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ABSTRACT 

An investigation for seabed liquefaction induced by progressive water waves is vital for 

the protection of marine structures from damage to the structure foundations. The 

residual liquefaction in sedimentary seabed has been found to be of progressive nature 

and experiments have also demonstrated that the liquefied soil behaves as a visco-

elastic-plastic material. Building on the previous research, this work develops various 

numerical models to re-examine the key factors which influence the progressive 

liquefaction processes. 

To investigate the effect of randomness of wave height on seabed liquefaction, 

ensemble modelling approach is adopted in a two-layer inviscid fluid flow model, 

whereby the liquefied soil is treated as inviscid heavy fluid. Probabilistic study of soil 

liquefaction processes indicates that the random wave-induced liquefaction depth is 

much larger than that corresponding to regular waves with Equivalent Wave Height. 

The larger liquefaction depth in random waves is shown to be due to the fact that the 

highest waves rather than average waves in the wave series tend to dominate the 

liquefaction extent. It is also shown that the time needed for liquefaction to reach the 

bottom of investigated domain can vary considerably in the case of random wave time 

series. The longer period of low waves between the large waves will delay the time for 

the maximum liquefaction depth to be reached within the simulation time considered. 

The current design practice, which is entirely based on the regular wave models, can 

under-estimate the liquefaction depth and lead to unsafe design. It is recommended that 

the evaluation of liquefaction potential due to random waves should be based on the 
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appropriate extreme values in the wave height distribution rather than average values 

such as significant wave height or root-mean-square wave height. 

Secondly, a two-layer viscous fluid model representing a visco-elastic-plastic 

liquefied soil is constructed. The upper seawater and liquefied soil were treated as 

viscous fluid and described by the linearized Navier-Stokes and continuity equations. 

Simulation results confirmed that shear stress solved from infinite seabed solution can 

lead to significant errors and underestimate the liquefaction depth. The viscosity of 

liquefied soil computed by the present model reveals a clear state change, i.e., from 

viso-elastic stage to visco-plastic stage, due to the increasing deformation rate of 

liquefied soil layer. The strain rate dependent viscosity can influence the liquefaction 

process relative to constant viscosity although not very strongly. Deeper liquefaction is 

more likely to take place in shallower water under the same wave loading. Smaller soil 

permeability prevents residual pore pressure dissipation and consequently enhances the 

liquefaction. 

Finally, the two-layer viscous model is extended to a multi-layer model in order to 

investigate the effect of stratification of liquefied soil layer. It is found that the 

liquefaction depth estimated using the N-layer model is sensitive to water content, 

which is contrary to that predicted by the two-layer model. The continuously increasing 

liquefied soil density is found to overcome the numerical difficulty in achieving a 

convergent viscosity. The predicted liquefied soil viscosity, liquefaction depth and 

interface wave amplitude are all different from that predicted by constant water content 

model. The sensitivity of liquefaction to both wave and soil parameters are enhanced by 

the stratification of liquefied soil viscosity and density. The thickness of seabed is also 

found to affect liquefaction but the trend is not monotonic. There seems to be a critical 
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seabed thickness, at which the effect of seabed thickness on liquefaction reverses. 

Below the critical thickness, the liquefaction depth is smaller due to the relatively short 

drainage distance in thinner seabed but beyond the critical thickness, increasing seabed 

thickness damps the wave energy and consequently prevents the liquefaction. Seabed 

liquefaction is very sensitive to the soil plastic model parameters contained in the 

residual pore pressure build-up equation. Therefore, a reliable procedure for quantifying 

these parameters is extremely important. 
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 Introduction Chapter 1

Over the world, a large part of population and industry are concentrated around the 

coast and more and more exploration activities take place in coastal area and offshore. 

Marine structures such as breakwaters, pipeline, oil drilling platforms, and wind 

turbines are constructed to protect coastal community, facilitate marine transport or to 

generate energy. 

Exposed to fluctuations of water pressure induced by water waves, the sea floor 

around or beneath marine structures will undergo periodic shear deformation. Along 

with the rearrangement of soil grains, the pore water will be compressed. As a result, the 

pore water pressure builds up in the case of an ‘undrained’ soil, which leads to 

reduction in the soil shear strength. When the water wave is sufficiently severe and 

under specific conditions of seabed properties, the soil may even be liquefied if the 

accumulated pore pressure exceeds the overburden pressure. In this situation, the soil 

grains will become unbound and completely free from frictional contact, and the soil 

will move like a liquid (Sumer et al., 1999) under the prevailing current and wave 

actions. In  coastal engineering, wave-induced liquefaction has been identified as a 

major cause for damage in marine structures as the result of foundation failures (Zen et 

al., 1991; Sakai, 1999; Gomyo, 1995) due to  submarine flow slides, liquefaction of 

loosely packed backfills around underwater pipelines and instability around the toe of 

composite or offshore breakwaters as illustrated in Fig. 1.1. 

The topic of wave-induce seabed response and liquefaction in seabed has receive 

numerous attentions since the 1970’s. The cyclic loading due to ocean waves has been 

confirmed to cause liquefaction to the seabed (Bjerrum, 1973; Lee and Focht, 1975). 
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The mechanism of wave-induced liquefaction is theoretically established by a number 

of researchers, for example Nataraja and Gill (1983), Okusa (1985) as well as Zen and 

Yamazaki (1990). Most investigations into the response of soil to progressive wave 

loading were carried out by means of numerical analyses and centrifuge tests (Sassa and 

Sekiguchi, 1999; Sassa and Sekiguchi, 2001; Sassa et al., 2001), and model scale wave 

flume tests (Sumer et al., 1999; Sumer et al., 2004; Teh et al., 2003). There are also 

some analytical approximations available for predicting liquefaction potential of a free 

seabed namely, without being disturbed by marine structures. 

 

Fig. 1.1 Geo-hazards in water fronts associated with ocean waves 

Despite these studies, the understanding of wave-seabed interaction is still far from 

complete. For example, it is well known that after the occurrence of liquefaction the 

liquefied soil loses its supporting power but it remains unclear how the fluid-like 

liquefied seabed may affect the physics of wave-seabed interaction. Takahashi et al. 

(1994) and Kioka et al. (1998) have proposed that artificially liquefied zones of sand or 

mud could be used to dampen out destructive energy of water waves in harbours. Sassa 

and Sekiguchi (1999) and Sassa et al. (2001) have demonstrated the progressive nature 
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of liquefaction under progressive waves using both experimental and numerical 

approaches. The theoretical model proposed by Sassa et al. (2001) was an extension of 

Lamb’s two-layer fluid system theory (Lamb, 1932). The completely liquefied soil was 

assumed to be inviscid fluid above and below which are a clear water layer and a sub-

liquefied (not become liquefied yet) seabed layer which was modelled by a poro-

elastoplastic model. Liu et al. (2009) also took the sea water-liquefied soil as a two-

layer system. However, they employed the linearized Navier-Stokes equation to 

describe the fluid system and prescribed a constant viscosity for the liquefied soil layer. 

Furthermore, the wave-induced shear stress in seabed was computed by a finite depth 

seabed model rather than an infinite depth seabed in Sassa et al. (2001). In the 

aforementioned works, it was shown that wave energy is dissipated as the liquefaction 

front advances downward. Therefore, the liquefied soil desires a rational modelling 

method by which both the wave behaviour and the pressure exerted by the completely 

liquefied soil on sub-liquefied seabed can be estimated more accurately. 

However, the existing investigations into the wave-induced seabed liquefaction 

based on two-layer fluid system are restricted to regular waves. In reality, the gravity 

water waves are always random. The random wave induced soil response and the final 

liquefaction depth frequently exceed the results under the corresponding representative 

regular waves and the same soil characteristics. Moreover, the two-layer fluid system 

employed in the current literature assumes the liquefied soil layer as an inviscid or 

viscous fluid with a constant viscosity neglecting the fact that the liquefied soil not only 

behaves like a heavy viscous fluid its viscosity also varies with the rate of shear strain in 

a way similar to the response of rate-dependent fluid mud to wave actions. Therefore it 

is instructive to apply the concepts and rheological models originated from studying 
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fluid mud to the modelling of liquefied soil. Finally, as the strain rate of liquefied soil 

tends to change with depth the method of two-layer system is clearly unable to account 

for these changes and the impact of this approximation on the predicted liquefaction 

processes need be quantified. 

This thesis aims to examine the aspects mentioned above in the seabed liquefaction 

caused by progress waves. To address the problem a clear knowledge on ocean wave 

characteristics, wave-induced seabed response (pore pressure and shear stress), 

properties of liquefied soil and wave-seabed interaction analysis is required.The thesis 

is organized as followings: 

In Chapter 2, some previous works related to such issues are briefly reviewed. 

In Chapter 3, a two-layer inviscid fluid system for wave-liquefied soil is constructed. 

After Sassa et al. (2001), analytic solution to wave-induced shear stress for infinite 

poro-elastic seabed and the same residual pore water storage equation for excess pore 

pressure build-up are employed. The model is verified by comparison with the wave 

tank centrifuge tests on progressive sandy seabed liquefaction. 

In Chapter 4, based on ensemble modelling method, a probabilistic analysis of 

progressive liquefaction is performed. By performing multiple runs of a liquefaction 

model using randomly generated wave series from a given wave distribution, the 

liquefaction depth and time are determined in the form of probability distributions so as 

to reveal the variability and uncertainties involved in wave-induced liquefaction. 

Prediction of pore pressure, seabed shear stress and wave pressure are calculated using 

the model established in chapter 3. 
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In Chapter 5, the inviscid two-layer fluid system for wave-liquefied soil is re-

examined. To account for viscosity of liquefied soil, a viscous two-layer fluid system 

based on governing equations of linearized Navier-Stokes equations is constructed. 

Liquefied soil is modelled using a visco-elasto-plastic rheological model and wave-

induced soil shear stress is obtained from analytical solution for a finite thick seabed to 

give a more accurate description. 

In Chapter 6, two-layer viscous wave model in chapter 4 is extended to multi-layer 

system. A semi-analytical method is used to solve the system whose number of layer 

automatically increases as liquefaction front advances down. Thereby, variation of shear 

strain rate and viscosity of liquefied soil along depth is accommodated. Based on the 

newly established model, a series of comparison with two-layer model are carried out. 

Chapter 7 is the concluding chapter of the thesis. In this chapter the major findings 

of the investigation are summarised and recommendations for further work are given. 
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 Literature Review Chapter 2

2.1 Wave-Induced liquefaction 

 Regular and irregular progressive waves 2.1.1

From a physical viewpoint, there exists a great variety of water waves, which can be 

generated by wind, moving ship, earthquake or submarine explosions. The scope of this 

study is limited to the progressive wave. A simplest regular progressive wave is the kind 

of wave that can be defined by a sine or cosine function.  In order to fully specify a 

regular wave we need its amplitude, a, its wavelength, L, its period, T as characteristic 

parameters. The elevation of water surface depends on the two variables position, x, and 

time, t can be expressed as 

 mGO, CI 
 �sin q2rD C s 2r; Ot (2.1) 

The water motion can be described by fluid mechanics, primarily consisting of mass, 

momentum and energy conservation equations. For the small amplitude wave, a series 

of linearization or other simplicity are acceptable and the associated theory is termed as 

‘linear wave theory’. 

Random wave 

However, the sea is never regular. It is not simply of the uniform waves, of constant 

height and length, proceeding in a steady and reliable sequence. Rather, a true sea is a 

random phenomenon where the wave characteristics such as height, length, are 

continually changing (Walter, 1968). 
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Mathematical treatment of random wave 

Longuet-Higgins (1952) proposed the classical sea spectra simplified solutions with 

an attempt to decompose the complex sea into simple wave elements. His basic idea 

was random wave can be taken as a collection of a great number of regular waves with 

different characteristics. For illustration, combining of a small number of regular waves 

with different lengths and heights is shown in Fig. 2.1. 

1

2

3

4

COMBINED

 

Fig. 2.1 Wave pattern combining four regular waves (Walter, 1968) 

Mathematically, the random linear progressive waves are interpreted as the 

superposition of a series of regular waves as 

 mGO, CI 
 u�$sinGg$C s :$O v j$Iw
$xH  (2.2) 
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where �$ is the amplitude of the nth wave component, :$ is the wave number , g$ is 

wave angular frequency. :$ and g$ are related by the dispersion relation and j$ is the 

phase. 

In fact, the most distinctive feature of the irregular sea is that it has no set pattern 

that can be repeated from one interval to any other. But its total energy must necessarily 

be the sum of the energies of all the regular waves that make up the wave surface. Thus, 

the intensity of the sea is characterized by its total energy. By virtue of the so-called 

“wave spectrum”, it can be known how the total energy of the sea is distributed over the 

frequency range of the wave components. The wave heights can be predicted by various 

statistical methods. 

Seabed response to random waves 

To date, only a few studies have been carried out to consider the variations of soil 

responses inside the marine sediments under random wave loadings. Sumer et al. (1999) 

performed experimental tests to investigate the effect of irregular wave on soil response, 

and they found that the process of build-up of pore pressure in irregular waves occurs in 

much the same way as in the case of the regular wave. 

Regarding the dynamic response of seabed caused by random wave, Wang et al. 

(2005) developed a finite element model to numerically examine the effects of random 

waves on the wave-induced pore pressure and effective stress based on the dynamic 

model of Zienkiewicz et al. (1980). Recently, Liu and Jeng (2006) developed an 

analytical solution for the random wave-induced soil response (instantaneous pore 

pressure and soil stress) within an infinite soil thickness. Difference on the soil response 
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between regular and random wave loadings, together with the effects of several soil 

characteristics, was investigated. 

Later, Liu and Jeng (2007) continued to establish a semi-analytical solution for the 

random wave-induced soil response within a finite seabed thickness. The influence of 

random wave loading on the soil response is investigated by comparing with the 

corresponding representative regular wave results through a parametric study, which 

includes the effect of the degree of saturation, soil permeability, wave height, wave 

period and seabed thickness. The distribution of quantities of seabed response was 

found to have the similar trend for random wave and regular wave. However, the 

magnitude in results of random wave is much larger. The random wave can lead to a 

deeper liquefaction depth than regular wave. The effect of soil thickness was also 

conducted which demonstrated that the pore pressure at seabed bottom increases due to 

the presence of impervious boundary and a larger maximum effective normal stress was 

also observed for the finite thick seabed than the infinite seabed. However, further 

increasing the seabed thickness will obtain soil responses approaching the results under 

the infinite soil depth.  

Ensemble modelling method 

Ensemble prediction is a technique in which several forecasts are produced based on 

an ensemble of different realisations of model variables, such as initial conditions, 

forcing and/or model parameters. The advantages of an ensemble prediction system 

(EPS) are well known. Amongst its benefits are greater reliability for the solution, the 

generation of several possible predictions and the probabilities associated with them as 

well as the capability of predicting extreme events. 
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The ensemble method employed in atmospheric modelling has an analogue for 

ocean wave prediction. From the present point of view, a wave ensemble prediction 

system (WEPS) can essentially go in two directions to produce ensemble solutions or 

members: (a) to create perturbations of the forcing wind fields or/and (b) to generate 

perturbations of the initial wave spectrum. These approaches are described and analysed 

by Farina (2002) and some potential benefits of wave ensemble prediction are presented 

in Janssen (2000) and Hoffschildt et al. (1999) where the ECMWF wave ensemble 

forecasts, operational since June 1998, are employed. 

There are two well-known methods to describe irregular waves: spectral analysis 

and wave train analysis. Although the spectral approach is currently the most 

mathematically appropriate approach for analyzing a time-dependent, three-dimensional 

sea surface record, it is exceedingly complex and at present few measurements are 

available that could fully tap the potential of this method. Alternatively, wave-by-wave 

(wave train) analysis can be used to treat irregular waves. In this analysis method, a 

time-history of the sea surface at a point is used and statistics of the record are 

developed. The undulation in the time-history of the surface must be divided into a 

series of segments, which will then be considered as individual waves. The height and 

period of each wave will be measured. Once this is done for every segment of the record, 

statistical characteristics of the record can be estimated, and the statistics of the record 

are compiled. Two of the most important parameters necessary for adequately 

quantifying a given sea state are characteristic height and characteristic period. In 

general, probability density for the wave period is narrower than that of wave height, 

and the spread lies mainly in the range 0.5 to 2.0 times the mean wave period. 
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In this study, the probabilistic analysis of wave-induced seabed liquefaction is based 

on the wave train analysis. Instead of representing random waves by a single 

representative wave, an ensemble of different wave heights and their sequences are used 

to carry out multiple numerical predictions. Since the time of concern is very short (at 

the scale of minutes), the wave period is assumed to be constant. 

 Liquefaction mechanisms and prediction 2.1.2

Liquefaction definition 

Seabed liquefaction is the state where the seabed has lost all its structural strength 

due to the increase of effective stress or excess pore pressure due to cyclic loading. The 

seabed behaves as a heavy liquid with no rigidity, and can therefore flow. When water 

waves propagate in the ocean, significant dynamic wave pressures and variation of 

stress within sea floor could be generated. With excess pore pressure and diminishing 

vertical effective stress, part of the seabed may become unstable or even liquefied. Once 

liquefaction occurs, the unbounded soil particles are vulnerable to be carried away as a 

fluid by any prevailing bottom current or mass transport subjected to the action of ocean 

waves (Jeng, 2003). 

Liquefaction mechanisms 

As observed by Zen and Yamazaki (1990) and Nago et al. (1993) in the laboratory 

and field measurements, wave-induced liquefaction can occur by two different 

mechanisms depending on the pore pressure: oscillating (momentary) liquefaction and 

residual (progressive) liquefaction (see Fig. 2.2). The oscillating liquefaction occurs 

when the oscillating excess pore pressure exceed the critical value. It is always 

accompanied by the amplitude damping and phase lag in the pore pressure. The residual 
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liquefaction is caused by the residual pore pressure (build-up of the excess pore pressure) 

due to tendency of seabed to contract under cyclic wave loading. This type of soil 

liquefaction is similar to that caused by earthquakes (Seed and Rahman, 1978).  The 

oscillating liquefaction is more important for unsaturated marine sediment and deep 

water region while the residual liquefaction prevails for the relatively shallower water 

and large wave (Jeng et al., 2007a) . 

A typical time history of wave-induced pore pressure is illustrated in Fig. 2.2. 
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Fig. 2.2 Schematic illustration of wave-induced pore pressure in seabed  

Liquefaction criteria 

There exist mainly two different criteria that have been used to define the transient 

liquefied state. The first one is based on the concept of effective stress, as given by 

Okusa (1985) for 2D cases, in which a liquefied state is reached when the vertical 

effective normal stress is greater than the submerged weight of the soil deposits. This 

criterion was extended to the 3D case by Tsai (1995) as 
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13 zsG[7 s [\IG1 v 29
I� s {TXU v TYU v T4U|} ~ 0 (2.3) 

where [7and [\ are the unit weight of soil and water,	TXU , TYU  and	T4U	are the effective 

normal stresses in the x-, y-, and z-direction, respectively. 9
 is the coefficient of earth 

pressure at rest and �  is the vertical coordinate (upward positive with the original 

located at surface of seabed) . 

The second criterion is based on the concept of excess pore pressure, as suggested 

by Zen and Yamazaki (1990) for the 2D case. Liquefaction is assumed to take place 

when the geostatic pressure is less than the wave-induced effective mean normal stress. 

This was modified by Jeng (1997) to the 3D case as 

13 �G[7 s [\IG1 v 29
I� v �>B s �FGHI�� ~ 0 (2.4) 

In which >B is the wave pressure at the seabed surface and �FGHI is the wave-induced 

oscillatory pore pressure. 

Jeng (1997) examined the above two criteria for several different cases, together 

with the field data from Zen et al. (1991). He concluded that the criterion suggested by 

Okusa (1985) and Tsai (1995) may only be suitable for a seabed with large thickness. 

He also found that no liquefaction occurs in a saturated seabed unless at least one of the 

following conditions is met: very shallow water or large wave or seabed with very low 

permeability. 

Regarding the criteria for residual liquefaction, Sassa et al. (2001) employed a 

simple one as 
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�FGKIT
U 
 1 (2.5) 

where T
U is the initial vertical effective stress of soil and �FGKI the residual pore pressure. 

Pre-liquefaction: potential 

Nataraja et al. (1980) suggested a simplified procedure for ocean wave-induced 

liquefaction analysis and concluded that the existing data on cyclic shear strength of 

liquefiable soils under seismic loading could be used to estimate the cyclic shear 

strength under wave loading conditions. 

Then, Nataraja and Gill (1983) summarized the features of the simplified procedure 

for ocean wave-induced liquefaction analysis and examined the procedure by using data 

from four projects. 

Ishihara et al. (1984) proposed a methodology for evaluating the magnitude of 

cyclic stress and wave-induced liquefaction on the basis of design storm parameters. For 

some typical several storm conditions, liquefaction in a medium dense deposit of sand 

with 70% relative density (i.e., the ratio of the difference between the void ratios of a 

cohesionless soil in its loosest state and existing natural state to the difference between 

its void ratio in the loosest and densest states.) could extend down to a depth of 17.7 m 

at a location of 14 m water depth. 

Umehara et al. (1985) proposed a method to evaluate liquefaction resistance for 

partially drained conditions (somewhere between the perfectly undrained and drained 

idealized conditions). Their results indicated that soil strength increases owing to partial 
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drainage and the strength can be well represented by the relative density and a 

coefficient of drainage effect. 

Maeno et al. (1989) compared the empirical formula for wave-induced liquefaction 

proposed by Maeno and Hasegawa (1987) with the theoretical solution of Yamamoto et 

al. (1978). They pointed out that the liquefaction depth predicted by the theoretical 

solution was considerably less than that given by the empirical formula for small waves. 

But an agreement was observed for the case of large waves (wave steepness greater than 

0.2). They also concluded that wave height and period play an important role in the 

wave-induced liquefaction.  

Tsotsos et al. (1989) developed a numerical model for the evaluation of pore 

pressure generation and liquefaction potential in the sea floor due to cyclic wave action. 

The analysis included the development of both transient and residual pore-water 

pressures, and the simultaneous partial pressure dissipation. They have shown that soil 

permeability had a significant influence on pore-water pressure generation and 

liquefaction because high permeability prevented the development of excess pore-water 

pressure. 

Sakaki et al. (1992), using Mei and Foda’s (1981) boundary layer approximation, 

examined the wave-induced momentary liquefaction. They concluded that the excess 

pore pressure increases as the soil stiffness βG  increases. The maximum liquefaction 

depth reached around half of the wave height in surf zone conditions. 

Rahman (1991) investigated two mechanisms of wave induced liquefaction for the 

non-cohesive sediments. Employing Okusa (1985)’s criteria for liquefaction, it was 
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found that liquefaction potential would increase with increasing wave period. Lower 

degree of saturation tends to increase the chance of transient liquefaction. 

Jeng and Zhang (2005) and Zhang and Jeng (2005) established an integrated three-

dimensional model, incorporating a wave model and a soil model, to investigate the 

wave-induced liquefaction potential in the Gold Coast region in Australia. Both non-

breaking and breaking waves were considered in their model. Jeng et al. (2007a) 

derived an analytical solution for residual pore pressure for homogenous, isotropic and 

infinite seabed. Based on the solution, a parametric analysis was performed to verify the 

applicable range of two liquefaction mechanisms. They concluded that the residual 

mechanism is more important for large waves or shallower water. Using the criterion of 

liquefaction as shown in Eq. (2.5), Jeng et al. (2007a) proposed a formula to predict the 

liquefaction depth: 

� 
 �� 
 2]�12 s [UG1 v 29
I()]K6%  (2.6) 

Note that Eq. (2.6) is only valid under the condition of		HK s ��GH�K��I������ � 0 ; 

otherwise, it means no liquefaction occurs. Based on this formula, a numerical example 

for the prediction of maximum liquefaction depth (��) is presented in Fig. 2.3, where � 

is the ratio of amplitude of the oscillatory pore pressure and residual pore pressure. In 

the example, the relative water depth (8 ;⁄ ) varies from shallow water (	8 ;⁄ 
 0.05	) to 

intermediate water (	8 ;⁄ 
 0.3	). As the water depth increases, the maximum wave 

steepness for inducing soil liquefaction will increase, which will enhance the 
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liquefaction potential. The figure also indicates that the maximum residual liquefaction 

depth will increase as the wave steepness increases. 
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Fig. 2.3 Distribution of critical wave steepness versus relative water depth for 

various values of amplitude ratios (Jeng et al., 2007a) 

Post-liquefaction: progressive nature 

All the aforementioned models focus on the liquefaction potential estimation 

without considering the effects of liquefied seabed on the whole liquefaction procedure. 

Sassa and Sekiguchi (1999) carried out a series of centrifuge wave tank tests. They 

found residual liquefaction only takes place when a critical cyclic stress ratio is reached. 

The threshold ratio for progressive wave is lower than for standing wave. Moreover, the 

wave-induced liquefaction of the sand beds was of a progressive nature. Sassa et al. 

(2001) modelled the liquefied soil as heavy inviscid fluid and used a system of two-

layer fluid overlying the sub-liquefied seabed to simulate the wave-seabed interaction. 

The numerical model demonstrated the progressive nature of residual liquefaction 
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processes and well reproduced the final liquefaction depth as measured in Sassa and 

Sekiguchi (1999). Furthermore, the decreasing wave number during the liquefaction 

process indicated the wave energy is more effectively damped out with the liquefaction 

front advances downward. This demonstrated the influence of completely liquefied soil 

on the development and final depth of liquefaction. However, when determining the 

stress ratio, Sassa et al. (2001) adopted an analytical solution of wave-induced shear 

stress for infinite thickness poro elastic seabed. This could lead to significant errors. 

Another weakness of the model is that the assumption of liquefied soil as a heavy 

inviscid fluid fails to capture the viscosity property of liquefied soil, which has been 

proven in experiments. 

2.2 Wave-induced seabed response 

As stated in the liquefaction mechanism, the wave-induced pore pressure is a 

dominant factor in the assessment of liquefaction. In turn, the build-up of residual pore 

pressure depends on the dynamic shear stress caused by the cyclic wave loading. Herein, 

the previous researches for the seabed response to water wave, i.e., shear stress and pore 

pressure are reviewed first. 

