice (Lynch et al., 2007).  

 

A study by Murphy et al. (2000) demonstrated reduced synaptic plasticity in the R6/2 

mouse model of HD (for more information on the R6/2 mouse, see section 1.2.1.1).  

Although basal synaptic transmission was normal, LTP following a high-frequency 

conditioning stimulus was significantly reduced at the CA1 synapses of hemizygous 

R6/2 mice at all ages from 5 – 18 weeks. The deficits in synaptic plasticity in the R6/2 

mouse are also associated with cognitive deficits as demonstrated by impaired spatial 

memory at 7 weeks. Similarly, LTP deficits and impairments in long-term memory have 

been demonstrated in homozygous Hdh
Q140 

mice (8 weeks) (Simmons et al., 2009; for 

information on the Hdh
Q140

 mouse, see section 1.2.2.3). The results of these studies 

therefore indicate that dysfunctional synaptic transmission may underlie the cognitive 

deficits seen pre-symptomatically in HD (Usdin et al., 1999; Simmons et al., 2009). 

 

Collectively, these studies have shown that mutant huntingtin severely impairs the 

stabilisation of LTP (Usdin et al., 1999; Murphy et al., 2000; Lynch et al., 2007; 

Simmons et al., 2009). This section will assess  basal synaptic transmission and LTP in 

the Hdh
Q111 

mouse model of HD in order to detect early hippocampal abnormalities, 
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thereby allowing a further understanding of the relationship between cognitive deficits 

and synaptic plasticity in HD. 

 

7.2: Methods 

7.2.1: Hippocampal brain slice preparation 

Adult male WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (2 months) were sacrificed by cervical 

dislocation in accordance with Schedule 1 of the UK Animals (Scientific Procedures) 

Act 1986. The brain was dissected was immersed in oxygenated (95% O2, 5% CO2) 

artificial cerebrospinal fluid (aCSF) containing (in mM) 124 NaCl, 3 KCl, 1 

MgSO4.7H2O, 1.25 NaH2PO4, 26 NaHCO3, 1 CaCl2 and 10 D-glucose. The cerebellum 

and lateral portion of the temporal lobes were removed, and the brain was halved down 

the midline and glued to a metal plate. Sagittal slices (400 µm) were cut using feather 

blades (Agar Scientific, Essex, UK) while mounted on a Vibratome (Intracel, Series 

1000, Royston, Hert, UK), and continuously submerged in aCSF. Sagittal hippocampal 

slices were cut from each of the bisected hemispheres.  Such slices were then placed on 

a submerged nylon mesh in an incubation chamber, filled with oxygenated aCSF at 

room temperature for at least an hour before use in electrophysiological recording. 

 

7.2.2: Solution application 

A single slice was transferred to a submerged recording chamber (Scientific Systems 

Design, Mississauga, Ontario, Canada) to obtain electrophysiological recordings. 

Oxygenated aCSF solution, was held at a bath temperature of 31 - 32ºC by a 

temperature controller (Digitimer, Research Instruments, Hertfordshire, UK), using an 

oxygenated water chamber to circulate warm water beneath the slice. The slice was 
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oxygenated in the perfusion system with aCSF (flow rate ~2 ml/min). Gravity feed was 

manipulated to maintain a constant flow rate and a Gilson pump (AD Instruments, 

model Minipuls evolution, Calgrove, Oxfordshire, UK) was used for suction. 

 

7.2.3: Generation of field excitatory postsynaptic potentials (fEPSPs). 

To monitor basal synaptic transmission a bipolar stimulating electrode, either hand-

made from twisted Teflon-coated tungsten wire (Advent research materials, Ltd, 

Eynsham, Oxfordshire, UK) or a commercial electrode (World Precision Instruments, 

Florida, USA) was used to stimulate the Schaffer collateral-commissural pathway from 

area CA3 to the CA1 region of the hippocampus. Stimulation of these presynaptic fibres 

results in the release of glutamate at the synapse between the axons of the CA3 region 

and dendrites of the CA1 neurons, causing a synchronous postsynaptic depolarization, 

resulting from the activation of ionotropic receptors (primarily AMPA receptors) and 

influx of positive ions into the postsynaptic terminal (Amaral and Lavenex, 2007). The 

stimulus was delivered to the slice every 30 seconds to record dynamic changes in 

fEPSPs and this was controlled by a constant current isolated electronic stimulator 

(Digitimer Ltd, model DS2, Hertfordshire, UK) which was electrically isolated to 

prevent interference from the mains electrical noise. The stimulatory current was 

adjusted to produce a response with a slope measurement that was 40% of the 

maximum population spike-free response. fEPSPs were recorded using an aCSF-filled 

glass borosilicate microelectrode, (Kind precision glass, Inc, Claremont, USA), which 

had been pulled to the desired tip resistance of less than 5 MΩ (inner diameter of 0.69 

mm) by a vertical electronic puller (Narishige, Japan, model PP-830) and placed in the 

apical dendrite layer of CA1 pyramidal cells. Within the recording electrode was a 

silver chloride wire (Advent research materials, Ltd, Eynsham, Oxfordshire, UK) and 



151 

 

 

 

 

this, together with a ground electrode of silver chloride wire, was attached to an isolated 

differential amplifier where the signal was amplified and filtered (3 kHz – 10 kHz) 

(Warner Instrument Corporation, Connecticut, USA). The output from the amplifier 

was fed through an oscilloscope (Tektronix, Oregon, USA) and digitised through an 

acquisition board (BNC-2090, National Instruments, Berkshire, UK). Both stimulating 

and recording electrodes were positioned using manipulators under visual guidance 

through a microscope (Olympus, SZ30, Essex, UK). 

 

7.2.4: fEPSP analysis 

Analysis of fEPSPs was performed using WinLTP software (Anderson, 

www.winltp.com). The WinLTP software provides a visual representation of the 

evoked fEPSP and can also be used to alter the stimulation protocol (e.g. the number, or 

the duration of pulses) or the parameters of the fEPSP recording (e.g. the length of 

recording, or amplitude and slope detection values). The fEPSP has a number of 

characteristic features (Figure 7.1) and measurement of amplitude and slope of the 

fEPSP can be taken to give an indication of synaptic activity within the neuronal 

population. Analysis of the slope of the fEPSPs was used as a measurement of the 

strength of synaptic transmission and was measured from 30% - 70% of the peak 

amplitude. The percentage increase in fEPSP slope when compared to baseline was 

calculated offline using Origin 7 software (OriginLab Corporation, Northhampton, MA, 

USA) and this was used to quantify the magnitude of LTP. 

 

7.2.5: Input-output function 

Basal synaptic transmission was studied with an input-output curve. This is a measure 

of synaptic recruitment, which increases with the input stimulus due to the activation of 
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a greater population of neurons. Input-output curves were generated using increasing 

stimulus intensities and the slope of each of the evoked fEPSPs was measured. The 

stimulus was initially set a point at which no fEPSP current was evoked and was then 

increased at 10 µA increments. For each stimulation intensity three stable slope 

recordings were measured at 30 second intervals and the responses were subsequently 

averaged. The slope of the fEPSP was then plotted as a function of stimulus strength. 

The curve was completed when a plateau phase was reached and the slope of the fEPSP 

remained similar at several increasing stimulus intensities. 

 

7.2.6: Paired-pulse facilitation 

Paired-pulse facilitation (PPF) was recorded at inter-stimulus intervals of 20, 50, 100, 

200, 300, 400 and 500 ms. PPF was plotted as a paired pulse ratio, calculated by 

dividing the amplitude of the second fEPSP by the amplitude of the first fEPSP versus 

inter-stimulus interval. Values of greater than 1 indicate facilitation. Three steady 

fEPSP slope responses were recorded at 30 second intervals for each inter-stimulus 

interval and the measurements were subsequently averaged. 

