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Nomenclature 
 

3D (3-D)          three dimensions (of perspective) 

 

3D-DM       three dimensional digitised model   

 

CAD                 computer aided design 

CAS                 computer-assisted surgery 

.cly                    FreeForm file 

 

CT; CAT          computed tomography; computer assisted tomography 

.fsn                   FASTSCAN files 

GB                    gigabyte (unit of computer data information storage capacity) 

 

GHz                  gigahertz (unit of frequency – one billion cycles per second) 

 

IBM PC            International Business Machines - personal computer 

.jpg                    Joint Photographic Expert Group (image file type) 

MB                    megabyte (unit of computer data information storage capacity) 
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MVA                motor vehicle accident 

psi                     pounds per square inch 

RAM                random access memory 
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Abstract 

Computer assisted skull re-assembly is an alternative to classical manual methods of 

physical restoration and reconstruction. The technique is reliant on high quality images 

produced by radiological CT or optical surface laser scans. The accuracy of CAD re-

assembly and the contribution the technologies of image production make to the process 

are largely unevaluated. This research uses four 3D models produced by a hand held 

laser scanner (Scorpion FASTSCAN by Polhemus) and one model produced by an 

automated, stationary laser scanner (Minolta  by Hyperfocal) to re-assemble 5 skulls 

using a computer modelling program (Freeform Modelling). Hand held scanning, model 

production and quality are assessed; skull restoration accuracy is described and 

quantified by a reverse engineering software program (Geomagic Qualify) which 

measures overlap between the contour shells of original and restored skulls.   

 

The level of acceptable accuracy for skulls which might support facial reconstruction 

following re-assembly was determined to be < +/- 2.0 mm of error. Crania and 

mandibles were assessed individually. Accuracy results for five crania were 

unacceptable (40%), acceptable (40%), and reasonable (20%). Results for five 

mandibles demonstrated accuracy which was acceptable (40%), reasonable (20%), and 

good (40%).  

 

Optimising CAD potential for skull restoration depends on further research which 

examines: 1) the affect upon model quality resulting from the partnership between 

interdependent computer software, and 2) a comprehensive comparative analysis of 

surface capture technologies in relation to the models used in restoration. 
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INTRODUCTION 
 

 

The reconstitution of skulls from a fragmented or degraded state is required before 

facial restoration of deceased individuals can be accomplished (Neave, 1986). In recent 

years, concern about the untested use and nature of computer aided programs for the 

reconstruction of soft facial tissues has arisen (Wilkinson, 2005). A facial resemblance 

can provide an ancillary, but important contribution to legally accepted forensic 

methods of positive human identification, such as DNA and dental analysis (De Greef 

and Willems, 2005). 

 

There is little documentation as to the reliability and efficiency of skull re-assembly 

using computers. When the fragmented skull must be restored or remodelled, the degree 

to which the skull is returned to its original state is of the utmost importance because a 

restored facial appearance will primarily rely directly upon the morphology of the skull. 

This research seeks to both qualify the process of computer-assisted skull re-assembly 

and to quantify accuracy by comparing the surface contour profiles of five skulls before, 

and after fragmentation and restoration. 

 

Whether in forensic circumstances where the identification of the recently dead is called 

individuation, an archaeological context where health, diet and biological affinity form 

the basis of population history, or in evolutionary relationships revealed by 

palaeontological studies, fragmented skulls must be as fully and accurately restored as 

possible to extract the maximum evidence from remains (White, 2000). 

 

White (2000) defines restoration (or re-assembly) as “putting pieces of broken bones 

back together”, differentiating it from reconstruction – the fabrication of missing bone. 

This document uses this division to indicate such a clarification in skull re-assembly.  
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In 2005, Davy and her colleagues commented that although the processes of capturing 

skull images for the purpose of facial reconstruction now exist, similar technologies for 

the re-assembly of the skull have yet to document promises of speed and accuracy. 

Subke (2005) identifies it as “hitherto missing component in a completely digitized 

reconstruction”. In this regard two systems, a hand-held laser scanner, a mounted laser 

scanner and computer modelling software program are used to examine the efficacy of 

3D virtual skull re-assembly. 

 

The choice of technology and technique were guided by the availability first, of a new 

hand-held laser scanner (purchased primarily for its portability), and existing computer 

hardware and software systems, which are regularly used for facial reconstruction but 

not as often for skull restoration or reconstruction. Accuracy of results were tested using 

Geomagic Qualify (Geomagic, 2007), a reverse engineering software program, similar 

to software which has previously been used in comparisons between facial 

reconstructions and corresponding CT scans from living subjects (Wilkinson, et al., 

2006). 

 

A brief orientation to the skull and a review of literature relating to facial 

reconstruction, the manual restoration technique, virtual reality and a computer 

restoration method follow immediately. A training regime is described. Methods, 

results, discussion and conclusion with accompanying references, and bibliography 

proceed in order. 
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The skull 

In all references to the skull the following is assumed: directional and positional terms 

relating to the body (and skull) are in the context of the standard anatomical perspective 

and accompanying planes. The skull is positioned according to the Frankfurt Horizontal 

plane (FH), a horizontal line between craniometric points of the left and right porion 

(external auditory meatus) and the left orbitale (lowest point on the infraorbital margin). 

The skull refers to the entire framework inclusive of the mandible; the cranium 

describes the skull without the mandible, and the calvarium is the cranium without the 

face. The bones of the facial skeleton are referred to as the splanchnocranium (White, 

2000). 

 

Made up of 28 bones in total (excluding accessory wormian bones which are found 

along suture lines) - 8 unpaired, 6 paired, and 2 sets of 3 small auditory ossicles - the 

skull is a complex structure. The skull houses and protects the brain, and the primary 

organs of sight, smell, hearing, taste, smell and mastication (Bass, 1995). It supports the 

functions of breathing, swallowing, and speech, and is the structure upon which the soft 

tissues of the face are positioned - serving human communication through expressive 

movement. 

 

The skull is comprised of both cortical and trabecular tissue, each of which contribute 

their own structurally characteristic properties to bone behaviour. Collagen, a protein, 

imparts elasticity, while calcium and phosphorous in the form of hydroxyapatite crystals 

contribute to bone stiffness (Galloway, 1999). “Weight for weight it is stronger than 

wood, concrete or steel” (Kau, et al., 2005). Skull size and robusticity vary within 

population groups and according to biological sex and ancestry group; the more gracile 

skulls of females, the elderly, and children are more vulnerable to trauma. Elements of 
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its morphology may best be described as an assembly of ridges, projections, openings 

and depressions (Seeley, et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Child, adult and senescent skull. 

 
From: Matshes, E. et al. (2005) Human Osteology & Skeletal Radiology: An Atlas and Guide. 

 

 

 

 

 

The skull is not only the most recognised (Quigley, 2001) element of the human 

skeleton, but in physical anthropology, the most studied as well (Iscan and Helmer, 

1993). In social terms, the skull signifies death and mortality. As such, it is central to 

human ritual, religion, and art - it is resident in the very fabric of symbolic intercourse 

(Wilson, 2001). Currently skulls in human skeletal collections serve many areas of 

scientific study in anatomy, biology and physical anthropology (Quigley, 2001). 

Osteologists are able to generate both qualitative and quantative information about the 

morphology and morphometry of the skull through observation and measurement 

(White, 2000). 
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Facial reconstruction 

Facial reconstruction or approximation is employed as an adjunct to other forensic 

methods of identifying an individual (Vanezis, et al., 1989). The purpose is to create a 

sufficient likeness to promote recognition amongst people who knew a subject. 

Differentiating this process from those which lead to positive identification, such as 

DNA or dental records, is important - facial reconstruction cannot replicate a face 

exactly - what is desired is a resemblance strong enough to initiate recollection of a 

unique craniofacial morphology within communities familiar with that person 

(Wilkinson, 2005; Rynn and Wilkinson, 2006).  Interestingly, it is argued that a 

caricature of a person (as penned by the political cartoonist), is more easily recognised 

than an ultra-realistic rendering of appearance (Davy, et al., 2005). 

 

A facial resemblance may be achieved through a variety of methods, according to the 

availability of practitioners, the context attached to, and surrounding the subject in 

question, preferences of police, and the willingness of the media to distribute and 

promote the recognition process in the public view (Wilkinson, et al., 2006). The 

following techniques are most common:  1) an artist sketches a likeness of the face in 

2D using a photograph of the skull as a template and guide; 2) a face is sculpted in 3D 

on a cast of the original skull in clay; 3) a computer program 'sculpts' a 3D face on an 

image of a skull generated by a CT, MRI or laser surface scanner (Wilkinson, 2004). 

 

As a result of a relationship between soft facial tissues and the bones to which they 

attach (Fedosyutkin and Nainys, 1993), facial reconstitution based on anthropometric, 

anatomical, and anthropological analysis is possible when (and only if) an intact or a 

restored/reconstructed skull is available (Neave, 1986; Wilkinson and Neave, 2001). A 

high order of probable individuation (less than 1 in 1 billion will demonstrate matching 
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coordinate profiles) in skulls is possible when craniometric measurements are made 

with an error margin of 0.5 mm; within this restriction, “the craniometric individuality 

of a skull is as distinctive as a fingerprint” (Schimmler, et al., 1993). One of the 

principal aims therefore, of skull re-assembly is to provide the scaffold upon which a 

facial resemblance may be based. 

 

 

 
Fig 2: Muscle placement - computer 3D. 

 
From: Clement, J.G. and Marks, M.K. eds.  (2005) Computer-Graphic Facial Reconstruction 

 

 

As utilised by Neave (Prag and Neave, 1997) and others, computer facial reconstruction 

adheres to the Manchester method, (aligned conceptually and practically with 

reconstruction rather than approximation because it relies on an extrapolation of muscle 

tissue from prescriptive anatomic detail in the skull). The Manchester method is a 

combination of the US (approximation), and the Russian style (reconstruction), using 

tissue depth guides as a secondary instrument, allowing the indications of the 

craniomorphology to over-ride the depth pegs when there is disagreement (De Greef 

and Willems, 2005).   

 

One of the potential benefits to computerized systems for facial reconstruction is the 

prior use of such a system for the restoration of the skull (Subke, 2005). Incorporation 

of new techniques can be rapid, particularly if they are seen as attractive. This can pull 
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technology into practice before validity and accuracy are adequately demonstrated 

(Wilkinson, 2005). It is these claims of speed, efficiency, and accuracy which prompt 

the research which is the subject of this paper.  The accuracy of facial reconstruction, 

though still controversial, has withstood the rigor of blind studies and practitioners of 

facial reconstruction demonstrate various success rates, as high as 70% and 50% above 

chance (Wilkinson and Whittaker, 2002; Wilkinson, et al., 2006). As a precursor to, and 

an integral element of either manual or computer facial reconstruction techniques, 

computer-aided skull re-assembly and reconstruction must be subject to the same tests 

and standards for accuracy and reliability (Wilkinson, 2005). 

 

 

Manual restoration and reconstruction 
 

Presumably, from the time of the earliest investigations of discovered fragmented 

skeletal remains, such inquiry has demanded restoration and or reconstruction. These 

processes however, can irreparably damage a dissembled skull: the Le Moustier 1 

Neanderthal fossil skull initially unearthed in 1908 underwent five manual rebuilds (the 

last one was done in 1925), each successive attempt resulting in accrued loss of bone 

and erosion of that which remained (Ponce de Leon, and Zillokofer, 1999). Although 

the techniques of the physical method have changed little in the meantime, restoration 

materials have improved - but physical renovation always involves risk to the material 

and its originality (White, 2000). 

 

Generally, in the case of human remains, says White (2005), “restoration is often quick 

and easy for the competent osteologist”. There are numerous (particularly in the human 

skull) morphological features which assist in identifying whole or partial pieces and the 

side of the skull to which they belong. These include changes in bone thickness, muscle 
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attachments, tooth roots, tooth sockets, sutures, foramina, sinuses, surface textures and 

blood vessel impressions. Variants in the number of wormian bones, teeth as well as 

type, articular facets, and anomalies in any of the morphologies listed above are non-

metric elements since they cannot be measured (Quigley, 2001).  An example of their 

usefulness in restoration is demonstrated by the posterio-superior direction of 

impressions made by the meningeal blood vessels on the endocranial surface of parietal 

bones – by observing these directional clues, a portion of, or a whole parietal bone may 

thus be sided. 

 

 
Fig 3: Inferior skull surface. 

 
Complex exterior morphology 

 
From: Scheuer, L. & Black, S. (2000) Juvenile Developmental Osteology. 

 

 

 

In relation to fragility, White (2000) emphasises that bones are in a technical sense as 

precious to science as books are to a library; specific protocols must be observed to  

ensure specimens in collections and labs are not damaged, lost, or mixed one with 

another. From an ethical and philosophical perspective, bones represent former living 

people, and are therefore entitled to our respect. Irreplaceable bones possess originality 

which is obscured in the process of digitalising their image for use in virtual 
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environments on computers: 

 

“with either two- or three-dimensional digital images scanned from original osteological 

specimens, ...problems are compounded dramatically as the investigator moves another 

step away from the original. Color, texture, internal anatomy, matrix cover, preservative 

cover, preparation damage, erosions and distortions of all kinds may be faithfully 

recorded by such imaging... but for the osteologist seated at a computer monitor on the 

other side of  the planet, these features are often not digitally distinguishable from actual 

bony anatomy.” 

 

[White, 2000] 

 

The need to curate original specimens remains, in spite of the growth and flexibility of 

digital capture and storage systems (White, 2000).  Replicas, such as casts and models 

made from silicon, rubber and plastic, while immensely useful as teaching and research 

tools, inherit from the modelling process a substantial loss of internal morphology and 

general distortions which lead to misinterpretation “based on inaccurate observations 

and measurements” (White, 2000). 

 

Accepted manual skull restoration guidelines and order of practice have evolved and 

continue in usage (Bass. 1995; Prag and Neave, 1997; Wilkinson, 2004; Knott, 2002). 

“Construction starts from the inside, progressing to the outside” in order to avoid the 

time consuming opening of that which has already been restored to add an internal piece 

(Subke, 2005). Construction of the facial complex, the basi-cranium and the vault as 

semi-independent units initially reduces the tendency for error propagation (Zollikofer 

and Ponce de Leon, 2005). Continual checking and re-checking is required to prevent 

such an error in alignment perpetuating itself in ever greater increments as other 

fragments bones are added (Prag and Neave, 1997; Wilkinson, 2004); to this end it is 

best to use a non-permanent adhesive material whose removal does not harm the bone 

surfaces - so that pieces may be disengaged from each other and repositioned. Dental 

sticky wax or vinyl acetate maintains continuity between pieces as assembly proceeds; 
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further stability can be provided with wooden dowels which support weight and create 

some rigidity (Wilkinson, 2001). 

 

Of crucial importance to the consideration of any subsequent facial reconstruction is the 

designation of distortions (arising from plastic deformation as a result of fracture 

mechanics or post-depositional forces), to an overlap area at the back of the cranial 

vault - “where errors in shape should not affect the accuracy of the reconstruction” 

(Wilkinson, 2004). In this way, facial bones are the focus of accuracy to optimise any 

potential for correct identification. 

 

Cranium breadth may be judged by using the placement of the mandibular condyles in 

the temporal fossae as a guide (White, 2000).  Space for the soft tissue cushioning 

between condyle and fossa must be taken into account (Prag and Neave, 1997). If pieces 

require gluing, use only an adhesive which may be dissolved without destroying the 

bone to which it adheres (water soluble), and which will not chemically inhibit the later 

use of moulding materials (White, 2000). A sandbox for holding pieces as wax or 

adhesives cure and allowing gravity to assist naturally in the process may make 

fragments easier to join (Bass, 1995). Structural tension release as a result of skull 

fracture means some pieces can not be restored to the same degree of conjunction as 

their pre-fracture state (Wilkinson, 2004). 

 

When bone is so fragmented that anatomical (morphological) landmarks are difficult to 

determine and make contiguous, each fragment will be matched by trial and error in an 

edge-by-edge manner, against every other fragment edge in turn, until pieces are joined 

by process of elimination (Prag and Neave, 1997; White, 2000). An overhead flexible 

magnifier and directed light are helpful - a microscope can be enlisted to determine 
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whether two edges match (White, 2000). Wilkinson (2004) notes that few skulls are 

symmetrical, while acknowledging that the mirror image created by modelling in wax 

an area missing from one side of the face or cranium creates an artificial symmetry, but 

adds, the symmetry does not seem to effect the overall accuracy of the reconstruction. 

Other documenters of facial reconstruction techniques concur with this conclusion (Prag 

and Neave, 1997, p.22). Colledge (1996) found the mandible was most susceptible to 

creating distortion on a resulting facial reconstruction having a significant effect upon 

accuracy. When the area missing is bilateral instead of unilateral, the surrounding areas 

of bone must act as a constructive guide (Wilkinson, 2004). 

 

 

Virtual reality  

What is the importance of virtual reality (VR) to computer-assisted 

restoration/reconstruction of skeletal remains? Or, as Zollikofer and Ponce de Leon 

(2005) ask, “what is the relationship between a real body and its reconstructed, virtual 

counterpart?” 

 

Historically, the scientific examination of the human body has largely involved a 'taking 

apart' of structures, a literal dissecting of materials that constitute the body. 

Investigation focussed on a dismantling of form and function to the smaller, and 

smallest, of pieces, particles and elements (Dyer and Thorndike, 2000). Computer 

technology makes possible an investigation of the interior scale, or the internal 

landscape of the body (Verhoff, et al., 2007; Virtopsy, 2007). Virtual reality as it is 

manifested by computer graphics is something new, a re-assembling of the original in 

representative form (Zollikofer and Ponce de Leon, 2005; Galantucci, et al., 2006). 

Representation and transmission of information via computers may be recent, but 
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ethnobotanist and philosopher Terence Mckenna says virtual reality has been a 

constitutional facet of our species since the moment language occurred - that virtual 

reality is language, - that they are indivisible in function (History Ends in Green, 1993). 

