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ABSTRACT  

 Ancestry identification is an important aspect in forensic anthropological 

investigations concerning the biological and social identity of unidentified human 

remains. Traditionally, ancestry is usually assessed by the visual examination of the 

shape and form of the features of the skull and/or measured by linear distances between 

certain cranial landmarks. In this research, three-dimensional Procrustes based 

geometric morphometric methods are employed to investigate whether these techniques 

can classify ancestry in a forensic context using the cranium. Cranial landmark and 

semilandmark configurations, focused specifically on features routinely used to make 

ancestry assessments using traditional morphological and morphometric techniques, are 

used to classify ancestry using discriminant function analyses with leave-one-out cross 

validation. Landmarks and semilandmarks were captured on 3D cranial images of 31 

sub-Saharan African and 31 European individuals and variables of size, shape, and form 

were used to assign crania into respective groups based on different configurations of 

points. Results demonstrate that variables of shape and/or form (i.e. size and shape) are 

more accurate at classifying ancestry than size alone, and that an overall aspect of the 

cranium is more accurate at classifying individuals into their respective ancestry groups 

than semilandmarks recorded along specific features, such as the border of the orbits, 

the edge of the lower nasal aperture, and along the vault on the midplane. 
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1.   INTRODUCTION 

Ancestry/race assessment forms one of the four basic components of forensic 

anthropological casework in investigations concerning the biological and social identity 

of unidentified human remains. Traditional ancestry assessment techniques generally 

involve examining the shape and form of features of the skull through visual analysis 

and by the use of linear distance measurements. This research focuses on the application 

of modern methods of shape analysis to the process of ancestry classification using the 

cranium. Geometric morphometric techniques are used to explore cranial shape, size, 

and form differences in individuals with differing ancestral origins through the use of 

conventional cranial landmarks and semilandmark curve data. The cranial landmarks 

and semilandmarks used in this study are focused on those features that are routinely 

used to make ancestry assessments using traditional morphological and morphometric 

techniques. Subsets of shape and form coordinates and size variables, extracted from the 

landmark and semilandmark datasets using geometric morphometric and multivariate 

analyses, are examined to determine whether particular subsets of landmarks, 

representing certain cranial features, are more effective in correctly assigning 

individuals to their respective ancestry populations.  

1.1.  THE CONCEPT OF RACE  

“There are few words employed in physical anthropology that stir more varied 

reactions than “race”” (Ubelaker, 1996:236). Physical anthropology has played a major 

role in the construction and dissemination of the concept of biological race (Harrison, 

1995). The study of human variation and the classification of human biological 

differences formed the theoretical foundation of early physical anthropology (Caspari, 

2003). Historically, physical anthropologists believed that human beings were 
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biologically divided from one another and could be classified naturally into a broad 

range of taxonomic racial groups. In the past, human races were seen as separate and 

immutable and were defined according to a distinct set of phenotypic and morphological 

descriptors wherein cultural, mental, and behavioural characteristics often played a part 

in the classificatory rubric (Caspari, 2003). Ethnocentric prejudices and hierarchical 

racial classifications infiltrated much of the early research in physical anthropology. The 

advancement of research into evolutionary biology and genetics, as well as the social 

sciences, led most anthropologists, biologists and many other academics to eventually 

reject the validity of the biological race concept. Even though the concept of biologic 

race has been largely discredited, the concept itself has been so pervasive that it 

continues to be an ever-present subject in society as well as in parts of academia 

(Kennedy, 1995). In general, however, it is widely accepted among academics that 

using the term race today to account for human biological variation is highly 

problematic and flawed (Kennedy, 1995; Caspari, 2003). 

For many, use of the term “race” in scientific disciplines “harks back to previous 

centuries when overly simplistic and erroneous notions of human variation prevailed 

and racist attitudes worked their way into the scientific literature” (Ubelaker, 1996:236). 

Even though anthropology was, historically, a huge contributor to the proliferation of 

racial ideologies, the discipline has also played a major role in the de-construction and 

eventual re-construction of racial concepts as socially regarded concepts (Harrison, 

1995). Although the term “race” was used to describe human phenotypic, morphologic 

and genetic variation in biological contexts in the past, most physical anthropologists 

make a deliberate attempt to avoid using the term today. Presently, terms such as 

“ancestry”, “population affiliation” or “geographic origin” are more comfortably 

applied in physical anthropology in discussions concerning human group variation.  
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The concept of “race” is often an emotional and highly charged subject. Most 

anthropologists agree that it is a cultural construct used ambiguously in most societies to 

differentiate between people based on geography, political history, religion and 

socioeconomic status, and most often relates to externally visible characteristics such as 

skin colour, hair texture, and facial features (AAPA Statement on biological aspects of 

race, 1996; Bolnick, 2008).  The less contentious term “ancestry” usually refers to the 

geographic region or regions from where an individual’s biological ancestors originated, 

and is generally described, geographically or continentally, in terms of major worldwide 

populations such as African, European, Asian, and Australian (Klepinger, 2006; 

Bolnick, 2008). Ancestry does not necessarily denote race, although there appears to be 

a correlation between the terms both biologically and socially (Klepinger, 2006; 

Bolnick, 2008). The terms race and ancestry are sometimes used synonymously, 

especially within forensic anthropology and human identification, which can greatly 

confuse the matter (Klepinger, 2006:64).  

It is clear that phenotypic differences exist since differences in skin colour, hair 

texture, body shape and facial features are apparent. But these visible differences do not 

clearly indicate that humans can be naturally divided into sets of discrete biological 

racial categories (Kennedy, 1995). Human variation is mainly seen as clinal and 

environmentally adapted, meaning that there are no obvious boundaries between people 

and that changes in human form and appearance are gradual as geographic distance 

between populations increases (Livingstone and Dobzhansky, 1962; Handley et al., 

2007).  

Although race as a biological or scientific concept has been mostly rejected, 

sociological concepts of race have persisted within cultures and societies. Socially 
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speaking, race is real and relevant (Cartmill, 1998). Individuals are organized into 

racial, ethnic, and ancestry categories on a regular basis in government census surveys, 

polls, the mass media, medicine, research studies, forensic databanks, and in legal 

documents and investigations (Kennedy, 1995).  Racial concepts and constructs can be 

important aspects in establishing individuals’ social and cultural identities in the 

societies in which they reside. Race can affect experiences and life opportunities and so 

membership in a racial group can play an important role in the way people view 

themselves and the others around them (Cartmill, 1998). 

1.2.  ANCESTRY /RACE AS AN IDENTIFIE R IN FORENSIC ANTHROPOLOGY  

Even though most physical anthropologists reject race as a sound scientific 

concept, “race identification continues to be one the central foci of forensic 

anthropological casework and research” (Sauer, 1992:107). When unidentified human 

remains are discovered, law enforcement agencies may contact practitioners in forensic 

anthropology and osteology for help in the recovery and analysis of the remains. When 

faced with decomposed or skeletonized human remains, the ultimate goal of 

practitioners working in forensic anthropology is to extract as much information as 

possible about the social and biological identity of the deceased. The primary objective 

of police and forensic practitioners involved in these scenarios is the individualization 

of the unidentified human remains.  

The forensic anthropologist will attempt to establish a biological profile of 

unknown human remains. This consists of estimations of the age at death, sex, stature, 

and ancestry (or race) of the unidentified person or persons. Once police are provided 

with basic profile information they can begin to focus their search, for example, by 

attempting to match the forensic profile information with missing-person data on record. 
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Identification, specifically, of the ancestry/race of human remains may enable law 

enforcement agencies to focus their investigations on certain communities or groups 

within a more diverse society at large. Ancestry/race identification, therefore, even with 

all its attendant controversy and potential fallibility, is still considered a crucial part in 

many legal investigations and a practical means of identification within society. Indeed, 

perceived race may be as important of an aspect in individualizing skeletal remains as 

age at death and sex (Gill and Rhine, 1990; Kemkes, 2007).  

There is a concordance between geographic ancestry and the socially conceived 

notion of race (Ousley, et al., 2009). Because race labels are in operation within most 

societies as a means of classifying/identifying individuals, forensic anthropologists tend 

to report information to law enforcement and the general public in a way that will be 

easily understood (Gill and Rhine, 1990). When forensic anthropologists are asked by 

law enforcement officials to determine the race of human skeletal remains they are 

usually attempting to identify ancestry/race based on “social” race or “bureaucratic” 

race concepts prevalent in the society in which the investigation is being carried out. 

The criteria used in the race identification process will rely on particular skeletal 

characteristics that are more frequently observed within certain populations due to 

different geographic microevolutionary origins (Albanese and Saunders, 2006). The 

ancestral or racial identification labels determined by the forensic examination will 

necessarily correspond with the broad categories and popular notions of race – such as 

African (or Black), European (or White) – as used by the law enforcement agencies or 

communities involved in the investigation (Albanese and Saunders, 2006). The 

justification for the use of racial identification in forensic evaluation is clear: any 

information that can be provided to police about how individuals may have looked or 
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where they may have lived during their lifetime will only help to improve the chances 

of identification.  

The identification of ancestral origins from skeletal remains in a forensic context 

can be challenging. Ancestry classifications can be ambiguous and the methods used, at 

least traditionally, have often been subjective in nature (Albanese and Saunders 2006). 

Determining ancestry from distinguishing features and characteristics of skeletal 

remains is not as straightforward and not as standardized as some of the other aspects of 

the biological profile. Methods for establishing the age, sex, and stature of an individual 

from skeletal remains have been studied and scientifically tested to a greater extent. 

With regard to ancestry/race determination, Hefner states that there is a “lack of a 

methodological approach and, more importantly, the fact that there are no error rates 

associated with ancestry prediction…suggest that they have not been investigated with 

appropriate scientific and legal considerations in mind” (Hefner, 2009:985). An 

assessment of ancestry may, in some cases, be an important initial identifying 

characteristic since some of the methods used to determine age, sex, and stature require 

prior knowledge of ancestry in order to be applied with any degree of confidence 

(Byers, 2005).  

 The skull is considered to be the most useful part of the skeleton for the 

estimation of ancestry (Howells, 1973; White and Folkens, 2005; Klepinger, 2006; 

Randolph-Quinney et al., 2009). Specifically, the area of the facial region of the skull, is 

considered to be most indicative of variation between different geographic populations 

(Rhine, 1990:13). Some of this variation is easily detectable with the naked eye and one 

approach to ancestry determination is to visually inspect the skull for differences in 

shape and morphology (Hefner, 2009). This approach uses qualitative techniques and is 
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commonly called the non-metric approach. The quantification of these visible shape 

differences in the skull is important in a legal sense because it provides a less subjective 

method for studying craniofacial change. To be admissible in a courtroom, skeletal 

assessment techniques must be precise, objective, and quantifiable with known levels of 

confidence (Curran, 1990; Gill and Rhine, 1990).  

A number of different studies have attempted to quantify the visible changes, 

based on ancestry, that are observed in the skull and craniofacial region. Although these 

metric methods are more objective than the non-metric approaches to ancestry 

determination, they are not without their limitations. These methods rely mostly on 

distance measurements taken with calipers between particular anatomical points of 

interest. These anatomical landmarks may sometimes be difficult to replicate and 

measurements of distances between various landmarks may not necessarily provide 

enough attention to important areas of ancestrally related morphological variance in the 

human skull (Rhine, 1990). The human skull is a complex and irregular structure not 

easily quantified by linear distances. Most cranial bones are highly curved with 

numerous concavities, projections and prominences that may be difficult or even 

impossible to quantify using traditional metric tools such as spreading and sliding 

calipers. 

Geometric morphometric methods may provide a more efficient technique to 

assign quantities to biological shapes and forms than traditional morphometric and 

morphological approaches that have been traditionally applied (Bookstein, 1982). In 

general, geometric morphometrics is a field of study that utilizes a series of two- or 

three-dimensional co-ordinate landmarks on specimens to describe shape statistically 

and evaluate how it may vary between groups and specimens. These methods provide 
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quantitative information about size, shape, and shape change that can be analyzed 

statistically without losing vital information about the complex geometry of the 

specimen under study. Geometric morphometrics methods were primarily used in 

biological and medical contexts in the past. The methods have been adopted more 

recently into the field of physical anthropology. Although, to date, applications of 

geometric morphometrics in the field of forensic anthropology are few, practitioners in 

this field are now beginning to recognize the potential power of these statistical 

techniques for human identification. 

1.3.  SYNOPSIS OF THIS RESE ARCH  

Elliot and Collard assert that “there is a pressing need for bioarchaeologists and 

forensic anthropologists to develop more reliable methods for determining the ancestry 

of unidentified human remains” (2009:859). If ancestry determination is going to 

continue to be an integral component of biological profiles of unknown human remains, 

then the methodology must become standardized, consistent, and dependable. 

The primary purpose of this research project is to apply three-dimensional 

landmark-based geometric morphometric methods to the process of ancestry 

determination using 3D computer-generated images of the crania of individuals whose 

geographic ancestral origins are of known provenance and derived from sub-Saharan 

Africa and Europe. The specific aim of this research is to explore whether there are 

statistically significant differences in cranial shape, size and/or form between sub-

Saharan African and European individuals which could be used to assign ancestral 

group membership reliably and accurately from the cranium as a whole or from specific 

features and traits on the cranium. The application of three-dimensional geometric 

morphometrics to the process of ancestry identification, focused specifically on areas of 
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the skull that are used in traditional morphological analyses, should allow for greater 

precision, reliability, and accuracy. Furthermore, since the complex and irregular shape 

of the skull, including its curves and contours, can be retained using three-dimensional 

landmarks and semilandmarks, the geometric morphometric method should improve 

and enhance the overall statistical shape analysis of the cranial form.  
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2.  LITERATURE  REVIEW 

This section provides a review of the traditional and current methods that are 

used in forensic anthropology and human identification to make assessments about 

ancestry from skeletal specimens, as well as a general background on the sites of the 

skull and craniofacial complex that display the most variation in terms of the ancestry of 

people originating from sub-Saharan Africa and Europe.  Following this will be an 

introduction into geometric morphometric methods and how they have been applied 

within physical anthropology and human identification thus far, and a brief summary on 

the use of 3D images as a form of data for analysis in physical anthropology and human 

identification. 

2.1.  ANCESTRY AND HUMAN CRANIAL VARIATI ON  

It is well recognized that people originating from different geographic regions 

look different. Ancestral differences, however, are not only manifested in someone’s 

outward appearance but also in the skeleton. The skull, especially the area that makes up 

the facial region, is considered to be the most useful indicator of ancestry in the entire 

skeleton (Howells, 1973; White and Folkens, 2005; Klepinger, 2006; Randolph-

Quinney et al., 2009).  

Human cranial variation is complex and results from a number of factors most of 

which relate to natural forces caused by evolutionary responses to environmental 

adaptations (Molnar, 1998).  Genetic isolation, heredity, and environmental influences, 

such as climate and diet, have all played roles in making us look the way we do 

(Molnar, 1998; Simmons and Haglund, 2005; Harvati and Weaver, 2006). Simmons and 

Haglund claim “human variation results from relative genetic isolation (endogamy) of 

populations for long periods of time, which accentuated particular characteristics in 
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each population” (2005:163). They also say that “while some variability is adaptively 

based, much of it is simply the result of the perpetuation of particular morphology due 

to breeding within a restricted area” (2005:163). With the advent of modern forms of 

transportation and with increased migration on a global scale, however, populations are 

composed more and more of individuals of mixed ancestry making it increasingly 

difficult to assign ancestry based on skeletal or cranial variation. Gene mixing may 

result in a varying outcome of the shape differences that are typically observed within 

the different groups (Simmons and Haglund, 2005).  

A great deal of research has been conducted within physical anthropology with 

the intention of distinguishing between the major geographic populations from the skull 

and craniofacial region (Gill, 1998).  Extensive research has been performed by 

studying the “relationship between biological characteristics of the living and their 

skeletons” (Sauer, 1992). Generally speaking, skulls can be grouped in relation to 

ancestry based on a varying degree of skeletal features on the skull or a combination of 

these features thereof. Forensic anthropologists commonly classify human cranial 

variation into one of four broad ancestral groups for identification purposes (Wilkinson, 

2004; Randolph-Quinney et al., 2009). The labels commonly used in forensic 

anthropology for these ancestral groups are Caucasoid (including Europeans, Asians 

from the Indian Subcontinent, North and East Africans, Middle Easterners and 

Mediterraneans), Negroid (including West and Southern Africans), Mongoloid 

(including Southeast Asians, Inuit, and Native Americans) and Australoid (indigenous 

Australians, Pacific Islanders, Fijians and Papuans) (Wilkinson, 2004:84; Randolph-

Quinney et al., 2009:14). There is some controversy associated with these classificatory 

terms and many anthropologists, working both inside and outside of physical 

anthropology, prefer to not use these terms citing them as outdated, empirically invalid, 
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and/or socially harmful (Black, 2000; Lieberman, 2001).  Negroid and Mongoloid can 

be seen as offensive since they originated from and may be associated with the 

typological methods of racial classification and may have negative social connotations 

associated with them. Presently, however, the classificatory terms used to designate 

ancestry are not meant to propagate racist or typological views. Human variation is 

better understood than in the past and these labels are only meant to be used to 

distinguish between different geographic groups based on differing skeletal 

characteristics in a broad, informative, and unbiased way (Cartmill, 1998).   

What follows is a summary of the characteristics and traits that have been 

routinely observed in cranial studies of individuals from the Caucasoid and Negroid 

ancestry groups, since the classification of these populations is the focus of this 

research. For the purposes of this research individuals with Negroid ancestry will be 

referred to as sub-Saharan Africans and those with Caucasoid ancestry as Europeans. 

These morphological traits are fundamental to the morphological ancestry assessment 

method. It is important to mention that although a forensic anthropologist may be able 

to assess ancestry from skeletal specimens fairly well using the skull, no specific trait or 

feature of the skull distinguishes one ancestral origin from another exclusively. One 

population may exhibit traits that are considered more frequently observed than in 

another population and vice versa. Overlap, in terms of ancestral skeletal traits, occurs 

between different groups and this must be taken into careful consideration when 

producing any kind of assessment based on ancestry (Byers, 2005). Since no single trait 

is a marker of ancestry, a suite of traits should always be examined, if possible, to 

suggest the ancestry of unknown individuals (Klepinger, 2006).   However, certain 

skeletal traits are more frequently observed in some geographic groups than others 

(Klepinger, 2006). 
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In general, individuals with ancestral origins from Europe (Figure 1) tend to have 

a mesocephalic (long to rounded) skull shape with a sloping to upright frontal profile 

and often a pronounced external occipital protuberance (Wilkinson, 2004; Randolph-

Quinney et al., 2009). Facial breadth is narrow to wide and facial height is medium to 

high (Randolph-Quinney et al., 2009). Nasal aperture form will be long and narrow and 

the inferior borders of the nasal margin will be sharp and deep (or silled) with a 

prominent nasal spine (Rhine, 1990; Gill, 1998; White and Folkens, 2005; Randolph-

Quinney et al., 2009). The nasal root is highly arched and steepled with a depressed 

nasion (Gill, 1995). Interorbital distance is narrow and orbits are considered angular 

with a rhomboid-like form, sloping downwards and laterally (Rhine, 1990; Gill, 

1998:300; Klepinger, 2006). Supraorbital margins are moderate to heavy and the cheek 

bones are sharp and receding (Wilkinson, 2004). The facial profile is characterized as 

orthognathic, which means that the facial region tends to look flat with little or no 

projection in the dental area along the midline (Bass, 2005). The palate is long and 

narrow, appearing parabolic in shape (Rhine, 1990; Gill 1998; Wilkinson 2004). The 

mastoid process is large and long (Wilkinson, 2004; Randolph-Quinney et al., 2009). 