 

7.2.7: LTP induction 

There are a number of stimulation protocols which have been used to induce LTP in the 

hippocampal slice preparation. The theta burst protocol is characterised by an inter-

burst interval of 200 ms and is considered to be physiologically relevant as similar 

firing patterns exist in the hippocampus during learning (Otto et al., 1991). A 10 minute 

stable baseline recording of control fEPSPs was obtained after which LTP was induced, 

by the same stimulating electrode by applying a 4 pulse TBS (4-TBS) protocol in which 

10 bursts of stimulation pulses were delivered at a frequency of 5 Hz; each burst 
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containing 4 pulses at 100 Hz. The fEPSP measurements were obtained for an 

additional 60 minutes. The magnitude of LTP was assessed between 40 – 50 minutes 

post-TBS (for more details on analysis and statistics, see section 7.2.8 and 7.2.9). 
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Figure 7.1: A field extracellular postsynaptic potential (fEPSP). The amplitude is 

calculated as the measurement from the baseline to the peak of the fEPSP, while the 

slope is calculated between 30-70% of the amplitude. The stimulus artifact appears as a 

brief spike immediately before the fEPSP. The fEPSP represents the simultaneous 

depolarisation of a population of CA1 pyramidal neurons, which is recorded as a 

negative voltage deflection due to the flow of positive ions away from the recording 

electrode into the postsynaptic terminals.  

 

Amplitude (mV) 
Slope (mV/ ms) 

Baseline (ms) 
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7.2.8: Measurement of LTP 

Following a TBS there is an immediate increase in both the slope and amplitude of the 

fEPSP. This enhanced response decreases rapidly in the first 5 minutes after LTP 

induction, causing a steep decrease in the slope and the amplitude of the fEPSP. A 

plateau phase is reached where the slope and amplitude of the fEPSP both reach a 

steady maintained state, which is enhanced in comparison to the original control 

fEPSPs. Experiments that did not follow this pattern, i.e. decayed below baseline, were 

discarded. LTP was measured using the average potentiation of the plateau phase, taken 

at 50 minutes following the 4-TBS. The mean value of each individual slice was 

calculated and then for the group as a whole. The average potentiation determined from 

all fEPSPs between 40 – 50 minutes post TBS was used for statistical comparison 

between the groups. In order to allow experiments to be accurately pooled together, 

LTP was plotted as a normalised measurement of control fEPSP slope values. 

 

7.2.9: Statistics and analysis 

All graphs of electrophysiological experiments were created using Origin 7 software 

(OriginLab Corporation, Northhampton, MA, USA). Input-output curves were 

compared using a one-way ANOVA. PPF and LTP measurements were analysed by a 

repeated measures ANOVA. The analysis used is indicated in the text where 

appropriate. Significance was noted at the levels of P < 0.05. Data is presented as mean 

± SEM and n = number of slices. 
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7.3: Results 

 

7.3.1: Input/ output function 

Normalised input-output curves were generated and compared for WT mice, Hdh
Q111+/+

 

and Hdh
Q111+/- 

mice (2 months; age range 59 – 74 days – hereafter referred to as 2 

months old). A normalised input-output curve, where the maximum fEPSP slope was 

set to 100%, was generated. Results showed that there were no significant differences in 

the normalised input-output curve in 2 month old WT (n = 8), Hdh
Q111+/+

 (n = 9) or 

Hdh
Q111+/-

 (n = 8) mice (One-way ANOVA: f (2, 51) = 0.213, P > 0.05; Figure 7.2A). 

 

7.3.2: Paired-pulse facilitation  

Paired-pulse facilitation was compared between 2 month old WT mice, Hdh
Q111+/+

 and 

Hdh
Q111+/-

 mice. In all experiments, the maximum facilitation was observed at an inter-

stimulus interval of 50 ms. In WT mice (n = 8), the paired-pulse ratio at 50 ms was 1.78 

± 0.06, while in Hdh
Q111+/+ 

(n = 9) and Hdh
Q111+/- 

(n =6) was 1.8 ± 0.06 and 1.73 ± 0.04 

respectively. Subsequent statistical analysis revealed that the paired-pulse ratio is 

similar in all 3 genotypes (Repeated measures ANOVA: f (2, 23) = 0.04, P > 0.05; Figure 

7.2B).  
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Figure 7.2: Input/output function and PPF is normal in the Hdh
Q111 

mice (2 months) 

A) Input/output function. The fEPSP slope was measured at a range of stimulus 

intensities and then normalised for WT (n = 8), Hdh
Q111+/+

 (n = 9) and Hdh
Q111+/-

 (n = 

6) mice. The input/output function was similar in all 3 genotypes (One-way ANOVA; P 

> 0. 05). B) Paired-pulse facilitation. The paired-pulse facilitation was calculated at a 

range of inter-stimulus intervals (20, 50, 80, 100, 200, 300, 400 and 500 ms) in WT (n = 

8), Hdh
Q111+/+

 (n = 9) and Hdh
Q111+/-

 (n = 8) mice. Paired-pulse facilitation was similar 

in all 3 genotypes (Repeated measures ANOVA; P > 0.05). 
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7.3.3: LTP is impaired in the Hdh
Q111

 mouse model of HD (2 months) 

For hippocampal slices derived from WT mice (n = 14), a 4-TBS induced a robust 

magnitude of LTP, (93 ± 16 % increase cf. control at 50 minutes post-TBS). Similarly, 

for brain slices derived from either Hdh
Q111+/+

 and Hdh
Q111+/-

 mice a 4-TBS induced 

LTP, but for both genotypes the magnitude was considerably reduced c.f. WT 

(Hdh
Q111+/+

 = 50 ± 8 % increase, n = 9; Hdh
Q111+/-

 = 28 ± 6 % increase, n = 15; Figure 

7.3). 

 

These data illustrates that, at 2 months, LTP is significantly impaired in both Hdh
Q111+/+

 

and Hdh
Q111+/-

 brain slices, when compared to WT (repeated measures ANOVA, effect 

of genotype; f (2, 33) = 8.558, P < 0.05). Bonferroni corrected pair-wise comparisons 

between groups confirmed that potentiation of the fEPSP slope 50 minutes post-TBS 

was significantly reduced in both Hdh
Q111+/+

 and Hdh
Q111+/-

 brain slices when compared 

to WT (P < 0.05), but that there was no significant difference (P > 0. 05) between 

heterozygous and homozygous HD mice in this respect (Figure 7.3). 
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Figure 7.3: LTP is impaired in both homozygous and heterozygous 2 month old Hdh
Q111

 mice  

A) The time course of the changes in the slope of the fEPSP after the induction of LTP by a 4-

TBS, applied after the establishment of a 10 minute control baseline. The fEPSP slope is plotted 

as the percentage change against time and expressed as a pooled mean (± SEM). B) A 4-TBS 

induced robust LTP in WT slices (93 ± 16% increase; n = 14), but a significantly reduced 

magnitude of LTP in Hdh
Q111+/+ 

(50 ± 8 % increase) and Hdh
Q111+/-

 (28 ± 6 % increase) slices (P 

< 0.05). LTP deficits are similar in Hdh
Q111+/+

 and Hdh
Q111+/-

 mice (P > 0.05). Error bars 

indicate SEM. n values indicate number of slices. 
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7.4: Discussion 

These results indicate that the properties of fEPSPs are similar in WT, WT, Hdh
Q111+/+ 

and Hdh
Q111+/-  

hippocampal CA1 neurons. The similarity in the input/output function 

suggests that Hdh
Q111+/+ 

and Hdh
Q111+/- 

slices have approximately the same density of 

synapses as control and these synapses also respond similarly to a single stimulus. In 

addition, the paired-pulse ratios did not differ between the genotypes, suggesting no 

impairment of presynaptic function. The lack of any impairments in the fEPSP 

properties of Hdh
Q111+/+ 

and Hdh
Q111+/- 

CA1 neurons agrees with previous studies which 

have demonstrated that PPF in hippocampal slices derived from Hdh
Q92 

and Hdh
Q111 

mice (Lynch et al., 2007) and R6/2 mice (Murphy et al., 2000) does not differ from 

those of WT (section 7.1).  