 

The definition of virtual reality is “still in flux“(Sherman and Craig, 2003), because it is 

still so new. Researchers, designers, cyberspace travellers, video-gamers, and 

technicians interpret it variably. Sherman and Craig (2003), define it as a medium, and 

link it directly to the cave paintings of our ancestors, qualifying VR as the latest media 

in a series of progressive conceptual and technical steps in communication. Virtual 

denotes an essentiality (an experience); reality, for the purpose of this discussion, is 

defined as being a place or a thing that exists because it can be experienced (by us) 

(Sherman and Craig, 2003). The basis of VR is perceptual equivalents; physical reality 

depends on technical devices, skills to implement them, and (ultimately) our perceptual 

systems, which manage the responses facilitating communication: 

 

“technically, it can be defined as a computer-based environment in which the user 

interacts with geometric representations of real-world or model objects, utilizing tools 

and performing manipulations that emulate physical tools and actions while being 

immersed in this virtual world.” 
[Zollikofer and Ponce de Leon, 2005] 

 

 

 

 

Physical interaction between an operator and virtual skull fragments are mediated via 

the computer screen display of those fragment images and a manipulation arm: a pen-

like wand mounted on a jointed swing arm sits next to a keyboard; a facsimile of this 

tool on screen corresponds with directional movements of the operator's hand holding 

the pen (figure 4). A virtual skull fragment floats in three dimensions (length, width and 

volume) on screen; sensations of attraction/resistance transmitted through the pen assist 

the operator in attaching to an 'anchor' origin point placed within the fragment. 
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Using six degrees of movement, up, down, forward, back, and tri-axonal rotation 

(Sherman and Craig, 2003), a fragment can be visually guided into position with 

another fragment. With sufficient hand-eye coordination and clarity of image detail, an 

entire skull may be rebuilt in such a manner. Clarity of morphological detail depend on 

the density of algorithmic voxels of which the image is composed (Galantucci, et al., 

2006). 

 

 
Fig 4: Human arm operating haptic arm. 

 
Photograph: Amy Tillotson 

 

 

Matching hand movements and visual observations in order to direct the wand 

appropriately on screen is a demanding perceptual task. Even with the sensation of 

touch relayed via the on-screen tool, the contours of a piece - the convexities, ridges, 

and planes, and their relationship to other pieces -  frequently evade one's grasp, 

confusing both mind and hand. Human neural networks however, are adept at 'filling in 

the blanks' (Zollikofer, 2002). When the perception of reality is endangered by a lag in 

response time, or the immaterial behaviour of matter on screen (when a tool pops 

'through' a target piece, appearing on the other side), the human brain negotiates and 

translates the gaps in time and suspension of the usual laws of physics. Discontinuities 

are perceived as relative static – and do not interfere significantly with task execution 
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(Zollikofer and Ponce de Leon, 2005). The importance of lag time reduction between 

operator input and movement completion was demonstrated by a medical application 

for the first time in 2001 – telesurgery. Using robotics and a laparoscopic approach, gall 

bladder removal was performed across a transatlantic distance by surgeons operating 

tiny cameras and microsurgery instruments. A computer console and optic fibre cables 

allow the rapid transfer of data in “near real time” (Sherman and Craig, (2003), or at 

less that one-fifth of a second. 

 

In 1991, paleoanthropology used virtual reality and real virtuality in skull restoration 

and reconstruction for the first time. The discovery of the Tyrolean Iceman invited fresh 

interpretations of human evolution, in addition to ushering in a new era in investigative 

computer-assisted technology. It also contributed to the medical professions' first use of 

the technology in 1992 in the planning of plastic and maxillo-facial surgery (Recheis, et 

al., 1999). Using computed tomography (CT) scans, 3D computer image analysis, and a 

stereolithographic skull model, Recheis et al. (1999) determined endocranial 

morphology, confirmed endocranial volume, and clarified the type and extent of facial 

fractures and dental erosion of the Neolithic Age Iceman's mummified remains. The 

stereolithographic copy of the Iceman's head made from CT data was accurate to + 0.5 

mm in all directions in comparison to the original. They confirmed their findings using 

other skulls - and computer guided geometric morphometrics have subsequently come 

into routine employment in physical anthropology (Zollikofer, et al., 1998). 

 

 

 

 

 



  25   

Computer aided restoration and reconstruction 

At the time of writing descriptions of skull restoration using computer assistance are in 

a paleoanthropological context (Zollikofer, et al., 1995; Ponce de Leon and Zollikofer, 

1999; Zollikofer, 2002; Subke, 2005). Computer aided skull restoration as a prelude to 

facial reconstruction in a forensic context is not documented - the assumption 

presumably being that an intact skull is present, or that a fragmented skull is restored 

and reconstructed by the manual method. In some literature it appears as though the 

term 'skull reconstruction' is referring to re-assembling the facial soft tissues, not the 

bony skull, but the writer has not bothered to make a differentiation between the two 

(Davy, et al.,  p.183). 

 

The goal of fossil restoration/reconstruction in paleoanthropology is to understand the 

three-dimensional morphology of an individual at the time of death, and to relate the 

structure and ontogeny of one or more individuals to overall patterns of species 

development. (Ponce de Leon and Zollikofer, 1999). Brain size, vocal capacity, and 

bipedality are central to primate and hominid evolution. Skull morphology which 

contains information about endocranial volume, the upper/mid pharyngeal area, and the 

relative position of the foramen magnum are therefore of interest to 

paleoanthropologists (Wind, 1984; Zollikofer, et al., 1998; Vialet, et al., 2005). 

 

Computer assisted re-assembly of skull fragments however, is dependent upon an initial 

method of imaging fragments which impart enough 3D detail to make reconstitution 

feasible. Prior to computed tomography, conventional radiography's principal 

drawbacks were superimposition (one bony part obscuring another), and an inability to 

demonstrate the interior skull anatomy. Wind (1984), in her work on mineralised Homo 

erectus skulls, recognised that the (then) newest generation of CT scans produced 
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smaller pixels (picture elements), allowing a kind of detailed image analysis that 

previous CT technology could not deliver. 

 

In 1984 Conroy and Vannier, lauded the non-invasive computer programs which 

manipulated 2D CT slices into 3D images allowing “precise data on area, volume, 

symmetry, and linear and angular dimensions”...and linear measurements in the sub-

millimetre range, “more accurate, objective, and reproducible than the same 

measurements taken by hand on the original specimen”. It was now possible to view 

intracranial structures by 'removing' the obscuring matrix encasing fossils. Making 

sections of the image transparent overcame the superimposition problem without ever 

dissecting the real fossil (Conroy and Vannier, 1984; Taylor, 2004). 

 

In 1992, Klemt and Infantosi, reported on the increasing resolution achieved with CT 

scans (2 mm), and the resulting computational 3D modelling used in education - 

particularly medicine, clinical diagnostics, orthopaedics, and biology. They predicted 

that the difficulties imposed by lengthy computation time in image production would 

decrease as the technology was adapted and developed. In 1992, 3D models were 

created by what now seem in comparison, small and underpowered computers – IBM 

PC units running at 12 MHz, with 1 MB of memory. 

 

By the late 1990's the combination of computer hardware capacity and software 

specificity reached a point where it was “possible to disassemble earlier reconstructions, 

isolate the original material, realign  distortions, and reintegrate the parts in a novel 

reconstruction” (Ponce de Leon and Zollikofer, 1999). Fossil re-assembly with 

computer assistance had acquired not only a truly visionary ability, but by incorporating 

tests of reproducibility, also ensured that results represented testable hypotheses (Ponce 
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de Leon and Zollikofer, 1999). Accuracy can be tested in certain graphics programs by 

measuring the distance between  fragments with an onscreen tool (Subke, 2005), or, an 

intact skull may be scanned and it's surface area compared with that of the same skull 

restored after fracture by a program which measures their degree of similarity (Ponce de 

Leon and Zollikofer, 1999). 

 

These advances are exemplified by reports in 2005 of two fossil skulls, a Homo erectus 

in China (Vialet, et al., 2005), and a Sahelanthropus tchadensis (Zollikofer, et al., 2005) 

in Africa,  both of which suffered combinations and degrees of fracture, embeddment, 

and distortions due to post-depositional forces. To return the Homo skull to pre-

depositional proportions it was treated with a global active deformation technique 

(Vialet, et al., 2005). The Sahelanthropus restoration involved matrix removal using 

“integrated data segmentation tools” (Zollikofer, et al., 2005), (which means the CT 

scan perceives and transmits enough information about non-fossil substances to set 

definable thresholds for variation in image presentation). Virtual disarticulation of the 

distorted bones into discrete fragments meant they could be counter-fitted to create 

continuity of anatomical features of bone and fracture lines. 

 

Computational restoration/reconstruction requires a computer with sufficient memory 

and speed to run the large, complex graphics programs used to import and manipulate 

scan file formats and facilitate 3D assembly. Once images are converted to the file 

format the graphics program uses, each piece is fitted using visual clues. Each fragment 

on screen is recognised by a set of x, y, and z coordinates derived from a 3D 

measurement by scanning instruments (Zollikofer and Ponce de Leon, 2005); they are 

individually fitted to a 'global' set of anatomical coordinates (figure 5). 
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Fig 5: The x, y, and z coordinates and virtual reality; 

weightless, matter-less, and 6 degrees of freedom. 

 
From: Zollikofer, C.P.E. and Ponce de Leon, M.S. (2005). Virtual Reconstruction: A Primer in 

Computer-Assisted Paleontology and Biomedicine. 

 

 

 

 

 

Commands are accessed both through the keyboard and via manual control of the haptic 

feedback arm; 6 degrees of freedom means pieces onscreen may be freely manipulated 

in any direction relative to each other, and they may be made see-through at various 

gradients for examination of a critical edge-to-edge fit (Subke, 2005). Internal structures 

may be done first, last, or at any stage desired, as there are no rigid rules of assembly 

order in virtual reality as there are manually. As each fragment is fitted the file may be 

saved, or multiple files saved as progress is made, so the operator can return to a 

previous level of restoration if necessary. If at any time it is decided a piece is 

incorrectly placed, the piece may be repositioned, mirrored, or deformed to align with 

the particularity of the reconstruction (Subke, 2005). 

 

Because the digital skull can be perforated by on-screen instruments, internal and 

external measurements are done any time during construction; multiple planes of 

perspective through the skull may be chosen for metric assessment at any stage in the 
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process. The distance between fragment pieces at fracture lines may, because of the 

coordinate points prescribed by the computer aided design (CAD) program which 

delineate every edge, be measured en masse for the entire skull, rendering a colour 

graduated scale of accuracy (Subke, 2005). Rules of parsimony apply: continuity 

follows standard anatomical landmarks, as it does in manual restoration; and the 

fabrication of mirrored image parts is based on the theory that “the left and right sides 

of the same individual are more similar to each other than left and right sides of any two 

different individuals” (Zollikofer and Ponce de Leon, 2005). 

 

Time is an important factor: measurement and manipulation, with some degree of 

acclimatization and practice, are rapid and repeatable. Producing copies of 3D objects is 

quick because there is no repetition of processing steps or deterioration of material; 

once a file is saved, it may be returned to as quickly and as often as the operator wishes. 

Wilkinson (2005), claims a fragmented skull is more efficiently and quickly pieced 

together using computerised methods because support mechanisms are not required as 

they are in manual restoration, and that in the case of remodelling missing fragments, or 

mirroring bilateral fragments, computers offer a potentially significant reduction in the 

time it normally takes to complete those procedures by hand. 

 

The ultimate speed of computing is dependent on the speed and size of the processors 

themselves. The human operator is limited by the constraints of their own hand-eye 

coordination, and their ability to spend long periods of time in awkward positions with 

scanning apparatus (if a mobile, hand held unit is used). Long periods of time at the 

computer terminal manoeuvring the haptic feedback arm, mouse, and keyboard are in 

and of themselves, physically wearing to the operator. 
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The initial purchase price of computerised systems and the ongoing expense of their 

maintenance is a disadvantage. Hardware and software upgrading is repetitious and 

unavoidable. Depending on the degree of the operator's tolerance for, and accord with 

computer systems in general, re-assembly in virtual reality may prove inefficient unless 

the person is thoroughly trained on the system in question. Acclimatization to the 

altered sense of space when using haptic feedback requires time; there is a sense of 

moving against a normal ordering of space and movement, a mismatch between human 

senses and the manner of 'doing' as dictated by program parameters. Sequences of tool 

use and selection of categories of tools require memorisation and constant usage to 

retain fluency. 

 

Efficient use of computer-assisted methods also relies on anatomical training; a 

thorough grasp of the morphology of the skull is necessary (Zollikofer, et al., 1998). If 

the ability to portray adequate detail of an object is below the detection threshold of the 

scanning device, a degraded or incomplete image is imported into the re-assembly 

program. Human beings can individuate minute details of shape and texture if 

adequately trained and experienced, if not, there is risk of compounding any technical 

insufficiency of scanner and computer programs with the untrained abilities of the 

human director, resulting in lengthy and inaccurate renderings. 

 

In summary, the advantages of the computerised method are considerable: freedom 

from gravity, adhesives, and concern for the fragility of fragments; unrestrained 

movement provides non-destructive measurements which are impossible in the physical 

counterpart; and controlled deformation using compression models limit unwanted 

distortion of the whole skull (Zollikofer and Ponce de Leon, 2005). Accuracy of skull 

restorations with computer assistance however, remain untested and reports on the 
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speed and general efficacy of computer systems used in this way are, as yet, not 

sufficiently cross-qualified. This research aims to: 

(1) to scan the fragments of four skulls using a hand held laser scanner and  

restore them to the highest degree of accuracy possible using FreeForm 

Modelling computer software (a fifth set of fragments previously scanned by 

an automated laser scanning system will also be restored in FreeForm); 

(2) quantify restoration accuracy by comparing scans of the original and 

restored skulls using Geomagic Qualify software; 

(3) qualify restoration accuracy of the same skulls using superimposition in 

Photoshop; and quantify accuracy using a measuring tool in Photoshop to 

generate proportional measurements of differences in width, length and 

height; 

(4) qualify the processes of computer assisted image capture and skull re-

assembly in terms of time, productivity, and ease of use. 
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METHOD 

Scanning 
 

The FASTSCAN (Polhemus, 2007) Scorpion laser surface scanner (Polhemus, 

Colshester, Vermont, USA) is a handheld device utilising two cameras positioned 

equidistant on either side of a laser beam generator mounted on a lightweight 

aluminium frame wand (Park, et al., 2006). It requires Windows 2000 (service pack 4 or 

above), or Windows XP (service pack 2 or above), a USB port, a minimum of 512 MB 

RAM, and a 2 Ghz Intel Pentium IV or better are necessary for image processing. 

 

  Fig 6: FASTSCAN hand held laser scanner, large and small receivers. 

 

 

The processing unit records triangulations generated by a non-contact range finder, in 

combination with the laser projection and subsequent detection of the beam, as the 

means of determining the position and orientation of the finder relative to the object 

scanned (Polhemus, 2007). Software coordinates multiple scans (passes of the wand 

over the object at varying angles) using a video processor and tracker electronics, to 

create and transmit the 3D object image on a computer screen. Correct use of the laser 
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required a semi-darkened room and a surface of sufficient stability and size to support 

the object. 

 

The intact cranium and mandible of four skulls were scanned separately prior to 

fragmentation. The pieces of each skull were then scanned after fragmentation. The way 

in which fragments of skulls were scanned varied: (1) some were scanned one side only, 

(2) or two sides (interior and exterior) against a black synthetic felt background, then 

combined later in image processing; (3) some were scanned through a freestanding 

plexiglass shelf (40 x 60 x 30 x 5 centimetres), and others (4) through clear regular glass 

(2.09 mm thick). Fragments smaller than approximately 20 by 20 mm or originating 

from an interior bone of the skull (such as the ethmoid) were not scanned. Bone 

fragments (especially those from the sinuses, orbits, ethmoid, and interior aspects of the 

sphenoid bone) which were particularly small or powdered were not included for 

scanning or computer restoration, (or the physical restoration of the specimens at project 

end). 

 

Scanner parameters (Polhemus, 2007) were as follows: smoothing was set at 1.00, 

decimation at 0.50. This was the baseline - smoothing was adjusted in some instances 

(those changes are specified where they occur). Profile smoothing was set at low (in a 

range of high, medium and low ), sensitivity at number 3 (in a range of 1 to 6, where 1 

is equal to least sensitive and 6 is equal to most sensitive), objects were limited to 1, 

maximum scanning distance (from object) was 750 mm, and angle was 30 degrees. 

When the through-glass refraction correction was used, the refraction number was set at 

1.52 mm for glass measured at 2.09 mm thickness.  No refraction was set for plexiglass. 

The (larger) receiver (Tx), (approximately 55 mm in width, length and height), was 

placed as close as possible to the bone while allowing for full movement of the wand 
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around the bone. The wand was passed over the object the minimum number of times 

required to generate a complete image (Park, et al., 2006). A table supported the 

scanner processor, the wand when not in actual use between scan movements, the felt 

(and the plexiglass stand) upon which the objects were placed. A laptop was positioned 

within easy visual and physical distance of the table, to make the screen accessible 

while the operator scanned. 

 

Skull A 

Skull A had previously been manually re-assembled by Professor Richard Helmer, a 

forensic scientist from Germany. The intact cranium was scanned on and through 

plexiglass; the intact mandible was scanned in two sets, once on the superior surface, 

and again (by turning the piece over), on the inferior surface. The two separate scans of 

mandible A, imported to FreeForm, were combined into one image. Fragments of skull 

A were scanned on black felt; either on their exterior surface only, or, when necessary, 

the interior and exterior surfaces were scanned and then combined. Pieces of sphenoid 

bone or the petrous portion of the temporal bone fell within this category. 

 

Skull B 

Skull B was not fragmented in this research. The reconstructed intact skull and 

fragments were scanned with a stationary automated Minolta laser (Hyperfocal, 2006). 

The specific procedures of those scans are unknown. Discrepancies were present in the 

files: although the mandible had been fractured (two pieces), no images of those 

fragments were evident, and duplicates of both the left and right temporal bones existed. 

The mandible had not been permanently glued, so the two pieces were scanned on and 

through regular glass and subsequently processed in FreeForm Modelling. Two large 

pieces which lay on either side of a smaller fragment were scanned, each with the same 
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fragment attached along the same fracture line. As a result the duplicated surface area 

(the small fragment) had to be deliberately overlapped as a result. 
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C x   x  

B x 
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(mandible 

fragments) 

  

x 

(whole 

skull 

and 

fragments) 

D x  x   

E x x    

Table 1: Summary of skulls (transected status) and and scanning methods. 

 

 

 

Skull C 

The cranium of skull C was transected (horizontally above the orbits and occipital 

protuberance) for demonstration purposes prior to use in this project. The vault and the 

rest of the cranium were each placed separately (transected edge down) on black felt. 

