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Abstract 

Nitrogen is one of the most abundant elements on Earth and mostly found in the 
atmosphere as the inert gas N2. Therefore the nitrogen cycle is important for 
maintaining the bioavailabilty of nitrogen for organisms. Denitrification is a process 
that closes the nitrogen cycle by subsequent conversion of nitrate to dinitrogen with 
reduction of nitrate to nitrite being the very first necessary step. The bacterial 
periplasmic nitrate reductase NapA is one of those nitrate reducing enzymes and 
contains a molybdenum cofactor and a [4Fe-4S] cluster as cofactors. As a 
periplasmic terminal reductase NapA has an N-terminal signal peptide harbouring a 
Tat (twin-arginine translocation) motif, which follows closely the consensus S/T-R-
R-x-F-L-K. As with other proteins transported via the Tat pathway, NapA needs to 
be fully folded, and cofactor insertion needs to be completed, prior to export. This is 
assured by an individual chaperone in a process called ‘Tat-proofreading’. The 
proofreading chaperone for NapA is NapD, which had been previously shown to 
interact tightly with the signal peptide of NapA.  

In this work the binding epitope on the Escherichia coli NapA signal peptide 
recognised by NapD was mapped for the first time. The key amino acid residues 
(NapA R6, K10, A17) overlapped with the Tat targeting motif and were further 
characterized in vitro and in vivo for their importance in NapD binding, Tat 
transport and NapA biosynthesis. In addition, napD suppressor mutants able to re-
bind the NapA A17Q variant were isolated. 

NMR spectroscopy revealed the 3D solution structure of NapD in complex with the 
NapA signal peptide. Interestingly, the signal peptide of NapA is α-helical when 
bound to NapD. Overall, the structure supports strongly that NapA residues R6, K10 
and A17 interact with NapD. Pulsed EPR spectroscopy on the isolated signal peptide 
indicated structural changes of the NapA signal peptide between NapD bound and 
unbound states, though it was believed that an overall α-helical structure was 
maintained. 

Co-purification studies of the complete NapDA complex for crystallisation trials 
resulted in increased information on the behaviour of the complex and the order of 
cofactor insertion into NapA. 

Finally, an in vitro translation and cross-linking approach was attempted with the 
aim of addressing whether direct contact was made between NapD and the Tat 
translocase. In addition, functional chromosomal fusions of either NapD or NapA 
with fluorescent proteins were generated to form a basis for a future project based 
on fluorescence correlation spectroscopy in living cells. 

This project has therefore provided fresh insight into the NapA-NapD interaction at 
the molecular level and laid the foundations for future research in this area. 
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1 Introduction 

1.1 THE NITROGEN CYCLE  
Nitrogen is the fourth most abundant element in biomass and as a key constituent of 

nucleic acids and proteins it is essential to life on Earth. Nitrogen makes up to 80% of 

the atmosphere of the Earth, but its bioavailability is limited since the atmospheric form 

is almost completely in the largely inert dinitrogen gas (N2) form. Paradoxically, 

however, this places atmospheric N2 as the biggest nitrogen source on the planet and as 

such is of great ecological importance (Dance, 2007). The triple bond between the N 

atoms in dinitrogen makes this compound thermodynamically and kinetically very stable, 

and thus inaccessible to most organisms (Moir, 2011). Nature has found a way of both 

capturing and replenishing atmospheric N2 for living things. In the biogeochemical 

nitrogen cycle the nitrogen molecule is converted through a number of redox reactions 

by various microorganisms (Martínez-Espinosa et al, 2011). The N2 is transformed 

through a number of enzymatic reactions to generate different intermediates and 

compounds with a wide range of redox states ranging from +V to –III (Figure 1.1).  

 

Figure 1.1 The inorganic nitrogen cycle (including the enzymes responsible for each 
step). The oxidation state of each compound is indicated between parentheses. The pathways are 
identified as follow: black solid line, respiratory pathway (denitrification); dashed line, 
dissimilatory and assimilatory ammonification (note that nitrate reduction is indicated only as solid 
arrow); dotted line, nitrogen fixation; dash-dot line, nitrification; grey solid line, anaerobic 
ammonium oxidation (ANAMMOX). GS – glutamine synthetase, GOGAT – glutamine synthetase-
glutamate synthetase (González et al, 2006). 
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1.1.1 Nitrogen fixation 
The fixation of nitrogen is probably best understood in legume symbionts such as 

Rhizobium or Bradyrhizobium species, which grow in the nodules of leguminous plants. 

However, nitrogen fixers are wide spread in the prokaryotic world with free-living 

Azotobacter vinelandii and Klebsiella pneumonia as some of the best studied examples. 

Also some cyanobacteria and methanogenic archea are able to produce ammonium from 

nitrogen (Peters et al, 2011).  

The enzyme that performs this energy-consuming reaction is the nitrogenase. The 

majority of nitrogenases contain molybdenum and iron in their active centre (nif), 

however, vanadium and iron (vnf), and iron only (anf), nitrogenases have also been 

identified (Walmsley et al, 1994).  

 

Figure 1.2 Overall structure of the nitrogenase complex of Azotobacter vinelandii. The 
MoFe α-subunit (light green), the β-subunit (green) and the dimeric Fe-protein (brown) are shown. 
The cofactors and bound nucleotides MgADP are shown as spheres. Atoms are colour coded with 
Mg in grass green and Mo in cyan, Fe in light brown, S in yellow, O in red and N in blue. (Taken 
from Schindelin et al, 1997; PDB ID code 1n2c) 

Nitrogenases consist of two proteins – a Fe protein (NifH) and a MoFe protein (NifD and 

NifK assembling as α- and β-subunit, respectively) (Hu et al, 2008; Figure 1.2.). 

Dinitrogen is reduced in a cycle of eight steps each needing a single electron. This is 

achieved by constant association and dissociation of the Fe protein with the MoFe protein 

coupled with electron transfer from ATP hydrolysis by the Fe protein (Equation 1.1). 

Thus ATP is bound and hydrolyzed after complex formation between the two proteins. 

Electrons are then transferred from the Fe protein’s [4Fe-4S] cluster to an iron 

containing P-cluster in the α-subunit to the final active MoFe site (Seefeldt et al, 2009). 
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N2 + 16MgATP + 8e- + 8H+  2NH3 + H2 + 16MgADP +16Pi Equation 1.1 

1.1.2 Ammonification 
The respiratory reduction of nitrite to produce ammonium only occurs in γ-, δ- or ε-

proteobacteria under anaerobic conditions and allows the generation of an 

electrochemical proton gradient (Δp) across the inner membrane for ATP synthesis. 

Normally a formate dehydrogenase or a hydrogenase provide electrons by oxidation of 

formate or hydrogen (Equation 1.2 and 1.3), respectively, which are transferred via the 

quinone pool to a cytochrome c nitrite reductase, NrfA. In addition, sulphide was also 

shown to be used as electron donor (Simon, 2002). 

3HCO2
- + NO2

- + 5H+  3CO2 + NH4
+ + 2H2O Equation 1.2 

3H2 + NO2
- + 2H+  NH4

+ + 2H2O Equation 1.3 

NrfA contains five haem c groups and is anchored to the membrane by a tetrahaem 

cytochrome c (NrfH in Wolinella succinogenes), which oxides menaquinol (Figure 1.3; 

Einsle, 2011). However, according to phylogenetic analysis, it seems that pathways for 

electron transfer to nitrite reductase are different for each bacterial group (Simon, 

2002). 

 

Figure 1.3 Crystal structure of NrfA from W. succinogenes. NrfA exists as a dimer, however 
here only the monomeric form is shown. The five haem groups are depicted in stick formate. The 
Ca2+ ion (blue) was shown to be important for activity and might influence the stability of the 
protein (Einsle et al, 2002; Cunha et al, 2003). (PDB ID code 1fs7) 

1.1.3 Nitrification 
In contrast to ammonification, nitrification is the oxidation of ammonium to nitrate via 

nitrite. The nitrification process is found in soil and water, but has also a major role in 

waste water treatment in combination with denitrification. The conversion of 
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ammonium/ammonia is performed by bacteria belonging to the genera Nitrosomonas, 

Nitrosococcus and Nitrosospira. The so far best described organism is Nitrosomonas 

europaea. This bacterium contains a membrane-bound ammonia monoxygenase enzyme 

(Amo), which performs the first reaction described in Equation 1.4, where ammonium in 

the presence of oxygen is transformed into hydroxylamine. Amo is a copper enzyme 

possibly consisting of a heterotrimeric complex with AmoABC subunits (Arp et al, 2002).  

NH3 + O2
 + 2H+ + 2e-  NH2OH + H2O Equation 1.4 

Next, a hydroxylamine oxidoreductase (Hao) oxidizes NH2OH to NO2
- (Equation 1.5). Hao 

is located in the periplasm and forms a homotrimeric octahaem cytochrome c complex 

(Figure 1.4; Klotz et al, 2008).  

NH2OH + H2O  NO2
- + 5H+ + 4e- Equation 1.5 

 

 

Figure 1.4 Crystal structure of the hydroxylamine oxidoreductase from N. europaea. The 
protein is shown in its monomeric form. The eight haems are highlighted as sticks. (PDB ID code 
1fgj) 

Recently, archea of the new phylum Thaumarcheota have been described, which encode 

homologues genes to amo and were able to oxidise ammonium (Martens-Habbena & 

Stahl, 2011). 

The last step in the nitrification process, the oxidation of nitrite to nitrate is performed 

by bacteria of the genera Nitrobacter, Nitrococcus and Nitrospira (Equation 1.6). The 

reaction is carried out by a nitrite oxidoreductase (Nxr), a membrane-associated 

complex comprising a molybdenum-containing α-subunit and a [Fe-S]-containing β-

subunit. So far not much is known about localisation, structure or molecular mechanism 

of Nxr. However, sequences analysis in Nitrobacter hamburgensis shows remarkable 

similarities to the membrane-bound nitrate reductase (Nar), thus it is assumed that Nxr 
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is facing the cytoplasmic site of the membrane and has similar mechanisms for quinol 

reduction and electron transfer (Poly et al, 2008; Starkenburg et al, 2008).  

NO2
- + H2O  NO3

- + 2H+ + 2e- Equation 1.6 

 

1.1.4 ANAMMOX 
The relatively recent discovery of anaerobic ammonium oxidation (ANAMMOX) is a 

process that removes ammonium from the system through reduction of nitrite and can 

be described with the following overall reaction: 

NH4
+ + NO2

-   N2 + 2H2O Equation 1.7 

The ANAMMOX process was first discovered in a waste water plant and in general is 

important for the global marine nitrogen cycle. There it is a sink for fixed dinitrogen 

contributing up to 50% to the overall amount of N2 (Penton et al, 2006). ANAMMOX is 

carried out by both bacteria and archaea and those microorganisms contain a 

membrane-bound intracellular organelle, the anammoxosome, which consists of highly 

impermeable ladderane lipids (van Niftrik et al, 2008). For bacteria, Candidatus 

‘Kuenenia stuttgartiensis’ from the order Brocadiales, phylum Planctomycetes is one of 

the best described based on in silico and in vitro studies (Strous et al, 2006). 

Oxidation of ammonium occurs in three steps and for each step the corresponding 

enzyme has been isolated and characterized from Ca. ‘Kuenenia stuttgartiensis’ (Kartal 

et al, 2011). In the first reaction nitrite is reduced to nitric oxide by a cd1 nitrite:nitric 

oxide oxidoreductase (NirS, Equation 1.8). 

NO2
- + 2H+ + e-  NO + H2O Equation 1.8 

This is followed by condensation of NO with ammonium to produce hydrazine (Equation 

1.9), which is carried out by a hydrazine synthetase (HZS). 

NO + NH4
+ + 2H+ + 3e-   N2H4 + H2O Equation 1.9 

In the final reaction a hydrazine dehydrogenase (HDH) oxidizes quickly N2H4 to N2 

(Equation 1.10). 

N2H4   N2 + 4H+ +4e- Equation 1.10 

1.1.5 Denitrification 
Another key process in the N-cycle is denitrification, which involves the reduction of 

nitrate to dinitrogen and its subsequent release back into the atmosphere. It is carried 
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out by many bacteria and some fungi. Denitrification proceeds in a step-wise manner, 

from NO3
-  NO2

-  NO  N2O  N2. The first key step in this reaction scheme is 

performed by nitrate reductases (Equation 1.11). 

NO3
- + 2e- + 2H+   NO2

- + H2O Equation 1.11 

During anaerobic growth many bacteria use especially nitrate as preferred electron 

acceptor. Almost all nitrate reductases are mononuclear molybdenum-containing 

enzymes with additional prosthetic groups such as iron-sulphur or haem cofactors. These 

are further described in Section 1.3 using the example of Escherichia coli. 

1.1.5.1 Nitrite reductase 

Nitric oxide (NO), the product of nitrite reduction in the denitrification process (Equation 

1.12) is formed either by a copper containing nitrate reductase (NirK) or a cytochrome 

cd1-type nitrite reductase (NirS). NirK forms a homotrimer with copper ions participating 

in electron transfer and catalytic NO reduction. The nirK gene is found together with nirV, 

a desulfarase homologue possibly involved in copper insertion. In contrast, NirS is 

homodimeric. Each subunit has an N-terminal α-helical domain harbouring the c-type 

haem for electron uptake and an eight-bladed β-propeller domain, where the d1 haem 

forms the catalytic site. The general operon nirSECFDLGHJN encodes beside the catalytic 

protein a number of transcriptional regulators and proteins involved in synthesis and 

assembly of haem d1 (van Spanning, 2011). 

NO2
- + e- + 2H+  NO + H2O Equation 1.12 

 

Figure 1.5 Crystal structures of the different nitrite reductases in the denitrification 
process. (A) The trimeric Cu nitrate reductase NirK from Alcaligenes faecalis. Each subunit 
contains two copper ions (brown) and is shown here with bound nitrite (O in red, N in blue). (PDB 
ID code 1j9q) (B) The cd1 nitrite reductase NirS from Paracoccus pantotrophus. The c and d1 haem 
are shown in stick format in grey and light blue, respectively. Bound nitrite is shown as spheres. 
(PDB ID code 1aoq). 
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NirK was identified in archaea, bacteria of the genus Actinobacteria, Firmigutes, as well 

as α-, β- and γ-proteobacteria. NirS is encoded in β-, γ-, ε-proteobacteria, Aquifacea and 

there are also homologues in archaea. Interestingly, NirK is not found in ε-

proteobacteria and Aquifacea. So far no organism has been discovered that encodes 

both nitrite reductases within its genome (Jones et al, 2008). 

1.1.5.2 Nitric oxide reductase 

Nitric oxide reductase (NOR) performs the difficult task of bonding N-N by reduction of 

two molecules nitric oxide to nitrous oxide (Equation 1.13).  

2NO + 2e- +2H+  N2O + H2O Equation 1.13 

Usually NOR is isolated as a heterodimeric complex, NorBC. NorC has an N-terminal 

transmembrane helix anchoring its haem c-type cytochrome to the periplasmic site of 

the membrane. This protein obtains electrons from pseudoazurin or cytochrome c550 to 

NorB. Then, NorB shuttles the electron through two haem b to the haem b::FeB dinuclear 

centre, where the catalytic reaction is performed. This subunit contains 12 

transmembrane domains burying its active centre in the membrane (Figure 1.6; Zumft, 

2005). Sequence analysis revealed five highly conserved glutamine residues, where 

Glu211 and Glu280 (positioning based on Pseudomonas aeriginosa NorB) are possibly 

proton donors for the NO reduction, Glu215 contributes to an electro-negative 

environment at the catalytic centre and Glu135 and Glu138 participate in stabilizing the 

structure of NorB (Hino et al, 2011).  

 

Figure 1.6 Crystal structure of nitric oxide reductase subunit NorB from P. aeriginosa. 
NorB is a transmembrane protein, which contains an iron (brown sphere) in its active centre. The 
haem groups are depicted as sticks. (PDB ID code 3o0r) 
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1.1.5.3 Nitrous oxide reductase 

The last step in the denitrification process, reduction of N2O to N2, is performed by a 

nitrous oxide reductase (N2OR), which is encoded by the nosZ gene (Equation 1.14). 

N2O + 2e- + 2H+  N2 + H2O Equation 1.14 

N2OR is a dimeric periplasmic protein with each subunit containing two copper centres 

(Figure 1.4). The di-copper CuA is the entrance site for electrons, whereas CuZ is the 

reactive centre. In some species N2OR has been found to contain a Tat (twin-arginine 

translocation) signal peptide, suggesting protein folding occurs in the cytoplasm prior to 

export (Hoeren et al, 1993). Indeed, a mutation of the first arginine in the Tat motif of P. 

stutzeri N2OR to aspartate prevented translocation of the reductase to the periplasm 

(Dreusch et al, 1997). Nevertheless, copper insertion and full assembly need to be 

carried out in the periplasm. The nosZ gene is found in an operon together with nosDFY, 

the resulting proteins participate in sulphur transport (NosFY) for copper-sulphide-

bridging and provide an assembly platform (NosD) for copper insertion and final folding 

of NosZ. It is proposed that electrons are provided from the quinol pool via two 

flavoproteins, NosR and NosX to drive N2O reduction (van Spanning, 2011). 

 

Figure 1.7 Nitrous oxide reductase (N2OR) from P. stutzeri. Shown is the homodimer in a 
head-to-tail orientation. For each subunit the tetranuclear CuZ active site is located in the N-
terminus, a seven-bladed β-propeller domain. The binuclear CuA site is in the C-terminal 
cupredoxin domain. (Taken from Pomowski et al, 2011; PDB ID code 3sbq) 

1.2 ESCHERICHIA COLI 
E. coli was first described in 1885 by Theodor Escherich, a bacteriologist and 

paediatrician, who isolated the bacterium from infant stool samples. Escherich named 

the bacterium initially Bacterium coli due to its presence in the small intestines and the 

colon. Later on, in honour of its discoverer, it was renamed ‘Escherichia coli’, which has 

been commonly accepted since 1958 (Shulman et al, 2007). 
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E. coli belongs to the family of Enterobacteriaceae in the phylum of γ-proteobacteria. 

Cells of E. coli are Gram-negative, rod-shaped with a length of 2 μm and a diameter of 

0.5 μm. It is motile through peritrichous flagella and is able to attach to surfaces by 

fimbriae formation. 

E. coli is a facultative-anaerobe able to use aerobic and anaerobic pathways for energy 

production, where different electron acceptors can be adopted to suit the individual 

growth conditions (Sargent, 2007a). Through the respiratory chain a substrate-specific 

dehydrogenase oxidises its substrate and transfers electrons to the quinone pool in the 

membrane. In E. coli three different types of quinone are available: ubiquinone, 

menaquinone and demethylmenaquinone, which are produced under the different growth 

conditions. Those quinones in their reduced form (quinols) further transfer electrons via 

another oxidoreductase to a terminal electron acceptor. 

During aerobic growth E. coli uses oxygen as terminal electron acceptor. However, under 

anaerobiosis nitrate, nitrite, TMAO (trimethylamine N-oxide), DMSO (dimethyl sulfoxide) 

or fumarate can be used. 

Under anaerobic conditions, and if no terminal electron acceptor is available, E. coli 

performs mixed acid fermentation producing ethanol, lactate, succinate, acetate and 

formate (which can be further converted to hydrogen gas and carbon dioxide).  

As one of the first, complete genomes to be assembled, the sequence of the single  E. 

coli chromosome was published in 1997 (Blattner et al, 1997). In addition, E. coli is 

relatively easy to manipulate genetically, straight forward to culture, and has a relatively 

short doubling time (under ideal growth conditions this can be less than 20 minutes). E. 

coli is also closely related to pathogenic bacteria such as Salmonella, Shigella, Yersinia, 

and E. coli strains exist, of course, which cause different infections in humans including 

urinary tract infections, neonatal meningitis and intestinal diseases (gastroenteritis).   

Therefore E. coli is an ideal model organism in the field of molecular biology, 

biochemistry, medicine and biotechnology. 

1.3 NITRATE REDUCTASES OF E. COLI 
There are three distinct isoenzymes responsible for nitrate reduction in E. coli: nitrate 

reductase-A; nitrate reductase-Z; and the periplasmic nitrate reductase, Nap. Each are 

genetically distinct, differentially expressed, and have subtly different roles in nitrate 

respiration. 
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1.3.1 The nitrate reductase-A, NarGHI 
The narGHJI operon in E. coli encodes for a membrane-bound nitrate reductase 

(Sodergren & DeMoss, 1988). Crystal structures of the reductase have been solved and 

show a heterohexameric complex with [NarG]2[NarH]2[NarI]2 (Bertero et al, 2003; 

Jormakka et al, 2004). NarGH is active in the cytoplasm and attached to the membrane 

via NarI, a five transmembrane spanning protein (Figure 1.8).  

 

Figure 1.8 Crystal structure of the nitrate reductase-A from E. coli. (A) NarGHI is viewed 
parallel to the membrane. NarG is shown in blue, NarH in cyan and NarI in light blue. Mo-bis-MGD 
and the two haems are depicted in stick rendering in grey and green, respectively. Molybdenum 
(light green) and [Fe-S] cluster (brown-yellow) are shown as sphares. (PDB ID code 1q16). (B) 
Chemical structure of Mo-bis-MGD [molybdo-bis(molybdopterin guanne dinucleotide)] (Schwarz et 
al, 2009). 

NarI is a b-type cytochrome binding two haems, which provides electrons from the 

oxidation of quinol to the iron-sulphur containing subunit NarH and further to the 

catalytic active site of NarG (Figure 1.9) (Bertero et al, 2005; Rothery et al, 2001). In 

addition to a [4Fe-4S] cluster NarG contains a molybdenum-bis-molybdopterin guanine 

dinucleotide (Mo-bis-MGD) (Magalon et al, 1998; Rothery et al, 2004). The NarJ protein 

has a chaperone-like function mediating NarGH assembly and attachment to NarI 

(Lanciano et al, 2007). In E. coli the narGHJI operon is expressed under high nitrate 

concentrations and is part of an energy conserving process in the cell (Richardson et al, 

2001). 
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Figure 1.9 Respiratory nitrate reduction by the nitrate reductase-A. NarI oxidises quinol 
from the membrane pool close to the periplasmic side of the membrane, which in turn releases 
two protons into the periplasm. The electrons are then transferred via NarH to the catalytic site of 
NarG (molybdenum cofactor - MoCo), where nitrate is reduced to nitrite. The Nar complex exists 
actually as a dimer of heterotrimers, but for clarity only one heterotrimer is shown. Because 
NarGHI is located on the cytoplasmic site of the membrane nitrate needs be imported into the 
cytoplasm in order to be reduced. The proton:nitrate symporter NarK1 is active in the beginning of 
nitrate reduction. Later, when nitrite accumulates NarK2 is activated, a nitrate:nitrite antiporter, 
which maintains the steady state. The cytoplasmically located NarJ chaperone is not shown. 
Modified from Gonzalez et al, 2006. 

1.3.2 The nitrate reductase-Z, NarZYV 
Another membrane-bound nitrate reductase in E. coli is encoded by the narZYWV 

operon, where the NarZYV complex is homologous to NarGHI and NarW is homologous 

to NarJ, and so possibly also a private chaperone for the assembly of the reductase 

(Blasco et al, 1990; Blasco et al, 1992). It was originally hypothesised that narZYWV is a 

gene duplication of narGHJI, which is constitutively expressed at very low levels 

regardless of growth conditions. It has been suggested that NarZYV is used by the cell 

during the initial stages of the switch between aerobic to anaerobic growth in the 

presence of nitrate (Iobbi-Nivol et al, 1990). 

1.3.3  The periplasmic nitrate reductase, Nap 
The E. coli nap operon is expressed during anaerobiosis under nitrate limiting conditions 

(Figure 1.11A). The napA gene encodes the 93 kDa large catalytic subunit of the 

periplasmic nitrate reductase, which contains a [4Fe-4S] cluster and a Mo-bis-MGD 

cofactor (Figure 1.10; Jepson et al, 2007). NapA is located in the periplasm and forms a 

loose complex with the 16 kDa di-haem cytochrome c NapB (Figure 1.11B; Jepson et al, 

2007). The NapA precursor contains an N-terminal twin-arginine signal peptide, and is 

thus exported to the periplasm via the Tat pathway (Thomas et al, 1999). There, NapA 
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interacts with NapB, which itself is transported via the Sec pathway (González et al, 

2007). 

 

Figure 1.10 NapA, the catalytic subunit of the periplasmic nitrate reductase. (A) Crystal 
structure of NapA. Mo-bis-MGD is depicted with grey sticks, molybdenum (light green) and the 
[4Fe-4S] (brown-yellow) are shown as spheres. (B) Enlargement of the catalytic site of NapA. 
(PDB ID code 2nya) 

In order to reduce nitrate electrons need to be transferred from the quinol pool in the 

membrane to NapB and further to NapA. Therefore, the complete Nap complex 

comprises three proteins bound to or associated with the membrane: NapC, NapG and 

NapH, which are involved in two different electron transport chains (Figure 1.11B). NapC 

is a c-type cytochrome anchored to the inner membrane by a single N-terminal 

transmembrane domain. This protein is able to reduce menaquinol, which provides 

electrons directly to NapB and NapA.  

Interestingly, the E. coli Nap system includes an alternative route for electron transfer to 

NapA that includes NapG and NapH. In silico analysis predicts NapH to be a four 

transmembrane protein with N- and C-terminus located in the cytoplasm with a soluble 

cytoplasmic domain containing two [4Fe-4S] clusters (Brondijk et al, 2004). NapG is 

predicted to bind four [4Fe-4S] clusters and possesses an N-terminal Tat signal peptide, 

which targets NapG into the periplasm. The periplasmic localisation of NapG, and its 

subsequent binding to NapH, was supported by bacterial two-hybrid assays (Brondijk et 

al, 2004). The same study showed also strong interactions between NapC and NapH. 

From this work the authors concluded that NapGH is a quinol dehydrogenase and 
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electrons are directed to NapC, NapB and finally to NapA (Brondijk et al, 2004). Thus the 

E. coli Nap system is able to use both ubiquinol and menaquinol as electron donors. 

 

Figure 1.11 The nap operon and cellulare localisation of its gene products. (A) The 
napFDAGHBC operon is located at min 46.5 on the E.coli chromosome. (B) Cellular localisation of 
Nap components and possible electron transfer routes. NapD and NapF are cytoplasmically located 
and take part in NapA maturation. 

1.3.3.1 NapD  

NapD is a small 9.3 kDa cytoplasmic protein that was originally suggested to have a role 

in NapA maturation (Figure 1.11; Berks et al, 1995). A knock-out of napD on the 

chromosome of E. coli resulted in a complete loss of periplasmic nitrate reductase 

activity and subsequent degradation of the now unstable NapA polypeptide (Maillard et 

al, 2007; Potter & Cole, 1999). Protein-protein interaction studies using a bacterial two-

hybrid system and in vitro analysis by isothermal titration calorimetry showed a very 

specific and tight binding of NapD to both full-length NapA (Nilavongse et al, 2006) and 

the Tat signal peptide of NapA (Maillard et al, 2007). NMR analysis of purified NapD 

revealed a β-α-β-β-α-β ‘ferredoxin-like’ structure (Figure 1.12; Maillard et al., 2007). 
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Figure 1.12 NMR structure of the proofreading chaperone NapD. NapD is a cytoplasmic 
protein involved in maturation of the periplasmic nitrate reductase NapA. NMR analysis revealed a 
ferredoxin-like fold comprising a β-α-β-β-α-β order. In addition, NapD contains a long flexible C-
terminus. (PDB ID code 2jsx) 

1.3.3.2 NapF 

In E. coli, NapF is an 18 kDa iron-sulphur protein predicted to be located in the 

cytoplasm (Figure 1.11) (Nilavongse et al, 2006). Sequence analysis of NapF proteins 

shows four potential iron-sulphur cluster binding motifs. Furthermore, purified NapF from 

Rhodobacter sphaeroides displayed a characteristic absorption spectrum indicative for 

[Fe-S] cluster (Olmo-Mira et al, 2004). Mutation studies on W. succinogenes NapF 

carried out by Kern and Simon (2009) highlighted that only the third poly-cysteine motif 

is important for the activity of the periplasmic nitrate reductase. 

Protein-protein interaction studies showed that NapA probably interacts with NapF in the 

cytoplasm before its export to the periplasm (Nilavongse et al, 2006). However, NapF is 

not essential for NapA activity (Brondijk et al, 2002; Potter & Cole, 1999). For the 

photosynthetic α-proteobacterium R. sphaeroides, NapF was able to catalyse insertion of 

the iron-sulphur cluster in vitro into a version of NapA that had been chemically treated 

to first destroy the cluster (Olmo-Mira et al, 2004). Furthermore, a deletion of napF in 

the ε-proteobacterium W. succinogenes resulted in the cytoplasmic accumulation of 

inactive NapA (Kern & Simon, 2009). Taken together, this would suggest a role for NapF 

as an accessory protein involved in the assembly of NapA. 

1.3.3.3 The nap operon and its regulation 

The napFDAGHBC operon of E. coli is encoded at minute 46.5 on the chromosome 

(Figure 1.11A) (Choe & Reznikoff, 1993; Grove et al, 1996). Gene products of napABCD 

have been shown to be essential for nitrate reduction (Potter & Cole, 1999). Activation of 

transcription of the nap operon is a complex process regulated by several factors. During 

anaerobic growth the FNR (fumarate and nitrate regulatory) protein utilises its oxygen-
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sensitive iron-sulphur cluster as a sensor to then allow binding of the protein to a 

specific DNA sequence upstream of napF (Figure 1.13; Kiley & Beinert, 1998). 

Furthermore, the NarQ-NarP and NarX-NarL two component regulatory systems are 

recruited in response to nitrate and nitrite availability (Figure 1.13; Stewart & Rabin, 

1995). NarP~P and NarL~P bind downstream of FNR upon phosphorylation by the NarQ 

and NarX sensor kinases, respectively, whereas NarP~P activates nap transcription and 

NarL~P represses transcription (Choe & Reznikoff, 1993; Darwin & Stewart, 1995; Rabin 

& Stewart, 1993). Overall, maximal nap expression occurs in a nitrate-limiting 

environment to scavenge low levels of available nitrate and to maintain the redox 

balancing during anaerobic growth (Richardson et al, 2001).  

Three nap promoter regions have been identified. Promoter P1 is synergistically 

activated by FNR and NarP~P during anaerobic growth in the presence of low levels of 

nitrate (Figure 1.13; Darwin et al, 1998). In contrast, transcription from the overlapping 

promoter P2 occurs in the absence of nitrate under aerobic or anaerobic conditions 

(Figure 1.13; Stewart et al, 2003). The [Fe-S] cluster-containing transcriptional 

repressor IscR binds to promoter region P3 and inhibits transcription during aerobic 

growth, and is released from the DNA under anaerobic or iron-sulphur stress, conditions 

(Figure 1.13; Giel et al, 2003).  