The mandible is regarded as having an undulating lower border, pinched ascending 

ramus, slanted vertical ramus, straight gonial angle, and a prominent projection of the 

chin which may be bilobated (Rhine, 1990; Gill, 1998:300; Klepinger, 2006). Dentition 

tends to appear small and often crowded (Gill, 1995). 
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In general, individuals of Sub-Saharan African ancestry (Figure 2) are 

characterized as having a dolichocephalic (long) skull shape with a sloping and rounded 

frontal profile and a post-bregmatic depression (Wilkinson, 2004; Klepinger, 2006; 

Randolph-Quinney et al., 2009). Facial breadth is narrow and facial height is low. Nasal 

aperture shape is wide and the inferior borders of the nasal margin are smooth or 

guttered, with little to no inferior definition (Rhine, 1990; White and Folkens, 2005; 

Randolph-Quinney et al., 2009). The nasal root is low and flat with a “Quonset hut” 

shape and a very dull or absent nasal spine (Randolph-Quinney et al., 2009:14; Gill, 

1998:300; Gill, 1995; Rhine, 1990). Interorbital distance is wide and orbits appear 

rectangular (low and wide) in shape (Rhine, 1990). Supraorbital margins are somewhat 

undulating and are mild to moderate in prominence (Wilkinson, 2004). The cheek bones 

are receding with some lateral projection (Randolph-Quinney et al., 2009). The facial 

profile has pronounced prognathism, causing an anterior protrusion of the mouth region 

(Wilkinson, 2004). The palate is wide appearing hyperbolic to parabolic in form (Rhine, 

1990; Gill, 1995; Gill 1998; Randolph-Quinney et al., 2009). The mandible has a 

narrow or pinched-looking ascending ramus with a straight inferior mandibular border 

and an oblique gonial flare (Rhine, 1990; Gill, 1995; Randolph-Quinney et al., 2009). 

Figure 1 European type skull. (Figure obtained and adapted from Rhine, 1990). 
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The appearance of the chin is blunt and vertical and dentition tends to appear large with 

little over-crowding as is often seen in individuals of European ancestry (Rhine, 1990). 

The sites on the skull that are considered by anthropologists to show the most 

variation between individuals originating from different geographic areas occur within 

the nasal region, the supraorbital margin of the frontal bone, and the zygomatic and 

maxillary profiles (Gill and Gilbert, 1990; Gill, 1998). These regions are the 

predominant focus of this research project. 

2.2.  ANCESTRY ASSESSMENT APPROACHES  

There are two approaches traditionally used for determining the ancestry of 

human remains using the skull: the morphological or non-metric method, and the 

anthropometrical or metric method. Both methods are based on the premise that there 

are variations in the shape and features of the skull between individuals originating from 

different geographic regions. The two methods are also used to predict sex from skeletal 

specimens using recognized sex-specific traits. 

 

 

Figure 2 Sub-Saharan African type skull. (Figure obtained and adapted from Rhine, 1990).  
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2.2.1.  NON-METRIC APPROACH  

Non- metric ancestry analyses are performed by the visual examination of the 

overall shape and features of the bones of the skull. Particular traits and features are 

explained by qualifying a bone’s overall shape, or by stating the presence or absence of 

a feature, or by describing the trait along a continuum of possible variants that are 

considered to be reflective of human ancestral skeletal variation (Rhine, 1990; Hefner, 

2009). The non-metric approach is widely used and is often the preferred approach for 

assessing ancestry from the skull (Gill, 1990; Byers, 2005; Hughes et al., 2011). This 

approach does not require equipment and is relatively quick and easy to carry out 

compared to metric analyses which can be time consuming and sometimes difficult to 

perform (Rhine, 1990). The non-metric approach allows for a number of skeletal shape 

differences, both subtle and not so subtle, to be assessed and described that may be quite 

difficult to analyze with other assessment techniques. For example, it is not easy, or in 

some cases even possible, to measure the prominence of the supraorbital ridge, or the 

degree of sharpness or guttering of the inferior nasal margin, or the presence or absence 

of shovel-shaped incisors, with traditional linear distance measurements used in metric 

ancestry assessments. These features and traits are often better described than measured. 

Also, in cases where the skull or cranium is fragmented, the non-metric approach may 

be the only viable approach since metric analyses often require multiple measurements 

to be applied on the entire cranium or skull to make an attempt at an accurate estimation 

of ancestry (Rhine, 1990). 

The accuracy and reliability rates of the non-metric method for ancestry 

assessment from the skull have been tested by various researchers and have 

demonstrated mixed results. Some studies have shown that the non-metric approach can 
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be accurate and reliable in classifying groups, as well as repeatable between observers, 

if the descriptions of the various traits used are clearly defined and properly illustrated 

(Gualdi-Russo et al., 1999; Hefner, 2009; Hughes et al., 2011). Other studies, however, 

have suggested that the non-metric approach is problematic since the number of traits 

used for conducting analyses is not standardized across the field and the definitions of 

the appearance of the various traits are not adequately defined. It is argued that this 

results in significant differences between observers when interpreting the suggested 

appearance of a trait (Carpenter, 1976; Gualdi-Russon et al., 1999; L’Abbe et al., 2011). 

Some practitioners caution that the non-metric approach should be used only to 

supplement other more reliable and objective approaches; other practitioners 

recommend that this approach should not be used at all because of its serious 

shortcomings (Carpenter, 1976; L’Abbe at al., 2011).  If clear definitions and 

illustrations of the skeletal features that differ between groups can be maintained across 

analyses perhaps the subjective variation in scoring different skeletal traits may be 

resolved or, at least, minimized. However, there is no consensus at present as to what 

constitutes an optimal set of traits that are most suitable for an approximation of 

ancestry using the skull (Hefner, 2009). Also, since no single trait defines a particular 

geographic ancestry category, and the traits observed are not fixed and are subject to 

individual variability within and between populations, perhaps it is not possible to come 

to a unified agreement within the field on exactly what traits should be utilized. 

Despite all of these disagreements, what is at the heart of the problem with the 

non-metric approach is that the methodology used is intrinsically subjective in nature 

(Spradley and Jantz, 2011). There are not a lot of detailed guidelines or definitions by 

which to compare degrees of visible variation amongst practitioners and this can lead 

one observer, for example, to describe or score a particular trait as more or less 
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pronounced than another observer. Inter-observer variation is, therefore, a serious 

disadvantage with this method. The non-metric method relies heavily on the overall 

experience of the observer and puts those individuals that are new to the field at a 

disadvantage. Hefner argues that interpreting cranial variants in non-metric analyses is 

“a method that is as much an art as it is a science” (Hefner, 2009:985). There needs to 

be more standardization and testing of the methods used in non-metric analyses if this 

approach is going to continue to be used in biological profiling and as a potential source 

of expert evidence in a court of law (Hefner. 2009). So far, the non-metric approach to 

ancestry determination does not meet the guidelines established by the Daubert or 

Mohan ruling for determining whether evidence is scientific and therefore admissible in 

courts within the United States and Canada (Christensen, 2004; Rogers and Allard, 

2004).  The subjective nature of the non-metric approach to ancestry determination, 

which depends heavily on a practitioner’s level of experience in handling particular 

skeletal specimens and features, does not demonstrate a scientific or objective technical 

disposition (Rogers and Allard, 2004). It is argued that the non-metric methods have 

“not been established as reliable or valid, they have not been subjected to appreciable 

peer review, and they have no known error rates” (Hefner, 2009:986). 

2.2.2.  METRIC APPROACH  

Traditional metric methods for ancestry estimations involve osteometric 

measurements between standard points of interest, or landmarks, on the skull with 

possible subsequent statistical analyses.  Metric analyses are considered more objective 

and more quantitatively precise than non-metric methods (Gill and Gilbert, 1990). 

Instructions about how and where to take measurements are detailed and more clearly 

defined in the literature, so there is less observer interpretation involved. In the 1960s, 
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Giles and Elliot created discriminant function formulae to classify skeletal specimens in 

terms of ancestry using linear distance measurements from a number of skulls 

representing different regional populations (Albanese and Saunders, 2006). This led to 

the development of computer programs, like Fordisc, which have been designed to 

estimate the ancestry and population origin of skeletal specimens through mathematical 

and statistical analyses of skull measurements (Ousley and Jantz, 2005; Elliott and 

Collard, 2009). Being able to apply statistical analyses to methods of ancestry 

determination gives the procedure a stronger scientific disposition, making it more 

effective in the courtroom “since it is an objective, quantitative method with some 

established confidence limits” (Gill and Gilbert, 1990:50) 

One of the criticisms of the metric approach is that linear measurements leave out 

a lot of important shape information. For example, it is difficult to detect and assess the 

morphology of a region occurring between different landmarks on the skull when using 

conventional measuring devices like spreading and sliding callipers. Linear distance 

measurements do not pick up the contours or overall shape and complexity of the 

cranial form. Also, the size of the specimen is not taken into consideration. The size of a 

specimen may influence the way the overall shape is interpreted perhaps making it 

difficult to recognize and assess some shape differences if size difference is 

considerable between individuals. Rhine also asserts that many of the criticisms applied 

to non-metric methods are also relevant to metric analyses (Rhine, 1990). Rhine notes 

that a practitioner’s experience is also a factor in metric analyses because there is 

always potential for mismeasurement since some landmarks may be difficult to locate 

and someone new to the field may be unfamiliar with the definition and placement of 

certain landmarks (Rhine, 1990). The metric approach is limited in cases in which there 

is poor preservation of remains. In general, metric analyses have to be carried out on 
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complete or mostly intact crania. On fragmented or incomplete crania, many of the 

required landmarks may be poorly located, or not locatable at all, seriously affecting the 

validity of the mathematical and statistical analyses of the measurements (Elliott and 

Collard, 2009).  

The use of computer programs has become increasingly more common in metric 

methods of ancestry assessment in forensic anthropology.  Programs such as Fordisc, 

created by Stephen Ousley and Richard Jantz, use standard cranial measurements 

applied to discriminant function analyses to assist in the determination of the ancestry, 

sex and stature of unknown human skeletal remains (Ousley and Jantz, 2005; Dirkmaat 

et. al, 2008:37). Particular areas of bones are measured from the unidentified human 

remains and these values are input into the computer program and compared to a 

database of skeletal measurements taken from the Forensic Data Bank and from 

William W. Howells’ craniometric dataset, to ascribe group membership. The Forensic 

Data Bank is a large database that contains thousands of measurements of modern, 

extensively documented, and positively identified individuals from forensic cases within 

the United States. Howells’ craniometric dataset consists of a large database of standard 

craniometric measurements that were taken by William W. Howells, an anthropologist, 

between 1965 and 1980 (Howells, 1996). Howells’ craniometric data is freely available 

online and is comprised of measurements taken from over 2500 crania representing 28 

regional populations which were derived both from historical and relatively modern 

skeletal collections. The population sets within the Forensic Data Bank database are 

based on commonly used folk taxonomy racial categories within the United States, such 

as Black, White, and Hispanic; those from the Howells’ database are more population 

specific, representing groups from varying regional and temporal populations, such as 

the Norse, Ainu, Easter Islanders, and Egyptians. Using Fordisc to ascribe group 
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membership of ancestry and/or sex to unidentified human remains provides a means to 

“standardize the attribution of population affinity for forensic analysis and to provide a 

user-friendly method for ascribing “social race” to unknowns” (Williams et al., 2005).  

Although Fordisc provides a standardized and objective technique for assessing 

ancestry, there are many studies that have commented on the overall inaccuracy of the 

program. Multiple studies, using crania and skulls with known sex and ancestry, have 

shown that Fordisc was unable to allocate properly the individuals into their appropriate 

ancestral or folk taxonomical population groups or to the nearest neighbouring ancestry 

population group (Kosiba 2000; Williams et al., 2005; Elliot and Collard, 2009). 

Furthermore, for skulls that were incomplete, which may often be the case in forensic 

and archaeological investigations, Fordisc results were unreliable (Elliot and Collard, 

2009). Elliot and Collard conducted a study in which they evaluated the utility of 

Fordisc using the skulls of 200 individuals of known ancestry. They ran analyses both 

with and without the test specimen’s source population included in the program’s 

reference sample (Elliot and Collard, 2009) They found that Fordisc was able to classify 

more than 70% of individuals in analyses when the test specimen’s source population 

was included in the reference sample and 56 measurements were employed but less than 

40% of individuals were correctly classified when individuals were treated as unknowns 

and fewer measurements were utilized.  Fordisc is only capable of identifying the 

ancestry of unknown individuals if the population of origin of the unknown is 

represented in the program’s reference groups. The problem here is that a forensic 

practitioner using Fordisc will not know if the unknown individual’s population group 

is one of the groups in Fordisc’s database (Kosiba, 2000; Williams et al., 2005).  If 

measurements from a particular skull are entered into Fordisc and the skull does not 

belong to one of the represented populations it may be statistically and inappropriately 
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‘forced’ into one of the program’s ancestry groups. The program does statistically rate 

the classification result with a confidence or error level using posterior and typicality 

probabilities, however, various studies have indicated that the reference sample may be 

problematic since some populations represented are from archaeological and historical 

time periods and that attribution of ancestry should only be accepted if posterior and 

typicality probabilities are exceedingly high (Kosiba 2000; Williams et al., 2005; Elliot 

and Collard, 2009).  This poses a serious problem because this program has been, and is 

still being, applied in forensic investigations with crania that may not be represented in 

the sample. The program’s usefulness as a forensic tool to make ancestry assessments 

from skeletal remains has been shown to be highly problematic and even though this 

method may be more objective than other methods of ancestry assessment the program 

does not offer an adequate platform to make accurate and reliable estimations of 

ancestry. 

2.3.  GEOMETRIC MORPHOMETRICS  

The study of shape and shape change are central topics to the discipline of 

physical anthropology as well as forensic anthropology. Physical anthropologists and 

forensic osteologists study the shape of the bones of the human skeleton to attempt to 

extract important biological and social information from it. The ability to combine both 

morphological and metrical approaches to the study of the shape and form of the human 

skeleton is important and geometric morphometrics may provide the means to do this. 

Geometric morphometric techniques provide the repeatability of metric analyses while 

still retaining all of the shape information of the form under study, thus, in a way, 

bridging the gap between traditional morphological and metrical techniques of analysis.  
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The study of morphometrics refers to the quantitative analysis of form, which 

consists of both size and shape, where mathematics and statistics play important roles in 

the analyses (Bookstein et al., 2004). Morphometric studies attempt to quantify the 

variations between different biological specimens statistically through the use of linear 

distance measurements, angles and/or ratios (Slice, 2005). Landmark-based geometric 

morphometrics, on the other hand, focuses on the two- or three-dimensional Cartesian 

coordinates of anatomical landmark points rather than on a collection of distance 

measurements, ratios and angles between certain anatomical loci (Slice, 2005). By using 

Cartesian coordinate points to study and quantify shape, all of the geometric 

information about an object can be retained throughout a study (Slice, 2005). In other 

words, the spatial arrangement between all of the landmark points from specimen to 

specimen is preserved throughout analyses (Mitteroecker and Gunz, 2009). Shape 

changes between groups of specimens are studied by examining the locations of the 

configurations of landmarks across all specimens relative to one another after important 

statistical shape analyses are performed. What especially sets this technique apart from 

traditional morphometric analyses is that the results obtained from geometric 

morphometrics studies can be easily understood as well as visualized by the researcher 

(Bookstein et al., 2004; Slice, 2005). With the application of geometric morphometric 

methods, shape changes that can be observed with the naked eye, as well as those 

changes that are more subtle and difficult to identify and measure, can be quantified 

statistically, expressed graphically, and represented visually (Kovarovic et al., 2011; 

Seetah et al., 2012). 

Fundamental to geometric morphometrics methods are landmark coordinates. 

Landmarks are distinct anatomical loci that can be recognized as the same points in all 

specimens in the study (Zelditch et al., 2004). Within geometric morphometrics studies, 
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landmarks play a vital role and there are certain criteria for how they should be used and 

located. Zelditch et al. propose that landmarks should be “(1) homologous anatomical 

loci that (2) do not alter their typological positions relative to other landmarks, (3) 

provide adequate coverage of the morphology, (4) can be found repeatedly and reliably, 

and (5) lie within the same plane” (Zelditch et al., 2004:24). Zelditch et al. recommend 

that landmarks should be chosen to answer the questions of the particular study being 

carried out, but they should also be chosen on a broader scale so as not to limit the 

potential discovery of new shape information (2004).  

Bookstein et al. classified and ranked landmarks in terms of the ease of 

identifying their locations on biological structures. Landmarks are commonly classified 

into three types: Type I, Type II and Type III (Bookstein et al., 2004). Type I landmarks 

are those which are homologous, meaning that they have the same relative position 

across all specimens. They have a strong locally defined histological location making 

them easily locatable and repeatable among specimens and researchers. Examples of 

Type I landmarks on the skull include an intersection between three sutures (such as 

bregma or asterion) or the location of small foramina (Hallgrimsson et al., 2007). Type 

II landmarks are classified as points whose homology from specimen to specimen are 

maintained by geometric or shape evidence and not based on locally defined biology. 

Points of greatest curvature along a bony edge, such as the landmark jugale, or the tips 

of the ends of bony projections, such as mastoidale, or the intersection of sutures with 

edges, such as frontomalare orbitale along the eye orbit, would all be classified as type 

II landmarks (Hallgrimsson et al., 2007). Type III landmarks are more difficult to locate 

and, hence, are considered more deficient. They are usually extremal points that lack 

proper definition as to their exact location across all specimens. Examples of Type III 

landmarks include ectoconchion and euryon, which are defined as points with extreme 
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curvature or the points furthest away from a particular structure (Hallgrimsson et al., 

2007). 

Semilandmarks can also be used in geometric morphometrics studies. In two-

dimensions, semilandmarks are a series of points along an outline and in three-

dimensional studies they are points along curves or surfaces. They would be classified 

as the most deficient of all landmarks since their exact location on a biological specimen 

can rarely be properly named (Mitteroecker and Gunz, 2009). Semilandmarks are used 

to include information about homologous features on specimens that lie between 

landmark points (Gunz et al., 2005). Although they lack exact positional information, 

semilandmarks can be extremely useful and important because they can provide 

geometric shape information about a biological form that cannot be obtained from 

conventional landmarks.  

Landmarks are generally captured in a variety of ways with a range of different 

devices. Two-dimensional landmarks are usually acquired using a digitizing tablet or by 

measuring and landmarking digital photographs on a computer screen (Mitteroecker and 

Gunz, 2009). Three-dimensional landmark coordinates can be obtained directly using 

coordinate digitizing devices such as the Polhemus Patriot or Microscribe, or they can 

be digitized from virtual objects (created from surface or volumetric scans of real 

objects) visualized in three-dimensions on a computer screen using programs such as 

Landmark, EVAN, and Checkpoint  (Mitteroecker and Gunz, 2009). 

