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B 
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C 
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COND = Conductive heat flux (W m -2) 
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ct = density of material (Kg  m-3) 

D 

d = Debris thickness (m) 

D = Bulk exchange/transfer coefficient (J m-3 K-1) 

Df = Diffuse fraction of total incoming shortwave radiation (Wm-2) 

E 

ε* = Effective emissivity of the sky  

ea = Vapour pressure in the air (Pa) 

ep = empirical constant (stability correction constant) 
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LWR↑ = Out going long wave radiation (W m-2) 

LWR = Longwave radiation flux (W m-2) 

LWS = Lower weather station 

M 
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Sh2 = Stake height in the second month (m) 

 = Stefan-Boltzmann constant 5.6697 x 10-8 Wm-2 K-4 
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SWR↓ dif = Diffuse component of incoming shortwave radiation (Wm-2) 
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ABSTRACT  

 

Utilisation of remote sensing for the study of debris-covered glaciers: development and testing of 
techniques on Miage Glacier, Italian Alps 

 

An increase in the number of debris-covered glaciers and expansion of debris cover across many glaciers 

has been documented in many of the world’s major glacierised mountain ranges over the last 100 years. 

Debris cover has a profound impact on glacier mass balance with thick layers insulating the underlying ice 

and dramatically reducing ablation, while thin or patchy cover accelerates ablation through albedo 

reduction. Few debris-covered glaciers have been studied in comparison with ‘clean’ glaciers and their 

response to climatic change is uncertain. Remote sensing, integrated with field data, offers a powerful but 

as yet unrealised tool for studying and monitoring changes in debris-covered glaciers. Hence, this thesis 

focuses on two key aims: i) to test the utility of visible/near infrared satellite sensors, such as TERRA 

ASTER, for studying debris-covered glaciers; ii) to develop techniques to fully exploit the capability of 

these satellite sensors to extract useful information, and monitor changes over time. 

Research was focused on four interrelated studies at the Miage Glacier, in the Italian Alps. First, a new 

method of extracting debris-thickness patterns from ASTER thermal-band imagery was developed, based 

on a physical energy-balance model for a debris surface. The method was found to be more accurate than 

previous empirical approaches, when compared with field thickness measurements, and has the potential 

advantage of transferability to other sites. The high spatial variability of 2 m air temperature, which does 

not conform to a standard lapse rate, presents a difficulty for this approach and was identified as an 

important area for future research.  Secondly, ASTER and Landsat TM data are used to map debris-cover 

extent and its change over time using several different methods.  A number of problems were encountered 

in mapping debris extent including cloud cover and snow confusion, spatial resolution, and identifying the 

boundary between continuous and sporadic debris.  Analysis of two images in late summer 1990 and 2004 

revealed only a small up glacier increase in debris cover has occurred, confirming other work’s conclusions 

that the debris cover on Miage Glacier increased to its present extent prior to the 1990s.   

A third area of research used ASTER DEMs to monitor surface elevation changes of the Miage Glacier 

over time to update previous studies.  Surface velocities on the glacier tongue were also calculated between 

2004-2005 using feature-tracking of ASTER orthorectified visible band imagery and ASTER DEMs.  

However, ASTER DEMs were found to be rather poor for both applications due to large elevation errors in 

topographically rough parts of the glacier, which prevented a full analysis and comparison of results to 
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previous surface elevation  and velocity studies.  Finally, the lithological units of the debris cover were 

mapped, based on the spectral differences of different rock types in the debris layer, providing information 

both on the location and concentration of different rock types on the surface.  Therefore, the identification 

in the variation in emissivity throughout the glacier surface can be identified, which in turn has an impact 

upon calculated surface temperatures and ablation respectively.  

 

Overall, this research presents a significant contribution to understanding the impact of a debris layer on an 

alpine glacier, which is an area of key interest and current focus of many present glaciological studies. 

Since future glacial monitoring will increasingly have to consider supraglacial debris cover as a common 

occurrence, due to climate warming impacts of glacial retreat and permafrost melting.  This contribution is 

achieved through the successful application of methods which utilise ASTER data to estimate debris 

thickness and debris extent, and the lithological mapping of debris cover.  Therefore, the potential for 

incorporating these remote sensing techniques for debris-covered glaciers into current global glacier 

monitoring programs has been highlighted.  However the utility of ASTER derived DEMs for surface 

elevation change analysis and surface velocity estimations in a study site of steep and varied terrain has 

been identified as questionable, due to issues of ASTER DEM accuracy in these regions.   

 

 

 

 