In addition, it has been shown that nap expression depends on the availability of 

environmental molybdenum controlled by the molybdate-responsive regulator ModE 

(Figure 1.13; McNicholas & Gunsalus, 2002). Recently, another transcription factor has 

been discovered, NsrR, which senses nitric oxide and also represses the nap operon 

(Figure 1.13; Filenko et al, 2007), thus reinforcing the intimate link between the nitrate 

reduction and other reactions of the N-cycle. 

Finally, a role for CRP (cAMP receptor protein) was predicted (Brown & Callan Jr, 2004) 

and later shown to activate nap transcription in conjunction with FNR when nitrate is 

absent and less favourable carbon sources are dominant (Figure 1.13; Stewart et al, 

2009). 
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Figure 1.13 Transcriptional control region of the E. coli nap operon. A part of the sequence 
is duplicated to show overlaying P2 promoter region separately. T1, T2 and T3 indicate the 
transcription initiation sites. Binding sites are shaded grey or are underlined (NsrR) with the 
consensus sequence underneath. Letter code as Y: C or T; M: A or C; K: G or T and W: A or T. The 
diagram and labelling was adopted from Stewart et al, 2009.  

1.4 THE TAT TRANSLOCATION PATHWAY 
Protein transport to and across membranes is essential for cellular life. In bacteria, two 

distinct general protein transport pathways operate in parallel. The general Sec 

(secretory) pathway exports linear polypeptides through the SecYEG ‘tunnel’ by 

essentially a threading mechanism. This process can be co-translational or post-

translational where transport is driven by ATP hydrolysis (Du Plessis et al, 2011). In 

contrast, the Tat pathway transports folded proteins and translocation is solely 

dependent on the proton motif force (pmf) (Berks et al, 2003; Robinson, 2011) 

1.4.1 Tat signal peptide 
Targeting of proteins to the Tat export pathway requires a specific targeting signal – the 

twin-arginine signal peptide. These signal peptides consist of a polar N-terminal ‘n-

region’ of variable length, followed by a moderately hydrophobic (often glycine-rich) ‘h-

region’, and at the C-terminus of the peptide a ‘c-region’ is usually present that contains 

the sequence Ala-x-Ala, which is a cleavage recognition site for leader peptidase I (LepB) 

(Lüke et al, 2009; Palmer et al, 2005). In contrast to Sec signal peptides, which follow 

very closely the same structural arrangement (Figure 1.14), the Tat signal peptide is 

longer, more hydrophilic in the h-region, and carries a conserved amino acid motif at the 

boundary between the n- and h-regions (Cristóbal et al, 1999). The conserved motif is 
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the most prominent feature of the Tat signal peptide and is known as the ‘twin-arginine’ 

motif, which is eponymous for the Tat (twin-arginine translocation) pathway. The Tat 

motif contains the consensus sequence of S/T-R-R-x-F-L-K (Berks, 1996). The two 

arginine residues are almost invariant and are critically important for transport. Even a 

conservative substitution of arginine to lysine has the potential to block protein export 

via the Tat pathway. Early studies of Tat signal peptide activity determined that 

mutations affecting the second arginine within the motif have bigger negative effects on 

translocation (Buchanan et al, 2002; Stanley et al, 2000). In addition, the conservation 

of the phenylalanine residue of the consensus motif seems very important for correct 

operation of the export pathway (Stanley et al, 2000).  

As well as the twin-arginine motif there are other structural aspects of Tat signal 

peptides that are important for function. It seems that a subtle level of hydrophobicity 

within the h-region is important for correct substrate targeting pathway (Cristóbal et al, 

1999; Stanley et al, 2000). For example, increasing the overall hydrophobicity of a Tat 

signal peptide closer to that of a Sec signal peptide diverted a reporter protein between 

the two pathways (Cristóbal et al, 1999). Furthermore, the existence of a ‘Sec 

avoidance’ motif with the c-region of Tat signal peptides has been characterised, which 

comprises basic residues (Blaudeck et al, 2003; Bogsch et al, 1997). However, the 

existence of such a ‘Sec-avoidance’ motif is not universally accepted (Tullman-Ercek et 

al, 2007). 

 

Figure 1.14 Signal peptides of the Sec and Tat pathway. The Sec and Tat systems have 
similar signal peptides that comprise the n-terminal region, the hydrophobic h-region and the c-
terminal region, which contains an A-x-A cleavage site for the leader peptidase I, LepB. The Sec 
signal peptides have a positively charged n-region (indicated with a black cross). The Tat signal 
peptides contain the twin-arginine motif S/TRRxFLK between the n- and h-region. The c-region of 
Tat signal peptides generally also has a positive charge.  

It should also be noted that naturally-occurring Tat substrates have been reported that 

show relaxed amino acid specificity within the twin-arginine motif, but are still 

transported via the Tat pathway. TtrB (a subunit of the tetrathionate reductase from 

Salmonella enterica), for example, has a lysine substitution for the first arginine residue 

(Hinsley et al, 2001). Moreover, the two arginine residues in pre-pro-penicillin amidase 
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(ppPA), a plasmid-encoded protein in some clinical strains of E. coli, are separated by an 

asparagine yet it remains Tat-dependent for export (Ignatova et al, 2002). 

The number of Tat substrates in a given organism varies considerably but if a genome 

sequence is available this can be predicted in silico – programs called TatFIND and TatP 

are available (Bendtsen et al, 2005; Rose et al, 2002). Usually such predictions must be 

verified experimentally. In Streptomyces ceolicolor, for example, around 150 proteins 

were predicted to be exported by the Tat pathway, of which only 25 were later positively 

confirmed by laboratory-based transport experiments (Bendtsen et al, 2005; Widdick et 

al, 2006). For comparison, the genome of E. coli encodes 27 true Tat substrates 

(Tullman-Ercek et al, 2007), whereas Helicobacter pylori is predicted to have one Tat-

dependent protein, the [NiFe] hydrogenase (Wu et al, 2000). 

Most bacterial Tat substrates are proteins that contain complex cofactors that must be 

inserted prior to export. The main examples of such cofactors are molybdopterins, iron-

sulphur clusters, Ni-Fe clusters, some non-covalently-bound flavin, some non-covalently-

bound haem, some types of copper cofactors, or cobalamin. However, there are also a 

certain number of proteins that do not contain any known cofactors, or are able to bind 

metal ions after transport. It was proposed that these proteins folded ‘too rapidly’ in the 

cytoplasm, which precludes them from Sec transport (Berks et al, 2003; Sturm et al, 

2006). In addition, it was shown that a few proteins with C-terminal transmembrane 

domains are Tat dependent. However, the mechanism of assembly of such proteins into 

the cytoplasmic membrane remains unknown (Hatzixanthis et al, 2003). 

The Tat system is important for many fundamental bacterial processes, such as 

respiration (Sargent, 2007a), cell wall biosynthesis and cell division (Ize et al, 2003), 

production of secondary metabolites (Widdick et al, 2006), degradation of biomolecules 

(Widdick et al, 2008) and pathogenicity (De Buck et al, 2008). Indeed, the Tat pathway 

is not only found in bacteria and archaea, but also in the chloroplasts of higher plants, 

where it was first discovered and initially named the ‘Delta pH-dependent pathway’ (Mori 

& Cline, 2001). In chloroplasts the Tat system targets proteins from the stroma across 

the thylakoid membrane into the lumen. The few proteins transported in this way play 

critical roles in either the oxygen-evolving complex of Photosystem II or the cytochrome 

b6f complex. Sequence analysis of mitochondrial DNA has also revealed the existence 

putative tat genes in these organelles, however their role in protein export in the sea 

sponge has so far not been investigated (Bogsch et al, 1998; Wang & Lavrov, 2007). 
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1.4.2 Components of the Tat translocase 

1.4.2.1 The homologous proteins TatA, TatB and TatE 

The E. coli TatA and TatB proteins, with molecular weights of 10 kDa and 18 kDa, 

respectively, share overall sequence identity of 25%. Both proteins consist of an N-

terminal transmembrane domain, followed by an amphipathic helix and an unstructured 

C-terminus (Figure 1.16A; Chan et al, 2011; Porcelli et al, 2002). Some researchers 

predict the amphipathic helix lies along the membrane (Gouffi et al, 2004). Recent NMR 

studies on a Bacillus subtilis TatA revealed an L-shaped structure that mirrored precisely 

these cartoon models (Figure 1.15; Hu et al, 2010; Walter et al, 2010). Truncation 

studies have shown that the C-termini of TatA and TatB are not important for their 

function (Lee et al, 2002), however even though the predicted structures and sequences 

of TatA and TatB share similarities, the proteins are not interchangeable in function 

(Sargent et al, 1999).  

 

Figure 1.15 NMR analysis of B. subtilis TatAd. (A) Local conformation of the hinge region. 
Close interactions are shown as dashed lines. (B) Surface representation of BsTatAd. The positively 
charged, negatively charged, and polar residues are coloured in blue, red, and yellow, 
respectively. Taken from Hu et al., 2010. 

Another E. coli protein, TatE, is a very close homologue of TatA and can complement a 

ΔtatA strain (Sargent et al, 1998). However, the native expression level of tatE is much 

lower compared to tatA, which has given rise to the hypothesis that tatE is a cryptic 

gene duplication of tatA (Jack et al, 2001). 

1.4.2.2 The polytopic TatC protein 

The highly conserved 29 kDa TatC protein is the largest and most hydrophobic of all 

known Tat components (Bogsch et al, 1998). In silico analysis and fusions to reporter 

proteins suggest TatC consists of six transmembrane domains with N- and C-termini 

located in the cytoplasm (Figure 1.16A; Behrendt et al, 2004; Drew et al, 2002). Circular 

dichroism (CD) spectroscopy and oriented CD (OCD) spectroscopy carried out on TatC 

from B. subtilis showed the protein contained ~50% α-helix with the transmembrane 

helices slightly tilted in the lipid bilayer (Nolandt et al, 2009). Such helix tilting is 
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supported by cysteine-crosslinking studies on the E. coli TatC protein (Punginelli et al, 

2007). TatC is believed to form stable, active dimers, where only one TatC protomer is 

active at any time (Maldonado et al, 2011a). 

 

Figure 1.16 Topology of the Tat components and their complexes. (A) Predicted secondary 
structure of the integral proteins TatA, TatB and TatC. TatA exists as tetramer in the membrane. 
(B) The TatA complex is variable in size and most likely forms the protein conducting channel. 
TatB and TatC form a complex in equimolar ratio and functions as a substrate recognition unit. (C) 
Single-particle electron microscopy of the TatA and (D) TatBC complexes (Gohlke et al, 2005; 
Tarry et al, 2009). 

1.4.2.3 The TatBC complex 

TatB and TatC interact in a 1:1 ratio with each subunit present in multiple copies in the 

final complex (Bolhuis et al, 2001). Crosslinking experiments and protein-protein 

interaction studies suggest that TatC is organized around TatB (Figure 1.16B; Lee et al, 

2006; Maldonado et al, 2011b; Punginelli et al, 2007), with the whole complex possibly 

adopting a hexameric or heptameric architecture (Oates et al, 2005; Tarry et al, 2009b). 

Truncation analysis of TatB has established that the transmembrane and/or amphipathic 

helix are important for the TatC interaction (Maldonado et al, 2011b). 

The TatBC complex is the initial recognition complex for Tat signal peptides. TatC is 

understood to recognise primarily the twin-arginine motif, while TatB interacts with the 

hydrophobic h-region, of Tat signal peptides (Alami et al, 2003; Gérard & Cline, 2006). 

Recent in vitro transport experiments even show interactions between the mature part of 

a Tat substrate and TatB (Maurer et al, 2010). Suppressor mutants of tatC suggest the 

first half of the protein, especially the first cytoplasmic and second periplasmic loop, is 

somehow involved in signal peptide binding (Holzapfel et al, 2007; Kreutzenbeck et al, 

2007; Strauch & Georgiou, 2007). Single-particle electron microscopy revealed that one 
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or two Tat substrates bind to the periphery of the TatBC complex and, in case of two 

substrates, binding sites are adjacent (Tarry et al, 2009b). For the TatBC homologue 

Hcf106:cpTatC from chloroplasts even up to four substrates were found to bind, which 

were subsequently all transported together (Ma & Cline, 2010). 

1.4.2.4 The TatA complex 

Purification of overproduced and detergent solubilized TatA from E. coli, followed by 

analysis by blue native (BN)-PAGE, resulted in the identification of large homo-

oligomeric complexes with variable sizes from 50-500 kDa (Oates et al, 2005; Porcelli et 

al, 2002). Single-particle electron microscopy of these TatA complexes showed ring-like 

structures of different sizes and computer-aided 3-D reconstructions suggested each ring 

contained a ‘lid’ at one side with an internal channel big enough to accommodate some 

known Tat substrates (Figure 1.16C; Gohlke et al, 2005). Also fluorescence microscopy 

in live cells with TatA tagged to YFP pointed to ring formation with 4 to 100 TatA 

protomers within each complex (Figure 1.16B; Leake et al, 2008). From this it was 

suggested that a pool of TatA tetramers exist in the membrane (Figure 1.16A; Leake et 

al, 2008), which are recruited to form an active complex upon TatBC-substrate 

interaction. This is known as the ‘polymerisation model’ (Cline & McCaffery, 2007). 

Pulsed EPR (electron paramagnetic resonance) analysis confirmed a high exchange rate 

of TatA subunits between the TatA complexes (White et al, 2010). 

The Tat transport field is not without controversy, nor is it focussed entirely on the E. coli 

Tat system. Some studies of the E. coli TatA protein have suggested that the C-terminus 

is accessible to proteases and chemical compounds on both sides of the membrane, 

which suggested a dual topology for TatA C-terminus during channel formation (Chan et 

al, 2007; Gouffi et al, 2004). In this model the amphipathic helix would intermittently 

act as a second transmembrane domain, thus forming a helical hairpin in the inner 

membrane. The widely-accepted topology of TatA (and TatB) is that the N-terminus of 

the transmembrane helix is located at the periplasmic side, whereas the C-terminus is 

inside the cytoplasm (Gouffi et al, 2004; Porcelli et al, 2002). This is supported by the 

‘positive inside’ rule and also many transmembrane prediction programmes (Hofmann & 

Stoffel, 1993; Von Heijne, 1992). However, a further alternative hypothesis suggests the 

N-terminus of TatA in the cytoplasm (Chan et al, 2011; Chan et al, 2007), which would 

generate a radical new model for the TatA structure, but which would be difficult to 

attach to existing biochemical studies on the structure and function of TatA. Another 

extraordinary observation was the TatC-dependent tube formation of overproduced TatA 

in the cytoplasm of E. coli cells. From this, it was suggested that TatA could act as a 

targeting factor for substrates on order to initiate TatC binding in the membrane 

(Berthelmann et al, 2008). 
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Overall, the TatA complex remains the most likely protein-conducting channel for the Tat 

system and therefore has the difficult task of allowing transport of large globular 

proteins while maintaining cell integrity. 

1.4.3 The Tat translocation process 
A number of different in vitro and in vivo studies have given insight into the 

translocation process of proteins by the Tat pathway, and the following model is 

currently widely accepted. In an initial energy-independent step the Tat substrate binds 

via its signal peptide to the TatBC complex (Figure 1.17B; Cline & Mori, 2001; De Leeuw 

et al, 2001). Thereby TatC is the primary recognition site of the twin-arginine motif and 

TatB interacts with the hydrophobic h-region of the signal peptide and the mature part of 

the protein (Alami et al., 2003; Gérard & Cline, 2006; Maurer et al., 2010). The following 

process was shown to be ATP-independent (Yahr & Wickner, 2001), however instead 

uses the proton motive force across the cytoplasmic membrane, which comprises a pH 

gradient (ΔpH) and an electrical field gradient (ΔΨ) (Bageshwar & Musser, 2007; Braun 

et al, 2007; Theg et al, 2005): tetramers of TatA recognize the substrate bound TatBC 

complex and bind to it before assembling themselves as a pore in the vicinity of, or 

possibly completely surrounding, the Tat substrate (Figure 1.17C) (Cline and Mori, 2001; 

Gohlke et al., 2005; Leake et al., 2008). At this point the fully assembled Tat translocase 

is formed, energy is again transduced from the proton motif force, and the Tat substrate 

is translocated to the periplasmic side of the membrane (Figure 1.17D). It is thought 

that the unprocessed signal peptide is then released laterally into the lipid phase, where 

it is then processed by LepB (Sargent et al, 2006). The translocase dissociates back to 

the TatA subunits and the TatBC complex (Figure 1.17A). 

It is worth noting here that a few Tat-targeted enzymes exist that are exported as 

heterodimers, where only one partner protein contains a Tat signal peptide. In E. coli 

examples are HybO/HybC ([NiFe] hydrogenase-2) and DmsA/DmsB (DMSO reductase). 

This special mechanism of transporting oligomers via the Tat pathway is called 

‘hitchhiking’ (Rodrigue et al, 1999; Stanley et al, 2002). 
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Figure 1.17 The Tat translocation process. (A) Tetrameric TatA and the TatBC complex are 
separate units in the cytoplasmic membrane. (B) In the first step the substrate binds via its Tat 
signal peptide to the TatBC complex. (C) Using a proton motif force (pmf) TatA associates with the 
substrate-bound TatBC complex. (D) The Tat substrate is exported through the TatA channel. The 
peptidase LepB cleaves off the Tat signal peptide and the substrate is released into the periplasm 
(not shown). This is followed by the dissociation of the TatA and TatBC complexes. 

1.4.4 Tat quality control 
While it is well established that the Tat pathway is dedicated to the transmembrane 

translocation of folded proteins, it is often overlooked that initial studies of this system 

realised that non-transport of unfolded proteins was a key feature of this system (Santini 

et al, 1998). This led to further studies and the establishment of the hypothesis that the 

Tat translocase could possess an intrinsic “quality control mechanism” allowing it to 

recognize unfolded Tat substrates and reject them before transport was attempted. To 

address this hypothesis DeLisa and co-workers (2003) used the normally Sec-dependent 

alkaline phosphatase (PhoA) protein as reporter. PhoA requires the oxidizing 

environment of the periplasm in order to form two disulphide bridges, which are 

essential for proper protein folding and enzymatic activity. Switching the PhoA Sec signal 

sequence for a Tat signal peptide initially did not result in periplasmic targeting of the 

enzyme, possibly due to its unfolded state under the reducing environment of the 

cytoplasm. However, when expressed in an E. coli mutant engineered to have an 

oxidizing cytoplasm PhoA readily formed disulphide bonds, folded, and was thus 

transported by the Tat translocase into the periplasm (DeLisa et al, 2003). The 

overwhelming need for folding for PhoA in order to be transported by the Tat pathway 

was later confirmed by in vitro translation and transport assays (Panahandeh et al, 

2008).  
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Furthermore, it was shown that accumulated mis-targeted or malfolded Tat substrates 

are degraded in the cytoplasm. This proteolysis is another controversial area but seems 

to be Tat-independent, and in some cases might occur prior to Tat-specific interactions 

(Brüser & Sanders, 2003; Lindenstrauß et al, 2010). The pathways for proteolysis of 

non-exported proteins is so far unknown, but might include FtsH or the Clp machinery 

(Fisher & Delisa, 2004).  

It needs to be noted that the folding status of a protein is not always a prerequisite for 

export, and that the Tat translocase can show relaxed substrate specificity under some 

circumstances. For example, it was shown that small hydrophilic unfolded polypeptides 

fused to long unstructured linkers are still transported, if their length does not exceed 

100-150 amino acids (Lindenstrauß & Brüser, 2009; Richter et al, 2007). In addition, 

unfolded PhoA is targeted to the Tat translocon, where it makes contact with the TatBC 

complex via its Tat signal peptide, however, it is not exported (Panahandeh et al, 2008; 

Richter & Brüser, 2005). However, all of these studies involve artificial Tat substrates 

and as such their physiological relevance can be questioned.  

1.4.5 The Tat ‘proofreading’ process 
Alongside the “Tat quality control” system a second tier of quality control exists for some 

proteins. Termed “Tat proofreading” this involves water-soluble chaperones that are 

usually encoded in operons together with their specific Tat substrate partners (Turner et 

al, 2004). The structure and function of Tat proofreading chaperones is discussed 

extensively throughout this thesis. In general, Tat proofreading chaperones bind to the 

nascent chain of the Tat substrate, most usually directly to the N-terminal twin-arginine 

signal peptide itself (Figure 1.18, step 1; Jack et al, 2004; Maillard et al, 2007). The 

physiological roles of Tat proofreading chaperones are not completely clear, but one 

hypothesis is that binding prevents the signal peptide from indulging in pre-mature 

interactions with the Tat complex. In some cases binding of the chaperone can prevent 

the signal peptide from degradation by some proteases, including OmpT (Figure 1.18, 

step 1; Genest et al, 2006a; Geneste et al. 2006b). For some chaperones a second 

binding site beside the Tat signal peptide has been implied, but never positively 

identified, which lies somewhere else on the mature part of the protein (Figure 1.18, 

step 1; Genest et al, 2008). It is generally agreed that such chaperones keep their 

substrates in a cofactor-competent state until cofactor insertion and protein folding has 

occurred (Figure 1.18, step 2; Pommier et al, 2008). Indeed, there is some evidence 

that some Tat proofreading chaperones interact with proteins of the cofactor insertion 

machinery as well (Genest et al, 2008; Li et al, 2010). Eventually, the chaperone is 

released, by a yet unknown mechanism, leaving the Tat substrate to interact with the 

Tat translocase (Figure 1.18, step 3). 
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Previously, it has been suggested that perhaps all E. coli Tat substrates use specific 

proofreading chaperones during their maturation (Palmer et al, 2005). However, in vitro 

studies proved that at least non-cofactor containing Tat substrates do not interact with 

specific proofreading chaperones (Holzapfel et al, 2009). 

 

Figure 1.18 The ‘proofreading’ process. Substrate specific chaperones bind to the polypeptide 
nascent chain and participate in protein folding. Binding sites are the Tat signal peptide (‘RR’) and 
in some cases somewhere on the mature part of the protein. This prevents degradation by 
cytoplasmic proteases and from pre-mature interaction of the Tat substrate with the translocase 
(step 1). Proofreading chaperones can also assist in cofactor insertion (step 2). After the substrate 
is fully assembled and active the chaperones are released through an unknown mechanism and 
the substrate is able to bind to the TatBC complex via its signal peptide (step 3). 

1.4.5.1 The TorD/DmsD family 

The most heavily studied Tat proofreading chaperones belong to the TorD/DmsD family. 

Those chaperones like NapD are involved in maturation of TMAO and DMSO reductases, 

which contain Mo-bis-MGD as cofactor (Richardson, 2000). Sequence alignments and 

phylogenetic tree construction revealed that members of the TorD/DmsD family can be 

divided into three clades: TorD, DmsD and NarJ (Turner et al, 2004). 

TorD and DmsD have been studied as the paradigm Tat proofreading chaperones and 

several structures of those two proteins from different bacteria have been solved. The 

overall structure of this family is an all α-helical fold, and they can exist in monomeric 

and dimeric forms (Figure 1.19; Sarfo et al, 2004; Trainer et al, 2003). Interestingly, 

TorD from Shewanella massilia shows extreme domain-swapping (Figure 1.19; Trainer et 

al, 2003). 

Chaperone activity for TorD was suggested after it was found to stabilize TorA (TMAO 

reductase) at elevated temperatures (Genest et al, 2005). It was also shown that TorD 

could prevent degradation of full-length TorA by cytoplasmic proteases (Genest et al, 

2006a; Genets et al, 2006b). However, a torD mutant still retains TorA activity 

suggesting its activity is not essential (Pommier et al, 1998). In contrast, DmsA (DMSO 
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reductase), the specific Tat substrate for the TorD homologue DmsD, shows no activity 

when dmsD is deleted (Ray et al, 2003). 

 

Figure 1.19 Crystal structures of members of the TorD/DmsD family of proofreading 
chaperones. (A) Dimer of S. massilia TorD shows domain swapping between the subunits. (PDB 
ID code 1n1c) (B) DmsD, here from E. coli exists in monomeric form. (PDB ID code 3efp) 

It was shown in vitro that TorD and DmsD have high affinities for the individual Tat 

signal peptides of TorA and DmsA, respectively (Oresnik et al, 2001; Hatzixanthis et al, 

2005). Also, it was shown that TorD can hydrolyse GTP, an activity that is induced by 

domain-swapping (Guymer et al, 2010). GTP binding enhances the affinity of TorD for 

the TorA signal peptide (Hatzixanthis et al, 2005), therefore it is possible that such 

nucleotide binding regulated TorD-signal peptide interaction and release cycles. In 

addition, TorD is able to bind somewhere else on the mature part of TorA, where it 

seems that binding is dependent on its switch between monomeric and dimeric forms 

(Jack et al, 2004; Tranier et al, 2002).  

TorD and DmsD were shown to interact with components of the molybdenum cofactor 

biosynthesis pathway, and TorD was able to bind the precursor and mature form of Mo-

bis-MGD in vitro (Genest et al, 2008; Li et al, 2010). Also, in vitro reconstitution 

experiments revealed that TorD is able to bind TorA before cofactor insertion, however, 

that binding affinity is enhanced when Mo-bis-MGD was added (Ilbert et al, 2003). 

Therefore it was proposed that those proofreading chaperones participate in cofactor 

insertion and so set the Tat substrates in a ‘cofactor insertion competent state’.   

Another role for TorD and DmsD could be in targeting their respective Tat substrates to 

the Tat translocase for export. Cell fractionation showed that overproduced DmsD is 

membrane associated and that this is dependent on the presence of TatB or TatC (Papish 

et al, 2003). Recently, the interaction of DmsD with the TatBC complex was confirmed 

by bimolecular fluorescence complementation experiments (BiFC; Kostecki et al, 2010). 
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1.4.5.2 The NapD family 

The NapD family comprises ~100 members (Maillard et al, 2007). The proteins of this 

family are rather small with sequences of around 100 amino acids. Some sequence 

motifs were identified, however no clear signature motif could be attributed (Turner et 

al, 2004). Interestingly, a few NapD proteins show an N-terminal extension containing a 

putative Tat-like amino acid motif (Maillard et al, 2007). Using napD mutants it was 

shown that NapD is essential for maturation of the periplasmic nitrate reductase NapA 

(Maillard et al, 2007; Potter & Cole, 1999), while Maillard and co-workers (2007) 

established binding of NapD to the Tat signal peptide of NapA using a wide variety of in 

vivo and in vitro methods. 

1.4.6 The role of general chaperones during Tat substrate folding 
Crosslinking studies have shown that trigger factor (TF) binds to the nascent chain of 

different Tat signal peptides immediately at the ribosomal exit tunnel, but that this 

interaction is apparently not important for overall protein transport (Jong et al, 2004). 

Furthermore, different protein-protein interaction techniques showed that the DmsD Tat 

proofreading chaperone from E. coli interacts with a surprisingly wide variety of general 

chaperones like TF, DnaK, DnaJ, GrpE, GroEL and Ef-Tu (translation elongation factor) 

(Li et al, 2010). Given that there is an existing chaperone cascade of DnaK-DnaJ-GrpE-

GroEL (Mayhew & Hartl, 1996), one hypothesis is that DmsD could shuttle its substrate 

through this cascade of protein folding and maturation steps before reaching the Tat 

translocase (Li et al, 2010). Indeed, it has been proposed that GroEL could be involved 

in general maturation of metallo-enzymes (Ribbe & Burgess, 2001), although how the 

cofactors and their binding-proteins are internalised into the GroEL chamber remains 

unclear. In addition, DnaK, but also SlyD, were found to interact and stabilize Tat 

substrates (Graubner et al, 2007; Pérez-Rodríguez et al, 2007; Zhang et al, 2005). 

1.4.7 Medical and biotechnological implications of the Tat pathway 
The Tat system is present in many bacterial plant and animal pathogens and it has been 

shown that it strongly contributes in the secretion of virulence factors (De Buck et al, 

2008). With the increasing drug-resistance of many pathogens the development of novel 

drugs has high priority, at least in the academic arena. Because the Tat pathway is 

absent in mammalian cells, and very well conserved in bacteria, the Tat translocase 

could be an ideal target for novel antimicrobials.  

The Tat system is not essential in all bacteria. However, inactivation of the Tat 

translocase causes pleiotropic effects in cell division and membrane integrity. Hence, a 

drug effecting the translocase would perhaps not kill the bacterium (unless the channel 

was jammed open) but could reduce virulence, so bacterial cells would be more 
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susceptible to host defence or to secondary drug target effects (Sargent, 2007b). For 

example, β-lactamases in Mycobacterium are Tat substrates, and tat mutants therefore 

become more sensitive to β-lactam antibiotics (Feltcher et al, 2010). 

Another application for Tat is in the biotechnology field. The ability of the translocase to 

export folded, often oligomeric, enzymatically-active proteins provides a great selection 

mechanism for protein production. The requirements for a heterologous expressed 

protein to be transported via the Tat pathway had been reviewed (Brüser, 2007). The 

group of DeLisa developed fusions containing the protein of interest with N-terminal Tat 

signal peptide and C-terminal β-lactamase coupling antibiotic resistance with Tat 

transport thus monitoring protein folding (Fisher et al, 2006). This method has been 

already successfully used for antibody production and protein-protein interaction studies 

(Fisher & DeLisa, 2009; Waraho & DeLisa, 2009). In addition, phage display in 

combination with the Tat pathway had been successfully used to produce active proteins 

(Speck et al, 2011; Thammawong et al, 2006). 

1.5 AIMS 
The work of Maillard et al (2007) identified NapD as the specific proofreading chaperone 

for the periplasmic nitrate reductase NapA. Furthermore, protein-protein interaction 

studies showed that NapD interacts specifically with the Tat signal peptide of NapA 

(Maillard et al, 2007). This previous work guided the direction of my PhD project, 

analyzing, at the molecular level, interactions between NapD and NapA . The following 

aims were set: 

1. Mapping the binding site for NapD on the Tat signal peptide of NapA by glutamine 

scanning mutagenesis. 

2. Determining the role of specific residues within the Tat motif and hydrophobic 

region of the NapA signal peptide in biosynthesis and transport of the enzyme in 

vivo. 