In traditional morphometrics, form is studied quantitatively. Form is understood 

to consist of both shape and size (Richtsmeier et al., 2002).  In some geometric 

morphometrics applications, size is removed as a factor allowing pure shape to be 

studied. Shape, in geometric morphometrics, is defined as “all the geometric 
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information that remains when location, scale and rotational effects are filtered out from 

an object” (Kendall, 1977). Being able to distinguish between size and shape in 

morphological analyses is an important advantage since the size of a specimen can have 

an effect on the measurements taken and subsequently affect the results obtained. 

Traditional metric analyses utilized in forensic anthropology and human identification 

generally do not single out shape as a distinct variable from size and this can impact the 

interpretations made about morphological variation.  

There are several different methods and models available to analyze landmark 

coordinates. These include Procrustes superimposition techniques, Euclidean distance 

matrix analysis (EDMA), finite element scaling analysis (FESA), and thin-plate spline 

analysis (TPS) (Adams et al., 2002). The choice of method and model is dependent on a 

number of factors, including the nature of the structure being analyzed, the choice of the 

types of landmarks being used, and the particular research questions under 

investigation. The most commonly used geometric morphometrics method to analyze 

the positions between landmark points is the Generalized Procrustes Analysis (GPA), 

which is also known as Procrustes superimposition (Viscosi and Cardini, 2011).  GPA is 

the most theoretically developed method of geometric morphometric landmark-based 

analyses and is often the preferred or “default” method utilized among biologists and 

morphometricians (Zelditch et al., 2004; Viscosi and Cardini, 2011; Cardini, 2012).  A 

thorough explanation of why the Procrustes method is preferred is available in the 

textbook Geometric Morphometrics for Biologists by Zelditch et al. (2004). Two of the 

main strengths of the method are its consistency with the mathematical theory of shape 

and its advantageous statistical properties (Cardini, 2012). The Procrustes method 

standardizes the landmark configurations by using mathematical algorithms and adjusts 

the raw landmark data so that all the specimens in the study are superimposed, or 
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aligned, into a common coordinate system. This allows for the data to be collectively 

analyzed and compared since the landmark points are placed in similar orientation and 

are adjusted for size differences. All the information about the landmark configurations 

that is not related to shape is removed (Rohlf, 2003).  GPA translates the data so that all 

data is centred together around a common origin (or centroid), scales all of the data to a 

common unit centroid size, and optimally rotates all of the data to the same orientation 

(O’Higgins and Strand- Viðarsdóttir, 1999; Slice, 2005; Viscosi and Cardini, 2011). 

When GPA is applied to raw landmark data an average mean shape (or centroid) of each  

landmark configuration is constructed and all of the landmark configurations are 

translated, or re-distributed, around the new average shape, which is centred at the 

origin (Weber and Bookstein, 2011). The size of each specimen is estimated by 

measuring the scatter of the landmarks around the mean and the landmark coordinates 

are scaled to the same unit centroid size by minimizing the sum of squared distances 

between each landmark and the corresponding centroid points (Adams et al., 2004; 

Cardini, 2012; Slice, 2007). Landmark coordinates are then rotated so that the 

Procrustes distances between the specimens are reduced, again, by minimizing the 

squared distances between landmark configurations and the centroid (Adams et al., 

2004). Size is removed from the shape data and a separate size variable is created. Since 

size is transformed and stored as a separate variable, the researcher has the options to 

explore shape variables independent from size, size variables independent from shape 

or, if desired, to use size in conjunction with shape for studies of form and allometry. 

After superimposition of the landmark data, differences in the landmark coordinate 

locations reflect differences in the shapes of the specimens (Slice, 2007). Landmark 

coordinates can then be statistically analyzed as shape variables using ordination 

methods, such as principal component analysis, or multivariate statistical analyses, such 
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as discriminant function and canonical variates analyses, to identify and quantify group 

differences (Slice, 2007). 

There are some limitations associated with Procrustes-based geometric 

morphometric methods. One of the main limitations that is often discussed in the 

literature is the ‘Pinocchio effect’ (Zelditch et al., 2004; von Cramon-Taubadel et al., 

2007; Viscosi and Cardini, 2011; Cardini, 2012).  After Procrustes superimposition is 

performed on raw data, the positions of the landmarks represent shape differences as a 

whole but the method cannot necessarily convey the amount of shape variation 

occurring at individual landmarks between individuals (Viscosi and Cardini, 2011).  If 

significant variation between landmark configurations is limited to only one or a few 

landmarks within the configuration, then the variation between these landmarks may be 

smeared out across all of the landmarks used in the study (Zelditch et al, 2004; von 

Cramon-Taubadel et al., 2007). The least-squares criterion that is used to superimpose 

landmark configurations may spread the shape displacements of the most variable 

landmarks across the entire configuration of landmarked specimens (Zelditch et al., 

2004).  The fairy tale of Pinocchio and his growing nose illustrates this effect well 

(Viscosi and Cardini, 2011; Cardini, 2012). If Pinocchio’s head were to be landmarked 

both before and after the length of his nose changed from lying and these landmark 

configurations were subjected to Procrustes superimposition, the variation observed in 

the landmark configurations would suggest that Pinocchio’s whole head changed shape 

along with the length of his nose even though his nose is the only feature that is altered 

(Cardini, 2012). Figure 3 illustrates the ‘Pinocchio effect’ of a Procrustes 

superimposition. Procrustes superimposition can minimize the variation in shape 

between different individuals by distributing the variation between landmarks evenly 

over the entire configuration. This may, however, misleadingly decrease the variation 
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occurring at different landmarks and, possibly, generate inconsistent estimators of mean 

form and shape (Lele, 1993). However, studies have shown that the Procrustes method 

is more accurate at estimating the true mean shape of a configuration of landmarks than 

other geometric morphometric methods (Rohlf, 2003). 

 

Figure 3 Visualization of the Pinocchio effect from Procrustes superimposition.  

(a) Pinocchio's head before lying, (b) his head after lying. Pinocchio’s head overlaid (c) before and after 

lying with a selection of landmark points over his entire head. The only shape difference that can be 

observed is the length of his nose. However, after Procrustes superimposition (GPA) (d) shape differences 

are observed over his entire head instead and are not confined to his nose, where the only actual shape 

difference is found. (Figure obtained and adapted from Cardini, 2012, In press) 

Euclidean Distance Matrix Analysis, or EDMA, is another form of landmark-

based geometric morphometric analysis. EDMA does not register sets of landmarks so it 

does not rely on superimposition methods or a common coordinate system (Lele, 1991; 
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Lele and Richtsmeier, 1991a; Lele and Richtsmeier, 1991b; Cole and Richtsmeier, 

1998). EDMA uses a form matrix and evaluates shape differences between two 

specimens by looking at all of the possible Euclidean distances (linear distances) 

between homologous landmarks. A form matrix is constructed from the Euclidean 

distances from each specimen and the matrices are compared to one another to identify 

how the linear distances may differ between specimens (Ferrario et al., 1993).  EDMA 

provides a method to identify and single out influential shape landmarks based on the 

linear distances that are the most variable between specimens (Ferrario et al., 1993).  

The comparison of all possible inter-landmark distances as a selection of ratios prevents 

the need to register landmark configurations (O’Higgins and Jones, 1998). There are 

proponents for and against the use of EDMA vis à vis superimposition techniques. 

EDMA does not rely on an arbitrary registration system but the interpretation and 

visualization of the method’s results can be more difficult to perform and express 

(O’Higgins and Jones, 1998). Linear distances between landmark positions do not 

remove the issue of size from the data so mathematical algorithms to adjust for size 

differences must be utilized (Cole and Richtsmeier, 1998). 

2.3.1.  GEOMETRIC MORPHOMETRICS IN ANTHROPOLOGY A ND HUMAN 

IDENTIFICATION  

The application of modern morphometric techniques to anthropological analyses 

is a relatively new and exciting aspect of research, especially within the field of human 

evolution and forensic anthropology.  Over the last ten years geometric morphometric 

investigations in physical anthropology have greatly increased particularly in 

palaeoanthropology in studies of morphological change due to human evolution 

(Yaroch, 1996; Humphrey et al., 1999; O’Higgins, 2000; Hennessy and Stringer, 2002; 

Martinez-Abadias et al., 2006; Bruner and Manzi, 2007). In the past, these methods 
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were predominantly used in the biological and biomedical sciences but Bookstein and 

colleagues claim that the field of anthropology may in fact be taking over the use of 

geometric morphometrics (2004). In more recent years the fields of forensic 

anthropology and human identification have begun to adopt the methods of geometric 

morphometrics for studies addressing human variability and biological identity (Buck 

and Viðarsdóttir, 2004; Oettlé et al., 2005; Bytheway and Ross, 2010; Gonzales et al., 

2011; Nicholson and Harvati, 2006; Pretorius et al., 2006; Braga and Treil, 2007; 

Franklin et al., 2007; Kimmerle et al., 2008; Husmann and Samson, 2011; Sholts et al., 

2011b). Most of the studies concerning geometric morphometrics in forensic 

anthropology focus on studies of sexual dimorphism using the cranium, mandible or 

pelvic bones, although there are some studies in the literature involving analyses on the 

assessment of age at death as well as ancestry.  

Oettlé et al., (2005) examined human mandibular rami using two-dimensional 

geometric morphometrics to determine whether significant differences exist between the 

sexes using this feature alone. They found that the mandibular ramus showed 

considerable overlap between the sexes and that there is insufficient dimorphism in this 

trait alone to estimate the sex of unknowns. Pretorius et al., (2006) utilized two-

dimensional geometric morphometric methods to examine the shape of the greater 

sciatic notch, mandibular ramus flexure, and shape of the orbits to identify sexually 

dimorphic characteristics from photographs. As they anticipated, they found that the 

shape of the greater sciatic notch was the most sexually dimorphic of all the 

morphological characteristics they studied. However, they were surprised to find that 

the shape of the orbits differentiated between the sexes more than the shape of the 

ramus flexure. Generally, orbital shape is considered a less sexually dimorphic 

characteristic than the shape of the mandibular ramus which has been considered a 



32 

 

reliable morphological trait for sex identification (Loth and Henneberg, 1996). Another 

study by Gonzalez et al. (2011) looked at sexual dimorphism in crania using geometric 

morphometrics with two-dimensional landmarks and semilandmarks focused 

specifically on structures that are considered sexually dimorphic. They found that the 

percentage of correct sex classification from cranial traits, such as the glabellar region, 

mastoid process and frontal and zygomatic processes, was low, suggesting that in 

general there is a low level of sexual dimorphism in the shape of the cranium from these 

features. The cranium, however, is considered to be the second most useful indicator of 

sex from the skeleton since many studies have reported high accuracy rates using metric 

techniques and morphological features of the cranium to determine sex (Galdames et al., 

2008). However, when they used both shape and size variables together their percentage 

of correct sex classification increased markedly, “indicating that the traits analysed 

display marked sex differences related to the larger size and more robust features of 

males” (Gonzalez et al., 2011:82).  

There are few studies in the literature that specifically relate geometric 

morphometrics to ancestry determination. Ross et al., (1999) conducted a preliminary 

study in which they used the “new morphometry” to attempt to allocate 19 American 

Black and 19 American White crania into their respective ancestry groups.  They used 

fourteen cranial landmarks and measured them in sequences of three using calipers and 

then subjected these interlandmark distances to mathematical analyses to extrapolate x 

and y landmark coordinates. After superimposition, they created a wireframe of the 

mean configurations of the landmarks for Blacks and Whites using a computer program. 

They overlaid the mean configurations of the landmarks from both groups and were 

able visually to compare the overall change in position of the landmarks between the 

groups. They were able to classify 78.9% of Blacks and 88.9% of Whites correctly 
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using particular landmark and semilandmark coordinates. They compared these results 

to traditional ancestry discriminant analyses, using cranial distance measurements, and 

found that the two types of analyses produced very similar results. They concluded that 

although the outcome of their analysis resulted in similar correct classifications for both 

techniques, geometric morphometrics methods were more promising because they could 

present information easily about the specific location of important morphological 

variation relating to ancestry and have the added benefit of displaying morphologically 

informative shape diagrams that could not be achieved easily through traditional 

methods of ancestry determination using discriminant analysis.  

Henessy and Stringer (2002) provide a detailed examination of the practicality of 

using geometric morphometrics to study the regional variation observed in human 

craniofacial form. They used a three-dimensional laser scanner to digitize the surfaces 

of skulls of known ancestry, including Inuit, African, Australian and British individuals. 

The three-dimensional coordinates of nine craniofacial landmarks were extracted from 

the laser scans and analyzed. They found that geometric morphometric methods were 

able to characterize the overall face shape and variation within each sample accurately 

as well as distinguish the chief differences between the samples. Another recent study 

involving ancestry and geometric morphometrics was carried out by Husmann and 

Samson (2011). Their study involved determining the race and sex of individuals using 

only the orbital aperture. By applying 2-dimensional geometric morphometric principles 

to study the shape of the orbital aperture they found that there was very little variation in 

the shape of the orbits that could be attributed to race or sex differences. They 

concluded that the shape of the orbital aperture alone should not be used to determine 

the sex or race of unknowns.  
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A relatively new program called 3D-ID has been developed by Ann H. Ross and 

Dennis E. Slice to estimate the sex and ancestry of unknown human cranial remains 

using the principles of landmark-based three dimensional geometric morphometric 

shape analysis (Slice and Ross, 2009). The user can capture and plug in up to 34 three-

dimensional cranial landmark coordinates and the software compares the landmark 

coordinate configurations to a database of over 1000 individuals of known sex and 

ancestry. The program attempts to classify the cranium of interest by comparing the 

shape of the cranium to the shape information obtained from the reference sample 

through optimized and landmark-specific classification functions (Slice and Ross, 

2009). Classification results are based on Mahalanobis squared distance from the 

cranium of interest to each available reference group’s mean shape. The program also 

provides diagnostic statistics such as posterior probabilities of membership into the 

different reference groups as well as the typicality probability for how the cranium of 

interest compares with other specimens within the reference sample (Slice and Ross, 

2009). 

Although the program was released in 2010 there is currently little information in 

the relevant literature about 3D-ID. How well it performs, how accurate it is, and how 

widely it is used by practitioners in forensic investigations is not known. The choice of 

landmarks used in 3D-ID represent strictly Type I and Type II landmarks, which were 

shown to be more repeatable in an intra- and inter-observer landmark precision study 

conducted during the initial phase of the making of the program (Ross et al., 2010). 

However, many standard anatomical landmarks located around key areas of the 

craniofacial complex that show distinct ancestral variation, that would be considered 

repeatable since they are Type I and Type II landmarks, are not utilized (Lockeyer, 

2010).  For example, no landmarks on the nasal aperture are utilized, and the landmark 
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infranasion on the nasal root is missed, as well as landmarks along the dental arcade, 

which could detect differences in palate shape and prognathism. A former student’s 

undergraduate thesis at the University of Dundee at the Centre for Anatomy and Human 

Identification attempted, in part, to test the accuracy of 3D-ID for ancestry classification 

(Lockeyer, 2010). Lockeyer found that 3D-ID did not fare well in classifying crania by 

ancestral origin accurately. Classification rates using 3D-ID for crania of known 

ancestry from this study achieved a correct classification 60% of the time.  He 

concluded that the set of landmarks used in 3D-ID is not sufficient to summarize the 

areas of ancestral variation observed in the skull. Many of the 34 anatomical landmarks 

used by the program do not focus on areas of the skull that frequently show the most 

variation between ancestral groups. 

Although some of the aforementioned studies have proven unsuccessful in the 

determination of sex or ancestry from skeletal remains using geometric morphometrics 

they still provided a significant step forward in quantifying and addressing skeletal 

shape differences among and between individuals.  In terms of forensic anthropology 

and osteological examinations, geometric morphometrics is an extremely powerful tool 

for the researcher because it provides a quantitative and, hence, more objective means to 

analyze shape variation. There are various problems and constraints with the traditional 

quantitative and qualitative techniques applied to study the shapes and features of 

bones. Geometric morphometric techniques may provide a more specific and detailed 

analysis of human osteological variation within the study of forensic anthropology. 

Geometric morphometric applications are not necessarily intended to replace existing 

identification methods but to enhance and extend them, and, more generally, increase 

knowledge of the shape and form of the human skeleton. 
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Geometric morphometrics methods applied specifically to human ancestry 

determination using the craniofacial skeleton is a modestly explored area of research. It 

has the potential to be an important and cutting edge method for determining ancestry 

from human remains in a forensic context. Geometric morphometrics research has the 

potential to greatly increase knowledge of the shape and size relationship of craniofacial 

features as well as possibly define new areas of the skull as important markers of 

ancestral differentiation (Kimmerle et al., 2008). Since ancestry determination can be 

challenging, applying geometric morphometrics to study this aspect of the biological 

profile has the potential to simplify, standardize, quantify, and objectify ancestry 

research. 

2.4.  USE OF 3D  IMAGERY IN ANTHROPOLOGY  

The use of computed tomography (CT) scans and surface scans as representations 

of skeletal structures has become increasingly common in anthropological studies. The 

use of these scans as potential sources of data in anthropological investigations has a 

number of benefits over analyses that are performed directly on osteological material. 

3D images provide a non-destructive and non-invasive environment to analyze materials 

that may be fragile and difficult to handle (Ramsthaler et al., 2010). Osteological 

remains from archaeological and forensic investigations may be fragmented and delicate 

and the use of 3D imaging techniques provides a means to analyze these types of 

materials with less handling of the actual bone. CT data also has the added benefit of 

displaying external as well as internal structures, such as the endocranium, sinus, and 

tooth roots, which may be hidden or difficult to access when using traditional methods 

of analysis (Weber et al., 2001).  Specifically, within the field of human identification, 

CT scans of osteological materials may avoid the need for maceration procedures since 
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the bone can be visualized without the need to de-flesh it (Robinson et al., 2008; 

Ramsthaler et al., 2010). This may accelerate identification of the remains of the 

unknown individual since maceration can be a difficult, labour intensive and lengthy 

process. 3D images also provide the possibility to limit the amount of contact made with 

contaminated remains that may pose health and safety concerns (Robinson et al., 2008; 

Ramsthaler et al., 2010). Another major benefit of 3D imaging is that the object scanned 

can be permanently archived and can be rapidly re-distributed electronically to others on 

an international scale (Robinson et al., 2008; Ramsthaler et al., 2010). Finally, 3D 

surface and CT scans are well-matched to morphometric analyses since many programs 

are now readily available to visualize and mathematically analyze such forms of data. 

Although there has been extensive research conducted showing the validity and 

reliability of 3D images for morphological and metric anatomical analyses, there are 

some concerns involved when using this type of data for scientific research purposes 

(Williams and Richtsmeier, 2003; Robinson et al., 2008; Ramsthaler et al., 2010; Sholts 

et al., 2011a). Three sources of potential errors in imaging systems have been identified 

by Richtsmeier and colleagues: (1) the quality of the scanning device used; (2) the 

ability of observers to reliably and precisely locate landmarks on 3D images; and (3) the 

ability of the observer to use the applied software correctly (Richtsmeier et al., 1995). 