 

Although basal excitatory synaptic transmission was normal in Hdh
Q111

 mice, due to the 

cognitive deficits that are associated with HD, the effect of the huntingtin mutation on 

the magnitude of LTP was also assessed. Results indicated that Hdh
Q111+/+ 

and 

Hdh
Q111+/- 

mice showed significant impairments in LTP when compared to WT mice at 

2 months. This result is in agreement with other studies which have also demonstrated 

impaired synaptic plasticity in mouse models of HD, including the 72/ 80 CAG knock-

in (Usdin et al., 1999), R6/2 (Murphy et al., 2000), Hdh
Q92 

and Hdh
Q111

 (Lynch et al., 

2007) mouse models (see section 7.1). Of specific interest to the mouse model used in 

the present study, LTP has only previously been assessed in homozygous Hdh
Q111

 mice 

(Lynch et al., 2007). The results of the current study clearly demonstrate that LTP 

deficits are also evident in the more clinically relevant heterozygous Hdh
Q111 

mice, 

indicating that similar to the human disorder, only one copy of the mutant gene is 

necessary to produce the impairments in synaptic plasticity associated with HD. 
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Specifically, LTP deficits were evident in the 80 CAG mouse model of HD (Usdin et 

al., 1999; see section 7.1). However in 12% of the mutant slices, LTP was 

indistinguishable from wild type, suggesting that the huntingtin mutation perhaps 

increases the threshold for LTP induction. In agreement, following an enhanced tetanus 

stimulus (six 1 second long trains at 100 Hz, 30 seconds apart), LTP in mutant slices 

was indistinguishable from wild type slices that had been subjected to the same 

enhanced tetanus stimulation (Usdin et al., 1999). It is perhaps the case that a common 

mechanism exists between the 80 CAG and the Hdh
Q111 

mouse, so it would be of benefit 

to determine whether a stronger LTP induction protocol could also relieve the LTP 

deficit seen in the Hdh
Q111 

mouse.  

 

The study by Lynch et al. (2007) observed that LTP was reduced in slices generated 

from homozygous Hdh
Q92 

and Hdh
Q111 

mice, and in agreement with the present study, 

did not demonstrate any differences in paired-pulse facilitation, also suggesting a 

postsynaptic locus of action. Several studies have provided a possible post-synaptic 

mechanism behind the LTP deficit in the Hdh
Q111

 and these will be discussed in the 

following section.
 
 TBS causes actin polymerization in potentiated synapses, thereby 

assisting in the stabilisation of LTP (Lin et al., 2005; Kramar et al., 2006). However, 

the increase F-actin expression following TBS is absent in Hdh
Q111

 hippocampal slices, 

perhaps explaining the deficit in the stabilisation of LTP in the Hdh
Q111 

mouse (Lynch et 

al., 2007). In addition, the deficits in actin polymerisation found in the Hdh
Q111 

mouse 

could also provide an explanation for the abnormal spine morphology found in striatal 

and cortical neurons in human patients (Graveland et al., 1985; Ferrante et al., 1991) 

and mouse models of HD (Guidetti et al., 2001; Spires et al., 2004). Brain derived 

neurotrophic factor (BDNF) is a positive modulator of LTP and acts by reducing the 
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after-hyperpolarisation that results from TBS (Bramham and Messaoud, 2005; Kramar 

et al., 2006) and by facilitating actin polymerisation in spines immediately after TBS 

(Rex et al., 2007). Previous findings have shown that BDNF expression is decreased by 

the presence of mutant huntingtin (Zuccato et al., 2001, 2005; Spires et al., 2004). In 

addition, studies have been indicated that BDNF levels are reduced in the neocortex, 

striatum (Gines et al., 2003) and hippocampus (Lynch et al., 2007) of mouse models of 

HD. Lynch et al. (2007) demonstrated that the LTP deficit in the Hdh
Q111

 mouse could 

be rescued by BDNF to a level that was not significantly different from BDNF-treated 

wild type slices (Lynch et al., 2007). This study therefore suggests that the cognitive 

deficits associated with HD could be treated by increasing BDNF levels, possibly by 

treatment with an AMPAkine (Lauterborn et al., 2000). In agreement, a study by 

Simmons et al. (2009) demonstrated that the LTP and long-term memory deficits in 

homozygous Hdh
Q140

 mice could be rescued to a level comparable to control following 

treatment with an AMPAkine (5 mg/kg, injected twice daily for 4 days; Simmons et al., 

2009). However the study by Lynch et al. (2007) only demonstrated reduced BDNF 

levels and the rescue of LTP by BDNF in Hdh
Q111+/+ 

mice. It would therefore be 

valuable for the BDNF levels to be assessed in the more clinically relevant Hdh
Q111+/-

 

mouse to see if reduced BDNF expression is consistent.  

 

In conclusion, I have shown that the Hdh
Q111

 mouse displays deficits in episodic 

memory and long-term recognition memory (Chapter 6). In addition, this chapter 

indicates that the Hdh
Q111

 mouse displays LTP deficits (2 months). In the following 

chapter, data will be presented illustrating that acute treatment of the brain slice 

preparation with a drug known to enhance certain forms of cognition, can rescue these 

cognitive and LTP deficits. 
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8: Experiment 4: The cognitive and LTP deficit in 

Hdh
Q111 

mice is rescued by an α5-GABAA receptor 

inverse agonist 

 

8.1: Introduction 

In the previous chapters I have demonstrated that the Hdh
Q111

 mouse model of HD 

displays impairments in episodic memory and long-term impairments in the 24 hour 

novel object recognition task (2 months). In addition, these cognitive deficits are 

evident before the appearance of an overt motor phenotype in the Hdh
Q111 

mouse. 

Studies have shown that reduced or deleted expression of α5-GABAA receptors 

facilitates cognition (Collinson et al., 2002; Crestani et al., 2002; Caraiscos et al., 2003; 

Martin et al., 2010; see section 4.3). Furthermore, drugs inhibiting the function of α5-

GABAA receptors are known to enhance memory (Chambers et al., 2003; Dawson et 

al., 2006; Nutt et al., 2007). These studies will be discussed in the introduction section 

of this chapter. Extrasynaptic α5-GABAA receptors are densely expressed in mouse 

hippocampal CA1 neurons (Bai et al., 2001; Caraiscos et al., 2004; Vargas-Caballero et 

al., 2010). Studies have demonstrated that selective α5-GABAA receptor antagonists 

enhance submaximal LTP in this region (Dawson et al., 2006; Martin et al., 2010). In 

this chapter I will report the results of experiments examining the effect of α5IA, a 

selective inverse agonist for the α5-GABAA receptor (Sternfeld et al., 2004) on the 

cognitive and LTP deficits I have previously demonstrated in the Hdh
Q111 

mouse model 

of HD. 
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8.1.1: Inverse agonists of the α5-GABAA receptor enhance cognition 

and LTP. 

The α5-GABAA receptor is expressed primarily in the hippocampus, suggesting a role in 

learning and memory (see section 4.3). In addition, pharmacological studies support the 

role of α5-GABAA receptors in learning processes. A study by Chambers et al. (2003) 

demonstrated that inverse agonists of the α5-GABAA receptor enhance cognitive 

processes in rats. Whilst benzodiazepine agonists such as diazepam increase the GABA-

induced chloride flux mediated by GABAA receptors, non-selective (i.e. do not 

discriminate between GABAA receptor isoforms) inverse agonists cause a decrease in 

chloride flux and often an increase in neuronal excitability (Vargas-Caballero et al., 

2010). Non-selective benzodiazepine inverse agonists enhance cognitive performance in 

animals (McNamara & Skelton, 1993), but can be anxiogenic (Dorow et al., 1983) and 

pro-convulsant (Peterson, 1983; Sarter, 2001), thereby restricting the potential use of 

non-selective inverse agonists as treatments for disorders where memory is impaired. 