3. Structural analysis of NapD in complex with NapA and its signal peptide. 

4. Setting a foundation for future experiments on targeted NapA transport via NapD 

to the Tat translocase. 
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2 The role of the twin-arginine signal peptide in NapA 

maturation, export and biosynthesis 

2.1 INTRODUCTION 
Periplasmic, molybdenum-dependent, nitrate reductases are widespread in Gram-

negative bacteria and can be identified in both pathogens (Stewart & Bledsoe, 2005) and 

environmentally-important bacteria (Berks et al, 1995). Assembly of a fully functional 

nitrate reduction system in the periplasm is not trivial and requires co-ordination of gene 

regulation, protein synthesis, cofactor synthesis, cofactor loading, and protein targeting 

pathways. To this end the E. coli nap operon encodes accessory proteins dedicated to 

the assembly of the periplasmic nitrate reductase. The work of Maillard et al (2007) 

established that the NapD protein acts as a Tat proofreading chaperone for the 

periplasmic nitrate reductase enzyme itself, NapA. As such NapD was shown to bind 

directly and specifically to the NapA twin-arginine signal peptide (NapASP). One 

hypothesis put forward was that this interaction shielded the signal peptide from  

premature interactions with the Tat translocase until folding, cofactor loading and 

assembly of the enzyme was completed (Sargent, 2007b). 

In this Chapter structural features of the NapA signal peptide required for NapD binding 

were investigated. Following-on from the initial study of Maillard et al (2007), genetic 

and biochemical approaches were taken in order to map the precise NapD binding 

epitope on NapASP. In addition, the roles of these key NapASP residues in Tat transport 

and enzymatic activity of NapA were investigated.  

2.2 RESULTS 

2.2.1 Mapping the NapD binding site on the NapA signal peptide in vivo  
To identify NapASP residues important for NapD binding a genetic approach was initially 

chosen that involved a bacterial ‘two-hybrid’ assay (BTH). The BTH system used here is 

based on the reconstitution of adenylate cyclase activity in an E. coli cya mutant 

(Karimova et al, 1998). In E. coli the cya gene encodes a membrane-bound adenylate 

cyclase that is activated in response to glucose abundance in the cell. Normally, in the 

absence of glucose the adenylate cyclase is activated and this causes an increase in 

cAMP (cyclic adenosine monophosphate) levels, which in turn activates transcription of 

genes for utilisation of alternative carbon sources, e.g. maltose and lactose (Figure 

2.1A). The BTH system developed by Karimova et al. (1998) uses cAMP concentration as 

a readout for protein interactions. Bordetella pertussis secretes a large protein toxin 

called CyaA. This toxin carries, towards its N-terminus, a water-soluble adenylate cylcase 

domain that can itself be separated into two sub-domains termed T25 and T18 
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(Karimova et al, 1998). Disconnection of the two adenylate cyclase complementary 

fragments (T25 and T18) leads to a complete loss of enzymatic activity, however if the 

sub-domains are covalently fused to two proteins that can physically interact then the 

adenylate cyclase activity can be restored (Figure 2.1B) (Karimova et al, 1998). Thus 

when co-expressed in a cya deficient E. coli strain (BTH101) protein-protein interactions 

will induce cAMP synthesis and subsequently trigger transcription of the mal and lac 

operons (Figure 2.1D). Positive interacting partners can therefore be readily visualized 

as red colonies on MacConkey indicator plates supplemented with maltose, and semi-

quantification of the binding events can be achieved by measuring the β-galactosidase 

activity. Several studies in the past showed the usefulness of this BTH system in 

determining signal peptide/chaperone interactions (Buchanan et al, 2008; Maillard et al, 

2007). 

 

Figure 2.1 The bacterial two-hybrid system. (A) The adenylate cyclase domain of B. pertussis’ 
CyaA toxin converts ATP to cAMP. (B) The two sub-domains T25 and T18 form the catalytic subunit 
of the adenylate cyclase and are not functional unless they are in close proximity of each other. 
(C) Fusing fragments T25 and T18 to putative interacting proteins (X and Y) can restore adenylate 
cyclase activity. (D) Cyclic AMP binds to a CRP dimer, which activates different catabolic operons 
like lac or mal used for quantifying protein interactions in the bacterial two-hybrid system. 

 
Previously, Maillard et al. (2007) had designed a plasmid encoding a NapASP-T18 fusion 

protein where the NapA twin-arginine signal peptide was fused to the N-terminus of the 

T18 fragment. In addition a compatible vector encoding a T25-NapD fusion protein, 

where NapD was fused to the C-terminus of T25, was also previously constructed. This 

plasmid pair allowed the clear detection and quantification of the NapD-NapASP 

interaction (Maillard et al, 2007). 
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In this work, the plasmid encoding the NapASP-T18 fusion was subjected to glutamine-

scanning mutagenesis such that every NapASP residue from K2 through to G34 was 

substituted individually by glutamine (Figure 2.2). The polar amino acid glutamine was 

chosen because of its very rare natural occurrence in Tat signal peptides (Cristóbal et al, 

1999), thus it may be a good candidate to disrupt signal peptide function, and also 

because its polar nature would interrupt the hydrophobic properties of the signal 

peptide.  

 

Figure 2.2 Signal sequence of NapA. The Tat motif is in bold and the N-terminal n-, 
hydrophobic h- and C-terminal c-region are outlined. Individual glutamine substitutions were 
introduced to residues 2 to 34. 

The resultant bank of 33 NapASP variants was then tested for the ability to interact with 

T25-NapD in vivo (Figure 2.3). Residues covering a broad scope of the signal peptide 

were identified as being important for NapD binding using this systematic scanning 

approach. Substitutions of R6, M9, K10, A13, A17 and A21 with glutamine all showed 

decreased β-galactosidase activity indicating impaired recognition by NapD in vivo 

(Figure 2.3). Further, substitution of residue A17 by the hydrophobic amino acid leucine 

also showed reduced NapD binding in vivo (Figure 2.3), thus reinforcing the important 

role of A17, which lies in the centre of the predicted h-region (Figure 2.2), in peptide-

chaperone recognition. 

As well as the h-region (Figure 2.2), the BTH assay data suggest that residues of the Tat 

motif itself are important for chaperone binding (Figure 2.3). NapA residue R6 is part of 

the Tat motif and thus predicted to be of critical importance for protein transport 

(Buchanan et al, 2002; Stanley et al, 2000). Indeed, a double R5Q-R6Q variant signal 

peptide also showed impaired binding to NapD in this bacterial two-hybrid assay (Figure 

2.3). 
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Figure 2.3 Interaction study between the Tat signal peptide of the periplasmic nitrate 
reductase NapA and its chaperone NapD. Interactions of NapD with the amino acid substituted 
NapA signal peptide using the bacterial two-hybrid system. β-Galactosidase activity is shown 
relatively to the native NapA signal peptide (WT). Column marked ‘T18+T25’ is the negative 
control. Error bars represent standard deviation of the mean, n = 3-9. The threshold for non-
interacting NapASP glutamine variants was set to ~30% compared to native NapASP (grey line). 

 

Figure 2.4 Prediction of NapA signal peptide residues required for NapD binding using a 
genetic approach. An α-helical wheel projection of NapA signal peptide (NapASP) shows residues 
R5 to G22. Side chains implicated in NapD binding as predicted by BTH and glutamine-scanning 
mutagenesis are shown in black and highlighted by the double arrow. The online applet at 
http://cti.itc.virginia.edu/~cmg/Demo/wheel/wheelApp.html was used to generate the helical 
wheel. 

Strikingly, there appears to be an obvious periodicity in the pattern of NapASP residues 

implicated in NapD binding (Figure 2.3). Plotting the NapASP primary sequence as a 

canonical α-helix (3.6 residues per turn) shows that the residues implicated in NapD 

binding (R6, M9, K10, A13, A17 and A21) cluster together on one ‘face’ of the α-helix, 
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suggesting strongly that the signal peptide adopts a helical structure when bound by 

NapD (Figure 2.4). 

2.2.2 Verification of the NapD binding epitope on NapASP in vitro. 
Although the in vivo BTH system is very useful for rapid scanning of binding interfaces 

between proteins, because of the common occurrence of both false-positives and –

negatives when taking this approach it is always advisable to verify any interaction data 

using a second technique. In this case isothermal titration calorimetry (ITC) was selected 

as a sensitive in vitro method to validate the interaction between the twin-arginine signal 

peptide of NapA and NapD from the bacterial two-hybrid assay. ITC is a thermodynamic 

technique, which measures the generated or absorbed heat during interaction of two 

biomolecules. A single experiment can give full information about binding constants (KD), 

reaction stoichiometry (N), enthalpy (∆H) and entropy (ΔS) providing a detailed 

thermodynamic profile of the binding event. 

Previously, a fusion of the NapA signal peptide to the C-terminus of the E. coli maltose 

binding protein MalE (MalE-NapASP) has been used to study NapD binding by ITC 

(Maillard et al. 2007). In this initial study the proteins were prepared under native 

conditions and the ITC experiments involved titration of 50 μM NapD into 5 μM MalE-

NapASP. These experiments resulted in a single apparent dissociation constant (KD) of 7 

nM, and an N value (binding stoichiometry) of 0.59 (Maillard et al, 2007).  

However, in this Chapter slight changes regarding protein purification protocols and ITC 

assay conditions were implemented. Here, the native MalE-NapASP fusion, its glutamine-

substituted variants, as well as the NapD chaperone were purified under denaturing 

conditions in the presence of high concentrations of urea, followed by in-column re-

naturation, before subsequent purification. The denaturation step was needed due to the 

very high level of proteolytic degradation observed for the glutamine-substituted MalE-

NapASP variants under native conditions (data not shown). It was decided, therefore, to 

subject all proteins to identical treatment in this section. 

Representative purification experiments are shown in Figure 2.5. Briefly, the MalE-

NapASP fusion protein (which also carries a hexa-Histidine affinity tag at its extreme C-

terminus) was overproduced as described in Materials & Methods (Section 7.4.3). The 

cells were lysed in the presence of 5 M urea and loaded on to an immobilised metal 

affinity chromatography (IMAC) column. The protein was then refolded whilst still bound 

to the IMAC column by applying a linear gradient of 5-0 M urea, and finally eluted from 

the column by application of an imidazole gradient (Figure 2.5). This protocol resulted in 

high yields and purities for both MalE-NapASP and NapD (Figure 2.5A and 2.5B). Data for 

the purification of the MalE-NapASP variants is not shown. 
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Figure 2.5 Purification of His-tagged MalE-NapASP and NapD using IMAC. Cells were lysed 
in the presence of 5 M urea and crude extract loaded on a HisTrapTM HP column. Bound denatured 
proteins were subsequently refolded on the column and eluted using a linear gradient of imidazole 
(0-500 mM). Shown are elution profiles of (A) MalE-NapASP and (B) NapD. Fractions were collected 
and 1 μl of each 1:1 diluted in Lämmli sample buffer (Bio-Rad). Separation was achieved on a 
12% or 15% SDS-PAGE for MalE-NapASP or NapD, respectively. MalE-NapASP variants show a very 
similar purification profile to Figure 4A. 

The isolated MalE-NapASP and NapD were then subjected to an ITC experiment to assess 

the degree of interaction between the two. In this case a stock of 100 μM NapD was 

titrated against 10 μM MalE-NapASP in the sample cell. Under these conditions a bi-phasic 

binding curve was obtained, clearly indicative of two distinct binding events (Figure 

2.6A). Optimal curve fitting suggested the involvement of two separate protein 

populations: one where 35% of the proteins interacted with an apparent KD of 3 nM, and 

a second where the remainder of the proteins (64%) showed an apparent dissociation 

constant of 143 nM (Table 2.1). Note that ITC experiments using identical concentrations 

of NapD and MalE-NapASP but purified under native conditions showed similar binding 

characteristics (data not shown). 
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Figure 2.6 Isothermal titration calorimetry analysis of NapD binding to NapA signal 
peptide variants. All experiments were performed in Tris-HCl buffer under identical conditions 
and identical protein concentrations. Upper panels show raw data for heat effect during titration. 
Lower panels are the binding isotherms. Parameters for all runs are summarized in Table 2.1. 

Next, four NapASP variants where glutamine substitutions found to impair NapD binding 

in vivo were chosen for ITC analysis. The plasmid encoding MalE-NapASP was modified 

such that it separately encoded R6Q, M9Q and K10Q variants, which form part of the 

twin-arginine motif, and an A17Q variant, located within the hydrophobic alanine stretch 

(Figure 2.2). For the R6Q, K10Q and A17Q variants of MalE-NapASP a single binding 

event with NapD was observed (Figure 2.6B, D and E and Table 2.1). In all three cases 

the apparent dissociation constant (KD) increased by one order of magnitude to ~1 µM 

(Figure 2.6B, D and E and Table 2.1). Also in all three cases the binding stoichiometry N 

remained well below 1 (Table 2.1), suggesting that the second binding site, or second 

population of binding events as observed for the native proteins (Figure 2.6A), is no 

longer detectable by this technique. Taken together, these ITC experiments verify that 

NapASP residues R6, K10, and A17 are important for recognition and binding by NapD. 
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NapD 

variant 

NapASP 

variant 

analysis N value KD [nM] 

native native two sets of 

sites 

pop. 1 

pop. 2 

0.35 

0.64 

+/- 

+/- 

0.02 

0.02 

3 

143 

+/- 

+/- 

1 

29 

 

 R6Q one set of sites pop. 1 

pop. 2 

0.60 

0.40 

+/- 0.02 725 +/- 

∞ 

90 

 

 

 M9Q two sets of 

sites 

pop. 1 

pop. 2 

0.13 

0.65 

+/- 

+/- 

0.01 

0.01 

1 

75 

+/- 

+/- 

0.3 

1 

 

 K10Q one set of sites pop. 1 

pop. 2 

0.33 

0.67 

+/- 0.05 1,297 +/- 

∞ 

498 

 

 

 A17Q one set of sites pop. 1 

pop. 2 

0.16 

0.84 

+/- 0.03 1,100 +/- 

∞ 

193 

Table 2.2.1 Binding constants between NapD and variants of the NapA signal peptide. 
Summary of stoichiometry and binding constants determined by isothermal titration calorimetry. 
In the experiments carried out two populations of NapD were found to bind the NapA signal 
peptide (pop. 1 and pop. 2). For infinite binding constants second N values were estimated and 
coloured in grey. 

Interestingly, the MalE-NapASP M9Q variant showed similar NapD binding characteristics 

to that observed for the un-modified native NapA signal peptide using the in vitro ITC 

approach (Figure 2.6C and Table 2.1). This is in contrast to the in vivo data obtained by 

bacterial two-hybrid assay (Figure 2.3), but most likely indicates that the M9Q 

substitution destabilises the NapA signal peptide that it leads in-turn to a ‘false-negative’ 

result in the BTH (Figure 2.3). 

The importance of three specific NapA residues (R6, K10 and A17) for NapD binding has 

therefore been confirmed by both in vivo and in vitro analyses. Thus a revised helical 

wheel projection now narrows the NapD binding epitope down to a distinct binding face 

on one side of an α-helix. The NapD binding epitope comprises residues that cross the 

boundary between the twin-arginine motif and the h-region within the N-terminal half of 

the signal peptide (Figure 2.7).  

36 
 



 

Figure 2.7 The verified NapD binding site on the NapA signal peptide following ITC 
analysis. α-helical wheel of the NapA signal peptide shows residues predicted by BTH to be 
involved in NapD binding in grey and residues confirmed by ITC in black. Site of NapD interaction 
is highlighted by the double arrow. The online applet at http://cti.itc.virginia.edu/~cmg/Demo/ 
wheel/wheelApp.html was used to generate the helical wheel. 

2.2.3 The roles of the signal peptide binding epitope residues in nitrate 

reductase activity  
Having identified three key residues within the NapA signal peptide important for NapD 

binding (R6, K10 and A17), the next step was to assess their roles in assembly and 

activity of the periplasmic nitrate reductase. To this end three new E. coli strains were 

constructed, each carrying a point mutation at the native napA locus on the 

chromosome. The parental strain chosen was LCB2048 (Table 7.1-1) a seminal strain in 

the nitrate respiration field that is devoid of the two cytoplasmically-oriented nitrate 

reductases (NarGHI and NarZYV; Blasco et al, 1992). Thus LCB2048 produces only a 

single nitrate reductase, the periplasmic isoenzyme, and was further genetically modified 

here by the introduction of individual glutamine codons at positions normally coding for 

either R6, K10 or A17 (see Materials & Methods). The resulting strains were designated 

as SGQ061 (as LCB2048, napA R6Q), SGQ101 (as LCB2048, napA K10Q), and SGQ171 

(as LCB2048, napA A17Q).   

In order to determine the levels of physiological nitrate reductase activity a colorimetric 

assay was employed. The product of nitrate (NO3
-) reduction, nitrite (NO2

-), can be 

readily quantified using the Grieß test, where nitrite is further converted by an 

aminobenzene-based substance to a pink coloured azo compound, which can be 

spectroscopically quantified by its absorbance at 540 nm (Figure 2.7B). 
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Figure 2.8 In vivo nitrite production assay. (A) NapA catalyzes the reduction of nitrate to 
nitrite in the periplasm. Shown is the crystal structure of E. coli NapA (PDB ID code 2nya). (B) The 
Grieß reaction for quantification of produced nitrite. Nitrite reacts with sulfanilamide and NED (N-
(1-napthyl)ethylenediamine) under acidic conditions to generate a pink coloured azo compound, 
which has maximum absorption at 540 nm. (Adopted from www.promega.com/tbs/tb229/tb229. 
pdf) 

All four strains (LCB2048, SGQ061, SGQ101 and SGQ171) were tested for their ability to 

reduce exogenous nitrate added to live cell cultures (Figure 2.8). The parental LCB2048 

(napA+) strain was capable of nitrate reduction and reached a peak in nitrite production 

~2.5 hours following nitrate addition, after which the nitrite is itself metabolised to a 

basal level (Figure 2.8). This secondary nitrite metabolism is presumably catalysed by 

the respiratory cytochrome c nitrite reductase, which is also located in the periplasm 

(Simon, 2002). Conversely, strain SGQ061 (napA R6Q) did not exhibit any detectible 

nitrite production over the entire monitoring period of 8 hours (Figure 2.8). It is clear, 

therefore, that the napA R6Q strain is completely devoid of periplasmic nitrate reductase 

activity. In contrast, SGQ101 (napA K10Q) retained an in vivo nitrate reductase activity 

with a similar profile to that observed for the parental strain LCB2048 (Figure 2.8). 

Finally, strain SGQ171 (napA A17Q) exhibited an intermediate phenotype by producing 

lower levels of nitrite (approx. 50%) as the parental strain (Figure 2.8). In addition, a 

delay in the onset of nitrite production was observed for SGQ171 (napA A17Q) that was 

not observed in the other strains (Figure 2.8).  

It can be concluded that NapA residue R6 within the Tat motif of the signal peptide is 

essential for in vivo nitrate reductase activity. In contrast, substitution of residues K10 

and A17 within the NapA signal peptide with glutamine is not sufficient to completely 

block assembly of the periplasmic nitrate reductase. 
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Figure 2.9 Importance of specific NapA signal peptide residues in NapA biosynthesis. E. 
coli strains with individual chromosomal glutamine substitutions were grown anaerobically in LB 
medium supplemented with 0.5% glycerol, 0.4% fumarate and 0.2% nitrate. Aliquots were taken 
at indicated time points and OD600 noted. The amount of produced nitrite from cell-free 
supernatant was quantified according to the Grieß test. Strains are labelled as wild type LCB2048 
(nap+) ( ), SGQ061/NapA R6Q ( ), SGQ101/NapA K10Q ( ), SGQ171/NapA A17Q ( ). 

2.2.4 The roles of the signal peptide binding epitope residues in Tat transport  
Having studied the roles of NapA residues R6, K10 and A17 in both NapD binding and 

nitrate reductase activity the third aspect to consider in terms of signal peptide 

structure/function is their specific roles in Tat transport. In order to study signal peptide 

activity in isolation (i.e. in the absence of other competing processes such as cofactor 

insertion) a suitable reporter protein is required. Chloramphenicol acetyl transferase 

(CAT) has proven to be one of the most useful reporter proteins for Tat transport 

activity. This enzyme is not compatible for Sec-dependent export but is efficiently 

translocated to the periplasm by the Tat machinery (Stanley et al, 2002). This is useful 

as it means there can be no defaulting of export to the Sec machinery, if Tat transport is 

blocked. In addition, the CAT enzyme is only active in the cell cytoplasm. This is because 

the reaction to detoxify chloramphenicol is dependent upon acetyl-CoA as cofactor, 

which is not present in the periplasm. As a result CAT is a robust indicator of impaired 

Tat transport function, since retention of CAT in the cytoplasm leads to increasing 

chloramphenicol resistance of the host cell. 

A vector encoding a NapASP-CAT fusion has already been prepared (Maillard et al, 2007; 

Stanley et al, 2002). This fusion directs efficient export of CAT across the cytoplasmic 

membrane via the Tat pathway (Maillard et al. 2007) and the E. coli host cells therefore 

exhibit sensitivity to high concentrations of chloramphenicol (Cml) (Figure 2.9A). Cells 

blocked for Tat transport, either through lesions in the tat genes or through carrying 

mutations within the signal peptide encoding region, show Cml resistance (Figure 2.9B). 

Assuming expression levels are similar in any given experiment, the degree of resistance 

to chloramphenicol is proportional to the amount of CAT retained in the cytoplasm. 
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Figure 2.10 In vivo Tat transport assay. (A) Plasmid encoded chloramphenicol acetyl 
transferase (CAT) is fused to a Tat signal peptide (labelled ‘RR’). Recognition and transport of CAT 
by the Tat complex results in cells being sensitive to high concentrations of chloramphenicol (Cml). 
(B) Mutation of e.g. the Tat signal peptide (*RR) causes rejection of CAT for export. Thus CAT 
remains in the cytoplasm and inactivates chloramphenicol by acetylation (CmlAc).  

In this work, the plasmid encoding NapASP-CAT (Maillard et al, 2007) was modified to 

encode NapASP R6Q, K10Q and A17Q derivatives. The four vectors were used to 

separately transform the E. coli wild type strain MG1655 (tat+) and growth of the 

transformants was then monitored in the absence or presence of chloramphenicol 

(Figure 2.10). All four transformants showed similar growth characteristics when grown 

aerobically in rich media in the absence of the antibiotic (Figure 2.10). As previously 

published (Maillard et al., 2007), cells producing the native NapASP-CAT fusion showed 

no growth in the presence of Cml (Figure 2.10), indicating that CAT had been efficiently 

targeted to the periplasm. In contrast, cells expressing the R6Q NapASP-CAT variant were 

able to grow in the presence of 200 μg/ml chloramphenicol, a clear indication that export 

of CAT from the cytoplasm was severely compromised by this signal peptide modification 

(Figure 2.10).  

Substitution of residues K10 and A17 with glutamine within the NapASP-CAT fusion 

resulted in intermediate growth phenotypes (Figure 2.10). Cells harbouring the plasmid 

encoding the NapASP-CAT K10Q glutamine variant began to show detectible signs of 

growth after a very long lag-phase (~7 hours) and reached only ~10% of the cell 

density attained by the native system (Figure 2.10). This suggests strongly that the 

NapA K10Q substitution severely impaired Tat export activity of the signal peptide, but is 

not sufficient to completely block protein transport. 

40 
 



 

Figure 2.11 Importance of specific NapA signal peptide residues in Tat transport. E. coli 
strain MG1655 was transformed with pUNI-NapA containing a fusion of the NapA signal peptide to 
CAT (NapASP-CAT). Cells were grown aerobically in LB medium and 0.5% glycerol in presence (+ 
Cml; closed symbols) or absence (- Cml; open symbols) of chloramphenicol (200 μg/ml final 
concentration). NapA signal peptide variants are indicated as followed: native ( ), R6Q ( ), K10Q 
( ), A17Q ( ). 

2.3 DISCUSSION  

2.3.1 NapA residues important for NapD binding 
Published work by Maillard et al (2007) showed the very specific and tight binding of the 

proofreading chaperone NapD to the twin-arginine signal peptide of NapA. Those results 

provided the basis for the in vivo mapping of the binding interface described in the initial 

part of this Chapter. The NapA residues making up the minimal NapD binding epitope 

were further verified in vitro using isothermal titration calorimetry. This resulted in the 

identification of NapA R6, K10 and A17 residues as central to the NapD recognition 

mechanism.  

Looking at the h-region of the NapA signal sequence a long alanine stretch stands out 

(Figure 2.2A), which could in itself indicate that the signal peptide likely adopts an α-

helical conformation (Marqusee & Baldwin, 1987; Rohl et al, 1999). Moreover, when the 

signal peptide was plotted as a canonical helical wheel, residues R6, K10 and A17 (as 

well as A13 and A21) are predicted to cluster together to form a distinct binding face on 

the signal peptide.  

Comparison of the Tat signal sequence from E. coli NapA with the NapA signal peptide of 

other microorganisms shows that the Tat motif and the hydrophobic region are very well 

conserved (Figure 2.11). Also all identified NapA residues (R6, K10, A13, A17 and A21) 

are found to be well conserved in other biological systems, suggesting an important role 

in NapD binding in general (Figure 2.11). 
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Figure 2.12 Sequence alignment of different NapA twin-arginine signal peptides. 
Homologs from Escherichia coli (Ec), Agrobacterium tumefaciens (At), Bradyrhizobium japonicum 
(Bj), Cupriavidus necator (Cn), Desulfovibrio desulfuricans (Dd), Paracoccus pantotrophus (Pp), 
Rhodobacter sphaeroides (Rs) and Shewanella oneidensis (So) are shown. Identified residues for 
NapD binding by BTH and ITC are highlighted with an arrow. Highly conserved residues are 
highlighted in orange. Amino acid residues with similar properties are shown in grey. 

2.3.2 The bi-phasic binding character of NapD 
Interestingly, a two-tier biphasic binding event was observed for NapD binding to the 

native NapA signal sequence during ITC titrations. This observation was apparently in 

contrast to previous published work (Maillard et al, 2007). At first glance this biphasic 

binding curve may appear to suggest two binding sites for the signal peptide on the 

NapD protein, however it should be noted that the total Molar binding stoichiometry (N) 

consistently adds up to 1, as opposed to 2.  In this case, such a biphasic binding curve 

could be best explained by either NapD or the NapA signal peptide existing as two 

subpopulations with subtly different properties (Maillard et al, 2007). Why was such 

biphasic binding not observed by Maillard et al. (2007)? In this work higher protein 

concentrations were used, so it is likely that Maillard et al. (2007) were focussed on the 

first, highest affinity, binding site and were not saturating the second site. This would 

explain why the N value obtained by Maillard et al. (2007) was never more than 0.56.  

Similarly, Zakian et al (2010) noticed biphasic binding between the chaperone NarJ and 

the N-terminus of NarG, which is an evolutionary remnant Tat signal peptide (Ize et al, 

2009). In addition, it was demonstrated by NMR that the NarG N-terminus has only one 

binding site on NarJ (Zakian et al, 2010). In this case slight changes in pH were able 

produce single monophasic binding curves and it was concluded that NarJ consists in two 

subpopulations with different protonation states, and that this is sufficient to observe 

subtle differences in binding characteristics (Zakian et al, 2010).  

2.3.3 NapA residues R6, K10 and A17 and their importance in NapA assembly  
Initial studies of signal peptide binding by Tat proofreading chaperones involved the 

TorD-TorA system from E. coli. Indeed, the TorD binding epitope on the TorA signal 

peptide was mapped by glutamine-scanning mutagenesis using identical methodology as 
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described here for NapD-NapA (Buchanan et al, 2008). In this case, the TorD binding 

epitiope was located at the C-terminus of the TorA signal peptide – relatively far, in 

molecular terms, from the conserved twin-arginine motif (Buchanan et al, 2008). Work 

outlined in this Chapter demonstrates that the NapD-NapA system follows its own rules 

in this regard, since the NapA Tat motif overlaps with the NapD chaperone-binding motif 

considerably.  

First, the NapA R6 residue clearly has overlapping functions in both assembly and export 

of the nitrate reductase. A strain carrying a chromosomal NapA R6Q allele was 

completely devoid of nitrate reductase activity, and a reporter assay suggested this 

substitution was a signal peptide defective in Tat transport. These data point to a role for 

NapA R6 in Tat transport. In addition, however, both in vivo and in vitro binding studies 

identified R6 as being important for the NapD interaction. This could suggest that the 

role of NapD is focussed entirely on the Tat transport step on nitrate reductase 

biosynthesis, rather than in cofactor insertion as it is often assumed. 

The NapA K10 residue lies within the Tat motif and is very highly conserved in nitrate 

reductase signal peptide primary sequences (Figure 2.11). In this case, however, a K10Q 

substitution had little effect on the overall nitrate reductase activity in vivo. Similarly, a 

strain carrying a napA A17Q allele at the native chromosomal locus had low, but still 

detectible, periplasmic nitrate reductase activity. These data suggest cofactor insertion 

and protein export can continue to a significant extent. This seems at odds with the 

NapD binding experiments, however, which suggest both K10Q and A17Q NapA 

substitutions drastically impair NapD binding. Given that NapD is essential for nitrate 

reductase activity (Maillard et al, 2007), how can these results be reconciled? One 

possibility is that the detection limit of the BTH system, which these data suggest must 

lie above an apparent KD of 750 nM (Table 2.1), bears little relation to the binding 

constants required for NapD function in the living cell. Indeed, the variant NapA signal 

peptides reported here to be ‘devoid’ of chaperone binding still retain some ability to 

interact with NapD with apparent KDs of ~1 μM (Table 2.1), and a binding constant of 1 

μM would be considered relatively ‘tight’ for many biological systems (e.g. Hatzixanthis 

et al, 2005). It is therefore conceivable that NapD function is continuing to some extent 

in the mutant strains. The key experiment to test this, of course, would be to further 

delete the napD gene in the SGQ061, SGQ101, and SGQ171 mutant backgrounds. This 

would demonstrate if nitrate reductase activity was now NapD-independent when the 

NapA K10Q and A17Q substitutions were made.  

It is also possible that the NapA K10Q substitution exhibits compensatory effects across 

different activities. For example, substitution of the equivalent residue of the Tat motif 
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with alanine in the cofactor-less Tat substrate SufI resulted in faster, more efficient 

export (Stanley et al, 2002). It is possible that the impairment of NapD function caused 

by the NapA K10Q substitution is compensated for by faster export of the enzyme.  

A similar observation as seen for NapA K10Q and A17Q was made for TorA variant L31Q, 

where this glutamine substitution is part of the hydrophobic region of the Tat signal 

peptide and causes a drastic decrease in binding affinity for TorD as shown by ITC. 