 Wave-induced stress in seabed and oscillatory pore pressure 2.2.1

Theoretical development 

Numerous wave-seabed interaction models have been developed with various 

assumptions since the 1940’s. They evolve from liquid flow and deformation un-

coupled model to coupled model with or without consideration of accelerations due to 
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fluid and soil motion. In this subsection, the theoretical development of wave-induced 

seabed stress and oscillatory pore pressure modelling is briefly summarized. 

Based on the assumptions of a rigid, permeable sandy seabed, un-coupled models 

have been proposed as the first approximation in the area of wave-seabed interaction. 

When the pore fluid is considered to be incompressible, the equations governs the 

storage of fluid is the Laplace’s equation, or diffusion equation with including of the 

compressible pore water. 

Based on a linear wave theory, Putnam (1949) presented a simple solution for an 

isotropic porous seabed of finite thickness. They concluded that seepage of pore fluid 

can result in a significant loss of wave energy. Liu (1973) employed the uncoupled 

model of Laplace’s equation to simulate the flow in a permeable bed and determined the 

damping rate for an infinite seabed. The viscous effect of the boundary layer was 

incorporated. Nakamura et al. (1973) and Moshagen and Torum (1975) proposed the 

diffusion equation for pore water conservation. Moshagen and Torum (1975) found that 

the inclusion of pore fluid compressibility significantly alter the vertical seepage forces 

acting on the soil. However, the relative compressibility of the pore fluid appeared 

somewhat unrealistic (Prevost et al., 1975) which impaired the validity of their 

conclusion. 

The approach of un-coupled modelling ignores the compressibility of seabed and its 

deformation due to un-coupling of pore-fluid motion and soil motion. Furthermore, 

these approaches provide no information on the soil effective stresses and soil 

displacements in the seabed. 
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In 1970’s, the second type of models for the wave-induced seabed response emerged. 

It is based on the assumption of compressible pore fluid and soil, but ignoring the 

accelerations due to pore fluid and soil motion. Biot consolidation equation (Biot, 1941) 

and storage equation (Verruijt, 1969) were adopted to describe the force balance and 

fluid motion, respectively. The methodologies in solving the governing equations can be 

summarized into three classes: direct analytical solution, boundary-layer approximation 

and numerical modelling. 

The direct analytical approach was first developed by Yamamoto et al. (1978) and 

Madsen (1978), among which Madsen (1978) considered a hydraulically anisotropic 

and unsaturated porous bed, whilst Yamamoto et al. (1978) studied an isotropic medium. 

Both considered only an infinite thickness of soil bed. Under elastic conditions, Okusa 

(1985) used the compatibility equation and reduced the governing equation of 

Yamamoto et al. (1978) to a fourth-order differential linear equation. He stated that the 

wave-induced soil response depended only on the wave conditions, not on the soil 

characteristics for a fully saturated and isotropic sandy seabed of infinite thickness. The 

conclusion may not hold for the seabed of finite thickness (Gatmiri, 1990; Jeng and Hsu, 

1996). Jeng and Hsu (1996) provided a closed form solution for the shear stress and 

pore pressure induced by a progressive wave for a saturated poro-elastic seabed of finite 

thickness. Based on the solution, Jeng and Hsu (1996) compared the relative difference 

between the solutions for infinite and finite bed thickness and foundthat when using an 

infinite bed the relative errors in pore pressure, wave-induced effective stresses and soil 

displacements are significant. For a general layered seabed, Rahman et al. (1994) 

proposed a semi-analytical analysis because the analytical solution is not able to provide 
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a closed-form solution. The other shortcoming of the direct analytical solution is the 

complicated mathematical presentations especially for a finite thickness seabed. 

An alternative approximation, the boundary-layer approximation, was proposed by 

Mei and Foda (1981). The basic principle of the approach is to divide the whole soil 

domain into inner and outer regions. Full solution is provided in the inner region, 

namely, near the seabed surface of more interest while a simplified solution is obtained 

in the outer region. This approximation can obtain a more acceptable solution for 

saturated seabed with low permeability under low frequency waves than other cases 

(Hsu et al., 1993). 

Numerical methods, including finite difference method, finite element method and 

boundary element method, are more powerful to address the complex situations for one 

or multiple-dimensional seabed. 

Madga (1990) developed a one-dimensional finite difference model for the wave-

induced pore pressure in a nearly saturated sandy bed. He concluded that the time phase 

in pressure generation depends mainly on the degree of saturation, compressibility of 

the soil skeleton and soil permeability. Zen and Yamazaki (1990) established a finite 

difference model for a single layer of porous seabed. Gatmiri (1990) developed a finite 

element model for the wave-induced effective stresses and pore pressure in an isotropic 

and saturated permeable seabed. He found that there exists a critical bed thickness about 

0.2 times the wavelength, for which the horizontal movement of the soil skeleton reach 

a maximum. Further, the soil response of a finite thickness is affected by soil 

characteristics as well as wave even when the seabed is hydraulically isotropic and 

saturated. At the lateral boundaries, the vertical displacement and pore pressure are 
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prescribed to be zero ignoring a phase lag in soil response in a fully saturated seabed of 

finite thickness (Jeng and Hsu, 1996). Probably, this is the reason why the general trend 

of pore pressure distribution versus the seabed thickness in Gatmiri (1990) was found to 

be inconsistent (Jeng and Hsu, 1996). Thomas (1995) developed a one-dimensional 

finite element method for a two layered unsaturated seabed. The results suggested that 

the stiffer sediment in the top layer dominated the response of the bottom layer in a two-

layer seabed. Jeng and Lin (1996) extended the model for a non-homogeneous seabed 

with the permeability and shear modulus varying with depth. Jeng and Lin (1997) went 

on to examine the influence of non-linear wave components on the soil response. The 

combined effect of cross-anisotropic soil behaviour and non-homogeneous soil 

characteristics on the wave-induced soil response was examined by Jeng and Lin (1999). 

For the application to the seabed with a structure, a two-dimensional finite element 

model was developed (Jeng, 2003) by employing the principle of repeatability for the 

specification of lateral boundary conditions. 

To account for the dynamic of soil motion, Zienkiewicz et al. (1980) proposed a 

one-dimensional so-called u−p approximation for waves propagation over porous media 

based on the Biot’s poro-elastic theory (Biot, 1956). In addition to inertial terms due to 

the soil motion, Jeng and Rahman (2001), Jeng and Cha (2003) included the inertial 

terms related to the pore fluid motion and investigated the effects of dynamic soil 

behaviour on the wave-induced soil response through a two-dimensional analysis. 

Usually, the dynamic solutions are lengthy and complex which limits its application in 

engineering practice. 
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All aforementioned poro-elastic models and small strain modelling framework are 

only applicable to small deformations, which are an idealized condition. To address the 

large deformation occurred under the action of a storm for soft seabed, poro elasto 

plastic models are required to provide a better estimation of the soil response. However, 

due to the complexity in constitutive relationship and moving boundary, only a few 

investigations have been published (Sekiguchi et al., 1995; Yang and Poorooshasb, 

1997; Li et al., 2002). 

Physical modelling 

Theoretical investigations usually involve some assumptions to simplify the real 

physical problem to make the mathematical equations tractable. To test model validity 

or to help construct a conceptual model for a specific process of seabed and wave 

interaction, physical models have often been carried out. In general, three different 

experimental approaches have been used: wave tank experiments, geotechnical 

compressive tests, and centrifugal wave modelling. 

There have been numerous investigations for the wave-induced pore pressure based 

on water tank experiments. Sleath (1970) and Tsui and Helfrich (1983) used wave tank 

to measure the phase lag of wave-induced pore pressure. Based on second-order Stokes 

wave theory, Maeno and Hasegawa (1985) proposed an empirical equation for the 

wave-induced pore pressure in sandy beds. The empirical pore pressure equation was 

expressed as a function of the wave steepness and two experimental parameters, which 

are depended on the permeability of the bed. Demars and Vanover (1985) measured the 

wave-induced pore pressure and stresses in a sandy bed. Their laboratory data verified 

the elastic theories in estimating the total vertical and horizontal stresses in a sandy bed, 
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where dilation of the grain matrix is small. Furthermore, their theoretical solution of the 

total stress for a seabed of infinite depth was shown to provide a lower bound for 

stresses in a sandy bed of finite depth.  

Apart from the examination of wave-induced pore pressure, wave tank was also 

employed in studying the phenomenon of seabed liquefaction under wave loading. 

Tzang (1992) conducted a series of wave tank experiments and demonstrated the 

relationship between the build-up pore pressure and fluidization in a soft seabed. Sumer 

(2005) used wave tank to investigate sinking and floating of pipeline in liquefied sand. 

The results of the experiments showed that the density of liquefied soil varies with 

depth, which is consistent with Hwang et al. (2006). Therefore, it is not appropriate to 

treat the viscosity of the liquefied soil a constant throughout the depth. 

Although wave tank experiments have been commonly used by coastal engineers, 

they generally lack the necessary accuracy required in determining soil parameters. In 

order to achieve a better estimation of soil characteristics, compressive test needs to be 

performed. Both wave tank experiments and compressive tests have the scale problem 

under one gravity acceleration environment and therefore the results obtained in the 

wave tanks may not be easily extrapolated to prototype conditions. 

Centrifugal wave modelling is a newly developed experimental approach, which 

allows the experiments are conducted under N times gravitational acceleration. The 

centrifugal experiment can provide the spatial distribution of both soil response and 

water pressure. Sekiguchi and Phillips (1991) and Phillips and Sekiguchi (1992) may 

have been the first to conduct wave experiments in a centrifuge and develop the 

fundamental framework of the centrifugal wave experiments. Their experimental data 
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has been widely cited for the verification of theoretical results. Sassa and Sekiguchi 

(1999) and Sassa and Sekiguchi (2001) further improved the controls of experimental 

environment, which enables the progressive nature of wave-induced liquefaction to be 

clearly observed. However, the wave experiment in centrifuges remains be a 

challenging task with both preparation technique and wave generation system requiring 

much more investigations. 

 Wave-Induced residual pore pressure modelling 2.2.2

There are two groups of method for describing the build-up of residual pore pressure 

that are widely employed. The first group was developed by incorporating into the one-

dimensional consolidation equation a source term, which relates the development of 

pore water pressure to the number of load cycles in simple shear tests. The 

corresponding analytical solution has been proposed and discussed (McDougal et al., 

1989; Cheng et al., 2001; Jeng et al., 2007b). The second group was firstly proposed by 

Sassa and Sekiguchi (1999) involving the considerison of plastic volumetric strain 

change in the incompressible fluid storage equation. Although both groups of method 

are based on the fluid continuity equations they differ significantly in dealing with the 

relationship between pore pressure generation and cyclic plasticity of the soil. A brief 

description of each method is given below. 

Modified consolidation model 

The residual pore pressure (�FGKI) in a homogeneous, isotropic soil can be derived 

from the one dimensional consolidation equation 
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��FGKI�C 
 (W �K�FGKI��K v 1 (2.7) 

in which (W  is the coefficient of consolidation, related to shear modulus, �  and 

hydraulic conductivity, 9	by 

(W 
 2�9G1 s ^5I[\G1 s 2^5I  (2.8) 

where ̂ 5is Poisson’s ratio and [\	the unit weight of pore water. 

On the right hand side of Eq. (2.7), the source term, 1 is the mean accumulation pore 

pressure associated with the surface water waves. There are both linear and nonlinear 

mechanisms of pore pressure generation (Jeng et al., 2007b) which are valid for linear 

wave and nonlinear wave, respectively (Jeng, 2008). For the linear mechanism, the 

source term is expressed as 

1 
 ��C qT
U ##�t (2.9) 

where # #<⁄  represent the ratio of cyclic loading to the cyclic number to liquefaction, 

can be obtained by (De Alba et al., 1976) 

�LT
U 
 12 v 1r sin�H �2 q##�t
H �⁄ s 1� (2.10) 

or 

sin �r�L2T
U� 
 q##�t
H K�⁄

 (2.11) 
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where, u�	and T
U  are the pore pressure generation due to cyclic loading and effective 

overburden, respectively; and S	is the shape factor. The analytical approximations are 

available for the finite, shallow and deep seabed (Jeng, 2008). 

Modified storage equation model 

The storage equation relevant to the poro-elastoplastic soil with contractancy may be 

described as follows (Sassa and Sekiguchi, 1999): 

��FGKI�GgCI 
 :��^g �K�FGKI��K v 1��
� ∈���GKI
�GgCI (2.12) 

where :  is the coefficient of permeability and ∈���GKI  is the plastic component of soil 

volumetric strain increment (Appendix A). Let i 
 gC 2r⁄ , the second term on RHS is 

the temporal rate of plastic volume change which can be describe as (Sassa et al., 2001)  

+ef+i 
 �expGs�iIe¡f GdI (2.13) 

where g can be divided from both sides for convenience of comparison and ef, e¡f  and 

d are plastic volumetric strain, plastic volumetric strain as time approaching infinity and 

ratio of shear stress and initial vertical effective stress, respectively. The derivation is 

detailed in Appendix A. 

The coefficient of compressibility of the soil skeleton, �� is related to (W by 

�� 
 :(W^ (2.14) 

Therefore, the above storage equation becomes 
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��FGKI�C 
 (W �K�FGKI��K v (W^59 +ef+C  (2.15) 

Therefore, it is obvious that 1) these two methods share the same assumptions of 

incompressibility of pore fluid and fully-saturated soil; 2) the only difference arises 

from the description of cyclic plasticity of the soil. Neither one is assumed to be 

superior to the other if the associated model constants are measured at the same 

accuracy level. In this study, the second model is adopted. 

2.3 Behaviour of liquefied soil 

Modelling of liquefied soil is crucial in predicting the progressive liquefaction. With 

the liquefaction front advances downward, the input wave energy is altered. 

Consequently, the chance of liquefaction for sub-liquefied seabed is influenced. There is 

no consensus on whether liquefied soil behaves like a solid or a liquid. Consequently, 

the commonly accepted constitutive model for a completely liquefied soil does not exist. 

In the investigation of ground deformation induced by liquefied soil, some 

researchers assumed the liquefied soil behaves like a solid with significantly reduced 

stiffness given by a suitable post-liquefaction stress-strain relations (Finn et al., 1991; 

Aydan, 1995), whilst others took the view that the liquefied soil intrinsically behaves 

like a fluid because liquefaction reduces the stiffness of the soil to a negligible extent. 

For instance, Uzuoka et al. (1998) treated the liquefied soil as a Bingham fluid and 

carried out several numerical simulations and validated against experimental data. The 

shear stress-shear strain rate relationship of the Bingham model can be expressed as 

follows: 
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τ 
 ^[- v c£ (2.16) 

where τ is the shear stress, ^ is the viscosity after yield, [-  is the shear strain rate and c£ 
is the yield strength, i.e., the minimum undrained strength. When applying Bingham 

fluid model to the liquefied soil, Uzuoka et al. (1998) expressed the Bingham viscosity 

by an equivalent Newtonian viscosity ^Uas 

^ 
 ¤^ v c52[- 
 ^ v �5 ∙ >2[- 						[- ¦ 0∞																																									[- 
 0	 (2.17) 

In which, 

	[- 
 ¨G1 2⁄ I,-. ,-.  (2.18) 

where �£ is the residual strength ratio and: > is the second invariant of the deviatoric 

strain rate tensor. The Bingham model appears to provide a realistic description of  the 

post-liquefaction behaviour, both in terms of residual shear strength and viscosity 

exhibited by such kind of material (Montassar and Buhan, 2006). Sawicki and 

Mierczyński (2009) carried out experiments to measure the dynamic viscosity of 

liquefied soil based on the assumption of Newton viscosity fluid model without residual 

shear strength. 

Other significant contribution was made by Hamada and Wakamatsu (1998), who 

carried out experiments to determine the characteristics of liquefied soil and ground 

displacements using shaking table tests on liquefied subsoil models. They concluded 

that during ground flow before earthquake motion cease, liquefied soil behaves as a 

pseudoplastic fluid. It is a group of non-Newtonian fluids in which the viscosity 
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coefficient decreases as the shear strain rate increases (Hamada and Wakamatsu, 1998). 

The relationship between the shear stress, τ , and shear strain rate, , for such fluids, can 

be expressed with: 

c 
 ^
[- G1 v [- [-£⁄ I⁄  (2.19) 

where the apparent viscosity coefficient m given by: 

^ 
 ^
 G1 v [- [-£⁄ I⁄  (2.20) 

where ̂ 
 is the initial viscosity coefficient; [-  is the shear strain rate when the secant 

viscosity becomes equal to ^
 2⁄ , which is usually referred to as the reference shear 

strain rate. 

Hwang et al. (2006) performed sinking ball and pulling bar tests to measure the 

viscosity of liquefied sand and confirmed that the liquefied sand behaved as non-

Newtonian fluid, whose viscosity decreased with increasing shear strain rate. Further, a 

extensive review on the dynamic viscosity of liquefied soil was conducted with the 

main results as shown in Fig. 2.4 and Table 2.1. Hamada and Wakamatsu (1998) made 

extensive earthquake-induced ground displacement investigation, and concluded that 

liquefied soil behaves as a pseudo plastic fluid during ground flow; however, it returns 

to behaves as a solid body as stiffness recovers due to dissipation of pore water. In other 

words, there exists a property transition for liquefied soil from relatively rigid viscous to 

purely viscous fluid. No comprehensive model is available in the existing literature that 

accounts for this important phase change. 

At this point, it is worthwhile to review briefly the rheological models for a closely 

related material, i.e., fluid mud. There have been three types of rheological models for 
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fluid mud: Viscous fluid, Viscoelastic model, Viscoplastic model and Viscoelastic-

plastic model (Soltanpour and Samsami, 2011). 
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Fig. 2.4 Test results of viscosity values of liquefied soil in literature (Hwang et al., 

2006) 

Table 2.1 Tests and method of liquefaction in assessing liquefied soil viscosity 

(Hwang et al., 2006) 

Researcher Type of test 

Method of 

liquefaction 

Hwang et al.(2006a) 1 g, subsidence of sphere Impact 

Hwang et al.(2006b) 1 g, pulling cylindrical bar Boiling 

Hamada and et al.(1992) 1 g, pulling sphere – 
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Hamada and et al.(1993) 1 g, pulling pipe, pile, sphere – 

Kawakami et al. (1994) 1 g, shaking table test Shaking 

Miyajima et al. (1994a) 1 g, subsidence of sphere Shaking 

Miyajima et al. (1994b) 1 g, pulling sphere Boiling 

Miyajima et al. (1995) 1 g, subsidence of sphere Shaking 

Ohtomo et al. (1993) 1 g, pulling sphere Boiling 

Sasaki et al. (1997) 1 g, subsidence of foundation Shaking 

Sato et al. (1994) 50 g, flow of slope 

Shaking in 

centrifuge 

Takada and Nagai (1987) 1 g, subsidence of sphere Shaking 

Towhata et al. (1992) 

Analysis of the progress of 

lateral deformation of  

liquefied slopes 

– 

Towhata and 

Horikoshi(1997) 

Prototype subsidence of building 

Foundation 

1964 Niigata 

earthquake 

Towhata et al. (1999) 1 g, pulling pipe Shaking 
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Toyota (1995) 1 g, flow of slope Impact 

Vargas et al. (1995) 1 g, pulling pipe Shaking 

Yuasa et al. (1994) 1 g, pulling sphere Shaking 

Yuasa et al. (1994) 1 g, viscometer Boiling 

Zhang et al. (1994) undrained triaxial test – 

 

Gade (1958) was probably the first researcher who used the viscous fluid mud 

constitutive model to analyze the dissipation of wave energy by a deformable mud bed. 

The stress for viscous fluids is represented as follows: 

T. 
 s©ª. v 2^,-.  (2.21) 

where © is the mean or the hydrostatic stress, ^  is the dynamic viscosity, ª.  is the 

Kronecker delta, and ,-.  is the strain rate tensor. The apparent viscosity of a Newtonian 

viscous fluid can be defined as 

^_ 
 ^6 v cY+�+�  (2.22) 

where ̂ _  is apparent viscosity, ^6  is the Bingham plastic viscosity and cY  is yield 

stress. The apparent viscosity can be obtained through trial-and-error. Alternatively, 

fluid mud was modelled as viscoelastic materials which simultaneously display 

characteristics of both solids and fluids. The shear stress of these materials depends not 

only on the local strain rate, but also on its history. This memory effect results in an 
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elastic property of fluid, in addition to its viscosity property. Kelvin-Voigt model 

(Soltanpour and Samsami, 2011) is a representative viscoelastic model. The constitutive 

equation for the Kelvin-Voigt model is defined as 

T. 
 2^,-. v 2�,.  (2.23) 

Bingham fluid model is acturally a simplest viscoplastic model.  Bingham fluid mud 

model assumes the shear stress as (Kessel and Kranenburg, 1996): 

c 
 cY«02¬ q����t v ^6 ���� 		if			|c| � cY (2.24) 

where cY is the yield stress, ^6 is the Bingham plastic viscosity, and � is the velocity in 

X direction. By introducing a so-called “equivalent viscosity”, Tsuruya et al. (1987) 

converted the Bingham fluid model into the viscous fluid model 

^F 
 ^6 v cY®4|¯F| (2.25) 

where 4|¯F| is expressed as 

4|¯F| 
 2 q���OtK v 2q�M�� tK v q���� v �M�OtK (2.26) 

Huynh et al. (1990) and Jiang and Watanabe (1995) investigate the rheological 

behaviour of fluid mud and found that the mud exhibits a nearly visoelastic behaviour at 

low shear rate and a Bingham fluid behavior at high shear rate. Shibayama et al. (1989) 

introduced the viscoelastplastic (VEP) terminology to overcome the shortcoming of 

visoelastic and Bingham model. The constitutive equations are expressed as 
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 T. 
 2^F,-. 	 (2.27) 

 ^F 

°±²
±³^ v 0�g 														q12 T. T. ~ cYKt
^6 v cY®4|¯F| 		q12 T. T. � cYKt	 (2.28) 

Regarding liquefaction prediction, Sassa et al. (2001) adopted an inviscid liquid 

model with a distinct density for liquefied soil in a theoretical model for predicting the 

behaviour of liquefied soil under fluid-wave loading, with the emphasis on the 

progressive nature of wave-induced liquefaction. Liu et al. (2009) took into account of 

the constant viscosity of liquefied soil in the analysis of wave-induced progressive 

liquefaction and found that the viscosity affect the prediction of final liquefaction depth 

under the same wave and seabed conditions. However, Sassa et al. (2001) has suggested 

that vertical displacement amplitude of liquefied soil layer increases dramatically in 

association with the downward propagation of the liquefaction front. It is expected that 

the shear strain rate will experience the same change. Since the viscosity depends on 

shear stress rate, it will be inevitably changed during the liquefaction front advancement. 

Therefore, it is necessary to adopt a more advanced liquefied soil rheological model. 

It is increasingly being acknowledged today by researchers in geotechnical 

engineering that liquefied soil behaves as an incompressible fluid, displaying both 

viscous and residual strength properties (Towhata et al., 1999; Montassar and Buhan, 

2006). By virtue of the rheological similarities between fluid mud and liquefied soil, 

improvements in the rheological modeling of these two materials can be shared. In this 

study, the rheological model for fluidly mud proposed by Shibayama et al. (1989) is 



36 

 

 

 

used for comparison of progressive liquefaction process with Sassa et al. (2001) and Liu 

et al. (2009). 

2.4 Wave-seabed interaction in post-liquefaction phase   

Wave-seabed interaction modelling of pre-liquefied soil has been covered in the 

previous section. Herein, the focus is moved onto the post-liquefaction phase. 

Considering the similarities that exist in the behaviour of liquefied soil and fluid mud, 

the methods developed for wave-fluid mud interaction may provide valuable 

suggestions for the wave-liquefied soil interaction modelling. 

The widely used models to investigate the dissipation of passing waves on soft mud 

are based on either a two-layer or a multiple layered fluid system in which both 

seawater and fluid mud are treated as fluid. The governing equations which are used to 

describe the motion of fluid are the linearized Navier-Stokes equations, neglecting the 

convective accelerations, and the continuity equation (MacPherson, 1980). 

Dalrymple and Liu (1978) and Sakakiyama and Bijker (1988) developed a two-layer 

wave-mud interaction model to calculate the wave attenuation rate and mud mass 

transport. A viscous fluid rheological model was adopted for the fluid mud. 

However, the two-layer modeling cannot capture the variation of characteristic mud 

properties along depth of fluid mud. Especially when shear stress and viscosity depends 

on vertical location, the vertical change of fluid properties may affect the eventual 

simulation results. To address this problem Tsuruya et al. (1987) proposed the so called 

multi-layer or N-layer fluid system. Maa and Mehta (1990) employed a viscoelastic 

mud rheological model in a multi-layer wave-mud interaction model. In addition to 

some laboratory experiments to investigate wave-mud interaction, An and Shibayama 
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(1993) developed a multi-layer numerical model assuming viscoelastoplastic behavior 

for fluid mud. Afterwards, Zhang and Zhao (1999) used a multi-layer model similar to 

the model of Maa and Mehta (1990) to study the wave-mud interaction. However, the 

restriction of constant viscosity of fluid mud layer was relaxed in their numerical 

simulations. 

For both two-layer and multi-layer fluid systems, the boundary conditions consist of 

the kinematic boundary conditions at interfaces and free surface, zero horizontal and 

vertical velocities at the rigid bottom, the imposition of zero normal and tangential 

stresses at the water surface and the continuity of normal and tangential stresses across 

the interfaces. By the linearized NS equations subjected to the above boundary 

conditions, the wave attenuation rate, :., is calculated by this model (Soltanpour and 

Samsami, 2011) as well as the velocity components and fluid pressure. 

In comparison with fluid mud modelling the literatures on wave-liquefied soil 

interaction modelling is very limited. To simulate the wave-liquefied soil interaction, 

Sassa et al. (2001) proposed a theoretical model for progressive liquefaction. The model 

was an extension of Lamb’s (1932) two-layer fluid theory, by considering a layer of 

inviscid liquefied soil underneath seawater layer. Following the two-layer fluid model 

developed by Dalrymple and Liu (1978) for ocean waves over mud, Liu et al. (2009) 

treated both seawater and liquefied soil as viscous fluids and the laminar Navier–Stokes 

equations are used to describe the motion of the two-layer wave system. 