Due to the proposed involvement of the α5-GABAA receptor in learning and memory 

Chambers et al. (2003) hypothesised that an inverse agonist selective for the α5-GABAA 

receptor could be utilised as a cognitive enhancing agent that lacked the unwanted side 

effects associated with non-selective inverse agonists. Chambers et al. (2003) identified 

a novel inverse agonist, 6,6–Dimethyl–3–(2–hydroxyethyl)thio–1–(thiazol–2–yl)–6,7-

dihydro–2–benzothiophen – 4(5H)–one (Compound 43), that had higher affinity at the 

α5-GABAA receptor when compared to the other receptor subtypes. Spatial memory was 

enhanced following treatment with Compound 43 when compared to vehicle-treated 

animals. 
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A further selective inverse agonist for the α5-GABAA receptor was identified in 2004 

(Sternfeld et al., 2004). The inverse agonist α5IA has a relatively high affinity for 

human recombinant GABAA receptors containing the α1, α2, α3 or α5 subunit co-

expressed with a β3 and a γ2 subunit (Ki values 0.58 – 0.88 nM), with lower affinity for 

the equivalent α4 (Ki 60 nM) and α6 (Ki 418 nM) subunit containing receptors. A 

similar affinity of α5IA for native rat GABAA receptors (Ki ~1nM) was determined, 

suggesting that α5IA does not show interspecies differences. A study by Dawson et al. 

(2006) demonstrated that α5IA improved performance in a hippocampal-dependent 

version of the MWM task. The anxiolytic properties of α5IA were tested by assessing 

the performance of the rats in the elevated plus maze. The elevated plus maze has 

previously been shown to be sensitive to agonists and inverse agonists acting at the 

benzodiazepine binding site of the GABAA receptor (Pellow and File, 1986). Mice were 

treated with a non-selective partial inverse agonist at the benzodiazepine binding site 

(FG 7142), the α5-selective inverse agonist α5IA, or were treated with vehicle. FG 7142 

significantly increased the amount of time spent in the closed arms of the elevated plus 

maze, suggesting it had an anxiogenic-like effect. In contrast, α5IA-treated rats did not 

show any differences in the time spent in the closed arms. The sedative properties of 

α5IA were also assessed. The effect of α5IA and diazepam on the locomotor activity of 

mice was demonstrated using a fixed speed rotarod protocol. Diazepam reduced the 

latency to fall from the rod in a dose-dependent manner, whereas α5IA had no effect 

(Dawson et al., 2006). Finally the pro-convulsant activity of α5IA was assessed. Mice 

were either injected with vehicle, α5IA or FG 7142 and were subsequently infused with 

the pro-convulsant pentylentetrazole and the time taken to induce clonic and full tonic 

seizures was measured. Administration of α5IA did not induce seizures, nor did it 

decrease the dose of pentylentetrazole required to induce convulsions. By contrast, FG 
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7142 reduced the dose of pentylenetetrazole required to induce a seizure, indicating pro-

convulsant activity. This study therefore shows that selective inhibition of α5-GABAA 

receptors resulted in improved performance in the hippocampal-dependent MWM task, 

without the anxiogenic, sedative or convulsant properties associated with non-selective 

GABAA receptor inverse agonists (Dawson et al., 2006).  

 

In addition to studying the in vivo effects of α5IA, Dawson et al. (2006) also 

investigated the in vitro properties of this inverse agonist. LTP in the Schaffer 

collateral-commissural pathway of the hippocampus was induced by a brief tetanus (10 

stimuli at 100 Hz) followed by a TBS and the effect of α5IA on the magnitude of LTP 

was assessed. Dawson et al. (2006) found that although α5IA had no effect on basal 

synaptic transmission, LTP was significantly enhanced in α5IA-treated slices when 

compared to controls. As previous studies have indicated that non-selective inverse 

agonists at the benzodiazepine binding site potentiate LTP (Seabrook et al., 1997), 

enhancement of LTP following disinhibition via the α5-GABAA receptor using α5-

subunit selective inverse agonists indicates that the α5-subtype is potentially responsible 

for the LTP enhancement observed with non-selective inverse agonists. 

  

A study by Nutt et al. (2007) used α5IA to investigate the role of α5-GABAA receptors 

in cognition in man. In addition to being modulated by benzodiazepines, there is some 

evidence, albeit controversial, that GABAA receptors are also modulated by alcohol 

(Wallner et al., 2003; 2006; Olsen et al., 2007), however see Borghese et al., 2006. 

Alcohol has been shown in some studies to influence the function of the GABAA 

receptor by enhancing the effects of GABA and other agonists that act on certain 

GABAA receptor isoforms. The α5-GABAA receptor has been implicated in mediating 
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the effects of alcohol including motor co-ordination, sedation and amnesia (McKay et 

al., 2004; Pickering et al., 2007). Taking this into consideration, the study by Nutt et al. 

(2007) used α5IA to evaluate the role of the α5-GABAA receptor in mediating the effects 

of alcohol on the brain. In this study volunteers were dosed with either α5IA, or placebo 

and were given alcohol to drink. One hour after they had consumed the alcohol the 

subjects were asked to memorise a list of 20 words and recall them 30 minutes later. 

The study determined that the adverse memory effects of alcohol were attenuated by 

α5IA. When subjects were pre-treated with α5IA they were able to recall significantly 

more words than when they were treated with vehicle. In addition, subjects who had 

consumed more alcohol showed a more significant improvement in memory recall after 

treatment with α5IA. Other than the enhancement of memory, α5IA had no significant 

effect on the other functional impairments associated with alcohol consumption, 

including motor co-ordination and sedation. In agreement with previous studies in 

rodents (Chambers et al., 2003, Dawson et al., 2006), this study demonstrated that the 

α5-GABAA receptor in humans is important in the regulation of learning and memory, 

indicating that this receptor could potentially be a therapeutic target in the early stages 

of diseases that are associated with cognitive decline. 

 

8.1.2: Specific targeting of the α5-GABAA receptor in an animal model 

of cognitive decline. 

Down’s syndrome is a disorder that is characterised by varying degrees of cognitive 

decline and an imbalance between inhibitory and excitatory neurotransmission, 

specifically increased GABAergic transmission, is thought to contribute to the learning 

and memory abnormalities associated with individuals with the disorder (Best et al., 

2007; Kleschevnikov et al., 2004). In agreement, treatment of mouse models of Down’s 
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syndrome with the non-competitive GABAA receptor antagonists picrotoxin and 

pentylenetetrazol have been demonstrated to restore cognitive decline (Fernandez et al., 

2007; Rueda et al., 2008). However, these drugs are convulsant at high doses. 

Subsequently a recent study by Braudeau et al. (2011) assessed the effects of α5IA in a 

cognitively impaired Ts65Dn mouse model of Down’s syndrome. Braudeau et al. 

(2011) showed that α5IA treatment rescued the spatial deficits associated with Ts65Dn 

mice. In addition, Ts65Dn mice showed an impaired performance in the novel object 

recognition task that could be recovered following pre-treatment with α5IA. Due to the 

lack of convulsant or anxiogenic effects in the Ts65Dn mouse, α5IA demonstrates a 

more favourable therapeutic profile than non-selective GABAergic drugs. This study 

therefore provides evidence for the potential use of selective inverse agonists at the α5-

GABAA receptor for the treatment of diseases associated with cognitive decline 

(Braudeau et al., 2011). 

 

8.2: Methods 

The role of α5-GABAA receptors in the regulation of learning and memory indicates that 

this receptor could potentially be a therapeutic target in diseases of cognitive decline. 

The effects of α5IA (Sternfeld et al., 2004) on the cognitive and the LTP deficits in the 

Hdh
Q111 

mouse model of HD will be discussed in the following chapter. 

 

 
8.2.1: Drug application – Cognition tests 

Following training in the novel object, object-place and object-context tasks, WT (n = 

12) and Hdh
Q111+/-

 (n = 12) were tested in the object-place-context task (section 6.2.1). 

On each day mice received intraperitoneal injections of either α5IA (3 mg / kg), vehicle 

(0.4% methylcellulose) or were not injected. For the long protocol (section 6.2.1) each 
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mouse performed the task 12 times, receiving 4 drug and 4 vehicle injections and 4 

trials with no injection. For the short protocol (section 6.2.2), each mouse performed the 

task 3 times, receiving 1 drug and 1 vehicle injection and 1 trial with no injection. In the 

24 hour novel object recognition task (section 6.2.3), mice were only injected on the 

sample days (i.e. mice were not injected on the test day). Each mouse performed the 

task 3 times, one for each condition, and therefore each mouse received 2 drug and 2 

vehicle injections (and 1 trial with no injection). In all tests, injections were 

counterbalanced to eliminate any object bias that may occur on a given day within the 

experimental groups and the experimenter was blind to the identity of the injected 

solutions. After injection, the mouse was placed back into the home cage and was tested 

30 minutes later. 