Surprisingly, reduced interaction with the TorD chaperone does not affect TMAO 

reductase activity and Tat transport of TorA L31Q when compared to the native enzyme 

(Buchanan et al, 2008). This indicates that TorA residue L31 is important for chaperone 

binding, but has no influence on signal peptide recognition by the Tat complex. Hence, 

NapD interaction is dependent on NapA K10 and A17, whereas Tat transport is 

independent of residue K10 and to a lesser extent of residue A17. However, it should be 

noted that TorA biosynthesis is not entirely dependent on TorD, since an E. coli ΔtorD 

mutant still exhibits significant TorA activity (Pommier et al, 1998), which is in stark 

contrast to the nap system. 

It should also be considered that the in vivo nitrite production assays give very little 

information on the amount of nitrate reductase enzyme present in the periplasm of the 

mutant strains. Conceivably, very little enzyme could support significant nitrate 

reduction. Attempts were made here to visualise the relative amounts of NapA in the 

periplasms of the SGQ061, SGQ101 and SGQ171 strains by subcellular fractionation and 

Western immunoblotting. Unfortunately, the data were of poor quality and the blots were 

therefore unconvincing.  

In summary, this Chapter has combined genetic and biochemical approaches to 

convincingly define, for the first time, the NapD binding epitope on the NapA twin-

arginine signal peptide. These data suggest an intimate link between the Tat 

translocation activity of the signal peptide and the NapD binding site, possibly pointing to 

a dedicated role for NapD in protein transport as opposed to cofactor insertion.  

 
 

44 
 



3 Structural features of NapD important in NapA binding 

3.1  INTRODUCTION 
As described in Chapter 2, specific NapA residues have been identified within the NapA 

twin-arginine signal peptide that are important for the interaction with the NapD 

chaperone both in vivo and in vitro. These NapA residues are R6, K10 and A17. 

In early work designed to identify regions of the NapD molecule involved in the NapA 

signal peptide interaction Maillard and co-workers (2007) carried out [1H-15N]–

heteronuclear single quantum correlation (HSQC) NMR spectroscopy, where MalE-NapASP 

was titrated into a 15N-labelled sample of NapD. This binding experiment identified NapD 

residues 9-11, 35, 37 and 74-76 as being involved in recognition and binding of the 

twin-arginine signal peptide (Figure 3.1). The NMR solution structure of NapD (PDB ID 

code 2jsx) shows a single, large β-sheet face and all of the residues identified by Maillard 

et al (2007) cluster within that specific part of NapD (Figure 3.1) indicating that the β-

sheet face is the major region that is physically binding to the NapA signal peptide. 

Although the initial NMR experiments conducted by Maillard et al (2007) were an 

excellent first glimpse at the possible signal peptide binding site on NapD, they were also 

fraught with difficulties.  

Classically, NMR-based ligand binding experiments involve complexes that are in ‘fast 

exchange’ or ‘slow exchange’ on the NMR timescale. For ‘fast exchange’, this normally 

means studying interactions with KD’s in the low millimolar range (i.e. relatively weak 

binding) and using 2D HSQC spectroscopy to track the gradual movement of cross-

peaks, corresponding to the ligand binding site on the protein of interest, as ligand is 

titrated (Vaynberg & Qin, 2006). This is the ‘best case scenario’ for an NMR 

spectroscopist as it is not necessary to re-assign cross-peaks to specific amino acids in 

the complex. For ‘slow exchange’, this means studying very strong interactions by again 

using 2D HSQC spectroscopy but this time tracking the gradual disappearance of cross-

peaks in the ‘free’ protein spectrum and simultaneously recording the appearance of new 

cross-peaks for the ligand-bound form, which usually correspond directly to the ligand 

binding site on the protein of interest (D'Silva et al, 2005). In this case each new cross-

peak in the spectrum should be carefully re-assigned to the corresponding amino acid 

residue.  

Now in the experiments of Maillard et al. (2007) the chaperone-peptide complex was in 

‘intermediate exchange’, which meant the free NapD cross-peaks gradually broadened 

and ‘disappeared’ as peptide was titrated but no new cross-peaks replaced them. Thus, 

some information on the initial amino acid side-chains of NapD to be affected upon 
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peptide binding could be obtained, but it was impossible to extrapolate to the structure 

of NapD in the peptide-bound state. This demonstrates clearly the limits of NMR when 

studying interactions with KD’s in the low micromolar and nanomolar ranges. 

 

Figure 3.1 NapD residues involved in NapA signal peptide binding. Amino acid residues of 
NapD identified by HSQC spectroscopy to bind the twin-arginine signal peptide of NapA are 
highlighted in magenta (Maillard et al, 2007). (PDB ID code 2jsx) 

Although good progress has been made in understanding the key requirements for signal 

peptide recognition by NapD (see Chapter 2), there are still many questions that remain. 

One question revolves around the twin-arginine motif of the signal peptide: why is it so 

important for NapD binding, and how does NapD recognise it? A second question 

concerns the trigger that releases the signal peptide from NapD: how does the 

chaperone sense that folding of NapA is complete and so releases the signal peptide for 

export to commence? 

What is clear from the original binding studies is that the two α-helices that support the 

β-sheet from ‘beneath’; the loop regions that link the helices and strands; and the long 

flexible C-terminal tail (residues 78-87), are not implicated in binding the signal peptide 

directly (Maillard et al, 2007). Moreover, Maillard et al. (2007) studied the role of the 

flexible C-terminal tail of NapD by attempting to complement a ΔnapD strain using a 

vector encoding a truncated NapD protein (Figure 3.2). These experiments suggested 

the truncated NapD was still able to interact with NapASP since some periplasmic nitrate 

reductase activity could be detected. Hence, NapD missing its C-terminus still retained 

some activity. Note, however, that the nitrite production profile generated by the 

truncated NapD variant was different to that observed with full-length native NapD 

(Maillard et al, 2007). Indeed, it resulted in clearly reduced NapA activity perhaps 

suggesting an important, if not essential, role for the flexible C-terminus of NapD in 

NapA biosynthesis (Maillard et al, 2007). 
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Figure 3.2 Amino acid sequence and secondary structure of E. coli NapD. The position for 
the published C-terminal truncation is marked by an arrow (Maillard et al, 2007). Glutamic acid 
residues subjected to lysine mutations are highlighted in bold orange. 

The C-terminal tail of E. coli NapD is negatively charged and contains four glutamate 

side-chains (Figure 3.2). With only a few exceptions, the negative charge in the C-tail is 

conserved in the vast majority of NapD homologs (Maillard et al, 2007). It is tempting to 

speculate that this conserved negative charge may be involved in the initial recognition 

of the conserved positive charge within the Tat motif of the signal peptide. 

In general, the question of how NapD somehow ‘senses’ the folded state of NapA is a 

difficult one to address. Certainly there are big differences in how NapD behaves when it 

binds to the native NapA precursor, compared to when it binds the NapA signal peptide 

fused to a reporter protein. For example, co-expression of plasmid-encoded NapD with a 

plasmid-encoded NapASP-CAT fusion protein produced a surprising result: export of the 

CAT reporter protein was completely blocked (Maillard et al, 2007). One interpretation of 

this data is that the NapD chaperone is unable to release the NapA signal peptide when it 

is part of such an artificial fusion, possibly because NapD cannot sense the folded state 

of the alien passenger protein. 

In this Chapter structural features of the NapD chaperone important for signal peptide 

binding were investigated. The role of the flexible C-tail in NapD function was addressed. 

In addition, highly specific napD suppressor mutations were isolated that restored the 

interaction of the chaperone with the loss-of-binding NapA signal peptide variants 

identified in Chapter 2.  

3.2 RESULTS 

3.2.1 Role of the flexible C-terminal tail of NapD in NapA biosynthesis  
Solution NMR studies of monomeric, recombinant NapD revealed that the extreme C-

terminal region of the protein formed an unstructured, flexible ‘C-tail’ (Maillard et al, 
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2007). The C-terminus of NapD has four glutamic acid residue arranged in the sequence 

‘E-E-x-x-E-E’ located at position 80, 81, 84 and 85, respectively (Figure 3.2). While 

these precise residues are not completely conserved amongst NapD homologs, an overall 

negative charge in the C-tail is widely retained across many biological systems. For 

example, the W. succinogenes NapD has a very long C-tail of 46 amino acids, of which 

nine are glutamate, two are aspartate, and only two are lysine or arginine. Similarly, the 

NapD homolog of the opportunistic pathogen P. aeruginosa has a 33-residue C-tail 

containing four glutamate, six aspartate, and only one arginine. Removal of the last 10 

amino acids of E. coli NapD (residues 78 to 87), which form the flexible C-terminus, 

resulted in decreased NapA activity in vivo (Maillard et al, 2007). In this work it was 

decided to take a closer look at the roles of the acidic residues within the C-tail.  

 

Figure 3.3 Role of C-terminal NapD mutations on NapA activity. Strain LP202S, which has no 
NapA activity was either transformed with the original vector pUNI-Prom, pUP-NapD or plasmids 
containing NapD mutations E K. To measure NapA activity cells were cultured in LB, 0.5% 
glycerol, 0.4% fumarate and 0.2% nitrate. At indicated time points aliqotes were taken, OD600 
noted and produced nitrite quantified according to the Grieß test (Chapter 2). For clarity 
transformants and their enzyme activity are shown in separate graphs. Labels are as followed: (A) 
LP202S (∆napD) ( ), LP202S/NapD ( ), LP202S/E80K ( ), LP202S/E80/81/84/85K ( ). (B) 
LP202S/NapD ( ), LP202S/E81K ( ), LP202S/E80/81K (Δ). (C) LP202S/NapD ( ), LP202S/E84K 
( ), LP202S/E85K (Δ), LP202S/E84/85K ( ). 

NapD residues E80, E81, E84 and E85 were substituted with the basic amino acid lysine 

either individually, in pairs (E80/81K and E84/85K), or all together (E80/81/84/85K). 
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The influence of each substitution on in vivo NapA activity was then determined by a 

nitrite production assay (Figure 3.3). E. coli strain LP202S (as LCB2048, ΔnapD), which is 

devoid of any NapA activity (Maillard et al, 2007; Potter & Cole, 1999), was transformed 

either with vector only (control) or plasmids encoding native NapD and its C-tail 

variants. The LP202S (ΔnapD) strain is unable to reduce nitrate (Figure 3.3) as the NapA 

protein is not assembled correctly and so rapidly degraded in the absence of NapD 

(Maillard et al, 2007). This phenotype can be rescued upon expression of napD in trans 

(Figure 3.3). All of the NapD C-tail variants, including one containing no negative 

charges whatsoever, retained the ability to rescue the nitrate reductase-negative 

phenotype of the ΔnapD strain (Figure 3.3). Therefore, it must be concluded that the 

negative charges in the NapD C-tail do not play a critical role in the assembly of the 

periplasmic nitrate reductase. 

3.2.2 Generation of random mutant libraries of napD by error-prone PCR 
Genetics can be a powerful tool in unravelling complex biological systems – especially if 

the genetic screens devised are robust and reliable. In this section it was decided to use 

a napD suppressor mutant library in combination with the bacterial two-hybrid system 

described in Chapter 2 to further dissect the chaperone-signal peptide relationship. 

‘Suppression genetics’ is an approach that has been used to good effect to decipher 

complex protein targeting systems in bacteria (e.g. the outer membrane Bam system – 

Chimalakonda et al, 2011; and the function of TorD on the E. coli Tat pathway – 

Buchanan et al 2008) and involves the selection of secondary mutations that can rescue 

a particular mutant phenotype.  

In Chapter 2 three distinct NapA signal peptide mutations were identified that disrupted 

the interaction with NapD. These were the NapASP R6Q, K10Q and A17Q variants. To find 

NapD variants able to rebind to the corresponding glutamine substituted NapA signal 

peptides two napD mutant libraries were constructed. Error-prone PCR was performed 

using unequal amounts of dinucleotides and manganese supplemented buffer (Pritchard 

et al, 2005). The chosen theoretical error rates for the PCR reactions were 1.0% and 

1.5%, which should give approximately one mutation per clone. The PCR products were 

cloned into vector pT25 from the BTH system and provided around 100,000 clones per 

library.  
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Figure 3.4 Devising a suppressor screen based on the bacterial two-hybrid system. A 
cartoon outlining the proposed methodology for isolating napD suppressor mutants able to interact 
with variant signal peptides (A) Using the BTH system developed by Karimova et al (1998) NapD 
can be observed to bind to Tat signal peptide of NapA (NapASP) resulting in red (positive) colony 
formation on MacConkey-maltose indicator plates. (B) Specific glutamine substitutions within 
NapASP (e.g. A17Q) impair NapD binding such that the cells cannot metabolise maltose and so 
form white (negative) colonies on the indicator plates. (C) By first generating a random library of 
napD mutants and then screening against NapASP A17Q within the BTH system, any suppressors 
that are able to re-bind the signal peptide variant can be detected as red (positive) colonies, 
isolated and further characterised. 

3.2.3 Screening the napD mutant libraries for suppressors 
In Chapter 2 it was clearly shown that a number of NapASP variants consistently 

produced ‘white’ (negative) colonies on MacConkey-maltose indicator plates when co-

transformed with the vector encoding native NapD. This plate test can therefore be used 

as a basis to select for napD mutants that are able to re-bind the glutamine substituted 

NapA signal peptides (see Figure 3.4). 

To identify regions of NapD important in Tat signal peptide binding the pT25-NapD 

libraries were screened against the NapASP variants (R6Q, K10Q and A17Q) known to be 

impaired in binding native NapD, as well as the M9Q variant. The E. coli reporter strain 

BTH101 (Δcya) was therefore co-transformed with plasmids encoding either NapASP R6Q-

T18, NapASP M9Q-T18, NapASP K10Q-T18, and NapASP A17Q-T18 together with the pT25-

NapD-based mutant libraries. Positive interactions between NapD suppressors and 

NapASP variants were visualized as red colonies on MacConkey-maltose indicator plates 

(Figure 3.4). Overall, 40 suppressors were isolated that, following isolation and re-

transformation, consistently formed red colonies on MacConkey-maltose plates (Table 

3.1 – 3.3).  

The screen against NapASP R6Q resulted in a total of 25 suppressors that could 

apparently interact with this normally defective signal peptide (Table 3.1). However, 

when the ‘specificity’ of each newly-isolated suppressor was tested by BTH against other 

glutamine-substituted NapA variants (M9Q, K10Q and A17Q) it became clear that none 

of the 25 suppressors were specific for the R6Q substitution (Table 3.1). It is possible 
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that this screen has isolated variant NapD proteins with a generally enhanced affinity for 

the NapA signal peptide. 

Bait: Prey: Testing T25-NapD mutants for specificity

NapASP-T18 T25-NapD mutant # versus  NapASP-T18 variants
native R6Q M9Q K10Q A17Q

R6Q 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25  

Table 3.1 Screening NapD suppressor mutants for their specificity to NapASP R6Q by 
bacterial two-hybrid. E. coli BTH101 cells were co-transformed with pT25 producing isolated 
NapD variants from the napD mutant libraries and pT18 with individual NapASP variants. Colonies 
were grown on MacConkey indicator plates containing 1% maltose. Positive interactions are 
indicated in the table by an orange box. Non-interacting combinations are shown in green. 

The screen against NapASP M9Q resulted in no suppressors whatsoever, which is most 

probably further proof that the NapASP M9Q-T18 fusion is unstable and actually a ‘false 

negative’. 
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Bait: Prey: Testing T25-NapD mutants for specificity

NapASP-T18 T25-NapD mutant # versus  NapASP-T18 variants
native R6Q M9Q K10Q A17Q

K10Q 1**
2
3  

Table 3.2 Screening NapD suppressor mutants for their specificity to NapASP K10Q by 
bacterial two-hybrid. E. coli BTH101 cells were co-transformed with pT25 producing isolated 
NapD variants from the napD mutant libraries and pT18 with individual NapASP variants. Colonies 
were grown on MacConkey indicator plates containing 1% maltose. Positive interactions are 
indicated in the table by an orange box. Non-interacting combinations are shown in green. Specific 
binding of NapD variants to NapA signal peptide K10Q are tagged with asterisks (**). 

The screen against the NapA K10Q signal peptide identified only three suppressors able 

to re-bind this signal peptide (Table 3.2). In this case, however, one of the suppressors 

(#1** - Table 3.2) was unable to interact with the R6Q, M9Q or A17Q variants of the 

NapA signal peptide and so was considered specific for the K10Q substitution. Sequence 

analysis revealed four NapD mutations: S9G, I22T, V36I and G68S were present in the 

product of the #1** clone (Figure 3.5). It should be noted that two of these residues (S9 

and V36) had been implicated by Maillard and co-workers (2007) in NapA signal peptide 

binding. 

 

Figure 3.5 Sequence alignment and secondary structure of NapD and mutant suppressor 
#1** for NapASP K10Q. Mutations are highlighted in grey. The alignment programme ClustalW 
was used. 

Finally, the screen against the NapASP A17Q signal peptide identified 12 suppressors 

apparently able to re-bind this signal peptide in vivo (Table 3.3). Here, three of the 

suppressors (#2**, #9**, and #11** - Table 3.3) were highly specific for the A17Q 

substitution (Table 3.3) and sequencing of the mutant napD genes gave following amino 

acid substitutions in the gene products: 

 #2**  I19F 

 #9**  A14T and A71T 

52 
 



 #11**  I19F and T59I 

Bait: Prey: Testing T25-NapD mutants for specificity

NapASP-T18 T25-NapD mutant # versus  NapASP-T18 variants
native R6Q M9Q K10Q A17Q

A17Q 1
2**
3
4
5
6
7
8

9**
10

11**
12  

Table 3.3 Screening NapD suppressor mutants for their specificity to NapASP A17Q by 
bacterial two-hybrid. E. coli BTH101 cells were co-transformed with pT25 producing isolated 
NapD variants from the napD mutant libraries and pT18 with individual NapASP variants. Colonies 
were grown on MacConkey indicator plates containing 1% maltose. Positive interactions are 
indicated in the table by an orange box. Non-interacting combinations are shown in green. Specific 
binding of NapD variants to NapA signal peptide A17Q are tagged with asterisks (**). 

From Figure 3.6 it can be seen that the mutations are localized at either the N- or C-

terminal regions of NapD. Surprisingly, the NapD I19F substitution was isolated twice by 

the suppressor screen, suggesting immediately that this was possibly an important 

residue in signal peptide recognition. These suppressors were chosen for further in vitro 

analysis to establish their role in NapASP A17Q binding. 

 

Figure 3.6 Alignment and secondary structure of NapD and NapASP A17Q suppressors. 
Amino acid substitutions are framed with grey boxes. The alignment programme ClustalW2 was 
used. 
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3.2.4 Verification of napD suppressor binding to NapA A17Q by ITC 
As outlined in Chapter 2, it is important to verify any BTH experiments with a secondary 

in vitro assay. Here, we turned again to ITC and so constructed napD overexpression 

vectors that would encode six different NapD variants: the I19F (suppressor #2**) 

single substitution; the A14T A71T (suppressor #9**) and I19F T59I (suppressor 

#11**) double substitutions; and the A14T, T59I, and A71T single substitutions. Each 

variant was then purified and tested for signal peptide binding in vitro against native 

MalE-NapASP and its A17Q variant by ITC (Table 3.4).  
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Figure 3.7 In vitro binding analysis of NapD suppressor mutants and NapA signal 
peptide variant A17Q. Shown are ITC graphs of NapD suppressors A14T A71T (A), A14T (B), 
A71T (C), I19F T59I (D), I19F (E) and T59I (F) with MalE-NapASP variant A17Q. 

As shown in Chapter 2, NapD binds the NapA signal peptide in bi-phasic manner with a 

relatively low (3 nM) and a higher (143 nM) dissociation constant (KD). Titration of native 

NapD against MalE-NapASP A17Q resulted in a single binding event with an apparent KD 

of 1.1 μM. In contrast here, when suppressor #2** (NapD I19F) was titrated against 
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MalE-NapASP A17Q this resulted in a bi-phasic binding with a relatively low (14 nM) and a 

higher (704 nM) dissociation constant (KD) (Figure 3.7C, Table 3.2). These data suggest 

strongly that a single I19F substitution in NapD is sufficient to restore binding to the 

NapA A17Q signal peptide. 

The #9** suppressor (NapD A14T A71T) was also isolated and titrated against MalE-

NapASP A17Q (Figure 3.7A, Table 3.4) in the calorimeter. This resulted in a bi-phasic 

binding curve (Figure 3.7A) with a relatively low (12 nM) and a higher (218 nM) 

dissociation constant (KD) (Table 3.4), which is broadly similar to that seen for the native 

interaction (Chapter 2). As there were multiple amino acid substitutions in suppressor 

#9**, the corresponding single substitutions were also purified. Interestingly, the NapD 

A14T variant was essentially incapable of binding to the native NapA signal peptide, or 

the NapA A17Q variant, with characteristics anything like those previously described: 

when titrated against MalE-NapASP A17Q a single binding event was observed with an 

apparent KD of ~2 μM (Table 3.4). Similarly, the single A71T NapD variant bound MalE-

NapASP A17Q with single binding event and an apparent KD of 833 nM (Figure 3.7C, 

Table 3.4). Thus, it appears that a combination of both A14T and A71T is necessary to 

restore native-like binding of NapD to the A17Q variant signal peptide. 

Finally, the #11** suppressor (NapD I19F T59I) was isolated and titrated against MalE-

NapASP A17Q (Figure 3.7 D, Table 3.4). This too resulted in a bi-phasic binding curve 

with a relatively low (22 nM) and a higher (261 nM) dissociation constant (KD) (Table 

3.4), again similar to that seen for that observed for both native interaction (Chapter 2) 

and the interaction of the single substitution, I19F – suppressor #2**. In this case the 

second amino acid substitution (T59I) does not contribute very much to the binding 

event: the NapD T59I single variant was isolated and titrated against MalE-NapASP A17Q. 

In this case only single binding event was observed (Figure 3.7F) with an apparent KD of 

633 nM (Table 3.4).  

Taken together, these experiments have identified an I19F single substitution and an 

A14T A71T double substitution as being sufficient to restore binding of NapD both in vivo 

and in vitro to the A17Q variant NapA signal peptide.  
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NapD variant NapASP variant analysis

native native two sets of sites pop. 1 0.35  +/- 0.02 3  +/- 1
pop. 2 0.64  +/- 0.02 143  +/- 29

A17Q one set of sites pop. 1 0.16  +/- 0.03 1,100  +/- 193
pop. 2 0.84  ∞

A14T A71T (#9) A17Q two sets of sites pop. 1 0.69  +/- 0.01 218  +/- 28
pop. 2 0.30 0.01 12  +/- 2

native one set of sites 0.91  +/- 0.01 571  +/- 26

A14T A17Q one set of sites 0.80  +/- 0.02 1,869  +/- 216

native one set of sites pop. 1 0.70  +/- 0.01 763  +/- 92
pop. 2 0.30  ∞

A71T A17Q one set of sites 1.11  +/- 0.01 833  +/- 60

native one set of sites 0.83  +/- 0.01 313  +/- 25

I19F (#2) A17Q two sets of sites pop. 1 0.29  +/- 0.10 14  +/- 6
pop. 2 0.62  +/- 0.06 704  +/- 312

native one set of sites 0.97  +/- 0.01 806  +/- 71

I19F T59I (#11) A17Q two sets of sites pop. 1 0.65  +/- 0.04 261  +/- 107
pop. 2 0.25  +/- 0.01 22  +/- 8

native one set of sites pop. 1 0.39  +/- 0.02 935  +/- 142
pop. 2 0.61  ∞

T59I A17Q one set of sites pop. 1 0.57  +/- 0.01 633  +/- 84
pop. 2 0.43  ∞

native one set of sites 0.81  +/- 0.01 328  +/- 40

N value KD  [nM]

 

Table 3.4 Isothermal titration calorimetry of NapD suppressor mutants. Two subpopu-
lations of each NapD variant (pop. 1 and pop. 2) bind to the different NapA signal peptide 
variations. For infinite binding constants second N values are estimated and coloured in grey. 

3.2.5 Physiological activity of the napD suppressors  
Given that the introduction of the napA A17Q mutation onto the chromosome at the 

native nap locus resulted in a strain that had clearly reduced periplasmic nitrate 

reductase activity (Chapter 2, Figure 2.8), it was investigated here whether the newly-

discovered suppressors could restore full physiological NapA activity to the mutant 

strain. E. coli strain SGQ171 (as LCB2048, napA A17Q) was transformed with pT25-

NapD-based plasmids and the in vivo nitrite production assay carried out (Figure 3.8). 

The SGQ171 (napA A17Q) strain characteristically produces nitrite after a long lag-phase 

of around 3 hours (Figure 3.8). None of the three identified suppressors were able to 

dramatically increase the degree of nitrate reduction exhibited by this strain (Figure 

3.8). Perhaps a slight enhancement in nitrite production could be observed induced by 

the #11 suppressor (I19F, T59I), however following statistical analysis this proved to be 

not significant. Note, however, that strain SGQ171 still produces endogenous NapD. 
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Although native NapD should not interact with NapASP A17Q, it is conceivable that this 

protein is interfering, or competing, with some aspect of the assembly process.  

In order to address this point, as well as issues raised in the Discussion Section of 

Chapter 2, a new strain was constructed called LP203S that, beside the chromosomal 

codon change for napA A17Q, also carries an in-frame deletion of napD. This strain 

(LP203S) was found to be completely devoid of any NapA activity (data not shown). 

Moreover, nitrate reductase activity could not be restored by any of the napD suppressor 

mutants either (data not shown). Clearly, then, the napD suppressor mutants can bind 

the NapA A17Q signal peptide both in vivo and in vitro but are apparently devoid of any 

physiological activity. 

 

Figure 3.8 Testing for enhanced Tat transport of NapA A17Q by different NapD mutants. 
E. coli strain SGQ171 (NapA A17Q) was transformed with plasmid pT25-NapD or its deduced NapD 
mutants. Nitrite production was measured in vivo as described in Material & Methods. Strain 
SGQ171 and transformants are labelled as followed: SGQ171 ( ), SGQ171/NapD ( ), 
SGQ171/NapD #2 (∆), SGQ171/NapD #9 ( ), SGQ171/NapD #11 ( ). 

3.3 DISCUSSION 

3.3.1 Identification of protein-protein interactions using suppression 

genetics 
Genetic suppression is a powerful tool to identify novel functional interactions. There 

second mutations, which restore function of a protein, are either found on the same 

gene or on the gene of a binding partner. This either causes new binding sites between 

both proteins or enables previous sites of interaction to rebind (Sujatha & Chatterji, 

2000). Suppression genetics is not only applicable to single-celled organisms such as 

bacteria or yeast, but is also used for multicellular organisms, e.g. Caenorhabditis 

elegans, Drosophila melanogaster and mammalian cells (Dixon et al, 2009). 
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Furthermore, if the structure of a protein complex is known, computational predictions 

can be made on the roles of mutations that either interrupt binding or restore binding 

(Sammond et al, 2010). 

In bacteria many components and binding partners of protein and membrane assembly 

pathways have been discovered based on genetic suppressors. For example, to 

characterise the Sec pathway C-terminal β-galactosidase fusions to either MalE or the 

maltoporin LamB (λ receptor protein) have been used, where β-galactosidase, because 

of its folded conformation, jams the Sec translocon after transport is initiated. This 

causes a lethal maltose-sensitive phenotype. Furthermore, because β-galactosidase is 

unable to form a homotetramer the enzyme remains inactive and the cells are therefore 

Lac-. These two phenotypes were used to isolate mutations in the Sec signal peptide that 

prevented export of the fusion proteins and subsequently suppressor mutations were 

identified in genes encoding the Sec translocon components SecY, SecE and SecA, and 

the auxiliary components SecB, SecD and SecF (Bieker & Silhavy, 1990).  

Recently, the binding between LptE and LptD, proteins believed to participate in the last 

step of LPS (lipopolysaccharide) insertion into the outer membrane (OM) of Gram-

negative bacteria, was also explored by suppression genetics. An LptE mutant was 

isolated that displayed sensitivity to the antibiotic rifampicin due to increased 

permeability of the OM. Sequencing revealed a six base pair deletion in lptE that resulted 

in defective binding of LptE to LptD. Suppressor mutants identified through spontaneous 

resistance to the antibiotic bacitracin were identified in lptD, and also in bamA, an 

essential component of the Bam machinery for assembly of β-barrel outer membrane 

proteins (Chimalakonda et al, 2010). 

3.3.2 Suppression mutations in napD enable binding to different NapA 

variants 
The purpose of this part of the study was to identify new residues and important 

structural features of the proofreading chaperone NapD involved in binding to the NapA 

signal peptide. A genetically engineered random napD mutant library was constructed 

and screened for suppressors able to re-bind variant NapA signal peptides. Notably, none 

of the isolated suppressors impaired binding of the resultant variant NapD proteins to 

the native NapA signal peptide. Three mutants that would encode variant chaperones 

capable of rebinding NapASP A17Q were chosen for further characterisation and that were 

the A14T A71T, I19F and I19F T59I NapD proteins. Further in vitro interaction studies 

confirmed that double substitutions of A14T A71T, or a single substitution of I19F, were 

sufficient to restore binding of NapD to NapASP A17Q.  
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I19F was independently identified twice in this work and is therefore strong proof for the 

importance of NapD I19 in signal peptide binding. Surprisingly, however, I19 is found 

within the first α-helix of NapD (Figure 3.2 and 3.9), which was previously thought to not 

take part in signal peptide binding (Maillard et al, 2007). This suggests that at least the 

first α-helix may exert global control on conformational changes in the β-sheet face 

during peptide binding.  

 

Figure 3.9 Positions of suppressor mutations on NapD for NapA signal peptide variant 
A17Q. Identified residues from NapD mutant suppressor screen are highlighted in magenta and 
labelled with their individual positions. For clarity parts of the C-terminus have been removed. 
(PDB ID code 2jsx) 

Importantly, none of the three NapD variants tested were able to rescue full nitrate 

reductase activity of a napA A17Q strain in vivo. This would suggest that NapA 

recognition and transport by the Tat complex is not dependent on signal peptide binding 

to NapD. Furthermore, it possibly shows that NapA signal peptide residue A17 has a bi-

functional role for (i) interaction with NapD during NapA maturation and (ii) binding to 

the translocase prior export. 