They were scanned on the exterior surface – the vault from a superior perspective and 

the remaining cranium from an inferior perspective, which included 360 degrees to 

capture lateral, posterior, and anterior surfaces. Mandible C was scanned on two 

surfaces – interior and exterior – and combined in FreeForm Modelling into one piece. 
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Skull D 

The cranium of skull D was also transected. The 'cap' and the remainder of the cranium 

were placed as a contiguous unit and scanned through plexiglass. The mandible was 

scanned in the same manner, as, after fracture, were the fragments. 

 

Skull E 

The cranium of skull E had been transected. 'Cap' and cranium were placed as one, and 

scanned through regular clear glass (2.09 mm thick) placed across the upturned legs of 

the plexiglass shelf. Glass refraction correction was set at 1.52 mm. The glass refraction 

settings were selected as follows: (1) the transceiver (Tx) was on the same side of the 

glass as the object, and (2), set on the glass next to the object. 

 

 

Files 

Two sets of files resulted from scanning: completed scans were saved as FASTSCAN 

file (.fsn) to a folder on the laptop. Information captured by the laser requires processing 

to make the image usable (Zollikofer and Ponce de Leon, 2005).  Each file was named 

according to the area or part of the bone of the skull the operator felt it originated. These 

initial .fsn files were stored for the remainder of the length of the project. 

 

One option for optimising sweeps compiled in a scan was chosen depending on whether 

it improved the image detail and reduced noise: if “register sweeps” (Polhemus, 2007) 

improved detail and reduced distortion it was retained, if it did not, sweeps were de-

registered. Assessing improvement as a result of registering the sweeps was possible 

either by a visual comparison between the unregistered and registered image, or by 

viewing an analysis of the degree of alignment (shown in millimetres) for the image 
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before and after registration. The second set of files consisted of those produced by 

“Basic” formatting (Polhemus, 2007). Basic format was performed on each scan and the 

image retained as an .STL file, which may or may not have included registration of 

sweeps as the first stage of processing. 

 

3D models of skulls before fracture, all fragments, and re-assembled skulls were 

prepared for export in FreeForm modelling. Fragment resolution was reduced to ten 

percent, and skull resolution to ten, twenty, or thirty percent. Professor Stephen 

Richmond processed the resulting images using Geomagic Qualify. He was asked to use 

which ever resolution possessed the highest quality (thirty percent for instance, instead 

of ten or twenty percent) when possible.  

 

 

Skull fragmentation 

Five skulls were provided from the skeletal collection in the Department of Anatomy 

and Forensic Anthropology at the University of Dundee. Four skulls possessed metal 

hardware installed for the purposes of attachment and articulation of the mandible with 

the cranium, or the transected vault to the cranium. This was removed with needle-nose 

pliers. The mandible and the cranium of four of the five skulls were placed in plastic 

bags individually to contain fragments and fractured by hitting them with a rolling pin.  

The separated cranium and mandible were set on a solid, inflexible surface and struck 

an average of 2-4 times. 

 

The mandible and cranium of each skull were individually labelled A, B, C, D, and E. 

For example, skull A consisted of cranium A and mandible A.  Fragments of each skull 

were kept separately in plastic zip-lock type bags labelled appropriately. Separateness 
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was maintained during processing and restoration. 

 

 
Fig 7: Skull A physical fragments. 

 
Photograph: Amy Tillotson. 

 

 

Fragments of each skull used as a physical reference during computer processes were 

handled with care and placed on carpet mats.  Foam lined aluminium baking trays with 

sides to contain fragments were used for transport between work stations. The four 

skulls which it was necessary to restore before returning to the teaching collection from 

which they came, were restored with dental wax. 
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Computer re-assembly 

.STL (stereolithography) files were imported into FreeForm Modelling (SensAble 

Technologies, Inc., Woburn, MA., USA), a computer software system paired with a 

haptic force feedback device, the PHANTOM Desktop arm (SensAble technologies, 

Inc.). FreeForm Modelling version 9.0 is a 32-bit edition software requiring a 

recommended Genie Pro 2 Vig396 computer with Windows XP Professional SP2, dual 

processors (Xeon 5150 2.66 Ghz), 4 GB of RAM, a Quadro FX3500 256 MB graphics  

card and a 1280 by 960 (or higher) display resolution (SensAble Technologies, 2007). 

At the time of writing a parallel port was necessary to connect the haptic arm. 

 

The integrated system was actually run on a Viglen (Genie 945) desktop computer, 

using Windows XP 2002 SP2,  a single Pentium processor (3 GHz), 2 GB of RAM, a 

Quadro FX 500/FX600/AGPSSE2 (version 1.5.3) graphics card, and a screen display 

resolution of 1280 by 1024 pixels. 

 

The FreeForm Modelling software which is used for virtual 'clay' modelling, often in 

industrial design, is capable of performing restoration, reconstruction and construction 

of objects in virtual 3D (Zollikofer, et al., 1998; Subke, 2005). Haptic feedback is a 

touch-based interactive tool which enables such manipulation (Sherman and Craig, 

2003; Subke and Wittke, 2005); it is often described as 'intuitive' (Taylor, 2004). The 

.STL files, in the process of importing, were treated in one of two ways: if “fill holes” 

preserved morphological detail sufficiently to render that detail useful in identification 

during re-assembly, then it was chosen as the mediator for transformation into 

FreeForm usable format; if “fill holes” command eliminated too many details (by filling 

in concavities for instance), “thicken” command was used instead (Polhemus, 2007). A 

request for thickening at minimum values resulted in a value offered automatically; 
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which was accepted and the file, after conversion, designated as FreeForm (.cly) in 

agreement with the file name chosen during scanning to ensure continuity throughout 

the process. Converted mandible and cranium fragment files were assigned to separate 

folders. 

 

Each skull re-assembly in the FreeForm program was accompanied by a skull template, 

scaled to approximate the size of the skull under construction. The template was made 

more, less, or completely invisible on an adjustable gradient to verify developing skull 

conformity with template shape. An object list was created with the importing of the 

first fragment from the .STL files, and a small window which provides a choice of 

alternate views other than the main screen perspective was opened. The mandible was 

restored first in all skulls. Pieces were re-labelled one at a time as they were imported 

onto a working screen from FreeForm files. When all pieces had been imported, fitted, 

and checked for discrepancies, their resolution was reduced to export (as per description 

above) and submitted as .obj files to Geomagic Qualify (Geomagic Inc., North Carolina, 

USA), for quantitative comparison (Kau, et al., 2005; Wilkinson, et al., 2006). 
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Timing 

The re-assembly time in FreeForm Modelling was recorded for each skull. The time for 

skull A included, in addition to the actual examination and manipulation of fragments, 

the combining of two scans to produce a single piece (the mandible for instance), and 

cleaning  fragments of obvious 'noise'. It did not include the importing and conversion 

of .STL files into .cly format. Skulls C, D, and E differed, in that their approximate 

recorded assembly time did include the .STL file importation and conversion. It was not 

necessary to import the .STL files for skull B, as they were already present in the 

computer system. Each of those .STL files, however, required conversion to .cly 

FreeForm. 

 

 

Training regime 

Prior to this project the author had restored two skulls manually but had no experience 

with computer assisted restoration. Instruction on and practice with the laser scanner 

and FreeForm Modelling software was required. Skulls and fragments were scanned 

repeatedly to develop a steady 'sweeping' movement. Experimenting with laser settings 

yielded images for comparison; appropriate parameters were noted. Repeated use of 

commands and functions in FreeForm continued until reasonable confidence in the 

ability to manoeuvre objects in 3D was achieved; three sets of practice fragments were 

available for restoration rehearsal, and a day was spent using FreeForm in a facial 

reconstruction workshop. Guidance was available from experienced practitioners in 

FreeForm. These practice sessions, in addition to previous education in skeletal 

anatomy, formed the foundation of training. The use of tools for skull (and facial) 

reconstruction in FreeForm Modelling was not attempted in this research; mirror and 

deformation techniques are an addition to skills learned for restoration. 
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Measurements and statistical analysis 

Shell contour deviation assessment 

Analysis of accuracy was provided by Geomagic Qualfiy software. The program is 

reported to be “accurate to < 0.1 micrometers in length and 1/36,000 of a degree in 

angle" relative to a reference value (Geomagic, 2007).  It compared images of the 

original and restored skulls, illustrating the degree of overlap between shells (exterior 

surfaces), by providing colour coded maps of maximum and minimum ranges of 

deviation in millimetres for each mandible and cranium (Kau, et al., 2005). The process 

compares shells by assessing each fractured restored surface as it corresponds to the 

original and determining a ‘best fit’ (alignment) for the combined fracture surfaces with 

that of the original object over all (Richmond, 2007). The maximum and minimum 

tolerances for shell to shell deviation analysis of the skulls were set by the Geomagic 

Qualify operator at: (+) 10.000 and 0.500 mm and (-) 10.000 and 0.500 mm. The 

software generates and compiles average and standard deviation figures for each set 

analysed. 

 

The framework for analysing agreement between shell contour profiles of original and 

restored skulls was dependent on a threshold of error ensuring sufficient accuracy of a 

restoration if it were to support a facial reconstruction. That limit was hypothesised to 

be +/- 2 millimetres (Wilkinson, 2007). The limits of acceptable error in a computer 3D-

DM skull re-assembly upon which a facial reconstruction can be based have not yet 

been established. This limit is therefore based upon the experiential knowledge and 

training of a recognised facial reconstruction practitioner (Wilkinson, 2007), and is used 

in the Department of Anatomy and Forensic Anthropology at the University of Dundee. 

It is conjectured that it is impossible to restore a skull using the manual method without 

incurring error which (at the very least) is < +/- 1 mm (Wilkinson, 2007). 
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 If the percentage of the contours which were less than or equal to (<), +/- 2 mm error 

were 80% or better, accuracy was considered good. If the points in agreement were 

equal to or greater than 70% they were considered reasonable. Percentages 60% or over 

were acceptable; less than 60% was unacceptable (Wilkinson, 2007). Percentages of 

contours registering as < +/- 2.0 mm error required contextual analysis for each skull 

individually in order to assess their usefulness in regard to potential facial 

reconstruction applications. 

In describing and analysing the deviations classified by the incremental scale 

accompanying the Geomagic Qualify colour mapped images, some aggregation was 

employed in collating data. For instance: the category < + 2.1 and <- 2.1 mm is coded 

by colour in the legend for each mapped image in Geomagic (figure 8). The < +/- 2.1 

mm range represented in the deviation tables gives the number of points (with 

percentages) on the object contained in that category – technically these points fall 

between +/ - 0.5 mm and < +/- 2.1 mm.  

 

 

Fig 8: Colour scale for shell deviation maps. 

 

 

 

 

Green = greatest accuracy, or ‘no significant differences’. 

Lightest yellow starts at + 0.5 mm error (meaning contour 

profile is more prominent in comparison to the original 

object’s contours), and continues rising in + increments 

toward the maximum tolerance which is + 10 mm. The 

reverse is true on the less prominent (-) scale, where lightest 

blue = - 0.5 mm error, and continues toward darker blue 

and the maximum (negative) tolerance, which is – 10 mm 

error. 
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In formatting summaries of results however, the author has constructed the < +/- 2.1 

mm category to represent all points included in the range < +/- 0.5 mm and < +/- 2.1 

mm.  In this way two categories are condensed into one for the purpose of simplifying 

an understanding of point weight in each category as they relate to levels of accuracy 

acceptable for facial reconstruction. The summary tables of shell deviation results (pp. 

47 and 48), demonstrate the use of two further aggregate classes: < +/- 5.3 mm includes 

values which are < +/- 3.7 mm.  The values which are > +/- 5.3 mm and range up to and 

include +/- 10 mm also encompass the increments which are < +/- 6.8 mm, and < +/- 8.4 

mm. Values referred to in the text as being within a category by percentage, shall be 

understood to mean the combined increment values, not a value specific to one 

increment only. 

It is noted that the baseline ‘no significant difference’ (light green on the colour code 

bar), although the most significant category in the analysis, does not have corresponding 

points listed in the deviation tables. Since increments on the tables only begin with < +/- 

0.5 mm, it appears that the green, or ‘no significant difference’ figures are included in < 

+/- 0.5 mm classification in this shell comparison process. 

 

Superimposition and proportional measurements 

A secondary analysis of accuracy was performed by superimposing and comparing 

images in Photoshop CS2 software (version 9.0.2; Adobe Systems Incorporated). 

Superimpositions were performed without reference to the deviation maps or 

superimpositions provided by Geomagic Qualify. Skull images were saved in FreeForm 

as .bmp (bitmap) files, and converted in Photoshop to .jpg file format. Superimposition 

was achieved by using different colours to represent ‘before fracture’ (cream) and ‘after 

re-assembly’ (grey). ‘Perspective’ was engaged. Cranium images were superimposed 

using, (1) the superior edge of the orbits and (2), the inferior surface of the mastoid 
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processes. The distribution and predominance of one colour (cream or grey) in images 

varied in relation to the approximation of balance achieved by using the borders of these 

two landmarks as a guide. Mandibles were treated similarly, aligning the anterior, 

inferior edge of the mandible body and the oblique line of the mandible laterally. 

 Proportional measurements (in centimetres) of widths, lengths, and height were made 

in Photoshop using a line tool and a ruler tool, and the results calculated in percentages. 

Each figure was derived by measuring each distance twice and taking an average.  

Saved screen images of original and restored craniums and mandibles were positioned 

either side by side or one above the other and straight lines were drawn which abutted 

superior, inferior, lateral or medial surfaces of the original (reference) image. The 

restored image (test) was manoeuvred so that one of its edges (corresponding with the 

original) abutted the same line. 
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RESULTS 
 

Geomagic Qualify shell deviations summary 

 

 

 
Fig 9: Skulls A-E; scan images before fracture. 

 

 

 

 

 
Fig 10: Skulls A-E; scan images after restoration 

 

 
 

All restorations – both crania and mandibles - were recognisably distinct from each 

other and at a glance, easily paired with their corresponding original by overall shape 

and size. Cranial facial areas were composite maps of different error levels, but 

presented, in the largest part, an error which was < +/- 0.5 mm to < +/- 2.1 mm. Based 

primarily on the percentages of the restorations which were < +/- 2.1 mm of error in 

agreement with the original, two craniums (A and D) were unacceptable at 54 and 56%. 

Craniums B and E were acceptable at 64%, and C reasonable at 70% (graph 1). 
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Geomagic Qualify shell 

comparisons: skulls A-E

0

10

20

30

40

50

60

70

80

A B C D E

cranium
D
e
v
ia
ti
o
n
s
 (
%
)

less than or equal to +/- 2.1 mm error

greater than +/- 2.1 mm and less than or equal to +/- 5.3 mm error

 
Graph 1: Cranium shell deviation totals.  

 

 

Mandibles (graph 2) exhibited higher accuracy ratings (based on the same standard used 

for the crania): B and D had good ratings at 88 and 82%, E was reasonable at 77%, 

while mandibles A and C each scored 66% (acceptable). The standard deviation for 

crania ranged from 2.8 mm to 4mm; for mandibles the range was from 1.6 mm to 2.4 

mm. All mandibles except D had 1 condyle (either head or process as well) which 

showed no overlap between the original and restored images. Without exception all 

mandible condyles demonstrated incorrect angling (‘under built’) toward the midline. 

Three restored craniums exhibited no overlap in some areas: cranium A at the palate, 

vertical posterior left maxilla, and the left pterygoid process; cranium B at the inferior 

sphenoid, maxillae, right palatine, and left temporal bone, and D at the right occipital, 

right temporal (mastoid), both zygomatic, and the anterior tips of the nasal bones. 
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Geomagic Qualify shell 
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Graph 2: Mandible shell deviation totals 

 

 
A summary table including all +/- mm error increments for skulls A-E is in Appendix 2. 

Contour Shell deviation tables for individual crania and mandibles are in Appendix 3 

through Appendix 7. No values appear in the “out of maximum +/- tolerance” category 

in any of the tables, even though some re-assembled craniums and mandibles exhibit 

areas of no overlap with their original images. This is explained by the inability of the 

Geomagic Qualify program to recognise surfaces which are separated in distance from 

each other which is far beyond the values set for maximum tolerances (+/- 10 mm). 

Where restored mandible condyles are aggressively under built toward the midline, the 

lateral surface of the restored condyle may partially overlap the medial surface of the 

original condyle, and the lateral surface of the restored condyle may be so far from the 

lateral surface of the original condyle as to make the overlap detection function 

incapable of registering an extreme range in condyle dimensions. The portions of 

original and restored images positioned relative to each other in this way are 

‘unmappable’. In the text this is described as “no overlap” instead of as “out of 

maximum +/- tolerance” in order to avoid confusion with the labelling and categories of 

the deviation tables. 
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Superimposition and comparison summary 

 

 

Proportional differences in dimensions of 

original and restored craniums
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Graph 3: Summary of cranium measurements. 

 

 

 

 

 

General agreement exists between the superimposition/proportional measurement 

comparisons and shell deviation results for the five skulls: restored crania A and C and 

mandible D and B were the best in order in terms of measurement differences; restored 

cranium C and mandible B and D (reverse order to  the measurement results) were first 

or second in the deviation scores. 

 

 All of the crania appear ‘under built’, (including cranium C despite the misleading 

percentage in graph 3) – which means the greater portion of proportional measurements 

in Photoshop showed the restored images to be less prominent than the original, and in 

superimposition, restored craniums appeared smaller than original images.  Best fit 

occurred through the facial regions at the supraorbital and infraorbital margins, at the 

zygomatic bones, as well as the frontal processes and anterior bodies of the maxillae. 

Proportional height measurements of restored crania were closest to the original 

dimensions, and length the farthest. 
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Proportional differences in dimensions of 

original and restored mandibles

A

B

C

D

E

-12

-10

-8

-6

-4

-2

0

2

4

6

8

Mandible

%

below original dimensions above original dimensions

 
Graph 4: Summary of mandible measurements. 

 

. 

All restored mandibles exhibited less prominence than the originals, although in terms 

of proportional measurements, a more equal balance between less and more prominent 

differences than that in the craniums was evident. Width, then length and height were 

farthest from the original image dimensions. Combined proportional differences were 

larger in the mandible set than in the crania. All mandible condyles appeared to angle 

incorrectly toward the midline, both in proportional comparison measurement and in 

superimposition. The anterior mandible body appeared to be the best fit in 

superimposition. 
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Restoration time 

 
The approximate time taken to re-assemble a skull using computer assistance ranged 

from 60 hours for the first skull (A), to 6 hours for the last skull (E). The number of 

fragments resulting from fracture ranged from 17 (skull C) to 35 (skull E). The skulls 

with the fastest restoration time, at 6.5 and 6 hours (skulls D and E), also had a higher 

number of fragments - 34 and 35 pieces respectively. 