2.5 Objectives of thesis 

In view of the current research state in the investigation of seabed liquefaction 

induced by progressive wave, the specific objectives of this thesis are set as: 1) Examine 
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the seabed liquefaction under action of random progressive wave; 2) Investigate the 

effects of different liquefied soil rheological modelling on the progressive liquefaction 

process in the frame of two-layer viscous fluid system for wave-liquefied soil; 3) 

Establish a frame of multi-layer fluid system for wave-liquefied soil in modelling wave 

propagating over seabed.   
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 Two-layer Inviscid Fluid System Model Chapter 3

3.1 Introduction 

Sassa and Sekiguchi (1999) demonstrated the progressive nature of fine grained sand 

liquefaction by centrifuge wave tank tests. By using a high-speed CCD camera, 

Miyamoto et al. (2000) found that the soil surface starts vibrating after liquefaction 

begins, and the amplitude of the vibration increased markedly as the advancement of the 

liquefaction front. Inspired by these phenomena, Sassa et al. (2001) proposed a two-

layer inviscid fluid system to model the wave-induced soil liquefaction. They extended 

the two-layer fluid theory originally developed by Lamb (1932) by considering a layer 

of liquefied soil resting on a layer of poro-elastoplastic sediments. The simulation 

results were found to compare well with the experimental results from the centrifuge 

tests. In this chapter, we will describe the formulation of the model, basic assumptions 

on which the model is based and the implementation of the computational code 

generated. It will then go on to present a series of comparisons with centrifuge tests and 

results in Sassa et al. (2001) that were carried out to verify the model. 

3.2 Outline of Sassa’s two-layer liquefaction model 

The model considers a given regular wave train with wave length L and wave period 

T propagating over a bed of cohesionless soil. Under certain conditions of wave and soil, 

the liquefaction may starts and its front will advance downwards. Let us suppose at a 

time instant	C, the liquefaction front reaches down to a soil depth	z�GtI as shown in Fig.  

3.1. It consists of three layers: a seawater layer of a mass density ρH above the soil 

surface (0 ~ z ~ h), a liquefied soil layer of a mass density ρK  (z� ~ z ~ 0) (z�  is 
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negative), and a sub-liquefied soil layer (sD ~ z ~ z�). Within the liquefied and the 

underlying sub-liquefied soil, the wave-induced pressure fluctuation u¸ is the sum of the 

oscillatory and residual pore pressure as: 

 �F 
 �FGHI v �FGKI (3.1) 

where �FGHI  and	�FGKI represent the oscillatory component and residual pore pressure , 

respectively. For the first component, �FGHI, its average value �JFGHI over any wave cycle is 

zero by definition. The second component,	�FGKI , is generated due to the soil cyclic 

plasticity, i.e., volumetric contraction under cyclic wave loading. 

2
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Fluid with ρ
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Fig.  3.1 Schematic representation of the liquefaction process in the experiments 

performed by Sassa et al. (2001) 
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In the solving procedure, the pore pressures are solved individually in the liquefied 

and sub-liquefied layer. The former is determined using the two-layer fluid system 

whilst the latter by the pore fluid storage equation. Sequent solving of the two layers 

provides the gradually advance of progressive liquefaction. In the following section, the 

formulations used for both layers are presented. 

 Formulation for the upper sub-system 3.2.1

Definition of the upper sub-system above the liquefaction front is shown in Fig.  3.2 

illustrates the super part the model, here, named by ‘upper sub-system’, which is taken 

as an inviscid fluid system. Density of liquefied soil, aK is greater than that of 

seawater,	aH. As shown in Fig.  3.2 (b), the fluid pressure oscillation at the level of the 

soil surface (� 
 0) is represent by �E
GO, CI and fluid pressure at the interface between 

liquefied soil and sub-liquefied layer (� 
 ��) by	�¹�GO, CI. Additionally, b is the wave 

number, defined by		2r ;⁄ , and the angular frequency of waves, g defined by		2r D⁄ . 
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Fig.  3.2 Problem definition for the upper sub-system 
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The seabed is identified to become liquefied on the condition that the residual pore 

pressure build-up, �FGKI reaches the effective overburden stress, TW
U  at the location. A 

theoretical reason for this statement is explained below (Sassa and Sekiguchi, 1999). 

For a one-dimensional problem considered here, assume TWU 	is the vertical effective 

stress at a given depth, and let ∆TW represent the total vertical stress variation induced 

by wave action at the same location. Therefore, we have 

 TWU 
 TW
U v G∆TW s �FI	 (3.2) 

 TWU 
 TW
U v �∆TW s �FGHI s �FGKI�	 (3.3) 

where TW
U  denotes the initial vertical effective stress, which is expressed by TW
U 
 s[U� 

for	� ~ 0. Here [Uis the submerged unit weight of the soil as defined by		GaK s aHI#72	, 
where 2 is the gravitational acceleration and #7 represents the acceleration scale factor.  

By definition of liquefaction, the seabed liquefies when the average local effective 

stress over a wave cycle equals zero (TWUJJJ 
 0) for a one-dimensional problem where the 

horizontal effective stress TVU  is assumed to be zero. Since the time averages	∆TWJJJJJJ and 

�JFGHIover a wave cycle are zero, the liquefaction condition may be simply expressed as	 
 �JFGKI 
 TW
U 	 (3.4) 

Applying classic solution for the two-layer fluid system requires that the bottom 

(� 
 ��) is rigid. This condition may be assumed to be satisfied in the sense that the 

vertical movement of the sub-liquefied soil layer below �� should be of a negligible 
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magnitude compared with the vertical movement of the liquefied soil layer (Sassa et al., 

2001). 

Once the location of liquefaction front, �� is given, the classical theory of wave 

propagation in a two-layer fluid of finite thickness proposed by Lamb (1932) can be 

readily used to determine the amplitude of internal wave as well as the fluid pressure 

through the upper system. The detailed derivation refers to Appendix B of this thesis. 

In Lamb’s theory, the dispersion relationship for the two-layer fluid is written as 

 

�1 s q#72bgK tK� C�¬8Gb8IC�¬8Gb��I

 aKaH º1 s #72bgK C�¬8Gb8I» º1 v #72bgK C�¬8Gb��I» (3.5) 

It is instructive to note that under specific conditions of �� 
 0, Eq. (3.5) yields the 

dispersion relationship for the one-layer fluid: 

 gK 
 #72b
C�¬8Gb
8I	 (3.6) 

where b
 denotes the wave number for the one-layer fluid. 

The nonlinear equation Eq. (3.5) can be solved numerically. During the root-finding 

procedure, two real roots for	b	exist for a given angular frequency g, among them one 

root corresponds to the surface-wave mode		b ≅ b
, and the other one corresponds to 

the internal-wave mode b ≫ b
 (Ting, 1992). For the surface wave mode considered in 

this study, the former root is of our interest (Sassa et al., 2001). 



44 

 

 

 

The amplitude of oscillatory pore pressure �FGHI at a generic point in the liquefied 

soil is related to the amplitude of fluid pressure oscillation at the water-soil interface,	�
 

by 

 �FGHI 
 aKgK¾(¿«8Gb�I s «0¬8Gb�IC�¬8Gb��IÀaKgK v GaK s aHI#72bC�¬8Gb��I �
	 for �� ~ � ~ 0 (3.7) 

When � is approaching zero, Eq. (3.7) indicates �FGHI � �
. This discrepancy stems 

from the discontinuity of density in two layers. However, the continuity of pressure is 

satisfied at the interface		� 
 0. 

Substituting �  by ��	 in Eq. (3.7) leads to the amplitude of fluid pressure 

fluctuation,	��, as 

 �� 
 aKgKaKgK(¿«8Gb��I v GaK s aHI#72b«0¬8Gb��I �
 (3.8) 

And the amplitude of the vertical displacement of the surface of a liquefied soil,	�H, 

is expressed as follows: 

 �H 
 bC�¬8Gb��IaKgK v GaK s aHI#72bC�¬8Gb��I �
 (3.9) 

The wave number b involved in Eqs. (3.7)–(3.9) is determined by the dispersion 

relationship for the two-layer fluid as defined by Eq. (3.5). 

 Formulation for the lower sub-system 3.2.2

Suppose the liquefaction front is located at 
 �� , the sub-liquefied soil is below ��, as 

shown in Fig.  3.3. After the approach adopted by Sassa et al. (2001), the wave-induced 
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stress changes in the sub-liquefied soil layer are described herein based on the 

poroelastic solutions for infinite seabed (Madsen, 1978; Yamamoto et al., 1978). 

0

zL

z

uL(x,t)= uLexp{i(κx-ωt)}

original seabed

Liquefied soil

Elastoplastic soil
(Sub-liquefied soil)

x

 

Fig.  3.3 Problem definition for the lower sub-system 

For clarity, the related formulas for the general liquefaction front location and the 

particular location �� 
 0  are presented here. When �� 
 0	 , the fluid pressure 

�E�GO, CI 
 �E
GO, CI on		�� 
 0. The corresponding amplitudes of the oscillatory pore 

pressure �FGHI and the maximum cyclic shear stress c at depth		� are expressed by (for 

details of the derivation, refer to Appendix C of this thesis) 

 �FGHI 
 �
,O©Gb
�I	 for � ~ 0 (3.10) 

 c 
 sb
�
�,O©Gb
�I	 for � ~ 0 (3.11) 

Thus, the cyclic stress ratio c TW
U⁄  may be expressed as 

 
cTW
U 
 b
�
[U ,O©Gb
�I	 (3.12) 

Following Eq. (3.12), we have 
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 � cTW
U �4x
 
 b
�
[U 	 (3.13) 

When the liquefaction front arrives at	� 
 ��, the wave pressure fluctuation that acts 

on the fluid-soil interface, �E� and shear stress, c can be obtained by transforming Eq. 

(3.10) and Eq. (3.11) into  

 �FGHI 
 ��,O©¾bG� s ��IÀ	 for � ~ �� (3.14) 

 c 
 sb�� ∙ G� s ��I,O©¾bG� s ��IÀ	 for � ~ �� (3.15) 

In the above equations, wave number b is determined by Eq. (3.5) and �� is defined 

by Eq. (3.8). The vertical effective stress,TWU , on a soil horizon z (where	� ~ ��) may be 

expressed as 

 σÂU 
 sγU ∙ Gz s z�I	 (3.16) 

from Eq. (3.14) – Eq. (3.16), the shear stress and the cyclic stress ratio within sub-

liquefied seabed are given by 

 uĢHI 
 u
expGκzIF	 (3.17) 

 χ ≡ τσÂU 
 κu
γU expGκzIF	 (3.18) 

where function È is defined by 

 F 
 ρKωKexpGκz�I¾ρKωKcoshGκz�I v GρK s ρHINgκsinhGκz�IÀ	 (3.19) 
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Particularly when		�� 
 0, È 
 1, b 
 b
 and		TWU 
 TW
U 
 s[U�. At the elevation of 

the soil surface (	� 
 0), the cyclic stress ratio d defined by Eq. (3.18) reduces to d
 

defined by		b
�
 [U⁄ . 

Under the action of cyclic wave loading, soil volume decreases due to the plasticity. 

Sassa and Sekiguchi (1999) developed the storage equation for the poro-elasto-plastic 

seabed with contractancy (Derivation procedure and related assumption refer to 

Appendix B). The distinct character is the specification of development of the plastic 

volumetric strain, 	ef which is employed to relate the contractive nature of seabed in 

response to the cyclic wave loading.  

The storage equation is written as (Sassa et al., 2001) 

 
∂uĢKI
∂ξ 
 Φ ∂KuĢKI

∂Gκ
zIK vM∂υÒ∂ξ 	 for sD ~ z ~ z� (3.20) 

where the loading cycle,		i 
 gC 2r⁄ ; � is the constrained modulus of the soil skeleton, 

which was assumed by Sassa et al. (2001) to increase linearly with the increasing 

effective confining pressure as follows: 

 M 
 sγUGz s z�IγUD MÓ 
 sz s z�D MÓ	 for sD ~ z ~ z� (3.21) 

where �� is a reference value of � at the bottom	� 
 s* when z� 
 0. 

The partial drainage factor defined, Φ in Eq. (3.20) is 

 Φ 
 2π kMγÖωκ
K	 (3.22) 
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in which : is the Darcy coefficient of permeability and [×	is the unit weight of the pore 

fluid. 

The term ∂υÒ/ ∂ξ reflects soil cyclic plasticity of the seabed. For a simple case with 

constant cyclic stress ratio in a cohensionless soil subjected to drained cyclic shearing, 

Sassa et al. (2001) assumed the development of the plastic volumetric strain 	ef with 

the loading cycle i as: 

 υÒGξ, χI 
 ¾1 s expGsβξIÀυ¡Ò GχI	 (3.23) 

 υ¡Ò GχI 
 R ∙ ¾expGαχI s 1À	 (3.24) 

where		� , �  and �  are material parameters and e¡f  denotes the amount of plastic 

volumetric strain as i approaching infinity. Hence, the rate of plastic volumetric change, 

�ef �i⁄ 	can be expressed as 

 
dυÒdξ 
 βexpGsβξIυ¡Ò GχI	 (3.25) 

In view of the form of	�ef �i⁄ , Sassa et al. (2001) made an assumption of the its 

expression corresponding to the cases with continuously increasing	stress rate, d as 

 
dυÒdξ 
 βzυ¡Ò GχI s υÒ}	 (3.26) 

which can be solved numerically. 

To achieve the solution of built-up pore pressure, a set of appropriate boundary 

conditions are need. According to the liquefaction criteria, the boundary condition on 

� 
 �� requires that 
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 uĢKI 
 sγUz�	 for z 
 z� ~ 0 (3.27) 

On the rigid impermeable base	� 
 s* , no fluid flow is allowed to take place, 

which means 

 ∂uĢKI
∂z 
 0	 on z 
 sD (3.28) 

The storage equation employed here was extended by Miyamoto et al. (2004) to 

non-homogenous porous media with respect to varying permeability. Liu et al. (2009) 

also utilized it but stated that the model did not account fully for the behaviour of the 

soil e.g. plasticity in general and the plastic behaviour of the soil is limited to volumetric 

compression.  

3.3 Numerical scheme and procedure 

Finite-difference scheme can be used to solve the governing equation of Eq. (3.20). 

Since the liquefaction front is continually moving downward (the solidification process 

is not included here), the computation domain is becomes thinner with liquefaction 

keeps continuing. In practice, a constant element thickness, ∆�  can be assumed 

considering the computation accuracy level. Then the sub-liquefied seabed is spatially 

discretized into ¬  elements (¬  varies with liquefaction front advances and ¬ ∙ ∆� 

s* s ��). As shown in Fig.  3.4, the vertical coordinate �. of nodal line 0 is described 

as	�. 
 �� v G0 s 1I∆�  , for	0 
 1, ¬ v 1 . The nodal line � 
 �H  corresponds to the 

location of the liquefaction front	� 
 ��, while the nodal line � 
 �$�H represents the 

bottom of the soil layer, � 
 s*. 
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Fig.  3.4 Sketch showing the identification of the liquefaction front 

There are totally ¬ v 1 primary unknowns Ú.  (here, Ú.  is used to denote uĢKI  for 

simplicity in expression) for	0 
 1, ¬ v 1 . Let Û denotes b
�  and ∆i  denote the 

increment of wave loading cycles, Eq. (3.20) may be expressed in matrix form as 

 

 

ÜÝ
ÝÝ
ÝÝ
Þ1 0 ⋯ ⋯ ⋯ ⋯ 0A B A 0 ⋯ ⋯ ⋮0 A B A 0 ⋯ ⋮⋮ ⋱ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋱ ⋮⋮ 0 A B A0 0 A B∗äå

åå
åå
æ

°±±
²
±±³

UHUKUè⋮⋮UéUé�Hê±±
ë
±±ì

í�∆í



°±±
²
±±³
sγUz�UKUè⋮⋮UéUé�H ê±±

ë
±±ì

í

v
°±±
²
±±³

0MqMq⋮⋮⋮Mqê±±
ë
±±ì

í

∙ Δξ	 (3.29) 

where 
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 % 
 sj ∆iGΔÛIK (3.30) 

 & 
 1 v 2j ∆iGΔÛIK (3.31) 

 &∗ 
 1 v j ∆iGΔÛIK (3.32) 

 ï 
 �ef�i ðñ (3.33) 

The first and bottom row of Eq. (3.29) are designed to represent the boundary 

condition at � 
 �� as defined by Eq. (3.27) and the undrained boundary condition as 

defined by Eq. (3.28). The remaining ¬ s 1	rows arise from the partial differential Eq. 

(3.20). The simultaneous linear Eq. (3.29) can be solved using the method of Gaussian 

elimination (Sassa et al., 2001). 

Solution procedure of the entire system 

Once the location of liquefaction front is known (namely the computation domains 

are determined), the entire system can be solved sequentially as shown in  

Fig.  3.5. At the very beginning, �� 
 0, �
 
 0,Ú. 
 0 and the initial values for wave 

number b 
 b
.  

Otherwise, they are determined or updated from the preceding solution. Next, the source 

term � ∙ ï∆i in Eq. (3.29) under a given wave loading is obtained. Following it, we can 

get the residual pore pressures	Ú.G0 
 1, ¬ v 1I through solving Eq. (3.29) by Gaussian 

elimination method. Based on the liquefaction criteria, the liquefaction front location is 
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updated. Repeats the procedure until the targeted number of wave loading cycles, i6_X, 

is reached. 
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Fig.  3.5 Flowchart for the solution procedure of entire system 

At each time step, the solution of the entire system can predict the following 

quantities: the residual and oscillatory pore pressure components in both the liquefied 

soil and the underlying sub-liquefied soil, the vertical displacements of the fluid-soil 

interface (also termed as internal or interface wave motion), the time-varying wave 

number, κ, and the liquefaction front. 

Start 

j 
 0:	ξ 
 0, z� 
 0, κ 
 κ
, a
 
 0, Uõ 
 0 

Evaluate � ∙ ï∆i in Eq. (3.29) 

Solve Eq. (3.29) for Ú. 
If ÚK ö T)
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�� 
 �� �� 
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3.4 Model verification 

Based on the formulations described in the preceding sections a numerical code is 

developed using FORTRAN90 language. To validate the code, the case of the Keisa No. 

7 sand from the original paper is considered for comparisons with both the centrifuge 

wave tank tests and simulation results. The wave conditions and the soil parameters 

used are listed in Table 3.1. 

Table 3.1 Wave conditions and soil parameters 

Wave conditions  

Wave loading cycles, i6_X 100 

Wave frequency, 1Gg 2r⁄ I: Hz 11 

Centrifugal acceleration, #7 30 

Fluid depth, 8: m 0.09 

Initial wave number, b
: ��H 12.2 

Wave pressure, �
: :>� 5.0 

Soil bed conditions  

Soil depth, *:� 0.1 

Density of fluid, aH: :2 �è⁄  980 

Density of liquefied soil, aK: :2 �è⁄  1840 
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Constitutive parameters  

� 4.6 ÷ 10�ø 

� 55 

� 0.1 

��: :>� 5000 

Comparisons were also performed in terms the location of the liquefaction front z�, 

and three other variables: the wave number κ, vertical movement of seabed surface, �
 

and the excesses pore pressure. The numerical results of the present numerical model 

are identical to that of Sassa et al. (2001), as shown in Fig.  3.6, Fig.  3.7, and Fig.  3.8. 
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Fig.  3.6 Variation of the location of the liquefaction front 
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Fig.  3.7 Predicted wave number  
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Fig.  3.8 Predicted vertical movement of the soil surface: (a) is the result of Sassa 

2001; (b) is the reproduced result 
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Fig.  3.9 Time history of excess pore pressure: solid line is total amount and dotted 

line is the residual component. (a) is the wave pressure acting on the soil surface and (b), 

(c) and (d) are excess pore pressures 

For the sake of the comparison between the present simulation results with 

centrifuge test, the corresponding measured results are shown from Fig. 3.10-Fig. 3.11. 
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Fig.  3.10 Time history of measured excess pore pressure: solid line is total amount 

and dotted line is the residual component. Time histories of (a) wave pressure acting on 

the soil surface and (b), (c) and (d) excess pore pressure 
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Fig.  3.11 Measured time histories of vertical movement of soil surface in wave test 

HC at different locations: (a) X=40mm; (b) X=160mm 

3.5 Summary 

Following the approach proposed by Sassa et al. (2001), a progressive liquefaction 

model was constructed. By comparisons with both centrifuge wave tank tests and 

simulation results in Sassa et al. (2001), the accuracy and robustness of the model are 

verified. In the next chapter, this model will be employed to investigate the seabed 

liquefaction under random linear progressive waves using the ensemble modelling 

method. 
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 Ensemble Modelling for the assessment of random Chapter 4

wave-induced liquefaction risks 

4.1 General 

In realistic environment, random waves instead of a regular water surface elevation 

introduce the relevant change on the wave dynamic pressure acting at the seabed, which 

further induce the variation of pore water pressure and effective stresses inside the 

marine sediments (Walter, 1968). In this chapter, we consider a series of random waves 

propagating over a porous seafloor with an infinite thickness (D ∞→ ) above a rigid 

impermeable bottom, as shown in Fig.  4.1. 

z

x

D

h

0

Porous soil seabed

Rigid impermeable base

Seabed surface

Wave propagating direction

water

Free water surface

 

Fig.  4.1 Definition sketch of random wave propagation over a porous seabed 

4.2 Wave sampling techniques 

To simplify the analysis and recognise that liquefaction usually takes place over a 

short time scale characterised by a single storm the simulation is limited to large 
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narrow-band waves. Based on the linear wave theory the wave height was theoretically 

found to obey the Rayleigh distribution with the probability density function given as 

follows (Longuet-Higgins, 1952; Tayfun, 1981): 

 >G3I 
 233567K ,O© �sq 33567t
K�	 (4.1) 

According to the linear wave theory the  mean wave height 34 can be related to the 

wave pressure at the top of the sand bed surface, �
, as 

 Hú 
 2�
ρHg coshGκhI	 (4.2) 

And the root mean squared wave height 3567  can be approximated as 1.13	34 . 

Assume P5	is uniformly distributed on (0, 1), then the random wave height, 3 which 

satisfies Rayleigh distribution as shown in Eq. (4.3) can be expressed as 

 H 
 H£ûü®sln	G1 s P5I	 (4.3) 

For �
 
 3	:>� as used in the tests of Sassa et al. (2001), the root mean square 

wave height 3567 
 0.030	� . Random variable, P5	 is provided by a normal 

distribution variable generator. And hence, the wave heights 3 were generated by repeat 

random sampling from Eq. (4.1) with excluding of  3 � 0.1; (in which cases, linear 

wave theory are not valid). As shown in Fig.  4.2, the distribution of the numerically 

generated wave heights based on Eq. (4.1) compare well with the theoretical distribution 

calculated from Eq. (4.1) using	3567 
 0.030	�. 
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Fig.  4.2 Cumulative distribution function of wave height 

4.3 Ensemble modelling results 

 Regular wave time series 4.3.1

The present work is limited to assessing the randomness of wave parameters only 

(wave heights) all soil material and other parameters in the model are treated as 

deterministic constants which are as listed in Table 3.1. Considering that the 

liquefaction depth is likely to be deeper in ensemble modelling, the depth of soil layer 

used is increased to 320mm instead of the 80mm used in chapter 3 to reduce the 

constraint of the soil layer thickness on liquefaction front. Using the same linear 

variation as assumed in Sassa et al. (2001), the value for MÓ at the bottom of the soil 

layer then becomes 50,000 which give a corresponding value 5,000 at a depth of 80 mm 

in the soil layer. 

Instead of using a representative wave height such as the root mean square wave 

height (3567 ) to determine a single liquefaction depth in a random wave field, an 

ensemble approach calculates the liquefaction depths due to all possible wave heights 
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described by the Rayleigh distribution and then determines a representative liquefaction 

depth. This was achieved by performing multiple model runs using regular waves with 

wave height randomly generated wave height from Rayleigh distribution. Each run ends 

when the liquefaction front reaches an equilibrium value or the bottom of the seabed. In 

total 275 runs were performed and the histogram of the maximum liquefaction depth is 

shown in Fig.  4.3. 

As it is expected for a large number of small wave height (� 120) no liquefaction is 

predicted. For the rest of the wave height the predicted liquefaction depth ranges from 0 

to 0.32 m with the depth at the peak of the distribution being about 0.128 m. The mean 

and root mean square liquefaction depths determined from the histogram are 0.066 and 

0.10 m, respectively, compared to the liquefaction depth calculated using a single 

representative wave height H£ûü 
 0.03	m which is 0.085 m. In detail, the mean (��6) 

and root mean square (��567) liquefaction depths are calculated as 

 ��6 
 1#5 u��w�
.xH 	 (4.4) 

 

��567 
 � 1#5 u��Kw�
.xH 	

(4.5) 

where #5 is the size of random sample.The histogram for the time to reach the 

maximum liquefaction depth is shown in Fig.  4.4. The largest value corresponds at the 

far right corresponds to the end of the run time when no liquefaction was predicted and 

is not physically relevant. The predicted time ranges from around 0.6 to 3.6 s with a 

value at the distribution peak being 2.1 s. 
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The mean and root mean square time to the maximum liquefaction depth determined 

from the histogram excluding no liquefaction runs are 1.88 and 1.98 s which are, as 

expected, smaller but comparable to the corresponding value calculated using a single 

representative wave height H£ûü which 2.24	s. 
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Fig.  4.3 Histogram of the maximum liquefaction depth 
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 Random wave time series 4.3.2

As a real random wave time series consists of individual waves of different heights 

and frequencies, a more realistic ensemble modelling approach is to perform multiple 

runs using a randomly varying wave height time series instead of a constant wave 

height as in the previous runs. The random wave series is generated by assuming that 

each sampled wave height from the Rayleigh distribution lasts one period and then it is 

followed by another randomly sampled wave height for another period and so on. 

Therefore, each random wave series is a succession of sinusoid waves with randomly 

generated wave height and the total elapsed time is 4000D. Admittedly, the liquefaction 

model by Sassa et al. (2001) contain the stress terms that are strictly applicable only to 

linear harmonic waves. The model is nevertheless used here as a first approximation in 

order to determine the transient liquefaction under a random wave train consisted of a 

series of individual waves of varying wave height and a constant wave period. 