Interestingly, a ∆napD, napA A17Q strain was completely devoid of nitrate reductase 

activity. This suggests immediately that the residual nitrate reductase present in the 

napA A17Q strain (Chapter 2) is completely dependent upon native NapD and that the 

suppressor mutants identified here are physiologically inactive, since they cannot 

complement the ∆napD, napA A17Q strain. The question therefore remains as to exactly 

how NapD contributes to the biosynthesis of NapA. It is possible that NapD, even when 

bound to the signal peptide, has an influence on the mature part of NapA during cofactor 

insertion, for instance in inducing a ‘cofactor-competent state’ for the enzyme as 

hypothesized for the TorD-TorA system (Pommier et al, 1998). To address this, 

performing a second genetic screen could identify napD mutants able to restore NapA 

activity to the ∆napD, napA A17Q strain. Here, transformants of strain LP203S (∆napD, 

napA A17Q) containing the napD mutant library would be grown under anaerobic 
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conditions on minimal media plates supplemented with nitrate. Thus clones that regained 

the ability to reduce nitrate could be quickly identified.  

A broadly similar story as for NapA A17Q was recently told for the cAMP-dependent 

protein kinase (PKA) from Saccharomyces cerevisae. This enzyme consists of two 

catalytic subunits and two regulatory subunits. A mutant screen revealed an F327A 

substitution located within the adenosine binding pocket of the catalytic subunit and 

causes severe growth defects. In vitro analysis confirmed a significant decrease in 

catalytic activity of this variant (Kennedy et al, 2009). Subsequent screening of a 

suppressor mutant library identified substitution K285P within the catalytic subunit, 

which was apparently able to restore PKA-dependent growth in vivo. Interestingly, 

however, further biochemical analysis of the new K285P F327A double mutant showed 

that K285P mutation actually was still not able to restore the activity of the catalytic 

subunit in vitro. Instead it caused reduced binding of the regulatory subunit in vivo, thus 

allowing a very low PKA activity, which was sufficient to restore cell viability (Yang et al, 

2009). 

Conversely, the identified napD mutants were not able to restore NapA activity in variant 

A17Q in vivo, but apparently altered binding affinity to the Tat signal peptide both in 

vivo and in vitro. 

Further work in this Chapter, not further pursued because of time constrains, involved 

the identification of napD mutant suppressor #1** for NapASP K10Q. This suppressor 

encodes a variant NapD protein including two amino acid substitutions at S9G and V36I. 

Very interestingly, these positions were previously implicated in signal peptide binding 

during the original NMR study (Maillard et al, 2007). 

Finally, the impact of the flexible C-terminus of NapD in NapA activity was investigated 

further as its deletion was previously shown to reduce nitrite production in vivo (Maillard 

et al, 2007). However, our extensive mutagenesis studies of the NapD C-terminal tail did 

not lead to any new insights into its role in NapA maturation. 

In summary, this Chapter has identified new residues within NapD that are involved in 

the NapASP binding event, including a hitherto unexpected role for the first α-helix of the 

NapD chaperone.  
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4 Structural studies on NapA and its Tat signal peptide 

4.1 INTRODUCTION 
Structural studies are the key to fully understanding the mechanism of interplay between 

proofreading chaperones and their Tat substrates. To this end, several 3D structures of 

individual Tat chaperones from different organisms have been solved, resulting in the 

recognition of a surprisingly wide variety of different architectures for these proteins. 

TorD and DmsD, two Tat chaperones involved in controlling assembly of TMAO reductase 

(TorA) and DMSO reductase (DmsAB), respectively, show novel all-helical structures 

comprising ~10 α-helices that assemble into two domains (Figure 4.1A and 4.1B). The 

crystal structure of Sh. massilia TorD was surprising, however, as it revealed TorD could 

exist as a domain-swapped homodimer (Tranier et al, 2003). On the other hand, both E. 

coli and Salmonella DmsD homologues are monomeric (Ramasamy & Clemons, 2009; 

Stevens et al, 2009). Both TorD and DmsD have been convincingly shown to bind 

directly to twin-arginine signal peptides. 

Two other proteins, HyaE and HybE, suggested to be Tat proofreading chaperones for E. 

coli hydrogenase-1 and hydrogenase-2, respectively (Dubini & Sargent, 2003) show very 

distinct structures unrelated to TorD and DmsD. The structures of these proteins were 

modelled by high-resolution multi-dimensional solution NMR data. HyaE adopts a 

thioredoxin-like fold (Figure 4.1C), despite not containing any cysteine residues 

whatsoever (Parish et al, 2008). In contrast, HybE adopts a novel fold described as a 

‘three layer sandwich fold’ with two α-helices flanking a six-stranded β-sheet (Figure 

4.1D) (Shao et al, 2009). The evidence for direct signal peptide binding by these 

chaperones is not strong. However, far-Western analysis of the Ralstonia eutropha HyaE 

homologue HoxO suggests this protein can interact with a hydrogenase Tat signal 

peptide (Schubert et al, 2007).  

The FdhE protein was shown to interact with the catalytic subunits of the respiratory 

formate dehydrogenases FdnGHI and FdoGHI, and an E. coli fdhE mutant was shown to 

be deficient in formate dehydrogenase activity (Lüke et al, 2008; Mandrand-Berthelot et 

al, 1988). It was suggested that in the case of FdnG the accessory protein FdhE binds a 

region that comprises the C-terminal part of the Tat signal peptide and parts of the 

surrounding mature region (Chan et al, 2010), though it should be noted that there is no 

experimental evidence for this statement. The crystal structure of Pseudomonas FdhE 

shows a mostly helical protein with two domains containing three non-haem iron ions 

(Figure 4.1E). Indeed, EPR analysis of E. coli FdhE confirmed the protein was a 

rubredoxin (Lüke et al, 2008). The role of the iron in this accessory protein is unknown, 
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but mutations that prevented iron binding or redox cycling inactivated the protein (Lüke 

et al, 2008). 

 

Figure 4.1 Proofreading chaperones show a great structural variety. All structures except 
for TorD and FdhE are from E. coli. (A) Sh. massilia TorD adopts an all-helical architecture and 
exists as a domain swapped dimer (PDB ID code 1n1c). (B) DmsD from the same family as TorD 
consists of helices, but is monomeric (PDB ID code 3cw0). (C) HyaE shows a thioredoxin-like fold 
(PDB ID code 2hfd). (D) In HybE two helices imbed a six β-sheet face (PDB ID code 2kc5). (E) 
FdhE from P. aeruginosa contains irons (brown spheres) and belongs to the family of rubredoxins 
(PDB ID code 2fiy). (F) NapD shows a ferredoxin-like fold (PDB ID code 2jsx). 

The proofreading chaperone NapD further contributes to the structural diversity of 

bacterial Tat chaperones. So far it is the only type that has a ferredoxin-like structure 

with a β-α-β-β-α-β fold (Figure 4.1F; Maillard et al., 2007). In this case, however, some 

structural analysis of the signal peptide-chaperone interaction has been studied by 2D 

NMR spectroscopy. HSQC experiments were performed by titrating unlabelled NapA 

signal peptide into a sample of 15N-labeled NapD in the NMR spectrometer. The resultant 

data showed that the cross-peaks of residues corresponding to the β-sheet face of NapD 

are most obviously shifted upon signal peptide binding. This gave initial strong evidence 

that the β-sheet face of NapD is directly involved in signal peptide recognition (Maillard 
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et al, 2007). In addition, work in this thesis has now established that one of the two α-

helices of NapD also has an important, possibly indirect, role in NapA signal peptide 

recognition (Chapter 3).  

In 2007, the crystal structure of the periplasmic nitrate reductase (NapA) from E. coli 

was solved (Figure 4.2; Jepson et al, 2007). It shows the mature part of NapA and its 

two cofactors; a [4Fe-4S] cluster and a Mo-bis-MGD cofactor. NapA exists in the 

periplasm as a heterodimer together with NapB, a dihaem c-type cytochrome electron 

transferring partner subunit. However, E. coli NapA was purified without NapB due to the 

relatively weak binding affinity between the two proteins (Jepson et al, 2007). This is in 

contrast to available structures of the periplasmic nitrate reductases from R. sphaeroides 

and, very recently, Cupriavidus necator, where NapAB purifies as an extremely stable 

complex (Arnoux et al, 2003; Coelho et al, 2011). Clearly, these structures represent the 

mature, fully folded, periplasmic and enzymatically-active versions of NapA. The Tat 

signal peptides are not present and a NapD protein is not stably bound. 

N

C

 

Figure 4.2 Crystal structure of E. coli NapA. Shown is the mature part with N- and C-terminus 
indicated. The [4Fe-4S] cluster is depicted as yellow and brown spheres. The Mo-bis-MGD cofactor 
is shown in ball and stick format and coloured in grey. (PDB ID code 2nya). 

Several other structures of mature Tat substrates have been published, however so far 

no structure exists showing a complete precursor form (comprising twin-arginine signal 

peptide and mature part) in complex with a specific proofreading chaperone. 

Attempts have been made to analyse the conformation of Tat signal peptides. The 

crystal structure of SufI, a cofactor-free Tat substrate, which apparently does not need a 

proofreading chaperone, was recently obtained (Tarry et al, 2009a). Here, SufI was 

found to missing the first 17 residues of its signal peptide, presumably due to non-

specific proteolysis during preparation. The remaining 10 amino acids of the signal 

sequence showed a high degree of disorder (Tarry et al, 2009a). Prior to this it was 

shown that a synthesized SufI signal peptide was unstructured in an aqueous solution, 
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but adopted up to 40% helical conformation when placed in a more hydrophobic 

environment (San Miguel et al, 2003).  

Furthermore, NMR studies on the precursor of HiPIP (high potential iron-sulphur protein) 

from Allochromatium vinosum indicated that the signal peptide forms no secondary 

structure in vitro (Kipping et al, 2003). Similar results regarding the Tat signal peptide 

were obtained for the crystal structure of full-length GFOR (glucose-fructose 

oxidoreductase) from Zymomonas mobilis (Nurizzo et al, 2001). Electron density for the 

signal peptide could not be assigned and it was therefore concluded that the N-terminus 

of GFOR was either very flexible or lacked any specific structure (Nurizzo et al, 2001). 

Taken altogether, it seems that Tat signal peptides commonly adopt no clearly defined 

secondary structure in their free state.  

The objectives of this Chapter were to attempt to isolate and visualize the precursor 

form of NapA in complex with NapD, and to determine any structural changes of the 

NapA signal peptide during the chaperone binding event using different structural and 

biophysical approaches. 

4.2 RESULTS 

4.2.1 Towards a crystal structure for NapA in complex with NapD 
The natural genetic organisation of the E. coli nap operon places the napA gene 

immediately downstream of napD (Figure 1.11). Thus a construct was made (pQE80-

NapDA) in order to co-express napDA maintaining the natural translational coupling 

between the two genes. NapD was also N-terminally tagged with hexa-Histidine. E. coli 

MC4100 cells were transformed with the construct and napDA overexpressed under 

aerobic conditions (see Material & Methods). A crude extract was applied to an IMAC 

column and bound proteins eluted with an imidazole gradient. All eluted proteins were 

pooled and subjected to size exclusion chromatography (Figure 4.3). SDS-PAGE analysis 

of the eluted fractions possibly showed some co-elution of NapDA, but possibly in 

varying ratios of NapD to NapA (Figure 4.3). In addition large amounts of free NapD 

were identified (Figure 4.3). Subsequent pooling of the NapA-containing fractions 

followed by a second gel filtration step, resulted in further separation of the remaining 

NapD from NapA (data not shown). Taken together, this suggests NapD does interact 

with NapA in this system (otherwise the initial purification would not have been 

possible), but that the complex dissociates over time. 
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Figure 4.3 Elution profile of the NapDA complex. IMAC purified NapDA was pooled and 
concentrated to a volume of 500 μl using Vivaspin 20 columns (50,000 MCO PES). A Superdex75 
column (GE Healthcare) was pre-equilibrated in 20 mM Tris-HCl, pH 7.6 and 250 mM NaCl. After 
loading of the NapDA protein sample fractions were collected and aliquots diluted in 1:1 Lämmli 
buffer followed by protein separation on a 15% SDS-PAGE. 

During the purification process a deep brown colour was observed in the NapDA 

containing samples. Analysis by UV-Vis (ultraviolet-visible) absorption spectroscopy 

yielded a spectrum with a broad peak of an absorbance at ~420 nm, which is commonly 

indicative of iron-containing proteins and possibly suggests the presence of an [Fe-S] 

cluster (Figure 4.4). The spectral features were lost when the sample was reduced by 

the addition of excess sodium dithionite (Figure 4.4). If the sample was stored as-

purified at 4°C a gradual loss of the brown colour could be observed (data not shown).  

The crystal structure of mature, active, NapA contains a [4Fe-4S] cluster (Jepson et al, 

2007). From the UV-Vis spectrum it is not possible to easily distinguish between an 

intact [4Fe-4S] or the oxidised breakdown product of this, which is usually a [3Fe-4S] 

cluster. However, EPR spectroscopy can usually easily distinguish between these two 

types of cofactor. Under oxidised conditions, a typical [3Fe-4S]+ cluster has a distinctive 

EPR spectrum while a [4Fe-4S]2+ cluster is EPR silent (Lubitz et al, 2007). When reduced 

by the addition of dithionite the [4Fe-4S]+ cluster becomes detectible with a 

characteristic spectrum, while the [3Fe-4S]0 cluster is EPR silent (Lubitz et al, 2007). In 

collaboration with Dr David J. Keeble (University of Dundee), low-temperature X-band 

EPR spectra were collected of the NapDA sample. The as-purified (presumably oxidised) 

sample did not show any distinctive features suggesting a [3Fe-4S] cluster is not 

present, however the reduced sample equally did not show any features of a [4Fe-4S] 

either (data not shown). A possible explanation could be found in a study carried out by 

Müllner and co-workers, where the histidine sensor kinase NreB from Staphylococcus 

carnosus, which also contains an EPR silent [4Fe-4S]2+ cluster, was analysed (Müllner et 
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al, 2008). In this case the iron-sulphur cluster was reduced by dithionite however the 

reduced form was not stable and quickly degraded (Müllner et al, 2008). It is possible, 

therefore, that the [Fe-S] cluster bound by the NapDA complex is in a similar unstable 

form. In contrast, Jepson et al (2007) performed EPR analysis on purified mature NapA 

and obtained a strong signal for the reduced [4Fe-4S]+ cluster, calculating one [4Fe-4S] 

cluster per NapA molecule. In addition, up to 90% total molybdenum in their fully mature 

and enzymatically-active NapA sample was detected (Jepson et al, 2007). 

 

Figure 4.4 Spectrophotometrical analysis of a putative iron sulphur cluster in NapDA. 
Nickel infinity purified NapDA was diluted 1:100 in 20 mM Tris-HCl, pH 7.6, 250 mM NaCl, 2 mM 
DTT and 170 mM imidazole. The peak at ~420 nm is indicative for an iron sulphur cluster (solid 
line). Reduction of the protein sample was achieved by adding dithionate (dashed line). The 
increase in absorbance in the reduced sample is due to the added dithionate (Gibney et al, 1996). 

Despite the evidence presented above that suggested the NapDA complex was 

heterogeneous (i.e. unstable binding between NapD and full-length NapA, and gradual 

loss of any possible cofactors) crystallisation trials were set up in co-operation with Prof 

William Hunter and Dr Alice Dawson, University of Dundee. However, perhaps 

unsurprisingly, no crystals were obtained. 

4.2.2 Stabilizing the NapDA complex 
In an attempt to artificially stabilise the binding between NapD and full length NapA for 

structural studies a covalent linker (L) region was introduced between NapD and NapA. 

The linker region had the sequence ‘RSNLGIEGRPG’, which contains a Factor Xa protease 

site, and was used to fuse the extreme C-terminus of NapD to the extreme N-terminus 

of the NapA Tat signal peptide.  

First, it was important that the influence of the linker on physiological NapA activity was 

determined. Therefore, E. coli strain LCB2048 (nap+) was genetically modified such that 
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it carried the napD-L-napA fusion at the native nap locus on the chromosome (resulting 

in strain SGDLA10). An in vivo nitrite production assay showed that SGDLA10 (napDLA) 

retained some physiological nitrate reductase activity, but that this activity was reduced 

in comparison to the parent strain (Figure 4.5). A further deletion of the genes encoding 

the Tat translocase in the napDLA background (SGDLA11, napDLA tat-) was shown to 

completely block in vivo nitrate reduction, i.e. no nitrite was produced (Figure 4.5). 

 

Figure 4.5 Chromosomal fusion of NapD to NapA shows Tat dependent nitrate reducing 
activity. In vivo nitrite production was measured as described in Figure 2.9 Strains are labelled as 
LCB2048 (nap+) ( ), SGDLA10/NapDLA ( ) and SGDLA11/NapDLA (tat-) ( ). 

The artificial fusion between NapD and NapA therefore results in reduced NapA activity in 

vivo, but the activity that is present can be attributed to a properly assembled, 

periplasmic, Nap system. 

Next, MC4100 cells were transformed with plasmid pET15-NapDLA and the NapDLA 

fusion was overproduced to a high level. A crude extract was then applied to an IMAC 

column and the NapDLA complex was observed to elute as a broad single peak (Figure 

4.6A). SDS-PAGE analysis showed large overloaded bands corresponding to the NapDLA 

fusion, demonstrating that the fusion protein was stable to purification and water-

soluble. However, several impurities and breakdown products were also evident (Figure 

4.6B). The IMAC fractions containing NapDLA were pooled and adjusted to a stock 

concentration of 1 mg/ml. The solution molecular mass of this protein was then 

estimated using sedimentation velocity ultracentrifugation (performed as a service by Dr 

Mark Agacan, University of Dundee). The majority of the protein present has an 

apparent molecular mass of 102 kDa (Figure 4.6C), which correlates well with the 

predicted molecular mass of the NapDLA fusion (106,278 Da).  
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Figure 4.6 Mass determination of NapDLA. (A) Elution profile of NapDLA from a HisTrapTM HP 
column after applying a linear gradient of imidazole (0-500 mM). (B) To 10 μl of affinity purified 
NapDLA Lämmli sample buffer was added in a 1:1 ratio and proteins separated on a 10% SDS-
PAGE. (C) The oligomeric state of NapDLA was determined by sedimentation velocity 
ultracentrifugation. 

In the case of NapDLA, a deep brown colour was again observed during protein 

purification. Absorption spectroscopy revealed a spectrum containing a broad peak at 

~420 nm, again indicating the presence of an [Fe-S] cluster (Figure 4.7). For the 

NapDLA protein, however, the brown colour was very stable over several weeks, when 

stored in solution at 4°C.  
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Figure 4.7 Spectroscopical analysis of [Fe-S] in NapDLA. Straight after IMAC purification 
NapDLA was diluted 1:100 in the same buffer as described in figure 4.4. The iron sulphur cluster 
shows absorption at ~420 nm (solid line). The sample was reduced by adding dithionite (dashed 
line). 

Next, the metal content of NapDLA was analysed, this time by ICP-MS (inductively 

coupled plasma mass spectroscopy), instead of EPR, with a focus on iron and 

molybdenum (performed as a service by Dr Lorna Eades, University of Edinburgh). The 

results obtained gave 4080 ppb Fe and 17 ppb Mo, on average. From there a Molar ratio 

of iron to molybdenum can be calculated as 430:1. The NapDLA sample had a protein 

concentration of 8.3 μmol/l. Therefore, the number of metal atoms per molecule NapDLA 

can be set as 8 Fe and 0.02 Mo per mol of NapDLA. If accurate, this ratio of Fe to 

NapDLA would indicate that two [4Fe-4S] are present in the fusion protein, which 

however is in disagreement with several published observations (e.g. Jepson et al, 

2007). Nevertheless, it proves that the sample certainly contains iron, probably to a full 

complement, but only trace amounts of molybdenum. This suggests the [Fe-S] cluster is 

present in the NapDLA fusion protein, but that the majority of the sample lacks any 

molybdenum cofactor. 

Finally, the NapDLA fusion was subjected to further purification using size exclusion 

chromatography where NapDLA was eluted in a single peak (Figure 4.8), followed by 

crystallisation trials (carried out by Dr Alice Dawson, University of Dundee). 

Unfortunately, all attempts to obtain crystals for NapDLA under different conditions 

failed, and could not be further improved even by in vitro lysine methylation (Walter et 

al, 2006). 
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Figure 4.8 Size-exclusion profile of NapDLA. IMAC purified NapDLA was applied to a 
Superdex200 column (GE Healthcare), which had been equilibrated in 20 mM Tris-HCl, pH 7.6 and 
150 mM NaCl. Eluted NapDLA was collected, pooled and subjected to crystallisation trials. 

4.2.3 NMR analysis of NapD in complex with the NapA Tat signal peptide  
Due to the continued failure to obtain crystals for NapD complexed with full-length NapA 

precursor, it was decided to focus on structural studies between NapD and the NapA 

signal peptide only. Maillard et al. (2007) solved a solution NMR structure of NapD, 

which revealed a new family of Tat proofreading chaperones with a ferredoxin fold. In 

the same study, unlabelled MalE-NapASP was titrated into 15N-labelled NapD and 

analysed by 2D NMR spectroscopy (Maillard et al, 2007), which gave an early indication 

of the NapD residues mostly affected by binding by the signal peptide (Maillard et al, 

2007). These residues all mapped to the single β-sheet face of NapD. Following the 

difficulties to obtain crystals for NapD in complex with NapA, emphasis was again put on 

structural analysis of the NapDA interaction using NMR.  

The NapA signal peptide contains a long stretch of alanine and valine residues (Figure 

2.2). which makes it difficult to synthesize sufficient amounts of the peptide in vitro. 

Therefore, the Tat signal peptide (residues M1 to V33) was fused to the flexible C-

terminus of NapD via a linker resulting in the protein NapDASP. The linker sequence 

‘RSNLGIEGRPG’ was identical to the one described for the full length NapDLA fusion. It 

was shown that E. coli cells harbouring a chromosomal fusion of napD-L-napA were still 

able to reduce nitrate in vivo, so this fusion allows a functional interaction between NapD 

and the signal peptide (Figure 4.5). The resultant NapDASP fusion protein was 139 amino 

acid residues long where residues M1-P87 corresponded to the NapD protein, residues 

R88-G98 to the linker region, side-chains M99-V131 to the NapA signal peptide, and 

amino acids R132-H139 to the hexa-Histidine tag. 
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Preliminary experiments using ITC suggested that the NapA signal peptide is stably 

bound to, or at least occluding, the native binding site in the NapDASP fusion. Dr Julian 

Maillard from the Sargent group performed a titration of NapDASP into a sample of MalE-

NapASP. In this case, no binding of the signal peptide by NapD could be detected, 

suggesting the binding sites on the NapDASP fusion are already fully occupied (data not 

shown). 

For NMR analysis 100% 15N- and 13C-labelled NapDASP was prepared, isolated under 

denaturating conditions, and subsequently refolded on the IMAC column. Subsequent 

elution of NapDASP resulted in a protein prep of high yield and purity (Figure 4.9). 

 

Figure 4.9 Purification of NapDASP. For 15N-13C-labelling of the fusion protein NapDASP cells 
were grown in M9 minimal medium supplemented with 0.1 mM CaCl2, 0.2% 13C-glucose and 0.1% 
15NH4Cl. Protein purification was carried out under denaturating conditions as described in Figure 
2.5. 

Collection of NMR data and analysis was done in collaboration with Prof Geerten W. 

Vuister, Radboud University, The Netherlands and Department of Biochemistry, 

University of Leicester. Backbone and sidechain assignments of NapDASP were obtained 

using triple-resonance experiments HNCACB, CBCACONH, HN(CA)HA and (H)CCH-TOCSY 

at 600 MHz resonance frequency. Three-dimensional NOESY experiments were recorded 

at 800 MHz.  

An overlay of the [15N]-HSQC spectra of the NapD and NapDASP proteins showed 

additional peaks in the latter, presumably originating from the additional residues of 

NapDASP (Figure 4.10). In addition, considerable differences in the positions of the cross-

peaks previously assigned to native NapD were observed in the NapDASP spectrum 

(Figure 4.10). Together, these effects are indicative of the formation of a complex 

between the NapD core and the final ~40 residues of the NapDASP construct, which 

correspond to the NapA Tat signal peptide. Using triple-resonance NMR spectroscopy, 
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the backbone and β-carbon assignments for residues T3-E85 of the NapDASP protein 

(corresponding to the NapD part) and residues A109-A127 (corresponding to NapA 

signal peptide residues A11-A29) were made. Residues 86-108 of the NapDASP fusion, 

which include NapA signal peptide residues M1-K10, could not be identified in the 

spectra, presumably because they adopt a random unstable conformation or are in 

intermediate exchange leading to line broadening beyond detection.  

 

Figure 4.10 Structural changes of NapD during Tat signal peptide binding. 2D [1H-15N]–
HSQC spectra of NapD (purple) and NapDASP (green). For comparison of bound and unbound NapD 
residues L10 (blue) and E17 (orange) are highlighted. (In cooperation with Dr Martyn James, 
University of Dundee and Dr Chris Spronk and Prof Geerten Vuister, Radboud University, 
Nijmegen, Netherlands) 

Prof Vuister then analysed the per-residue chemical shift differences between the two 

samples and used that information to predict secondary structure changes and finally 

generated a model for the NapDASP complex (Figure 4.11). It is clear from this model 

that NapDASP residues A109-V122, corresponding to the NapA signal peptide residues 

A11-V25, are well-ordered and adopt α-helical conformation. These helical residues are 

followed by three residues in a turn-like conformation. The signal peptide is positioned 

neatly on top of the flat β-sheet face of NapD (Figure 4.11A). The interface between the 

signal peptide and NapD comprises an extensive surface with hydrophobic interactions, 

and the close packing appears to explain the need for the poly-alanine stretch of the 

NapA signal peptide. Changes to the conformation of the NapD protein itself during 

peptide binding include V75-Q79 pairing-up with residues W5-V7 to extend the first β-

strand and together increase the β-sheet sufficiently enough to line one side of the 

peptide interface (compare with Figure 3.1). Notably, V75 and Y76 together now form a 

β-bulge, where those two residues extend the β-strand and enable interaction with the 

signal peptide.  
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The model also predicts that NapA signal peptide residue K10 engages in a salt-bridge 

interaction with E49 of NapD (Figure 4.11B). In addition, the aliphatic sidechain atoms of 

NapASP K10 are packed against NapD V47. The NapA signal peptide residue R6 wedges in 

between NapD residues E49 and W5 with its sidechain atoms pack against the NapD W5 

sidechain, whereas the guanidinium groups of NapA R6 are oriented towards the highly 

acidic loop-region, comprising the E51, D52 and E54 side-chains of NapD, between the 

third β-strand and second α-helix (Figure 4.11B). At the C-terminal end of the NapA 

signal peptide the backbone oxygen of NapA A21 is hydrogen bonded to the sidechain of 

NapD Q43, and the NapA L22 sidechain packs into a cavity formed by NapD residues V37 

and D38 (Figure 4.11B).  

 

Figure 4.11 NMR structure of NapD in complex with the NapA signal peptide. (A) NapA 
signal peptide residues R5 to V25 are shown in orange. NapD is depicted in green. (B) Highlighted 
are interacting residues between NapD (depicted with its surface) and NapASP (in grey, amino acid 
residues illustrated in stick form). 

4.2.4 Structural analysis of the NapA signal peptide in its free state 
Several structural and biophysical studies on different twin-arginine signal peptides 

hypothesized that they are unstructured in solution (e.g. HiPIP – Kipping et al., 2003, 

SufI – San Miguel et al., 2003). However, the NMR structure of the chaperone-bound 

form of the NapA signal peptide presented in this Chapter revealed an α-helical 

conformation. To investigate the natural unbound state of NapASP site-directed spin 

labelling (SDSL) of the signal peptide and pulsed electron-electron double resonance 

(PELDOR) spectroscopy were carried out (Hubbell et al, 2000). This work was done in 

collaboration with Dr David Norman and Dr Richard Ward at the University of Dundee. 

For this study, the previously described fusion protein MalE-NapASP was modified by 

substituting residues S4 and S24 of the NapD signal peptide by cysteines (Figure 12A). 

Purified MalE-NapASP S4/24C was then site-specifically labelled with MTSL (S-(2,2,5,5-

tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methylmethanesulfonothioate), a chemical com-

pound that interacts covalently with the thiol groups of cysteines (Figure 12B). MTSL 

contains a nitroso radical that allows the compound to be used as a spin label in EPR 
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experiments. Thus, with a  double-spin-labelled sample PELDOR can be used to carry out 

highly accurate measurements of the distances between the two spins in a range of 2-8 

nm, or sometimes longer (Ward et al, 2010). In addition, information about the 

distribution of distances between the unpaired electrons can be collected. These types of 

experiments were expected to give an indication of the different conformational states of 

the NapA signal peptide. 

 

Figure 4.12 Site-directed spin labelling of the NapA signal peptide. (A) Shown is the 
primary sequence of NapASP, amino acids M1 to G34. Introduced cysteine residues on position 4 
and 24 are marked in red with attached spin labels (SL). Secondary helical structure is highlighted 
on orange background. (B) The spin label MTSL [(S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-
yl)methylmethane-sulfonothioate; highlighted in red] reacts with the thiol group of a cysteine 
residue. 

MalE-NapASP S4/24C was purified under denaturating conditions as described in Chapter 

2 and labelled with MTSL. The efficiency of labelling was monitored by MALDI-TOF 

(matrix assisted laser desorption ionisation - time of flight) mass spectrometry since 

each MTSL molecule adds 186.3 Da to the mass of the target protein. After the labelling 

reaction the apparent molecular mass of MalE-NapASP S4/24C had increased to ~47,834 

Da (Figure 4.13A) as  compared to ~47,500 Da for the untreated control (Figure 4.13B). 

This corresponds to an addition of 334 Da, which indicates successful attachment of the 

two MTSL molecules to the cysteine residues C4 and C24 of the NapA signal peptide 

since there are no other cysteine side chains in the remainder of the fusion protein.  
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Figure 4.13 Mass spectrometry profile of unlabelled and labelled MalE-NapASP S4/24C. 
Purified protein was incubated with either (A) a 10-fold molar excess of MTSL or (B) DMF 
(dimethylformamide) as a negative control for 4 hours at room temperature followed by 4°C 
overnight. One molecule of MTSL adds 186.3 Da to the weight of a protein. Labelling was 
confirmed by MALDI-TOF (FingerPrints Proteomics Facility, University of Dundee). 