 

 

 

 

 

 

 

 

 

 

Table 2: Fragments and completion time; skulls A – E 

 

 

 

 

 

 

 

 

 

 

 

 

skulls 

(in order of 

Completion) 

 

pieces 

 
 

 

time 

(approximate 

hours) 

A 30 50 

C 17 20 

B 28 25 

D 34 6.5 

E 35 6 



  52   

Shell deviation maps/table/graphs: skull A 
 

Cranium A 

 

 

Fig 11: Cranium A anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

 

560,927 data points were evaluated on cranium A. Areas demonstrating no significant 

difference (mm) were present in disparate patches on the anterior maxillae, the superior 

edges of the nasal opening, the right temporal area, the right parietal and upper right 

occipital bones and inferiorly along the sphenotemporal and temporooccipital 

articulations. The cranium is predominantly ‘under built’. The right side (excepting a 

prominence of < + 0.5 mm on the right parietal bone), demonstrates error mostly in the 

< - 0.5 mm to < - 2.1 mm range. The left vault is more severely affected, exhibiting 

error ranging from < - 5.3 to < -8.4 mm (increasingly less prominent). 

 

The total amount of the restored cranium shell less than or equal to (<), +/- 2.1 mm error 
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was 56%. Of that total, 29% was less prominent (< -2.1 mm) in relation to the original 

cranium, and 27.5% was more prominent (< +2.1 mm). 31.5% of the remaining 

contours expressed an error < +/- 5.3 mm and 12% was greater than +/- 5.3 mm error. 

The palate and posterior vertical left portion of the left maxilla, and the left pterygoid 

process showed no overlap. The standard deviation was 4 mm and the variance was 16 

mm. 

 

 

 
Fig 12: Cranium A lateral right. 

 

 

 

 

Fig 13: Cranium A lateral left. 
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Mandible A 

 

 

 

Fig 14: Mandible A anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

146,726 data points were evaluated on mandible A. The right condyle and a portion of 

the right ramus (laterally and medially), show no overlap between the original and the 

restoration. The inferior oblique line, portions of the anterior and left ramus and the 

head of the left condyle show no significant differences, while the remainder of the left 

side, anterior and interior, and the lateral and medial surface of the left condyle 

demonstrate error <  +/- 2.1 mm. 

 

The total amount of the restored mandible shell profile which was less than or equal to 

(<) +/- 2.1 mm error was 66%. Of that total, 39% was less prominent (< - 2.3 mm), and 

27% was more prominent (< + 2.3 mm) in relation to the original mandible. 31% of the 

remaining contours demonstrated an error < +/- 5.3 mm while 3% was less prominent 

(< - 8.4 mm error). The standard deviation was 2.4 and the variance 5.8 mm 
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Fig 15: Mandible A lateral right. 

 

 

 

 

 

 

 

Fig 16 : Mandible A lateral left. 
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Superimposition and comparison: Skull A 
 

Cranium A. 

 

In superimposition the vertical height and width of the original and the restored face are 

the same. The vertex, the superior border of the right orbit, and the inferior edge of the 

right upper incisor align horizontally. Proportional measurements confirm this (0% 

difference in width and height). Cranial length of restoration is insufficient (1.95% less 

than original). In total, 1.95% of the restored cranium A measured greater than or less 

than the original dimensions. 

 

 
Fig 17: Cranium A -comparison anterior. 

 
Right hand position = after restoration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 18: Cranium A  - superimposition anterior and oblique. 

 
Cream = before restoration, grey = after restoration 
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Mandible A. 

 

Restored mandible A is narrower in breadth than the original (4.69% less), and 3.83% 

greater in length. The height of the restored rami was 3.87% less than the original.  In 

total, 12.39% measured greater than or less than the original mandible. In 

superimposition, the restored condyles appear incorrectly angled toward the midline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 19: Mandible A - superimposition superior and anterior. 

 
Cream = before restoration, grey = after restoration. 

 

. 

 

 

 

 

 
Fig 20: Mandible A - comparison anterior. 

 
Right hand position = after restoration. 
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Shell deviation maps/tables/graphs: skull B 
 

Cranium B. 

 

 

 
Fig 21: Cranium B anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

 

148,270 data points were evaluated on cranium B. The greatest accuracy (no significant 

differences) was reflected predominantly in the frontal and parietal bones of the vault 

and in the most anterior maxillae. The inferior zygomatic  bone (body and arch), the 

zygomatic process of the frontal bone, the postero-inferior temporal bone, and the  

postero-inferior occipital bone  - all on the left side - were least accurate: up to < - 8.4 

mm deviation (less prominent). 

 

The total amount of the restored cranium shell < +/- 2.1 mm error was 63%. Of that 

total, 53% was less prominent (< - 2.1 mm) and 10.3% was more prominent (< + 2.1 

mm) in relation to the original cranium.  25% of the contours remaining expressed an 
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error < +/- 5.3 mm and 12% was > +/- 5.3 mm error. The inferior surface of the 

sphenoid, part of the posterior maxillae bodies, the right palatine bone, some of the most 

inferior left temporal bone (and mastoid) demonstrate that there was no discernable 

overlap between these portions of the original and restored cranium. The standard 

deviation was 2.8mm and the variation, 7.8 mm. 

 

 

 
Fig 22: Cranium B lateral right. 

. 

 

 

 
Figure 23: Cranium B lateral left. 
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Mandible B 

 

 

 
 

Fig 24: Mandible B anterior oblique left. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm berror; 

lightest blue = less than or equal to – 0.5 mm error 
 

 

 

 

41,905 data points were evaluated on mandible B. The anterior and anteroinferior edge, 

the right lateral portion of the mandible body , the right ramus and right condylar 

process (excepting the lateral surface at the tip of the coronoid process), and the interior 

surface of the mandible body display no significant differences. The left condyle is less 

in agreement: it is more prominent on the medial surface of the upper portion of the left 

ramus (< +3.7 mm error), while the left coronoid process and the lateral ramus is less 

prominent (< - 3.7 mm error) –  the restored mandible appears insufficienct in width. 

 

The total amount of the restored mandible shell < +/- 2.1 mm error was 88%. Of that 

total, 66% was less prominent (< - 2.1 mm) and 22% was more prominent (< + 2.1 mm) 

in relation to the original mandible. 12% of the remaining contours profile was  < +/- 

5.3 mm error. Less than 1% error was > - 6.8 mm deviation. The lateral surface of the 

left condylar process indicates that no contours of the original and restored mandible 
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overlapped at this location. The standard deviation was 1.6 mm and the variation was 

2.6 mm. 

 

 

 
Fig 25: Mandible B lateral right. 

 

 

 

 

 

 

 

 
Fig 26: Mandible B lateral left. 
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Superimposition and comparison: Skull B 

 

Cranium B 

 

The closest agreement in vertical proportions was in the height of the face (restoration is 

0.38% greater than the original); cranial width was less than the original (2.39%), when 

measured at the widest point laterally on the parietal bones, and length was less by 

1.62%. The total amount  of the re-assembled cranium which  measured greater than or 

less than the original was 4.39%. In superimposition, the right maxilla, right zygomatic 

and the frontal bone (bilaterally) were in closest approximation with the original. 

 

 

 

Fig 27: Cranium B - comparison anterior. 

 
Right hand position = after restoration 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 28: Cranium B - superimposition anterior and oblique right. 
 

Cream = before restoration; grey = after restoration 
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Mandible B 

 

9.43% of re-assembled mandible B measured greater than or less than the dimensions of 

the original mandible. Restored condyle width was less than the original (3. 46%), as 

was height (2.37%). Length of the body was greater after restoration (3.60%). The 

condyle angles appear incorrect in superimposition. The height of the anterior body at 

the midline was in close approximation to the original. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 29: Mandible B - superimposition anterior. 
 

Cream = before restoration; grey = after restoration 
 

 

 

 

 

 
Fig 30: Mandible B - comparison lateral. 

 
Right hand position = after restoration 
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Shell deviation maps/tables/graphs: skull C 

 
Cranium C 

 

 

 
Fig 31: Cranium C anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

 

537, 383 data points were evaluated on cranium C. The superior and medial edges of 

both eye orbits, the frontal process of both zygomatics, most of the left maxilla, the left 

zygomatic, the posterior occipital bone, and both parietal bones demonstrate mostly 

discontinuos patches of no significant difference (as error) between the restored and 

original cranium. Anterior sections of the maxillae, the upper right maxilla, right 

zygomatic, right mastoid, central lateral area of both temporal bones, a horseshoe 

shaped section of the upper vault, and a horizontal band through the lower forehead are 

more, rather than less prominent; Areas less prominent (between < - 6.8 and < -8.4 mm 

error) include the anterior and superior frontal bone, the sagittal and lambdoidal suture 

lines, the nasal bones, and scattered areas on the left and right lateral walls of the greater 

wings of the sphenoid. 
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The total amount of the restored cranium shell <  +/- 2.1 mm error was 71%. Of that 

total, 42% was less prominent (< - 2.1 mm), and 29% was more prominent (< + 2.1 

mm) in relation to the original cranium. 23% of the profile remaining was < +/- 5.3 mm 

error, and 6%  was > +/- 5.3 mm error. No part of the cranium exhibited error > +/- 10 

mm. The standard deviation was 2.8 mm, and the variance therefore was 7.84 mm. 

 

 

 

Fig 32: Cranium C lateral right. 

 

 

 

 

 

 

Fig 33: Cranium C lateral left. 
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Mandible C 

 

 

 
Fig 34: Mandible C anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

 

 

85,267 data points were evaluated on mandible C. The anterior and latera/medial right 

body, as well as the medial ramus and head of the right condyle showed no signifcant 

differences between the original and restored mandible. Patches of decreasing 

prominence (< - 2.1 mm to < - 3.7 mm error) appeared in the posterior (interior) midline 

of the body, the lateral upper portion of the left ramus and part of the medial surface of 

the left condlyle. 

 

The total amount of the restored mandible shell < +/- 2.1 mm error was 66%. Of that 

total, 42 % was less prominent (< -2.2 mm) and 23% was more prominent (< + 2.1 mm 

in relation to the original mandible. 31% of the remaining contours were < +/- 5.3 mm 

while the last 3% was < - 6.8 mm error. The left lateral surface, from gonial angle to 

condyle head, and the vertical posterior edge of the left condylar process exhibited no 

overlap between those restored and original areas. The medial (interior) surface of the 
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left oblique ramus and condyle were  the most prominent (< + 5.3 mm error). The 

standard deviation was 2.6 mm and the variance therefore was 6.8 mm. 

 

 

 
Figure 35: Mandible C lateral right 

 

 

 

 

 

Figure 36: Mandible C lateral left. 

. 
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Superimposition and comparison: Skull C 

 
Cranium C 

 

Cranium’s C total of restored area which (in combination) measured greater than or less 

than the original dimensions was 2.04%. Those differences included a greater width 

(1.08%), and height (0.96%). There was no discernable difference in cranial length  

(0%), which is partially supported by the appearance of a close alignment between  the 

superior and inferior orbital edges and the inferior surface of the right mastoid in 

superimposition. 

 

 
Fig 37: Cranium C - comparison anterior. 

 
Right hand position = after restoration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 38: Cranium C - superimposition left and right oblique 

 
Cream = before restoration, grey = after restoration 
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Mandible C 

 

Restored mandible C had a total of 16.37% which measured greater than or less than the 

original dimensions. Width (6.34%) and height (3.17%) were both less in restoration 

than in the original. Length was 6.86% greater. In superimposition, the oblique 

processes of the body appear angled incorrectly toward the midline. 

 

 

 

 
Fig 39:Mandible C - superimposition posteroinferior. 

 
Cream = before restoration, grey = after restoration 

 

 

 

 

 

 

 
Fig 40: Mandible C - comparison anterior. 

 

Right hand position = after restoration 
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Shell deviation maps/tables/graphs: skull D 

 
Cranium D 

 

 

 
Fig 41: Cranium D anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

1,020,236 data points were evaluated on cranium D. Areas demonstrating no significant 

difference between the restored and original cranium were the right upper and lateral 

maxilla, portions of the anterior and lateral left maxilla, the right zygomatic, and the 

superior, right lateral cranial vault. The most anterior sections of both maxillae and 

large patches (anterior to posterior) at the superior vault were more prominent (< + 0.5 

mm to < + 2.1 mm error). Sections of the left and right greater wings of the sphenoid 

(visible in the back of the eye orbits), reached the upper ranges of prominence (< + 5.3 

mm to < + 8.4 mm). 

 

A horizontal band across the forehead was less prominent, in the range of < - 5.3 to < - 
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8.4 mm error, as was the inferior occipital bone at the midline. The right inferior and the 

posterior occipital, the right inferior temporal bone, both  zygomatic archs, the right 

mastoid, and the most anterior tips of the nasal bones  demonstrated no overlap between 

the restored and original cranium. The total amount of the restored cranium shell < +/- 

2.1 mm error was 54%. Of that total, 28% was less prominent (< - 2.1 mm), and 26% 

was more prominent (< + 2.1 mm) in relation to the original cranium. 29% of the 

remaining shell was < +/- 5.3 mm and 17% was < +/- 10.00 mm error. The standard 

deviation was 4 mm and the variance 16.8 mm. 

 

 

 
Fig 42: Cranium D lateral right. 

 

 

 

 

 

 
Fig 43: Cranium D lateral left. 
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Mandible D 

 

 
Fig 44:Mandible D anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 

 

 

 

186,879 data points were evaluated on mandible D. The lateral right ramus and 

posterolateral right condylar porcess were more prominent (< +0.5 mm to < + 2.1 mm); 

the left side of the mandible demonstrated no significant differences through the 

anterior, oblique body, but  was more prominent  (< + 2.1 mm) on the lateral surface of 

the left condylar process. Both condyle heads, the inferior oblique lines, and medial 

surface of the condylar processes were less prominent (< -0.5 mm to <  - 5.3 mm error), 

the increments forming a mixed landcape of error. 

 

The total amount of the restored mandible shell which was <  +/- 2.1 mm error was 

82%. Of that total, 50% was less prominent (< - 2.1 mm) and 32% was more prominent 

(< + 2.1 mm) in relation to the oringinal mandible. 17% of the remaining contours were 

< +/- 5.3 mm and ¾ of a final 1% was < - 6.8 mm error. No part exhibited error > +/- 10 

mm. The standard deviation was 2 mm and the variance 4 mm. 
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Fig 45: Mandible D lateral right 

 

 

 

 

 

 

 

 

 
Fig 46: Mandible D lateral left. 
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Superimposition and comparison: Skull D 

 
Cranium D 

 

Re-assembled, cranium D had the fourth highest total percentage of measured 

differences - 6.03% of the restoration was less in width (1.32%) and in length (4.46%), 

and minimally greater in height (0.25%). Superimposition demonstrates a close 

approximation of the left maxilla, and the inferior edge of the left orbit in the restored 

cranium to the original. 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig 47: Cranium D - superimposition oblique right and lateral left. 

 
Cream = before restoration; grey = after restoration 

 

 

 
Fig 48: Cranium D - comparison anterior. 

 
Right hand position = after restoration 
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Mandible D 

 

In contrast to the cranium, mandible D exhibited the best score (4.28%), for the total 

restored dimensions which were greater than or less than the original. Less in length 

(3.94%), and height (0.34%), it was ambiguous in width. In superimposition, restored 

intercondylar width appeared less than that of the original (figure 55); but the measured 

intergonial angle width (0% difference) ,upon which the comparison measurement was 

based in this instance, suggests a good approximation (figure 56). 

 

 

 
Fig 49:Mandible D - superimposition anterior. 

. 
Cream = before restoration; grey = after restoration 

 

 

 

 

 
Fig 50: Mandible D - comparison anterior. 

 
Bottom position = after restoration 
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Shell deviation maps/tables/graphs: skull E 

 
Cranium E 

 

459, 073 data points were evaluated on cranium E. 64% of the points were <  +/- 2.1 

mm error. Distribution of the contours included in this category (particularly those of no 

significant difference), were dispersed primarily throughout the middle 1/3 facial area at 

the orbit edges, the left maxilla, both zygomatics, and in bilateral patches descending 

inferiorly from the temporal line to include the inferior surface of both zygomatic 

arches. The anterior dome of the forehead was included in this range, as were the upper 

palate and portions of the inferior temporal bones. The worst accuracy of least 

prominence (< -5.3 mm to < - 6.8 mm) was restricted to the left and mid-posterior 

cranial vault and a patch superior and medial  to the right orbit. The medial posterior 

walls of both orbits registered in the range of  < + 5.3 mm to < + 8.4 mm error (greater 

prominence). 

 

 

Fig 51: Cranium E anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 
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Of the total area < +/- 2.1 mm error, 35% was less prominent (< -2.1 mm) and 28% was 

more prominent (< + 2.1 mm) in relation to the original cranium. 26% of the contours 

remaining were < +/- 5.3 mm and 11% was < +/- 10 mm error. No part fell outside +/- 

10 mm. The standard deviation was 3.5 mm and the variance therefore was 12.25 mm. 

 

 

 

Fig 52: Cranium E lateral right. 

 

 

 

 

 

Fig 53: Cranium E lateral left. 
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Mandible E 

248,310 data points were evaluated on mandible E. The most superior and 

lateral/medial portions of the left condyle and coronoid process exhibited no overlap 

between the original and restored mandible. The remainder of the posterior surface of 

the left ramus was less prominent than the original (< - 3.7 mm to < - 6.8 mm error). 

Areas demonstrating no significant error included the anterior, lateral/medial surfaces, 

and inferior oblique line of the body. The right condyle head and vertical posterior 

border of the right  ramus was < +/- 0.5 mm error. 

The total amount of the restored mandible shell < +/- 2. 1 error was 77%. Of that total, 

60% was less prominent (< -2.1 mm) and slightly less than 18% was more prominent (< 

+ 2.1 mm) in relation to the original mandible. 22% of the remaining shell was < +/- 5.3 

mm, and less than 1% was < - 6.8 mm error. The standard deviation was 2 mm and the 

variance therefore was 4 mm. 

 

 
Fig 54: Mandible E anterior. 

 
Green = no significant difference (mm); 

lightest yellow = less than or equal to + 0.5 mm error; 

lightest blue = less than or equal to – 0.5 mm error 
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Fig 55: Mandible E lateral right 

. 