 

8.2.2: Drug application – LTP 

 
Hippocampal slices from WT and Hdh

Q111+/-
 mice were perfused with α5IA (300 nM) 

for at least 30 minutes prior to the induction of LTP (for electrophysiological methods, 

see section 7.2). 

 

8.3: Results 

8.3.1: Episodic memory (long protocol) α5IA drug treatment 

The episodic memory of WT (n = 12) and Hdh
Q111+/-

 (n = 12) mice was assessed (2 

months). A repeated measures ANOVA was performed on discrimination scores with 

genotype (WT vs. Hdh
Q111+/-

) as the between subjects factor and drug condition (no 

injection vs. vehicle vs. α5IA) as the within subjects factor. This showed a significant 

effect of genotype (f (1, 22) = 93.827, P < 0.05), drug condition (f (2, 44) = 3.680, P < 0.05) 
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and a significant drug condition vs. genotype interaction (f (2, 44) = 9.037, P < 0.05) (2 

months). Bonferroni corrected pair-wise comparisons confirmed that Hdh
Q111+/-

 mice 

showed impaired performance in the object-place-context task when compared to WT 

irrespective of whether they received no injection, or whether they were injected with 

vehicle (both P < 0.05; Figure 8.1A and 8.1B). Furthermore, a one-sample t-test 

indicated that WT (P < 0.05), but not Hdh
Q111+/-

 (P > 0.05) mice, explored the novel 

configuration significantly more than expected by chance in these two conditions, i.e. 

Hdh
Q111+/- 

mice were unable to identify the novel object regardless of whether they were 

injected with vehicle, or did not receive an injection. Bonferroni corrected pair-wise 

comparisons confirmed that, following injection with 3 mg/ kg α5IA, the performance of 

the compromised Hdh
Q111+/- 

mice was improved to a level that was not significantly 

different from α5IA-treated WT mice (P > 0.05; Figure 8.1C). Finally, one-sample t-

tests confirmed that both WT and Hdh
Q111+/-

 mice explored the novel configuration 

significantly more than expected by chance following injection with α5IA. 

 

In addition, in order to demonstrate that α5IA did not remain in the system over night 

and influence the performance of the mice the next day, analysis was carried out 

comparing the discrimination indices of WT mice that received an α5IA injection 

followed by a vehicle injection the next day and vice versa. The data was arranged in 

categories according to the order of drug injections from day to day i.e. vehicle 

following drug or drug following vehicle. A one-way ANOVA demonstrated that the 

order of the injections does not affect the discrimination indices obtained (f (1, 36) = 

0.750, P > 0.05), indicating that α5IA does not remain in the system over night. In 

addition, pharmacokinetic studies in man have also shown that the half-life of α5IA is 
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approximately 2 – 2.5 hours (Xue et al., 2004), therefore providing further evidence that 

the order of injections should not influence the results. 

 

The exploration times of mice in each condition were assessed. One way ANOVAs 

showed no significant differences in the exploration patterns of WT and Hdh
Q111+/-

 mice 

in the sample and test phases in the 3 drug conditions (all P > 0.05) (Figure 8.1A and 

8.1B).  
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Figure 8.1: α5IA greatly improves the cognitive deficit of Hdh
Q111+/-

 mice in the 

episodic memory task. Graphs show the exploration times (left) and discrimination indices 

(right). Hdh
Q111

 mice (n = 12) are significantly impaired when compared to WT in their 

ability to identify the novel object in the no injection (A), and vehicle injection trials (B) 

(P < 0.05). (C) The performance of Hdh
Q111+/-

 mice is significantly improved following 

injection with α51A, (P < 0.05) to a level that is not significantly different from α51A-treated WT 

mice (P > 0.05). All mice show similar exploration patterns in each of the drug conditions (P > 

0.05). 

C: α5IA injection 

A: No injection 

B: Vehicle injection 
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8.3.2: Episodic memory (short protocol) α5IA drug treatment 

In addition, WT (n = 9) and Hdh
Q111+/-

 (n = 8) mice were tested in the object-place-

context task in order to determine if the rescue of the cognitive impairment of the 

Hdh
Q111+/-

 with α5IA can still be seen using the short protocol. 

 

The discrimination indices for the three drug conditions were assessed. A repeated 

measures ANOVA was performed on discrimination scores with genotype (WT vs. 

Hdh
Q111+/-

) as the between subjects factor and drug condition (no injection vs. vehicle 

vs. α5IA) as the within subjects factor. This investigation showed a significant effect of 

genotype (f (1, 15) = 35.426, P < 0.05), but no effect of the drug condition (f (2, 30) = 1.794, 

P > 0.05) or a drug condition vs. genotype interaction (f (2, 30) = 1.890, P < 0.05; 2 

months). As a result, no further statistical analysis could be performed. However, the 

pattern of results using this shortened protocol (Figure 8.2) was similar to that obtained 

in the longer protocol (Figure 8.1) with Hdh
Q111+/-

 mice showing a trend towards 

impaired performance in the no injection and vehicle injection trials but improved 

performance following treatment with α5IA (Figure 8.2C). 

 

The exploration times of the mice in each condition were assessed. One way ANOVAs 

showed no significant differences in the exploration patterns for sample and test phases 

in all 3 conditions (all P > 0.05) (Figure 8.2).  
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Figure 8.2: α5IA greatly improves the cognitive deficit of Hdh
Q111+/-

 mice in the 

shortened version of the episodic memory task. Graphs show the exploration times 

(left) and discrimination indices (right). A repeated measures ANOVA showed no 

significant drug vs. genotype interaction, therefore no further statistical analysis could 

be performed. However, the pattern of results is similar to that obtained using the long 

protocol in as far as Hdh
Q111+/- 

(n = 8)
 
mice showed impaired performance in the 

object-place-context task when compared to WT (n = 9) following no injection (A) and 

vehicle injection (B). (C) The performance of Hdh
Q111+/-

 mice is improved following 

injection with α51A, to a level that is similar to α51A-treated WT mice. All mice show 

similar exploration patterns in each of the drug conditions (one-way ANOVA, P > 0.05) 

A: No injection 

B: Vehicle injection 

C: α5IA injection 
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8.3.3: 24 hour novel object recognition task : α5IA drug treatment 

WT (n = 9), Hdh
Q111+/+

 (n = 5) and Hdh
Q111+/-

 (n = 9) mice were tested in the 24 hour 

novel object recognition task (Figure 8.3). A repeated measures ANOVA was 

performed on discrimination scores with genotype (WT vs. Hdh
Q111+/+

 vs. Hdh
Q111+/-

) as 

the between subjects factor and drug condition (no injection vs. vehicle vs. α5IA) as the 

within subjects factor. Results revealed a significant effect of genotype (f (2, 20) = 30.666, 

P < 0.05), drug condition (f (2, 40) = 13.0639, P < 0.05) and a genotype vs. drug condition 

interaction (f (4, 40) = 7.492, P < 0.05). Bonferroni corrected pair-wise comparisons 

between groups confirmed that the Hdh
Q111+/+

 and Hdh
Q111+/-

 mice were impaired when 

compared to WT mice irrespective of whether they received no injection or were 

injected with vehicle (both P < 0.05). Furthermore, one-sample t-tests indicated that WT 

(P < 0.05), but not the Hdh
Q111+/+

 or Hdh
Q111+/-

 (P > 0.05) mice, performed significantly 

better than expected by chance in these two conditions, i.e. the Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice were unable to identify the novel object after a 24 hour retention interval. 

However, following injection with 3 mg/ kg α5IA, performance of the compromised 

Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice was significantly improved (P < 0.05) to a level that was 

not significantly different to their WT counterparts (P > 0.05). One-sample t-tests 

indicated that WT, Hdh
Q111+/+

 and Hdh
Q111+/-

 mice, performed significantly better than 

expected by chance following injection with α5IA. 