The double MTSL-labelled MalE-NapASP S4/24C fusion protein was then analysed by 

PELDOR (Figure 4.14). To obtain the distance distribution P(r) for the spin labels in the 

free NapA signal peptide Tikhonov regularisation was applied to the raw data by using 

the appropriate alpha factor. This type of regularisation is most commonly used where 

the data is fitted on certain, prior made restrictions, thus reducing the number of 

possible solutions. The correct regularisation factor (alpha) gives the best fit to the 

experimental data, whilst suppressing artefactual distributions. A plot of alpha factor 

versus the goodness of fit (mean squared deviation of the simulated versus experimental 

data) reveals a characteristic ‘L’ curve (data not shown). The alpha term closest to the 

point of inflexion is therefore the most appropriate. Observable oscillations and baseline 

decay usually results in a single, discrete distribution. Care needs to be taken in data 

interpretation when only small oscillations observed. This produces usually broad 

distributions that are mostly likely the result of structural heterogeneity within the 

sample. Here, the resultant PELDOR data for free MalE-NapASP S4/24C did not show a 

clear oscillation that would convincingly indicate spin-spin coupling (Figure 4.14A). 

Correspondingly, the main distance between the two MTSL labels on free NapASP is not 

sharply defined and covers a broad range from 2 to 5 nm (Figure 4.14B).  

Initial experiments mixing MTSL-labelled MalE-NapASP S4/24C with native NapD seemed 

to result in many of the spin labels being lost or disengaging. In order to counter this 

problem a cysteine-free (Cys-; C8S C32A) variant of NapD was prepared, purified under 

denaturating conditions and refolded. This NapD variant was initially tested using the 

previously described nitrite production assay by complementing a ΔnapD strain and 

restoring NapA activity. Here, no difference could be seen between Cys- and native NapD 

thus demonstrating that the Cys- NapD variant was physiologically active (data not 

shown). 

The Cys- NapD variant was then mixed with MTSL-labelled MalE-NapASP S4/24C fusion at 

an equimolar ratio and the complex subjected to PELDOR analysis (Figure 4.14). In 

comparison to free NapA signal peptide, the addition of NapD resulted in a clear 

oscillation indicative of spin-spin interaction (Figure 4.14A), as well as a shortening of 

the distances between the spins (Figure 4.14B). In the presence of NapD a main 

distance at 2.4 nm and a minor distance at 2.9 nm could be calculated (Figure 4.14B).  

These data clearly indicate structural changes are induced in the NapA signal peptide 

upon binding by NapD. Also a change in distance distribution can be observed, from 
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approximately 2 nm for free NapASP at half height to about 1 nm for NapD-bound signal 

peptide (Figure 4.14B), which suggests a more defined conformation of NapASP upon 

NapD binding.  

 

Figure 4.14 Conformational changes of the NapA signal peptide during binding. (A) 
PELDOR experimental data. (B) Tikhonov derived distance distribution. The dashed line indicates a 
long distance Tikhonov derived truncation artefact. Data for MalE-NapASP bound to NapD Cys- is 
represented in orange, data for unbound MalE-NapASP is represented in green. (In cooperation 
with Dr David Norman and Dr Richard Ward, University of Dundee)  

The PELDOR data need to be interpreted with caution, however, because the distance 

distribution for free NapASP is heterogenous and the oscillation is lacking depth (Figure 

4.14). MALDI analysis of purified MalE-NapASP S4/24C shows a minor protein band of 

around 23.7 kDa, which is singly labelled upon MTSL addition (Figure 4.13). Therefore, 

size exclusion chromatography on a calibrated column of MalE-NapASP S4/24C in 

complex with NapD was performed to separate individual complexes (Figure 4.15). 

However, only a single peak was eluted, which corresponds to a molecular weight of 108 

kDa (Figure 4.15). Fractions run on a SDS-PAGE show up to three bands showing NapD, 

the NapASP fusion and possibly degradation products of MalE-NapASP S4/24C (Figure 

4.15). This suggests that not only NapD and MalE-NapASP S4/24C form a complex, but 

that NapD may also interact with truncated MalE-NapASP fragments. Thus our data for 

the distance distribution is not only gained from the two nitroxide spin labels on MalE-

NapASP S4/24C, but also takes in account the influence of non-specific, contaminating 

neighbouring spin labels  
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Figure 4.15 Elution profile of NapD in complex with MalE-NapASP S4/24C. Nickel affinity 
purified NapD Cys- (13 kDa) and MalE-NapASP S4/24C (47 kDa) was mixed with same 
concentrations and run on a Superdex75 size exclusion column. The NapD/MalE-NapASP complex 
eluted as a single peak at ~108 kDa indicating an oligomeric state. The inset shows eluted 
fractions run on a 15% SDS-PAGE. 

4.3 DISCUSSION 

4.3.1 NapA in complex with NapD 
Several structures of Tat substrates and proofreading chaperones have been solved. 

However, so far no structure has been published showing either the full length precursor 

or its signal peptide in complex with its specific chaperone. In this study attempts were 

made to gain structural information on the interrelationship between the periplasmic 

nitrate reductase NapA and its chaperone NapD.  

Co-overproduction of NapD and NapA resulted in the formation of an initial complex, 

which could be purified by IMAC. However, the complex was observed to dissociate over 

time. In addition, the dissociation of NapD and NapA was accompanied by an apparent 

loss of stable binding of a putative iron-sulphur cluster from the complex. Finding of a 

loose binding between the two proteins is somewhat surprising since work outlined in 

Chapter 2 here, as well as that published by Maillard et al. (2007), showed NapD has an 

apparent dissociation constant in the low nanomolar range for the NapA signal peptide. 

However, it needs to be noted that those experiments had been carried out with an 

isolated signal peptide (fused to a carrier protein), which could induce changes in the 

binding behaviour of NapD. In the light of this it should be considered that NapD 

dissociation is triggered by maturation or folding of native NapA.  

Attempts were made to stabilise the complex by fusing the C-terminus of NapD via a 

linker to the twin-arginine signal peptide of NapA. This approach certainly stabilised the 

binding of the [Fe-S] cluster, since the brown colour persisted for a considerably longer 
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time. However, so far it is not been proven if additional NapD binding sites, beside the 

signal peptide itself, are present on NapA. So inserting a linker could have major 

influences on the NapD/NapA interaction and limit the number of binding sites available. 

Indeed, while some nitrate reductase activity was still present in a strain carrying the 

NapDLA fusion, this was clearly reduced by two-fold compared to the parent strain. 

Therefore, certainly the linker between NapD and NapA changes the binding 

characteristics.  

A possible explanation could be that the linker hinders the release from the NapA signal 

peptide, which in turn slows down Tat transport resulting in reduced NapA activity in the 

periplasm. Another possibility is that the C-terminus as a whole structural unit is 

important for the NapA interaction, indeed both its complete removal (Maillard et al, 

2007), or fusion of its C-terminal tail, reduces NapA activity. 

Concerning the number of binding sites on NapA for NapD not much is known so far. For 

proofreading chaperones of the TorD family, for example, it was shown that they not 

only bind to the Tat signal peptide of their specific substrates, but also interact with the 

mature part of the precursor, and in doing so play a direct role in cofactor insertion 

(Genest et al, 2009). However, a recent publication by Chan and co-workers (2010) 

looking for interactions between NapD and different truncated or modified versions of 

NapA by bacterial two-hybrid, suggests that NapD is only interacting with the Tat signal 

peptide.  

4.3.2 Co-factor insertion into NapA and the role of NapD 
Analysis of a possible NapDA complex revealed the presence of a putative iron-sulphur 

cluster. The crystal structure of NapA showed (beside the presence of a Mo-bis-MGD) a 

[4Fe-4S] cluster and this was confirmed by EPR analysis (Jepson et al, 2007). To 

determine the nature of the [Fe-S] cluster in the NapDA complex low-temperature X-

band EPR spectroscopy was performed. However, no spectra for the [4Fe-4S] cluster or 

its reduced form could be detected, possibly due to unstable iron-sulphur intermediates 

upon reduction (Müllner et al, 2008). Over time the iron-sulphur cluster was gradually 

lost, possibly indicating its accessibility to surrounding oxygen or other environmental 

factors. 

Fusing the chaperone NapD to the Tat signal peptide of NapA stabilized the [Fe-S] 

cluster. ICP-MS analysis showed the presence of Fe and traces of Mo, where however 

eight molecules of Fe were found per molecule NapDLA, which possibly indicates an 

excess accumulation of iron in the sample, but most likely reflects errors in estimating 

protein concentrations. Concerning the order of cofactor assembly, it was shown for the 

catalytic subunits of the DMSO reductase, DmsA, and the nitrate reductase, NarG, that 
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the molybdenum cofactor (MoCo) is only inserted after [4Fe-4S] assembly, and that 

oxidative damage of this cluster to a [3Fe-4S] blocks insertion of MoCo (Lanciano et al, 

2007; Tang et al, 2011). Clearly, the data presented here concur with those 

observations and suggest that the [Fe-S] cluster can be inserted first and in the absence 

of MoCo. In conclusion, the NapDA and NapDLA complexes contain a [4Fe-4S] cluster, 

but only insignificant amounts of molybdenum, thus indicating that NapA maturation is 

not yet completed or the molybdenum cofactor is extremely unstable under those 

purifying conditions used.  

Interestingly, cofactor insertion into NapA and NapD binding seem to be connected: the 

dissociation of NapD from the complex was followed by loss of [Fe-S] in the sample, 

whereas fusing NapD to NapA stabilized the [Fe-S] cluster considerably. Interaction 

studies on the proofreading chaperones TorD and DmsD suggested possible participation 

at least in the molybdenum cofactor biosynthesis pathway (Genest et al, 2008; Li et al, 

2010). It was also proven that TorD binds to the precursor and mature forms of Mo-bis-

MGD (Genest et al, 2008). One possible hypothesis is that TorD and DmsD keep their 

substrate in a ‘cofactor competent state’ by binding to the mature part (Genest et al, 

2009). Regarding NapD, so far it is not known if this chaperone interacts with the 

biosynthesis pathway for molybdenum or iron-sulphur cofactors. However, one could 

propose that NapD, even so assuming its ‘only’ binding site is at the NapA signal peptide, 

has an structural influence on the mature part, which helps to facilitate co-factor 

insertion. 

Another factor that needs to be considered in the complete maturation pathway of NapA 

is the role of a second accessory protein encoded by the nap operon - the iron-sulphur 

protein NapF. It has not been fully elucidated what role NapF has in the nitrate reduction 

pathway of Nap. It is possible that NapF has a function in cofactor assembly and NapA 

maturation, but possibly also in electron transfer to NapA (Kern & Simon, 2009; 

Nilavongse et al, 2006). Furthermore, it should be considered that Jepson et al. (2007) 

were able to purify mature NapA containing a [4Fe-4S] and Mo-bis-MGD by expressing 

the whole E. coli napFDAGHBC operon on a plasmid under anaerobic conditions. This 

suggests a stabilizing effect of one or more additional factors on the maturation of NapA. 

In the experiments carried out in this Chapter cells used for overproducing NapDA and 

NapDLA contained endogenous napF. However, protein production was performed under 

aerobic conditions, thus the nap operon would not be expected to be expressed. The 

work carried out in this Chapter therefore shows that NapF is not essential for [4Fe-4S] 

assembly into NapA. Therefore, future work could include the overproduction of NapFDA, 

which could possibly result in the extraction of a stable NapFA complex. 
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4.3.3 NMR analysis on NapDASP 
High-resolution NMR spectroscopy is a powerful tool to study the structure, dynamics 

and interactions of biomolecules. The NMR data presented here shows the formation of a 

specific complex between the Tat signal peptide of NapA and its chaperone NapD. This 

interaction induces an extension of the fourth β-strand of NapD, however leaves the 

overall conformation of the NapD molecule unaffected.  

The model shows that the signal peptide traverses the β-sheet face of NapD almost 

completely. Glutamine scanning mutagenesis and bacterial two-hybrid studies described 

in Chapter 2, revealed NapA residues R6, K10, A13, A17 and A21 to be important for 

NapD binding. The NapDASP structure presented here strongly supports the mutagenesis 

study. 

NapA residues R6 and K10 are predicted to form salt bridges to negatively charged E51 

and E49 of NapD, respectively (Figure 4.16A). Hydrogen bonding occurs for NapA A13 

and A21 with NapD S9 and Q43, respectively (Figure 4.16B). Maillard et al (2007) 

showed already that those three NapD residues (S9, Q43 and E49) are part of the Tat 

signal peptide binding event, being highly conserved within the large family of NapD-like 

proteins. The effect of alanine mutations within the hydrophobic region of the signal 

peptide can be explained by the spatial constraints exerted by the interface, where 

substitutions of alanine residues with glutamines would disrupt the tight packing of the 

helix onto NapD due to steric clashes. 

Screening of a NapD mutant suppressor library revealed the single mutant I19F and the 

double mutant A14T A71T as being able to restore binding to the NapA signal peptide 

variant A17Q (Chapter 3). Residue I19 is positioned at the N-terminal end of the first α-

helix, and is therefore not located in direct vicinity of the NapD/NapA interface (Figure 

4.11B). However, a possible explanation for the effect of I19F on NapASP A17Q binding 

comes from inspection of our NapDASP structure. The I19 side-chain forms hydrophobic 

interactions with L44 on the third β-strand, and one of the neighbouring residues to L44, 

I45, has direct contact to NapASP residue A17. Thus, it is conceivable that a NapD I19F 

substitution could have a long-range influence on the conformation of I45, which could 

in-turn allow binding of the NapASP variant A17Q (Figure 4.17C). Moreover, further NMR 

spectroscopic analysis supports this hypothesis since I19 and S20 are the only residues 

on this face of the NapD molecule that display significant chemical shift perturbations 

upon signal peptide binding (data not shown). 

The effect of NapD mutant A14T A71T is more difficult to estimate, because the NMR 

structure of NapDASP shows no direct binding of those two residues to the signal peptide 

(Figure 4.16D). However, local, but strong conformational changes of NapD upon 
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threonine substitution cannot be excluded and could contribute to a variant structure 

that could interact with NapA A17Q. Clearly, only a detailed structural analysis of the 

NapD A14T A71T/NapA A17Q complex will reveal the true molecular basis for this 

interaction. 

 

Figure 4.16 Highlighting the interaction between residues of the NapA signal peptide 
and NapD. The NMR structure of NapDASP with NapD shown in green and the signal peptide in 
orange. NapA residues identified by glutamine scanning mutagenesis and BTH are highlighted in 
magenta. NapD residues involved in NapASP binding are highlighted in blue and residues identified 
by a NapD mutant suppressor screen for NapA signal peptide variant A17Q are shown in purple. 
(A) NapA residues R6 and K10 interact with NapD E51 and E49, respectively. (B) NapD S9 and 
Q43 interact with NapA A13 and A21, respectively. (C) NapA A17 can interact with NapD I45. 
However, a I19F mutations possibly influences I45 to be able to bind a NapA A17Q mutation. (D) 
NapD residues A14T and A71T are supposed to interact with NapASP variant A17Q. 

During this study the NMR structure of another NapD-NapA complex was deposited (PDB 

ID code 2pq4; Minailiuc, O.M., Ekiel, I., Cheng, J., Milad, M.; Bacterial Structural 

Genomics Initiative, Canada), which is referred here from now on as NapD-NapASP. This 

structure also shows the NapA signal peptide binding to the β-sheet face of NapD (Figure 

4.17A). However, when it is compared to our NapDASP structure it can be seen that the 

models are not entirely in agreement. In particular the experimentally-derived important 

roles of NapA residues R6 and K10 in NapD binding is not apparent from the alternative 

NapD-NapASP complex structure. Also, NapD residues that take part in signal peptide 

binding as predicted by Maillard et al (2007) do not stand out in the alternative NapD-

NapASP complex structure. In addition, the conformation of the hydrophobic alanine-rich 

region of the signal peptide in NapD-NapASP is in disagreement with our predicted 

secondary structure when analysed using the programme Talos+, which is used to 

predict protein backbone torsion angles (Shen et al, 2009). The prominent bend of the 

NapASP helix in the alternative NapD-NapASP complex structure, and its angle of contact 

with respect to NapD, are major differences compared to our NapDASP model (Figure 

4.11 and 4.17A). Finally, analysis of the available (incomplete) data for the alternative 

NapD-NapASP complex for overall structural quality shows very poor scores (data not 

shown). However, the NapD-NapASP structure does agree with some of our findings: 
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certainly the position of NapASP residues A21 to L24 on the third β-strand, and the 

extension of the fourth β-strand (residues V75 and Y76) upon peptide binding, are in 

agreement with the work presented here. Differences between the two structures of 

NapD-NapASP and NapDASP are indicated by an alignment in Figure 4.17B. 

 

Figure 4.17 Comparison of two different structures of the NapA signal peptide bound to 
NapD. (A) Pre-deposited NMR structure NapD-NapASP (PDB ID code 2pq4; Minailiuc, O.M., Ekiel, 
I., Cheng, J., Milad, M.; Bacterial Structural Genomics Initiative). NapD is shown in blue and the 
NapA signal peptide in olive. (B) Overlay of NapD-NapASP with NapDASP from Figure 4.11. 

Overall, the NMR analysis of NapDASP shows for the first time that the twin-arginine 

signal peptide of NapA adopts an α-helical structure during NapD binding (Figure 4.11). 

In contrast, docking simulations of the E. coli DmsD chaperone with the Tat signal 

peptide of DmsA proposed that the peptide could adopt an extended conformation 

devoid of secondary structure when bound to DmsD (Stevens et al, 2009). However, this 

conclusion is based on an extrapolation of genetic and biochemical work onto a ligand-

free chaperone structure, and the work presented here demonstrates amino acids 

involved in long-range indirect effects, distant from the actually signal peptide binding 

site, are commonly identified by these methods. It is possible that a genuine chaperone-

peptide complex will be required to reveal the true nature of the peptide binding site on 

TorD/DmsD family chaperones. 
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4.3.4 Structure of the NapA signal peptide in solution 
The NMR structure of NapDASP in this Chapter assigns the secondary structure of the 

NapA signal peptide to be helical when bound to the proofreading chaperone NapD 

(Figure 4.11). However, what conformational changes does the signal peptide undergo 

during the transition from an unbound to a bound state?  

Previously, it was shown that free Tat signal peptides are highly flexible and 

unstructured (e.g. GFOR – Nurizzo et al, 2001; HiPIP – Kipping et al, 2003). The same 

was observed in vitro for a synthetic Tat signal peptide of SufI, which however became 

helical in a more hydrophobic environment (San Miguel et al, 2003). 

Here, site-directed spin labelling and PELDOR analysis carried out on the NapA signal 

peptide revealed that there are structural changes upon NapD binding. Comparison of 

the distance distributions obtained for bound and unbound signal peptide suggest a more 

relaxed structure for free NapASP. However, the alanine repeat in the hydrophobic region 

of the signal peptide suggests an overall maintenance of at least some helical structure 

even in solution (Rohl et al, 1999). Similarly, the free N-terminus of NarG, which is 

proposed to be a remnant signal peptide and binding site for the NarJ chaperone, shows 

a helical conformation when analysed in solution (Zakian et al, 2010). 

Overall, however, the EPR data shown here for NapASP need to be taken with caution 

because of the lack of depth in oscillation. The quality of the spectra could be improved 

by deuteration of the protein sample (Ward et al, 2010). Further EPR-based structural 

analysis of the NapA signal peptide will also focus on conformational changes during 

interaction with the Tat complex. Fincher and colleagues published work on the signal 

sequence of a precursor of the Delta pH pathway in the thylakoid membrane of 

chloroplasts that showed Tat signal peptides may form a loop after binding to the 

translocase and prior to export (Fincher et al, 1998). By using purified TatBC complex 

(Tarry et al. 2009) and MTSL-labelled NapASP it should be possible to study such 

conformational changes in the signal peptide using PELDOR. Taken together with our 

studies of signal binding by NapD, such work will give a complete picture of the role of 

the signal peptide at different steps on the bacterial Tat pathway. 
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5 Interaction studies between the proofreading chaperone 

NapD and the Tat translocase 

5.1 INTRODUCTION 
Tat proofreading chaperones are involved in processes such as Tat substrate folding, 

cofactor insertion and maturation (Sargent, 2007b). A common feature of those 

chaperones is the direct binding to Tat signal peptides and one of the first proofreading 

chaperones to be identified was the E. coli DmsD protein (Chan et al, 2009). Pull-down 

experiments using the immobilized twin-arginine signal peptide from DmsA (catalytic 

subunit of the DMSO reductase) incubated with E. coli cell extract identified DmsD as a 

specific binding partner. The authors also proposed DmsD to behave as a ‘signal 

recognition particle’ specifically targeting DmsA to the Tat machinery for export (Oresnik 

et al, 2001). The same study showed that a ΔdmsD strain was devoid of any DMSO 

reductase activity, suggesting that DmsD is involved in fundamental aspects of DmsA 

assembly. Indeed, a later in vivo study showed DmsD-independent Tat transport of a 

DmsA signal peptide/GFP fusion (Ray et al, 2003), which suggested the DmsA signal 

peptide did not have an obligation to be escorted to the Tat translocase by DmsD. 

Further work by the same group involving cell fractionations and immunoblotting 

revealed an association of DmsD with the inner membrane, and that this localisation was 

dependent on the interaction with both subunits of the Tat signal recognition complex, 

TatB and TatC (Papish et al, 2003). Those findings had been recently supported by the 

same authors in a study using bimolecular fluorescence complementation (BiFC) 

microscopy. In this method, a fluorescent protein is split into two non-fluorescent 

fragments, which are then fused to two putative binding partners. Interaction of those 

two proteins brings the fragments back into close proximity, which reconstitutes 

fluorescence. Use of this method suggested again that DmsD could interact with the 

TatBC complex (Kostecki et al, 2010). 

The question of whether a Tat substrate would need a soluble target factor for the initial 

stages of transport is one that has dominated the field from the outset. In the ubiquitous 

and very heavily studied Sec pathway, there are several soluble proteins involved in 

signal peptide recognition and guiding substrates to the Sec translocon. For integral 

membrane proteins, and some soluble substrates, a ribonucleoprotein termed the signal 

recognition particle (SRP) recognises the first transmembrane helix or signal peptide of 

the substrate, binds to it, and then guides the whole complex, via a membrane-bound 

receptor, to the Sec translocon. In the eukaryotic endoplasmic reticulum (ER) this 

process allows co-translational translocation across the ER membrane. It remains 

unknown whether translation of membrane proteins is stalled by SRP binding in the 
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bacterial system. For most soluble Sec substrates transport is post-translational but 

again soluble factors are involved in guiding the Sec signal peptide to the translocon. In 

most cases SecA, a large ATPase, binds directly to the Sec signal peptide and also the 

SecY protein of the translocon, thus bringing the Sec signal close to the export 

apparatus. A final soluble factor on the Sec pathway is SecB, which does not bind 

directly to Sec signal peptides, but instead helps some Sec substrates maintain an 

unfolded conformation until transport is completed (Driessen & Nouwen, 2008). Given 

this huge body of evidence for soluble targeting factors in general protein export it was 

perhaps understandable that many believe Tat signal peptides should also benefit from a 

targeting factor that would guide them to the Tat translocon.  

The evidence for the existence of a general Tat signal recognition protein is not strong. 

In the homologous plant thylakoid Tat pathway, export was seen to proceed in vitro in 

the absence of any soluble factors (Cline & Henry, 1996; Mori & Cline, 1998).  However, 

in E. coli the heavily-studied TorA signal peptide remains active in the absence of its 

chaperone TorD, but export of passenger proteins seems to be enhanced in vivo upon 

over-expression of torD. Very similar observations were made for DmsD improving Tat 

transport of GFP fused to the DmsA signal peptide (Lee et al, 2010; Li et al, 2006).  

The aim of this final Chapter was to begin to explore whether NapD acts in shuttling 

NapA to the Tat complex. In order to tackle this question biochemical and genetic 

approaches were taken. First, a collaboration with the Matthias Müller group, University 

of Freiburg, Germany, was established with the aim of utilising in vitro site-specific 

cross-linking technology to study the Nap/Tat interrelationship. In addition, a bank of 

new E. coli strains were designed and constructed with a view to using fluorescence 

correlation spectroscopy (FCS) to study the Nap/Tat interactions in living cells. 

5.2 RESULTS 

5.2.1 NapD mediated NapA export – an attempt to study in vitro interactions 

between NapD and the Tat translocase 
Matthias Müller (University of Freiburg, Germany) is a pioneer of the study of protein 

targeting and secretion systems in vitro. In recent years the focus has been on 

establishing a reliable and reproducible in vitro transport assay for the Tat  pathway 

(Panahandeh & Müller, 2010). The starting point is the in vitro transcription of a plasmid 

based gene encoding the protein of interest, for example a cofactor-less Tat substrate. 

The gene in question is first placed under the control of the T7 promoter (Figure 5.1). 

This is followed by a transcription-translation process under semi-defined conditions 

where radioactive methionine and cysteine is incorporated into the newly synthesised 
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protein thus enabling sensitive visualization of the protein by autoradiography after 

separation by SDS-PAGE (Figure 5.2C) 

 

Figure 5.1 In vitro transcription and translation. Expression of the gene of interest is under 
the control of a T7 promoter (PT7). All components for transcription (i.e. plasmid DNA, purified T7 
RNA polymerase, NTPs) and translation (membrane-free but ribosome-containing S-135 extract, 
amino acids) are mixed and buffer conditions are adjusted. The resulting protein, depicted here to 
harbour a Tat signal peptide (‘RR’) will be immediately subjected to in vitro transport (Figure 5.2). 

The next critical step is the preparation of inside-out inner membrane vesicles (INVs) 

obtained from an E. coli strain overexpressing tatABC (Figure 5.2A). If these are sealed 

and transport active the radio-labelled in vitro synthesised Tat precursor can be mixed 

with the INVs. If the protein is successfully transported into a vesicle then its N-terminal 

signal peptide is normally processed, which is evident in a size difference after SDS-

PAGE (Figure 5.2C), and in addition proteins inside the vesicles are protected from 

externally-added proteases (e.g. Proteinase K; Figure 5.2B). The following work 

described here was done in cooperation with Matthias Müller and involved a four-month 

visit to his laboratory in Freiburg. 

 

Figure 5.2 Schematic description of in vitro transport into inside-out inner membrane 
vesicles. (A) The protein of interest is recognized via its Tat signal peptide (‘RR’) by the Tat 
complex and transported into the vesicle (INV). To generate a proton motif force excess amounts 
of ATP are used. (B) Non-exported proteins are degraded upon addition of proteinase (i.e. 
Proteinase K). (C) Precursor (*) and processed form (**) of the Tat substrate can be visualized 
after SDS-PAGE separation by autoradiography. 
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5.2.2 In vitro analysis of Tat transport using CAT signal peptide fusions 
Initially, two constructs were available for in vitro transcription/translation experiments 

and both of these employed chloramphenicol acetyl transferase as a Tat passenger 

protein replacing the nitrate reductase catalytic domain. The decision to use signal 

peptide fusions to CAT was made because native NapA requires cofactor insertion before 

folding and transport and this is a process that cannot be reliably provided in this in vitro 

assay. In addition, it had been already established that NapASP-CAT was an ideal artificial 

Tat substrate to study the Tat export process in vivo (Maillard et al, 2007; Stanley et al, 

2002). The first construct therefore encoded a NapASP-CAT fusion only, while the second 

coded for NapD fused via a linker (L) to NapASP-CAT (NapDLASP-CAT). The linker 

sequence used is identical to the one described in Chapter 4 and this is known to not 

block protein transport in vivo or signal peptide binding by NapD in vitro (Chapter 4, 

Figure 4.5).  

Figure 5.3A shows radiolabelled NapDLASP-CAT and NapASP-CAT after in vitro translation 

and clearly demonstrates that both proteins have been produced in high amounts. Next, 

in vitro Tat transport of each individual protein was initiated by adding TatABC-

containing INVs followed by a Proteinase K digest. Treatment of the vesicles with this 

protease degrades all proteins that are not protected inside the INVs. However, this 

experiment showed that neither NapDLASP-CAT nor NapASP-CAT had been transported. In 

both cases addition of Proteinase K after a 20 minute import regimen led to the 

degradation of all protein (Figure 5.3A).  

To show the efficiency of the in vitro Tat transport assay a fusion comprising the TorA 

signal peptide to the fluorescent protein mCherry was chosen (TorASP-mCherry). This 

protein is now used as a standard Tat substrate by the Müller group (Fröbel et al, 

submitted). Here, a portion of TorASP-mCherry was successfully transported and 

processed (Figure 5.3B), which indicates the functional set up of the assay. Note that 

two forms of TorASP-mCherry are protease-resistant and therefore inside the INVs. The 

first corresponds to the fully-processed imported mCherry protein (** band, Figure 

5.3B), while the other corresponds to TorASP-mCherry in an unprocessed, but 

transported, form (* band, Figure 5.3B). It is believed that not all vesicles contain 

sufficient quantities of the LepB leader peptidase to process all imported substrates. 

Note also that the imported TorASP-mCherry protein appears to be slightly smaller 

compared to the initial in vitro-produced precursor. It is hypothesised that the N-

terminus of the long TorA signal peptide (46 amino acids) remains exposed outside the 

INVs even after transport and is hence not completely protected from the Proteinase K 

digest (Figure 5.3B). 
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Figure 5.3 In vitro transport assay of CAT fusions. (A) Proteins were synthesised in vitro and 
transported into inside-out inner membrane vesicles (INV) from a tatABC overexpressing strain. 
Control is buffer only (-). Transport efficiency was tested by Proteinase K (PK) digest. Proteins and 
their correlating bands are indicated by an asterisk. (B) For TorASP-mCherry transported and 
processed form are indicated by one or two asterisks, respectively. Molecular weights are given in 
kDa. PK resistant bands are highlighted by an arrow. 

5.2.3 In vivo assays for Tat transport using CAT 
The in vitro data obtained for NapASP-CAT is in contrast to the in vivo data presented in 

Chapter 2 and by Maillard et al (2007) where this fusion protein is readily transported 

through the Tat translocase into the periplasm. Thus to investigate the effect of fusing 

NapD to NapASP-CAT on in vivo transport efficiency the previously described 

chloramphenicol-resistance assay was used (e.g. Chapter 2). In short, CAT is an enzyme 

that detoxifies chloramphenicol in the cytoplasm by acetylation. Fusions of Tat signal 

peptides to CAT result in periplasmic localisation of the enzyme where it is ineffective, 

thus cells grown in the presence of chloramphenicol are inhibited for growth (Figure 

5.4B; Stanley et al, 2000). However, modifications inactivating the Tat signal peptide or 

Tat translocase result in retention of CAT in the cytoplasm thus enabling the cells to gain 

resistance to chloramphenicol.   