 

 

 

 

 
Fig 56: Mandible E lateral left. 
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Superimposition and comparison: Skull E 

 
Cranium E 

 

The highest total for combined percentage of measured differences in the mandible 

restorations was found in mandible E at 7.68%. Width (3.13%), length (3.76%), and 

height (0.79%) were all less than the original. Superimposition confirmed a close 

approximation between original and restored cranial height at the nasal and zygomatic 

bones and the inferior edge of the maxillae. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 57: Cranium E - superimposition oblique left and lateral right. 

 
Cream = before restoration; grey = after restoration. 

 

 

 
Fig 58: Cranium E - comparison anterior. 

 

Bottom position = after restoration. 
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Mandible E 

 

14.64% of re-assembled mandible E measured greater than or less than the original 

dimensions. Measurements of length (4.12%) and height (3.56%) were less than the 

original; width was 6.96% greater. Condyles appear incorrectly angled toward the 

midline. Height of the anterior body demonstrates a close approximation in 

superimposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 59: Mandible E - superimpostion anterior oblique right. 

 
Cream = before restoration; grey = after restoration 

 
 

 

 

 

 

Fig 60: Mandible E - comparison anterior. 

 
Right hand position = after restoration 
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DISCUSSION 
 

The issue central to this research is the extent to which the surface contour profiles of 

restored skulls concurred with that of the same skulls prior to fracture and re-assembly. 

Secondary interests include the level of operator subjectivity involved in computer 

assisted technique, the time required to perform the restoration (and associated tasks), 

and a practical assessment of both the difficulties encountered and the skill levels 

necessary to facilitate re-assembly. 

 

Factors pertaining to the Freeform computer assisted method (in order of priority) and 

potentially affect the accuracy of the restorations were: 

1) The quality of 3D digital models. This must include a consideration of the 

suitability of the scanner type (automated or hand held) for the capture and 

processing of models, and more specifically, how the skulls and fragments 

were scanned – for example, through plexiglass, through regular glass, 

against a solid background on one side only, or on two surfaces (with 

subsequent combination in FreeForm modelling). 

While the quality of models appears to lie mostly within the purview of the 

laser scanner, there is a possibility that some inherent incompatibility 

between FASTSCAN and FreeForm software contributed to the degraded 

images. 

2)  The ability of the operator; to which training and experience contribute. 

3) The efficacy of Freeform modelling as a computer program for skull re-

assembly. Does the absence of any integrated semi-automatic or automatic 

accuracy control make Freeform inappropriate for this task? To what degree 

can operator ability serve to compensate for this absent component? 

4) The physical condition and configuration of the skulls: includes the number 
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of fragments, their availability as a physical reference for re-assembly, and 

whether the craniums were transected. 

 

 

General observations and admissions 

 
Operator ability 

 

The author's minimal ability with computers at the beginning of this project affected the 

speed and success with which the training regime could address a lack of confidence 

and understanding of programs like FreeForm and FASTSCAN. In retrospect, training 

should have started earlier, and for that, the author is entirely responsible. The practice 

and time required to master the computer assisted elements of the project were 

incorrectly estimated. A more aggressive investigation of the complexities of the hand 

held laser scanner, new though it was to the operator, might have afforded greater 

success in realising the optimum range and application of settings for scanning, 

particularly in regard to the use of the plexiglass and glass surfaces. Currently, an 

appreciation for the degree of acclimatization to the virtual world and the practise 

required in computer operations to make full use of such technology is fully 

apprehended. 

 

Uneasiness with computers must be managed if it is not to interfere with what must be 

learned. This psychological element is a reality pertinent to the expectation that 

someone, simply because they have knowledge in physical anthropology and anatomy 

or ability in sculpture, can expertly command the technology employed to scan images, 

and re-assemble virtual fragments on computers. Alternately, it should be recognised 

that anyone who is masterful with computer systems, and wishes to restore or 

reconstruct skulls, cannot, without knowledge of anatomy (particularly osteology), use 
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such technology with productive ease. 

 

Initially, re-assembly in computer assisted 3D felt awkward and progress with the first 

skull (A) was uneven. Intervention from a supervisor experienced in computer re-

assembly to correct error propagation was necessary with skulls A to D – repeatedly 

with skull A, then less so as confidence was gained and skulls C and B were completed. 

The author spent seven cumulative hours re-assembling skull A before noticing an error 

of propagation; this occurred in four out of the five skull restorations. Skull A was 

attempted five times, skull B twice, skull C, three times, skull D twice and E, once. 

 

By 'attempted' what is meant is that re-assembly reached a point where the mal-

alignment of fragments and a developing 'skew' of the crania required returning to a 

former stage in the restoration to correct the error. This was done by temporarily 

making invisible the parts fitted which suggested a departure from a coherent alignment 

(Subke, 2005) For this reason, it was advised that 'versions' of ongoing assembly in 

FreeForm be saved - if an error was judged to have started at a particular point, it could 

easily be revisited and the process re-directed before the skew was further worsened 

(Wilkinson, 2007). 

 

Skull A formed the essential manner and method template which was applied to the five 

skulls - A, C, B, D and E in order of completion. Restoration resumed (incorrectly as it 

happens) with skull A, by starting again with the foramen magnum 'circle' and the 

sphenooccipital synchondrosis as they were perceived to relate to an articulation of the 

temporomandibular joint. Despite caution in the second attempt, it was necessary to 

stop again, and again, until it was recognised that without restoring the face first, the 

temporal bones (and mandible) were simply not going to come together properly. A 
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noted asymmetry in the height of the zygomatic bones in skull A contributed to the level 

of difficulty (fig 61), since this asymmetry was referred through the alignment of the 

tempormandibular joint and surrounding articulations. Ignoring the asymmetry inherent 

to a greater or lesser degree in all skulls, whether consciously or unconsciously, is 

detrimental to any attempt to restore the original shape and appearance (Fedosyutkin 

and Nainys, 1993; Wilkinson, 2004). 

 

Fig_61: Difference in zygomatic arch height from anterior view. 

 

 

Subjectivity 

 Subjectivity it first introduced in tailoring each 3D-DM as it proceeds through 

FASTSCAN processing – adjustments made to settings, for instance, were dependent on 

a visual determination of quality on a piece by piece basis. Combining two scans to 

form one piece in Freeform (as was the case with some cranium C fragments), is an 

example of an unnecessarily subjective operation (figure 62 and 63). In Freeform each 

fragment must be positioned and aligned according to the visual perceptions of the 

operator. Complete elimination of subjectivity in CAD skull re-assembly is impossible 

– in the instance where portions of fragments are missing or edges are eroded, final 

restoration dimensions and contours must rely on operator judgement. Ideally, limiting a 

subjectivity which is a result of poor quality images and no semi-automated accuracy 
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control during assembly is answered by refining both those mechanisms in tandem. The 

very nature of the elements which at this stage of technical development make 3D 

object manipulation in Freeform a useful application for skull re-assembly (weightless, 

non-material acting models), make the positive, unambiguous articulation of fragments 

an ambitious aim.  

 

 

 
Fig_62: Mandible C fragment – combining. 

 

 

 
Fig 63: Mandible C fragment – combined. 

 

 

Shell deviation comparisons 

Analysis of the shell deviation results for skulls A-E indicate that skull re-assembly 

using computer assistance is a technique with potential. Cranium accuracy ratings were 

less than acceptable in two cases (54 and 56%), acceptable in two (64%), and 

reasonable in one (70%). Mandible accuracy values demonstrate a wider range of 

accuracy values - from two at the first level (acceptable at 66%), one in the middle 

category (reasonable at 77%), and two in the ‘good’ range (82 and 88%). 
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A compensating factor in the generally poor-to-acceptable accuracy results is the 

demand (which the purpose of supporting facial reconstruction entails) to assess 

individual skulls in their own context. What is meant by this is that it is the facial 

skeleton, and not the cranial vault or basicranium which is important if the restoration is 

to enable the modelling of a recognisable face. A context driven analysis then, includes 

working out where the most important facial features are and the weight of the 

corresponding accuracy level for that area – and how it may compensate or detract from 

the remaining accuracy ‘map’ of the face. This approach to analysis may be applied to 

each of the five skulls (Figure 64). 

 

For example: the ‘acceptable’ accuracy score for cranium B, with a distribution of 64% 

(from ‘no significant differences’ to +/- 2.1 mm error), increases the likelihood that the 

face, forehead, (as well as the right lateral parietal bone, and vault) could support a 

facial reconstruction. Areas of worst accuracy may be mirror modelled from the 

opposite stronger side, and the accuracy for cranium B as a whole improved upon. The 

right zygomatic bone included patches of no significant difference and patches accurate 

to within – 0.5 mm error. The frontal and temporal processes of the left zygomatic 

demonstrated < - 2.1 mm and < – 3.7 mm error; and the anterior and lateral right 

maxilla were + 0.5 to + 2.1 mm error. The more accurate circumference of the right eye 

orbit could, if necessary, be modelled onto the left which is not as accurate. These 

elements form the central components of the face, (the eyes, nose and mouth) and as 

such, are primary in facial recognition (Wilkinson, 2004). 

 

The right upper maxilla, right temporal and parietal b-ones of cranium B could also be 

mirror modelled to the left side to replace less accurate left equivalents. The ‘orange’ 

and ‘red’ zones in the lateral and posterior walls of the left orbital cavity are largely 
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irrelevant to the concerns of facial reconstruction because accuracy of bone is less 

important in these areas. The worst accuracy occurred on the inferior surfaces of the 

cranium, notably the inferior surface of the left zygotemporal arch, the inferior line of 

the left zygomatic, the right palatine bone, and most of the sphenoid, where no overlap 

between the original and the restored cranium were evident. The palatine, posterior 

maxillae, sphenoid bone and mastoid process are again less significant because they are 

‘behind’ the face.  

 

The acceptable accuracy in the facial area of cranium B is further supported by good 

accuracy (88% at a level that was < +/- 2.1 mm error} in mandible B. Since the 

mandible forms the lower one third of the face, the presence or absence, and degree of 

accord between the restored and original mandible can be important to a facial 

reconstruction. Deriving the biological sex of an individual is easier if the mandible is 

included in the skull analysis. It is believed that the prominence and rugosity of 

mandible morphology influence the contours of soft tissues (Wilkinson, 2004). 

 

If one or the other of the vertical or width dimensions are missing in a skull, the absent 

element can be compensated for  – in terms of height, the front of the mandible body is 

more important for facial reconstruction and the height of the condylar ramus less so. 

Width of the anterior body can be extrapolated from the height of the ramus but not 

with complete reliability. The width of the mandible between gonial angles is more 

critical than the breadth of the anterior chin (Wilkinson, 2007). The comparison of 

mandible width using an inter-condylar rather than an inter-gonial measurement may 

also mean that mandible B is more accurate than the width measurement (3.46% less 

than the original), would indicate. 
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Figure 65: Mandible B comparison. 

Lower image = restoration 

 

 

 

 

The individual context approach to analysis may be applied to the remaining skulls. 

Craniums A and E, for example, were less homogenous in variance of values overall 

(standard deviations of 3.7 and 3.5 mm). Cranium E did not exhibit any ‘no overlap’ 

portions; which in and of itself neither makes or breaks the balance of accuracy quality 

in the cranium, since it is where areas of no overlap are situated more than whether they 

are present or not that is important. Cranium C registered a reasonable 70% which was 

< +/- 2.1 mm error, and was more homogenous in variance of values overall (standard 

deviation of 3 mm). It appears less suitable for supporting a facial reconstruction than 

either cranium A or E, because the concentration and dispersal of higher accuracy 

categories, (no significant differences and < - 0.5 mm error), are better placed in A and 

E crania – meaning there is substantial coverage of the central facial region. The greater 

the homogeneity of values in the facial complex (meaning the lower the variance, or 

standard deviation), the greater is the likelihood of a closer approximation. If 

heterogeneous (high variance) contour profiles are found in areas other than the face, 
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they may not negatively affect the accuracy rating.  

 

Assessment of mandibles is complex because their value to the skull re-assembly is 

interdependent with the score of the cranium with which it is paired. For instance: the 

fact that mandible C was an acceptable 66%, and E a reasonable 77% (< +/- 2.1 mm 

error) does not necessarily make mandible E the ‘better’ facial reconstruction candidate.  

Apart from the left condyle head which exhibits no overlap between the restored and 

original specimen, the greater portion of the external anterior body and right ramus of 

mandible C reflect no significant differences or, on the left exterior ramus and codylar 

process, an  accuracy which was < - 2.1 mm to < - 3.7 mm error. Again, the right 

condyle could mirror a substitute for the small amount of the left condyle head which 

shows no overlap between original and restoration.   

 

The second increment level of accuracy (% of restored area which is > +/- 2.1 mm but < 

+/- 5.3 mm error) can support the accuracy rating of crania and mandibles, especially 

when it is in an area strategically effective at increasing the likelihood that the facial 

region will  endorse soft tissue reconstruction – meaning that it is situated immediately 

adjacent to sections which are strong in accuracy or occupies an area of secondary 

importance, like the forehead or superior and lateral cranial vault . For the crania most 

percentages at this level were in the mid to high twenties, ranging from 24% to 31.5%. 

For the mandibles, the range was more variable, from 12% to 31%. The combining of < 

+/- 3.7 mm and < +/- 5.3 mm error into one category for simplification of results was 

inappropriate for the purposes of analysis because the balance of the dispersal of 

differently ‘weighted’ accuracy levels is so pertinent to determining the quality 

(usefulness) of a skull restoration. It is useful to know the proportion of contour profiles 

which are as close as possible to the accuracy category of primary importance – in this 
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case that was < +/- 2.1 mm error - the next most important increment was therefore < 

+/- 3.7 mm error. Reducing the increment of next importance to the narrowest practical 

margin fine tunes the diagnostic assessment process.  

 

Deciding what is more crucial in an accurate representation of an original skull - 

morphology or morphometry – can affect the interpretation of error tolerances. The 

illustrated relationship between facial bone shape and the soft tissues of the face is 

established (Iscan and Helmer, 1993; Schimmler, et al., 1993). If a mandible, 

zygomatic, or maxilla bone is acceptably true in reproduction to its original 

morphology, how much does it matter if the length, width or height of the pieces 

assembled in toto is less or more than the pre-restoration skull dimensions? And what 

degree of ‘less’ or ‘more’ is permissible without incurring distortions that make a 

reconstructed face unequal to the task of familiar recognition? This question arose out 

of studying the images of the reconstituted skulls – as individuals and as part of a group. 

Each re-assembled crania and mandible, as mentioned previously, were so immediately 

recognisable relative to their pre-fracture images that the author and observers began to 

question this balance of morphology to morphometry as criteria for accuracy.   

 

 

 

 

 

 

 

Fig 66: Cranium D - original image (left); re-assembled image (right). 
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Fig 67: Mandible E – original image (left) re-assembled image (right). 

Despite the distortions which fracturing and reconstitution entail, both cranium D and mandible 

E images (fig 73 and 74) are clearly discernable as reproductions of their originals. The rugged 

concavities of the zygomaxillary area, the relatively large mastoid processes, the outline of the 

nasal opening, and the orbital margin shape should impart specific and individual characteristics 

to a facial reconstruction. The resorption of the anterior body resulting form reduced dentition 

and the non symmetry of mandible E’s condyles would create a unique appearance and 

articulation of the chin.   

 

 

 

Scanning - image production 

 
The Scorpion hand-held scanner is very portable and only costs 15,840 pounds sterling 

(£), but may not be the most appropriate tool when the aim is efficient and accurate 

skull re-assembly. Because a laser scanner captures images by a reflective method, the 

supporting surface on which the object rests must be filtered out of the point cloud 

which orchestrates the final image. A point cloud is a set or coordinates of x,y,and z – 

the Cartesian reference system of virtual 3D. The repression of the cloud point creates a 

“superimposition error, which can [and does] affect the next processing phases” 

(Galantucci, et al., 2006). 

 

Interestingly, Park et al. (2006), found in a comparison between direct measuring on 

skulls and craniometry using the FASTSCAN Cobra laser scanner (one camera as 

opposed to two in the Scorpion), that laser scans done with point localization (for 

craniometric measurements) had good reliability, both in terms of inter- and intra-
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examiner performance, and were accurate enough to replace conventional measurement 

methods using osteometric board, craniophore, and calipers. Additionally, the reliability 

of stationary automated laser scanners for measuring living soft tissue facial 

morphology over time in growth or treatment changes studies has been verified (Kau, et 

al., 2005).  In light of the difficulties in producing clear, recognisable images of small 

bone fragments, or even accurate edges on larger fragments with the Scorpion scanner 

in this research, it is important to ask why the hand held laser generated image of an 

intact skull is of sufficient quality to permit accurate morphometric analysis, but scans 

of fragments performed with the same type of scanner inadequately support 3D 

computer re-assembly (because the reproduction of fragment edges was both 

inconsistent and poor). 

 

Subke (2005) describes two automated laser systems used to digitize skull fragments in 

preparation for restoration: both are multi-camera techniques, capable of producing 

detailed bone images (with natural surface colour) in 3D images and local resolution of 

surface morphology better than 1 mm, which is crucial if fragments are to fit as 

precisely as possible. The complexity and sophistication of the combined technologies 

used to capture fragment images in this way is costly, and require a considerable 

amount of dedicated set-up space (Subke, 2005).  As such it contrasts with the relative 

in-expense and simplicity of the hand held scanner. 

 

Unfortunately, variation in the distance between the Scorpion wand and object can 

affect resolution (0.5 mm per 200 millimetre range), and accuracy (1 mm per 200 mm 

range) (Park, et al., 2006). Potential resolution and accuracy therefore, are adversely 

affected by hesitation or tremor in wand (hand held) movements, and by unintended 

departures from an ideal distance or threshold for resolution between object and wand. 
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Hence, the operator must exercise care in planning the minimum number of sweeps 

which will collect the maximum detail without covering one area repeatedly. By 

necessity, some areas of bone require multiple passes from different angles because the 

laser may not record enough detail on initial or even subsequent sweeps. The greater the 

number of passes over the same path, the harder it is for FASTSCAN to smoothly 

integrate image details using functions called “register sweeps” and “basic formatting” 

(Polhemus, 2007), whilst maintaining morphological continuity (especially edge 

integrity) of the image. Registry of sweeps is designed to correct poorly aligned 

triangulated data. Mal-aligned sweeps equate with poor image production. Increasing 

the number of alignments the processing unit must manage contributes to 'noise' (figures 

68; 69; 71; 72). 