Fig.  4.5 shows the histogram of the liquefaction depth calculated using 100 random 

wave series together with the results. It can be seen that the random wave-induced 

liquefaction is much deeper than that corresponding to the equivalent regular wave case. 

The former value ranges from 0.100 to 0.320 m being 0.200 m at the peak of the 

distribution, while the latter is around 0.085 m. The reason for the deeper liquefaction in 

random waves is that the liquefaction depth is mainly affected by the portion of large 

waves in the random wave series as the values corresponding to 3H è⁄  and 3H H
⁄  are 

0.150 and 0.231 m, respectively. 

Due to the presence of large number of small waves in the time series the time to the 

maximum liquefaction is expected to be longer for random waves, which is confirmed 

by the calculations as shown in Fig.  4.6. The shortest time is approaching that for the 
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regular wave, which is about 4 s; and the longest liquefaction time can reach as long as 

24.4 s, which is nearly 6 times of that for regular wave. 

The likely reason for the longer liquefaction time is that individual waves in the 

wave series whose heights are less than a critical value tend not to contribute to the 

propagation of liquefaction front. The maximum liquefaction depth is closely associated 

with the timing of the largest waves in the wave time series. 
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Fig.  4.5 Histogram of the maximum liquefaction depth 
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Fig.  4.6 Histogram of liquefaction time 

 Wave height and sequencing effects on liquefaction 4.3.3

As mentioned in the previous section, the wave series is a succession of sinusoid 

waves with varying wave height generated according to Rayleigh distribution. Thus, 

there is a maximum value of the wave heights for each wave series. To further 

understand the liquefaction depth distribution the maximum wave height in each wave 

time series is plotted against the corresponding final liquefaction depth in Fig.  4.7. 

Strong linear correlation exists between the two except four data points when the 

predicted liquefaction depths are the greatest presumably caused by the existence of 

disproportional number of large waves in these time series. On balance it is reasonable 

to include that the extent of liquefaction is controlled by the size and number of largest 

wave heights in the wave time series. 

In order to investigate whether the order of appearance of waves of different height 

in a random wave series will affect the liquefaction time, the relationship between the 
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time when the liquefaction depth reaches the maximum and the time when the 

maximum wave height occurs is shown in Fig.  4.8. 

Despite some scatter a discernible linear correlation between the two times can be 

identified, which implies that the time for the maximum liquefaction depth to be 

reached is strongly associated with the time of occurrence of the maximum wave height 

except perhaps when the maximum wave height in the sample is very small. The overall 

relationship seems to indicate that the timing of largest waves in the wave time series 

controls the time for the maximum liquefaction depth to be reached, at least for large 

liquefaction depth. 
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Fig.  4.7 Relationship between the maximum wave height and final liquefaction 

depth 
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Fig.  4.8 Relationship between the time to the maximum liquefaction and the time of 

maximum wave height occurrence 

4.4 Discussion 

 Temporal scale of liquefaction 4.4.1

According to the experimental studies of Sumer et al. (2006) liquefaction is 

considered as part of a sequence of sediment behaviour from the build-up of pore 

pressure, to the resulting liquefaction, to the densification of the sediment bed. Under 

irregular waves, the liquefaction front in a homogenous bed cannot propagate 

downward indefinitely and has to stop at a certain depth where shear deformations are 

large enough to cause liquefaction. The compaction begins from the bottom of the 

liquefied zone with the compaction front moving upwards until it reaches the surface of 

the sediment. Similar cycle of sediment behaviour was also observed previously by 
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Miyamoto et al. (2004) in a series of experiments conducted in a wave tank mounted in 

a centrifuge. 

Soil densification under regular waves is usually considered to take place at a much 

slower rate than liquefaction (Zen and Yamazaki, 1990; Miyamoto et al., 2004). It is 

therefore reasonable to assume clear different temporal scales for the liquefaction and 

densification processes. This was used by Miyamoto et al. (2004) to identify a 

solidification front and develop a model to predict its upward propagation. However, 

when sediment is subject to the action of a random wave time series, the liquefaction is 

mainly affected by large waves in the time series. In between the time of large waves 

the sediment bed can experience densification as the pore pressure within the bed may 

have time to dissipate. In general situation, neither the liquefaction front nor the 

densification front will maintain a one way movement (up or down). As a result the 

time scales for the liquefaction and densification processes may not be easily separated 

as in the regular wave situation. Further studies are required to quantify the cycle of 

sediment bed behaviour in random waves. 

 Probability distribution 4.4.2

In order to further understand the statistical properties of the predicted liquefaction 

depth, a number of theoretical distributions are fitted to the numerical distributions 

including the two parameter Weibull distribution, Rayleigh distribution and Normal 

distribution. All parameters in the theoretical distributions are calculated using the 

numerical liquefaction depth data. 
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4.4.2.1 Regular wave series 

Fig.  4.9 and Fig.  4.10 show the probability density function (PDF) and cumulative 

probability distribution (CPD) of the calculated liquefaction depth for regular wave 

series together with the theoretical ones for Rayleigh, Normal and Weibull distributions. 

The probability density function of a two-parameter Weibull random variable O� is 

>GO�, ]�, :�I 
 :�]� qO�]�t���H ,O© �sqO�]�t��� (4.6) 

where ]� and :� are scale and shape parameters, and both of them can be estimated by 

the maximum likelihood estimation method. 

If the fluid–soil system is linear, the liquefaction would be expected to have a 

Rayleigh distribution as the wave height is Rayleigh distributed. The fact that none of 

the three theoretical distributions seems to fit the entire range of the data indicate that 

the system is nonlinear. The main sources of nonlinearity include the dispersion 

relationship in the liquefied layer and plastic volumetric strain terms. It is of interest to 

note that the fit in the larger value range seems to be better for all three distributions, 

indicating the usefulness of these theoretical distributions for extreme analysis. 
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Fig.  4.9 Probability density function of liquefaction depth 
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Fig.  4.10 Cumulative distribution function of wave height 

4.4.2.2 Random wave series 

Fig.  4.11 and Fig.  4.12 illustrate the probability density function (PDF) and 

cumulative probability distribution (CPD) of the calculated liquefaction depth for the 

random wave series together with the theoretical PDF and CPD of Normal and Weibull 
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distributions. The numerical values show a much narrower spread than any of these 

theoretical distributions. This is to be expected as the differences in predicted 

liquefaction depth in this case is caused by a small random sequencing effect and the 

size and number of largest waves in each wave height time series are similar although 

occurring at different time. The values within a certain range are more or less equally 

likely to occur and therefore none of the theoretical distributions assessed are applicable 

to this situation. This conclusion can also be deduced from the histogram of the time to 

the maximum liquefaction depth. As shown in Fig.  4.6, the time to maximum 

liquefaction depth is fairly evenly distributed indicating that it is nearly equally likely 

over a wide range of time. 
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Fig.  4.11 Probability density function of liquefaction depth 
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Fig.  4.12 Cumulative distribution function of liquefaction depth 

4.5 Engineering implications 

As shown by Liu and Jeng (2007) for oscillatory pore pressure, the ensemble 

modelling results presented above indicate that random wave-induced excess pore 

pressure and the maximum liquefaction depth also exceed that for the comparable 

regular waves. This means that the conventional approach of using a representative 

wave corresponding to the mean value of random waves to determine liquefaction 

potential could underestimate the maximum liquefaction depth and produce unsafe 

design in engineering practice. One way of solving this problem is to use extreme waves 

with higher exceedance probability in the wave height distribution instead of mean 

values such as significant wave height or root-mean-square wave height. Alternatively, 

an ensemble modelling similar to what has been done in this chapter should be carried 

out so as to provide a probability distribution of the liquefaction depth. If the soil 

parameters or model parameters are deemed to be uncertain and could be given in 
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probability form they can also be included in the ensemble modelling to cover the full 

random parameter spaces. 

4.6 Summary  

A probabilistic study of soil liquefaction processes has been carried out employing 

ensemble modelling techniques. Two types of ensemble modelling were performed 

using wave heights randomly sampled from a prescribe Rayleigh distribution, one 

involving multiple runs of the liquefaction model using regular wave series and the 

other with random wave series. Based on these multiple runs of the liquefaction model 

the liquefaction depth and time to the maximum liquefaction are determined in the form 

of probability distributions so as to reveal the variability and uncertainties involved in 

predicting wave-induced liquefaction.  

The numerical results indicate that for both types of modelling the random wave-

induced liquefaction depth is much larger than that corresponding to regular waves with 

Equivalent Wave Height. The larger liquefaction depth in random waves appears due to 

the fact that the highest waves rather than average waves in the wave series tend to 

dominate the liquefaction extent. It is also shown that the time needed for liquefaction 

to reach bottom of investigated domain can vary considerably in the case of random 

wave time series. The longer period of low waves between the large waves will delay 

the time for the maximum liquefaction depth to be reached within the simulation time 

considered.  

One of the main summaries of this work is that the current design practice, which is 

entirely based on the regular wave models can under-estimate the liquefaction depth and 

lead to unsafe design. The evaluation of liquefaction potential due to random waves 
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needs to be based on the appropriate extreme values in the wave height distribution 

rather than average values such as significant wave height or root-mean-square wave 

height. It should be pointed out that this finding is based entirely on the numerical 

model used and needs to be validated by experimental data obtained under fully 

controlled environment as the prediction is extremely sensitive to the soil and model 

parameters used. 

Finally, in random waves soil densification may occur within the same time frame of 

liquefaction rather than in the post-liquefaction stage as in regular waves. It is unclear 

how these two processes interact in random waves. Further work, including both 

theoretical analysis and field measurements are clearly required to better understand and 

predict random wave-induced liquefaction and associated risks. 
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 Two-layer Viscous Fluid Model Chapter 5

5.1 Introduction 

In the model used in the previous two chapters, liquefied soil is viewed as inviscid fluid. 

However, as reviewed in Chapter 1, the liquefied soil is more accepted to be a heavy 

viscous fluid. Hwang et al. (2006) measured viscosity of liquefied sand by the sinking 

ball and the pulling bar tests, confirmed that the liquefied sand behaves as non-

Newtonian fluid whose viscosity decreases with increasing shear strain rate. Hamada 

and Wakamatsu (1998) made extensive earthquake-induced ground displacement 

investigation, and concluded that liquefied soil behaves as a pseudo plastic fluid during 

ground flow; however, it returns to behave as a solid body as stiffness recovers due to 

dissipation of pore water pressure. In other words, there exists a phase transition for 

liquefied soil from relatively rigid viscous to purely viscous fluid. Due to the 

complexity of liquefied soil behaviour, no mature model is available in the literature 

that takes into account this phase change. Lamb’s two-layer fluid system is clearly not 

applicable for the viscous liquefied soil. 

To allow the inclusion of viscosity of liquefied soil, Liu et al. (2009) adopted the 

laminar linearized Navier-Stokes equations to describe the fluid motion which is firstly 

employed by Dalrymple and Liu (1978) in modelling wave-fluid mud interaction. 

Furthermore, the wave-induced shear stress was estimated by an analytical solution for 

a seabed with finite thickness. It was found that the inclusion of the viscosity of the 

liquefied layer will reduce the predicted final liquefaction depth while the finite depth 

solution for the shear stress increases the predicted final liquefaction depth.  
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In this chapter, a two-layer viscous fluid system is constructed. To account for the 

shear strain rate-dependent viscosity and phase transition of liquefied soil, a visco-

elastic–plastic model employed by Oveisy et al. (2009) for fluid mud is used as a first 

approximation. The computed viscosity compared well with the laboratory experimental 

data in literature. Simulation results demonstrated that the progressive liquefaction was 

significantly affected by the varying liquefied soil viscosity. Furthermore, the effects of 

other factors within the present prediction framework, such as wave parameters and soil 

properties were also examined. 

5.2 System definition and formulation  

Consider a progressive water wave with a wave length ;  and wave period D  that 

propagates over a cohesion-less sediment bed. Suppose the liquefaction occurs at time	C, 
and its front progresses down to a location � 
 �� as depicted in Fig.  5.1. The entire 

system consists of two viscous fluid layers, seawater with density aH (0 ~ � ~ 8) and 

liquefied soil with density aK (�� ~ � ~ 0), respectively; and a poro-elasto-plastic sub-

liquefied layer (s* ~ � ~ ��). In this model, the density of each layer is assumed to be 

constant. Before the liquefaction, the analytical solution for linear wave  pressure on 

water-seabed-interface is used to assess the excess residual pressure in the seabed; after 

the onset of liquefaction, the upper fluid layers are formulated first and then the lower 

soil subsystem. 
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Fig.  5.1 Schematic definition of wave induced progressive seabed liquefied seabed 

(incorporating viscosity) 

 Formulation for the fluid zone 5.2.1

5.2.1.1 Wave-liquefied soil interaction model 

Dalrymple and Liu (1978) developed a two-layer fluid model for wave propagation over 

a viscous mud layer thus overcoming the limitation of Lamb’s model. The laminar 

Navier–Stokes equations for incompressible fluid, which has been linearized by 

neglecting convective acceleration, are (MacPherson, 1980) 

 
∂u@ A∂t 
 s 1ρA ∂p@ A∂x v νA �∂Ku@ A∂xK v ∂Ku@ A∂zK �	 (5.1) 
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∂wN A∂t 
 s 1ρA ∂p@ A∂z v νA �∂KwN A∂xK v ∂KwN A∂zK �	 (5.2) 

where �@ , MN  are the horizontal and vertical velocities, respectively; the subscript ! 
indicates the layer index; O  and �  are the horizontal and vertical coordinates, 

respectively; ©̂  is the dynamic pressure; a  is the density of fluid; and ̀
 ^ a⁄  is 

kinematic viscosity with the subscripts ! 
 1, 2	indicating the upper and lower layers, 

respectively; C represent the time. 

The equations for mass conservation is  

 
∂u@ A∂x v ∂wN A∂z 
 0	 (5.3) 

The periodic solutions for	u@ A, wN A	and ©̂A are assumed respectively as 

 u@ AGx, z; tI 
 uAGzIexp¾iGκx s ωtIÀ	 (5.4) 

 wN AGx, z; tI 
 wAGzIexp¾iGκx s ωtIÀ	 (5.5) 

 p@ AGx, z; tI 
 pAGzIexp¾iGκx s ωtIÀ	 (5.6) 

where ω is angular frequency of the wave system and κ	is the unknown complex wave 

number after liquefaction 

 κ 
 κ£ v iκõ	 (5.7) 

b5 is the real part of the wave number which provides the wavelength (; 
 2r b5⁄ ); b. 
is the imaginary part which represents the wave attenuation rate. Displacements of 

water surface and interfaces,	m  are represented by 
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 ηA 
 aAexp¾iGκx s ωtIÀ	 (5.8) 

where aA is a complex unknown value defining the amplitude of the displacement of the 

jth layer. The water surface is expressed as ηH	while	ηK	 is unknown complex value 

representing liquefied layer displacement including their amplitudes and phases. 

Substituting Eqs. (5.4), (5.5) and (5.6) into the continuity Eq. (5.3) results in 

 � 
 0b �M �� 	 (5.9) 

where the prime represents the differential with respect to �. Introduction of Eq. (5.9) 

into Eq. (5.1) yields an expression for ©  
 © 
 a `F, bK ��èM ��è s ] K �M �� �	 (5.10) 

in which 

 ] K 
 bK s 0T`F, �H	 (5.11) 

Substituting pA into the vertical momentum equation, Eq. (5.2), yields the fourth-order 

differential equation for M  

 
�
M ��
 s {bK v ] K| �KM ��K v bK] KM 
 0	 (5.12) 

The general solutions of Eq. (5.12) can be obtained as 

 MHG�I 
 %,�4 v &,��4 v ',��4 v *,���4	 (5.13) 
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 MKG�I 
 /,�G4�4
I v È,��G4�4
I v �,��G4�4
I v 3,���G4�4
I	 (5.14) 

The complex constants	%,	&,	' ,	*,	/ ,	È ,	�,	3	and the unknown variables b and �K 

are determined from the boundary conditions at the water surface, the interfaces and the 

rigid bottom as follows: 

(a) At the water surface ( � 
 ηH	) 
The kinematic boundary condition, requiring the surface particles to follow the 

surface, and the imposition of zero normal and tangential stresses can be written as 

 
�mH�C 
 MNH	 (5.15) 

 ©̂H s 2aH`H �MNH�� 
 0	 (5.16) 

 aH`H q��@H�� v �MNH�O t 
 0	 (5.17) 

or after Taylor’s expansion 

 %,�V v &,��V v ',��V v*,���V 
 s0g�H	 (5.18) 

 �HG%,�V s &,��VI s 2aH`H]Hz',��V s *,���V} 
 aH2�H	 (5.19) 

 2bKG%,�V v &,��VI v G]HK v bKI{',��V v *,���V| 
 0	 (5.20) 

where 

 �H 
 0aHgb s 2aH`Hb	 (5.21) 
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 ]HK 
 bK s 0g`H�H	 (5.22) 

and g is the gravitational acceleration. 

(b) At the interfaces (	� 
 0	) 
 

�mK�C 
 MNH	 (5.23) 

or 

 % v & v ' v * 
 s0g�K	 (5.24) 

The continuity of horizontal and vertical velocities is 

 �@H 
 �@K	 (5.25) 

 MNH 
 MNK	 (5.26) 

or 

 % v & v ' v * 
 /,�4
 v È,��4
 v �,��4
 v 3,��4
 	 (5.27) 

 b% s b& v ]H' s ]H* 
 b/,�4
 s bÈ,��4
 v ]K�,��4
 s ]K3,��4
 	 (5.28) 

The normal and tangential stresses are also continuous across the interfaces. 

 ©̂H s 2aH`H �MNH�� s aH2mK 
 ©̂K s 2aK`K �MNK�� s aK2mK	 (5.29) 

 aH`H q��@H�� v �MNH�O t 
 aK`K q��@K�� v �MNK�O t	 (5.30) 

or 



87 

 

 

 

 

�HG% s &I s 2aH`H]HG' s *I

 �KG/,�4
 s È,��4
I s 2aK`K]K{�,��4
 s 3,��4
|
s GaK s aHI2�K	 (5.31) 

 

aH`H¾2bKG% v &I v G]HK v bKIG' v *IÀ

 aK`Kz2bKG/,�4
 v È,��4
I
v G]HK v bKI{�,��4
 v 3,��4
|}	 (5.32) 

where 

 �K 
 0aKgb s 2aK`Kb	 (5.33) 

(c) At the bottom (� 
 s��) 

The velocities in both the horizontal and vertical directions should be zero at the 

fixed bottom, 

 �@K 
 0	 (5.34) 

 MNK 
 0	 (5.35) 

or 

 bG/ s ÈI v ]KG� s 3I 
 0	 (5.36) 

 / v È v � v 3 
 0	 (5.37) 
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The coefficients	% s 3,	 the amplitude of interface wave �K and wave number b can 

be solved from Eqs. (5.18), (5.19), (5.20), (5.24), (5.27), (5.28), (5.31), (5.32), (5.36) 

and (5.37) by substitution and iteration methods. The detail  derivation of these 

coefficients can be found in Appendix E of this thesis. Then the amplitude of fluid 

pressure at the bottom of fluid region can be derived from Eq. (5.10) as 

 ©K|4x�4
 
 0gaKb G/ s ÈI	 (5.38) 

5.2.1.2 Rheological model of liquefied soil 

In centrifuge wave testing, Miyamoto et al. (2000) observed that water-seabed-

interface starts vibrating as liquefaction occurs, and the oscillation amplitude increased 

considerably with the advancement of the liquefaction front. As discussed in the 

preceding sections, due to the complexity of liquefied soil behaviour, different 

constitutive equations have been proposed. In this thesis, the visco-elastic–plastic model 

(Oveisy et al., 2009) which was proposed originally for mud is adopted here to describe 

the evolution of viscosity with the gradually increasing deforming rate of the liquefied 

soil layer. The state of liquefied soil is determined by comparing shear stress and yield 

stress. When the shear stress is less than the yield stress, the liquefied soil is in a 

viscoelastic state; otherwise, it is in a viscoplastic state. The visco-elastic–plastic model 

is preferred as it can account for the behaviour of liquefied soil at both low and high 

shear stresses. The constitutive equations are expressed as (Oveisy et al., 2009) 

 T. 
 2^F,-. 	 (5.39) 
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 ^F 

°±²
±³^H v 0�g 											q12 T. T. ~ cYKt
^K v cY®4|ΠF| 		q12 T. T. � cYKt					 (5.40) 

where 0 and ! take the values 1 and 2 which correspond to the x and z axes, respectively, 

T.  is the deviator part of stress tensor, ^F is the apparent viscosity, ,-.  is the deviator 

part of strain rate tensor, g  is the angular frequency of the wave, G is the elastic 

modulus, ̂ H is the viscosity of liquefied soil in the viscoelastic state, ̂K is the viscosity 

of liquefied soil in the viscoplastic state and cY is the yield stress. |ΠF| is the objective 

of the deformation-rate tensor and is expressed as 

 |ΠF| 
 12 q��@�OtK v 12 q�MN�� tK v 14 q��@�� v �MN�OtK	 (5.41) 

where �@	and	MN	are the horizontal and vertical component of velocity, respectively. The 

rheological viscoelastic parameters, i.e. shear modulus and viscosity, are taken from the 

results of the laboratory experiments of (Shibayama, 1993) on commercial kaolinite 

 ^H 
 10{è.èøè��.ø�÷H
���| ÷ D	 (5.42) 

 

�¿2� 
 3.761 s 1.05 ÷ 10�K�
v G0.147 s 3.38 ÷ 10�è�I�¿2GD s 0.522 s 1.23
÷ 10�è�I	 (5.43) 

in which ̂ H is the viscosity (Pa s), T is wave period (s) and � is the mass water content 

ratio (referred to water content in the thesis for simplicity) of the liquefied soil (%). 
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Note that ̂ F is related to water content of liquefied soil and wave period. It seems this 

complex viscosity includes the effect of wave attenuation, in a similar way as 

application of complex shear modulus by Yamamoto and Takahashi (1985) to consider 

wave dissipation. 

The visco-plastic parameters of kaolinite (i.e. cY  and̂ K ) are evaluated from the 

laboratory experiments of Tsuruya et al. (1987). 

 cY 
 1.494 ÷ 10���K.
øK	 (5.44) 

 ^K 
 8.465 ÷ 10è��H.è

	 (5.45) 

where cY, ̂ K are in Pa and Pa s, respectively. 

 Due to dearth of corresponding model constants for sand, the parameters originally 

proposed for clay of kaolinite are employed. The predicted viscosity compares well with 

the measured data for sand in literature (shown in Error! Reference source not found.), 

which ensures the validity of this approximation. In this rheological model, the viscosity 

of liquefied soil depends on mass water content ratio, wave period and motion of 

liquefied soil layer. In reality the shear strain and deformation rate should both be 

varying with depth but as a first approximation, the average values for both of them are 

adopted. 

 Formulation for sub-liquefied seabed 5.2.2

To determine the build-up of the residual pore pressure in the sub-liquefied soil 

layer, the plastic volumetric strain under cyclic wave loading needs to be specified in 

addition to the fluid conservative equation or storage equation. The development of 

plastic volumetric strain should reflect the contractive nature of sand bed, which is 
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related to wave-induced shear stress. Therefore, we need obtain the shear stress in 

porous seabed prior to constructing the sub-liquefied seabed model which is presented 

in Chapter two. The cyclic shear stresses are determined by the solution for a bed of 

finite thickness. 

Finite solution for cyclic shear stress 

>
	is the wave pressure before liquefaction, is given by Hsu (1990), 

 >
 
 [\�
(¿«8G:
+I	 (5.46) 

The vertical normal effective stress is 

 TW
U 
 [U�	 (5.47) 

A closed form solution for a seabed with finite thickness was given by Jeng and Hsu 

(1996). For a progressive wave propagating over a fully saturated poro-elastic seabed of 

finite thickness, the shear stress and wave-induced pore pressure within the seabed are 

 

c 
 0>
�G'H v 'Kb
�I,O©Gb
�I s G'è v '
b
�I,O©Gsb
�I
v b
ª¾'ø,O©Gª�I s '�,O©Gsª�IÀ�,O©¾0Gb
O s gCIÀ	 (5.48) 

 

> 
 >
1 s 2^ �G1 s 2^I¾'K,O©Gb
�I s '
,O©Gsb
�IÀ
v G1 s 2^IGªK s b
KI¾'ø,O©Gª�I
v '�,O©Gsª�IÀ�,O©¾0Gb
O s gCIÀ	 (5.49) 

where 
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 ªK 
 b
K s 0g[\G1 s 2^I2�:4G1 s ^I 	 (5.50) 

in which :4 is soil permeability, G is shear modulus, ^ is Poisson’s ratio, g is wave 

frequency, b
 is the wave number before liquefaction. Coefficients 'H s '� are shown 

in Appendix D. 

If liquefaction occurs, the shear stress and pore pressure in the seabed can be 

calculated using Eq. (5.48) and Eq. (5.49). A minor change is that >
 and b
 should be 

>� and b which have to be updated from the two-layer wave model. The vertical normal 

effective stress can be calculated using Eq. (5.47) and then the shear stress ratio 

d 
 c TW
U⁄ 	can be further calculated. 

5.3 Numerical scheme and computational procedure 

By adopting a finite difference method, the governing Eq. (3.20) can be discredited 

as 

 

ÚGi v ∆i, ÛI s ÚGi, ÛI∆i s �ï

 ÚGi v ∆i, Û v ∆ÛI s 2ÚGi v ∆i, ÛI v ÚGi v ∆i, Û s ∆ÛIG∆ÛIK 	 (5.51) 

in which, ï 
 �ef �i⁄ , Û 
 b
� , ∆i  is the increment of wave cycle, and ∆Û  the 

increment of general depth. Note that we represent �FGKI by U in Eq. (5.51). 