Since surface scan devices, such as laser scanners, use different imaging technology 

than CT imaging, surface scans have the inherent limitation of lower resolution than CT 

scans. This may result in difficulty visualizing certain features on 3D images of surface 

scans, such as sutures, since they may not always display a sharp visual contrast on 

specimens especially if the path of the suture is faint or obliterated or the specimen 

displays signs of deterioration or discolouration (Sholts et al., 2011a). This can hold true 

for 3D images of CT scans also. However, in general, CT data is more effective at 
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capturing the true form and fine detail of an object than surface scan data (Williams and 

Richtsmeier, 2003).  
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3.  MATERIALS  AND  METHODS 

To capture the morphology of the crania used in this research, the Cartesian 

coordinates of sixty-eight anatomical points were measured that are commonly 

employed in morphometrics. These points have a clear one to one correspondence 

across individuals and are called landmarks. A series of semilandmarks, which are 

points on curves or surfaces where ‘traditional landmarks’ are not available, were also 

used to obtain detailed shape information on regions whose boundaries are defined by 

landmarks. The landmarks utilized are listed and defined in Table 1. In terms of their 

degree of homology and biological correspondence across specimens, five (or about 

7%) were Type I landmarks (points in which three structures meet or have a strong 

locally defined histological location), fifty-six (or about 82%) were Type II landmarks 

(points that are located by geometrically defined correspondence across specimens), and 

seven (or about 10%) were Type III landmarks (points that are mostly based on 

extremities of features and structures) (Zelditch et al., 2004; Hallgrimsson et al., 2007).  

Three different areas on the cranium were chosen to be outlined by semilandmarks: the 

contour of the cranial vault traced along the midplane, the outer rims of the orbits (both 

left and right), and the outer edge of the lower nasal aperture. All of the areas marked by 

semilandmarks are considered important features in traditional ancestry assessments 

since they are considered ancestrally dimorphic. A complete description of the curves 

and outlines marked by semilandmarks can be found in Table 2.  

 Landmarks and semilandmarks were chosen primarily along areas of the 

craniofacial region that reflect the variation observed between different geographic 

populations. Such areas include the nasal region, consisting of the nasal root and the 

shape and width of the lower nasal aperture; orbital shape; orientation of the zygomatic 
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bones; shape of the maxillary profile;  palatal shape; mastoid length; frontal profile 

shape; and prominence of the supraorbital ridges. Landmarks and regions marked by 

semilandmarks were chosen to be easily identifiable on crania and repeatable among 

researchers as well as to account for the variations that are routinely observed between 

ancestry groups in traditional non-metric and metric analyses.  

Table 1 Cranial landmarks used in study and definitions   

Definitions and abbreviations adapted from Martin (1928), Martin and Saller (1957) and 

updated by Moore-Jansen et al. (1994) and White and Folkens (1991). 

Order 

placed 
Landmark name and abbreviation Type Definition 

Midline Landmarks 

1 Glabella (g) III 

Most prominent point on the frontal bone 

occurring between the supraorbital ridges in 

the midsagittal plane and usually above the 

nasal root 

2 Nasion (n) I 
Point on the midsagittal plane where the 

frontonasal sutures meet 

3 Rhinion (rhi) II 
Most anterior point at which the nasal bones 

meet 

4 Subspinale (ss) II 
Deepest midline point on the maxillae between 

the nasal spine and prosthion 

5 Prosthion (pr) II 

Most anterior midline point on the alveolar 

process of the maxillae between the central 

incisors  

6 Bregma (br) I 
Point where the coronal and sagittal sutures 

meet 

7 Lambda (l) I 
Point where the sagittal and lambdoidal sutures 

meet 

8 Opisthion (o) II 
Midline point at the posterior rim of the 

foramen magnum 

9 Basion (ba) II 
Midline point at the anterior rim of the foramen 

magnum 

10 Posterior edge of incisive canal (ic) II 
Most posterior edge of the incisive canal on the 

hard palate 

Bilateral Landmarks 

11 and 12 Infranasion (inf) I Most supero-lateral point on frontonasal suture 

13 and 14 Naso-maxillary (nm) II 
Most infero-lateral point on naso-maxillary 

suture 

15 and 16 Alare (al) III 
Most lateral point on the anterior margin of the 

nasal aperture 

17 and 18 Superior zygotemporale (zts) II 
Most superior point on the zygotemporale 

suture 

19 and 20 Inferior zygotemporale (zti) II 
Most inferior point on the zygotemporale 

suture 

21 and 22 Zygomaxillare (zm) II 
Most inferior point on the zygmaticomaxillary 

suture 
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23 and 24 Zygoorbitale  (zyo) II 
Point where the zygomaticomaxillary suture 

meets the orbital rim 

25 and 26 Jugale  (ju) II 

Deepest point in the notch between the 

temporal  

and frontal processes of the zygomatic 

27 and 28 Frontomalare orbitale (fmo) II 
Point where the frontozygomatic suture meets 

the inner rim of the orbit 

29 and 30 Frontomalare temporale (fmt) II 
Most lateral point where the frontozygomatic 

suture meets the temporal line 

31 and 32 Frontotemporale (ft) II 

Most anteromedial point on the temporal line 

on 

the frontal 

33 and 34 Ectoconchion (ect) III Most lateral point on the orbital rim 

35 and 36 Max. orbital height (obh) III Most superior point on the orbital rim 

37 and 38 Orbitale (orb) III Most inferior point on the orbital rim 

39 and 40 Porion (por) II 

Most superior point on the border of the 

external 

auditory meatus 

41 and 42 Auriculare (aur) II 
Point very close to and above porion which is 

situated at the root of the zygomatic process  

43 and 44 Mastoidale  (mast) II 
Most inferior point at the tip of the mastoid 

process 

45 and 46 Asterion (ast) I 

Ectocranial point where the lambdoial, 

parietomastoid, and occipitomastoid sutures 

meet 

47 and 48 Lateral foramen magnum (lfm) II 
Most lateral point on the border of foramen 

magnum 

49 and 50 Endomalare (enm) II 

Lingual point on the alveolar margin of the 

maxilla that is located opposite of the centre of 

the second molar 

51 and 52 Ectomalare (ecm) II 

Most lateral buccal point on the alveolar 

margin of the maxilla usually at the position of 

the second molar 

53 and 59 Buccal 1st molar alveolus (m1) II 
Most buccal point on the alveolar margin of the 

maxilla between the first and second molars 

54 and 60 Buccal 2nd premolar alveolus (p2) II 

Most buccal point on the alveolar margin of the 

maxilla between the second premolar and the 

first molar 

55 and 61 Buccal 1st premolar alveolus (p1) II 

Most buccal point on the alveolar margin of the 

maxilla at the first premolar and second 

premolar 

56 and 62 Buccal canine alveolus (c1) II 
Most buccal point on the alveolar margin of the 

maxilla between the canine and first premolar 

57 and 63 Buccal 2nd incisor alveolus (i2) II 
Most buccal point on the alveolar margin of the 

maxilla between the second incisor and canine 

58 and 64 Buccal 1st incisor alveolus (i1) II 
Most buccal point on the alveolar margin of the 

maxilla between first and second incisor 

65 and 66 
Most prom. Point on side of glabella 

(lg) 
III 

Most prominent point to the left of the 

glabellar region 

67 and 68 
Most prom. Point on superciliary 

ridge (supra) 
III 

Most superior point of projection on the 

supraorbital ridge 
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Figure 4 Frontal aspect of cranium with landmarks used in the study  

 

Figure 5 Inferior aspect of cranium with landmarks used in the study  
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Figure 6 Lateral aspect of cranium with landmarks used in the study  

 

 

Figure 7 Posterior aspect of cranium with landmarks used in the study  
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Table 2 Description of semilandmarked areas used in study 

Region and No. of points used Description of curve Start point and endpoint of curve or outline 

Vault (30) 

Trace of the contour of the  

cranial vault on the 

midplane 

Rhinion to bregma;  

Bregma to lambda;  

Lambda to opisthion 

Orbit (20) 

(both left and right) 

Trace of the outer rim of 

the orbit 
Frontomalare orbitale to frontomalare orbitale 

Lower nasal  aperture (10) 
Trace of the outer edge of 

the lower nasal aperture 

left alare to subspinale; 

subspinale to right alare 

3.1.  SAMPLE MATERIAL  

 The crania used in this research came from three sources: the William M. Bass 

Donated Skeletal Collection from the University of Tennessee; a collection of skulls 

located in the Anatomy Museum at the University of Edinburgh; and the Weber and 

Bookstein Online Material Data from the Virtual Anthropology Textbook 

(http://extras.springer.com/2011/978-3-211-48647-4). 3D images of crania from the 

Bass collection and the University of Edinburgh collection were acquired using 

FastSCAN™ surface laser scans. The Weber and Bookstein data consisted of high 

resolution CT scans. All specimens were of adult age as determined by the pattern of 

dental eruption and suture closure and only crania that showed no pathology and no 

missing landmarks were included in the study. Table 3 provides demographic 

information, where known, and a list of all the crania utilized. A balanced design with a 

total of, thirty-one crania of sub-Saharan African or Black American origin and thirty-

one crania of European or White American origin was employed. 

The William M. Bass Donated Skeletal Collection is housed in the Department 

of Anthropology at the University of Tennessee, Knoxville in the United States. The 

collection was established in 1981 and comprises about 1000 individuals with known 

http://extras.springer.com/2011/978-3-211-48647-4


45 

 

demographics including age, sex, and ancestry/race (http://fac.utk.edu/collection.html). 

The skeletal collection is considered contemporary since most individuals were born 

after 1940. FastSCAN laser scans of twenty-five skulls were acquired from Professor 

Caroline Wilkinson and rendered for study from this collection. Twenty-one individuals 

were of White or Caucasian American origin and four were of Black or African 

American origin. 
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Table 3 List and description of cranial samples used  

Specimen ID Collection Type of Scan Geographic Origin Sex (Where Known) Age 

1989 UT02-89D William M. Bass  Surface Scan White American Male Adult 

1992 UT21-92D William M. Bass  Surface Scan Black American Male Adult 

1998 UT05-98D William M. Bass  Surface Scan White American Male Adult 

2001 UT15-01D William M. Bass  Surface Scan White American Female Adult 

2002 UT08-02D William M. Bass  Surface Scan White American Female Adult 

2002 UT35-02D William M. Bass  Surface Scan White American Female Adult 

2003 UT18-03D William M. Bass  Surface Scan White American Female Adult 

2003 UT31-03D William M. Bass  Surface Scan White American Male Adult 

2003 UT49-03D William M. Bass  Surface Scan White American Male Adult 

2003 UT52-03D William M. Bass  Surface Scan White American Male Adult 

2004 UT06-04D William M. Bass  Surface Scan White American Male Adult 

2004 UT18-04D William M. Bass  Surface Scan White American Female Adult 

2004 UT38-04D William M. Bass  Surface Scan White American Male Adult 

2004 UT40-04D William M. Bass  Surface Scan Black American Male Adult 

2004 UT41-04D William M. Bass  Surface Scan White American Male Adult 

2004 UT44-04D William M. Bass  Surface Scan White American Male Adult 

2005 UT10-05D William M. Bass  Surface Scan White American Male Adult 

2005 UT15-05D William M. Bass  Surface Scan White American Male Adult 

2005 UT18-05D William M. Bass  Surface Scan Black American Female Adult 

2005 UT51-05D William M. Bass  Surface Scan White American Male Adult 

2005 UT59-05D William M. Bass  Surface Scan White American Male Adult 

2005 UT79-05D William M. Bass  Surface Scan White American Female Adult 

2006 UT48-06D William M. Bass  Surface Scan White American Male Adult 

2006 UT56-06D William M. Bass  Surface Scan White American Female Adult 

2006 UT75-06D William M. Bass  Surface Scan Black American Male Adult 

XXVI D.9 Edinburgh University  Surface Scan W. Africa  - Adult 

XXVI D.34 Edinburgh University  Surface Scan W. Africa  - Adult 

XXVI E.1 Edinburgh University  Surface Scan S. W. Africa  - Adult 

XXVI E.3 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.5 Edinburgh University  Surface Scan Madagascar  - Adult 

XXVI E.7 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.8 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.11 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.12 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.18 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.20 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.22 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.29 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.31 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI E.36 Edinburgh University  Surface Scan S. Africa  - Adult 

XXVI F.1 Edinburgh University  Surface Scan S. Africa Female Adult 

XXVI F.9 Edinburgh University  Surface Scan S. Africa Female Adult 

XXVI F.13 Edinburgh University  Surface Scan S. Africa Female Adult 

XXVI F.20 Edinburgh University  Surface Scan S. Africa Male Adult 

XXVII 3 Edinburgh University Surface Scan Madagascar - Adult 

XXVII 4 Edinburgh University  Surface Scan Madagascar  - Adult 

XXVII 5 Edinburgh University  Surface Scan Madagascar  - Adult 

XXVII 6 Edinburgh University  Surface Scan Madagascar  - Adult 

VA 001 Weber & Bookstein   CT Scan Europe Female Adult 

VA 002 Weber & Bookstein   CT Scan Europe Male Adult 
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VA 003 Weber & Bookstein   CT Scan Europe Male Adult 

VA 004 Weber & Bookstein   CT Scan Europe Female Adult 

VA 007 Weber & Bookstein   CT Scan Europe Male Adult 

VA 012 Weber & Bookstein   CT Scan Europe Male Adult 

VA 014 Weber & Bookstein   CT Scan S. S. Africa Female Adult 

VA 019 Weber & Bookstein   CT Scan S. S. Africa Female Adult 

VA 021 Weber & Bookstein CT Scan Europe Male Adult 

VA 022 Weber & Bookstein   CT Scan Europe Male Adult 

VA 024 Weber & Bookstein   CT Scan S. S. Africa Female Adult 

VA 025 Weber & Bookstein   CT Scan S. S. Africa Male Adult 

VA 030 Weber & Bookstein   CT Scan Europe Female Adult 

VA 050 Weber & Bookstein   CT Scan Europe Female Adult 

 

The crania collection from the Anatomy Museum, housed in the Biomedical 

Sciences department at the University of Edinburgh, is comprised entirely of individuals 

of sub-Saharan African ancestry. All crania in this collection are dated to around the 

nineteenth century. Regional origins are documented for all individuals. A total of 

twenty-three crania from this collection were scanned and landmarked for this study: 

fifteen crania came from southern Africa, five from Madagascar, two from western 

Africa, and one individual from southwestern Africa. Crania were laser scanned by the 

author using a Polhemus FastSCAN™ portable handheld laser scanner.  

 FastSCAN™ is a device that acquires three-dimensional surface images of 

objects by sweeping a handheld laser wand over the object. The wand sweeps a laser 

light over the object and two cameras on either side of the path swept by the laser record 

the surface information of the object. The position and orientation of the laser wand is 

tracked by an electromagnetic field emitted from a transmitter that is securely placed 

next to the object while it is being scanned. An image of the object instantly appears on 

a computer screen that is connected to the FastSCAN™ processing unit once the laser 

beamed line has been swept over the object. When scanning is completed the three-

dimensional surface data can be processed and exported in a variety of formats (e.g., 
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.ply, which is commonly employed in morphometrics) for use in various software 

programs. The absolute accuracy of the FastSCAN™ laser scanner is 0.75mm and the 

practical accuracy is set at 0.13mm. Figure 8 provides a photograph of the device along 

with a 3D laser surface scanned image of a skull viewed on a laptop. 

 

 

 

 

Image of a skull being laser scanned with the Polhemus FastSCAN™ device (left) and the 3D surface 

scanned image viewed from a laptop. Images were acquired from the Polhemus website 

(http://polhemus.com/?page=Scanning_Applications_Forensics). 

The Weber and Bookstein Online Material Data consist of a collection of CT 

scans of modern human and great ape crania (Weber and Bookstein, 2011). The human 

cranial images from this collection used in the present study were all of adult age with 

documented geographic ancestry. The CT scans of nine European and four sub-Saharan 

African crania were obtained from the Online Extra Material from the Virtual 

Anthropology Textbook (Bookstein and Weber, 2011). The program Amira® was used 

to create three-dimensional models from the .dicom files of the CT scans. This is a 

software package that is used to visualize three-dimensional image data, primarily 

volumetric data. The program was used to import and render the CT scanned crania and 

export the digital images as different file types to be used in morphometric software 

programs.  

Figure 8 Polhemus Fastscan Image.  
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 Unlike CT scans, laser surface scans only produce image data from the external 

surface of objects.  CT scans include both surface and internal details, creating virtual 

“solid object” images. To enable landmarking and easier manipulation of the 3D 

images, the program Freeform® Modeling Plus was used to “fill” and “thicken” the 

surface scans without losing the morphological integrity of the external surface of the 

crania. 

It should be noted that individuals were not pooled by sex for subsequent 

analyses since many individuals utilized for the study did not have information relating 

to this. An individual’s ethnic, regional, and national origins were also not considered 

since some individuals did not have documentation relating to this information. The 

study can be thought of as ‘simulating’ a real case scenario in forensic human 

identification to assess ancestry using the cranium where no prior information is 

available relating to sex, ethnicity, regional or national origins.  

Classification of individuals in terms of ancestry was based on the broad labels, 

commonly used in forensic anthropology and human identification, relating to the 

continent/region of origin wherein phenotypic differences were accentuated over time 

through differing microevolutionary paths. For the purposes of this study, Caucasian 

American or White crania are referred to under a European ancestry label and African 

American or Black crania are referred to under a sub-Saharan African ancestry label. 

The terminology may be debatable or objectionable since some researchers claim that 

American Whites and Blacks may now be distinct morphologically from modern 

Europeans and sub-Saharan Africans. It is also not possible to know whether the 

Caucasian American or African American crania employed from the William M. Bass 

collection actually have recent European or sub-Saharan roots, as both Whites and 
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Blacks may have lived in the U.S. for many generations or they may represent more 

recent immigrants from other ethnically diverse regions other than Europe or Africa. 

However, one could argue that it is reasonable to assume, that in terms of evolutionary 

geographic origins, individuals from the William M. Bass skeletal collection, whether 

White or Black, have at least partial, European or sub-Saharan African ancestry in terms 

of long term human evolutionary history.  

3.2.  DATA ACQUISITION  

Data used in this research consisted of three-dimensional Cartesian coordinates 

of landmarks and semilandmarks that were captured on 3D images of crania. 

Landmarks were placed on three-dimensional virtual images of crania using the 

program Landmark Version 3.0 (free to download from 

http://graphics.idav.ucdavis.edu/research/EvoMorph). This program is used mainly for 

virtual three-dimensional geometric morphometric data acquisition. 3D cranial surfaces 

were imported into the program and landmark and semilandmark points were placed on 

the 3D surfaces according to the definition of their locations and in a predetermined 

sequence so that the relative landmark locations and order would remain constant 

between all individuals within the study.  For landmarks such as ectoconchion and 

orbitale, whose locations are determined by distance measurements based on the 

greatest breadth or height of a feature, an on screen desktop measuring application 

called MB-Ruler was utilized. MB-Ruler is a semi-transparent measuring device that 

can place a grid on the computer screen as well as measure distances and angles on 

screen with a triangular ruler (free to download from http://www.markus-bader.de/MB-

Ruler/). The on-screen grid was used to aid in the location of landmarks that were based 

on points of extrema. Once landmark and semilandmarks points were identified and 

http://www.markus-bader.de/MB-Ruler/
http://www.markus-bader.de/MB-Ruler/
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located on the crania, the raw x, y, z Cartesian coordinate positions of each landmark 

configuration for each specimen were exported from Landmark and imported into other 

programs to carry out geometric morpohometric and multivariate statistical analyses.   