Fig_68: Cranium A - spurious projection of maxilla. 

This artefact projecting inferior and anterior to the nasal cavity did not exist in physical reality. 

 

 
 

 
Fig 69: Cranium B - spurious projection. 

 
The lump jutting from the infraobital edge of the right orbit did not exist in physical specimen. 
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Fig 70: Cranium B – physical specimen. 

 
Physical cranium B viewed from same angle as in figure 75 – no projection beneath right orbit. 

 

 

 

 

 
Fig 71: Cranium C - non-existent ‘spikes’. 

 

Rectangular and triangular projections from superior surface are spurious artefacts. 

 

 

 

 

 
Fig_72: Cranium C – 'frill'. 

 
Perpendicular projections from vault surface did not exist in physical specimen. 
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Missing aspects such as a foramen, sulcus, or process, make fitting less certain because 

the fragment is harder to identify in the first place (figure 73). False and incomplete 

edges (figure 74) increase error in fitting fracture lines – this conclusion is consistent 

with a potential limitation in the process as noted by Subke (2005). A process which 

depends on the precise fitting of one fragment with another to accurately (< +/- 2 mm 

error) reproduce the original dimensions of an object before fracture, but adds to or 

subtracts falsely from image surfaces representing those fragments, reduces quantifiable 

assessments into approximations with less value than would be the case if the image 

production were more reliable.  

 

 
Fig_73: Cranium D – sphenoid with partial pterygoid in FASTSCAN image. 

 

 

 

 

 
Fig_74: Mandible D – FASTSCAN image. 

 

Information is missing along vertical edge of coronoid process. 
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The laser works best on simple, flat surfaces with no shadow and few angles. The 

morphology of trabecular bone, competing angles producing shadow, foraminae, styloid 

processes, minor concavities, minor convexities, or the projecting 'fingers' of sutures, do 

not translate into clear images generally, and interfere with the production of accurate 

edges. The most difficult bones to scan were the mandible, the sphenoid and small, thin 

fragments. The easiest to scan were large pieces of vault. 

 

 

 
Fig_75: Cranium C – virtual sphenoid placement. 

 

 

 
Fig 76: Cranium C physical fragments. 

 
Photograph of physical sphenoid, maxillae and frontal bone manually articulated. Note clarity 

of edges and morphology in comparison to virtual equivalent in fig 81. 
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The plexiglass stand (provided by the engineering department at the University of 

Dundee) through which skull A and D were scanned, initially was used because it was 

assumed the “through glass” (Polhemus, 2007) component of the scanner software was 

present in the package installed on the laptop. This was not the case. When fragment 

scans of skull A proved to be poor (figure 77), the process of scanning through the 

plexiglass was deemed a significant barrier, and skull A fragments were re-scanned 

against the background of black synthetic felt. 

 

 

 
Fig_77: Mandible A fragment – scanner noise. 

 

Floating and extruded pieces are artefacts from laser scanning through plexiglass. 

 

 

Scanning pieces through the plexiglass effected edge density and clarity. The spaces 

between scanned sides were void (fig 78). The laser cannot capture an edge which is 

angled inferiorly away from the beam, or sitting on the plexiglass surface against which, 

or through which, it is scanned. 

 

 
Fig 78: Cranium D fragment. 
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Another (incorrect) assumption made was that plexiglass can be scanned through in the 

same way in which regular non-plexiglass might scan, or for that matter, tempered 

glass, or glass of different thicknesses. The scanner manual does not stipulate the type 

of glass which should be used for through-scanning. The author was at first unaware of 

the laser's lack of affinity for plexiglass and continued to be ignorant of the refractive 

settings possible while scanning skull D. The use of the plexiglass was tried again at 

that point because of the inadequacies of scanning fragments on one side only. 

Increasing the value of smoothing from 1.00 to 1.50 improved overall image qualities 

but meant more morphological detail was lost, especially on edges and small fragments. 

 

                                                                                                                                   

 
Fig_79: Cranium D inferior in FASTSCAN. 

 
.STL file after registered sweeps and basic formatting;  the black areas posterior and medial to 

the temporal fossae, nose and eye orbits represent lost information. 

 

 

 

Fig 80: Cranium D inferior – physical specimen. 

 
Note the detail available on physical specimen in comparison to figure 85. 
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Skull C, (both intact and fragmented) had been scanned using the one-side-only method 

on black felt. Scanning only one side of a fragment created two problems: first, as with 

the plexiglass method, the full dimension of the edge immediately adjacent to the 

surface upon which the piece rests is not entirely captured. Aligning fragments, some of 

which have partial thickness dimension and some which do not, challenges estimation 

of an appropriate edge-to-edge angle at which edges conjoin. When assembling the 

curved cranial vault or the plane of the facial bones to the vault, the degree of angle on 

which one fragment 'hinges' with another can affect substantially whether all fragments 

will fit together eventually as a contiguous whole. Secondly, interior detail important 

for identifying the position of whole bone or their fragments is lost. An example is the 

passages for the meningeal vessels on the interior parietal bones (fig 81). These affects 

are exaggerated when temporal, sphenoid, or maxillae fragment images are missing 

interior (relative to the skull).  

 

 
Fig 81: Photograph of internal morphology – physical parietal bone. 

 

 

Skull E was the only specimen to be scanned through regular glass (with appropriate 

setting for glass refraction and glass thickness).  Again, it was necessary to set the 

smoothing parameter higher (1.5 or 2.0) depending on the individual piece, to 

compensate for reflective noise.  Knowing and setting the correct parameters for glass 

thickness and refraction correction did address distortion to some extent. 
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Fig 82 Cranium E – FASTSCAN image. 

 

Note incomplete edges and concavities on exterior temporal bone surface 

 

 

 

 
Fig_83 Cranium E – FASTSCAN image. 

Interior temporal bone image displays good detail in contrast to the exterior in figure __. 

 

 

 

Fig 84  Skull E – fragment before and after refraction correction. 

Note the two 'sides' are pulled together, but the edge is still partially void. 
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CT scans 

The price of a portable CT unit weighing 336 kilograms is now £123,000, as opposed to 

a machine with special climate controlled housing requirements, weighing 7,000 

kilograms, and costing £740,000. Apart from the recent appearance of portable CT units 

like the CereTom (NeuroLogica Corporation, 2007), CT scanners have been stationary. 

The cost of automated laser scanning systems as stipulated by Subke (2005) may 

approach the cost of a portable CT machine. 

 

The strength of CT scans for analysis and restoration of fractured bone - and hence it's 

extensive use in maxillofacial surgery - lies in the clarity of detail generated by the 

ability to render internal morphologies as well as exterior surfaces (Galantucci, et al., 

2006).  CT scans penetrate through an object with x-ray, providing a single volumetric 

presentation without the interference of unwanted coordinate repression. CT scans have 

proven their accuracy as morphometric tools in paleoanthropology and in model 

replication (Zollikofer, et al., 1998). The reconstruction of an archaeological skull 

provides an example of how CT scans can be used to control accuracy during the 

rebuilding process. An industrial CT unit scanned the petrosal portion of the Le 

Moustier 1 temporal bones, producing 0.5 mm slices with a resolution of 0.1 mm within 

each slice. The preserved semicircular canals were then oriented to an angle +/- 45 

degrees relative to the sagittal plane, correctly positioning the temporal bones in their 

lateral inclination and controlling the breadth of the cranial base and the upper cranial 

vault (Ponce de Leon and Zollikofer, 1999). 

 

Determining the lateral inclination of the temporal bones in 3D is difficult because 

without the maximum and minimum ‘lock’ affect (perceived by eye and hand) which is 

provided by physical fragments as they are manipulated one against the other, the 
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temporal bone’s many articulations (if misaligned) can change the appearance (width 

primarily) of the cheek, the upper jaw, the temporal, and upper cranial vault area. When 

the posterior elements of the sphenoid or the anterior, oblique, and inferior elements of 

the occipital bone were absent or degraded in the image, the author found positioning 

temporal bone fragments without some other source of alignment (such as the interior 

semicircular canals) tended to be a prime source of error propagation, and that their 

incorrect lateral inclination within the restoration was a common cause of having to 

backtrack and start afresh. 

 

 

Using the scanner 

Scanning action was trial and error. A scanning movement which facilitated a 

reasonable translation of the morphology of one fragment failed to work on another 

piece very similar in shape and size. With practice, the angles at which the laser was 

less likely to generate incorrect information became easier to anticipate; the laser's 

tolerance for perspective was difficult to predict however. It is difficult to reconcile the 

needs and likes of the laser with maintaining consistency of arm speed and body 

position. In contrast, stationary laser units with rotating platforms and automated arms 

ensuring continuous speed and smooth movement of the light beam traversing an object 

do not produce inconsistencies inherent in human hand-eye coordination (Galantucci, et 

al., 2006). 

 

A second method of generating images with the hand held laser is possible; a small 

receiver (approximately 23 x 29 x 15 mm) is attached to the object to be scanned, 

allowing the object to be moved in between sweeps (Polhemus, 2007). The freedom to 

move the object means it can be scanned from all sides, which is not possible using the 
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larger receiver. The small receiver must be attached securely to the object so that it does 

not move when the object is turned or inverted. This can be done with a rubber band, 

tightly applied, or by squeezing a temporary adhesive between box and bone. Evidence 

of the small receiver itself can be erased by ticking a specific command on a subsequent 

sweep. Any evidence of the rubber band or adhesive material cannot be erased in the 

compensatory sweep, and must either be left in the image or removed ('scrubbed') from 

the image in FreeForm. The smaller the fragments, the more difficult the placement of 

the receiver on the bone – successful attachment is therefore variable. If the fragment is 

smaller than the receiver, this technique is not possible. 

 

 

Computer aided re-assembly 

Core elements which make FreeForm modelling useful for virtual skull re-assembly - 

the freedom to move pieces without gravity,  to re-start a restoration without time 

wasted separating and re-adhering pieces, to 'handle' objects virtually thus avoiding 

damaging specimens, to dematerialise fragments temporarily for visual access to inspect 

formerly joined fractures  – all work well. But the wizardry of 3D virtual mechanics is 

not in itself sufficient. Good representations of the corresponding physical pieces to be 

re-assembled are critical. Degraded or distorted models impair re-assembly accuracy, 

and this is why an analysis of the efficacy of 3D computer assisted restoration is 

impossible to separate from the discussion about the 3D-DM produced in laser 

scanning.  

 

The landscape observed while navigating the interior image of a skull under restoration 

in FreeForm is more like the twisted and melted girders of a bombed building than the 

meticulous detailed morphology of a cranium (fig 85).  
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Figure 85: Interior view of cranium in Freeform. 

 

 

 

Structures normally recognised (even fragmented) in physical reality become 

unrecognizable. Swooping through a zygomatic arch like a miniaturised intergalactic 

pilot is exhilarating as one becomes aware this is a unique view afforded by a new 

technology. But novelty quickly turns to frustration as it becomes obvious that neither 

the laser scanner nor Freeform, which acts as a transducer of scanner images, 'see' in the 

same way human eyes see. 

 

The appearance of the 3D models as they manifest in Freeform may indicate a conflict 

between software programs – at least as far as the continuity of model integrity is 

concerned (Wilkinson, 2007). The quality of the Cranium B fragments generated by the 

stationary automated Minolta laser (figure 86) was not much better than the quality of 

scans completed with the hand-held Scorpion. When viewed in Freeform prior to 

processing, large pieces were identifiable but smaller fragments were indistinct in 

outline and reminiscent of melted glass (figure 87) - in fact the majority of the smallest 
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pieces were so difficult to identify they were left out of the final restoration. In an 

attempt to improve quality, the images were repeatedly re-imported and the functions of 

“fill holes” or “thicken” (Freeform Users Guide) altered during processing to see which 

level and type of formatting would produce more discernable detail. B fragments were 

eventually transformed into .cly flies at 30% resolution using the fill holes category 

(figure 93). 

 

 

 

 
Fig 86: Cranium B small fragments prior to Freeform processing. 

 
Automated scan images  

 

 

 

 
Fig 87: Cranium B small fragments after Freeform processing. 

 

Automated scan images imported to FreeForm at 30% resolution. 

 

 

 

 

30% resolution was a compromise which facilitated manipulation of the 3D-DM in 

Freeform; other levels of resolution presented different effects in fragments appearance 

– none of which were as good as the already poor quality B fragment models in 
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Freeform before conversion to .cly format. This was unexpected – after the difficulties 

procuring decent scans of fragments sets for skull A and C, it was suspected that the 

quality of the automated scan images would be an improvement. That this was not the 

case may be supported by the low accuracy score cranium B exhibited (64 % was < +/- 

2.1 mm error), in spite of having the lowest standard deviation, and the fact that the 

operator had acquired some skill with skulls A and C. 

 

The poor quality of 3D-DM images in this research raises the question whether there are 

particular combinations of software which are not conducive to 3D model production 

for the purpose of computer assisted skull re-assembly - of which the pairing of 

FASTSCAN and Freeform is one. Until further research pairing specific scan 

processing and re-assembly systems are evaluated, multi-stage processing of laser scans 

will be trial and error for each restoration attempted. While it is feasible that the 

Scorpion  scanner and FreeForm modelling may work together better than has been 

demonstrated (limited trials were performed before beginning specimen scanning,  this 

is a weakness of the method employed in this study),  it is also true that Freeform was 

not designed for skull re-assembly – instead the software serves as an adaptation to the 

purpose. 

 

Subke (2005) argues “the control of the precision of a fit of two digitally adjoining 

surfaces is the crucial procedure in the process of the digital reconstruction”.  

Imageware, a CAD software program (Unigraphics Solutions, Germany) provides 

objective quantitative quality control throughout assembly by means of algorithmic 

functions manually or semi-automatically applied as each piece is fitted. The 

Imageware program is partnered with either a one projector/two cameras, or four 

projector/four cameras automated SLT (optical surface measuring) scanning system of 
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more sophistication than the hand held Scorpion. The digitalised models it produces are 

therefore presumably of a quality commensurate with Imageware itself. Manual 

measurement of distance between fracture edges is achieved by choosing points on two 

fragments and measuring the single distance between the two points by algorithmic 

calculation. Semiautomatic measurement involves a geometrical matching algorithm of 

two surface areas whereby the average distance is optimized until the figure reaches a 

minimum. Subke (2005) admits the results of this constant accuracy control are subject 

to the nature of the shape of the interacting surface shapes – the more specific the shape, 

the higher the chances of a precise fit. 

 

So, although in theory an algorithmic ‘docking’ function is ideal for the purpose of 

generating the best accuracy in restoration as possible, there are still two problems. The 

first is the dependence on surface morphology – presumably fragments of the sphenoid, 

edges made of suture projections, or any bone with detailed convexities, concavities, 

and complex angles is going to be less suitable for the algorithmic calculations upon 

which the method relies. A second problem is the difficulty assessing overlap of 

fragment edges which determines the angle at which fracture edges meet (Wilkinson, 

2007). In the mandible, this factor is perhaps the cause of the greatest margin of error in 

restoration – and highlights one of the acknowledged advantages of the classical manual 

method of re-assembly using physical specimens –  an angle of true articulation can be 

felt as well as seen, thereby avoiding the inaccuracies seen in the mandible widths in 

this research. 

 

No statistics on accuracy comparisons are documented by Subke in regard to validating 

the technology advocated. Certainly any function that effectively monitors accuracy of 

re-assembly during the process is likely to offer an improvement over a system that has 
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none. The accuracy of restoration in FreeForm is assessed by submitting the final 

product to another program. How much efficiency and accuracy is lost by not having an 

edge-to-edge detection feature operating continuously during re-assembly? (Subke, 

2005). 

 

 

Measurement in Photoshop 

Mandible width could have been measured between gonial angles, and condyle heads, 

providing additional comparative data. Only mandible D was measured between gonial 

angles It is suspected the correct width between gonial angles is more important (and 

realistic) to a successful facial reconstruction than a width between condyles. The 

appearance of the lower third of a face is more likely to be guided by re-assembling the 

inter-condylar width to correspond with the width of the temporal bone fossae, rather 

than the other way about. The restored height of the mandible anterior body could also 

have been measured in addition to that of the condyle heads. 

 

 Cranial length was measured from the most anterior point on the forehead to the 

occipital protuberance, which disregards the additional length of the facial complex, 

(particularly variance in the degree of prognathism). Again, a measure of length from 

which ever point was most anterior (rhinion or subnasale), would have provided a skull 

as well as a cranial length.  
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Timing 

To a large extent this project served as a training program. The progressive 

improvement in the time required to restore is indicative of skills acquired in the 

process, but does not explain why the accuracy scores for the skulls did not also 

improve. The decrease in the number of times each skull was attempted (from five for 

skull A to once only for skull E), did not have a positive effect on the accuracy of the 

last two skulls. What the author perceived as a reduction in the difficulty of restoration 

(particularly skulls D and E), appears to have had no discernable (and expected) 

correlate improvement on accuracy.  

 

There is no relationship between the number of fragments and time invested in re-

assembly.  Skull A with 30 fragments had a completion time of approximately 50 hours. 

Skull D had 34 fragments, but took only 6.5 approximate hours to complete. The 

difference between 50 hours for skull A and 6 hours for the last skull (E), suggests that 

a true test of the time it takes to use computer assistance for skull re-assembly is 

possible only when the operator has demonstrated a more than adequate ability and 

speed prior to the timed performance 

 

Time allocated for handling computer processing (which in this case included the initial 

naming and classifying, transferring, importing, second processing, renaming, and 

cataloguing of image files), should be incorporated into, and accounted for, in 

projections on the efficacy of computer aided processes (Wilkinson, 2005). Without the 

investiture of time spent doing these tasks, computer assisted processes are not possible. 

A more thorough treatment of time estimation in this study would have included a 

breakdown of time spent on necessary procedures associated with, but not directly 

related to the 3D restoration itself. 
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Fragmentation 

The aim in fracturing was to produce enough pieces to sustain a reasonable test of 

computer-assisted re-assembly processes, not to create so many pieces as to make the 

task excessively labour intensive. There is no discernable relationship between the 

number of fragments and the accuracy results, except perhaps in regard to the 

mandibles, although it is suspected that it is where in the mandible fractures occur as 

much as the number of fragments which may affect levels of restoration accuracy. This 

is because the morphology of the posterosuperior portion of the mandible incorporates 

multiple contradictory angles in close proximity to one another.  This is bourn out by 

the consistency with which the condylar process and the condyle mandible heads were 

outside the bounds of deviation tolerances or demonstrate poor alignment scores. It is 

further supported by the operator’s experience that the intact mandible is also one of the 

most difficult bones to scan. 