The value of ï  is determined by Eq. (3.26), which can be calculated using the 

backward Euler scheme. The left hand side of Eq. (3.26) can be discredited as 
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�ef�i 
 efGi, dI s efGi s ∆i, dI∆i 	 (5.52) 

Thus efGi, dI can be determined based on efGi s ∆i, dI, 
 

efGi, dI s efGi s ∆i, dI∆i 
 �ze¡f GdI s efGi, dI}	 (5.53) 

 efGi, dI 
 �e¡f GdI∆i v efGi s ∆i, dI1 v �∆i 	 (5.54) 

With the initial condition that the plastic volumetric strain is zero, the value of 

efGi, dI can be determined and then q can be calculated for each step. 

Considering the boundary conditions at the fluid–soil interface and assuming an 

impermeable bottom together with dividing the seabed thickness D into a mesh of 

¬ ÷ ∆�, Eq. (5.51) can be transformed into 
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∙ Δξ	 (5.55) 

where  

 % 
 sj ∆iGΔÛIK (5.56) 

 & 
 1 v 2j ∆iGΔÛIK (5.57) 
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 &∗ 
 1 v j ∆iGΔÛIK (5.58) 

 ï 
 �ef�i ðñ (5.59) 

Based on above model, the detailed procedure of the analysis is as follows: 

 (1) Start analysis from κ 
 κ
  �� 
 0, i 
 0 ; calculate initial wave number by 

water depth and wave period. 

(2) Before liquefaction, the wave pressure is calculated by the common formula for 

a progressive wave: >
 
 [×�
 (¿«8G:
+I⁄ . 

(3) Solve Eq. (5.55) to get the residual pressure at each point for i 
 i v ∆i. 

(4) Repeat steps (2) and (3) until ÚK increases to the value of [UΔ�. 

(5) Update the liquefaction front location and vertical effective stress.  

(6) In the following steps, the two-layer wave-liquefied soil model is used to 

calculate b and the amplitude of fluid pressure over sub-liquefied soil ©�. A trial-and-

error approach is used to get a convergent viscosity for liquefied soil. In the first run 

after onset of liquefaction, a guessed value of a uniform liquefied soil viscosity is used. 

In the subsequent runs, the viscosity obtained in the last solution is used as trial value. 

Then, the N-layer fluid system is solved to get shear strain rate of liquefied soil layer 

and the rheological model equation gives a new viscosity. Repeat this procedure until 

reach a convergent viscosity. 

(7) Input the final viscosity value into the multi-layer system to get the wave 

pressure at sub-liquefied seabed surface, � 
 0; 
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(8) With the wave pressure exerted on seabed surface, the analytical solution of 

wave-induced shear stress and shear stress ratio are calculated to determine�ef �i⁄ .  

(9) Solve Eq. (5.55) to get the residual pore pressure. 

(10) Repeat steps (5)–(9) until the end of the analysis. 

The solution procedure of the entire system and for determining fluid motion with 

the two-layer fluid system are summarised in Fig.  5.2 and Fig.  5.3, respectively. 
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Fig.  5.2 Flowchart for the solving procedure of the entire system 

b. 
 0 

�� 
 �� v ∆� 

then 

STOP 

else 
If C � C6_X 

i = i+1 

t = t+ΔC 

Update �� 

Solve the two-layer 

fluid system 

then else 

If �� ¦ 0 

START 

Input wave height and period, water depth, soil 

material parameters, soil depth 

Calculation of Ú. (pore pressure) 

If ÚK ö TW
U  

else then �� 
 �� 
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Fig.  5.3 Flowchart for the solving procedure of the two-layer fluid system 

5.4 Model performance 

 Comparison with Liu ′s model 5.4.1

Prior to examining the effect of visco-elasto-plastic rheological model for liquefied 

soil, the present model was verified by comparison with simulation results in Liu et al. 

(2009). The results of evolution of liquefaction front are shown in Fig.  5.4 in which 

‘Model Liu’ represents model results given by Liu et al. (2009). These results are 

		©� the fluid pressure in the bottom of liquefied soil 

`K 
 `KU  
then 

else 

`KU  
If `KU s `K ~ accuracy level 

Calculation of A, B, C, D, E, F, G, H and �H, 

u and w, ,-. , T. , |ΠF| 

Calculation of A, B, C, D, E, F, G, H and �H 

Use current b., `K 

Update b. 
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obtained by inputting a constant viscosity for liquefied soil into the present model. The 

parameters used in the case for comparison are listed in Table 5.1. As shown in Fig.  5.4, 

the present model produced an identical solution to ‘Model Liu’. 

0 50 100 150 200 250 300
6

5

4

3

2

1

0
z L

 (
m

)

t (s)

Model Liu
 Liu et al. (2009)

 

Fig.  5.4 Reproduction of Liu et al. (2009)’s results of liquefaction front propagation 

Table 5.1 Wave conditions and soil parameters in comparison with Liu et al. (2009) 

Wave conditions 

Fluid depth, h: m	 20 

Wave period, T: s	 10 

Initial wave length, L: m 121.2 

Wave height, H: m 6.5 

`H: �K«�H 1 ÷ 10�� 
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`K: �K«�H 10 

Soil bed conditions 

Soil depth, D: m 6.0 

Permeability coefficient, :4: �«�H 1.5 ÷ 10�
 

Density of liquefied soil, a7: :2��è 1800 

Water content ratio of liquefied soil, M 42% 

��: :>� 3.12 ÷ 10
 

� 1.8 ÷ 10�ø 

� 55 

� 0.04 

 Comparison with Oveisy ′s model 5.4.2

Since the dynamic viscosity of liquefied soil layer strongly depends on the soil 

deformation rate, the normalized lateral velocity distribution along depth of liquefied 

soil layer is tested by comparing with Oveisy’s results. 

Using the wave characteristic as Case c (Table 5.2) in Oveisy et al. (2009), two-

layer fluid system was simulated numerically. We chose the seabed depth D so that the 

final liquefaction depth is roughly equal to mud thickness of case c. Other soil 

parameters are listed in Table 5.3. The result of normalized lateral velocity of liquefied 

soil by the value at seabed surface is shown in Fig.  5.5. 
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In Fig.  5.5, ‘Model A’ represent the result of present model. Other three curves are 

reproduced from Oveisy et al. (2009). Regarding these results two points had to be 

made: ① Although Oveisy presented the viscoelastic-plastic model, a constant viscosity 

is used when making the comparison with the experiment data and Sakakiyama and 

Bijker (1988)’s results. ② Oveisy’s model is a two dimensional model, but the present 

model is one-dimensional. In the two dimensional model, the wave height of incident 

wave is gradually damped as travelling in the lateral direction. However, the initial 

value wave height is used in the one dimensional model due to the lack of information 

for wave dissipation. It is probably the reason why the present model results did not 

completely agree with that of Oveisy’s. Better fit between the two predictions is found 

when		� +6⁄ ö 0.5, � is the vertical location in liquefied layer and +6 is the depth of the 

layer. 

Table 5.2 Wave parameters for Case c in Oveisy et al. (2009) 

8:� D: « a7: :2��è 3:� `H: �K«�H `K: �K«�H 

0.3 1.02 1230 0.032 1 ÷ 10�� 1 

Table 5.3 Soil parameters used for comparison with Case c in Oveisy et al. (2009) 

*:� :4: �«�H ��: :>� � � � 

0.3 1.5 ÷ 10�
 3.12 ÷ 10
 1.8 ÷ 10�ø 55 0.04 
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Fig.  5.5 Profile of the velocity in the liquefied layer normalized by	�H, the velocity 

at the surface of seabed 

 Comparison with test results of viscosity 5.4.3

Hwang et al. (2006) have carried out extensive review on the dynamic viscosity of 

liquefied soil with the main results as shown in Error! Reference source not found. 

and Error! Reference source not found.. It can be seen that the major of viscosity data 

lie within the area between the parallel lines in Error! Reference source not found.. In 

the present model, the dynamic viscosity	^ can be estimated using Eq. (5.60) 

 ^F 
 a`K	 (5.60) 

where, a is the density of liquefied soil, 1800 :2��è, ̀ K	is the kinematic viscosity 

that obtained from the present model with a value range from 12.52 to 0.09 �K«�H. The 
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corresponding values of dynamic viscosity	^F are from 21,240 to 162	:>� ∙ «, which are 

clearly in reasonable accord with that in Error! Reference source not found.. 

 

5.5 Results and discussion 

A series of numerical simulations are performed in this section. The wave and soil 

parameters used are listed in Table 5.1 unless stated otherwise. 

 Effect of shear stress 5.5.1
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Fig. 5.6 Influence of shear stress solution on liquefaction progresses 

Fig. 5.6 reveals that there is a significant difference (exceeding 23%) in the 

liquefaction front evolution predicted by using different methods to estimate the wave-

induced shear stress. ‘Finite solution’, namely, the shear stress is obtained using the 

analytical solution for finite thickness seabed, predicts a final liquefaction of 4.32 m 

while a depth of 3.52 m is computed by infinite solution for shear stress. This can be 
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explained from two prospects: firstly, shear stress of finite solution is greater than that 

of infinite solution though the latter is larger in the shallower zone at the beginning of 

liquefaction phase (as shown in Fig. 5.8). This result is consistent with the earlier 

occurrence of liquefaction for infinite solution (Fig. 5.6) and the larger amplitude of the 

displacement on the seabed surface (Fig.  5.7) at earlier liquefaction stage. After this 

initial period, the finite shear stress exceeds infinite shear stress, and both liquefaction 

depth and interface wave amplitude, i.e., the amplitude of soil displacement at seabed 

surface, surpass those of the infinite solutions. Secondly, as the source term in the 

storage equation involves an exponential function of cyclic stress ratio and coefficient � 

is positive the influence of a small difference of shear stress and cyclic stress ratio on 

liquefaction will be amplified. 
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Fig.  5.7 Influence of shear stress solution on amplitude of interface wave 
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Fig. 5.8 Shear stress from two different solutions: ‘Inf’ and ‘Fin’ represent infinite 

and finite bed solutions, respectively. 

 Effect of varying viscosity 5.5.2

As shown in Fig. 5.9, when visco-elastic-plastic model is employed to model 

liquefied soil, the maximum liquefaction depth is 4.32m, which is 7.5% deeper than the 

result obtained by procedure of a constant viscosity (4.02m in Liu et al. (2009)). In their 

model, the viscosity in liquefied soil layer		`K  was prescribed to 10	�K«�H . In the 

present model, ̀K varies when the liquefaction front moves downward as shown in Fig.  

5.10. It decreases from 12.52 to 0.09 �K«�H rapidly, and then reaches a steady level. 

This sharp drop in viscosity models the presumption of transition in the liquefied soil, 

i.e. the liquefied soil viscosity will transfer from visco-elastic state to visco-plastic state 

when the deformation rate and associative shear stress rate reach a certain level. This 

prediction is also consistent with the observed trend of liquefied soil deformation as 

described in Sassa et al. (2001).   
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As described in the formulation of the visco-elastic-plastic constitutive model, 

dynamic viscosities of both visco-elastic phase and visco-plastic phase depend on the 

water content of liquefied soil. Therefore, the effect of water content on the progressive 

liquefaction is also examined here. The results are shown in Fig.  5.11 and Fig.  5.12. 
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Fig. 5.9 Effect of varying viscosity of liquefied soil on liquefaction front evolution 
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Fig.  5.10 Evolution of kinematic viscosity of liquefied soil with liquefaction depth 

0 50 100 150 200 250 300
5

4

3

2

1

0

z L 
(m

)

Time (s)

 w = 20%
 w = 40%
 w = 60%

 

Fig.  5.11 Evolution of liquefaction front with different liquefaction water content 

In Fig.  5.11, water content is observed to have no notable influence on the final 

liquefaction depth. For low water content, from 20% to 40%, increasing water content 
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causes slightly deeper liquefaction. The viscosity computed for different water content 

is shown in Fig.  5.12. 
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Fig.  5.12 Evolution of kinematic viscosity of liquefied soil with different water 

content ratio 

From Fig.  5.12, we can see higher water content will lead to lower steady viscosity. 

Moreover, the liquefied soil with higher water content tends to enter visco-plastic state 

sooner than with lower water content. This can be explained by its lower stiffness. In 

the framework of constant viscosity and density of liquefied soil layer, Liu et al. (2009) 

discussed the viscosity effect on liquefaction by varying liquefied soil viscosity, ̀K from 

1 to 100�K«�H. They found that when `K increases from 1 to 10�K«�H, the liquefaction 

depth decreases; however, in the range between 10 and 100�K«�H , there is no 

appreciable reduction in predicted liquefaction depth. In the present study, the viscosity 

varies in a smaller range. Despite the small range, parameter ] in the analytical solution 

for two-layer fluid system is still expected to show a significant change but this did not 

happen. 
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Fig.  5.13 illustrates that the effect of water content on wave pressure is not large 

although an increase in water content (from 20% to 40%) generally causes an increase 

in wave pressure. It also shows that after onset of liquefaction, wave pressure at 

interface between liquefied soil and sub-liquefied soil gradually increases whilst the 

wave pressure at interface between liquefied soil and overlying water gradually reduces. 
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Fig.  5.13 Wave pressure amplitude at location (� 
 0), �
 and liquefaction front, 

(� 
 ��,), ��. 

 Effect of wave and soil characteristics 5.5.3

Fig. 5.14 demonstrates that the increasing water depth will produce smaller wave 

pressure and consequently the shear stress ratio and final liquefaction depth will 

decrease. Also the liquefaction process begins sooner and its front reaches deeper for 

shallower water depth. Fig. 5.15 depicts the distribution of the source term ���f �i	⁄ in 

Eq. (3.20) when the liquefaction reaches at 0.24 m, which is the final liquefaction depth 

for the case with the water depth 8	equal to 21 m. The source term is found to decrease 
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for deeper water depth due to the corresponding decreasing shear stress ratio. In turn, 

the smaller source term prevents the build-up of the residual pore pressure and 

eventurally results in a shallower liquefaction depth. As shown in Fig.  5.16, when 

water depth increases, the corresponding viscosity in visco-plastic state increases 

slightly; however, there is no discernible difference in the viscosity of visco-elastic state. 
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Fig. 5.6 The influence of water depth on liquefaction processes 
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Fig. 5.7 The distribution of source term in the storage equation for various water 

depth (�� 
 0.27	�) 
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Fig. 5.8 The influence of water depth on viscosity of the liquefied soil 
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As to the wave period, it affects the wavelength and wave pressure (together with 

water depth), also the viscosity (but it is not significant as shown in Fig. 5.18). For 

porous sub-liquefied soil, the partial drainage factor depends on wave angular frequency. 

The partial drainage controls the rate of residual pressure dissipation as shown by Liu et 

al. (2009). As a result, for a given wave height smaller wave period would lead to 

deeper liquefaction since the rate of residual pore pressure dissipate is smaller for a 

shorter wave than for a longer one. 
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Fig.  5.9 Influence of wave period on liquefaction processes 
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Fig.  5.10 The influence of wave period on viscosity of the liquefied soil 
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Fig.  5.11 The influence of soil permeability on liquefaction processes 

Similarly, the soil permeability which dominants the dissipation rate of residual pore 

pressure can significantly influences the liquefaction progress. Higher hydraulic 

conductivity leads to shallower liquefaction depth, as shown in Fig.  5.19. 
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 Effect of soil poro-plastic parameters 	�, �	and � 5.5.4

Parameters	�, �	and R affect the residual pore pressure build-up pattern. Fig. 5.20-

Fig. 5.22 demonstrate that both the final liquefaction depth and the liquefaction process 

are very sensitive to these parameters. Furthermore, the effects of � and �	on the final 

liquefaction depth and the liquefaction process are more significant than that of R. This 

is because that the former two parameters are exponentially related to the ultimate 

plastic volumetric strain in Eq. (3.24) and the rate of plastic volumetric change in Eq. 

(3.25), respectively. However, the ultimate plastic volumetric strain is linearly related to 

R. Therefore, calibration of these parameters should be done with enough cautions lest 

use of the uncalibrated model parameters impairs the prediction results completely. 

However, there is no explicit parametric identification procedure available (Liu et al., 

2009). When these parameters were employed originally (Sassa et al., 2001), no definite 

physical meanings are assigned to them. Actually, they are determined so that the 

predicted results of liquefaction depth may consistently reproduce the experimental 

performance.  

Alternatively, the built-up of residual pore pressure can be calculated using Eq. (2.7), 

which models the accumulation pore pressure using the ratio of cyclic loading to the 

cyclic number to liquefaction by Eq. (2.9). As mentioned in the literature review of 

Chapter 2, a relationship between �ef �i⁄  and the source term in the fluid storage 

equation, 	1	can be achieved by comparing Eq. (2.7) and Eq. (2.15):  

1 
 (W^59 +ef+C 
 	 (W^59 g2r +ef+i  (5.61) 
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Fig.  5.20 The influence of � on liquefaction processes 
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Fig.  5.21 The influence of � on liquefaction processes 
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Fig.  5.22 The influence of � on liquefaction processes 

5.6 Summary 

This chapter presents a model based on visco-elastic-plastic rheological constitutive 

equation for predicting wave-induced residual liquefaction. The upper seawater and 

liquefied soil were treated as viscid fluid and described by linearized Navier-Stokes and 

continuity equation, while the lower sub-liquefied soil was modelled by a poro-elastic-

plastic model to calculate residual pore pressure build-up.  

Simulation results confirmed that shear stress obtained from infinite seabed solution 

can lead to significant errors and underestimate the liquefaction depth. The viscosity of 

liquefied soil computed by the present model shows an abrupt state change, i.e., from 

viso-elastic stage to visco-plastic stage, due to the accelerating deformation rate of 

liquefied soil layer. The computed value of viscosity compares well with the test data in 

the literature. It is found that the shear strain rate dependent viscosity does influence the 

liquefaction process relative to a constant viscosity, even though this effect is not 
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particularly marked. Although the rheological parameters depend on both water content 

of the liquefied soil and wave period, influence of water content on the liquefaction 

progress seems to be rather limited. However, wave period makes a more notable 

difference probably because it is more difficult for the residual pore pressure to 

dissipate under the action of a shorter wave. Effect of the other factors, such as water 

depth and soil parameters on progressive liquefaction are examined as well. Deeper 

liquefaction depth is more likely to take place in shallower water under same wave 

loading. Smaller soil permeability prevents residual pore pressure dissipation and 

consequently enhances the liquefaction. Finally, the liquefaction is very sensitive to the 

soil parameters in the source term, which desire a general identification method. 
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 N-layer Viscid Fluid Model Chapter 6

6.1 Introduction 

In Chapter 5, shear strain rate-dependent viscosity of liquefied soil has been 

confirmed to affect seabed liquefaction progress although not strongly. However, the 

two-layer fluid system model is based on an approximation of constant viscosity 

throughout the depth of liquefied soil. This is necessary in the framework of two-layer 

system in which the entire liquefied soil is assumed to be a uniform layer with respect to 

the viscosity despite the shear strain rate varies along depth. When the liquefied soil 

layer is sufficiently thick, this approximation may lead to serious errors. 

In investigations of wave dissipation over fluid mud, some researchers have 

attempted to divide the fluid mud layer to multiple layers to allow the different 

properties for each sub-layer to be specified (Tsuruya et al., 1987; Oveisy et al., 2009; 

Soltanpour and Samsami, 2011). In the situation of fluid mud, the depth of fluid mud is 

usually known and constant during computation. Therefore, the number of layer can be 

set and kept unchanged. On the contrary, during progressive liquefaction the 

liquefaction front advances downward and the thickness (thus number of layers) of sub-

layer of liquefied soil therefore changes. In this chapter, the relevant formulas for a 

multi-layer system are derived and coded based on a recursive procedure to enable an 

automatically change of the number of liquefied soil layers, thus extending the previous 

two-layer viscous fluid model to multi-layer or N-layer one.  By virtue of N-layer viscid 

fluid system developed here for the wave-liquefied soil interaction, both density and 
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viscosity of liquefied soil are allowed to vary with depth, whereby the effect of 

stratification on the liquefaction progress can be explored.  

As the rheological model for liquefied soil, storage equations for sub-liquefied 

seabed and the wave-induced shear stress finite solution used in this chapter are the 

same as those in Chapter 5, for the sake of brevity, they are not repeated here. The 

formulations of N-layer viscous fluid model and numerical scheme are presented first. 

Then, the predictions by the two-layer and N-layer models are compared for purpose of 

validation and for assessing the performance of the N-layer model. Finally, a parametric 

study is conducted to examine the effects of wave and soil characteristics on 

liquefaction progress.  

6.2 System definition and formulation 

Consider a progressive wave propagate over a level seabed. The liquefaction occurs at 

time C, its front advances down to a location  � 
 �� as depicted in Fig.  6.1. The entire 

system consists of ¬  viscous fluid layers including seawater layer with density aH 

(0 ~ � ~ 8) and liquefied soil layers with density a., 0 
 2, # (�� ~ � ~ 0). Below the 

fluid layers, there is a poro-elasto-plastic sub-liquefied soil layer (s* ~ � ~ ��). Before 

liquefaction, analytical solution for linear wave fluid pressure on water-seabed-interface 

is used to assess the excess residual pressure in seabed. Since the onset of liquefaction, 

the N-layer system is solved to obtain the water pressure exerted on surface of sub-

liquefied soil prior to computing the built-up of residual pore pressure. 

Dalrymple and Liu (1978) developed the two-layer fluid model for wave 

propagation over very viscous mud. The linear theory is applicable for wind wave 
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environment (Maa and Mehta, 1990) and overcome the limitation of Lamb’s model 

which ignores viscosity of liquefied soil. The laminar Navier–Stokes equations for 

incompressible fluid, which has been linearized by neglecting the convective 

acceleration (Dalrymple and Liu, 1978) terms are written as 

Wave

Fluid layer

Liquefied soil
       layer

Liquefaction front: z  (t)

Rigid impermeable base

Sub-liquefied
  soil layer

z = 0

z = h

z = z

z = - D

x

L

L

z
η1

η2

d  ,ρ ,v1 1 1

d  ,ρ  ,v2 2 2

d  ,ρ  ,v3 3 3

d   ,ρ  ,vN   N   N

 

Fig.  6.1 Schematic definition of wave induced progressive seabed liquefied seabed 

 
∂u@ A∂t 
 s 1ρA ∂p@ A∂x v ν¸,A �∂Ku@ A∂xK v ∂Ku@ A∂zK � (6.1) 

 
∂wN A∂t 
 s 1ρA ∂p@ A∂z v ν¸,A �∂KwN A∂xK v ∂KwN A∂zK � (6.2) 

where �@ , MN  are the horizontal and vertical velocities, respectively; the subscript ! 
indicates the layer index; O  and �  are the horizontal and vertical coordinates, 

respectively; ©̂  is the dynamic pressure; a  is the density of fluid; and `F 
 ^F a⁄  is 

apparent kinematic viscosity; C represent the time. 



120 

 

 

 

The equations for mass conservation is expressed as 

 
∂u@ A∂x v ∂wN A∂z 
 0 (6.3) 

The separable, periodic solutions for	u@ A, wN A	and ©̂A are assumed as 

 u@ AGx, z; tI 
 uAGzIexp¾iGκx s ωtIÀ (6.4) 

 wN AGx, z; tI 
 wAGzIexp¾iGκx s ωtIÀ (6.5) 

 p@ AGx, z; tI 
 pAGzIexp¾iGκx s ωtIÀ (6.6) 

where ω is angular frequency of the wave system and κ	is the unknown complex 

wave number after liquefaction 

 κ 
 κ£ v iκõ (6.7) 

in which b5 denotes the real part of the wave number which provides the wavelength 

(; 
 2r b5⁄ ); b.  is the imaginary part which represents the wave attenuation rate. 

Displacements of water surface and interfaces,	m  are represented by 

 ηA 
 aAexp¾iGκx s ωtIÀ (6.8) 

where aA is a complex unknown value to define the amplitude of the displacement of 

the jth layer. The water surface is expressed as ηH	while	ηA	, ! 
 2,⋯ , ¬ are unknown 

complex value representing mud sub-layer displacements based on their amplitude and 

phases. Substituting the real and imaginary parts of the wave number into Eq. (6.8), the 

expression of water surface and interfacial displacements can be obtained as 
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 ηA 
 aA,O©Gsb.OIexp¾iGκ5x s ωtIÀ (6.9) 

Substituting Eqs. (6.4), (6.5) and (6.6) into the continuity Eq. (6.3) results in 

 � 
 0M Ub  (6.10) 

in which the prime represents the differential with respect to �. Introduction of Eq. (6.10) 

into Eq. (6.1) yields an expression for ©  
 © 
 a `F, bK {M UUU s MU] K| (6.11) 

where 

 ] K 
 bK s 0T`F, �H (6.12) 

Substituting pA into the vertical momentum equation, Eq.(6.2), yields the fourth-order 

differential equation for M  

 M UUUU s {bK v ] K|M UU v bK] KM 
 0 (6.13) 

The solutions can be obtained as 

 

M G�I 
 % «0¬8:�u+$
 

$xH v �� v & (¿«8: �u+$
 

$xH v �� 	

v ' ,O© �] �u+$
 �H
$xH v ��� v * ,O© �s] �u+$

 
$xH v ��� (6.14) 
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where +$  is the thickness of nth layer. The complex constants % ,	& ,	' ,	* and the 

unknown variables b  and � , are determined from the boundary conditions. 5# 

boundary conditions are required for a viscous fluid model of # layers. The unknown 

constants and variables are determined from the boundary conditions at the water 

surface, G# s 1I interfaces and the rigid bottom as follows: 

(a) At the water surface ( � 
 ηH	)  
The kinematic boundary condition, requiring the surface particles to follow the 

surface, and the imposition of zero normal and tangential stresses can be written as 

 
�mH�C 
 MNH (6.15) 

 ©̂H s 2aH`F,H �MNH�� 
 0 (6.16) 

 aH`F,H q��@H�� v �MNH�O t 
 0 (6.17) 

or after Taylor’s expansion 

 %H«0¬8b8 v &H(¿«8b8 v 'H v *H,O©Gs]H8I 
 s0g�H (6.18) 

 �HG%H(¿«8b8 v &H«0¬8b8I s 2aH`F,H]H¾'H s *H,O©Gs]H8IÀ 
 aH2�H (6.19) 

 2%HbK«0¬8b8 v 2&HbK(¿«8b8 v G]HK v bKI¾'H v *H,O©Gs]H8IÀ 
 0 (6.20) 

where 

 �H 
 0aHgb s 2aH`F,Hb (6.21) 



123 

 

 

 

 ]HK 
 bK s 0g`F,H�H (6.22) 

And g is the gravitational acceleration. 