  

 

Semilandmarks were digitized along particular features and areas on the skull 

with the same technique but with variable sample densities from specimen to specimen. 

The feature being semilandmarked was identifiable across all specimens but the exact 

location of each point and number could not be defined precisely. For instance, the start 

point for the orbital curve began at the landmark frontomalare orbitale and 

semilandmarks were manually placed inferior to this point and traced along the entire 

orbital rim until they reached frontomalare orbitale from the opposite direction. 

Individual 2003UT18 had seventy-three semilandmark points arranged along the left 

orbit whereas individual 2005UT15 had sixty-four semilandmark points positioned on 

Figure 9 Surface scanned cranium oriented in Landmark 

program showing landmark points captured  
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that feature. Before geometric morphometric methods could be applied to the 

semilandmark coordinate points, they were resampled so that their density and 

approximate relative positions would remain consistent among all individuals. The 

semilandmark coordinates were subjected to a resampling procedure using the MS-DOS 

resample.exe program written by David Reddy and Johann Kim and reprogrammed by 

Dr. Ryan Raaum (free to download from http://www.nycep.org/nmg/programs.html). 

The program resampled the semilandmark coordinate data to a specific number of 

equidistantly-spaced points determined by measuring the total length of the particular 

curve and dividing it by the desired number of points along the feature.  

It should be noted here that if semilandmark points are employed in a geometric 

morphometric study it is highly recommended that they be algorithmically moved or 

iteratively ‘slid’ as an extension of the Generalized Procrustes Analysis process to 

improve the correspondence between points and among specimens (Bookstein, 1997; 

Perez et al., 2006). By employing this method, semilandmarks are allowed to ‘slide’ 

optimally along areas perpendicular to the surface until their positions are matched, as 

well as possible, to the corresponding positions of points to a reference configuration 

(Perez et al., 2006). In this study, semilandmarks, although resampled, were not ‘slid’ 

and were treated the same as landmarks. Although sliding is considered more desirable, 

software available for sliding 3D semilandmarks is currently very limited. Perez and 

colleagues conducted a study in which they tested two different methods for sliding 

semilandmarks as well as the effect of not sliding and they found that, in general, 

differences due to sliding between methods and those semilandmarks not ‘slid’ had a 

modest effect on relative shape differences as well as results obtained from discriminant 

function analyses (Perez et al., 2006).  
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Dr. Andrea Cardini, a co-supervisor on the project, was able to test ‘sliding’ 

versus not ‘sliding’ on the semilandmark data from the vault (A. Cardini, personal 

communication, June 2011). When the semilandmarks on the vault were Procrustes 

superimposed with object symmetry, asymmetries were removed and the third 

dimension became obsolete for this dataset. Removing the third dimension made the 

semilandmarks 2D. The semilandmarks from this dataset were ‘slid’ using TPSRelw, a 

geometric morphometric program which provides a procedure to slide 2D semilandmark 

data. Shapes distances between ‘sliding’ semilandmarks and those not ‘slid’ were shown 

to be negligible with virtually no change (results not shown) (A. Cardini, personal 

communication, June 2011). Results obtained should, hence, be reliable even if 

semilandmarks were not ‘slid’ for other datasets since distances did not change 

appreciably by ‘sliding’ for the semilandmarks along the vault. The main aim of the 

project is classification accuracy of landmark and semilandmark configurations using 

discriminant function analyses. Results of statistical analyses should generally be small 

when semilandmarks are not ‘slid’ since discriminant analyses rely on distances of 

individuals from the mean of the groups  
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3.3.  DATA ANALYSIS  

3.3.1.  SHAPE ANALYSES  

 Procrustes-based geometric morphometric methods were used to analyze and 

compare the coordinate configurations of landmarks and semilandmarks collected from 

the 3D cranial surfaces. The relative positions of the landmarks and the predetermined 

order in which they were selected and located ensured that there would be a one-to-one 

correspondence among landmarks across all specimens used in the study (Klingenberg, 

2011). The program MorphoJ Version 1.00j was used to perform all geometric 

morphometric analyses on all the landmark and semilandmark coordinate data exported 

from the Landmark program (free to download from 

http://www.flywings.org.uk/MorphoJ_page.htm).  

 

Figure 10 CT scanned cranium oriented in Landmark showing landmark and semilandmark points 

captured in frontal and profile positions  
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Analyses were carried out using the entire dataset (consisting of all the cranial 

landmarks and semilandmarks), as well as using only subsets of the data. The different 

subsets used included (1) conventional landmarks recorded over the entire cranium, (2) 

only semilandmarks recorded along the vault in the midplane, (3) only semilandmarks 

recorded along the orbits, (4) only semilandmarks recorded along the lower nasal 

aperture, and, as mentioned, (5) the total set of points. Shape information from the 

landmark and semilandmark coordinates was obtained in MorphoJ by a Generalized 

Procrustes Analysis (GPA).  GPA was used to register the coordinates and fit all 

individuals into a common coordinate system from which differences in size, translation 

and position are ‘standardized’. An average mean shape was produced and the landmark 

points captured from each specimen were translated to a common origin, rescaled to 

unit centroid size, and rotated relative to one another to minimize the sum of squared 

distances between corresponding coordinates for all specimens (Rohlf and Slice, 1990; 

Harvati, 2009; Weber and Bookstein, 2011). The centroid size, measured in centimetres, 

is a measure of dispersion around the centroid of the points in a landmark/semilandmark 

configuration. Once GPA was performed and the points were brought into a common 

coordinate system the differences between the values of the coordinates of the 

landmarks measured the differences in shape between the specimens (Slice, 2007). 

Small left-right asymmetries were removed following Klingenberg et al. (2002).  GPA 

shape coordinates were subjected to statistical procedures to reduce the number of 

variables within the dataset, to distinguish between shape similarities and differences 

among and between groups, and to classify groups using discriminant function analyses. 
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3.3.2.  STATISTICAL COMPARISONS  

 A Principal Components Analysis (PCA), using the variance-covariance matrix 

of the GPA shape coordinates, was performed in MorphoJ as well as in the statistical 

software PAST.exe to obtain new variables to summarize and explore visually the 

multivariate pattern of shape variation in the total sample. PCA comes from applied 

linear algebra and is an investigative multivariate statistical technique that provides a 

means to ordinate complex data and summarizes the variation occurring within it by 

creating new variables from the original data by re-expressing variables in a different 

way (Shlens, 2005; Cardini, 2012).  The dimension of the complicated data set is 

reduced by transforming the data to a new set of variables by extracting eigenvectors 

from the covariance matrix (Zelditch et al., 2004). The projections of the datapoints on 

the eigenvectors are called the principal components (PCs), which are linear 

combinations of the shape variables and are independent of one another (Zelditch et al., 

2004). The PC’s are uncorrelated (i.e. independent of each other) and are sorted so that 

the first principal component represents the largest amount of shape variation within the 

sample, and the second, third, fourth components, etc. represent progressively 

decreasing amounts of shape variation until all significant variation is accounted for. In 

the PCA scatterplots, distances between the specimens are proportional to differences in 

shape along the visualized axes. Scatterplots of the PCA were produced for the different 

datasets and the specimens were arranged in a shape space so that similarities and 

differences between individuals could be visualized.  

Dimensionality reduction removes potentially redundant variables and it may be 

particularly desirable when utilizing certain statistical techniques such as discriminant 

function analysis to assign individuals into groups. Discriminant function analyses do 
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not perform well with small sample sizes and many predictor variables, which can be 

common to geometric morphometric studies, especially when semilandmarks are 

analysed (Kovarovic et al., 2011).  

 To test whether the landmark and semilandmark coordinates captured from the 

different datasets were able to classify individuals according to their designated ancestry 

group, a series of discriminant function analyses were carried out. One used only 

centroid size, a second used the principal component shape scores, a third used the 

principal component form scores, and a fourth used the principal component form 

scores but with the first principal component removed to control for size-common 

allometric differences within the samples (i.e. ‘size-corrected’ form). Form scores were 

obtained by performing a PCA on the matrix of shape coordinates to which the natural 

log of centroid size was appended. This generates a size-and-shape space (or Procrustes 

form space) where variation in both types of form differences can be simultaneously 

analysed (Mitteroecker and Gunz, 2009). 

The discriminant function analyses were performed on the selected set of 

predictors (size, shape, form, and ‘size-corrected’ form) using leave-one-out cross 

validation in SPSS for Windows version 13 as well as in PAST. In total, twenty 

discriminant analyses using leave-one-out cross validation were performed using the 

principal component scores that accounted for at least 95% of the variation within the 

dataset. Discriminant analyses based on form and “size-corrected” form included one 

additional principal component to account for the extra dimension of size that was used.  

The leave-one-out cross validation method assessed the predictive performance 

of the discriminant function by testing the accuracy of each predicted classification. By 

using leave-one-out cross validation in the discriminant function analyses each 
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individual was iteratively removed from the whole sample and treated as an unknown 

for the discrimination procedure (Polly and Head, 2004). The identity of each individual 

was estimated by using the rest of the sample specimens whose identities were known 

(Polly and Head, 2004). The leave-one-out cross validation procedure provides an 

unbiased estimate of the probabilities of correct classification and diminishes issues of 

overfitting common to discriminant analyses done without cross-validation (Buck and 

Vidarsdottir, 2004; Polly and Head, 2004; Kovarovic et al., 2011). The landmarks and 

semilandmarks captured were assessed by their predictive power in classifying ancestry 

correctly depending on the variable/predictor used.  

Posterior probabilities of group membership were also calculated in the 

discriminant function analysis. Posterior probabilities are the measured likelihood that a 

given individual belongs to either group. Posterior probabilities, however, are calculated 

with the assumption that all individuals within the sample belong to one of the groups in 

the analysis (Pietrusewsky, 2000). With two balanced groups, individuals correctly 

classified have a posterior probability greater than 0.5 and those individuals incorrectly 

classified will have a posterior probability less than 0.5. Typicality probabilities, which 

assess the likelihood that any given individual actually belongs to any of the groups 

assigned, were also calculated for two datasets using a single predictor. The dataset that 

analyzed the shape of cranial landmarks and the size from the lower nasal aperture were 

used to evaluate the likelihood that any given individual belonged to any or none of the 

groups represented. Typicality probabilities should have been calculated for all datasets 

and variables, however, due to time constraints this was not possible. The typicality 

probabilities computed for the two datasets provide an idea, at least, of how typical 

individuals are to the mean of the group in the discriminant function analyses. 

Typicality probabilities are calculated by determining the average variability of all 
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groups in an analysis and measures range from 0 to 1 (Pietrusewsky, 2000). Generally, a 

low typicality (for this study, set at less than 0.01, the same threshold conventionally 

used for ‘high significance’) suggests that an individual may not belong to any of the 

groups within the analysis and may possibly belong to another group entirely. The lower 

the typicality value the further that individual is from the mean of the group in the 

discriminant analysis function. Since posterior probabilities are relative probabilities, 

and typicality probabilities are absolute probabilities, an individual could have a very 

high posterior probability but an extremely low typicality probability. In this case, the 

individual is closer to a given group but so distant from the average that the individual 

could actually represent an outlier (e.g., a third group in terms of ancestry). 

Kovarovic and colleagues discuss the random chance baseline and the 

importance of calculating a ‘chance-corrected’ classification statistic in discriminant 

function analyses (2011). This calculation provides information about the proportion of 

individuals correctly classified into respective groups by chance alone. When the 

sample size is completely balanced between groups this value is 1/G, where G 

represents the number of groups within the analysis. Within this study ancestry groups 

are balanced (there are 31 sub-Saharan Africans and 31 Europeans) so the expected 

proportion of cases correctly classified by pure chance alone expressed as a percentage 

is 50%. The TAU statistic takes this prior probability and removes the probabilities due 

to chance from the correct classification rates obtained from the discriminant analysis. 

(Kovarovic et al., 2011). The formula to calculate this statistic can be found in 

Kovarovic et al. (2011). Values of zero signify that the correct classification rate is no 

better than if individuals were grouped randomly by chance and values of one indicate 

that there was perfect discrimination (Rodríguez-Mendoza et al., 2011). The TAU 

values were calculated for each dataset and each predictor variable and were expressed 
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as a percentage and compared to the correct classification rates obtained from the cross-

validated discriminant function results.  

 An ancestry bias index was also calculated following the methods proposed by 

Franklin and colleagues (2012). The ancestry bias is the difference in correct 

assignment of sub-Saharan African and European individuals from the total sample 

(Franklin et al., 2012). In the present study, a positive value signifies that more sub-

Saharan African individuals were misclassified relative to European individuals and a 

negative value indicates the opposite.  

3.4.  ERROR ANALYSIS S TUDIES  

3.4.1.  ACCURACY OF LANDMARKS ON 3D  IMAGES VS .  THOSE     

DIRECTLY DIGITIZED FROM BONE  

A study was performed to explore and compare the amount of variation between 

cranial landmarks acquired from 3D images and those acquired directly by a digitizing 

device in relation to inter-individual (i.e., observed sample) variance. The crania utilized 

for this purpose came from the Helmer collection and the Centre for Anatomy and 

Human Identification teaching collection both housed at the University of Dundee.  3D 

images of ten crania were landmarked virtually using Landmark software and the same 

ten crania were directly digitized with the same set of landmarks using a Polhemus 

Patriot™ Digitizer. 

The Patriot™ digitizer is a device that can capture the real-time 3D Cartesian 

coordinate points of an object. The crania directly digitized with the Patriot™ were 

mounted and fixed in position to enable landmarking. The degree of accuracy of the 

Patriot™ itself was tested by taking a series of points along a ruler at one centimetre 

intervals. The Patriot’s components generate an electromagnetic field that can detect the 
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position and orientation of the sensor on the tip of a stylus pen when it is placed within 

the field. The x, y, z points collected from the position of the stylus tip are recorded into 

an associated software program installed onto a PC.   

Thirty-three midline and bilateral landmark points, representing Type I, Type II, 

and Type III landmarks, were directly digitized as well as captured from the 3D images 

and were subjected to GPA in MorphoJ. Table 4 provides a list of the landmarks used 

for this particular error study. Definitions for landmark placement can be found in Table 

1.                      

Table 4 Cranial landmarks used for digitization error study.  

Order placed Landmark name  

1 Glabella  

2 Nasion  

3 Rhinion  

4 Subspinale  

5 Prosthion  

6 Bregma  

7 Lambda  

8 Opisthion  

9 Basion  

10 and 11 Infranasion  

12 and 13 Naso-maxillary  

14 and 15 Alare  

16 and 17 Inferior zygotemporale  

18 and 19 Jugale   

20 and 21 Frontomalare orbitale  

22 and 23 Frontomalare temporale  

24 and 25 Frontotemporale  

26 and 27 Auriculare  

28 and 29 Mastoidale   

30 and 31 Lateral foramen magnum  

32 and 33 Ectomalare  
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The Procrustes shape coordinates were analyzed using a Procrustes analysis of 

variance (ANOVA) to quantify digitization and measurement error between instruments 

(Klingenberg and McIntyre, 1998). The Procrustes ANOVA test simultaneously 

determined the variation in the sample according to various shape effects and size 

differences between individuals as well as both the differences between landmarks 

acquired using either ‘instrument’ and the overall effect of measurement error (i.e. 

repositioning of the specimen). The Procrustes ANOVA in MorphoJ is tailored to 

analyze patterns of asymmetric/symmetric shape variation in data and therefore, besides 

testing measurement error, provides tests for the significance of the asymmetric 

components of shape variation. This involves four steps: (1) a calculation of the amount 

of total shape variation between individuals within the dataset; (2) a calculation of the 

amount of directional asymmetry among individuals, which provides information about 

whether one side of the specimen that was landmarked is systematically larger than the 

other side; (3) a calculation of the amount of fluctuating asymmetry, which represents 

small deviations from absolute bilateral symmetry (i.e.; variation between left-right 

landmarks) (4) a calculation of the amount of variation that is left over (the residual 

variation) within the dataset, which provides a value for measurement error within the 

dataset of replicated digitizations of landmarks (Klingenberg and McIntyre, 1998; Singh 

et al., 2012).  

3.4.2.  D IGITIZATION ERROR IN 3D  IMAGES  

 A landmark error study was also performed to see if the cranial landmarks 

placed on the 3D images used in the main analysis were repeatable throughout the 

study. Five crania from the original study sample were selected and re-landmarked on 

three separate occasions with the complete set of sixty-eight cranial landmarks. Repeat 
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landmarking sessions were carried out with at least a one-week interval between them to 

prevent measurement bias through remembered specimens and remembered landmark 

positions. Landmark precision was not tested for each individual landmark coordinate 

but on the set of landmarks as a whole. The aim of this intra-observer landmark 

precision study was similar to the Polhemus versus 3D error test but was conducted on 

the 3D images of crania with replicated digitizations of landmarks only. In total, four 

replicates of five specimens were utilized since landmarks from the original study were 

also included in this test of measurement error. Landmark precision was assessed 

between the re-landmarked specimens in relation to the natural variation between 

different individuals within the sample. 

Measurement variability was visualized by employing a GPA and PCA on the 

sets of the standard cranial landmark coordinates with the inclusion of the re-

landmarked specimens following the methods proposed by O’Higgins and Jones (1998). 

Procrustes ANOVA was conducted on the shape coordinates of the error dataset to 

calculate the variation due to measurement error in comparison to the variation between 

individuals within the sample. PCA was performed to provide a visualization of how the 

replicated landmark configurations plotted in relation to one another and to the entire 

dataset of all individuals from the main analysis. Because of the length of the 

digitization procedure for semilandmarks, these were not included in the replicas and 

therefore in the error analysis. However, with consideration (see Results) to the large 

amount of inter-individual variation in the sample, the analysis based on the landmarks 

should be valid and its results should apply to semilandmark data as well.   
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4.  RESULTS 

Reported first, are the error tests: (1) a comparison of digitizing error between 

digitizing ‘instruments’ (acquisition of 3D image landmarks vs. Polhemus Patriot 

landmarks), and, (2) landmark measurement error and repeatability on 3D images as a 

whole. Following this, visualizations of some of the PCAs are explored by providing 

scatterplots relating to some of the datasets along the first few PCs to view shape and 

form interactions among and between individuals and groups. Shape changes were also 

visualized in the Landmark software for the cranial landmark set along the first PC 

shape change vector for extreme European and extreme sub-Saharan African shapes as 

well as visualized as a mean group shape from either ancestry group. These were 

exported as coordinate files exported from MorphoJ. Classification results of the 

discriminant function analyses on the various landmark and semilandmark datasets are 

also presented with the inclusion of the ancestry bias index, posterior probabilities and 

typicality probabilities (the latter only for the dataset of cranial landmarks using the 

variable of shape and semilandmarks along the edge of the lower nasal aperture using 

the variable of size).  