 

The exploration patterns of the mice were also assessed. In the no injection trial, one 

way ANOVAs demonstrated exploration was similar in sample 1 (f (2, 22) = 2.981, P > 

0.05) and sample 2 (f (2, 22) = 1.997, P > 0.05), but differed in the test phase (f (2, 22) = 

8.727, P < 0.05). Bonferroni corrected pair-wise comparisons confirmed the reduced 

exploration of the Hdh
Q111+/+

 mice in the test phase (P < 0.05) and showed that the 
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activity of WT and Hdh
Q111+/-

 mice was similar in all three phases (P > 0.05). Hdh
Q111+/+

 

and Hdh
Q111+/- 

mice showed similar exploration patterns in the vehicle trial (P > 0.05) 

(Figure 8.3A). 

 

The exploration patterns for the vehicle trial were analysed. One way ANOVAs 

demonstrated that exploration was similar in sample 1 (f (2, 22) = 0.901, P > 0.45) and 

sample 2 (f (2, 22) = 2.219, P > 0.05), but differed in the test phase (f (2, 22) = 5.845, P < 

0.05). Bonferroni corrected pair-wise comparisons confirmed the reduced exploration of 

the Hdh
Q111+/+

 mice in the test phase (P < 0.05) and showed that the activity of WT and 

Hdh
Q111+/-

 mice was similar in all three phases (P > 0.05). Hdh
Q111+/+

 and Hdh
Q111+/- 

mice showed similar exploration patterns in the vehicle trial (P > 0.05) (Figure 8.3B). 

 

Finally the exploration patterns for the α5IA trial were assessed. One-way ANOVAs 

showed significant differences in sample 1 (f (2, 22) = 3.908, P < 0.05) and sample 2 (f (2, 

22) = 4.994, P < 0.05). Bonferroni corrected pair-wise comparisons between groups for 

each task showed that Hdh
Q111+/-

 mice explored significantly less than WT mice in both 

the sample phases (P < 0.05), whereas Hdh
Q111+/+

 mice explored similarly to WT (P > 

0.05). However, although Hdh
Q111+/-

 mice displayed hypoactivity in the sample phase, 

episodic memory was still enhanced following injection with α5IA. Exploration was 

similar in the test phase (f (2, 22) = 0.496, P > 0.05) (Figure 8.3C).  
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Figure 8.3: α5IA greatly improves the cognitive deficit of Hdh
Q111+/-

 mice in the 24 

hour novel object recognition task. 

For each panel: Left shows the total exploration times of the WT (n = 9), Hdh
Q111+/+ 

(n = 5) and 

Hdh
Q111+/-

 (n = 9) mice in Sample 1, Sample 2 and test phase. Right shows the discrimination 

index in the test phase. Hdh
Q111+/+ 

and Hdh
Q111+/-

 mice are significantly impaired in their ability 

to identify the novel object when compared to WT in the (A) no injection and (B) vehicle 

injection trials (P < 0.05). (C) The performance of Hdh
Q111+/+

and Hdh
Q111+/-

 mice is improved 

following injection with α51A, to a level that is similar to α5IA-treated WT mice (P > 0.05).  
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8.3.4: The effects of the α5-GABAA receptor inverse agonist α5IA on 

hippocampal LTP of WT and Hdh
Q111

 mice. 

 

Previous studies have demonstrated that selective α5-GABAA receptor antagonists 

enhance submaximal hippocampal LTP (Dawson et al., 2006; Martin et al., 2010; 

section 8.1.1). Given the association of LTP and memory (section 2.3) and the fact that 

α5IA rescued the cognitive abnormalities of Hdh
Q111

 mice (sections 8.3.1 – 8.3.3), the 

effect of α5IA on the LTP deficit associated with Hdh
Q111 

mice (section 7.3.3) was 

assessed. 

 

8.3.4.1: The influence of the stimulus protocol on the magnitude of LTP. 

For hippocampal slices derived from WT mice (n = 14), a 4-TBS induced a robust form 

of LTP (93 ± 16 % increase in the slope of the fEPSP), as measured 50 minutes post-

TBS (2 months) (Figure 8.4). LTP was also induced using the sub-maximal 3-TBS 

(Figure 8.4). In WT slices the 3-TBS induced LTP, but of a magnitude (32 ± 4 % 

increase, n = 6) significantly less than that induced by the 4-TBS paradigm (repeated 

measures ANOVA, f (1, 20) = 8.486, P < 0.05).  

 

8.3.4.2: The magnitude of LTP following a sub-threshold stimulus is enhanced by 

an α5-GABAA receptor “inverse agonist”. 

As a prelude to investigating whether the α5-GABAAR inverse agonist α5IA (Sternfeld 

et al., 2004) may rescue the deficit in LTP noted in Hdh
Q111+/+

 and Hdh
Q111+/- 

mice (see 

section 7.3.3), I investigated the effect of α5IA on the submaximal LTP induced in WT 

hippocampal slices by a 3-TBS (n = 8). WT hippocampal slices were perfused with 

α5IA (300 nM) for at least 30 minutes prior to the induction of LTP. This treatment did 

A: No injection 

[Type a quote from the 

document or the summary of an 

interesting point. You can 

position the text box anywhere 

in the document. Use the 

Drawing Tools tab to change 

the formatting of the pull quote 

text box.] 
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not change baseline (i.e. control fEPSPs) transmission in WT slices. However, in the 

continued presence of 300 nM α5IA, LTP (obtained 50 minutes after 3-TBS) is 

significantly greater (86 ± 22 % increase; n = 8) than that obtained from untreated WT 

slices following 3-TBS (36 ± 6 % increase; n = 6; repeated measures ANOVA, f (2, 25) = 

4.338, P < 0.05). Furthermore, Bonferroni corrected pair-wise comparisons between 

groups confirmed that, in α5IA-treated WT slices, LTP following 3-TBS was not 

significantly different from the robust LTP following 4-TBS in untreated WT slices (P 

> 0.05; Figure 8.5).  

 

Additionally, the effect of 300 nM α5IA on LTP following 4-TBS was also assessed. In 

α5IA-treated WT brain slices (n = 10), the magnitude of LTP (obtained 50 minutes after 

4-TBS) was a 64 ± 8 % increase of the fEPSP slope c.f. control, a value that was not 

significantly different from the magnitude of LTP induced by the 4-TBS protocol in 

untreated WT brain slices (93 ± 19 % increase, repeated measures ANOVA, f (1, 22) = 

12.898; P > 0.05; Figure 8.6). 

 

In summary, these data illustrates that the magnitude of LTP resulting from a sub-

threshold 3-TBS in WT slices can be facilitated by the α5-GABAA receptor inverse 

agonist α5IA. However, α5IA has no effect on the robust LTP following 4-TBS in WT 

slices. 
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Figure 8.4: A comparison of LTP induced by a 4-TBS and a 3-TBS protocol in hippocampal 

slices derived from 2 month old WT mice.  

A) The time course of the changes in the slope of the fEPSP after the induction of LTP by a 4-

TBS or 3-TBS, delivered after the establishment of a 10 minute control baseline. The fEPSP 

slope is plotted as a percentage change against time and expressed as a pooled mean (± SEM). 

B) A 4-TBS induced a robust LTP (93 ± 16% increase; determined 50 mins. post-TBS) in WT 

hippocampal slices. The magnitude of LTP was significantly less following a 3-TBS (36 ± 6% 

increase, P < 0.05) cf. the 4-TBS. Error bars indicate SEM. n values indicates the number of 

brain slices. 
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Figure 8.5: In WT hippocampal brain slices sub-maximal LTP is facilitated by α5IA  

 

A) The time course of the changes to the slope of the fEPSP after the induction of LTP induced 

by a 3-TBS, delivered after the establishment of a 10 minute control baseline. The fEPSP slope 

is plotted as a percentage change against time and expressed as a pooled mean (± SEM). B) 

The magnitude of LTP was significantly increased following 3-TBS in WT slices treated with 

300 nM α5IA (86 ± 22% increase; n = 8) when compared to control 3-TBS LTP (36 ± 6% 
increase; n = 6) (P < 0.05). Note the magnitude of LTP following a 3-TBS in brain slices 

treated with α5IA is not significantly different from that induced by a 4-TBS in untreated WT 

slices (P > 0.05; n = 14). Error bars indicate SEM. n values indicate number of slices. 
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Figure 8.6: The α5-GABAAR inverse agonist α5IA has no effect on LTP induced by 4-TBS in 

hippocampal slices derived from WT (2month old) mice. 