(b) At the interfaces (	� 
 s∑ +$ $xH 	where ! 
 1,⋯ ,# s 1) 

 
�m �H�C 
 MN  (6.23) 

or 

 & v * v ' ,O©{s] + | 
 s0g� �H (6.24) 

The continuity of horizontal and vertical velocity components are 

 �@ 
 �@ �H (6.25) 

 MN 
 MN �H (6.26) 

or 

 

% �H«0¬8b+ �H v & �H(¿«8b+ �H v ' �H v * �H,O©{s] �H+ �H|

 & v * v ' ,O©{s] + | (6.27) 

 

b% �H(¿«8b+ �H v b& �HbK«0¬8b+ �H v ' �H] �H
s * �H] �H,O©{s] �H+ �H|

 b% v ' ] ,O©{s] + | s ] *  

(6.28) 
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The normal and tangential stresses are also continuous across the interfaces. 

Considering the Taylor series expansion of � 
 s∑ +$ $xH , they can be written as 

 

©̂ s 2a `F, �MN �� s a 2m �H

 ©̂ �H s 2a �H`F, �H �MN �H�� s a �H2m �H 

(6.29) 

 a `F, ���@ �� v �MN �O � 
 a �H`F, �H ���@ �H�� v �MN �H�O � (6.30) 

or 

 

� % s 2a `F, ] z' ,O©{s] + | s * }

 � �H{% �H(¿«8b+ �H v & �H«0¬8b+ �H|
s 2a �H`F, �H] �Hz' �H s * �H,O©{s] �H+ �H|}
s {a �H s a |2� �H 

(6.31) 

 

a `F, �2bK& v {] K v bK|z' ,O©{s] 8| v * } 

 a �H`F, �H�2bK{% �H«0¬8b+ �H v & �H(¿«8b+ �H|
v {] �HK v bK|z' �H v* �H,O©{s] �H+ �H|}  (6.32) 

where 

 � 
 0a gb s 2a `F, b (6.33) 
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(c) At the bottom (� 
 s∑ +$w$xH ) 

The velocities in both the horizontal and vertical directions should be zero at the 

fixed bottom, i.e. 

 �@w 
 0 (6.34) 

 MNw 
 0 (6.35) 

or 

 b%w s ]w*w v ]w'w,O©Gs]w+wI 
 0 (6.36) 

 &w v *w v 'w,O©Gs]w+wI 
 0 (6.37) 

The unknowns including coefficients	% ,	& ,	' ,	* 	G! 
 1, 2, 3,… , #I,	 the amplitude 

of interface wave � 	G! 
 2, 3, 4,… , #I  and wave number b  can be solved from the 

above equations subjected to the appropriate boundary conditions by substitution and 

iteration methods. 

The procedures to solve the automatically increasing number of fluid system are 

 1) Express variables at general layer j	Gj ¦ 1, NI AA�H, BA�H, CA�H, DA�H in terms of 

AA, BA, CA, DA, and aA�H using 4 boundary equations at each layer interface; the remaining 

one equation is used to describe the expression between  aA�H and  aA.  
2) When j 
 1,  AA, BA, CA, DA can be determined by three surface boundary equations 

and one of 1-2 interface boundary conditions; as a result, they can be expressed using  

aK. 3) Eventually, there are two unknowns, wave number κ and  aK  remain because 
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aA	Gj 
 3, 4, 5,… , NI can be expressed in terms of	aK. Two boundary condition equations 

are employed to solve κ and	aK. Since the final forms are implicitly non-linear, two 

layers of nested loop nonlinear root finding subroutine (Newton method is adopted in 

this study) are need.  

The details of the derivation and explanation refer to Appendix F in this thesis. After 

successive solving of the upper fluid system, the amplitude of wave pressure at the 

bottom of fluid region can be derived from Eq. (6.11) and used to solve the residual 

pore pressure build-up. 

6.3 Numerical scheme and computational procedure 

Discretization of storage equation for sub-liquefied soil is identical to the two-layer 

model. The distinct difference is the solving the N-layer fluid system. The seawater 

layer has a constant depth and the thickness of sub-layer of liquefied soil is set to be 

1/200 of the total seabed depth. The detailed procedure of the analysis is as follows: 

(1) Start analysis from κ 
 κ
 �� 
 0, i 
 0; calculate initial wave number by water 

depth and wave period. 

(2) Before liquefaction, the wave pressure is calculated by the common formula for 

a progressive wave: >
 
 [×�
 (¿«8G:
+I⁄ . 

(3) Solve Eq. (5.55) to get the residual pressure at each point for i 
 i v ∆i. 

(4) Repeat steps (2) and (3) until >5K increases to the value [UΔ�. 

(5) Update the liquefaction front location, number of liquefied soil layers and 

vertical effective stress.  

(6) In the following steps, the multi-layer wave model is used to calculate b and the 

amplitude of fluid pressure over sub-liquefied soil ©�. In the first run after onset of 
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liquefaction, a guess value of a uniform liquefied soil viscosity is provided. In the 

sequent runs, the viscosity of the last solution is used as trial value. Then, the N-layer 

fluid system is solved to get shear strain rate of liquefied soil layer. Use the rheological 

equation to achieve a new viscosity. Check if the guessed viscosity is sufficiently close 

to this new value. Except from the first run, the viscosity for liquefied sub-layers 

actually is an array. If relative difference between each element of the successive 

velocity arrays is lower than a certain level (in this study, 1/100), the convergent 

velocity array is assumed to be acquired. Then continue the next step; otherwise, repeat 

this trial-and-error until a convergent value is reached. 

(7) Input the convergent viscosity value into the multi-layer system to get the wave 

pressure at sub-liquefied seabed surface, � 
 0; 

(8) With the wave pressure exerted on seabed surface, the analytical solution of 

wave-induced shear stress and shear stress ratio are calculated to determine�ef �i⁄ .  

(9) Solve Eq. (5.55) to get the residual pore pressure. 

(10) Repeat steps (5)–(9) until the end of the analysis. 

The solving procedure of the entire system and for determining fluid motion with 

the multi-layer fluid system are summarised in Fig. 6.2 and Fig. 6.3, respectively. 
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Fig. 6.2 Flowchart for the solution procedure of the entire system 
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Fig. 6.3 Flowchart for the soluting procedure of the two-layer fluid system 

6.4 Model validation 

Before examination and parametric analysis, a comparison is performed to verify the 

performance of multi-layer model. Model A is reproduced by reducing the N-layer 

viscid model (Model B) to a constant viscosity for liquefied soil. As shown in Fig.  6.4, 

liquefaction front evolution from two models is completely identical as expected, thus 

validating the multi-layer modelling. The parameters used in the case for comparison 

are listed in Table 6.1. 

		©� the fluid pressure in the bottom of liquefied soil 

`K 
 `KU  
then 

else 

`KU  
If `KU s `K ~ accuracy level 

Calculation of A, B, C, D, E, F, G, H and �H, 

u and w, ,-. , T. , |ΠF| 

Calculation of A, B, C, D, E, F, G, H and �H 

Use current b., `K 

Update b. 
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Fig.  6.4 Reproduction of Liu et al. (2009)’s results for evolution of liquefaction 

front 
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Table 6.1 Wave conditions and soil parameters 

Wave conditions 

Fluid depth, h: m	 20 

Wave period, T: s	 10 

Initial wave length, L: m 121.2 

Wave height, H: m 6.5 

`H: �K«�H 1 ÷ 10�� 

`K: �K«�H 10 (for Model A) 

Initial guess viscosity of liquefied soil, `K: �K«�H 10 (for Model B) 

Soil bed conditions 

Soil depth, D: m 6.0 

Permeability coefficient, :4: �«�H 1.5 ÷ 10�
 

Density of liquefied soil, a7: :2��è 1800 

��: :>� 3.12 ÷ 10
 

Soil shear modulus, G, MPa 31.2 

Poisson’s ratio 0.33 
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� 1.8 ÷ 10�ø 

� 55 

� 0.04 

6.5 Results and discussion 

A series of numerical simulations are performed to investigate the factors 

influencing the liquefaction progress. The difference between the multi-layer and two-

layer modelling is examined to highlight the advantage of the former. The wave and soil 

parameters which are used in the simulations are summarized in Table 6.1 unless stated 

otherwise. 

 Effect of varying liquefied soil density 6.5.1

The varying density of liquefied soil with depth has long been recognised (Sumer et. 

al, 1999) even though an appropriate mathematical model to describe the inherent 

mechanism was not available. In this section, a linearly increasing liquefied soil density 

is assumed to investigate its influence on liquefaction. This is realised by specifing a 

linearly decreasing water content (from 60% at upper layer to 20% at seabed bottom if 

the seabed can be completely liquefied). The corresponding values of liquefied soil 

density are 1648.8 and 2103 kg/m3, respectively. Sumer (2006) measured the liquefied 

soil density in a small scale laboratory test, which is 1850 at surface and 2000 at the 

impermeable bottom. The range used here is a little larger than that for the purpose of 

parametric study. 
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Fig.  6.5 shows that the difference in the final liquefaction depths predicted by 

varying water content model and constant water content model is no more than 12%. 

For the constant water content model, higher water content leads to swallower 

liquefaction. However, the difference of interface wave amplitude made by varying 

liquefied soil sub-layer density is significant. 
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Fig.  6.5 Effect of varying water content on liquefaction 
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Fig.  6.6 Effect of varying water content on the interface (between water and 

liquefied soil) wave amplitude 

Fig.  6.6 shows that the amplitude predicted by varying density model is much larger. 

Despise the closeness of final liquefaction depth between varying density model and 

constant	M 
 20%, there is a difference in amplitudes of interface wave between two 

models. 
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(a) Number of layers, N = 35 
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(b) Number of layers, N = 100 
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(c) Final liquefaction 

Fig.  6.7 Effect of varying water content on distribution of liquefied soil viscosity: 

solid line for varying water content, dash line for � 
 20%, dot line for � 
 40%, 

and dash dot line for � 
 60%. 

Fig.  6.7 illustrates the distribution of viscosity of liquefied soil during liquefaction. 

Viscosity in varying density model is much closer to constant water content � 
 60% 

than the others. When water content is lower, the liquefied soil tends to stay in visco-

elastic phase especially in the upper layer. As for the critical viscosity value between 

visco-elastic and visco-plastic phase, higher water content results in a higher critical 

transit viscosity. In Fig.  6.7(c), the fluctuation of viscosity is caused by the difficulty in 

numerical solution. The multi-layer model with linearly changing water content is found 

to achieve a convergent viscosity of liquefied soil easier than two-layer model. 

There is another phenomenon concerning liquefied soil density. For a higher density, 

the two-layer viscid model with a constant liquefied soil density but temporal changing 
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strain rate-dependent viscosity cannot produce liquefaction or the resulting liquefaction 

depth is shallower than the N-layer viscid model. Three cases are considered here: Case 

1: water content ratio � 
 30%,	constant liquefied soil is 1939.2 kg/m3; Case 2: water 

content ratio � 
 40%,	constant liquefied soil is 1817.3 kg/m3 and Case 3: water 

content ratio � 
 50%,	constant liquefied soil is 1723.4 kg/m3. Results are shown in 

Fig.  6.8. Compared with results in Chapter 4, there is much more difference made by 

the water content ratio for the two-layer model because the density is related to water 

content using Eq. (6.38). When water content reduces, the liquefaction drastically 

decreases. Actually, there is no liquefaction predicted by two-layer model for case 1. 

For the N-layer model with constant water content through the depth, the trend of water 

content influence is opposite. 
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Fig.  6.8 Effect of liquefied soil density (caused by water content difference) on 

liquefaction 



138 

 

 

 

The increasing water content tends to resist a bit the liquefaction despite that the 

associated density of liquefied soil is relatively smaller. Also, the difference between 

two-layer model and N-layer model depends on the water content ratio. For Case 1 and 

Case 3, the difference is more significant than for Case 2. Therefore, stratification of 

viscosity along the liquefied soil layer does influence the liquefaction and fluid motion 

(e.g., the interface wave amplitude). 

 Effect of varying viscosity  6.5.2

A comparison between the two-layer and N-layer model is carried out in this section. 

The density of liquefied soil 	a<.# is related to the water content ratio by: 

 a<.# 
 aLG100 v�I a×100a× v�aL (6.38) 

where the density of soil grain,	aL 
 2700	:2��è ; a×  is the density of fluid, a× 

1000	:2��è. The initial density of liquefied soil is set to 1800	:2��è, so the water 

content ratio in the rheological model is 42%. 



139 

 

 

 

0 50 100 150 200 250 300
6

5

4

3

2

1

0

z L
 (

m
)

Time (s)

 Two-layer model
 N-layer model

 

Fig. 6.9 Comparison of time histories of liquefaction front 
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Fig. 6.10 Comparison of interface (between water and liquefied soil) wave 

amplitude 

As shown in Fig. 6.9, the maximum liquefaction depth for the N-layer viscous 

model is 4.26m, around 3.5% lower than that obtained by the corresponding two-layer 
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model (4.41m). In this case, the difference in final liquefaction depth is slightly smaller 

than the difference in interface wave amplitude (approximately 50%, shown in Fig. 

6.10). Moreover, the liquefaction starts a little later in the N-layer model.  

The multi-layer modelling approach provides the ability to consider different 

viscosity for each sub-layer as well as varying density of liquefied soil (see the next 

section). Although the viscosity of liquefied soil layer υK in two-layer model varies with 

the liquefaction front advances downward as shown in Fig.  6.11, it is still a constant at 

an instantaneous time and a certain liquefaction depth. In the N-layer model, the 

viscosity of liquefied soil layer υK varies along with the depth of seabed, which means 

that both the temporal and spatial changes of viscosity are considered. 

Fig.  6.12 illustrates the distribution of liquefied soil viscosity, which varies with the 

depth of liquefied layer for three different liquefaction depths. The jump of viscosity 

along depth confirms the presumption of liquefied soil phase transition from visco-

elastic to visco-plastic phase. It indicates that the shear strain rate is smaller in the upper 

part than in the lower. The critical viscosity values at which the phase transition occurs 

for two-layer model and N-layer model are not same due to the different shear stresses 

from two models. By comparing Figure 6.11 and Figure 6.12, we can see that the 

viscosity produced by multi-layer model is not completely the same as that by two-layer 

model. And the possible minimum viscosity in the two-layer model is lower than that in 

the multi-layer model. 
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Fig.  6.11 Evolution of liquefied soil viscosity in two-layer model 
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Fig.  6.12 Distribution of liquefied soil viscosity in N-layer model 
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 Effect of wave and soil characteristics  6.5.3

As shown in Fig.  6.13, the liquefaction process for shallower water depth begins 

sooner and the liquefaction front reaches deeper. It also indicates that this relationship 

between water depth and liquefaction process is not linear. When the water depth is near 

a certain critical depth, the change is much dramatic, then, the influence gradually 

weakens. When the water depth increases, the corresponding viscosity in visco-plastic 

state also see a slight increase (Fig.  6.14). However, there is no discernible difference 

in the viscosity of visco-elastic state because at this stage the viscosity is independent of 

the fluid motion. 
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Fig.  6.13 Influence of water depth on liquefaction processes 
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(a) At the time instant for a half the final liquefaction depth 
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(b) At the time instant for the final liquefaction depth 

Fig.  6.14 Influence of water depth on viscosity of liquefied soil 

Fig.  6.15 shows that a shorter wave period results in a deeper liquefaction. It is because 

the wave period affects wave pressure (together with water depth) acted on sub-
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liquefied seabed, and also the liquefied soil viscosity though it is not significant as 

shown in  

Fig.  6.16). For porous sub-liquefied soil, wave period affects the partial drainage 

factor, which controls the dissipation rate of residual pressure (Liu et al., 2009). This is 

consistent with findings in the two-layer viscid model used in both Chapter 4 and Liu et 

al. (2009). 
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Fig.  6.15 Influence of wave period on liquefaction processes 
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(a) At the time instant for a half the final liquefaction depth 
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(b) At the time instant for the final liquefaction depth 

Fig.  6.16 Influence of wave period on viscosity of the liquefied soil 
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Fig.  6.17 Influence of shear modulus, G on liquefaction 

Fig.  6.17 and Fig.  6.18 illustrate the influence of different soil shear modulus, �on 

the liquefaction, wave-induced shear stress in poro-elasto seabed. For the considered 

cases, the shear stresses predicted are not sensitive to soil shear modulus, and 

consequently there is no significant difference by various	� , though the final 

liquefaction depth in softer seabed is slightly shallower. Based on the analytical solution 

for finite seabed proposed by Jeng and Hsu (1996), the wave-induced vertical effective 

stress is shown in Fig.  6.19. The effective stress due to overburden, which acts as a 

resistance to liquefaction is also depicted for comparison. According to Yamamoto et al. 

(1978), momentary liquefaction occurs when seepage force lifts soil column above and 

soil particles cease to be in contact. Mathematically, that is the case when wave-induced 

effective stress surpasses overburden. Fig.  6.19 shows that the overburden effective 

stress far larger than the wave-induced effective stress in the considered cases, which 
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indicates that there is no momentary liquefaction happen and the presumption of 

residual liquefaction mechanism is appropriate.  
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Fig.  6.18 Influence of shear modulus, � on wave-induced shear stress: solid line is 

for case with � 
 1 MPa; dash line for case with � 
 5 MPa and dot line for for case 

with � 
 10 MPa. 
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(a) Before liquefaction, � 
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(b) Final liquefaction depth 

Fig.  6.19 Influence of shear modulus, � on wave-induced vertical effective stress: 

solid line is effective stress due to overburden and other curves represent wave-induced 

effective stress 

As shown in Fig.  6.20, the larger hydraulic conductivity results in shallower 

liquefaction depth. With the increase of permeability to a higher range (beyond 1.75 ÷
10�
 m/s in this case), the liquefaction depth decreases markedly. This is caused by a 

greater rate of residual pore pressure dissipation for more permeable soil. 
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Fig.  6.20 Influence of soil permeability on liquefaction process 
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Fig.  6.21 Influence of seabed thickness on liquefaction process 

Furthermore, the thickness of seabed affects the liquefaction strongly. In Fig.  6.21, 

the liquefaction depth increases gradually when seabed becomes thicker until the 

thickness reaches 6 m; and then, it reverses to decrease sharply with increasing 
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thickness of seabed.  It appears that there exists a critical seabed thickness (6m in this 

case), at which the final liquefaction depth reach the maximum value if other conditions 

for wave and soil were held the same. Physically, the generation of excess residual pore 

pressure mainly depends on soil volume change due to cyclic loading and the drainage 

condition. When the seabed is thinner than the critical thickness, increasing the 

thickness means a longer drainage distance (the seabed bottom is assumed to be 

impermeable to water), which helps to build up residual pore pressure. However, with 

the seabed becoming thicker and thicker, the shear stress induced by the wave cyclic 

loading starts to decrease and dominate the liquefaction progress. Fig.  6.21 indicates 

that a thinner seabed and the corresponding greater soil shear stress results in an earlier 

commencement of liquefaction. And the time required to reach final liquefaction depth 

becomes shorter. These two phenomenon is particularly obvious for the case with 

* 
 7m. 

 Effect of soil poro-plastic parameters	�,	�, �	 and $% 6.5.4

Error! Reference source not found. to 6.25 illustrate that the liquefaction is very 

sensitive to parameters	�, �. Therefore great care should be taken in their calibration. 

Unfortunately, Sassa (2001) did not give the identification procedure for these 

parameters. They seem to have been determined by matching the simulations results 

with the centrifuge tests. Thus, applying the model parameters to other cases is 

questionable. Constrained modulus at seabed bottom, ��  and another poro-plastic 

parameter, � also influence the liquefaction, though not as much as	�, �. 
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Fig.  6.22 Influence of � on liquefaction process 
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Fig.  6.23 Influence of � on liquefaction process 
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Fig.  6.24 Influence of Ron liquefaction process 
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Fig.  6.25 Influence of constrained modulus, �� on liquefaction 
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6.6 Summary 

In this chapter, a multi-layer viscid fluid system model for simulation of water and 

liquefied soil is constructed. The number of layers can automatically increase with the 

advance of liquefaction front. Density of liquefied soil is related to the mass water 

content. To investigate the effect of varying liquefied soil density on liquefaction, a 

linearly decreasing water content is assumed. From the series of numerical experiments, 

the following summary can be drawn: 

1) When the water content ratio for liquefied soil is assumed to be constant, there 

can be significant differences in the predicted liquefaction depth and wave amplitude 

using the multi-layer and two-layer model. Whether they increase or decrease depends 

on the specific water content. Moreover, the visco-plastic phase viscosity predicted by 

multi-layer model is much smaller than that by two-layer model. 

2) For the multi-layer model, a continuously increasing liquefied soil density can 

ease the numerical difficulty in getting the viscosity to converge. This trend of density 

of liquefied soil has been confirmed experimentally (Sumer et al., 2006). The results of 

liquefaction depth and interface wave amplitude differ from that predicted by constant 

water content model. Interface wave amplitude is an important indicator of the liquefied 

soil motion and controls the mass transport speed. Therefore, it is essential to 

accommodate the stratification of liquefied soil viscosity and density. In that case, the 

multi-layer viscid fluid model established here would be very useful. 

3) Under the condition of the same wave height, shorter wave period in shallower 

water can liquefy the underlying seabed more easily.  When the water depth increases, 

the corresponding viscosity in visco-plastic state also sees a slight increase. 
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4) Softer soil with lower permeability can lead to deeper liquefaction. Based on the 

simulation results, there seems to be a critical seabed thickness, at which the effect of 

seabed thickness on liquefaction reverses. Below the critical thickness, the liquefaction 

depth is smaller due to the relatively short drainage distance in thinner seabed. Beyond 

the critical thickness, increasing seabed thickness dampens the wave energy and 

consequently prevents the liquefaction. However, further investigations are needed to 

clarify which factors influence the critical thickness of seabed and to provide a formula 

to estimate the critical thickness. 

5) Seabed liquefaction is very sensitive to the soil plastic model parameters, 

especially�, � , which are involved in residual pore pressure build-up equation. 

Therefore, a reliable identification procedure for them is extremely important. 



155 

 

 

 

 Conclusions and Recommendations Chapter 7

7.1 Conclusions 

The primary aim of this thesis is to investigate the seabed residual liquefaction 

progress under progressive wave numerically. To this end, four key investigations have 

been done. Firstly, a review of literature on wave-induced liquefaction was carried out. 

Hereafter, a two-layer in-viscid fluid system approach was taken as a starting point to 

describe the wave-liquefied soil. Secondly, ensemble modelling method was used to 

examine the seabed liquefaction under random linear wave loading. Following it, the 

two-layer in-viscid fluid system was developed into viscid fluid system with strain rate 

dependent viscosity for liquefied soil considered. Finally, this model was further 

extended to multi-layer system to address the stratification of different properties for 

each sub-layer of liquefied soil. 

 Ensemble modelling for the assessment of random wav e-induced 7.1.1

liquefaction risks 

Since liquefaction usually takes place over a short time scale (around10D ) 

characterised by a single storm, the simulation is limited to large narrow-band waves for 

sake of simplicity. Based on the linear wave theory the wave height was numerically 

generated according to the Rayleigh distribution. All soil material and other parameters 

in the model were treated as deterministic constants to highlight the effect of 

randomness of wave height. Two types of ensemble modelling were performed using 

wave heights randomly sampled from a prescribed Rayleigh distribution, one involving 
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multiple runs of the liquefaction model using regular wave series and the other with 

random wave series. 

For the first type, up to 275 runs were performed and the histograms of the 

maximum liquefaction depth and the time to reach the maximum liquefaction depth are 

produced. The root mean square liquefaction depths determined from the histogram was 

greater than the liquefaction depth calculated using a single representative wave 

height	H£ûü. The root mean square time to the maximum liquefaction depth determined 

by the histogram excluding no liquefaction runs was smaller but comparable to the 

corresponding value obtained with a single representative wave height	H£ûü. 
 As for the second type, the histogram of the liquefaction depth and the time to reach 

the maximum liquefaction depth were also generated. The random wave-induced 

liquefaction was much deeper than that corresponding to the equivalent regular wave 

case. Due to the presence of large number of small waves in the time series, the time to 

the maximum liquefaction is expected to be longer for random waves. The maximum 

wave height in each wave time series was plotted against the corresponding final 

liquefaction depth. The strong linear correlation exists between them demonstrated that 

the extent of liquefaction was controlled by the size and number of largest wave heights 

in the wave time series. To examine whether the order of appearance of waves of 

different height in a random wave series will affect the liquefaction time, the 

relationship between the time when the liquefaction depth reaches the maximum and the 

time when the maximum wave height occurs was depicted. It implied that the time for 

the maximum liquefaction depth to be reached was strongly associated with the time of 

occurrence of the maximum wave height except perhaps when the maximum wave 

height in the sample is very small. The overall relationship seems to indicate that the 
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timing of largest waves in the wave time series controls the time for the maximum 

liquefaction depth to be reached, at least for large liquefaction depth. 

In order to further understand the statistical properties of the predicted liquefaction 

depth, three theoretical distributions including the two parameter Weibull distribution, 

Rayleigh distribution and Normal distribution were fitted to the numerical results. 

Regarding the first type running, none of the three theoretical distributions seems to fit 

the entire range of the final liquefaction depth, which reflected that the system was 

nonlinear. However, the fit in the larger value range seemed to be better for all three 

distributions, indicating the usefulness of these theoretical distributions for extreme 

analysis. For the second type, a much narrower spread in simulated data than any of 

these theoretical distributions was observed.  