 

The degree to which the facial bones of the four skulls resisted fracture (and were 

therefore easier to articulate with the vault and basicranium), was a positive contributing 

factor to restoration. Although the only cranium without a transection line (A) had the 

second lowest accuracy score (56% < +/- 2.1 mm error), it is felt the effect of 

transection created an instrumental guide to the placement of vault fragments, 

superiorly, laterally, and posteriorly, which may have been greater than if the cranium 

had not been transected. The semi-straight line incised by the stryker saw during 

autopsy provided a clear orientation of 'up' and 'down' for those pieces superior and 

inferior to the transection (parietal, frontal, and occipital bone). 

 

 

 



  113   

CONCLUSIONS 

 
 

These results demonstrate that computer assisted skull re-assembly techniques can 

produce acceptable and reasonable degrees of accuracy. Results are predicated upon the 

veracity of images captured and processed by surface laser scanners, the ability of the 

operator and the efficacy of the Freeform modelling program itself.  

 

Maximization of CAD potential in the context of the research aims relied on the 

appropriate pairing of computer hardware and software programs; it may only be fully 

realised by the adoption (and continued development) of two complementary and 

current, but not most commonly used technologies: 

1) multi-camera, multi-laser, stationary automated laser scanners (optical surface 

measuring) or computed tomography (radiology) for image production; 

2) a program specifically created for skull re-assembly which incorporates some 

function of a constant determination of the distance either between two 

localised surface points or between two neighbouring sectors of surfaces as is 

offered in some CAD surfacing software. Such algorithmic 'docking' may 

quantifiably support the visual control which initiates assembly.   

    

Several things are also surmised indirectly from the results: 

1) operator ability may compensate (though not to a known amount) for a lack of 

3D-DM clarity and the absence of a semi-automated edge-to-edge control 

mechanism during restoration in the case of experienced practitioners. 

2) Complete removal of subjectivity in impossible in computer aided techniques, 

the implementation of the technology itemised above may effectively reduce 

the unnecessary subjectivity arising from poor image quality, possible 

processing conflicts, and the absence of intra-assembly accuracy control.  
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3) Novice training in hand held laser scanning should consist of 50-100 hours, and 

training in CAD re-assembly in the range of 250 hours. This experientially 

based estimate multiplies the approximate 50 hours spent on the first skull re-

assembled in the research by 5 (skulls). 

4) Approximations made on the time required to complete CAD skull re-assembly 

is inconclusive – because the sample size is too small and because the level of 

training in computer processes was insufficient for testing of time parameters.     

 

The practical aims as outlined – laser scanning, computer aided re-assembly, 

quantification of restoration accuracy, a secondary assessment using superimposition, 

and proportional comparison measurements in Photoshop, and a qualification of 

productivity in computer assisted image capture and skull re-assembly were achieved.  

 

The strongest implication which arises from this work is that more thorough and far 

reaching research is required to adequately test the accuracy of computer assisted skull 

re-assembly. The pairing of software processing is particularly important to investigate, 

as are comparisons of CAD skull re-assembly using images created by CT, with re-

assembly with images produced by stationary, automated lasers and hand held laser 

scanners. The relationship between image quality and programs used for 3D 

manipulation must be clearly delineated and compared relative to the quantified 

accuracy of the final product of those combined technologies.    

 

The contribution to the field of human identification by this research is modest. It does 

serve to highlight techniques employed in skull restoration which are underwritten by 

computers, software, and instruments which purport to deliver an objectivity and 

efficacy which is to date, largely untested. Though affected by myriad changes in 
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scanning methods and inconsistencies in aspects of proportional measurements, the 

exploration of parameters for the hand held laser, and an  experiential account of novice 

training are more than has been previously documented.  

 

Directions for Further research should include:  

1) using an automated multi-camera, multi-laser system for image capture to the 

same end of quantified skull restoration; 

2) employing CT scans for the same exercise; 

3) testing for compatibility and comparability between program software; 

4) testing CAD programs like Imageware in comparable methods and manner. 

 

The suggested modifications to repetition of this research include: 

1) a larger sample size – minimum of 20 skulls; 

2) if the same type of hand held laser was to be used, setting up the laser 

equipment per the recommendation of the manual so that no metal was within 

three feet of the operating unit; 

3) ensure software and hardware are appropriately matched; 

4) prepare for re-assembly by following recommended guidelines and running pre-

research trials on general and specific ability levels; 

5) complete facial reconstructions on a minimum of half the total sample size in 

order to imitate the forensic circumstances which normally accompany the need 

for and use of skull re-assembly; 

6) establish sound secondary assessment processes (set relevant and consistent 

protocols for craniometry points for example).   
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Appendix 2 

 
Summary of shell deviations for craniums A-E. 

 

 
 

 

 

Summary of shell deviations for mandibles A-E. 

 

mandible A B C D E 

average +/- 

deviation (mm) 

 

1.3 / - 2.5 

 

+1 /-1 1.7 / -2.3 1.4 /-1.6 1 /-1.8 

standard 

deviation (mm) 
2.4 1.6 2.6 2 2 

% within 

+/- 2.1 mm 
66 88 66 82 77 

% between 

+/- 2.1 and +/- 5.3  

mm 

31 12 31 17 22 

% between 

+/- 5.3 and +/- 10 

mm 

3 0.2 3 1 1 

% outside 

maximum and 

minimum tolerance 

0 0 0 0 0 

 

(Numbers are rounded to the nearest decimal) 

 

cranium       A B C D E 

average +/- 

deviation (mm) 

 

+3 /-2.8 

 

+1.4/ -2.6 

 

+2.3/ -2 

 

3.5 /-2.9 

 

3 /-2.3 

standard 

deviation (mm) 

 

3.7 

 

2.8 

 

3 

 

4 

 

3.5 

% within 

+/- 2.1 mm 

 

56 

 

64 

 

70 

 

54 

 

64 

% between 

+/- 2.1 and +/- 5.3  

mm 

 

31.5 

 

24 

 

23.5 

 

29 

 

25 

% between 

+/- 5.3 and +/- 10 

mm 

 

12 

 

11.5 

 

6 

 

17 

 

11 

% outside 

maximum and 

minimum tolerance 

 

0 

 

0 

 

0 

 

0 

 

0 
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Appendix 3 

 
Cranium A shell deviation tables. 

 

Reference Model skull A cranium 

Test Model # skull A 

# Data Points 560927 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 9.200 

Max Dev - -9.200 

Average +/- 3.153 / -2.765 

Std Dev 3.715 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 4037 0.720 

-8.417 -6.833 12574 2.242 

-6.833 -5.250 26560 4.735 

-5.250 -3.667 37723 6.725 

-3.667 -2.083 52293 9.323 

-2.083 -0.500 98413 17.545 

-0.500 0.500 62750 11.187 

0.500 2.083 90091 16.061 

2.083 3.667 64489 11.497 

3.667 5.250 54927 9.792 

5.250 6.833 31827 5.674 

6.833 8.417 18676 3.329 

8.417 10.000 6567 1.171 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 0 0.000 

-2 * Std Dev 35732 6.370 

-1 * Std Dev 107703 19.201 

1 * Std Dev 229779 40.964 

2 * Std Dev 138541 24.699 

3 * Std Dev 49172 8.766 

4 * Std Dev 0 0.000 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Cranium A shell deviation maps 
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Cranium A standard deviations 

 

 
 

 

 

 

Cranium A deviation distribution. 

 

 
 

Vertical axis = percentage; 

horizontal axis = millimetres 
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Cranium A annotated map and table. 

 

 

 

 

 
Name Dev Ref X Ref Y Ref Z Dev 

Radius 

Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 -4.566 44.864 67.839 -12.504 1.000 -3.484 -1.568 -2.501 41.381 66.271 -15.005 

A002 -7.006 64.117 27.854 -61.974 1.000 -6.216 2.217 -2.353 57.901 30.071 -64.328 

A003 -1.577 53.380 -3.060 -17.370 1.000 -1.430 -0.359 -0.559 51.949 -3.419 -17.929 

A004 -2.771 27.649 -14.352 -8.004 1.000 -0.500 1.079 -2.502 27.149 -13.274 -10.507 

A005 -1.499 11.543 -44.341 9.765 1.000 -0.624 -0.044 -1.363 10.919 -44.386 8.403 

A006 1.935 8.767 -28.421 3.675 1.000 0.618 0.859 1.620 9.385 -27.562 5.295 

A007 1.562 23.391 14.711 -156.845 1.000 -0.607 0.471 1.360 22.783 15.182 -155.486 

A008 0.283 38.756 18.413 -26.546 1.000 -0.175 0.015 0.222 38.580 18.428 -26.324 

A009 -3.690 40.236 88.758 -28.749 1.000 -1.999 -2.628 -1.646 38.237 86.129 -30.395 

A010 -1.153 -37.142 75.799 -6.072 1.000 0.692 -0.658 -0.646 -36.450 75.141 -6.718 

A011 0.397 -64.725 70.431 -52.469 1.000 -0.383 0.063 0.084 -65.108 70.494 -52.385 

A012 0.766 -65.095 61.360 -52.731 1.000 -0.734 -0.043 0.214 -65.829 61.317 -52.517 

A013 -0.455 -29.553 19.339 -154.224 1.000 -0.157 -0.151 -0.399 -29.710 19.188 -154.624 

A014 -2.390 -31.589 -10.465 -5.812 1.000 -0.524 1.370 -1.887 -32.113 -9.095 -7.699 

A015 -1.057 -12.522 -36.011 9.379 1.000 0.363 0.137 -0.984 -12.159 -35.875 8.395 

 

Units: mm 
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Mandible A shell deviation tables. 

 

 
Reference Model skull A mand 

Test Model # mand 

# Data Points 146726 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 5.700 

Max Dev - -5.700 

Average +/- 1.316 / -2.497 

Std Dev 2.446 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 0 0.000 

-8.417 -6.833 0 0.000 

-6.833 -5.250 4875 3.323 

-5.250 -3.667 17946 12.231 

-3.667 -2.083 20526 13.989 

-2.083 -0.500 23337 15.905 

-0.500 0.500 33334 22.719 

0.500 2.083 32902 22.424 

2.083 3.667 7335 4.999 

3.667 5.250 5271 3.592 

5.250 6.833 1200 0.818 

6.833 8.417 0 0.000 

8.417 10.000 0 0.000 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 0 0.000 

-2 * Std Dev 22807 15.544 

-1 * Std Dev 32880 22.409 

1 * Std Dev 69013 47.035 

2 * Std Dev 15565 10.608 

3 * Std Dev 6461 4.403 

4 * Std Dev 0 0.000 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Mandible A shell deviation maps. 
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Mandible A annotated map and deviation table. 

 

 

 
 

 

 
Name Dev Ref X Ref Y Ref Z Dev 

Radius 

Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 
0.758 45.472 -11.623 -69.093 1.000 -0.326 0.042 0.683 45.146 -11.581 -68.409 

A002 
-0.161 33.868 -39.581 -45.398 1.000 0.068 -0.038 -0.141 33.936 -39.619 -45.539 

A003 -1.640 43.104 -58.427 -64.729 1.000 -1.490 -0.290 -0.620 41.613 -58.717 -65.349 

A004 0.660 28.322 -62.555 -33.854 1.000 0.505 0.087 0.415 28.827 -62.468 -33.438 

A005 0.353 13.055 -82.851 -14.363 1.000 0.166 0.155 0.270 13.221 -82.697 -14.093 

A006 -1.129 -1.079 -73.418 -7.498 1.000 0.100 0.179 -1.111 -0.979 -73.238 -8.608 

A007 -4.690 -22.160 -64.628 -17.867 1.000 3.506 1.100 -2.914 -18.654 -63.529 -20.781 

A008 -3.261 -10.670 -63.243 -4.016 1.000 1.867 -0.473 -2.632 -8.803 -63.716 -6.648 

 

Units: mm. 
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Mandible A standard deviations 

 

 
 

 

                        

 

 

 

 

 

Mandible A deviation distribution 

 

 
. 

 

 
Vertical axis = percentage; 

horizontal axis = millimetres 
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Skull A comparison and superimposition. 

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Lower image = after restoration 

 

 

 

 

 

 



137  

Appendix 4 
Cranium B shell deviation tables. 

 

Reference Model skull B cranium 

Test Model # skull B cranium 

# Data Points 146542 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 9.291 

Max Dev - -9.300 

Average +/- 1.431 / -2.572 

Std Dev 2.842 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 2495 1.703 

-8.417 -6.833 5630 3.842 

-6.833 -5.250 7556 5.156 

-5.250 -3.667 13269 9.055 

-3.667 -2.083 18683 12.749 

-2.083 -0.500 37014 25.258 

-0.500 0.500 37939 25.890 

0.500 2.083 14772 10.080 

2.083 3.667 4433 3.025 

3.667 5.250 2261 1.543 

5.250 6.833 1292 0.882 

6.833 8.417 856 0.584 

8.417 10.000 342 0.233 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 7133 4.868 

-2 * Std Dev 15536 10.602 

-1 * Std Dev 36805 25.116 

1 * Std Dev 75053 51.216 

2 * Std Dev 8264 5.639 

3 * Std Dev 2710 1.849 

4 * Std Dev 1041 0.710 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Cranium B shell deviation maps. 
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Cranium B annotated map and deviation table 

 

 

 

 

  

Name Dev Ref X Ref Y Ref Z 
Dev 

Radius 
Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 -1.366 17.888 53.407 -4.885 1.000 -0.232 0.136 -1.339 17.656 53.543 -6.225 

A002 -2.540 47.239 39.694 -14.760 1.000 -1.607 -0.375 -1.931 45.631 39.319 -16.691 

A003 -4.821 38.301 31.893 -8.078 1.000 -1.613 1.919 -4.118 36.688 33.812 -12.196 

A004 -9.274 51.604 25.718 -14.505 1.000 -5.018 -1.466 -7.661 46.586 24.252 -22.166 

A005 7.120 34.946 12.352 -47.650 1.000 -4.851 1.533 4.981 30.096 13.885 -42.668 

A006 -6.412 51.130 -24.591 -27.105 1.000 -4.224 1.363 -4.627 46.905 -23.227 -31.731 

A007 -1.356 27.740 -23.123 -19.378 1.000 -0.916 0.139 -0.991 26.824 -22.984 -20.369 

A008 0.735 30.884 -46.749 -34.019 1.000 0.450 -0.116 0.570 31.334 -46.865 -33.449 

A009 0.266 13.946 -33.983 -10.230 1.000 0.116 0.038 0.237 14.063 -33.945 -9.993 

A010 -0.219 43.783 83.224 -31.980 1.000 -0.132 -0.135 -0.110 43.651 83.090 -32.090 

A011 0.879 -34.634 57.108 -11.807 1.000 -0.469 0.082 0.739 -35.102 57.190 -11.068 

A012 -2.738 -66.426 24.922 -67.617 1.000 2.492 0.340 -1.082 -63.934 25.263 -68.699 

A013 -3.015 -45.212 26.138 -12.453 1.000 1.602 -0.120 -2.551 -43.611 26.018 -15.004 

A014 -4.183 -54.277 -6.879 -28.486 1.000 3.121 -0.528 -2.735 -51.156 -7.407 -31.221 

A015 5.356 -26.678 -27.783 -22.956 1.000 -2.568 -2.280 4.110 -29.246 -30.063 -18.846 

A016 7.366 -27.015 -47.691 -29.451 1.000 1.622 -1.213 7.082 -25.393 -48.904 -22.368 

A017 1.277 -41.696 7.937 -27.816 1.000 1.138 0.225 0.534 -40.558 8.163 -27.283 

Units = mm. 
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Cranium B standard deviations 

 

 
. 

 

 

 

 

 

 

 

Cranium B deviation distribution. 

 

 
 

 

 
Vertical axis = percentage; 

horizontal axis = millimetres 
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Mandible B shell deviation tables. 

 

 
Reference Model skull B mand 

Test Model # skull b mandible 

# Data Points 41905 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 5.831 

Max Dev - -6.299 

Average +/- 0.971 / -1.158 

Std Dev 1.617 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 0 0.000 

-8.417 -6.833 0 0.000 

-6.833 -5.250 82 0.196 

-5.250 -3.667 1022 2.439 

-3.667 -2.083 3107 7.414 

-2.083 -0.500 5529 13.194 

-0.500 0.500 21975 52.440 

0.500 2.083 5923 14.134 

2.083 3.667 3315 7.911 

3.667 5.250 910 2.172 

5.250 6.833 42 0.100 

6.833 8.417 0 0.000 

8.417 10.000 0 0.000 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 51 0.122 

-3 * Std Dev 584 1.394 

-2 * Std Dev 2891 6.899 

-1 * Std Dev 4276 10.204 

1 * Std Dev 26191 62.501 

2 * Std Dev 4369 10.426 

3 * Std Dev 3090 7.374 

4 * Std Dev 447 1.067 

5 * Std Dev 6 0.014 

6 * Std Dev 0 0.000 
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Mandible B shell deviation maps. 
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Mandible B annotated map and deviation table. 

 

 

 
 

 

Name Dev Ref X Ref Y Ref Z 
Dev 

Radius 
Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 3.011 38.865 -47.402 -52.261 1.000 -1.175 1.478 2.346 37.691 -45.924 -49.915 

A002 2.572 50.719 -14.956 -83.043 1.000 -0.253 0.507 2.508 50.466 -14.448 -80.535 

A003 -3.384 49.582 -39.182 -63.883 1.000 -3.118 0.011 -1.315 46.464 -39.171 -65.198 

A004 -1.569 41.536 -67.990 -43.357 1.000 -1.485 -0.101 -0.498 40.052 -68.091 -43.855 

A005 1.290 31.480 -65.642 -34.994 1.000 0.485 0.990 0.669 31.965 -64.652 -34.325 

A006 -0.108 21.194 -81.845 -11.020 1.000 -0.076 -0.023 -0.074 21.118 -81.868 -11.094 

A007 1.224 11.190 -67.016 -5.203 1.000 0.431 -0.447 1.055 11.621 -67.463 -4.148 

A008 1.321 -9.770 -58.397 -1.977 1.000 0.398 0.166 1.248 -9.373 -58.230 -0.729 

A009 -0.961 -21.520 -65.239 -14.128 1.000 0.756 -0.090 -0.586 -20.764 -65.330 -14.714 

A010 0.006 -44.173 -63.981 -35.060 1.000 -0.006 0.001 0.002 -44.179 -63.980 -35.058 

A011 -0.693 -46.232 -40.568 -43.280 1.000 0.538 -0.007 -0.437 -45.694 -40.575 -43.717 

A012 1.098 -54.073 -12.625 -73.609 1.000 -0.169 -0.295 1.044 -54.241 -12.920 -72.565 

A013 4.472 49.901 -17.791 -83.583 1.000 0.020 -1.664 4.151 49.920 -19.454 -79.432 

 

Units: mm
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Mandible B standard deviations 
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Mandible B deviation distribution. 