A) The time course of the changes in the slope of the fEPSP after the induction of LTP by a 4-

TBS, applied after the establishment of a 10 minute control baseline. The fEPSP slope is plotted 

as the percentage change against time and expressed as a pooled mean (± SEM). B) The 

magnitude of LTP was unchanged in brain slices treated with 300 nM α5IA (64 ± 8% increase; 

n = 10) when compared to control 4-TBS LTP (93 ± 16% increase; n = 14; P < 0.05). Error 

bars indicate SEM. n values indicate number of brain slices. 
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8.3.4.3: The impairment of LTP in 2 month old Hdh
Q111

 mice is rescued by an α5-

GABAA receptor inverse agonist. 

The following section will report the effect of α5IA on the LTP deficits observed in 

Hdh
Q111+/-

 brain slices (2 months old; see section 7.3.3).  

 

In Hdh
Q111+/-

 brain slices that had been treated with 300 nM α5IA (n = 12), the 

magnitude of LTP following a 4-TBS was significantly greater (62 ± 11 % increase) 

than that of untreated Hdh
Q111+/-

 brain slices (28 ± 6 % increase; n = 15; repeated 

measures ANOVA, f (1, 23) = 7.067, P < 0.05; Figure 8.7). Furthermore, potentiation of 

the fEPSP slope 50 minutes after 4-TBS in Hdh
Q111+/-

 brain slices treated with 300 nM 

α5IA was not significantly different to that seen in WT brain slices that had been treated 

with 300 nM α5IA (64 ± 8 % increase; n = 10; repeated measures ANOVA, f (1, 20) = 

0.253, P > 0.05; Figure 8.7). These results indicate that treatment of Hdh
Q111+/-

 brain 

slices with 300 nM α5IA significantly rescues the LTP deficit observed for untreated 

Hdh
Q111+/-

 brain slices, to a level that is not significantly different from that of WT brain 

slices that have been treated with 300 nM α5IA.  
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Figure 8.7: α5IA rescues the deficit of LTP evident in Hdh
Q111+/-

 hippocampal slices 
 

A) The time course of the changes in the slope of the fEPSP after the induction of LTP by a 4-

TBS, applied after the establishment of a 10 minute control baseline. The fEPSP slope is plotted 

as the percentage change against time and expressed as a pooled mean (± SEM). B) The 

magnitude of LTP in Hdh
Q111+/-

 slices treated with 300 nM α5IA (62 ± 11% increase; n = 12) 

was not significantly different to WT slices treated with 300 nM α5IA (64 ± 8% increase; n = 

10; P < 0.05). The magnitude of LTP induced by a 4-TBS in Hdh
Q111+/-

 slices treated with 300 

nM α5IA (62 ± 11% increase; n = 12) was significantly greater than that induced in untreated 

Hdh
Q111+/-

 slices (28 ± 6% increase; n = 15; P < 0.05). Error bars indicate SEM. n values 

indicate number of brain slices. 
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8.4: Discussion 

In this chapter I have demonstrated that α5IA reverses the deficits in episodic memory in 

Hdh
Q111

 mice (long-protocol) to a level that is not significantly different from WT mice. 

Although the pattern of results was similar in the shortened protocol, the cognitive 

deficit rescue by α5IA was not statistically significant. This was perhaps due to 

increased variability in the data associated with the shortened protocol. This observation 

suggests that although this novel shortened protocol is useful for the assessment of 

cognitive deficits when the developmental window is relatively brief (see sections 6.5 

and 6.7), this paradigm is not necessarily a replacement for the longer protocol, where 

repeated measurements reduce the error in the data set. 

 

In addition I have demonstrated that α5IA alleviates the cognitive deficits of Hdh
Q111

 

mice in the 24-hour novel object recognition task to a level that is not significantly 

different from α5IA-treated WT mice. The rescue of the long-term memory deficit in the 

Hdh
Q111+/- 

mice is in contrast to a previous study in which the performance of a mouse 

model of Down’s Syndrome in a short-term, but not a long-term, memory task was 

improved following treatment with α5IA (Braudeau et al., 2011; section 8.1.2). 

Although previous studies have assessed the effect of selective α5-GABAA receptor 

inverse agonists on the acquisition and retrieval of stored information, they used 

memory paradigms that were based on short-term memory retentions that did not assess 

long-term (at least 24 hours) recall (Atack et al., 2006; Collinson et al., 2006). 

However, the current study clearly demonstrates that α5IA has the capacity to improve 

both short- and long-term memory in cognitively impaired mice. 
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Furthermore, studies have demonstrated that selective α5-GABAA receptor antagonists 

enhance submaximal LTP (Dawson et al., 2006; Martin et al., 2010). In agreement, I 

have demonstrated that while α5IA has no significant effect on the magnitude of control 

LTP, treatment of Hdh
Q111+/-

 brain slices with 300 nM α5IA rescues the LTP deficit 

observed for untreated Hdh
Q111+/-

 brain slices, to a level that is not significantly different 

from that of α5IA-treated WT brain slices. 

 

The rescue of the cognitive and LTP deficits in Hdh
Q111

 mice by a selective inverse 

agonist for the α5-GABAA receptor suggests that the phenotype may perhaps result from 

an imbalance between excitatory and inhibitory neurotransmission. Due to the fact that 

HD is associated with the major loss of striatal GABAergic medium spiny neurons 

(reviewed in Vonsattel and DiFiglia, 1998), it is not surprising that postsynaptic 

changes in GABA receptors have been reported (Fujiyama et al., 2002; Thompson-Vest 

et al., 2003; Cepeda et al., 2004; Allen et al., 2009). Several studies have observed an 

up-regulation of GABAA receptor expression in models of HD (Fujiyama et al., 2002; 

Thompson-Vest et al., 2003; Cepeda et al., 2004; Allen et al., 2009). It was suggested 

that there was an increased contribution of GABAA receptors to synaptic transmission 

in the R6/2 model of HD as the frequency of spontaneous GABAergic synaptic currents 

was increased in medium spiny neurons in the striatum of the R6/2 mouse (Cepeda et 

al., 2004). Furthermore, this change to inhibitory synaptic function was accompanied by 

an increased response to exogenous GABA application and an increased expression of 

α1-GABAA receptors (Cepeda et al., 2004). The alterations in GABAergic synaptic 

currents were concurrent with the appearance of the first overt behavioural phenotype in 

R6/2 mice (Cepeda et al., 2004). In mouse models of HD reduced brain levels of BDNF 

have been reported (Zuccato et al., 2001, 2005; Spires et al., 2004; Lynch et al., 2007). 
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Intriguingly, a study in the striatum further demonstrated that BDNF reduced the 

frequency of spontaneous GABAergic synaptic currents (Cepeda et al., 2004). 

Furthermore, in the hippocampus, BDNF rescued the suppressed LTP evident with the 

Hdh
Q111

 mouse (Lynch et al., 2007). It is conceivable this effect of BDNF is a 

consequence of an alteration in GABA-ergic signaling. Clearly a whole-cell voltage-

clamp study of the phasic and tonic GABA-ergic signaling in CA1 of the Hdh
Q111

 

mouse would be invaluable in this regard.  

 

Studies using alternative models of HD also report a perturbation of GABAA receptors. 

Increased GABAA receptor expression has been noted in the substantia nigra of rats 

with quinolinic acid lesions (Fujiyama et al., 2002). These rats exhibit a similar loss of 

striatonigral GABAergic neurons to that which occurs in HD and, as such, have been 

used as models of this disease (for references see Brickell et al., 1999). Specifically, it 

was shown in this lesion model of HD that the expression of β2/3-GABAA receptors was 

increased in individual synapses of the substania nigra (Fujiyama et al., 2002). A 

similar increase in GABAA receptor expression has also been observed in the globus 

pallidus of human patients with HD, specifically demonstrated by an increase in α1, β2/3 

and γ2-GABAA receptors (Thompson-vest et al., 2003; Allen et al., 2009). GABAergic 

neurons in the striatum project to both the substania nigra and globus pallidus, so it is 

possible that the increase in expression of the α1-, β2/3- and γ2-GABAA receptors in these 

areas is to compensate for the loss of striatal GABAergic neurons. 