As a summary, the ensemble modelling results indicated that random wave-induced 

excess pore pressure and the maximum liquefaction depth exceeded that for the 

comparable regular waves. This means that the conventional approach of using a 

representative wave corresponding to the mean value of random waves to determine 

liquefaction potential could underestimate the maximum liquefaction depth and produce 

unsafe design in engineering practice. Therefore, a higher exceedance probability in the 

wave height distribution instead of mean values such as significant wave height or root-

mean-square wave height should be adopted. Alternatively, an ensemble modelling 

similar to what has been done in this thesis should be carried out so as to provide a 

probability distribution of the liquefaction depth.  
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 Two-layer viscid fluid system for wave-liquefied so il interaction 7.1.2

In Chapter 5, a two-layer viscid fluid system was constructed. Regarding the shear 

strain rate-dependent viscosity and phase transition of liquefied soil, a visco-elastic–

plastic model employed by Oveisy et al. (2009) for fluid mud was used as a first 

approximation. Furthermore, the wave-induced shear stress was estimated by an 

analytical solution for a seabed with finite thickness. Prior to analysis, the new model 

was verified by being reduced to two-layer viscid model with a constant liquefied soil 

viscosity. The same liquefaction results were reproduced. When calculating the 

liquefied soil viscosity, the shear strain rate and objective of the deformation tensor 

were averaged through the liquefied soil layer. With the rheological model for liquefied 

soil being integrated, the computed fluid motion and viscosity compared well with the 

results in existing literature. 

Based on the model established, the significant influence of shear stress solution on 

liquefaction was confirmed. Shear stress solution for the seabed with finite thickness 

was slightly greater than that for the seabed with infinite thickness. The relative small 

difference in shear stress was amplified by the exponential function appears in source 

term of residual pore pressure build-up equation. The appreciable difference in interface 

wave amplitude determined by finite and infinite solution is related to the corresponding 

difference in liquefaction progress. 

To examine the effect of strain rate dependent viscosity, water content was inversely 

determined by the same liquefied soil used in Liu et al. (2009). Using the water content, 

the present model predicted a final liquefaction depth smaller than that by the model 

with a constant viscosity. The liquefied soil viscosity was observed to experience a 

transition from visco-elstic to visco-plastic phase. Although the water content was 
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included in the function of rheological model, it was found to have only non-significant 

influence on the liquefaction depth even though water content influenced the predicted 

viscosity much more.  

A parametric study was conducted to investigate influence of both wave parameters 

and soil properties on the liquefaction and liquefied soil viscosity. Under the condition 

of same wave height, shallower water depth led to smaller wave pressure on surface of 

sub-liquefied seabed and consequently a shallower liquefaction depth. The relationship 

between water depth and final liquefaction depth was nonlinear because of the non-

linearity of the model. Residual pore pressure in seabed induced by shorter wave period 

was unlikely to dissipate in one cycle. As a result, the final liquefaction was deeper.  

Influences of both water depth and wave period on the viscosity of liquefied soil were 

negligible. More permeable soil created a better drainage condition for the dissipation of 

excess pore pressure and consequently reduced the liquefaction depth. 

The liquefaction progress predicted was also very sensitive to the model parameters 

which were introduced by Sassa et al. (2001) to describe cyclic plasticity of soil. 

Therefore, a clear identification procedure of these parameters is of great importance in 

the prediction of liquefaction.  

In summary, the two-layer viscid fluid system approach with a visco-elasto-plastic 

rheological model for liquefied soil is able to predict a varying viscosity. However, the 

relative difference made by it is not important concerning the final liquefaction depth. 

Shorter wave in shallower water zone is more likely to cause liquefaction in a less 

permeable seabed. It implies that seabed morphology and its evolution induced by wave 

loading should be taken into account. Obviously, the wave height plays an important 

role as well. Therefore, a multiple dimensional model which can copes with wave 
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energy attenuation caused by various factors (such as morphology and wave-liquefied 

soil interaction, etc.) and seabed elevation change is strongly desired. 

 Multi-layer viscous fluid system for wave-liquefied  soil interaction 7.1.3

In the two-layer viscous fluid system model, shear strain rate-dependent viscosity of 

liquefied soil has been confirmed to affect seabed liquefaction progress even though not 

profound. However, the two-layer fluid system makes a serious approximation that the 

viscosity is constant through the depth of liquefied soil. This is due to the restriction in 

the frame of two-layer system that the entire liquefied soil is assumed to be a uniform 

layer with respect to the viscosity despite the shear strain rate varies along depth. To 

investigate the effect of stratification of liquefied soil layer, a multi-layer viscous fluid 

system was constructed in Chapter 6. 

Recognizing the water content in rheological model can also affect density of 

liquefied soil, the density in the multi-layer model was expressed in terms of soil grain 

density and water content ratio. To allow an automatically increasing number of fluid 

layers, the related derivation and coding were conducted. Comparison with the model 

used in Chapter 5 confirmed the performance of the newly constructed multi-layer 

model. 

N-layer model is able to give a distribution of liquefied soil viscosity at every 

simulation time instant. Using the same parameters, N-layer model produced a different 

viscosity values relative to two-layer model. In a practical range of water content of 

liquefied soil, the final liquefaction depths determined by the two models differed a lot. 

Which depth was deeper and whether the extent of difference was significant depended 

on the specific water content value used. For the relative denser liquefied soil, the two-
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layer model possibly predicted no liquefaction, whilst N-layer model could produce a 

relative liquefaction depth (i.e., liquefaction depth normalized by seabed thickness) 

close to 60%. Meanwhile, the liquefaction depth estimated using the N-layer model was 

sensitive to water content, which was contrary to the finding made by the two-layer 

model. Moreover, the visco-plastic phase viscosity predicted by multi-layer model was 

much smaller than that by two-layer model. Therefore, more laboratory experiments 

need be performed to clarify to what extent the water content of liquefied soil can affect 

the seabed liquefaction progress. 

To investigate the effect of varying liquefied soil density through liquefied soil layer 

on liquefaction, a linearly decreasing water content pattern was assumed. The 

continuously increasing liquefied soil density was found to ease the numerical difficulty 

in achieving a convergent viscosity. The results of liquefied soil viscosity, liquefaction 

depth and interface wave amplitude differed from that predicted by constant water 

content model. 

Under the condition of same wave height, shorter wave period in shallower water 

can liquefy the underlying seabed easier. This conclusion was same as that obtained by 

two-layer model; however, the final liquefaction depth was more sensitive to the 

associated parameters in N-layer model. Nevertheless, the viscosity of liquefied soil is 

not sensitive to both wave period and water depth.  

A same ‘enhancing’ phenomenon was also observed for the effect of soil parameters 

on the liquefaction depth. In N-layer model, the increasing hydraulic conductivity 

decreased the liquefaction depth more effectively. The thickness of seabed was also 

found to affect liquefaction but the relation was not monotony. There seemed to be a 

critical seabed thickness, at which the effect of seabed thickness on liquefaction 
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reverses. Below the critical thickness, the liquefaction depth was smaller due to the 

relatively short drainage distance in thinner seabed. Beyond the critical thickness, the 

increasing seabed thickness damped the wave energy and consequently prevented the 

liquefaction. Soil shear modulus made no notable difference in the final liquefaction 

depth though the liquefaction front can advance slightly deeper in softer seabed.  

Similar to the conclusion drawn by the two-layer model, seabed liquefaction was 

very sensitive to the soil plastic model parameters, especially	�, �  and �  which are 

involved in residual pore pressure build-up equation. Therefore, a reliable identification 

procedure for them is extremely important. 

As a conclusion, varying of liquefied soil density and viscosity makes a significant 

influence on liquefaction progress. The sensitivity of liquefaction to both wave and soil 

parameters are enhanced by the stratification of liquefied soil viscosity and density. 

Therefore, it is essential to investigate the properties of liquefied soil in more laboratory 

and field tests. Since shorter wave in shallower water is more likely to cause 

liquefaction risk in less permeable softer seabed, theoretical study should pay attention 

to these factors. A strategy to prevent liquefaction is to improve the drainage condition 

for excess residual pore pressure within seabed and ensure a sufficient overburden. 

7.2 Recommendations for future research 

Throughout this study, free seabed progressive liquefaction with a particular 

emphasis on random linear progressive wave, in-viscous or viscous property of 

liquefied soil were investigated using both analytical and numerical means. While the 

present study has extended current knowledge in this area, the following tasks need to 

be further considered in future studies. 
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 Experimental works required 7.2.1

The material parameters, �, �, � used to calculate plastic volumetric strain rate in 

source term are after Sassa et al. (2001). Unfortunately, they were originally determined 

inversely so that the predicted liquefaction results may consistently reproduced the 

centrifuge experiments. This means that these parameters cannot be used in other 

modelling approaches without doubt. Moreover, they cannot be extrapolated to general 

seabed materials. When we compared the two divisions of equations for the prediction 

of excess pore pressure build-up in Chapter 2, it has been shown that these parameters 

in fact related to soil compress coefficient, �W  and the plastic property under cyclic 

loading. More experiments need be done to construct a general form of this source term 

and determine the range of parameters for typical seabed materials. 

The multi-layer fluid system modelling approach allows varying characteristics of 

sub-layers of liquefied soil to be specified. In this study, a shear strain-dependent 

viscosity is accounted for. The other parameter of liquefied soil involved in the 

linearized Navier-Stokes equations is the density. Sumer et al. (2006) conducted small 

scale experiments to measure the density of liquefied silt soil. A pipe buried in soil was 

used as a hydrometer and the density of liquefied soil was observed to vary with depth. 

However, the hydrodynamic model proposed by Sumer et al. (2006) based on the 

balance of liquefies soil gain was unable to capture the variation of density of liquefied 

soil with soil depth.  Therefore, more investigations into the density of liquefied soil and 

a mathematical model to describe its change along depth would be meaningful. 
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 Relaxation of some model restrictions 7.2.2

In this study, wave-induced shear stress was estimated by the solution proposed by 

Jeng and Hsu (1996) which prescribed that the shear stress vanishes at the water-seabed 

interface. Since the heavy liquefied soil is of a much greater viscosity relative to 

seawater, the shear stress due to viscous liquefied soil may affect soil response to wave 

remarkably. So far, there is no analytical solution for seabed response to progressive 

wave considering the shear stress at seabed surface. On the other hand, Jeng (2008) 

examined seabed residual liquefaction under the act of the second-order Stokes wave 

and stated that nonlinear wave results in much greater residual pore pressure along 

sediment depth especially in a soft seabed. Moreover, when modelling the interaction of 

progressive waves propagating over a layer of viscous fluid mud, Zhang and Ng (2006) 

found that model with nonlinear Navier-Stokes equations compared more favourably 

with the experimental data than the prediction made by a linear theory. In other words, 

neglecting the nonlinear convective accelerations in Navier-Stokes equations may not 

adequate when the density and viscosity of mud increase. Therefore, a numerical model 

is desired to solve the nonlinear wave propagating over viscous fluid layer and consider 

the nonzero shear stress due to heavy viscous liquid at surface of seabed when 

determining the soil shear stress. 

In estimating the effect of random wave, three advances can be made. Firstly, the 

shear stresses solution after Sassa et al. (2001) is strictly applicable only to linear 

harmonic waves. Thus, a solution of seabed response to random linear wave could be 

employed to replace it. Secondly, if the soil parameters or model parameters are deemed 

to be uncertain and be included in the ensemble modelling, the full random parameter 

spaces can be covered. Finally, the temporal scale of liquefaction and densification 
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should be included. When sediment is subject to the action of a random wave time 

series, the liquefaction is mainly affected by large waves in the time series. In between 

the time of large waves the sediment bed can experience densification as the pore 

pressure within the bed may have time to dissipate. In general situation, neither the 

liquefaction front nor the densification front will maintain a one way movement (up or 

down). As a result the time scales for the liquefaction and densification processes may 

not be easily separated as in the regular wave situation. In this sense, it is essential to 

determine the liquefaction and densification process simultaneously. 

 Extension to multi-dimensions 7.2.3

The restriction to one-dimensional is a serious bottleneck for the progressive 

liquefaction model being applied in more coastal engineering problems, such as stability 

of seabed around a buried pipeline and wind turbines supported on mono-piles. For 

example, the liquefied soil may solidify under the repeated wave loading and the 

subsequent liquefaction will be resisted due to the denser soil particle arrangement 

(Sassa and Sekiguchi, 1999). The implication is that a limited local liquefaction could 

not be destructive to pipeline. Based on the ideas of this thesis, the liquefied soil and 

sub-liquefied seabed can be modeled as poro-elasto-plastic and poro-elastic material, 

respectively. An integrated system of the Navier-Stokes equations and Biot 

consolidation equations can be established. The Volume-of-fluid (VOF) technique (Hirt 

and Nichols, 1981; Sassa et al., 2003) can be used to trace the moving interface between 

the ambient water and the liquefied soil. However, the zone beneath structure may reach 

liquefied state earlier than the vicinity, i.e., there exist liquefied soil zone wrapped by 

sub-liquefied soil. An efficient method to handle the arbitrary interface and switch the 
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different governing equations is unknown yet. Prior to construction of a workable 

analysis procedure for describing the progressive liquefaction in seabed around structure, 

these problems required to be resolved. 
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APPENDIX A: Derivation of Pore Fluid Storage Equati on 

On the basis of simple plasticity model, Sassa and Sekiguchi (1999) proposed the pore 

fluid storage equation which was used to describe the process of the build-up of the 

residual pore pressure in a partially drained soil subjected to cyclic shearing due to fluid 

waves. 

Suppose the volumetric strain increment ∆∈��� of an element of saturated sand under 

cyclic loading is sum of an elastic component ∆∈���GHI  and a plastic component	∆∈���GKI  as 

 ∆∈���
 ∆∈���GHIv	∆∈���GKI 	 (A.1) 

Since the elastic component ∆∈���GHI  can be described in term of the increment of the 

vertical effective stress ∆TWU , and the coefficient of compressibility of the soil 

skeleton,	�W , differentiation of the volumetric strain increment ∆∈��� with respect to 

time is written as 

 �∆∈����C 
 �W �∆TWU�C v	�∆∈���GKI
�C 	 (A.2) 

On the other hand, the mass conservation of an incompressible pore fluid  in a 

deformable soil may be expressed as 

 
�∆∈����C 
 s:�[× ��K�F�OK v �K�F��K �	 (A.3) 

in which  :� denotes the coefficient of soil hydraulic conductivity, [× is the unit weight 

of the fluid and �F is the excess pore pressure  For a one-dimensional problem, Eq.(A.3) 

reduces to 
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�∆∈����C 
 s:�[× �K�F��K  (A.4) 

 
�∆∈����C 
 s 9̂ �K�F��K  (A.5) 

where K is the intrinsic permeability coefficient and ̂  is the dynamic viscosity of the 

pore fluid (e.g. Rumer (1969)). Substitution of Eq. Eq. (A.2) into Eq. Eq. (A.5) and 

applying the concept of effective stress yields 

 �W q�TW�C s ���Ct v	�∆∈���GKI
�C 
 s 9̂ �K�F��K  (A.6) 

herein view of that the time averages of total stress change, TW  and transient pore 

pressure, �JFGKI over a wave cycle is zero, the above equation becomes 

 
��FGKI�GgCI 
 9�W^g �K�FGKI��K v 1�W

�∆∈���GKI
�GgCI  (A.7) 

With the non-dimensional parameter	b�, Eq. (A.7) may be rewritten as 

 
��FGKI�GgCI 
 9�W^g bK �K�FGKI�Gb�IK v 1�W

�∆∈���GKI
�GgCI  (A.8) 

The plastic component	∆∈���GKI  reflects the contractive nature of the loosely packed 

sand subjected to cyclic shearing. Sassa et al. (2001) used Φ and M∂υÒ/ ∂ξ to replace 

the corresponding coefficient or term on RHS. 
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APPENDIX B: Lamb’s Theory for Wave Propagation in a  Two-

layer Fluid System 

Lamb (1932) presented a solution for a small-amplitude sinusoidal fluid wave 

propagating in a two-layer fluid of a finite thickness as shown in Fig.  3.2. The wave 

length is L and the wave period is T. The system is in a gravitational field of Ng (g is 

gravity acceleration). For an incompressible fluid, its irrotational motion can be 

described by the Laplace equations as follows  

 
�KjH�OK v �KjH��K 
 0, for	region	'	 (B.1) 

 
�KjK�OK v �KjK��K 
 0, for	region	''	 (B.2) 

where  jH and jK denote velocity potentials for region I and II , respectively. 

Let the vertical displacement of the surface wave �¹
 and the vertical displacement 

of the interfacial wave �E
 be defined as follows (Fig.  3.2(a)). 

 �¹
 
 �
,O©	�0GbO s gCI�	 (B.3) 

 �E
 
 �
,O©	�0GbO s gCI�	 (B.4) 

in which b  represents the wave number defined by 2r ;⁄  and g  denotes the wave 

angular frequency defined by 2r D⁄ . Thus, the velocity potentials jH  and jK  can be 

assumed to take the following forms (Lamb, 1932): 

 jH 
 G%(¿«8b� v &«0¬8b�I,O©�0GbO s gCI�	 (B.5) 
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 jK 
 G'(¿«8b� v *«0¬8b�I,O©�0GbO s gCI�	 (B.6) 

The fluid system is subjected to the boundary conditions as following: 

a) Free-surface boundary conditions at � 
 8: 

 
��¹
�C 
 s�jH�� 	 (B.7) 

 �¹
 
 1#2 �jH�C 	 (B.8) 

b) Interfacial boundary conditions at � 
 0: 

 
��E
�C 
 s�jH�� 
 s�jK�� ,	 (B.9) 

 aH �jH�C s aH#2�E
 
 aK �jK�C s aK#2�E
.	 (B.10) 

c) Bottom boundary condition at � 
 ��: 

 
�jK�� 
 0.	 (B.11) 

Introducing (B.5) and (B.6) into (B.7), (B.8), (B.9), (B.10), (B.11), yields the 

relations between the coefficients for solutions: 

 b%«0¬8b8 v b&(¿«8b8 
 s0g�
	 (B.12) 

 s0gG%(¿«8b8 v &«0¬8b8I 
 �
	 (B.13) 

 b& 
 b* 
 0g�
	 (B.14) 
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 GaK' s aH*I0g 
 GaH s aKI#2�
	 (B.15) 

 '«0¬8b�� v *(¿«8b�� 
 0	 (B.16) 

Therefore, the parameters A through D appearing in Eq. (B.5) and Eq. (B.6) can be 

determined as: 

 % 
 0�
 (GaH s aKI#2aHg s aKgaHbC�¬8Gb��I)	 (B.17) 

 & 
 0�
 gb 	 (B.18) 

 ' 
 s0�
 gbC�¬8G:��I	 (B.19) 

 * 
 & 
 0�
gb 	 (B.20) 

The dispersion relationship for the two-layer fluid is also derived as 

 

�1 s q#2bgK tK� C�¬8Gb8IC�¬8Gb��I

 aKaH º1 s #2bgK C�¬8Gb8I» º1 v #2bgK C�¬8Gb��I»	 (B.21) 

It is instructive to note that under specific conditions of �� 
 0, Eq. (B.21) yields the 

dispersion relationship for the one-layer fluid: 

 gK 
 #2b
C�¬8Gb
8I	 (B.22) 

where b
 denotes the wave number for the one-layer fluid. 
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The theory as described above provides the expressions for the wave-induced 

pressure oscillation in the system under consideration. Using the linearized Bernoulli 

equation, the fluid pressure oscillation �E
 at depth � 
 0 may be expressed as follows: 

 �E
 
 �0�4→�
aH �jH�C 	 (B.23) 

Hence, the amplitude of �E
 may then be expressed as follows (Fig.  3.2). 

 �
 
 saKgK v GaK s aHI#2bC�¬8Gb��IbC�¬8Gb��I �
	 (B.24) 

where, �
 is the amplitude of vertical displacement at � 
 0. 

The amplitude of oscillatory pore pressure �FGHIat depth �� ~ � + 0 may be derived 

by using the relation �EFGHI 
 aK�jK �⁄ C as follows. 

 �FGHI 
 aKgK¾(¿«8Gb�I s «0¬8Gb�IC�¬8Gb��IÀaKgK v GaK s aHI#2bC�¬8Gb��I �
	 (B.25) 

The expression for the amplitude of fluid pressure fluctuation,	�� at � 
 �� may then 

be derived by replacing 	� in Eq. (B.25) by ��. Namely, 

 �� 
 aKgKaKgK(¿«8Gb��I v GaK s aHI#2b«0¬8Gb��I �
	 (B.26) 

The amplitude of the vertical displacement of the surface, �
 , at � 
 8  may be 

related to the amplitude of the vertical displacement of  the fluid-soil interface, �
, at 

� 
 0. From Eq. (B.8), it reads 
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 �
 
 gK(¿«8Gb8I¾gK s #2b«0¬8Gb8IÀ �
	 (B.27) 
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APPENDIX C: Poro-elastic Solutions for Wave-induced  Soil 

Stress in Seabed of Infinite Thickness 

Based on the assumptions that the pore fluid is incompressible and Darcy law 

governs the isotropic flow, Madsen (1978) and Yamamoto et al. (1978) devoloped a 

closed-form solution for the response of a semi-infinite, homogeneous poro-elastic 

medium under progressive-wave loading using poro- elasticity theory. 

The coordinate system and sign convention adopted here are illustrated in Fig.  C. 1, 

where  TXU  and		T4U  denote the effective normal stresses in the	O	 and �  directions, 

respectively. And the horizontal shear stress is represented by		c4X. Let �F be the excess 

pore pressure, the boundary conditions at the top of the bed are  

z

x
0

 

Fig.  C. 1 Sign convention for stresses 

 �E
 
 TE4 
 �
(¿«GbO s gCI	 On � 
 0	 (C.1) 

 	T4U 
 0	 On � 
 0	 (C.2) 

 	c̃4X 
 0	 On � 
 0	 (C.3) 

T4U 

TXU  

T4U 

TXU  
c4X

c4X
cX4

cX4
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Here �
 is the amplitude of the pressure oscillation at the soil surface. The solutions 

derived are (for		� + 0): 

 ∆TXU 
 �
b�,O©Gb�I(¿«GbO s gCI	 (C.4) 

 ∆T4U 
 s�
b�,O©Gb�I(¿«GbO s gCI	 (C.5) 

 	∆c4X 
 �
b�,O©Gb�I«0¬GbO s gCI	 (C.6) 

 ∆� 
 �FGHI 
 �
,O©Gb�I(¿«GbO s gCI	 (C.7) 

The associated change in the maximum shear stress is expressed by 

 ∆c6_X 
 �q∆T4U s ∆TXU2 tK v G		∆c4XIK (C.8) 

 ∆c6_X 
 �
b|�|,O©Gb�I	 (C.9) 
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APPENDIX D: Coefficients Used in the Finite Solutio n for 

Wave-induced Soil Stress 

Coefficients CA in Eq. (5.48) and Eq. (5.49) can be expressed as 

CA 
 DA D
⁄  for j 
 1,⋯ ,6 

where 

 

* 
 ' 
 v ' H ,O©Gs2b
�I
v ' K ,O©¾sGb
 v ªI�À
v ' è ,O©Gs4b
�I
v ' 
 ,O©Gs2ª�I
v ' ø ,O©¾s2Gb
 v ªI�À
v ' � ,O©¾sG3b
 v ªI�À
v ' - ,O©¾sG4b
 v 2ªI�À	

For	j 
 1,⋯ ,6 (D.1) 

The common denominator D
  can be calculated by inserting the following 

coefficients into Eq. (D.1) 

 '

 
 Gª s b
IKGª s ª^ v b
^I&H	 (D.2) 
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'
H 
 s2ª¾Gb
K^ s ªK v ªK^IK v b

G1 s 2^IK
v 2b
K�KG1 s ^IKGªK s b
KIKÀ
v 4b
K�Gª
 s b

IG1 s 2^IG1 s ^I	 (D.3) 

 '
K 
 s8ªb
KG1 s 2^I¾b
�GªK s b
KIG1 s ^I s ªKG1 s ^I v b
K^À	 (D.4) 

 '
è 
 Gª v b
IKGª s ª^ s b
^I&K	 (D.5) 

 '

 
 '
è	 (D.6) 

 '
ø 
 '
H s 8b
K�Gª
 s b

IG1 s 2^IG1 s ^I	 (D.7) 

 '
� 
 '
K v 16ªb
è�GªK s b
KIG1 s ^IG1 s 2^I	 (D.8) 

 '
- 
 '

	 (D.9) 

The final expression of coefficients 'H to '� can be obtained from CA 
 DA D
⁄  using 

Eq. (D.1) in conjunction with the coefficients 

 'HH 
 2b
K�Gª v b
IGª s ª^ s b
^I	 (D.10) 

 'HK 
 4ªb
è�G1 s 2^IGªK s ªK^ s b
K^I	 (D.11) 

 'Hø 
 2b
K�Gª s b
IGª s ª^ v b
^I&
	 (D.12) 

 'K
 
 '

	 (D.13) 

 'KH 
 '
è v Gª v b
IKGª s ª^ s b
^I&ø	 (D.14) 
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 'KK 
 4ªb
KG1 s 2^I¾2ªKG1 s ^I s 2b
K^ s b
�G1 s ^IGªK s b
KIÀ	 (D.15) 

 'K
 
 '
è	 (D.16) 

 'Kø 
 '

 v Gª s b
IKGª s ª^ v b
^I&�	 (D.17) 

 'èH 
 2b
K�Gª s b
IGª s ª^ v b
^I&è	 (D.18) 

 'èø 
 2b
K�Gª v b
IGª s ª^ s b
^I&
	 (D.19) 

 'è� 
 s'KH	 (D.20) 

 '
H 
 'Kø s 2'

	 (D.21) 

 '
ø 
 'KH s 2'
è	 (D.22) 

 '
� 
 4ªb
KG1 s 2^I¾2b
K^ s 2ªKG1 s ^I s b
�G1 s ^IGªK s b
KIÀ	 (D.23) 

 '
- 
 s'K
	 (D.24) 

 'øH 
 s4b
K�G1 s 2^I&è	 (D.25) 

 'øK 
 s2b
K�Gª v b
IG1 s 2^IGª s ª^ s b
^I	 (D.26) 

 'ø� 
 s2b
K�Gª s b
IG1 s 2^IGª s ª^ v b
^I	 (D.27) 

 '�K 
 s'ø�	 (D.28) 

 '�ø 
 s4b
K�G1 s 2^I&
	 (D.29) 

 '�� 
 s'øK	 (D.30) 
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The six & coefficients in Eq. (D.2)-Eq. (D.30) are given by 

 &H 
 b
K^ s G1 s ^IGªK v ªb
 v b
KI	 (D.31) 