Here, E. coli strain MG1655 (tat+) producing NapASP-CAT alone are not resistant to 

chloramphenicol and so no cell growth is observed (Figure 5.4A and B), which is in exact 

agreement to previous experiments (Chapter 2; Maillard et al., 2007). Co-expression of 

plasmids individually encoding NapASP-CAT and also NapD results in clear 

chloramphenicol resistance (Figure 5.4A and D), indicating that the presence of excess 

NapD hinders signal peptide function in this assay. Interestingly, production of the 

NapDLASP-CAT fusion alone enabled growth after addition of chloramphenicol, which 

indicates CAT is functional in the cytoplasm (Figure 5.4A and C).  

Taken together, it can be concluded that neither NapDLASP-CAT nor NapASP-CAT is 

efficiently transported in vitro, whereas NapASP-CAT is readily exported to the periplasm 

in vivo, but the NapDLASP-CAT fusion is not.  
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Figure 5.4 In vivo transport of CAT fusions. (A) E.coli strain MG1655 (tat+) producing plasmid 
based fusions of NapASP-CAT ( ), NapDLASP-CAT ( ) or co-producing NapASP-CAT and NapD ( ). 
Cells were grown in presence of 200 µg/ml chloramphenicol (Cml) and growth was monitored by 
measuring OD600. (B) NapASP-CAT is transported via the Tat pathway into the periplasm, thus CAT 
cannot inactivate Cml by acetylation (Ac), which inhibits cell growth. (C) Fusion of NapD to NapASP 
(indicated in blue) shields the Tat motif (RR) from Tat recognition, therefore no transport across 
the cytoplasmic membrane. CAT is acetylating Cml. Hence, the antibiotic has only little effect on 
cell growth. (D) Similar effects as for (C) can be observed when NapD and NapASP-CAT are co-
produced. The NapA signal peptide is depicted in orange with ‘RR’. 

5.2.4 Utilising mCherry as a substrate for in vitro Tat transport assays  
Given the inconsistent behaviour of the NapASP-CAT fusion protein, the possibility of CAT 

being an unsuitable in vitro substrate for the assay developed by Panahandeh et al 

(2010) was considered. Therefore, to proceed in the attempts to investigate to role of 

NapD in targeting NapA to the Tat complex the CAT reporter was substituted for 

mCherry. 

Plasmids encoding NapDLASP-mCherry and NapASP-mCherry were constructed and in 

vitro translation and transport assay performed. Figure 5.5A shows after in vitro 

synthesis both NapDLASP-mCherry and NapASP-mCherry were generated in high 

amounts. However, upon addition of INVs NapDLASP-mCherry and NapASP-mCherry were 

not protected from degradation after Proteinase K treatment, suggesting efficient Tat 

transport did not take place (Figure 5.5A). 
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Note that the in vitro transport assay for all CAT fusion as well as mCherry fusion 

proteins was performed at the same time under identical conditions. Therefore, Figure 

5.5B shows the same TorASP-mCherry control as in Figure 5.3B, where TorASP-mCherry is 

transported into INVs and processed by the leader peptidase. 

 

Figure 5.5 In vitro transport assay of mCherry fusions. Experimental set up for (A) 
NapDLASP-mCherry, NapASP-mCherry and (B) TorASP-mCherry is identical to figure 5.3. Precursor 
(*) and mature form (**) are indicated. A Proteinase K resistant band is highlighted by an arrow. 
The molecular weight of proteins is given in kDa. 

5.2.5 An in vitro cross-linking study between Tat signal peptide and Tat 

components 
One powerful aspect of the in vitro transport assay is that it can be further modified in 

order to study substrate-translocase interactions by including, site-specifically, 

photosensitive non-natural amino acids, e.g. pBpa (p-benzoyl-L-phenylalanine; Figure 

5.6A) (Chin et al, 2002; Maurer et al, 2010). The phenylalanine analogue pBpa can be 

activated to form a free radical by UV light, which in turn will cross-link covalently by C-

H bonding to any other organic molecule in the “molecular neighbourhood”. Although, no 

in vitro transport was detected for NapDLASP-mCherry and NapASP-mCherry an attempt 

was made to further analyse the interrelationship between those fusion proteins and the 

Tat complex using site-specific cross-linking. The following experiment was carried out in 

collaboration with Julia Fröbel, University of Freiburg.  

Initially, the gene encoding the protein of interest is mutated in such changing a specific 

codon for the amber stop codon ‘TAG’. Here a plasmid was used that expressed tatABC 

where tatA carried such TAG mutations either at codons 11 (normally isoleucine) or 32 

(normally leucine codon), which are localized in the transmembrane domain or aliphatic 

helix, respectively. Cells producing the individual TatA variants also contained a plasmid 

(pSUP), which encodes an amber-suppressor-tRNA and a pBpa-specific-tRNA-synthetase. 

The synthetase loads externally added pBpa on to the suppressor-tRNA during cell 

growth, which suppresses the amber stop codon and specifically incorporates pBpa into 
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the protein nascent chain of TatA (resulting in TatA variant I11pBpa and L32pBpa; 

schematic description in Figure 5.6B). 

 

Figure 5.6 pBpa insertion into proteins. (A) Chemical structure of unnatural amino acid pBpa 
(p-benzoyl-L-phenylalanine). (B) First, the plasmid based gene of interest is subjected to 
mutagenizing PCR, substituting site-specifically one codon (‘NNN’) for an amber stop codon 
(‘TAG’). Next, cells expressing an amber-suppressor-tRNA and a pBpa-specific-tRNA-synthetase 
(plasmid pSUP) are grown pBpa externally added to the medium. The cells specifically integrate 
pBpa into the newly synthesised protein. Courtesy Prof Peter G. Schultz, Scripps Research 
Institute, California. 

Next, cells overproducing pBpa-containing TatABC were harvested and INVs prepared as 

described in Material and Methods. After in vitro transcription/translation of NapDLASP-

mCherry and NapASP-mCherry, the INVs were added and the reaction subjected to UV 

light treatment for 20 minutes on ice (Figure 5.7 A and B). Possible cross-links between 

TatA variants I11pBpa and L32pBpa were analysed by SDS-PAGE and phosphor-imaging 

(Figure 5.7C). 

 

Figure 5.7 pBpa-based cross-linking between two binding partners. (A) Transport of the 
Tat substrate (‘RR’) is initiated by adding INVs containing TatABC. (B) The interaction between 
translocase and substrate is captured by applying UV light (350-360 nm wavelength), which 
activates pBpa (shown by a yellow star) and cross-links to any amino acid in close proximity. (C) 
The binding between two proteins is visualized as a band shift (arrow) by SDS-PAGE. 

Figure 5.8A shows very efficient protein synthesis of NapDLASP-mCherry and NapASP-

mCherry. However, no cross-links are visible between TatA variant I11pBpa or L32pBpa 

and the mCherry fusions. In contrast, control TorASP-mCherry interacts specifically with 

TatA L32pBpa, but not with TatA I11pBpa (Figure 5.8B). Binding of TorASP-mCherry to 

TatA at position L32 is in agreement with previous observations indicating the 
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importance of the aliphatic helix of TatA in signal peptide recognition (Fröbel et al, 

submitted). 

In conclusion, NapASP fusions to the reporter proteins CAT or mCherry are not 

transported in vitro by the Tat translocase.  

 

Figure 5.8 Cross-linking trials between mCherry fusions and the Tat complex. INVs were 
prepared from strains overexpressing TatABC (Tat+) or in addition have incorporated pBpa in TatA 
on position I11 or L32. After in vitro translation of (A) NapDLASP-mCherry, NapASP-mCherry and 
(B) TorASP-mCherry proteins INVs were added and subjected to UV for 20 min. Mature forms are 
indicated by an asterisk, crosslink between TorASP-mCherry and TatA variant L32 highlighted by an 
arrow. 

5.2.6 Utilising mCherry as a substrate for in vivo Tat transport assays  
NapDLASP-mCherry and NapASP-mCherry were subjected to fluorescence microscopy to 

test for Tat export in vivo (Figure 5.9). The construct encoding NapDLASP-mCherry was 

slightly modified in that an additional C-terminal SsrA-tag (sequence ‘AANDENYALAA’) 

was included at the C-terminus of mCherry. Proteins with this specific tag are subjected 

to the cytoplasmic SsrA-SmpB system and quickly degraded by proteases (Karzai et al, 

2000). Thus high levels of fluorescence inside the cell by non-exported proteins are 

dramatically reduced and make it possible to identify periplasmically-localised proteins, 

which are shielded from proteolysis. 

E. coli strain BL21, which is able to express genes under the control of the T7 promoter, 

was individually transformed with plasmids encoding NapDLASP-mCherry-SsrA and 

NapASP-mCherry (Figure 5.9A and 5.9C). Fluorescence observed for cells producing 

NapDLASP-mCherry-SsrA is equally distributed over each cell. No increased fluorescence 

is detected around the membrane region (Figure 5.9C). The level of fluorescence is most 

possibly the lowest background level (Figure 5.9D). Cells producing NapASP-mCherry, 

however, show a distinct brighter rim around the cytoplasmic membrane (Figure 5.9A), 

which is indicative of Tat transport, or at least membrane association, of this protein 

(Figure 5.9B).  
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Figure 5.9 Visualizing the in vivo transport efficiancy of mCherry fusion proteins by 
fluorescence microscopy. (A) E. coli BL21 cells producing NapASP-mCherry exhibit a typical rim 
stain around the membrane region, which is indicated by white arrows. (B) In explanation of (A), 
fusion of mCherry to the NapA signal peptide (‘RR’) is recognized by the Tat complex and 
transported across the cytoplasmic membrane. Excitation of mCherry at ~587 nm wavelength 
results in fluorescence at 610 nm. (C) NapDLASP-mCherry-SsrA causes diffused fluorescence in 
BL21 cells. This point to (D) non transported protein resulting in degradation of NapDLASP-
mCherry-SsrA by recruited proteases.  

5.2.7 Towards visualizing the relationship between NapD and Tat  
To understand and dissect possible interactions between NapD and the Tat complex 

under physiological conditions, fluorescence correlation spectroscopy (FCS) was chosen. 

This method measures the fluctuation of fluorescent labelled molecules diffusing in and 

out of a small detection volume (usually ≤10-15 l) and because of the restricted 

measurement volume it is important to keep the number of biomolecules to be analysed 

as low as possible (i.e. single-molecule-level). Therefore, the nap operon and its 

resulting proteins are ideal candidates for FCS due to their naturally low expression 

levels. Also FCS is non-invasive thus perfectly situated for detecting interactions in living 

cells (Van den Wildenberg et al, 2011). 
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Figure 5.10 Chromosomal mCer fusions to napD and napA. (A) The E. coli nap operon 
showing the first four genes napF, napD, napA and napG. The gene encoding for mCer was either 
fused to (B) napD or (C) napA.  

E. coli strains were constructed with chromosomal mCerulean (mCer) fusions to the 3’ 

end of either napD or napA in the native nap operon (Figure 5.10). All mCer fusions are 

based on parental strain LCB2048, which expresses nap as the only nitrate reductase. To 

check if attachment of mCer has any influence on NapA activity or Tat transport, nitrite 

production assays were carried out (Figure 5.11). Strain LCBAmCer (NapA-mCer) retains 

similar levels of NapA activity as LCB2048 (Figure 5.11). Also, LCBDmCer (NapD-mCer) 

is able to reduce nitrate. However, the amount of produced nitrite in this strain is almost 

half compared to the parent strain, with a longer lag-phase (~3 hours compared to 2 

hours) (Figure 5.9).  

 

Figure 5.11 Chromosomal mCerulean fusions and their influence on NapA activity. Strains 
harbouring mCer fusions were tested for NapA activity. Strains are labelled as follows: wild type 
LCB2048 (nap+) ( ), LCBAmCer/NapA-mCer ( ), LCBDmCer/NapD-mCer ( ). 

In summary, cells expressing either napA-mCer or napD-mCer show NapA activity. This 

forms a good basis for future work, which would involve the introduction of a second 

94 
 



fluorophore (e.g. YFP) to different possible interaction partners (e.g. individual Tat 

components). 

5.3 DISCUSSION 

5.3.1 In vitro and in vivo transport of Tat signal peptides containing reporter 

proteins 
The aim of this Chapter was to establish if NapD, besides its role as a proofreading 

chaperone, could specifically target its substrate, NapA, to the Tat translocase for 

export. Previously it has been shown that another Tat chaperone, DmsD, is associated 

with the membrane and possibly interacts with the TatBC complex (Kostecki et al, 2010; 

Papish et al, 2003). Thus the authors hypothesized DmsD is escorting DmsA to initiate 

the interaction between TatBC and the signal peptide. 

To determine if NapD could fulfil a similar function, fusions were prepared between NapD 

itself and the NapA signal peptide (NapDLASP), substituting the mature part of NapA for 

proteins CAT or mCherry. Previously it was shown that a NapD-NapA fusion using a 

linker retains NapA activity in vivo (Chapter 4) and that CAT and mCherry are excellent 

reporters for Tat transport when fused to a Tat signal peptide in vivo and in vitro, 

respectively (Chapter 2; Fröbel et al., submitted; Maillard et al., 2007;  Stanely et al., 

2002). 

In vitro transport was carried out according to Panahandeh et al (2010) using TatABC 

containing INVs. However, none of the NapDLASP fusion proteins was exported in this 

assay; neither had been NapASP-CAT and NapASP-mCherry. In contrast a substitution for 

the Tat signal peptide of TorA (TorASP-mCherry) was transported into INVs followed by 

signal peptide cleavage. It needs to be noted that transport efficiency of TorASP-mCherry 

in this in vitro assay is very low in relation to available synthesised protein. Usually, only 

a maximum of up to 20% translocation is achieved for in vitro synthesised proteins 

(Alami et al, 2002). If the amount of NapASP fusion proteins being transported is 50% 

less then shown for TorASP-mCherry, it would not be detected in this assay, showing its 

strong limitation on sensitivity. 

In vivo analysis monitoring growth of CAT fusion producing cells in the presence of 

chloramphenicol and protein localisation by fluorescence for mCherry fusions revealed 

that proteins containing only the NapA signal peptide were transported by Tat, whereas 

N-terminal fusion to NapD blocked transport.  

Here, it has been already proposed that in order to trigger NapD release from the signal 

peptide cofactor insertion into the mature part of NapA has to be completed first 

(Chapter 4). This suggests that NapD might not act as targeting protein for NapA. In 
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addition NapD is localized in the cytoplasm (Maillard et al, 2007), but DmsD (Kostecki et 

al, 2010; Papish et al, 2003) and overproduced TorD (K. McGowan & F. Sargent, 

unpublished) have been found to be partly membrane associated. Therefore, if a 

targeting mechanism for Tat substrates exists, it might be a sole function of the 

TorD/DmsD family.  

Still, the question remains why NapA signal peptide containing proteins are not 

transported efficiently in vitro but are transported very efficiently in vivo? Holzapfel et al 

(2009) using the same in vitro translation/transport approach, reported that the signal 

peptide of SufI was interacting non-specifically with the periplasmic chaperone FkpA. The 

binding between those two proteins was due to the application of extract for the 

translation process prepared from whole cells (Holzapfel et al, 2009).  

In order to test the possibility of a periplasmic contamination blocking the transport of 

NapA signal peptide containing proteins, an in vitro transport assay was carried out 

(Yufan Zhou, University of Freiburg) using the PURE (protein synthesis using 

recombinant elements) system. The PURE system consists of all necessary components 

for in vitro transcription and translation, which were highly purified and combined in a 

defined buffer system (Holzapfel et al, 2009). Even so good synthesize rate of NapDLASP-

mCherry, NapASP-mCherry and TorASP-mCherry were achieved, none of those three 

proteins was transported into TatABC containing INVs (data not shown). Thus a careful 

optimisation of the PURE system would be needed for further investigation on the in vitro 

transport of NapASP containing proteins. 

5.3.2 Initial in vivo analysis of the interrelationship between NapD and Tat on 

native level 
To establish, if NapD targets NapA specifically to the Tat complex and to understand the 

interaction between NapD and NapA in more detail an in vivo approach was chosen with 

the ultimate aim of using fluorescence correlation spectroscopy. E. coli strains 

harbouring chromosomal mCer fusions to the C-terminus of either NapD or NapA were 

constructed and retained Tat dependent NapA activity. Those are the first steps towards 

the spectroscopic analysis of the two Nap proteins and their interaction with the Tat 

subunits. To see a correlation between binding and release of NapD/NapA and the Tat 

components a second fluorophore (e.g. YFP) could be inserted into each strain in order 

to test different protein interactions: 

1. A NapD-mCer/NapA-YFP combination in tat+ and tat- background could be 

analysed as it has been suggested that interactions between NapD and NapA is 

dependent on the presence of the Tat complex (Chan et al, 2010). 
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2. FCS studies on NapD-mCer and TatA-, TatB- or TatC-YFP could shed more light 

on interaction between NapD and any of the Tat subunits, drawing conclusions 

about the possibility of Tat substrate targeting for export. Strains producing such 

YFP fusions at single copy are already available (e.g. Tarry et al. 2009). 

3. In addition, the combination of NapA-mCer and YFP-fusions to the Tat 

components could give more insight into the substrate/translocase relationship. 

It needs to be noted that besides the several advantages of FCS (non-invasive, native 

protein levels avoiding artefacts from overexpression) also disadvantages have been 

reported, such as small size of bacteria, photo-bleaching and, for detection of membrane 

proteins, membrane curvature and different refraction index of lipids compared to 

aqueous environment of the cytoplasm (Medina & Schwille, 2002). However, a study 

exists that shows successful tracking of TatA in bacteria by FCS giving promising 

opportunities for further studies (Van den Wildenberg et al, 2011). Overall, FCS analysis 

will need careful set up and optimisation as well as committed collaboration from experts 

in this area. 
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6 Conclusions and future perspectives 

6.1 THE NITROGEN CYCLE AND NAPA 
The nitrogen cycle is one of the most important nutrition cycles on Earth. However, with 

industrial development humans had a big influence in the global nitrogen balance 

through processes such as new agricultural practises and combustion of fossil fuels 

(Canfield et al, 2010). In the last 50 years an increase of over 800% in the use of 

nitrogen-based fertilizers was observed (Fixen & West, 2002). Furthermore, the 

efficiency of certain kind of crops for nitrogen uptake is below 40%, thus a large amount 

of nitrogen compounds in the soil are either washed out from the root zone or converted 

back into N2 by denitrification. Also during denitrification NO and N2O are produced, 

which partially escape into the atmosphere. N2O, together with CO2 and CH4, is one of 

the most important greenhouse gases where the global warming potential of N2O is even 

300 times greater than that of CO2 (Richardson et al, 2009). In addition, NO and N2O 

have large effects on the depletion of the ozone layer (Lassey et al, 2007). 

A key step in the denitrification process is the conversion of nitrate to nitrite, which is 

performed by nitrate reductases. Considering the huge influence of denitrification by 

bacteria in agriculture it is important to study those nitrate reductase regarding their 

assembly and function. In E. coli, as well as in other bacteria, two types of nitrate 

reductases are found: the membrane-bound nitrate reductases NarGHI and NarZYV in 

the cytoplasm, and the periplasmic nitrate reductase NapA. Both enzymes contain Mo-

bis-MGD in their active centre and [Fe-S] clusters for electron transfer (Bertero et al, 

2003; Jepson et al, 2007). But how is it possible that NarGHI/NarZYV and NapA possess 

the same cofactors and perform the same reaction even though they are localized in 

different compartments of the cell? 

NapA contains an N-terminal signal peptide with an ‘S-R-R-s-F-M-K’ motif, which targets 

NapA to the Tat pathway for transport into the periplasm. Importantly, NapA folding and 

cofactor insertion needs to be completed in the cytoplasm prior to export. A key question 

is how maturation of NapA is controlled and assessed. Therefore, molecular and 

structural studies were performed here to understand the complex process of cofactor 

assembly and NapA maturation in relation to Tat transport. 

6.2 PROOFREADING OF NAPA BY THE CHAPERONE NAPD 

6.2.1 NapD binding to the Tat signal peptide of NapA 
Many cofactor-containing Tat substrates interact with very specific chaperones in the 

cytoplasm, which ensures protein folding, cofactor insertion and assembly in a process 
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named collectively as ‘Tat proofreading’ (Sargent, 2007b). It was shown that NapD is the 

proofreading chaperone for NapA binding very specifically and tightly to its Tat signal 

peptide (Maillard et al, 2007). Here, in vivo and in vitro interaction studies identified 

residues R6, K10 and A17 within the NapA signal peptide to be important for NapD 

binding, with NapA R6 and A17 also participating in Tat transport.  

In addition, to highlight structural regions within NapD that participate in NapA signal 

peptide binding a screen of a napD mutant suppressor library was performed. 

Suppression genetics is a powerful tool to identify novel protein interactions or functions. 

It is often used when difficulties occur in obtaining the crystal structure of proteins or 

complexes, e.g. for a multimeric membrane protein complexes. The group of Thomas 

Silhavy has made many great contributions in understanding the assembly of outer 

membrane proteins or the insertion of lipopolysaccharides in Gram-negative bacteria by 

the Bam complex using this technique (e.g. Chimalakonda et al, 2010; Ruiz et al, 2006). 

In this study, napD mutants were identified that showed increased affinity for the NapA 

A17Q signal peptide variant. However rather than isolate direct compensatory mutations 

as would be the best-case scenario, here mutation such as NapD I19F, located on the 

first α-helix, were identified that must be having long-range effects on the signal peptide 

binding site.  

Surprisingly, none of the napD mutants was able to restore full nitrate reductase activity 

to NapA variant A17Q, even in a ΔnapD strain (LP203S). It can only be concluded that 

even though those NapD variants are able to interact with the Tat signal peptide, 

somehow biosynthesis of NapA remains impaired. Therefore, to further investigate the 

mechanism of Tat proofreading, future work could include the extension of the screen 

using E. coli strain LP203S. Growth tests on nitrate could identify new NapD variants that 

would enabling not just signal peptide binding, but also full maturation and thus nitrate 

reduction activity of the NapA A17Q variant. Overall, however, residues as part of the 

interaction interface between NapD and NapA identified here, but also by Maillard et al 

(2007), were well supported by an NMR structure of NapD in complex with the NapA 

signal peptide.  

However, how does NapD recognize the NapA signal peptide? Does NapD receive the 

signal peptide immediately at the ribosomal exit tunnel, and is binding initiated by 

nucleotide binding as shown for TorD (Hatzixanthis et al, 2005)? As for TorD, no specific 

nucleotide binding motif is found within NapD either (Turner et al, 2004). Considering 

the high affinity of NapD for the NapA signal peptide, it could be possible that NapD out-

competes general chaperones such as TF and SRP at this early stage. Future 

experiments could include nucleotide binding analysis by NapD as well as cross-linking 
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experiments between NapD and the NapA signal peptide-producing ribosome. Given the 

high number of alanine and valine residues within the NapA signal peptide h-region, it 

may be hard for SRP to resist binding to this protein as it emerges from the ribosome. 

Perhaps fusion of NapASP to a Sec-dependent membrane protein (e.g. LepB) followed by 

expression in +/- napD strains would give insight into possible competition between SRP 

and NapD for this signal peptide. 

6.2.2 Does NapD participate in cofactor insertion? 
Purification studies of NapD in complex with NapA suggest dissociation of NapD occurs 

after cofactor insertion. A covalent fusion of NapD to NapA, on the other hand, had a 

stabilizing effect on the NapA iron-sulphur cluster under aerobic conditions. Indeed the 

fusion experiment probably also supports the hypothesis that NapD binds only to the Tat 

signal peptide, and nowhere else on NapA (Maillard et al, 2007; Chan et al, 2010). 

Still, it is not known if NapD is actively participating in cofactor insertion into NapA, as 

been shown for two other Tat proofreading chaperones, TorD and DmsD. There, some 

data has been presented that suggests both chaperones interact in vitro with 

components of the molybdenum cofactor biosynthesis pathway, and were even able to 

bind the precursor and mature forms of the Mo-bis-MGD cofactor itself (Genest et al, 

2008; Li et al, 2010). If this is true for NapD may need to be established in the future. 

Also the possibility should be considered that NapD acts as a scaffold protein for 

assembly of the [4Fe-4S] cluster, especially considering its ferredoxin-like structure. It 

has already been shown that the chaperones HscA/HscB, homologues of Hsp70, bind to 

IscU, which is an iron-sulphur template protein in one of the iron-sulphur cluster 

pathways (Bonomi et al, 2008). To test if any NapD residues could have an influence on 

iron-sulphur cluster insertion into NapA single substitutions at positions H2, C8 and C32 

were constructed. However, none of the resulting variants (H2A, C8S or C32A) had any 

effect on the enzymatic activity of NapA (data not shown). Nevertheless, cluster 

coordination can also be dependent on amino acid side-chains such as Asp or Ser, and 

even backbone amides can be involved (Moulis et al, 1996). Thus it is probable that only 

multiple mutations in napD would be required to negatively affect the cofactor assembly 

activity of the protein. 

Overall, only structural studies will give further understanding on the interaction 

between NapD and NapA. In this project crystal trials were performed on the E. coli 

NapDA complex, however to date no crystals were obtained. This is one area that 

definitely needs further investigation and investment of time and effort. Perhaps more, 

automated, crystallisation screens, or changing to NapDA from another organism, e.g. R. 
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sphaeroides or C. necator, where the structure of mature NapA has already been 

successfully solved. 

6.3 TAT TRANSPORT OF NAPA 
One of the main general questions remaining to be answered in Tat transport field is 

what triggers chaperone release so the Tat signal peptide can bind to the TatBC 

complex? Based on interaction and purification studies it was proposed for TorD and 

DmsD that they would indeed specifically target their respective passenger proteins to 

the Tat machinery (Kostecki et al, 2010; Papish et al, 2003).  

In this work in vitro cross-linking experiments were planned to detect possible 

interactions between NapD, the NapA signal peptide, and the Tat complex. However 

were not successful. The biggest problem was that the Tat transport assays suggest that 

the activities of NapD and the NapA signal peptide in vivo is very different to what is 

observed in vitro. In particular, the transport activity of NapASP in vitro was so low as to 

be undetectable.  

For further investigation on NapD interaction with the Tat translocase fluorescence 

correlation spectroscopy could be the method of choice. This technique allows measuring 

binding kinetics between two partners on a native protein level in the living cell (Sahoo 

and Schwille, 2011). Here, strains were prepared that produce active NapD-mCer and 

NapA-mCer fusions from the chromosome. This forms a good base for future studies and 

might demonstrate targeting of NapA by NapD for transport. 

Already one can speculate if NapD acts as a shuttle protein like a signal recognition 

particle. Some evidence would suggest ‘no’: for example, DmsD was proposed to target 

DmsASP to the TatBC complex and is already associated with the membrane (Papish et 

al, 2003). In contrast, NapD was shown to be localized in the cytoplasm, at least in 

resting cells (Maillard et al, 2007). Furthermore, purification of the NapDA complex 

resulted in dissociation of NapD from NapA, possibly triggered by completed NapA 

folding and/or maturation. For NapD to act as signal recognition particle / shuttle protein 

it would need to remain tightly associated with the signal peptide after the passenger 

enzyme has been folded. 

In relation to Tat transport another question concerns the structural transitions that the 

signal peptide undergoes during binding to the translocase. In vitro studies on a Tat 

signal peptide showed that it was unstructured in solution, however became helical in a 

more hydrophobic environment (San Miguel et al, 2003). Here, the NMR structure of the 

NapA signal peptide is α-helical when bound to NapD and PELDOR analysis suggests that 

overall this conformation is broadly retained, even when the signal peptide is in its free 
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state. Fincher and co-workers did transport studies on a Tat substrate of the Delta pH 

pathway in chloroplasts and concluded that the signal sequence forms a loop when it is 

bound to the translocase (Fincher et al, 1998). A similar observation can be made for 

NarG. This nitrate reductase contains an N-terminal extension with a remnant Tat motif 

indicating its evolutionary relation to Tat substrates (Ize et al, 2009). In the crystal 

structure of the water-soluble NarGH complex this N-terminus is unstructured (Jormakka 

et al, 2004), which is in agreement with the CD study of SufISP. In contrast, in the 

NarGHI holoenzyme the very N-terminus forms an α-helix followed by a twisted β-

hairpin, which results from binding to the NarI subunit (Bertero et al, 2003). Thus it was 

hypothesized that this interaction of NarG to the membrane protein NarI reflects binding 

of a Tat signal peptide to the TatBC complex (Sargent, 2007a). 

Regarding Tat signal peptide binding by the TatBC complex one obstacle that needs to 

be overcome is the determination of the number of signal peptide binding sites. Single-

particle electron microscopy revealed up to two SufI molecules bound per TatBC (Tarry 

et al, 2009) and even up to four substrates on the Hcf106:cpTatC in chloroplasts (Ma & 

Cline, 2010). Assuming that TatBC consists of six or seven subunits of TatB and TatC 

each should provide six or seven possible binding sites (Oates et al, 2005; Tarry et al, 

2009). ITC analysis suggests that one binding site is available with high binding affinity, 

whereas the others possess a relatively much lower affinity (M. Krehenbrick & B. Berks, 

unpublished). 

6.4 ROLE OF NAPF IN NAPA MATURATION 

6.4.1 Predicting the structure of NapF 
A component that needs to be considered for the NapA maturation process is the iron-

sulphur protein NapF. Protein data banks label NapF as a ferredoxin-like protein and 

sequence analysis shows four tetra-cysteine motifs. Mutational analysis of W. 

succinogenes napF revealed that the third cysteine motif is important for NapA 

maturation and activity (Kern & Simon, 2009). Bacterial two-hybrid analysis showed that 

E. coli NapF interacts with the precursor form of NapA, and the R. sphaeroides NapF was 

able to restore the [4Fe-4S] cluster into NapA (Nilavongse et al, 2006; Olmo-Mira et al, 

2004). Therefore, two roles have been proposed for NapF: (i) facilitating cofactor 

insertion into NapA; and (ii) participating in electron transfer to the membrane complex 

NapGH.  

Using the modelling programme Phyre (Kelley et al, 2009) E. coli NapF aligns with the β-

subunit FdnH, which is part of the molybdenum-dependent formate dehydrogenase 

(Figure 6.1A). FdnH is membrane associated and transfers electrons from the catalytic α-

subunit FdnG to the γ-subunit FdnI (Jormakka et al, 2002). However, the model of NapF 
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shows that the cysteine residues do not align with the iron-sulphur clusters of FdnH and 

the overall structure has many flexible unstructured parts (Figure 6.1B). Therefore, the 

actual NapF protein might be more compact. Nevertheless, because of structural relation 

between NapF and FdnH it might point to a role in electron transport for NapF. 