 

As mentioned briefly above, clearly a comprehensive investigation (utilising whole-cell 

voltage-clamp and immunohistochemistry) of the expression of synaptic and 

extrasynaptic GABAA receptors in WT and Hdh
Q111

 mice with an emphasis on 
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extrasynaptic α5-GABAA receptors is required. Importantly, previous studies have 

indicated that α5-GABAA receptors mediate the tonic current in the hippocampus (Bai et 

al., 2001; Caraiscos et al., 2004; Vargas-Caballero et al., 2010), and exist in 

combination with β1/3- and γ2-subunits (Herd et al., 2008). Therefore, in common with 

the substania nigra and globus pallidus, it is possible that β3-GABAA receptor 

expression, in combination with the α5-subunit, could also be increased in the 

hippocampus in HD. It would therefore be invaluable to use antibodies specific for α5-

GABAA receptors to assess expression in the CA1 region of the hippocampus of 

Hdh
Q111

 mice. 

 

In order to assess the role of α5-GABAA receptors in tonic conductance, synaptic 

plasticity and memory, a study by Martin et al. (2010) examined synaptic plasticity and 

hippocampus-dependent cognition in mice null for the α5-GABAA receptor (Gabra 5
-/-

). 

Results indicated that genetic deletion or pharmacological inhibition of α5-GABAA 

receptors markedly reduces the threshold for LTP, as indicated by enhanced LTP in 

Gabra5
-/-

 mice. Furthermore, it was demonstrated that α5-GABAA receptors had greater 

influence on the control of LTP at stimulation frequencies associated with theta-

frequency, which has been linked to hippocampus-dependent learning (Buzsaki, 2005). 

In agreement, Gabra5
-/-

 mice showed increased freezing scores in the hippocampus-

dependent trace fear conditioning task (Martin et al., 2010), consistent with findings 

from a previous study in a second genetic model of α5-GABAA receptor deficiency 

(Crestani et al., 2002). If the Hdh
Q111

 mouse demonstrates increased α5-GABAA 

receptor expression within the hippocampus, this may increase the threshold for LTP 

induction, perhaps underlying or contributing to the LTP deficit associated with Hdh
Q111 

mice. Interestingly, as described previously, it was speculated that the huntingtin 
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mutation increases the threshold for LTP induction in the 72/ 80 CAG mouse model 

(Usdin et al., 1999; see section 7.1). As decreased α5-GABAA receptor expression has 

been associated with enhanced cognitive performance, increased α5-GABAA receptor 

expression should therefore inhibit hippocampal-dependent cognitive tasks, perhaps 

explaining the cognitive deficit in the Hdh
Q111 

mouse.  
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9: Summary and conclusions 

 

In humans, the clinical diagnosis of HD relies on the manifestation of motor 

abnormalities. In an attempt to characterise the motor phenotype of the Hdh
Q111 

mouse, 

the circular running tracks and the activity box were used to assess locomotor activity 

while the rotarod was used to assess motor co-ordination. In agreement with other 

studies that have indicated no locomotor dysfunction in the activity box (Wheeler et al., 

2000; Menalled et al., 2009), I have demonstrated that the Hdh
Q111 

mouse shows no 

impairments in spontaneous locomotor activity in the activity box and circular runways 

up to the age of 13 months. Analysis of the performance on the accelerating rotarod 

paradigm suggested that, in agreement with Mennalled and colleagues (2009), 

Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice demonstrated an enhanced performance at early ages 

when compared to WT, which could be indicative of the hyperkinesia associated with 

patients in early stages of HD. In addition, I demonstrated a mild impairment in 

Hdh
Q111+/+ 

and Hdh
Q111+/- 

mice from 6 and 7 months respectively, although this was not 

consistent at all of the subsequent ages. Tests, including the fixed speed rotarod 

paradigm, balance beam and foot print analysis have been used to assess fine motor co-

ordination and balance in other mouse models of HD (Carter et al., 1999; Hickey et al., 

2005; Stack et al., 2005; Hickey et al., 2008) and could perhaps be used to further 

examine the early motor phenotype of the Hdh
Q111 

mouse. Nevertheless, as this thesis is 

focusing on the cognitive and LTP deficits that have been demonstrated prior to a motor 

phenotype, it is not necessarily critical that an overt motor phenotype is displayed. 

 

Studies have shown that cognitive deficits are often present in advance of motor 

symptoms in human patients (Hahn-Barma et al., 1998; Lawrence et al., 1998; 



191 

 

 

 

 

Kirkwood et al., 2000; Verny et al., 2007) and in mouse models (Lione et al., 1999; 

Van Raamsdonk et al., 2005; Brooks et al., 2006; Pang et al., 2006; Nithianantharajah 

et al., 2008; Simmons et al., 2009) of HD. Deficits in hippocampal LTP have also been 

reported at similar ages in other mouse models of HD, including the 80CAG, R6/2 

Hdh
Q92

, Hdh
Q111

 and Hdh
Q140 

mice (Usdin et al., 1999; Murphy et al., 2000; Lynch et 

al., 2007; Simmons et al., 2009). In agreement, I have demonstrated that, despite 

possessing normal basal synaptic transmission, Hdh
Q111+/+ 

and Hdh
Q111+/-

 mice showed 

impairments in LTP by 2 months of age. I have also demonstrated that the Hdh
Q111

 

mouse model of HD displays normal cognitive processes at the age of 1 month but 

presents with short-term impairments in episodic memory and long-term recognition 

memory by 2 months. Although this is an age where Hdh
Q111

 mice appeared to show 

enhanced performance on the rotarod, the lack of differences in the exploration patterns 

in the cognition test suggests that the rotarod results are not necessarily an accurate 

assessment of the motor phenotype of the Hdh
Q111 

mice and therefore more 

investigation is perhaps required.  

 

I have shown that the short-term memory deficits present at 2 months are progressive, 

with cognitive deficits spreading to include the object-place and object-context tasks by 

13 months. It would be beneficial to characterise the brain regions involved in each of 

the tasks by examining the expression of cFos, following up with lesion studies in 

control animals, targeting the specific brain regions associated with each task in an 

attempt to anatomically define the cognitive deficits seen in the Hdh
Q111 

mice. 

 

The episodic and long-term recognition deficits of the Hdh
Q111 

mouse were rescued 

following treatment with the α5-GABAA receptor inverse agonist α5IA. It would 
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therefore be beneficial to assess hippocampal α5-GABAA receptor expression using 

antibodies specific for the α5-subunit to determine expression of extrasynaptic receptors 

and whole-cell voltage-clamp studies to compare the properties of the tonic current in 

Hdh
Q111

 and WT CA1 neurons in order to further examine the mechanism behind the 

cognitive and LTP deficits associated with HD.   

 

In conclusion, prior to the emergence of a conclusive motor phenotype, Hdh
Q111 

mice 

demonstrate impairments in episodic memory and deficits in the hippocampal-

dependent 24 hour novel object recognition task. These findings suggest abnormal 

hippocampal functions early in HD. These cognitive impairments were accompanied by 

deficits in hippocampal LTP. Importantly, the clinically relevant heterozygous Hdh
Q111

 

mice exhibited an identical phenotype to homozygous Hdh
Q111 

mice indicating that, 

reminiscent of the human disorder, only one copy of the mutant gene is necessary to 

produce abnormalities associated with the disorder, further supporting the validity of the 

Hdh
Q111

 mouse as a clinically relevant model of HD. Furthermore, the LTP and 

cognitive deficits of the Hdh
Q111 

mouse can be rescued following treatment with the α5-

GABAA receptor inverse agonist α5IA. Collectively, this thesis provides evidence that 

α5-GABAA receptor antagonists have the potential to improve cognitive function in 

patients with HD. 
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