 

 
 

 

 
Vertical axis = percentage; 

 horizontal = millimetres 
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Skull  B comparison and superimposition. 

 

 

.  

 
Cream = before restoration; grey = after restoration 

 

 

 

 

 

 

 
Bottom position = after restoration                               Cream = before restoration;  

                                                                                           grey = after restoration 
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Appendix 5 
 

Cranium C shell deviation tables 

 

Reference Model skull C cranium 10 

Test Model #SkelC 

# Data Points 537325 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 8.500 

Max Dev - -8.500 

Average +/- 2.334 / -2.050 

Std Dev 2.916 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 300 0.056 

-8.417 -6.833 8084 1.504 

-6.833 -5.250 14503 2.699 

-5.250 -3.667 24315 4.525 

-3.667 -2.083 53524 9.961 

-2.083 -0.500 123631 23.009 

-0.500 0.500 97135 18.078 

0.500 2.083 102396 19.057 

2.083 3.667 54605 10.162 

3.667 5.250 29811 5.548 

5.250 6.833 18442 3.432 

6.833 8.417 10172 1.893 

8.417 10.000 407 0.076 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 5522 1.028 

-2 * Std Dev 28921 5.382 

-1 * Std Dev 103465 19.256 

1 * Std Dev 253893 47.251 

2 * Std Dev 101877 18.960 

3 * Std Dev 36659 6.823 

4 * Std Dev 6988 1.301 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Cranium C shell deviation maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 149  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 150  

 

 

 

 

 

 

 

 

 

 

 



 151  

 

 

 

 

 

Cranium C standard deviations. 

 

 
 

 

 

 

 

 

 

 

Cranium C deviation distribution. 

 

 
 

 

 
Vertical axis = percentage; 

horizontal axis = millimetres 
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Mandible C shell deviation tables. 

 

 
Reference Model skull C mand 

Test Model # mand C 

# Data Points 85267 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 5.797 

Max Dev - -5.799 

Average +/- 1.673 / -2.286 

Std Dev 2.640 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 0 0.000 

-8.417 -6.833 0 0.000 

-6.833 -5.250 2753 3.229 

-5.250 -3.667 9243 10.840 

-3.667 -2.083 9754 11.439 

-2.083 -0.500 10948 12.840 

-0.500 0.500 25181 29.532 

0.500 2.083 13839 16.230 

2.083 3.667 6025 7.066 

3.667 5.250 6072 7.121 

5.250 6.833 1452 1.703 

6.833 8.417 0 0.000 

8.417 10.000 0 0.000 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 0 0.000 

-2 * Std Dev 10214 11.979 

-1 * Std Dev 15659 18.365 

1 * Std Dev 42747 50.133 

2 * Std Dev 10266 12.040 

3 * Std Dev 6381 7.484 

4 * Std Dev 0 0.000 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Mandible C shell deviation maps. 
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Mandible C annotated map and deviation table 

 

 
 

 

Name Dev Ref X Ref Y Ref Z 
Dev 

Radius 
Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 0.035 4.176 -70.654 -8.409 1.000 -0.009 0.004 0.033 4.168 -70.650 -8.376 

A002 -1.898 26.191 -57.447 -21.045 1.000 -1.417 -0.139 -1.254 24.774 -57.586 -22.299 

A003 -4.706 39.441 -38.530 -41.611 1.000 -1.692 -0.910 -4.296 37.749 -39.441 -45.907 

A004 2.051 38.263 -24.523 -44.494 1.000 -1.869 0.281 0.796 36.394 -24.242 -43.699 

A005 -0.489 -15.807 -77.322 -20.019 1.000 0.349 0.115 -0.322 -15.457 -77.207 -20.341 

A006 -0.345 -30.150 -50.187 -29.979 1.000 0.083 -0.116 -0.314 -30.067 -50.303 -30.293 

A007 -2.335 -45.394 -15.226 -43.302 1.000 2.041 -0.039 -1.135 -43.353 -15.264 -44.437 

A008 -1.441 -50.958 4.973 -50.045 1.000 -0.216 -0.668 -1.258 -51.174 4.305 -51.303 

 

Units: mm. 
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Mandible C standard deviations. 

 

 
 

 

 

 

 

Mandible C deviation distribution 

 

 
. 

 
Vertical axis = percentage; 

horizontal axis = millimetres 
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Skull C comparison and superimposition. 

 

 

 

 

 

 
Cream = before restoration; grey = after restoration. 

 

 

 

 

 

 

 
 

Lower image = after restoration 
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Cream = before restoration; grey = after restoration 

 

 

 

 

 

 
 

 

 
 

Bottom position = after restoration 
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Appendix 6 
 

Cranium D shell deviation tables 

 
Reference Model skull D cranium 

Test Model # Skull D cranium 

# Data Points 1020236 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 9.400 

Max Dev - -9.400 

Average +/- 3.544 / -2.940 

Std Dev 4.119 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 19606 1.922 

-8.417 -6.833 29914 2.932 

-6.833 -5.250 40876 4.007 

-5.250 -3.667 58193 5.704 

-3.667 -2.083 84127 8.246 

-2.083 -0.500 161006 15.781 

-0.500 0.500 123282 12.084 

0.500 2.083 151458 14.845 

2.083 3.667 113622 11.137 

3.667 5.250 87766 8.603 

5.250 6.833 67260 6.593 

6.833 8.417 53217 5.216 

8.417 10.000 29909 2.932 

 

Out of Max Tol + 0 0.000 

COut of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 0 0.000 

-2 * Std Dev 63988 6.272 

-1 * Std Dev 170358 16.698 

1 * Std Dev 432064 42.349 

2 * Std Dev 244400 23.955 

3 * Std Dev 109426 10.726 

4 * Std Dev 0 0.000 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Cranium D shell deviation maps. 
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Cranium D annotated map and deviation table. 

 

 

 

 

   

Name Dev Ref X Ref Y Ref Z 
Dev 

Radius 
Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 -0.707 -2.295 73.230 5.134 1.000 0.007 -0.323 -0.629 -2.288 72.907 4.505 

A002 -7.995 -0.826 47.609 10.937 1.000 -0.316 -0.556 -7.969 -1.141 47.052 2.968 

A003 -7.507 30.209 46.351 3.398 1.000 -4.144 -1.807 -5.993 26.065 44.544 -2.596 

A004 8.775 24.464 26.889 -150.649 1.000 -6.184 0.129 6.224 18.280 27.018 -144.425 

A005 -1.576 33.503 -12.178 -8.293 1.000 -0.342 0.783 -1.324 33.161 -11.396 -9.617 

A006 1.092 9.566 -35.260 4.078 1.000 0.441 0.441 0.896 10.007 -34.819 4.975 

A007 0.208 -45.668 -8.114 -1.831 1.000 -0.070 -0.070 0.183 -45.738 -8.184 -1.648 

A008 2.630 -42.888 17.399 -152.202 1.000 1.908 0.694 1.671 -40.980 18.093 -150.531 

A009 -4.973 -34.282 45.709 5.040 1.000 2.532 -1.003 -4.161 -31.750 44.707 0.879 

A010 -0.709 -39.790 71.072 -8.262 1.000 0.479 -0.286 -0.438 -39.311 70.786 -8.700 

A011 0.664 -18.321 -43.428 7.936 1.000 -0.434 -0.100 0.492 -18.755 -43.528 8.428 

 

Units: mm. 
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Cranium D standard deviations. 

 

 
 

 

 

 

 

 

 

 

 
Cranium D deviation distribution. 

 

 
 

Vertical axis = percentage; 

horizontal axis = millimetres. 
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Mandible D shell deviation tables. 

 

 
Reference Model skull D mand 

Test Model # skull D-final mandible 

# Data Points 186879 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 5.498 

Max Dev - -5.500 

Average +/- 1.393 / -1.607 

Std Dev 1.992 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 0 0.000 

-8.417 -6.833 0 0.000 

-6.833 -5.250 1401 0.750 

-5.250 -3.667 10438 5.585 

-3.667 -2.083 15353 8.215 

-2.083 -0.500 48918 26.176 

-0.500 0.500 44138 23.618 

0.500 2.083 47196 25.255 

2.083 3.667 12626 6.756 

3.667 5.250 6506 3.481 

5.250 6.833 303 0.162 

6.833 8.417 0 0.000 

8.417 10.000 0 0.000 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 3144 1.682 

-2 * Std Dev 13955 7.467 

-1 * Std Dev 35873 19.196 

1 * Std Dev 87388 46.762 

2 * Std Dev 34891 18.670 

3 * Std Dev 10790 5.774 

4 * Std Dev 838 0.448 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Mandible D shell deviation maps. 
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Mandible D annotated map and deviation table 

 

 

 
 

 

Name Dev Ref X Ref Y Ref Z 
Dev 

Radius 
Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 1.240 -34.741 -72.284 -27.048 1.000 -0.852 0.269 0.859 -35.593 -72.015 -26.189 

A002 -0.018 -40.041 -54.562 -39.009 1.000 -0.000 -0.009 -0.016 -40.042 -54.571 -39.025 

A003 3.572 -56.965 -14.051 -65.544 1.000 -2.807 -0.876 2.028 -59.771 -14.927 -63.516 

A004 -0.822 -49.096 -45.219 -46.926 1.000 0.751 0.136 -0.304 -48.345 -45.083 -47.230 

A005 2.439 -21.232 -78.893 -14.687 1.000 -1.446 -1.116 1.615 -22.679 -80.009 -13.071 

A006 -1.878 45.777 -7.566 -73.596 1.000 0.023 -0.175 -1.870 45.800 -7.741 -75.466 

A007 -3.956 42.410 -23.064 -64.758 1.000 3.120 -1.987 -1.401 45.531 -25.051 -66.159 

A008 -2.266 36.800 -41.308 -53.702 1.000 1.533 -0.604 -1.556 38.333 -41.913 -55.258 

A009 2.128 25.910 -62.338 -20.915 1.000 1.783 -0.531 1.033 27.693 -62.870 -19.881 

A010 0.240 27.301 -82.937 -28.846 1.000 0.191 -0.081 0.121 27.492 -83.018 -28.725 

A011 1.507 -10.004 -92.540 -14.784 1.000 -0.445 -0.548 1.331 -10.450 -93.088 -13.452 

A012 -1.106 4.106 -74.700 -1.011 1.000 0.107 0.779 -0.778 4.214 -73.920 -1.789 

A013 -1.156 8.953 -93.239 -15.756 1.000 -0.593 0.106 -0.987 8.359 -93.133 -16.743 

A014 -1.767 5.304 -90.988 -13.337 1.000 -0.821 0.138 -1.558 4.483 -90.850 -14.895 

 

Units: mm. 
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Mandible D standard deviations 

 

 
. 

 
 

 

 

 

 

 

 

 

Mandible D deviation distribution. 

 

 
 

 
Vertical axis = percentage; 

horizontal axis = millimetres 
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Skull D comparison and superimposition 

 

 

 
 

 

 

 
 

 
 

Lower image = after restoration         Cream = before restoration; grey = after restoration. 
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Appendix 7 
 

Cranium E shell deviation tables 

 
Reference Model skull E cranium 

Test Model # cranium 

# Data Points 459073 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 9.200 

Max Dev - -9.200 

Average +/- 2.931 / -2.287 

Std Dev 3.482 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 3365 0.733 

-8.417 -6.833 8757 1.908 

-6.833 -5.250 12525 2.728 

-5.250 -3.667 21574 4.699 

-3.667 -2.083 38363 8.357 

-2.083 -0.500 84225 18.347 

-0.500 0.500 78581 17.117 

0.500 2.083 81991 17.860 

2.083 3.667 47577 10.364 

3.667 5.250 33725 7.346 

5.250 6.833 23703 5.163 

6.833 8.417 17399 3.790 

8.417 10.000 7288 1.588 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 2097 0.457 

-2 * Std Dev 22843 4.976 

-1 * Std Dev 72436 15.779 

1 * Std Dev 218431 47.581 

2 * Std Dev 94375 20.558 

3 * Std Dev 44439 9.680 

4 * Std Dev 4452 0.970 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Cranium E shell deviation maps. 
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Cranium E annotated map and deviation table. 

 

 

 

 
Name Dev Ref X Ref Y Ref Z Dev 

Radius 

Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 0.036 -5.389 80.494 0.089 1.000 -0.002 -440.021 0.029 -5.391 80.515 0.118 

A002 0.868 -1.350 105.040 -28.853 1.000 0.047 0.767 0.404 -1.303 105.807 -28.449 

A003 -1.058 19.044 58.031 8.780 1.000 -0.203 -0.036 -1.038 18.841 57.996 7.742 

A004 -5.649 19.214 35.747 8.824 1.000 -1.110 3.449 -4.335 18.104 39.196 4.489 

A005 -0.907 34.499 15.720 -21.280 1.000 0.610 -0.086 -0.666 35.108 15.634 -21.946 

A006 6.857 22.335 11.446 -153.287 1.000 -3.452 3.634 4.679 18.883 15.079 -148.608 

A007 0.261 41.348 -7.914 -7.183 1.000 0.108 -0.093 0.219 41.456 -8.007 -6.965 

A008 0.890 24.381 -11.312 -7.232 1.000 0.370 -0.515 0.624 24.751 -11.827 -6.608 

A009 0.158 10.147 -29.675 5.215 1.000 0.054 0.016 0.147 10.201 -29.658 5.363 

A010 -0.763 -25.795 -29.209 -10.294 1.000 0.672 -0.087 -0.350 -25.123 -29.297 -10.645 

A011 0.895 -37.974 -12.708 -4.978 1.000 -0.076 -0.607 0.654 -38.050 -13.315 -4.324 

A012 0.493 -45.705 21.187 -7.839 1.000 0.436 0.004 0.230 -45.269 21.191 -7.609 

A013 1.135 -63.002 51.431 -48.468 1.000 -1.055 -0.048 0.416 -64.057 51.383 -48.053 

A014 -6.905 -17.303 39.162 11.721 1.000 2.071 1.341 -6.450 -15.233 40.503 5.271 

A015 0.575 -47.029 87.295 -30.437 1.000 -0.374 0.389 0.200 -47.403 87.684 -30.237 

A016 0.936 -5.511 -41.734 6.006 1.000 -0.626 -0.405 0.566 -6.137 -42.139 6.572 

 

Units: mm. 
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Cranium E standard deviations. 

 

 
 

 

 

 

 

 

 

 

 

 

Cranium E deviation distribution. 

 

 
 

 

 

Vertical axis = percentage; 

horizontal axis = millimetres. 
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Mandible E shell deviation tables. 

 

 
Reference Model skull E mand 

Test Model # skull e 

# Data Points 248310 

 

Tolerances mm 

Max Tol + 10.000 

Min Tol + 0.500 

Min Tol - -0.500 

Max Tol - -10.000 

 

Deviation mm 

Max Dev + 5.400 

Max Dev - -5.400 

Average +/- 0.875 / -1.822 

Std Dev 1.940 

 

Percentage Deviations 

>=Min <Max # Points % 

-10.000 -8.417 0 0.000 

-8.417 -6.833 0 0.000 

-6.833 -5.250 1549 0.624 

-5.250 -3.667 21164 8.523 

-3.667 -2.083 26053 10.492 

-2.083 -0.500 45457 18.307 

-0.500 0.500 102538 41.294 

0.500 2.083 36884 14.854 

2.083 3.667 7201 2.900 

3.667 5.250 7004 2.821 

5.250 6.833 460 0.185 

6.833 8.417 0 0.000 

8.417 10.000 0 0.000 

 

Out of Max Tol + 0 0.000 

Out of Max Tol - 0 0.000 

 

Standard Deviations 

Distribution () # Points % 

-6 * Std Dev 0 0.000 

-5 * Std Dev 0 0.000 

-4 * Std Dev 0 0.000 

-3 * Std Dev 6659 2.682 

-2 * Std Dev 27919 11.244 

-1 * Std Dev 39348 15.846 

1 * Std Dev 149266 60.113 

2 * Std Dev 14157 5.701 

3 * Std Dev 9280 3.737 

4 * Std Dev 1681 0.677 

5 * Std Dev 0 0.000 

6 * Std Dev 0 0.000 
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Mandible E shell deviation maps. 
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Mandible E annotated map and deviation 

 

 

 

 

 

Name Dev Ref X Ref Y Ref Z 
Dev 

Radius 
Dev X Dev Y Dev Z Test X Test Y Test Z 

A001 -0.882 -48.885 -9.917 -61.266 1.000 -0.208 -0.097 -0.852 -49.094 -10.014 -62.118 

A002 0.270 -47.954 -44.738 -48.436 1.000 -0.253 -0.053 0.077 -48.207 -44.791 -48.359 

A003 0.517 -26.989 -79.347 -14.441 1.000 -0.393 -0.207 0.265 -27.381 -79.554 -14.177 

A004 -1.995 1.798 -61.390 6.689 1.000 0.059 0.093 -1.992 1.857 -61.297 4.697 

A005 -0.169 3.570 -68.264 3.441 1.000 -0.019 0.023 -0.166 3.551 -68.241 3.274 

A006 -3.568 6.840 -78.577 2.555 1.000 -2.007 -0.431 -2.919 4.834 -79.008 -0.364 

A007 4.275 25.018 -51.795 -28.971 1.000 1.004 -2.052 3.613 26.021 -53.847 -25.358 

A008 -4.224 34.568 -42.724 -37.569 1.000 3.445 -1.667 -1.788 38.013 -44.391 -39.357 

A009 4.164 42.461 -27.083 -35.573 1.000 3.731 -0.212 1.836 46.192 -27.295 -33.737 

 

Units: mm. 
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Mandible E standard deviations. 

 

 
 

 

 

 

 

 

 

Mandible E deviation distribution 

 

 
. 

 

 
Vertical axis = percentage; 

horizontal axis = millimetres 
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Skull E comparison and superimposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Lower image = after restoration 

 

 

 

 

 

 

Cream = before restoration; grey = after restoration 
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