4.1.  3D  IMAGE LANDMARKS VS .  POLHEMUS PATRIOT LANDMARKS  

 Landmark placement variation between ‘instruments’, or digitizing error, were 

quantified relative to the total shape and size variation among individuals within the 

dataset using Procrustes ANOVA. Tables 5 and 6 present the results of this test. The 

Procrustes ANOVA summarizes the overall effects of digitization error versus the total 

shape and size variation of individuals within the dataset. The degree of digitization 

error for the Procrustes ANOVA is calculated in relation to the degree of individual 

shape and size variation. Results show that the level of error between digitization 
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methods and, hence, measurements with either device, relative to inter-individual shape 

and size interactions, is not statistically significant.  Individual shape and size 

interactions were statistically significant (probability value, or p=<.0001) compared to 

measurement error. This indicates that digitization of cranial shapes from 3D images is 

comparable to landmarks digitized directly from crania since the amount of error 

between replicates is significantly less than the amount of shape and size effects 

explained between individuals  

Table 5 Procrustes ANOVA results for 'instrument' and measurement error using centroid size  

Effect SS MS df F statistic p-value 

Individual 7.979642 0.886627 9 24.07 <.0001 

Residual 0.368341 0.036834 10 - - 

SS, MS, and df refer respectively to sum of squares, mean sum of squares (i.e., SS divided by df) degrees 

of freedom. Residual effect refers to ‘measurement error’ between replicates in the dataset.  

Table 6 Procrustes ANOVA results for ‘instrument’ and measurement error partitioning 

symmetric and asymmetric components of shape.  

Effect SS MS  df F statistic p-value 

Individual  0.051903 0.000115 450 15.47 <.0001 

Side 0.000521 0.000012 42 1.67 0.0076 

Individual * Side 0.002818 0.000007 378 0.56 1.0000 

Residual 0.012321 0.000013 920 - - 

 

4.2.  3D  IMAGE ERROR  

 Landmark precision in the study was calculated by re-landmarking five 3D 

cranial images from the main analyses on three different occasions. All sixty-eight 

landmarks from the standard landmark set from the main analysis were used. The 

magnitude of individual shape and size variation was compared to the variation between 

landmarks placed on replicated individuals. Results of the intraobserver error 

measurement study for landmark digitization are presented below in Tables 7 and 8. 

Inter-individual shape variation was greater than fluctuating asymmetry which was 
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greater than the replicated configuration of landmarks (i.e. residual or measurement 

error). Therefore inter-individual variation is also greater than the replicas, indicating 

that measurement error was not significant source of variation within the sample.  

Results of the Procrustes ANOVA test indicate that individual variation from the 

landmark configurations was shown to be significantly larger for all shape and size 

interactions (p=<0.0001) in comparison to replicated landmark configurations as a 

whole. This indicates that landmark precision was accurate and repeatable within the 

bounds of inter-individual variation and that measurement error was negligible overall 

and was not a significant source of variation within the sample. 

 Table 7 Procrustes ANOVA results for 3D image error using centroid size  

Effect SS MS Df F statistic p-value 

Individual 3185.066 796.2664 4 2720.77 <.0001 

Residual 4.389929 0.292662 15 - - 

 

Table 8 Procrustes ANOVA results for landmark precision on 3D images.  

Effect SS MS df F statistic p-value 

Individual 0.081378 0.000198 412 9.94 <.0001 

Side 0.003964 0.000042 94 2.12 <.0001 

Individual * Side 0.007469 0.000020 376 21.67 <.0001 

Residual 0.002708 0.000001 2955 - - 

 

A GPA and PCA were also carried out to visualize how the replicated landmark 

configurations plotted with the data gathered from the sixty-two study individuals 

included in the main analysis. Figure 11 shows the first two principal components from 

this analysis plotted against one another. PC1 against PC2 shows that those individuals 

with replicated landmark configurations cluster relatively close to one another in 

comparison to all the other individuals within the sample (O’Higgins and Jones, 1998). 
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The three replicates of each of five individuals together with the data collected from the sixty-two 

individuals from the full analysis are plotted along PC 1 and PC 2 from the PCA. The replicated landmark 

configurations/individuals are shown as blue dots and the remaining unreplicated landmark 

configurations/individuals are shown as red dots. The replicates cluster relatively closely together in 

comparison to the variation present between individuals within the sample. 

4.3.  PRINCIPAL COMPONENT ANALYSES AND VISUALIZ ATION OF 

DIFFERENCES BETWEEN GROUPS  

Raw coordinates from the various datasets utilized were imported into MorphoJ 

and subjected to Procrustes superimposition as well as PCA in MorphoJ and PAST to 

obtain variables relating to size, shape, and form from the landmark and semi landmark 

points.  

Size was not a major contributor in terms of overall differences between 

individuals of sub-Sahara African and European Ancestry. Mean sizes of the groups 

using the standard landmarks, orbit, and vault dataset as well as the complete 

Figure 11 PCA of 3D image digitization error.  
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configuration of landmarks and semilandmarks set had almost equal means and the 

distribution of size between the two groups almost completely overlapped. Size 

differences, however, are evident for the lower nasal aperture between groups but not 

for the cranial landmarks. Although there is some overlap between the two groups, 

mean centroid size from the lower nasal aperture is different between sub-Saharan 

Africans and Europeans.  Figure 12 shows an example of the size variation grouped by 

ancestry for the cranial landmarks and lower nasal aperture datasets. 

 

  

Figure (xx)  Figure 12 Box plots depicting size variation between ancestry groups from (a) the standard cranial 

landmark dataset and (b) semilandmarks arranged along the lower nasal aperture. EUR = European 

individuals; SSA = sub-Saharan African individuals. 
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Shape variation scatterplots of the first two PCs of the PCA for individuals from 

the standard cranial landmark set, the semilandmarks on the lower nasal aperture, 

semilandmarks along the vault, and semilandmarks along the orbits are displayed in 

Figures 13, 14, 15,  and 16, respectively. The first two PCs for these three datasets 

accounted for the following percentages of variation between individuals:  standard 

cranial landmark set, 37.6%; lower nasal aperture, 34.9%; orbits, 65.4%; and vault, 

55.0%. The PCA on the standard landmark dataset for shape generated sixty-one PCs 

that explained 100% of the variation within the dataset. The first twenty-nine PCs 

represented at least 95% of the shape variation between individuals and were utilized as 

the shape variables to predict ancestry for the discriminant function analysis. In this and 

the other datasets, selecting the first PCs whose cumulative variance explained 95% of 

total variance allowed the dimensionality to be reduced without changing the pattern of 

pairwise individual distances in the shape space, as suggested by matrix correlation 

between Euclidean distances in the subspace of the first PCs and Procrustes distances in 

the total shape space as large as or larger than 0.997. For the lower nasal aperture eleven 

PCs were generated and the first four were used for classification analyses. Figure 13 

and Figure 14 show that individuals from the standard landmark configuration and the 

configuration of semilandmarks from the lower nasal aperture tended to plot, in terms of 

ancestry groupings, along the first and second PCs with some overlap between the 

groups. PCs 3 and 4, however, show no distinct ancestry groupings with almost 

complete overlap between groups. 
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For the PCA of semilandmarks along the vault and those along the orbital rims, 

forty-seven PCs and forty-nine PCs, respectively, were produced that explained 100% 

Figure 13 Shape variation between groups from the standard landmark  dataset with 

95% confidence ellipses. Scatterplots of PC1 vs.  PC2, which explain 37.6% of 

variance, and PC3 vs. PC4, which explain 15.6% of the variance.  Blue dots represent 

sub-Saharan African individuals and red dots Europeans.  

 

Figure 14 Shape variation between groups from the lower nasal aperture dataset with 

95% confidence ellipses. Scatterplots of PC1 vs.  PC2, which explain 34.9% of variance 

and PC3 vs. PC4, which explain 4.2% of variance.  Blue dots represent sub -Saharan 

African 
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of the variation among individuals within each dataset. The first nine PCs were used as 

shape variables for the discriminant analysis on the vault and the first eight PCs were 

used for the classification analysis on the orbits.  

Figure 16 and Figure 16 display the scatterplots of the first two PCs of shape 

from the vault and orbit. Much overlap, which is especially visible within the orbital 

dataset, occurs between individuals from either group. 

 

Figure 15 Shape variation between groups from the vault dataset  with 95% confidence 

ellipses. Scatterplot of PC1 vs. PC2 which explain 55.0% of variance. Blue dots represent 

sub-Saharan African individuals and red dot  Europeans. 
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Figure 16 Shape variation between groups from the orbit dataset with 95% confidence 

ellipses. Scatterplot of PC1 vs.  PC2 which explain 65.4% of variance.  Blue dots represent 

sub-Saharan African individuals and red dots Europeans.  

 

Scatterplots of the first two PCs of form and ‘size-corrected’ form are depicted 

for the standard cranial landmark set and the lower nasal aperture dataset in Figure 17 

and Figure 18, respectively. Form and ‘size-corrected’ form plots for the standard 

landmark configurations show a separation of individuals in terms of ancestry group 

with some overlap between groups. The first two PCs of form and ‘size-corrected’ form 

accounted for 55.3% and 21.5% of the variation within the cranial landmark dataset.  
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The first two principal components from the lower nasal aperture form and ‘size-

corrected’ form space accounted for 86.4% and 39.2% of the variation within datasets. 

As a whole, the lower nasal aperture form space separated groups in terms of ancestry 

with some overlap between groups. The ‘size-corrected’ form space, however, 

displayed a greater deal of overlap between groups with no obvious separation between 

ancestry groups.  

Figure 17 Form (a) and ‘size-corrected’ form (b) variation between groups from the cranial 

landmark dataset with 95% confidence ellipses. Scatterplots of PC1 vs.  PC2 explain  55.3% 

of form and 21.5% of ‘size-corrected’ form variance.  Blue dots represent sub -Saharan 

African individuals and red dots Europeans. 

 

(a) 

(b) 
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Figure 18 Form (a) and ‘size-corrected’ form (b) variation between groups from the 

lower nasal aperture dataset with 95% confidence ellipses. Scatterplots of PC1 vs.  

PC2 explain  86.4% of form and 39.2% of ‘size-corrected’ form variance.  Blue 

dots represent sub-Saharan African individuals and red dots Europeans.  

 

(a) 

(b) 
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Currently there are few programs available to visualize shape changes from 3D 

landmark data together with the 3D surfaces on which they were digitized. The 

Landmark program, however, offers a means by which to visualize shape changes from 

landmark coordinates by rendering surfaces along principal component vectors obtained 

from MorphoJ. The rendering and the shape changes on the regions of the surface where 

there are no landmarks is achieved by using the thin-plate spline interpolation (Adams 

et al., 2002). Figure 19 provides a visualization of an unaltered cranial 3D image of a 

European individual from the main sample morphed along the first PC of shape 

variation generated from MorphoJ from the standard landmark configuration with the 

dataset subdivided into a PCA on the extreme axis of the European group and a PCA on 

the extreme axis of sub-Saharan indviduals alone. Although interpretation is subjective 

when analyzing a 3D deformation of this sort, it is helpful and effective to visualize the 

shape changes occuring since it can provide an intuitive aid for  the interpretation of 

shape variation along a vector.  

The image of the crania morphed along the first PC in the direction of the sub-

Saharan Africans displays an overall shortening of the crania specifically in the 

maxillary region when compared to the unaltered 3D cranial image. The frontal area is 

also slightly shorter and more rounded. Orbital shape is less round and more angular 

and orbits slope downwards. The nasal opening appears rounder and wider and the nasal 

bridge lower and flatter with little overhang of the nasal bones. The mastoid process is 

short and rounded. 
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The crania morphed along the first PC in the direction of the Europeans displays 

a longer and narrower cranium and the maxillary region appears longer than in the 

unaltered image. The frontal bone is high and and more rounded. Orbits are more 

angular and square-like. The nasal aperture is long and narrow and the nasal bridge is 

narrow and sharp with overhanging nasal bones. The mastoid process is large, pointed, 

and long 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Crania morphed along the first principal component of a PCA on shape; (a) is 

an unaltered cranial image, (b) is the same cranial image but morphed along th e first 

principal component at the extreme axis of European individuals, and (c) is the same 

cranial image but morphed along the first principal component at the extreme axis of 

sub-Saharan African individuals 
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A visualization of the mean shape of sub-Saharan and European individuals 

using the cranial landmark dataset is displayed in Figure 20 and magnified three times 

to easily perceive differences in cranial shape. Mean shape of European crania is similar 

to the morphed shape using the first PC for that group although shape of the cranium, in 

general, does not display much difference from the unaltered image; orbits are angular 

and slope downwards laterally; nasal aperture changes little from the unaltered image 

but in general is long and narrow; nasal bones overhang the nasal aperture; and mastoid 

process is long and pointed. The mean shape of the sub-Saharan African crania is also 

similar to the morphed shape using the first PC for that group however noticeable facial 

projection/prognathism in the alveolar region and a wider palate is evident. The frontal 

area is also straighter. From the profile, the cranium is longer laterally. Orbits are large 

and slope downward laterally; nasal aperture is shorter and wider; and mastoids are 

rounder and less pointed.
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Figure 20 Crania morphed into the mean shape of ancestry groups; (a) is an unaltered 

cranial image, (b) is the same cranial image but morphed into the mean shape of 

European individuals, and (c) is the same cranial image but morphed into the mean 

shape of sub-Saharan African individual 



79 

 

4.4.  D ISCRIMINANT FUNCTION ANALYSES ;  CLASSIFICATION 

ACCURACY AND CONFIDENCE  

 Results of the discriminant analyses are presented for five datasets: standard 

cranial landmarks, semilandmarks along the cranial vault along the midplane, 

semilandmarks along the orbital rims, semilandmarks on the outline of the ridge of the 

lower nasal aperture, and the combined total of all landmarks and semilandmarks. 

Variables used for the various discriminant function analyses were centroid size, the PC 

scores of shape, and the PC scores of form. Analyses of form used the same number of 

PCs as the shape-only analysis and one additional PC was utilized to account for the 

variable of size that was included. ‘Size-corrected’ form used the same number of PCs 

as for the form analysis but with the first PC omitted to control for the effect of 

allometry among individuals since the first PC in a form analysis is a common 

allometric variable. All discriminant function analysis results are reported using cross-

validated classification rates with the inclusion of posterior probabilities for group 

membership. An ancestry bias estimate is also provided along with the results of those 

individuals correctly classified. Figure 21 provides a visual summary of the percentage 

of individuals correctly classified with the associated ancestry bias, which is the 

difference in correct assignment of sub-Saharan African and European individuals 

according to each predictor variable used, as well as the distributions of the posterior 

probabilities of correctly classified individuals in the discriminant analysis.  Figure 22 

provides another visual representation of the data but in table form. The figure includes 

the percentages of correctly classified individuals with the ancestry bias taken into 

account in the correct classification rates and a colour gradient representing high and 

low confidence in correct classifications (i.e. posterior probabilities). A complete output 

of discriminant function analyses including associated ancestry biases and lower, upper 
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and mean ranges of posterior probabilities can be found in the Appendix in Tables 1 to 

6.   

 

Figure 21 Summary of results obtained from the discriminant analyses  (DA) using all datasets 

and all variables employed in the study. Correct classification results are shown along with 

associated ancestry biases and posterior probability distributions. ‘Res.’ stands for ‘common 

allometric residuals (i.e. ‘sized-corrected’ form), and EU and SSA stand for European and 

sub-Saharan African individuals respectively.  Image was created by Dr. Andrea Cardini, a co-

supervisor on the project. 

% 
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Figure 22 Summary of results obtained from discriminant analyses in the form of a table using 

all datasets and all variables employed in the study. Correct classification percentages are 

shown and associated ancestry biases are included in the correct classification rates. Posterior 

probabilities are also depicted in the form of a colour gradient  where green represents high 

confidence and red low confidence. ‘All’ stands for all landmarks and se milandmarks 

employed. 

  Overall, using centroid size as a predictor for ancestry classification across all 

datasets correctly classified ancestry groups between 46.8-71.0% of the time with an 

overall mean of 56.8% correct classification. Posterior probabilities for correctly 

classified individuals using size were generally low with a mean range from 0.504-

0.746. Only the semilandmarks on the lower nasal aperture were able to correctly 

classify ancestry with a fairly high accuracy (mean classification accuracy = 71.0%) and 

a certain degree of confidence (mean posterior probability = 0.746) using centroid size 

as the predictor variable, however, slightly more Europeans were correctly classified 

than sub-Saharan Africans as indicated by an associated ancestry bias calculation of -

6.5%. In all other cases, size poorly classified individuals into their respective ancestry 

groups. The lowest classification rates for size occurred with the dataset using all 
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landmarks and semilandmarks. 46.8% of cross-validated grouped cases were correctly 

classified and the associated ancestry bias was 16.1%. 

In general, shape confidently predicted ancestry across all categories and groups. 

Using shape as a predictor correctly classified between 71.0%-90.3% of individuals 

with an overall mean of 80.0% correct classification from all datasets. Posterior 

probabilities for correctly classified individuals were generally high with a mean range 

from 0.838-0.995. Ancestry bias values were low and ranged between no recorded 

ancestry bias to 3.2% from the standard landmark set, the lower nasal aperture and the 

entire landmark and semilandmark configuration. Correct classification rates for these 

datasets were 87.1%, 75.8%, and 90.3% respectively. The lowest value of correctly 

classified individuals using shape as a predictor occurred with the semilandmark dataset 

arranged along the orbital rim: 71.0% of grouped cases were correctly classified in 

terms of ancestry and the ancestry bias was 6.5%. Semilandmarks along the vault 

correctly classified 75.8% of individuals and the associated ancestry bias value was -

9.6%. 

Discriminant analyses on form correctly classified between 74.3%-88.7% of all 

individuals with an overall average of 81.3% for correct classification from each 

dataset. Mean values for posterior probabilities from each dataset ranged from 0.838-

0.997. Ancestry biases were similar to the values associated with those from shape – the 

standard landmark set, the lower nasal aperture and the entire configuration of all 

standard landmarks and semilandmarks were less than or equal to 3.3%. As in the shape 

analysis, the semilandmarks along the vault and orbital rim had the lowest correct 

classification rates (75.8% and 74.3% respectively) and highest ancestry biases (-9.6% 

and 6.5% respectively). 
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‘Size-corrected’ form discriminant analyses correctly classified 53.2%-91.9% of 

all individuals into their respective ancestry groups with an average of 76.8% of 

individuals correctly classified from each dataset. The dataset that correctly classified 

the least number of individuals was the lower nasal aperture and the dataset that 

correctly classified the most individuals was the entire configuration of all cranial 

landmarks and semilandmarks. Average values for posterior probabilities from all 

datasets ranged from 0.838-0.995. Ancestry bias values were 12.9% for the standard 

landmark configuration and orbit dataset and -12.9% for the vault dataset. Ancestry 

biases for the lower nasal aperture and the entire configuration of all landmarks and 

semilandmarks were -3.2% and 3.2%, respectively. 

‘Chance-corrected’ cross-validated correct classification rates using the TAU 

statistic for the various datasets and predictor variables are presented in Figure 23. 