 &K 
 sªK v ªb
 s b
K v ªK^ s ªb
^ v 2b
K^	 (D.32) 

 &è 
 Gªè� s b
K s ªb
K�IG1 s ^I v b
K^	 (D.33) 

 &
 
 Gªè� v b
K s ªb
K�IG1 s ^I s b
K^	 (D.34) 

 &ø 
 2ªb
^Gª s b
IG1 s ^I	 (D.35) 

 &� 
 2ªb
^Gª v b
IG1 s ^I	 (D.36) 

There are also zero-value coefficients, such as 

 'H
 
 'Hè 
 'H
 
 'H� 
 'H- 
 0	 (D.37) 

 'Kè 
 'K� 
 'K- 
 0	 (D.38) 

 'è
 
 'èK 
 'èè 
 'è
 
 'è- 
 0	 (D.39) 

 '

 
 '
K 
 '

 
 0	 (D.40) 

 'ø
 
 'øè 
 'ø
 
 'øø 
 'ø- 
 0	 (D.41) 

 '�
 
 '�H 
 '�è 
 '�
 
 '�- 
 0	 (D.42) 

  



180 

 

 

 

APPENDIX E: Coefficients Used in the Navier-Stokes 

Equation for Two-layer Fluid System 

The coefficients	% s 3,	 the amplitude of interface wave �K and wave number b can 

be solved from Eq. (E.1) to (E.10) by substitution and iteration methods. As follows: 

 %,�V v &,��V v ',��V v*,���V 
 s0g�H	 (E.1) 

 �HG%,�V s &,��VI s 2aH`H]Hz',��V s *,���V} 
 aH2�H	 (E.2) 

 2bKG%,�V v &,��VI v G]HK v bKI{',��V v *,���V| 
 0	 (E.3) 

 % v & v ' v * 
 s0g�K	 (E.4) 

 % v & v ' v * 
 /,�4
 v È,��4
 v �,��4
 v 3,��4
 	 (E.5) 

 b% s b& v ]H' s ]H* 
 b/,�4
 s bÈ,��4
 v ]K�,��4
 s ]K3,��4
 	 (E.6) 

 

�HG% s &I s 2aH`H]HG' s *I

 �KG/,�4
 s È,��4
I s 2aK`K]K{�,��4
 s 3,��4
|
s GaK s aHI2�K	 (E.7) 

 

aH`H¾2bKG% v &I v G]HK v bKIG' v *IÀ

 aK`Kz2bKG/,�4
 v È,��4
I
v G]HK v bKI{�,��4
 v 3,��4
|}	 (E.8) 

 bG/ s ÈI v ]KG� s 3I 
 0	 (E.9) 
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 / v È v � v 3 
 0	 (E.10) 

The coefficients	%,	&,	' ,	* can be solved from (E.1), (E.2), (E.3) and (E.4). As 

follows: 

(E.3)-(E.1)	÷ 2bK: 

 G]HK s bKI{',��V v *,���V| 
 20g�HbK	 (E.11) 

Since 

 G]HK s bKI 
 s0g`H�H	 (E.12) 

So 

 ',��V v *,���V 
 s2`H�HbK	 (E.13) 

And 

(E.3)-(E.1)÷ G]HK v bKI: 
 GbKs]HKIG%,�V v &,��VI 
 0g�HG]HK v bKI	 (E.14) 

 %,�V v &,��V 
 `H�HG]HK v bKI	 (E.15) 

Then 

 (%,�V 
 `H�HG]HK v bKI s &,��V',��V 
 s2`H�HbK s *,���V 	 (E.16) 

 (% 
 s&,�K�V v `H�HG]HK v bKI,��V' 
 s*,�K��V s 2`H�HbK,���V 	 (E.17) 



182 

 

 

 

Substitute Eq. (E.16), (E.17) into Eq. (E.2) and Eq. (E.4), yields 

 

G1 s ,�K�VI& v {1 s ,�K��V|*

 G]HK s bKI`H�K v 2`H�HbK,���V s G]HK v bKI`H�H,��V	 (E.18) 

 

2�H,��V& s 4aH`H]H,���V*

 �HG]HK v bKI`H�H v 4aH`HKbK]H�H s aH2�H	 (E.19) 

&,*, can be solved from Eq. (E.18) and (E.19) as 

 & 
 {1 s ,�K��V|.H v .K,���V{.è�K v .
,���V s .ø,��V|G1 s ,�K�VI.K,���V v 2�HG1 s ,�K��VI,��V 	 (E.20) 

 * 
 s G1 s ,�K�VI.H s 2�H,��V{.è�K v .
,���V s .ø,��V|G1 s ,�K�VI.K,���V v 2�HG1 s ,�K��VI,��V 	 (E.21) 

where: 

 .H 
 �HG]HK v bKI`H�H v 4aH`HKbK]H�H s aH2�H	 (E.22) 

 .K 
 4aH`H]H	 (E.23) 

 .è 
 G]HK s bKI`H	 (E.24) 

 .
 
 2`H�HbK	 (E.25) 

 .ø 
 G]HK v bKI`H�H (E.26) 

 �H 
 0aHgb s 2aH`Hb	 (E.27) 
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Use the same method 

 (&,��V 
 `H�HG]HK v bKI s %,�V*,���V 
 s2`H�HbK s ',��V 	 (E.28) 

 (& 
 s%,K�V v `H�HG]HK v bKI,�V* 
 s',K��V s 2`H�HbK,��V 	 (E.29) 

 

G1 s ,K�VI% v {1 s ,K��V|'

 G]HK s bKI`H�K v 2`H�HbK,��V s G]HK v bKI`H�H,�V	 (E.30) 

 

2�H,�V% s 4aH`H]H,��V'

 �HG]HK v bKI`H�H v 4aH`HKbK]H�H v aH2�H	 (E.31) 

%, ', can be solved from Eqs. (E.30) and (E.31) as 

 % 
 {1 s ,K��V|.� v .K,��V{.è�K v .
,��V s .ø,�V|G1 s ,K�VI.K,��V v 2�HG1 s ,K��VI,�V 	 (E.32) 

 ' 
 s G1 s ,K�VI.� s 2�H,�V{.è�K v .
,��V s .ø,�V|G1 s ,K�VI.K,��V v 2�HG1 s ,K��VI,�V 	 (E.33) 

where 

 .� 
 �HG]HK v bKI`H�H v 4aH`HKbK]H�H v aH2�H	 (E.34) 

from Eqs. (E.9), (E.10) yields: 

 � 
 sG]K v bI/ v G]K s bIÈ2]K 	 (E.35) 
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 3 
 sG]K s bI/ v G]K v bIÈ2]K 	 (E.36) 

for 

 /,�4
 v È,��4
 v �,��4
 v 3,��4
 
 s0g�K	 (E.37) 

 b/,�4
 s bÈ,��4
 v ]K�,��4
 s ]K3,��4
 
 bG% s &I v ]HG' s *I	 (E.38) 

substitute Eqs. (E.35), (E.36) into Eqs. (E.37), (E.38) yields, 

 / /ÈHH ∙ / v /ÈH
 ∙ È 
 s0g�K/ÈKH ∙ / s /ÈK
 ∙ È 
 bG% s &I v ]HG' s *I	 (E.39) 

let 

 /ÈHH 
 ,�4
 s ]K v b2]K ,��4
 s ]K s b2]K ,���4
 	 (E.40) 

 /ÈH
 
 ,��4
 s ]K s b2]K ,��4
 s ]K v b2]K ,���4
	 (E.41) 

 /ÈKH 
 b,�4
 s ]K v b2]K ,��4
 s ]K s b2]K ,���4
 	 (E.42) 

 /ÈK
 
 ,��4
 v ]K s b2]K ,��4
 s ]K v b2]K ,���4
	 (E.43) 

from Eq. (E.39), /, È can be solved as: 

 / 
 /ÈH
¾bG% s &I v ]HG' s *IÀ s 0g�K/ÈK
/ÈHH/ÈK
 v /ÈKH/ÈH
 	 (E.44) 
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 È 
 /ÈHH¾bG% s &I v ]HG' s *IÀ v 0g�K/ÈKH/ÈHH/ÈK
 v /ÈKH/ÈH
 	 (E.45) 

let 

 % 
 %H
�K v %HH	 (E.46) 

 & 
 &H
�K v &HH	 (E.47) 

 ' 
 'H
�K v 'HH	 (E.48) 

 * 
 *H
�K v *HH	 (E.49) 

 / 
 /H
�K v /HH	 (E.50) 

 È 
 ÈH
�K v ÈHH	 (E.51) 

 � 
 �H
�K v �HH	 (E.52) 

 3 
 3H
�K v 3HH	 (E.53) 

then 

 %H
 
 .K.è,��VG1 s ,K�VI.K,��V v 2�HG1 s ,K��VI,�V	 (E.54) 

 %HH 
 {1 s ,K��V|.� v .K,��V{.
,��V s .ø,�V|G1 s ,K�VI.K,��V v 2�HG1 s ,K��VI,�V 	 (E.55) 

 &H
 
 .K.è,���VG1 s ,�K�VI.K,���V v 2�HG1 s ,�K��VI,��V	 (E.56) 
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 &HH 
 {1 s ,�K��V|.H v .K,���V{.
,���V s .ø,��V|G1 s ,�K�VI.K,���V v 2�HG1 s ,�K��VI,��V 	 (E.57) 

 'H
 
 s s2�H.è,�VG1 s ,K�VI.K,��V v 2�HG1 s ,K��VI,�V	 (E.58) 

 'HH 
 sG1 s ,K�VI.� s 2�H,�V{.
,��V s .ø,�V|G1 s ,K�VI.K,��V v 2�HG1 s ,K��VI,�V 	 (E.59) 

 *H
 
 s s2�H.è,��VG1 s ,�K�VI.K,���V v 2�HG1 s ,�K��VI,��V	 (E.60) 

 *HH 
 sG1 s ,�K�VI.H s 2�H,��V{.
,���V s .ø,��V|G1 s ,�K�VI.K,���V v 2�HG1 s ,�K��VI,��V 	 (E.61) 

 /H
 
 /ÈH
¾bG%H
 s &H
I v ]HG'H
 s *H
IÀ s 0g/ÈK
/ÈHH/ÈK
 v /ÈKH/ÈH
 	 (E.62) 

 /HH 
 /ÈH
¾bG%HH s &HHI v ]HG'HH s *HHIÀ/ÈHH/ÈK
 v /ÈKH/ÈH
 	 (E.63) 

 ÈH
 
 /ÈHH¾bG%H
 s &H
I v ]HG'H
 s *H
IÀ v 0g/ÈKH/ÈHH/ÈK
 v /ÈKH/ÈH
 	 (E.64) 

 ÈHH 
 /ÈHH¾bG%HH s &HHI v ]HG'HH s *HHIÀ/ÈHH/ÈK
 v /ÈKH/ÈH
 	 (E.65) 

 �H
 
 sG]K v bI/H
 v G]K s bIÈH
2]K 	 (E.66) 

 �HH 
 sG]K v bI/HH v G]K s bIÈHH2]K 	 (E.67) 
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 3H
 
 sG]K s bI/H
 v G]K v bIÈH
2]K 	 (E.68) 

 3HH 
 sG]K s bI/HH v G]K v bIÈHH2]K 	 (E.69) 

substitute into Eq. (E.8) 

 

s�aH`H¾2bKG%H
 v &H
I v G]HK v bKIG'H
 v *H
IÀ
s aK`Kz2bKG/H
,�4
 v ÈH
,��4
I
v G]HK v bKI{�H
,��4
 v3H
,��4
|} �K

 aH`H¾2bKG%HH v &HHI v G]HK v bKIG'HH v *HHIÀ
s aK`Kz2bKG/HH,�4
 v ÈHH,��4
I
v G]HK v bKI{�HH,��4
 v3HH,��4
|} 

(E.70) 

�K can be expressed as: 

 

�K


 s
aH`H¾2bKG%HH v &HHI v G]HK v bKIG'HH v *HHIÀsaK`Kz2bKG/HH,�4
 v ÈHH,��4
I v G]HK v bKI{�HH,��4
 v 3HH,��4
|}aH`H¾2bKG%H
 v &H
I v G]HK v bKIG'H
 v *H
IÀsaK`K¾2bKG/H
,�4
 v ÈH
,��4
I v G]HK v bKIG�H
,��4
 v 3H
,��4
IÀ

	 (E.71) 

let, 

 �K 
 1GbI	 (E.72) 
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use Eq. (E.7) 

 

�H¾%H
1GbI v %HH s &H
1GbI s &HHÀ
s 2aH`H]H¾'H
1GbI v 'HH s *H
1GbI s *HHÀ
v GaK s aHI21GbI

 �K�¾/H
1GbI v /HHÀ,�4
 s ¾ÈH
1GbI v ÈHHÀ,��4
�
s 2aK`K]K�¾�H
1GbI v �HHÀ,��4

s ¾3H
1GbI v 3HHÀ,��4
 	

(E.73) 
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APPENDIX F: Coefficients Used in the Navier-Stokes 

Equation for N-layer Fluid System 

The coefficients		% , 		& , ' , 	* , the amplitude of interface wave �  and wave 

number b can be solved from Eq. (F.1) to Eq. (F.10). As follows: 

 %H«0¬8b8 v &H(¿«8b8 v 'H v *H,O©Gs]H8I 
 s0g�H	 (F.1) 

 

�HG%H(¿«8b8 v &H«0¬8b8I s 2aH`F,H]H¾'H s *H,O©Gs]H8IÀ

 aH2�H	 (F.2) 

 

2%HbK«0¬8b8 v 2&HbK(¿«8b8 v G]HK v bKI¾'H v *H,O©Gs]H8IÀ

 0	 (F.3) 

 & v * v ' ,O©{s] + | 
 s0g� �H	 (F.4) 

 

% �H«0¬8b+ �H v & �H(¿«8b+ �H v ' �H v * �H,O©{s] �H+ �H|

 & v * v ' ,O©{s] + |	 (F.5) 

 

b% �H(¿«8b+ �H v b& �H«0¬8b+ �H v ' �H] �H
s * �H] �H,O©{s] �H+ �H|

 b% v ' ] ,O©{s] + | s ] * 	 (F.6) 
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� % s 2a `F, ] z' ,O©{s] + | s * }

 � �H{% �H(¿«8b+ �H v & �H«0¬8b+ �H|
s 2a �H`F, �H] �Hz' �H s * �H,O©{s] �H+ �H|}
s {a �H s a |2� �H	

(F.7) 

 

a `F, �2bK& v {] K v bK|z' ,O©{s] 8| v * } 

 a �H`F, �H�2bK{% �H«0¬8b+ �H v & �H(¿«8b+ �H|
v {] �HK v bK|z' �H v* �H,O©{s] �H+ �H|} 	 (F.8) 

 b%w s ]w*w v ]w'w,O©Gs]w+wI 
 0	 (F.9) 

 &w v *w v 'w,O©Gs]w+wI 
 0	 (F.10) 

The seawater-liquefied soil system is meshed into N layer, where ! 
 1 for seawater, 

and ! 
 2,⋯ ,# for liquefied soil. 

If 0 ¦ 1 and 0 ¦ 2 

For Eqs. (F.5) and (F.8), let 

 /1 
 & v * v ' ,O©{s] + |	 (F.11) 

 /2 
 a  ̀�2bK& v {] K v bK|z' ,O©{s] 8| v * } 	 (F.12) 

 ÈH 
 % �H«0¬8b+ �H v & �H(¿«8b+ �H	 (F.13) 

Then, 



191 

 

 

 

 ÈH v ' �H v * �H,O©{s] �H+ �H| 
 /1	 (F.14) 

 a �H  ̀�H�2bKÈH v {] �HK v bK|z' �H v * �H,O©{s] �H+ �H|} 
 /2	 (F.15) 

(F.14) ÷ a �H  ̀�H ÷ 2bK s(F.15) 

 

a �H  ̀�H{bK s ] K|z' �H v * �H,O©{s] �H+ �H|}

 2bKa �H  ̀�H/1 s /2	 (F.16) 

 ' �H v * �H,O©{s] �H+ �H| 
 2bKa �H  ̀�H/1 s /2a �H  ̀�H{bK s ] K| 	 (F.17) 

For Eqs. (F.6) and (F.7), Let 

 /3 
 b% v ' ] ,O©{s] + | s ] * 	 (F.18) 

 /4 
 � % s 2a  ̀] z' ,O©{s] + | s * }	 (F.19) 

 ÈK 
 % �H(¿«8b+ �H v & �H«0¬8b+ �H	 (F.20) 

Then, 

 bÈK v ' �H] �H s * �H] �H,O©{s] �H+ �H| 
 /3	 (F.21) 

 

� �HÈK s 2a �H  ̀�H] �Hz' �H s * �H,O©{s] �H+ �H|}
s {a �H s a |2� �H 
 /4	 (F.22) 

� �H ÷ (F.21)sb ÷(F.22) 
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{] �H� �H v 2ba �H  ̀�H] �H|z' �H s * �H,O©{s] �H+ �H|}
v b{a �H s a |2� �H 
 � �H/3 s b/4	 (F.23) 

 ' �H s * �H,O©{s] �H+ �H| 
 � �H/3 s b/4 s b{a �H s a |2� �H] �H� �H v 2ba �H  ̀�H] �H 	 (F.24) 

So far, 

 

°±²
±³ ' �H v * �H,O©{s] �H+ �H| 
 2bKa �H  ̀�H/1 s /2a �H  ̀�H{bK s ] K|
' �H s * �H,O©{s] �H+ �H| 
 � �H/3 s b/4 s b{a �H s a |2� �H] �H� �H v 2ba �H  ̀�H] �H

	 (F.25) 

From Eq. (F.25), ' �H and * �H can be expressed as 

 

' �H 
 12 �� �H/3 s b/4 s b{a �H s a |2� �H] �H� �H v 2ba �H  ̀�H] �H
v 2bKa �H  ̀�H/1 s /2a �H  ̀�H{bK s ] K| �	 (F.26) 

 

* �H 
 s 12,O©{s] �H+ �H| �� �H/3 s b/4 s b{a �H s a |2� �H] �H� �H v 2ba �H  ̀�H] �H
s 2bKa �H  ̀�H/1 s /2a �H  ̀�H{bK s ] K| �	 (F.27) 

For Eq. (F.28) and Eq. (F.29) 

 % �H«0¬8b+ �H v & �H(¿«8b+ �H v ' �H v * �H,O©{s] �H+ �H| 
 /1	 (F.28) 
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b% �H(¿«8b+ �H v b& �H«0¬8b+ �H v ' �H] �H
s * �H] �H,O©{s] �H+ �H| 
 /3	 (F.29) 

b(¿«8b+ �H ÷(F.28)s	«0¬8b+ �H ÷(F.29) 

Then 

 b& �H{(¿«8Kb+ �H s «0¬8Kb+ �H| 
 �1 �H	 (F.30) 

Let 

 

�1 �H 
 b(¿«8b+ �H/1 s «0¬8b+ �H/3
s {b(¿«8b+ �H s ] �H«0¬8b+ �H|' �H
s {b(¿«8b+ �H v ] �H«0¬8b+ �H|* �H,O©{s] �H+ �H|	 (F.31) 

Note ' �H,	* �H has been expressed in terms of /0  G0 
 1~4I. 
 & �H 
 �1 �Hb{(¿«8Kb+ �H s «0¬8Kb+ �H|	 (F.32) 

b«0¬8b+ �H ÷(F.28)s	(¿«8b+ �H ÷(F.29) 

Then 

 b% �H{«0¬8Kb+ �H s (¿«8Kb+ �H| 
 �2 �H	 (F.33) 

Let 
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�2 �H 
 b«0¬8b+ �H/1 s (¿«8b+ �H/3
s {b«0¬8b+ �H s ] �H(¿«8b+ �H|' �H
s {b«0¬8b+ �H v ] �H(¿«8b+ �H|* �H,O©{s] �H+ �H|	 (F.34) 

 % �H 
 �2 �Hb{«0¬8Kb+ �H s (¿«8Kb+ �H|	 (F.35) 

 

°±²
±³% �H 
 �2 �Hb{«0¬8Kb+ �H s (¿«8Kb+ �H|& �H 
 �1 �Hb{(¿«8Kb+ �H s «0¬8Kb+ �H|

	 (F.36) 

So far, % �H , & �H , ' �H , * �H  are expressed in terms of /0  G0 
 1~4I and � �H , 

which in turn can be expressed by % , & , ' , * , and � �H. 

For the case of # 
 2 , ! 
 1 , % , & , ' , *  can be expressed by � �H  via the 

manipulation of Eq. (F.1)-(F.3) and (F.4). The additional equation of Eq. (F.9) and Eq. 

(F.10) can be used to 1) express wave number b in terms of � �H; 2) another one non-

linear equation, which includes only one unknown b can be solved numerically. 

If N>2, taking N=3 for example, since %è, &è, 'è, *è are expressed in terms of %K, 

&K, 'K, *K, and �è, the relationship between �è and �K must be constructed using the 

kinematic Eq. (F.4) on the interface between ! 
 2 and 3. Then condition at bottom, Eq. 

(F.9) and Eq. (F.10) can be used to express �K in terms of b, and b is solved. 

Therefore, the following works need be done: 

1) Express	%H, &H, 'H, *H; 

2) Get the relationship between �  and � �H (�  is in terms of % , & , ' , * ); 
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3) When	! 
 #, express �w in terms of	b. As for the non-linear complex equation of 

b, it is already in Eq. (F.9) and Eq. (F.10). 

1) Express	41, 51, 61, %1 

(F.3) s2bK ÷(F.1) 

 G]HK s bKI¾'H v *H,O©Gs]H+HIÀ 
 0g�H2bK	 (F.37) 

Since 

 G]HK s bKI 
 s0geH�H	 (F.38) 

So 

 'H v *H,O©Gs]H+HI 
 s2bKeH�H	 (F.39) 

(F.3) sG]HK v bKI ÷(F.1) gets 

 GbK s ]HKIG%H«0¬8b+H v &H(¿«8b+HI 
 GbK v ]HKI0g�H	 (F.40) 

Then 

 %H«0¬8b+H v &H(¿«8b+H 
 GbK v ]HKIeH�H	 (F.41) 

So 

 ¤%H 
 GbK v ]HKIeH�H s &H(¿«8b+H«0¬8b+H'H 
 s2bKeH�H s *H,O©Gs]H+HI 	 (F.42) 

Substituting them into Eq. (F.2) and Eq. (F.4) results 
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�HG«0¬8b+H s (¿C8b+H(¿«8b+HI&H v 2aH`H]H,O©Gs]H8I*H

 aH2�H s�H`H�HGbK v ]HKI(¿C8b+H s 4aH`HK]H�HbK	 (F.43) 

 &H v *H¾1 s ,O©Gs2]H+HIÀ 
 `HG]HK s bKI�K v 2`H�HbK,O©Gs]H8I	 (F.44) 

�HG«0¬8b+H s (¿C8b+H(¿«8b+HI ÷Eq. (F.44) s(F.43) 

 *H 
 s
�H¾2`H�HbK,O©Gs]H+HI s 0g�KÀ s 4aH`HK]HbK�H«0¬8b+Hs�H(¿«8b+HG]HK v bKI`H�H v aH2�H«0¬8b+H�H¾1 s ,O©Gs2]H+HIÀ v 4aH`H]H«0¬8b+H,O©Gs]H+HI 	 (F.45) 

¾1 s ,O©Gs2]H+HIÀ ÷ GF. 43I s 2aH`H]H,O©Gs]H8I ÷(F.44) 

 

&H 
 s
¾0g�K s 2`H�HbK,O©Gs]H+HIÀ4aH`H]H«0¬8b+H,O©Gs]H+HIs¾1 s ,O©Gs2]H+HIÀº s4aH`HK]HbK�H«0¬8b+Hs�H(¿«8b+HG]HK v bKI`H�H v aH2�H«0¬8b+H»�H¾1 s ,O©Gs2]H+HIÀ v 4aH`H]H«0¬8b+H,O©Gs]H+HI 	 (F.46) 

2) Relationship between 70 and 70�1 

From Eq. (F.4), yields 

 � �H 
 s& v * v ' ,O©{s] + |0g 	 (F.47) 

3) When	0 
 2, express 72 in terms of 8 

Since �w appears in both 'w and *w, manipulation can be used to retain only one of 

them to simplify the derivation. 

(F.9) s]w ÷(F.10) 
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 b%w s ]w&w s 2]w*w 
 0	 (F.48) 

# 
 ! v 1, so 

 %w 
 �2wbG«0¬8Kb+w s (¿«8Kb+wI	 (F.49) 

 &w 
 �1wbG(¿«8Kb+w s «0¬8Kb+wI	 (F.50) 

 

*w 
 s 12,O©Gs]w+wI ��w/3w s b/4w s bGaw s aw�HI2�w]w�w v 2baw`w]w
s 2bKaw`w/1w s /2waw`wGbK s ]wK I �	 (F.51) 

Substituting %w &w *w into Eq. (F.48) yields 

 

�2w«0¬8Kb+w s (¿«8Kb+w s ]w�1wbG(¿«8Kb+w s «0¬8Kb+wI
v ]w,O©Gs]w+wI � �w/3w s b/4w]w�w v 2baw`w]w
s 2bKaw`w/1w s /2waw`wGbK s ]wK I �
s ]w,O©Gs]w+wI bGaw s aw�HI2]w�w v 2baw`w]w �w	

(F.52) 

Then 
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�w 
 ,O©Gs]w+wIG�w v 2baw`wIbGaw s aw�HI2 º �2w«0¬8Kb+w s (¿«8Kb+w
s ]w�1wbG(¿«8Kb+w s «0¬8Kb+wI» v �w/3w s b/4wbGaw s aw�HI2
s ]wG�w v 2baw`wIG2bKaw`w/1w s /2wIbGaw s aw�HI2aw`wGbK s ]wK I 	

(F.53) 

Eq. (F.10) is the target complex function. Its real and imaginary parts should satisfy 

the conditions: 

 9,��¾&w v *w v 'w,O©Gs]w+wIÀ 
 0	 (F.54) 

 0��2¾&w v *w v 'w,O©Gs]w+wIÀ 
 0	 (F.55) 

to solve the wave number b. 
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