‘Chance-corrected’ classification rates for size ranged from -6.5% to16.1%; shape 

ranged from 41.9% to 80.6%; form ranged from 48.4% to 77.4%; and ‘size-corrected’ 

form ranged from 6.5% to 83.9%. Detailed results of ‘chance-corrected’ accuracy rates 

from all dataset using all variables can be found in the Appendix in Table 7. Using the 

standard landmarks dataset on shape as an example, 87.1% of individuals were correctly 

classified into their respective ancestry groups from the discriminant analysis and 74.2% 

of individuals were correctly classified when the effect of predicting group membership 

by chance alone is taken into account. For the lower nasal aperture semilandmark 

configuration with size as the predictor variable, the correct classification rate from the 

discriminant analysis was 71.0% and the ‘chance-corrected’ correct classification rate 

was 41.9% which is about 42% less errors than expected by chance. 
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Typicality probabilities for the cranial landmark configuration from the 

discriminant function analysis on shape ranged from 0 to 0.910. A total of 27 

individuals had typicality probabilities less than 0.001. This suggests that the 

morphology of the crania from these individuals may not be typical of the groups into 

which they were assigned. Figure 24 shows the scatterplot of the first two principal 

components of shape from the cranial landmark dataset with individuals with typicality 

probabilities less than 0.001. Fourteen European individuals and thirteen sub-Saharan 

African individuals had typicality probabilities less than 0.001. In general, the 

scatterplot of the first two PCs of shape show that sub-Saharan African individuals with 

low typicality values appear as outliers or tend to plot along the margin of the European 

 

Figure 23 Classification accuracy rates of the discriminant analyses and the TAU statistic 

expressed as a percentage.  



85 

 

cluster whereas the European individuals with low typicalities do not seem to plot in a 

characteristic or identifiable way; they plot within the European cluster with some 

individuals plotted as outliers. Typicality probabilities from the discriminant analysis on 

size using the lower nasal aperture dataset were all above 0.001 and ranged from 0.003 

to 0.981. 

 

 

 

 

Figure 24 Scatterplot of first two principal components of shape from the cranial 

landmarks. Pink and yellow dots represent sub -Saharan African and European 

individuals, respectively, with typicality probabilities less than 0.001. Dark grey dots 

are sub-Saharan African individuals with typicality probabilities greater or equal to 

0.001 and light yellow dots represent European individuals with similar typicality 

probabilities. 
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5.  DISCUSSION 

 The present research project was carried out to explore shape, size, and form 

differences between crania from individuals of sub-Saharan African and European 

ancestry using 3D geometric morphometrics and discriminant function analyses with 

leave-one-out cross validation. The specific aim of the study was to determine if it was 

possible to classify individuals accurately into their respective geographic ancestry 

groups based on configurations of landmarks and/or semilandmarks. Classification 

procedures were carried out using the entire cranial landmark/semilandmark dataset, 

subsets of the data focused on specific features of the cranium, and a standard cranial 

landmark set. 

 Despite the small sample size, the results of the study indicate that 3D 

geometric morphometric methods conducted on 3D images of the cranium are able to 

classify geographic ancestry with a significant level of consistency and confidence. The 

degree of success of the classification, however, was dependent on the 

landmark/semilandmark configurations and predictor variables used.   

In evaluating the effectiveness of the various three-dimensional multivariate 

descriptors to classify ancestry, the correct classification rates, the posterior 

probabilities and the ancestry bias calculations must all be taken into consideration to 

determine the best predictor. The TAU statistic should also be examined to provide 

details that explain the improvement of classification accuracy over what would be 

expected by random assignment. Although the percentage of correct classification 

achieved from the discriminant analysis function is the most important measure of 

discrimination, TAU provides a means of estimating the magnitude of the correct 

classification percentage relative to the percent of correct classifications made by 
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random chance assignment. An ideal dataset should have a high cross-validated 

accuracy rate (at least above 80%), high posterior probabilities (as close to 1.0 as 

possible), and a low ancestry bias set at less than 5%, as proposed by Franklin and 

colleagues (2012), in order to be considered suitable for application in forensic human 

investigation. 

 The standard cranial landmarks and the entire landmark and semilandmark 

configuration using all variables, excluding size, classified individuals with the highest 

accuracy and confidence rates (i.e. posterior probabilities) and relatively low associated 

ancestry bias calculations (all less than 5% except for the standard landmark set using 

`size-corrected` form as the variable). Accuracy rates for the standard landmark dataset 

using shape and form as variables and the total landmark/semilandmark configuration 

using shape, form and ‘size-corrected’ form variables surpassed 80% correct 

classification rates even when the ancestry bias calculations were taken into 

consideration and subtracted from the accuracy rates. Actual accuracy rates were higher 

and ranged from 85.5%-91.9% with high overall posterior probabilities. There was very 

little variation in terms of the entire cranium that could be attributable to size 

differences between the groups since correct classification rates and posterior 

probabilities were low and associated ancestry biases were high for the standard 

landmark dataset and entire landmark/semilandmark dataset for this variable. 

When size was added to shape for the analyses on form and ‘size-corrected’ 

form across all the datasets, the effect on classification accuracy was inconsistent: in 

some cases there was slight improvement; in other cases there was no change at all and 

in still other cases the classification rate was lower than using shape analysis alone. This 

clearly indicates that shape, and not size, is the more important characteristic in 
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analyzing differences between crania in terms of ancestry. As long as variables of shape 

are in the ancestry classification analyses for all datasets, especially using the standard 

landmarks and the entire configuration of landmarks/semilandmarks, there is an overall 

improvement in classifications accuracy rates.  

 In terms of the specific features analyzed, the nasal aperture was, in general, the 

more accurate in distinguishing between the two ancestry groups using all of the 

variables except for ‘size-corrected’ form. This is not surprising since the nasal aperture 

region is often considered one of the most useful craniofacial traits for assessing 

ancestry using traditional morphological and metric methods (Gill, 1998). 

Semilandmarks along the lower nasal aperture performed better using the variable of 

size alone in classifying individuals into their respective ancestry groups in comparison 

to all other datasets. The accuracy rate for the lower nasal aperture using size was 71% 

with an ancestry bias of 6.5%, and mean posterior probability of 0.746. All other 

landmark and/or semilandmark configurations performed significantly worse when size 

was the only variable analyzed. For these other configurations, correct classification 

rates ranged from 46.8% to 58.1% with very low posterior probabilities for those 

correctly classified and relatively high ancestry biases. Similarly, as with all the other 

datasets, semilandmarks along the lower nasal aperture performed better when shape 

was included in the analyses except with the variable of ‘size corrected’ form. Correct 

classification rates were 72.6% using shape alone and 79.0% using form when the 

differences between accuracy rates and ancestry biases were included. The fact that the 

nasal aperture set performed so poorly with the ‘size-corrected’ form variable, which 

controlled for the effect of allometry using a common size to predict shape for analyses 

of ‘non-allometric’ variation regardless of group, suggests that differences in shape for 
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this feature between the groups are somewhat dependent on size variation (Viscosi and 

Cardini, 2011). 

 Size differences between the groups using the lower nasal aperture is in 

agreement with previous studies which demonstrated that individuals with origins from 

Europe tend to have a narrower nasal aperture than individuals with ancestry origins 

from sub-Sahara Africa (Gill, 1998). The visualizations of the shape changes along the 

first PC in the direction of the sub-Saharan Africans and Europeans as well as the 

images of the mean forms from either group (shown in the results section in Figure 19 

and Figure 20), illustrate this difference between the ancestry groups well.  A linear 

measurement such as nasal breadth, which is commonly applied in traditional metric 

ancestry methods, measured from the bilateral anatomical landmark alare, should 

provide a quick and simple means to discriminate between the groups, albeit not with 

the highest confidence and accuracy rates, at least based on the sample of individuals 

from this project. The typicality probabilities (all greater than 0.001) calculated for this 

dataset and the relatively high posterior probabilities demonstrate that the variable of 

size can be used fairly confidently in predicting ancestry. The fact that individuals were 

classified with higher accuracies, higher confidence, and ancestry biases less than 5% 

using shape and form variables again reiterates that shape is an important discriminating 

factor for ancestry prediction. When size was added to shape for the form analysis 

accuracy rates achieved their highest correct classification indicating that both size and 

shape of the lower nasal aperture are significantly different between individuals with 

European and sub-Saharan African ancestry origins. 

Classification accuracy based on the vault and orbits for the different variables 

was not as high as those for the other datasets. Analyses on shape, form, and ‘size-
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corrected’ form for the orbital and vault datasets had accuracy rates which ranged from 

61.3% to 67.8% when the differences between correct classification rates and the 

associated ancestry bias were included in the classification accuracies. The lowest 

accuracy rates for both these datasets occurred when size was the only variable used in 

the discriminant analysis. The highest accuracy rates, with the inclusion of associated 

ancestry biases, occurred with shape and form variables using the vault dataset, and 

with form variables using the orbit dataset. Orbital and vault shape are both considered 

to differ between the two ancestry groups in traditional morphological and metric 

analyses but the discriminant analyses using these variables did not classify individuals 

with high confidence or accuracy, and ancestry biases were all well above 5%. 

Morphologically, the orbital shapes of individuals with sub-Saharan African origins 

tend to appear rectangular and those with European ancestry tend to appear more 

angular, sloping downwards with a rhomboid-like shape. Traditional metric evaluations 

of the orbits for ancestry classification involve calculating the height of the orbit, 

dividing by the breadth and multiplying the computed value by 100 (Husmann and 

Samson, 2011). When this orbital index is used as part of metric ancestry assessment, 

European and African individuals tend to fall within the intermediate (mesoseme) range 

of variation (Husmann and Samson, 2011; Ukoha et al., 2011). The orbital index 

conveys very little shape information and is basically a rectangle: whether the rectangle 

is longer in the up-down direction, longer in the right-left direction, or square. This 

index would not be able to differentiate a rectangular from a rhomboid-like shape. 

Perhaps one could argue that the differences associated with the size and shape of the 

orbits from these two ancestry groups is not strong since both morphologically and 

metrically the differences may not be compelling: visually they are both seen as angular 

and unrounded between groups, and rhomboidal and rectangular shape differences may 
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be small; and metrically shape information is not conveyed and individuals from either 

ancestry group tend to fall within the same intermediate category. The differences, 

hence, may be subtle and this could be a reason for the less successful differentiation 

rates obtained from the orbital dataset. However, this could also be an effect of the 

small sample size employed in the research and perhaps a larger sample would increase 

classification accuracy using this feature. As was mentioned in the literature review 

section, Husmann and Samson carried out a study applying 2D geometric morphometric 

methods to study the shape of the orbit for sex and race estimation using a sample of 

184 Black women, 236 Black men, 110 White women, and 232 White men. They found 

that orbital shape between Blacks and Whites demonstrated little shape difference. The 

percentage of attributable shape variation was actually quite small (1.36% for race 

differences) and principal component scatterplots almost completely overlapped 

between the groups using this feature (Husmann and Samson, 2011). Mean shapes of 

the orbits between all females, all males, Blacks (both sexes), and Whites (both sexes) 

were presented and differences between groups were minimal. It is possible that 

landmarks on 2D images of the orbit do not capture the morphological complexity of 

the curved surface of this feature. The results obtained in this research were below the 

80% accuracy limit for the orbital aperture and the principal component scatterplot of 

the first two PCs of shape (shown in the results section in Figure 16) displayed nearly 

complete overlap. However, the shape and form of this feature should not be ruled out 

as a potential trait to aid in ancestry identification. 

As for the semilandmarks along the vault in the midplane, the differences 

between the two ancestry groups are, again, likely to be more subtle than the differences 

usually observed from such areas as the nasal aperture. Ideally, the semilandmarks 

along the vault on the midplane would have picked up the morphological differences 
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frequently observed between the two ancestry groups. However, classification rates 

were also well below 80% and ranged from 58.1% to 66.2% using all variables if 

ancestry biases were included in the correct classifications rates. European crania tend 

to have a mesocephalic head shape with a sloping upright profile and a pronounced 

external occipital protuberance and sub-Saharan African crania tend to have a 

dolicocephalic head shape with a sloping but more rounded frontal profile and a post-

bregmatic depression (Randolph-Quinney et al., 2009; Wilkinson, 2004). In traditional 

metric analyses head length can be measured with calipers using certain anatomical 

landmarks but features such as a post-bregmatic depression or external occipital 

protuberance cannot be easily quantified. Geometric morphometrics provide a means by 

which these types of features can be quantitatively analyzed; however, differentiation 

between the two sample groups employed in this research was not satisfactorily 

apparent using this feature alone. 

The ‘chance-corrected’ accuracy rates expressed by the TAU statistic provide a 

measure of how well a technique performs if classification by pure chance alone is 

removed from the correct classification rate. High rates of TAU indicate that the 

landmarks/semilandmarks and variables employed are reliable and effective in 

discriminating between the groups beyond chance classifications. Any TAU value 

greater than zero indicates an improvement in the classification process beyond mere 

chance and the higher the TAU value the greater the improvement. All datasets, except 

for the total configuration of landmarks/semilandmarks using the variable of size, 

correctly classified individuals with an accuracy rate above chance. The discriminant 

analysis using the entire configuration of landmarks/semilandmarks using size classified 

individuals with a low success rate and the ‘chance-corrected’ classification rates 

revealed that those individuals correctly classified were categorized into respective 
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groups with a success rate worse than if individuals were randomly assigned to groups. 

This reiterates that the variable of size should not be utilized to differentiate between 

European and sub-Saharan Africans from features over the entire cranium, at least for 

the sample of individuals utilized in this research.  The highest ‘chance-corrected’ 

accuracy rate (i.e. the TAU value) occurred with the total configuration using the 

variable of ‘size-corrected’ form and was calculated as 83.9% .This indicates that the 

discriminant analysis classification made approximately 84% fewer errors than would 

have been expected on the basis of random assignment and that the technique is reliable 

at classifying individuals. In other words,  since two category groups were used in this 

study, individuals had a 50% chance of being wrongly (or correctly) classified based on 

random assignment, and of the 50% that would have been wrongly classified by chance 

alone, approximately 84% of these individuals were correctly classified by the 

discriminant function analysis classification. All datasets using shape and form using 

‘chance-corrected’ classification rates accurately classified individuals above at least 

40% (i.e. 40% fewer errors than random assignment alone). The standard landmark and 

total landmark/semilandmark configurations using shape and form and ‘size-corrected’ 

form were by far the highest for ‘chance-corrected’ classification rates and were all 

above 71.0% and ranged up to 83.9% indicating that classification based on these 

dimensions is good over a random allocation of individuals into groups.  

The standard landmark set and entire landmark/semilandmark configuration (i.e. 

landmarks captured over the entire cranium) were significantly better at classifying 

ancestry than any subsets of points digitized along specific cranial features, and the 

most successful predictor variables were those that included shape in the analyses. For 

single traits, the nasal aperture dataset, using the variable of form, approached 80% 

accuracy with the ancestry bias included in the correct classification rate. This trait 
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should be considered useful for ancestry prediction between European and sub-Saharan 

African individuals. This feature could be considered particularly important when 

incomplete or damaged cranial remains are found but the nasal aperture area is intact. 

An overall aspect of the cranium with single landmarks placed more loosely on multiple 

traits commonly used in ancestry identification (i.e. the standard landmark set) appears 

to provide better ancestry classification than more densely gathered points on specific 

ancestry-related features. This is not surprising since it is frequently recommended that 

multiple traits should be examined to identify ancestry from skeletal remains to attain 

maximum reliability instead of relying on single traits. However, even though some of 

the specific features, such as the orbits and vault, exhibited only mediocre classification 

success in this study, their potential importance in assessing ancestry should not be 

overlooked and further studies using larger sample sizes should be carried out. Human 

remains are frequently found damaged and incomplete and the use of single features to 

assess ancestry is sometimes all a practitioner can rely on.   

In terms of the best model for ancestry classification purposes, the most accurate 

descriptors were the entire configuration of landmarks and semilandmarks using shape, 

form and ‘size corrected’ form as the variables (accuracy rates ranged from 88.7% to 

91.9% with ancestry bias less than or equal to 3.2% and a mean posterior probabilities 

of greater than or equal to 0.995). The standard landmark set using the variable of shape 

and form, however, is likely to be the preferred model for ancestry classification since it 

is based on fewer variables (sixty-eight standard landmarks across the cranium as 

opposed to one hundred forty-eight landmarks/semilandmarks from the entire 

configuration). The posterior probabilities and ancestry bias were generally very similar 

to the entire landmark/semilandmark configuration using the variables of shape and 

form. The accuracy rates for the standard landmark set using the variable of ‘size-
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corrected’ form were high, however, the associated ancestry bias was 12.9% and thus it 

is not included.  In terms of the time and ease of acquisition the standard landmark 

dataset would likely be more desirable. However, the typicality probabilities that were 

calculated for the standard cranial landmark dataset were surprisingly low. Despite 

having high posterior probabilities this suggests that some individuals may not have 

been typical of any of the groups used in the analyses even though the individuals 

correctly classified were closer to the group to which they were assigned. The low 

typicalities for some individuals may also be an artifact of the heterogeneous nature 

(since sex and ethnicity/nationality were not taken into consideration in analyses) and 

temporal inconsistency of the sample, however a study using a significantly larger 

sample size would be required to investigate this effect more definitely.  

The reliability of ancestry identification using the non-metric approach is 

unclear and difficult to substantiate although some practitioners claim ancestry 

prediction accuracy rates of up to 90% (Clement and Ronson, 1998). Skilled 

practitioners of the non-metric approach certainly use identifiable cranial features in 

their classification criteria but they may also be prone to subjective bias and intuition. 

With traditional metric methods, using craniometric discriminant functions and the 

computer program Fordisc, accuracy rates have been reported, in some studies, to 

approach the accuracy rates achieved in this research using the standard landmark 

dataset (up to or greater than 80%) but have proven to have inconsistent results in other 

studies. It is important that methods be developed that can be statistically quantifiable as 

well as retain the complex morphology of the skull. This research and the results 

obtained should be seen as preliminary and exploratory, however, this study 

demonstrates that it is possible to quantify ancestry variation with accuracy while still 

retaining the complex morphology of the skull. The classification accuracy rates 
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associated with the standard cranial landmarks and total configuration of 

landmarks/semilandmarks with all variables using shape as components indicate 3D 

geometric morphometrics to be a promising method for identifying ancestry from 

unknown individuals. It appears that ancestral variation can be measured and quantified 

at least between the groups used in this study.  Differentiation and classification 

between ancestry groups using geometric morphometrics methods should continue to be 

researched using larger samples and multiple ancestry groups in order to gain further 

insight into the power of this method for ancestry identification purposes.   

There are not a lot of other studies that have been conducted involving 

geometric morphometrics and classification of ancestry for human identification using 

the cranium. The principal goals of some of the studies involving ancestry, the cranium, 

and geometric morphometrics were exploratory in nature and generally concerned 

assessing overall facial shape differences between various geographic populations 

(Viðarsdóttir et al., 2001; Henessy and Stringer, 2002). Results of these types of studies 

showed that geometric morphometrics could characterize shape accurately and that 

variations between groups could be visualized clearly and defined confidently in a 

statistical sense. Although classification accuracy was not the main objective of the 

study, Viðarsdóttir and colleagues were able to classify correctly between 66.7% and 

100% (mean 82.6%) of adult individuals using cross validation from 10 different 

geographic populations using 26 unilateral landmarks on the cranium. The main 

objective of their study involved using geometric morphometric to determine population 

differences in the growth and development of the human facial skeleton. They were able 

to correctly classify 75% of African American adults and 77.78% of Caucasian adults 

from their sample. Sample size, however, was limited and group sizes were unbalanced: 

the largest group of adults was represented by African Americans and was comprised of 



97 

 

only twelve individuals and the smallest group was represented by Polynesians and 

comprised of five individuals. When sub-adults were included in analyses along with 

adults, classification accuracies fell to between 53% to 88% with an average of 71% of 

all individuals correctly assigned. Average mean correct classification rates for 

allocation of adult crania to populations were high, however, the unequal sample sizes 

among groups and the small sample are likely to increase over-fitting of individuals in 

the discriminant analysis and reduce generalizability of results (Kovarovic et al., 2011). 

 Ross and colleagues (1999), in their study involving geometric morphometrics 

and allocation of crania to American Black and White groups using variables of shape, 

achieved results which corresponded closely to those using traditional approaches. The 

accuracy rate achieved on a sample of 19 American Blacks and 19 American Whites 

using fourteen superimposed homologous cranial landmarks was 84.2% using cross 

validation. The authors also compared this classification rate to discriminant analyses 

based on traditional linear measurements from the cranium and achieved an overall 

accuracy of 78.9%. Buck and Viðarsdóttir (2004) used geometric morphometrics to 

identify race from sub-adult mandibles. They employed a large sample, consisting of 

174 mandibles, from five ancestral populations (African Americans, Native Americans, 

Caucasians, Inuit, and Pacific Islanders) using 17 unilateral landmarks on the mandible 

and achieved an average of 70.1% correct classification. They then used a reduced 

sample consisting of three of the populations (African American, Caucasian, and Native 

American) and correctly classified 87.6% of individuals into their respective ancestry 

groups.  

Although the program 3D-ID has been created and is in use to classify 

individuals by ancestry using 3D geometric morphometrics, there is not yet any 
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information available in the peer-reviewed literature relating to the accuracy rates 

associated with this software. So, it is not yet possible to compare the results obtained in 

this analysis to those obtained with 3D-ID. In this analysis, however, more standard 

landmarks and more aspects of the cranium related to ancestry variation were utilized in 

comparison to 3D-ID.  In addition, in the present research, specific features on the 

cranium were examined with semilandmarks to determine their possible utility in 

ancestry identification as standalone features. Semilandmarks are not used in the 3D-ID 

program. 

5.1.  L IMITATIONS  

There are limitations involved in this study which may have had some effects on 

the results obtained. Most of the limitations concern the nature and size of the sample of 

individuals used in the study although some relate to intrinsic factors that may be more 

difficult to control. 

5.1.1.  INHERENT ERRORS  

Pertaining to the 3D images employed in the study, two different types of data 

were used: images from a surface scanner (48 images in total) and images from CT 

scans (14 images in total). No study was conducted to compare the different types of 

scanning technology. Scanning equipment may differ in volume and resolution, 

however, the spatial resolution of 3D images produced by laser scanning devices is 

generally considered equal to or greater than CT images (Fourie et al., 2011).  Fourie 

and colleagues conducted a study in which they evaluated the accuracy and reliability of 

different 3D scanning systems, including laser scanning equipment and CT data. They 

found anthropometric measurements on images created using different 3D imaging 

technologies were comparable in accuracy to direct measurements taken with callipers. 
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They also found that the measurements obtained from 3D images created using different 

imaging technologies were reliable and accurate between instruments and that the 

measurements obtained from the different systems could be combined for research 

purposes (Fourie et al., 2011). Multiple other studies have also shown that direct 

anatomical measurements are highly correlated with anatomical measurements derived 

from CT and surface scan data (Waitzman et al., 1992; Aung et al., 1995; Richtsmeier et 

al., 1995; Park et al., 2006; Dean et al., 2009).  

As was discussed previously, there are three types of landmarks and the 

accuracy with which they can be located is subject to varying degrees of error. The 

relative locations of Type II and Type III landmarks are generally considered more 

ambiguous than Type I landmarks. Although Type I landmarks are considered the most 

accurate, there are few points on the cranium that can defined according to their strict 

definition. Even though the locations of Type II and III landmarks are less clear and 

may be more prone to inter- and intra-observer errors, the use of these types of 

landmarks can enhance interpretation of shape changes since it allows for more points 

to be captured on specimens and potentially more biologically meaningful results to be 

obtained. 

 In the opinion of the author, the ability to locate certain anatomical landmarks 

differs considerably between the two types of images used. Type I landmarks, for 

example, were generally difficult to locate on surface scan images since discoloured or 

complex surface morphology was not always picked up by the laser scanning device. 

Locating these types of landmarks on CT scans, however, was generally more reliable 

since this method provides more surface detail. Precise locations of anatomical 

landmarks on the surface scans, therefore, may not correspond completely to their exact 
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positions on the dry skull. The discrepancy in landmark positioning on the surface scans 

utilized in this project has been demonstrated to be negligible in terms of intra-observer 

error since both types of 3D images were used in the digitization error study. For a 

follow-up study an inter-observer error test should be carried out to determine whether 

the landmarks captured on 3D cranial images are precise and repeatable between 

observers. A study to determine the precision of locating individual landmarks, instead 

of landmark precision as a whole, on 3D images of the cranium would also be an 

important consideration.  

5.1.2.  SAMPLE BIAS  

In this study the sample size was relatively small and some of the individuals 

may not have been reflective of the ancestry group to which they were assigned. In 

other words, the group of individuals in this sample may not have optimally reflected 

biological reality. Individual variation may have influenced classification results since 

traits associated with ancestry prediction are not absolute or discrete. Human variation 

is complex and continuous and the individuals within the sample may or may not 

represent the variation typically observed within their populations.  

The sample also included crania from varying temporal periods. This may affect 

the study’s ability to classify accurately individuals in a modern context. Almost all of 

the sub-Saharan African crania were historical in origin, dating to around the nineteenth 

century, and there may be a bias associated with the classification accuracy of these 

individuals as a result.  It has been demonstrated that biological secular change in 

humans has taken place within as little as 100 years and that significant changes in the 

shape and form of the skull have been observed between individuals from both ancestry 

groups employed in this research (Gravlee et al., 2003; Wescott and Jantz, 2005). Of 
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possible relevance, however, is a study carried out by Jantz and Wescott using 

geometric morphometrics to assess craniofacial secular change in American Blacks and 

Whites. The study showed that secular changes to the superior vault and face in both 

ancestry groups was minimal although there was some change observed in the base of 

the cranium (Wescott and Jantz, 2005). Most of the landmarks and semilandmarks 

employed in this study were concentrated on the craniofacial region and may have been 

relatively unaffected by temporal change. Ideally, however, this study should be 

replicated on a larger sample of modern crania to provide a reasonably unbiased 

representation of modern day cranial variation between the two groups. 

Individuals in this study were not grouped by sex in the analyses since, for most 

of the sample, this information was not available. Sex was treated as a source of ‘noise’ 

which may have affected correct classification rates and resulted in more difficulty 

discriminating between the groups. Sex and ancestry traits are interconnected and the 

sex of an individual can affect the way ancestry traits are perceived and vice versa. For 

example, a moderate to heavy supraorbital ridge and a large and long mastoid process is 

associated with Caucasoid ancestry. However, these traits are also typical of general 

male morphology. Pooling of individuals by sex could improve ancestry classification 

accuracy since female and male traits would have been somewhat controlled.  

The crania employed in this research also represent individuals from a number 

of different nationalities and ethnicities. Regional variation on a smaller scale occurs 

between populations and this may have affected classification accuracy, and may be 

partly responsible for the very low typicality probabilities computed for shape from the 

standard landmark dataset. However, classification accuracy was primarily based on the 

broad labels used in forensic anthropology for ancestry identification of unknown 
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individuals and not taking smaller scale regional variation into consideration may be 

appropriate for the direction of this research. 

5.2.  IMPLICATIONS FOR FURTHER RESEARCH AND STU DY  

In summary, this study has demonstrated that the use of geometric morphometric 

methods has the ability to classify ancestry accurately between individuals of sub-

Saharan and European ancestry using landmarks that cover the entire cranium with 

shape and form as variables. The work has also demonstrated that semilandmarks along 

the lower nasal aperture using the variable of form can classify individuals with an 

accuracy rate close to 80%.  

Geometric morphometric techniques offer some significant improvements over 

traditional approaches to estimate ancestry: 

1. Geometric morphometric techniques are more objective than the non-metric 

approach since the method relies on anatomical landmarks that are well-defined 

in the literature (Gonzales et al., 2011) 

2. The method allows for the quantification of the complex geometry of the 

cranium and traits on the cranium to be better retained and described than 

traditional metric methods 

3. The method allows pure shape information to be easily singled out from size  

4. The method allows for differences in shape and form between individuals and 

groups to be intuitively visualized in principal component shape space 
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Landmarks and semilandmarks were shown to effectively portray the cranial 

gestalt and other features from the cranium as well as compare objectively size, shape, 

and form differences between crania from the ancestry groups studied. Although some 

specific features did not fare as well in ancestry predictions they should not be ruled out 

as potential descriptors. Further research needs to be conducted to establish if the 

methods employed and classification accuracies achieved in this study are in fact 

biologically meaningful. Although the results of this study are certainly encouraging, to 

make any definitive statements about the effectiveness and accuracy of the geometric 

morphometric method as a technique that could be applied in forensic identifications, a 

study using a larger sample size, as well as more robust controls (sex, regional/ethnic 

origin) is required. Future research directions should include the use of more ancestry 

groups of known sex individuals to develop discriminant functions which can both 

classify geographic origin as well as sex in adults using the cranium. Subsets of the 

standard landmark configuration should also be investigated in more detail to determine 

where most of the ancestry-related variation is actually occurring. Applying EDMA 

may also be valuable since this technique can provide more specific information about 

which landmarks differ the most between individuals and groups to isolate areas of 

greatest shape change. Traits semilandmarked could also be examined in combination 

(i.e. investigate whether using the orbit and nasal aperture datasets, for example, provide 

greater discrimination between groups if they are merged together). As analysis and 

visualization software is improved, techniques of ‘sliding’ the semilandmarks will also 

be refined which may improve classification accuracy as well as enhance the 

visualization of 3D semilandmark data in an intuitive way. 
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6.  CONCLUSION 

Presently, there is little research being conducted to evaluate or enhance 

traditional ancestry classification methods (Christensen and Crowder, 2009). The 

assessment of ancestry/race plays an important role in the identification of human 

remains in a forensic context and there is a need to improve and quantify methods to 

predict ancestry if this component is to be admissible in a court of law and continue to 

be used in forensic human identification. Out of all the components of a forensic 

anthropology biological profile, estimation of ancestry is considered the most difficult. 

Traditional methods used to predict ancestry may be problematic and the traits used to 

distinguish between groups do not point directly to one population over another. The 

traits are numerous, not ‘fixed’, have different frequency of occurrence rates, and are 

subject to individual variability. Determination of ancestry from skeletal remains in a 

forensic setting using traditional techniques may be problematic especially if considered 

from a judiciary perspective “since they employ a combination of traditional scientific 

methodologies and less rigorous observational methodologies coupled with case study 

evaluations or casework experience” (Christensen and Crowder, 2009, 1211).  

The analysis of crania from 3D images using geometric morphometric 

techniques provides an alternative technique to identify and classify ancestry from 

unknown skeletal remains in a repeatable, accurate, and quantifiable manner. The use of 

3D imagery is becoming increasingly more common in physical anthropology and 

studies employing this kind of data provide confirmation and validation of the use of 

scanning technology in morphometric analyses. The present study has shown that 

ancestry can be accurately predicted between European and sub-Saharan African groups 

using virtual images and variables of shape and form (i.e. size and shape) when 
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landmarks and/or semilandmarks are captured over the cranial gestalt. The subsets of 

semilandmarks using all variables (size, shape, form, and ‘size-corrected’ form) 

generally did not classify ancestry between the groups with a high degree of accuracy. 

However, semilandmarks along the lower nasal aperture approached high levels of 

accuracy and this trait should be considered an important sub-region for ancestry 

classification. Size differences alone between crania and features on the cranium did not 

classify ancestry accurately or confidently between the groups employed in this 

research. This implies that linear distance measurements as used in traditional metric 

ancestry assessments, which rely predominantly on length and width measurements of 

anatomical landmarks, may not be the most optimal method to differentiate between 

ancestry groups. Shape has been shown in this project to be more important in 

classifying ancestry than size differences alone.  

As an extension of the research carried out here, more effective discriminant 

functions could be developed for ancestry classification using cranial data. The results 

obtained in this study as well as the data collected could be utilized in the creation of 

classification software or in the enhancement of software already available (e.g. 3D-ID) 

to identify ancestry from crania in a forensic context. Geometric morphometrics may 

never replace entirely traditional methods for ancestry identification but it can provide 

quantitative shape information that can corroborate and validate methods already in use. 

Geometric morphometrics will undoubtedly provide an increasingly powerful and 

valuable tool in assessing shape and shape change among and between individuals and 

groups and has the potential to objectively resolve some of the problems associated with 

ancestry identification in forensic anthropology. 
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APPENDIX:  TABLES  

Discriminant analysis (DA) results with associated ancestry biases Tables 1-5 

Table 1 Standard Landmarks DAs  

Shape (1st 29PCs=>95% variance)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 27 4 31 

EUR 4 27 31 

% SSA 87.1 12.9 100.0 

EUR 12.9 87.1 100.0 

 87.1% of cross-validated grouped cases correctly classified with no 

associated ancestry bias. 

Size (CS)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 15 16 31 

EUR 11 20 31 

% SSA 48.4 51.6 100.0 

EUR 35.5 64.5 100.0 

 56.5% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 16.1%. 

Form (PCS of form 1-30)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 26 5 31 

EUR 4 27 31 

% SSA 83.9 16.1 100.0 

EUR 12.9 87.1 100.0 

 85.5% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 3.2%. 

"size-corrected" (PCS of form 2-30)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 25 6 31 

EUR 2 29 31 

% SSA 80.6 19.4 100.0 

EUR 6.5 93.5 100.0 

 87.1% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 12.9%. 
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Table 2 Vault DAs   

Shape (1st 9 PCs=>95% variance)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 25 6 31 

EUR 9 22 31 

% SSA 80.6 19.4 100.0 

EUR 29.0 71.0 100.0 

75.8% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of -9.6%. 

Size (CS)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 18 13 31 

EUR 13 18 31 

% SSA 58.1 41.9 100.0 

EUR 41.9 58.1 100.0 

 58.1% of cross-validated grouped cases correctly classified with no 

associated ancestry bias. 

Form (PCs of form 1-10)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 25 6 31 

EUR 9 22 31 

% SSA 80.6 19.4 100.0 

EUR 29.0 71.0 100.0 

 75.8% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of-9.6%. 

"size-corrected" (PCs of form 2-10)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 25 6 31 

EUR 10 21 31 

% SSA 80.6 19.4 100.0 

EUR 32.3 67.7 100.0 

 74.2% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of -12.9%. 
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Table 3 Orbits Das 

Shape (1st 8Pcs=>95% variance)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 21 10 31 

EUR 8 23 31 

% SSA 67.7 32.3 100.0 

EUR 25.8 74.2 100.0 

 71.0% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 6.5%. 

Size (CS)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 15 16 31 

EUR 14 17 31 

% SSA 48.4 51.6 100.0 

EUR 45.2 54.8 100.0 

51.6% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 6.4%. 

Form (PCs of form 1-9)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 22 9 31 

EUR 7 24 31 

% SSA 71.0 29.0 100.0 

EUR 22.6 77.5 100.0 

74.3% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 6.5%. 

"size-corrected" (PCs of form 2-9)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 22 9 31 

EUR 5 26 31 

% SSA 71.0 29.0 100.0 

EUR 16.1 83.9 100.0 

77.5% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 12.9%. 
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Table 4 Nasals Das 

Shape (1st 4PCSs =>95%)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 23 8 31 

EUR 7 24 31 

% SSA 74.2 25.8 100.0 

EUR 22.6 77.4 100.0 

 75.8% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 3.2%. 

Size (CS)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 23 8 31 

EUR 10 21 31 

% SSA 74.2 25.8 100.0 

EUR 32.3 67.7 100.0 

 71.0% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of -6.5%. 

Form (PCs of form 1-5)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 25 6 31 

EUR 5 26 31 

% SSA 80.6 19.4 100.0 

EUR 16.1 83.9 100.0 

 82.3% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 3.3%. 

"Size-corrected" (PCs of form 2-5)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 17 14 31 

EUR 15 16 31 

% SSA 54.8 45.2 100.0 

EUR 48.4 51.6 100.0 

 53.2% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of -3.2%. 
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Table 5 Entire dataset DAs (landmarks and 

semilandmarks combined)  

Shape (1st 29PCs=>95% variance)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 28 3 31 

EUR 3 28 31 

% SSA 90.3 9.7 100.0 

EUR 9.7 90.3 100.0 

 90.3% of cross-validated grouped cases correctly classified with no 

associated ancestry bias. 

Size (CS)  
Classification Resultsa,c 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 12 19 31 

EUR 14 17 31 

% SSA 38.7 61.3 100.0 

EUR 45.2 54.8 100.0 

 46.8% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 16.1%. 

Form (PCs of form 1-30)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 27 4 31 

EUR 3 28 31 

% SSA 87.1 12.9 100.0 

EUR 9.7 90.3 100.0 

 88.7% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 3.2%. 

"size corrected" (PCs of form 2-30)  
Classification Results 

Ancestry group Predicted Group 

Membership 

Total 

SSA EUR 

Cross-

validatedb 

Count SSA 28 3 31 

EUR 2 29 31 

% SSA 90.3 9.7 100.0 

EUR 6.5 93.5 100.0 

 91.9% of cross-validated grouped cases correctly classified with an 

associated ancestry bias of 3.2%. 
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Table 6 Upper, lower, and mean posterior probabilities (PP) for correct assignment 

from each dataset using all variables  

Dataset Variable lowerPP(2.5%) upperPP(97.5%) meanPP 

STANDARD LANDMARKS size 0.502 0.541 0.520 

 shape 0.884 1.000 0.989 

 form 0.884 1.000 0.989 

 ‘size-corrected’ 0.700 1.000 0.989 

VAULT size 0.509 0.644 0.570 

 shape 0.539 0.999 0.842 

 form 0.561 0.999 0.838 

 ‘size-corrected 0.532 0.998 0.842 

ORBITS size 0.508 0.701 0.579 

 shape 0.558 0.997 0.838 

 form 0.562 1.000 0.863 

 ‘size-corrected 0.518 0.998 0.838 

NASALS size 0.531 0.965 0.746 

 shape 0.517 0.986 0.841 

 form 0.552 0.999 0.889 

 ‘size-corrected 0.502 0.785 0.841 

TOTAL CONFIGURATION size 0.501 0.505 0.504 

 shape 0.964 1.000 0.995 

 form 0.961 1.000 0.997 

 ‘size-corrected 0.932 1.000 0.995 
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Table 7 ‘Chance-corrected’ (TAU) and discriminant analysis (DA) accuracy rates for all 

datasets using all variables 

Dataset Variable TAU statistic (%) DA Accuracy 

rate (%) 
Standard 

landmarks 

size 12.9 56.5 

shape 74.2 87.1 

form 71.0 87.1 

‘size-corrected’ 74.2 87.1 

Vault size 16.1 58.1 

shape 51.6 75.8 

form 51.6 75.8 

‘size-corrected’ 48.4 74.2 

Orbits size 3.2 51.6 

shape 41.9 71.0 

form 48.4 74.2 

‘size-corrected’ 54.8 77.4 

Nasals size 41.9 71.0 

shape 51.6 75.8 

form 64.5 82.3 

‘size-corrected’ 6.5 53.2 

Total 

configuration 

size -6.5 46.8 

shape 80.6 90.3 

form 77.4 88.7 

‘size-corrected’ 83.9 91.9 

  