 

Figure 6.1 Predicted structure of E. coli NapF. (A) Alignment of NapF (red) with the β-subunit 
FdnH of the formate dehydrogenase-N (grey). The four [4Fe-4S] clusters are cofactors of FdnH 
and depicted as brown/yellow spheres. For modelling the programme Phyre was used 
(http://www.sbg.bio.ic.ac.uk/~phyre/). (B) NapF with its cysteine residues highlighted in cyan. 
The [4Fe-4S] clusters are kept from FdnH. 

As part of this study two NapF constructs were made for protein overproduction. The 

first plasmid contained napF only with an N-terminal hexa-Histidine tag. Initial protein 

production tests did not give any protein, thus conditions for growth of the E. coli cells 

and for protein induction would need to be optimized. This would be followed by 

subjection of NapF to crystallisation trials, which should provide definitive information on 

NapF folding and the state of its cofactors.  

The second construct encodes napFDA, exactly following the native nap operon, again 

with a hexa-Histidine tag at the N-terminus of NapF. Protein production from this 

plasmid was not tested. However, if successful, this could help conclude whether: (i) 

NapF stabilizes binding of NapD to NapA; or (ii) that NapF forms even a tighter complex 

with NapA. Again, the main goal would be structural analysis of the NapF complex.  

6.4.2 NapF contains a remnant Tat motif 
The N-terminal part of some NapF-like proteins bears a motif with two arginine residues, 

which is very similar to that of bona fide Tat signal peptides. In E. coli this N-terminal 

NapF sequence is 6-SRRGILT-13. However, the remainder of the N-terminus does not 

have the characteristic hydrophobic properties of a Tat signal peptide. Furthermore, cell 

fractionation established a cytoplasmic localisation of NapF in both R. sphaeroides and E. 

coli (Olmo-Mira et al, 2004; Nilavongse et al, 2006). Furthermore, also some NapD 

proteins, especially those from organisms that have no obvious NapF homolog, have an 

N-terminal extension containing a Tat-like motif (Martinez-Espinosa et al, 2007). 
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This phenomenon has been found for other proteins, where the N-terminus has 

sequence similarities with Tat signal peptides. However, as for NapF and NapD, none of 

those proteins are either predicted or proven to be transported by the Tat pathway 

(Turner et al, 2004). Interestingly, for NarG and BisC (biotin sulfoxide reductase) it was 

shown that six and five amino acid substitutions, respectively within those ‘remnant 

signal peptides’ located at the N-termini are enough to initiate export by the Tat complex 

in E. coli (Ize et al, 2009). It was proposed that those N-terminal extensions are 

important in biosynthesis of the proteins (Sargent, 2007a). Indeed, the chaperone NarJ 

binds to the N-terminus of NarG during cofactor insertion (Lanciano et al, 2007) and the 

BisC variant was inactive upon mutation (Ize et al, 2009), suggesting functional 

importance for remnant signal peptides.  

Furthermore, TtrB and STM0612 from Salmonella contain remnant Tat signal peptides, 

but form tight complexes with other Tat dependent partner proteins in the cytoplasm 

before transport. It was speculated that TtrB and STM0612 had been originally 

individually exported by the Tat pathway, but this activity had been possibly lost during 

the course of evolution (Ize et al, 2009). Hence it is one possibility that forms of NapF 

and NapD once existed that were transported by the Tat complex into the periplasm. 

Considering the structure of both proteins (NapF contains [Fe-S] cluster, NapD has a 

ferredoxin-like fold) the participation in electron transfer to NapA, perhaps in reductive 

activation, would have been likely. 

6.5 TAT PROOFREADING AND QUALITY CONTROL 
It is not possible to describe a general model for the Tat proofreading process, but what 

all Tat proofreading chaperones seem to have in common is their ability to bind to 

specific Tat signal peptides. The specificity between each chaperone and their individual 

Tat substrates might be initially defined by length and amino acid sequence of the Tat 

signal peptide, but also surrounding residues of the mature passenger domain (e.g. Ray 

et al, 2002; Maurer et al, 2010). Furthermore, at least five different families of 

proofreading chaperones are known so far based on their structural variability, which 

contributes further to the complexity of the system.  

Interestingly, a few Tat substrates do not interact with proofreading chaperones. They 

are either cofactor-free or bind cofactors after transport into the periplasm. It was 

hypothesized that those Tat substrates fold too quickly, which prevents transport by the 

Sec pathway (Berks et al, 2003; Sturm et al, 2006). But how is it ensured that they are 

properly folded and thus active? An intrinsic quality control of the Tat complex was 

proposed, where unfolded Tat substrates were rejected from transport (DeLisa et al, 

2003). This is probably caused by exposed hydrophobic patches, which preclude 
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interaction with the Tat complex. However, the translocase also shows relaxed specificity 

for folded proteins. For example small hydrophilic peptides fused via long unstructured 

linker were transported (Lindenstrauß & Brüser, 2009; Richter et al, 2007). However it 

should be noted that this does not necessarily reflect a physiological situation in the cell 

and therefore investigation on the possibility of a Tat quality control should include true 

Tat substrates. 

6.6 FUTURE WORK 
Research regarding the Tat proofreading process and the export of proteins via the Tat 

pathway still leaves many unanswered questions.  

With regards to NapD, it is known that it recognises and binds to the Tat signal peptide 

of NapA (Maillard et al, 2007). However, it is not known, if there are additional binding 

sites on the mature region of NapA, as exists for TorA and its proofreading chaperone 

TorD (Jack et al, 2004; Tranier et al, 2002). Further structural knowledge could help in 

answering such questions, such as the co-crystallisation of the full-length NapDA 

complex. 

NapD also stabilizes NapA during folding (Maillard et al, 2007). However, how far NapD 

participates in the folding process itself is unknown. Possibly, NapD, as hypothesised for 

DmsD, is guiding NapA through a cascade of general chaperones, including DnaK-DnaJ-

GrpE and GroEL-GroES (Li et al, 2010). Yet evidence for such a ‘chaperone cascade’ is 

lacking, leading to a possible role of NapD during cofactor insertion into NapA. It was 

shown for TorD and DmsD that both proteins interact with components of the 

molybdenum cofactor biosynthesis (Genest et al, 2008; Li et al, 2010). Regarding NapD, 

with its ferredoxin-like fold, it is DmsD may also participate in [Fe-S] cluster insertion 

into NapA, however, specific motifs in the amino acid sequence have yet to be 

discovered (Turner et al, 2004). It may also be possible that NapD is involved in a 

transient transfer of the [Fe-S] from one of the scaffold proteins to apo-NapA. Chapter 4 

of this study showed already that NapD is able to stabilize the [Fe-S] cluster into NapA. 

If NapD is important for co-factor insertion, we would hypothesize that completed 

cofactor insertion (either after [Fe-S] cluster or after the MoCo insertion) into NapA acts 

as a trigger for NapD release. Following on, this hypothesis therefore suggests that NapA 

is not targeted to the TatBC complex, as suggested for DmsA through DmsD (Papish et 

al, 2003; Kostecki et al, 2010), but rather finds its way through simple diffusion. It also 

means that NapD, assuming it only binds to the Tat signal peptide, ‘senses’ completed 

NapA maturation through strong conformation changes, which influence the structure of 

the signal peptide itself. This also points to the major role of NapD: shielding the Tat 

signal peptide from pre-mature interactions with the Tat translocase. 
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Another question arising is how NapA binds to the TatBC complex. It was shown that 

TatC first recognises the Tat motif (Alami et al, 2003) and, subsequent to this event, 

TatB interacts with residues of the hydrophobic region and of the mature part of the 

substrate (Gérard & Cline, 2006; Maurer et al, 2010). It has been suggested that the Tat 

signal peptide forms a loop-like structure during binding to TatBC (Fincher et al, 1998). 

However, these suggestions pose additional questions, such as the valency of such 

interactions with the multiply heteromeric TatBC complex (Bolhuis et al, 2001). Also, 

how is TatA arranged in the membrane and later recruited to the TatBC complex? Which 

role does TatE play? Does TatE extend the TatA conducting channel? Regarding even the 

topology of the TatA complex contradicting results exist (e.g. Gouffi et al, 2004; Chan et 

al, 2011). And how are membrane bound Tat substrates inserted into the membrane via 

the Tat pathway? 

Further, detailed biochemical investigations, aided by broader structural coverage, shall 

be required to answer the questions posed here. It is hoped that worked carried out in 

this current study will have provided a beneficial platform on which to build future 

investigations into this interesting field of microbiology. 

 

106 
 



7 Material and methods 

7.1 E. COLI STRAINS AND PLASMIDS 
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Table 7.1-1 Strains used in this study. 
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7.2 ANTIBIOTIC CONCENTRATIONS 
 Antibiotic Final concentration  

 Ampicillin 50 μg/ml  

 Apramycin 50 μg/ml  

 Chloramphenicol (in 100% ethanol) 20 μg/ml  

 Kanamycin 30 μg/ml  

 Tetracycline (in 100% methanol) 15 µg/ml  

Table 7.3 Antibiotics used in this study. 

7.3 MOLECULAR BIOLOGICAL METHODS 

7.3.1 Site-directed mutagenesis by PCR (polymerase chain reaction) 
Site-directed mutagenesis was performed according to the Quickchange manual from 

Stratagene. To introduce specific mutations on a given plasmid complementary primers 

were designed of 33 base pairs length each (Sigma). The mutated codon of interest was 

thereby positioned in the middle of each primer. For each PCR concentrations as 

described in table 6.4 were used. PCR was performed in Eppendorf Mastercycle Personal 

machine with running conditions summarized in table 7.9. To digest non-mutated, 

methylated DNA 1 μl of restriction enzyme DpnI (Roche) was added and incubated 

overnight at 37°C. Subsequently plasmids were transformed into competent E. coli 

DH5α. 

 Component Concentration  

 DNA template (plasmid) 10-20 ng  

 Primer 1 (forward) 100 ng  

 Primer 2 (reverse) 100 ng  

 Pfu Turbo DNA polymerase (2.5U/μl)a 1 μl  

 10x Pfu DNA polymerase reaction buffer 5 μl  

 dNTP mixb  1 μl  

 H2O ad 50 μl  

Table 7.4 Composition for one PCR reaction. a PfuTurbo DNA polymerase was purchased from 
Strategene. b dNTP mix consists of 10 mM each of dATP, dCTP, dGTP, dTTP (Roche). 
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Segment Cycle Temperature Time 

1 1 95°C 30 sec 

2 18 95°C 30 sec 

  53°C 1 min 

  68°C 1 min/kb of plasmid length 

3 1 68°C 10 min 

Table 7.5 Cycling parameters for site-directed mutagenesis. 

7.3.2 Preparation of competent E. coli cells and plasmid transformation 
An overnight culture of E. coli cells was diluted 1:100 into 5 ml LB (Luria-Bertani) 

medium (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl) and aerobically incubated for 

90 min at 37°C. Cells were harvested at 4,000 rpm, 10 min, 4°C and resuspended in 500 

µl filter sterilized transformation buffer (LB medium, 50 mM MgSO4, 5% (v/v) DMSO, 

10% (w/v) PEG6000). Cells were prepared for plasmid transformation by chilling on ice 

for 30 min together with 1-100 ng DNA. This was followed by a heat shock at 42°C for 

90 sec. After cooling on ice 1 ml of LB was added and cells recovered at 37°C for one 

hour. Cells were plated on LB agar plates (LB medium, 1.5% agar) and colonies grown at 

37°C overnight. 

7.3.3 In-frame chromosomal gene deletion and insertion 

7.3.3.1 pMAK705 vector-based recombination  

Gene deletion or replacement on the chromosome of E.coli was achieved by a 

homologues recombination according to Hamilton et al using the suicide vector pMAK705 

(Hamilton et al, 1989). Plasmids were transformed into a competent recA+ target strain 

performing the heat shock state at 37°C for 5 min and cell recovery at 30°C for one hour. 

All following steps were performed using selective LB, if not differently stated. Colonies 

were grown at 30°C for 48 hours on LB agar plates from which an overnight culture was 

inoculated. Serial dilutions up to 10-7 were prepared and 200 µl plated on several LB 

plates. Except dilution 10-7, which was incubated at 30°C as control, all plates were kept 

at 44°C to induce recombination of the plasmid’s encoded gene or gene segment into the 

chromosome. Per mutation five 10 ml cultures with several colonies were set up and 

incubated aerobically for 24 hours at 30°C followed by two repeated 1:1000 dilutions 

under same growth conditions. Single colonies were isolated on a LB agar plate. To cure 

the pMAK705 plasmids from those colonies 16 liquid cultures in 10 ml LB medium free of 

antibiotics were set up with individual colonies and grown overnight at 44°C. Single 

colonies were purified by striking onto LB plates and subsequent incubation at 44°C. 

Around 10 colonies per curing were tested for chloramphenicol sensitivity at 30°C and 

verified by sequencing (DNA Sequencing and Services, University of Dundee).  
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7.3.3.2 Preparation of P1 lysate 

E. coli strain BW25113 ΔtatABCD::Apra was grown aerobically overnight in 5 ml LB 

medium at 30°C. After adding 5 ml MC buffer (100 mM MgSO4, 10 mM CaCl2) cells were 

grown for additional 30 min at 37°C. Serial dilutions of phage P1 (lab stock) ranging from 

100 to 10-3 were prepared in LB medium and subsequently 100 µl of each added to 

individual 150 µl of cells. After incubation for 15 min at 37°C, 3 ml LBMC soft agar (LB 

medium, 10 mM CaCl2, 10 mM MgSO4, 0.65% agar) was added and cells were poured on 

freshly prepared thick R-plates (LB medium, 0.1% glucose, 2 mM CaCl2, 1.2% agar) 

containing 50 μg/ml apramycin. Colonies were allowed to grow for 5-7 hours at 37°C, 

after which soft agar from partial lysed plates was taken off into 2 ml LB medium. This 

was followed by adding 50 µl/volume chloroform and centrifugation for 15 min at 12,000 

rpm. Supernatant was stored at 4°C in additional 50 µl/volume chloroform. 

7.3.3.3 P1-transduction 

A 5 ml overnight culture of the recipient strain was mixed with 5 ml MC buffer and 

incubated for 30 min at 37°C. The culture was divided into 2 x 2 ml (P1 transduction and 

negative control) and centrifuged at 4,000 rpm for 10 min. Control cells were 

resuspended in 200 µl TGYES (LB medium plus 0.2% (w/v) glucose) and recipient cells 

resuspended in 100 µl TGYES, 100 µl P1 phage solution and 10 µl 100 mM CaCl2. 

Attachment of P1 phage was allowed to proceed for 30 min at 37°C without shaking and 

terminated by adding 5 ml 1M sodium citrate. Cells were harvested at 4,000 rpm, 10 

min, washed in LB medium and resuspended in 5 ml TGYES supplemented with 20 mM 

sodium citrate. Cell recovery was achieved for 3 hours incubation at 37°C followed by a 

washing step with LB medium and cell uptake in 1.5 ml TGYES (plus 20 mM sodium 

citrate). An aliquot of 100 µl cells was plated on selective LB agar plates containing 3 

mM pyrophosphate and colonies grown at 37°C overnight. To ensure complete removal 

of P1 phage single colonies were streaked out up to three times on selective LB plates in 

presence of pyrophosphate. Strains were stored at -80°C in LB medium and 25% (w/v) 

glycerol. 

7.4 BIOCHEMICAL METHODS 

7.4.1 Protein overproduction of NapDASP for NMR analysis 
E. coli strain MC4100 pREP4 overproducing NapDASP was grown in a 50 ml pre-culture of 

M9 medium (2 mM MgSO4, 0.1 mM CaCl2, 12.8 g/l Na2HPO4·7H2O, 3 g/l KH2PO4, 0.5 g/l 

NaCl) supplemented with 0.2% D-glucose-13C6 and 0.1% 15NH4Cl. Incubation was carried 

out aerobically at 37°C overnight and used to inoculate 1l of M9 medium. Cells were 

grown until an OD600 of ~0.4 and protein production induced with 1 mM IPTG (isopropyl 

β-D-1-thiogalactopyranoside, Sigma) for 4 hours at 37°C. Cells were harvested at 4,000 
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rpm, 4°C for 10 min and washed in 20 mM Tris-HCl, pH 7.6. Finally, cells were flash 

frozen in liquid nitrogen and kept at -20°C until further purification. 

7.4.2 Protein overproduction of other hexa-Histidine-tagged proteins 
Overnight cultures of E. coli harbouring overexpression plasmids were diluted 1:100 into 

LB medium (except for BL21(DE3) pLysS producing TEV (tobacco etch virus) protease: 

LB was supplemented with 1 mM MgCl2, 0.5 mM CaCl2, 0.2% (w/v) glucose) and grown 

at 37°C under aerobic conditions. At OD600 of ~0.5 induction conditions with IPTG were 

carried out as summarized in table 7.6. Cell harvesting, wash and storage was 

performed as for protein NapDASP (Section 7.4.1). 

Protein TEV protease NapD 

variants 

MalE-NapASP 

variants 

NapDLA 

IPTG 

(final concentration) 
1 mM 1 mM 1 mM 0.25 mM 

Induction time overnight 4 hours 4 hours overnight 

Incubation temperature 25°C 37°C 37°C 30°C 

Table 7.6 Conditions for His-tagged proteins regarding induction and overproduction. 

7.4.3 Purification of NapDASP and different variants of NapD and MalE-NapASP 

using nickel affinity chromatography 
Cells overproducing either variants of NapD or MalE-NapASP were lysed by denaturing in 

Buffer A (20 mM Tris-HCl, pH 7.6, 250 mM NaCl, 25 mM imidazole, 2 mM DTT) and 5 M 

urea and subjected to sonication. Crude extracts were centrifuged at 12,000 rpm, 4°C 

for 20 min and loaded onto 5-ml HisTrap affinity columns (GE Healthcare) equilibrated in 

Buffer A and urea. Proteins were gradual refolded over 18 column volumes in Buffer A 

and subsequently eluted with 6 column volumes of a linear gradient in Buffer B (20 mM 

Tris-HCl, pH 7.6, 250 mM NaCl, 500 mM imidazole, 2 mM DTT). Fractions containing His-

tagged protein were pooled and proceeded as described in the following sections. 

7.4.4 Purification of TEV (tobacco etch virus) protease using nickel affinity 

chromatography 
Per one gram of cells producing TEV protease 10 ml of purification buffer (50 mM 

Na2H2PO4, pH 8.0, 300 mM NaCl, 1 mM DTT, 25 mM imidazole, 10% (w/v) glycerol) was 

added and cell suspension passed two times through a French Press Cell Disrupter 

(Thermo Scientific). The homogenate was centrifuged at 15,000 rpm for 20 min at 4°C. 

A pre-equilibrated 5-ml HisTrap HP column was loaded with the resulting supernatant 

and TEV protease eluted by applying a linear imidazole gradient from 25 mM to 250 mM 

over 12 column volumes. Pooled fractions were subjected to buffer exchange 

(purification buffer supplemented with 2 mM DTT and 20% (w/v) glycerol) via a Vivaspin 
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20 column (10,000 MWCO PES; Sartorius). Protein concentration was adjusted to 10 

mg/ml and the protein kept at -80°C after flash freezing in liquid nitrogen. 

7.4.5 Purification of NapDLA using nickel affinity chromatography 
Cells were resuspended in 10 ml/g Buffer A and twice broken by French pressing. Crude 

extract was spun down at 12,000 rpm, 4°C for 20 min and supernatant loaded onto a 

pre-equilibrated 5 ml HisTrap HP column. NapDLAhis was eluted with a linear gradient of 

Buffer over 6 column volumes. To remove the cleavable His-tag fractions were pooled 

and concentrated to ~1 ml using a Vivaspin 20 column (50,000 MCO PES). Protein 

concentration was calculated with its specific extinction coefficient using Nanotrop ND-

1000 (Thermo Scientific). NapDLAhis was diluted in 50 ml TEV buffer (50 mM Tris-HCl, 

pH7.8, 0.5 mM EDTA, 10% (w/v) glycerol, 2 mM DTT) and purified TEVhis protease added 

in a 1:20 molar ratio followed by an overnight incubation at 4°C, rocking. To separate 

cleaved NapDLA from non-cleaved NapDLAhis and TEVhis protease reverse nickel affinity 

chromatography was carried out on the same HisTrap HP column in Buffer A. The flow 

through containing NapDLA was collected, concentrated (final concentration 10-20 

mg/ml) and passed on to Dr Alice Dawson (University of Dundee) for further purification 

and crystal trial set up. 

7.4.6 Protein characterisation using size-exclusion chromatography 
Nickel affinity purified NapD Cys- and MalE-NapASP S4/24C were concentrated using 

Vivaspin 20 columns with 5,000 Da MWCO and 10,000 Da MWCO cut off, respectively 

followed by a buffer exchange to 20 mM Tris-HCl, pH 7.6 and 50 mM NaCl. Both proteins 

were mixed with 100 µM each and incubated at room temperature for 10 min. Protein 

sample was loaded on a pre-equilibrated Superdex75 column (GE Healthcare). Fractions 

were collected and from each 10 µl mixed with Lämmli sample buffer and run on a 15% 

SDS-PAGE. Size of the protein complex was calculated from a standard curve using a Gel 

Filtration Molecular Weight Markers Kit (29,000-200,000 Da; Sigma). 

7.4.7 Site-directed spin labelling (SDSL) of MalE-NapASP S4/24C variant 
MalE-NapASP S4/24C was reduced with 20 mM DTT followed by immediate buffer 

exchange of seven volumes of 20 mM Tris-HCl, pH 7.6, 50 mM NaCl using Vivaspin 20 

columns (10,000 MWCO PES). The protein was labelled with a 10-fold molar excess of 

MTSL (S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methylmethanesulfonothioate; 

Toronto Research Chemicals). Labelling was allowed to proceed for 4 hour at room 

temperature followed by an overnight incubation at 4°C. Unbound MTSL was removed by 

a final buffer exchange to deuterated 20 mM Tris-HCl, pH 7.6, 50 mM NaCl. Labelling 

was confirmed my mass spectrometry (FingerPrints Proteomics Facility, University of 

Dundee). One hundred micromolar MalE-NapASP S4/24C were mixed in a 1:1 ratio with 
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NapD in presence of 50% D8-glycerol (Cambridge Isotope Laboratories) and stored at -

80°C until EPR measurements were carried out. PELDOR (pulsed electron-electron double 

resonance) spectroscopy and data analysis was done by Dr Richard Ward and Dr David 

Norman, University of Dundee. 

7.4.8 Isothermal titration calorimetry (ITC) 
Nickel affinity purified variants of NapD and MalE-NapASP were dialyzed in 20 mM Tris-

HCl, pH 7.6. For ITC a VP-ITC microcalorimeter (MicroCal Inc., Northampton,MA) was 

used. Protein concentration of NapD was adjusted to 100 μM and 500 μl were loaded into 

the syringe. The sample cell contained 1.4 ml of 10 μM MalE-NapASP. Each experiment 

consisted of 35 x 8 µl injections at 28°C. Data analysis was performed with Origin 7.0 

software (MicroCal; OriginLab Corp., Northhampton, MA). 

7.5 TAT TRANSPORT IN A CELL-FREE SYSTEM 

7.5.1 Preparation of S-135 cell extract 
E. coli TOP10 cells were grown aerobically at 37°C in 1l batches of S-30 medium (9 g/l 

tryptone, 0.8 g/l yeast extract, 5.6 g/l NaCl, 1 mM NaOH, 0.08% (w/v) glucose) until 

late log-phase (OD600 = 1.0-1.2). All subsequent steps were performed at 4°C. Cells 

were harvested at 5,000 rpm for 10 min and washed with S-30 buffer (10 mM TEAOAc, 

14 mM Mg(OAc)2, 60 mM KOAc, 1 mM DTT). After resuspension in 1 ml/g S-30 buffer (+ 

0.5 mM PMSF) cells were passed twice through a French Press and crude extract 

centrifuged for 30 min at 15,000 rpm. To degrade endogenous mRNA from the obtained 

supernatant (S-30) readout of polysomal mRNA at 37°C for one hour was performed with 

the set up shown in table 5: 

 Stock solution Volume [μl]/ml S-30  

 1 M TEAOAc 60.0  

 1 M DTT 0.6  

 1 M Mg(AOc)2 1.6  

 1 mM 18 amino acids 6.0  

 1 mM Methionine 6.0  

 1 mM Cysteine 6.0  

 0.25 M ATP (neutralized) 2.0  

 0.2 M Phosphoenol pyruvate 27.0  

 2 mg/ml Pyruvate kinase 2.4  

Table 7.7 Set up for readout of polysomal mRNA from S-30 extract. The reaction was 
performed at 37°C for 30 min. 

To remove all readout components S-30 was three times dialyzed in 1l cold S-30 buffer 

for one hour followed by centrifugation at 88,000 rpm for 13 min. Resulting S-135 

extract was flash frozen in liquid nitrogen and stored at -80°C. 
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7.5.2 Preparation of inside-out inner membrane vesicles (INV) 
E. coli BL21(DE3) overexpressing tatABC genes were grown in INV medium (10 g/l yeast 

extract, 10 g/l tryptone, 28.9 g/l K2HPO4, 5.6 g/l KH2PO4, 10 g/l glucose) at 37°C. 

Protein production was induced at an OD600 of ~0.5 with 1 mM IPTG and incubated for 3 

hours at 37°C. Cells were harvested at 5,000 rpm for 10 min, washed in Buffer A-INV 

(50 mM TEAOAc, pH 7.5, 250 mM sucrose, 1 mM EDTA, pH7.0, 1 mM DTT) and 

resuspended in 1 ml/g Buffer A-INV (+ 0.5 mM PMSF). After breakage of the cells two 

times by French pressing cell suspension was centrifuged for 2 hours at 40,000 rpm, 

4°C. The crude membrane extract was resuspended in 2 ml Buffer A-INV per 1l starting 

batch and set on top of a sucrose gradient (0.77 M, 1.44 M, 2.02 M in a 1:1:1 ration of 

sucrose in Buffer A). After ultracentrifugation at 25,000 rpm for 16 hours the inner 

membrane fraction was visible as a yellow layer at the interface between sucrose step 

0.77 M and 1.44 M. Inner membranes were collected and diluted in 25 ml 50 mM 

TEAOAc, pH 7.5. After centrifugation at 40,000 rpm for 2 hours membranes were 

resuspended in ~100 μl INV buffer (50 mM TEAOAc, pH 7.5, 250 mM sucrose, 1 mM 

DTT). This will result in absorption of 50 units/ml at 280 nm. INVs were aliquoted and 

kept at -80°C after flash freezing. 

7.5.3 DNA preparation for in vitro transcription/translation 
Template DNA for in vitro translation was prepared using a Maxiprep Kit according to 

supplier’s instructions (Qiagen). To obtain high and pure DNA concentrations the 

standard protocol was changed in that way that after isopropanol wash and pelleting the 

DNA was solved in 700 μl EB buffer (10 mM Tris-HCl, pH 8.5, Qiagen), 70 μl P3 buffer (3 

M potassium acetate, pH 5.5, Qiagen) and filled up to 2 ml with 100% ethanol. After 20 

min incubation at -80°C and spinning for 15 min at 14,000 rpm DNA was washed with 

70% ethanol, centrifuged again and resolved in EB buffer to a concentration of 1 μg/μl. 

7.5.4 In vitro translation and transport 
In vitro translation and transport was performed as described in Panahandeh et al and 

given again in detail below (Panahandeh & Müller, 2010). 

To perform optimal transcription and translation in vitro buffer composition is crucial. 

The compensating buffer (CB) consists of 40 mM TEAOAc, pH 7.5, 140 mM KOAc, 6 mM 

Mg(OAc)2. However, ion concentrations from DNA preparation, S-135 and INV need to 

be taken into account. Therefore CB is calculated as shown in table 6. Each reaction 

consists of 24 μl total volume reaction mix (RM) is prepared as shown in table 7. 
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 TEA/Tris 

[nmol] 

K+ 

[nmol] 

Mg2+ 

[nmol] 

Spermidine 

[nmol] 

H2O 

3 μl S-135 

10 mM TEA, 60 mM K+, 14 mM Mg2+a 

30 180 42   

1 μl DNA 

10 mM Trisa 

10     

1 μl INV 

50 mM TEAa 

50     

Total (1) 90 180 42   

Desired final concentration: 

40 mM TEA, 140 mM K+, 

6 mM Mg2+, 0.8 mM spermidine 

→ in 25 μl reaction (2) 

1000 3500 150 20  

Difference (2)–(1) 

→ required for 25 μl reaction to be 

added via CB (3) 

960 3320 108 20  

Required nmol (3) are added in 5 μl 

CB 

→ required nmol/μl CB (4) 

(= mM concentration of CB) 

192 664 21.6 4  

To prepare 1 ml of such CB 

from 1 M TEA, 4 M K+, 1 M Mg2+, 0.1 

M spermidine stocks add [μl] 

192 166 21.6 40 580.4 

Table 7.8 Calculating the compensating buffer (CB). a Components that contribute relevantly 
to the ionic composition of the reaction mixture. Modified from Panahandeh et al, 2010. 
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Component Concentration of stock 

solution 

Final 

concentration 

Volume [μl]/25 μl 

CBa 5x 1x 5 

H2O   7.9 

PEG6000 40% (w/v) 3.2% (w/v) 2 

18 amino acids 1 mM each 0.04 mM each 1 

DTT 200 mM 2 mM 0.25 

dNTP mixture 

dATP 

dGTP, dCTP, dUTP 

 

50 mM 

10 mM each 

 

2.5 mM 

0.5 mM each 

 

1.25 

Phosphoenol pyruvate 200 mM 12 mM 1.5 

Creatine phosphate 500 mM 8 mM 0.4 

Creatine phosphokinase 10 mg/ml 40 μg/ml 0.1 

DNA 1 mg/ml 40 μg/ml 1 

S-135   3 

T7 RNA polymerase   0.1b 

[35S]-Met/Cys   0.5 

Total   24 

Table 7.9 Calculating the reaction mixture (RM). a See table 4. b Depends on activity; use 5-
10U of a commercial enzyme. Modified from Panahandeh et al, 2010. 

To perform in vitro translation followed by transport into inside-out inner membrane 

vesicle the experiments were set up according to the following scheme:  
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Sample 1 2 (control) 

VReaction mixture (RM) [μl] 48 48 

 

10 min, 37°C synthesis reaction 

 

VINV/Buffer [μl]; add 2 (INV) 2 (INV buffer) 

 

20 min, 37°C transport 

 

Divide samples [μl] 15 30 15 30 

VPK
a [μl]; add  30  30 

 

PK digest  25 min, 25°C  25 min, 25°C 

 

VTCA
b [μl]; add 15 60 15 60 

 

PK inactivation  10 min, 56°C  10 min, 56°C 

 

 30 min, ice 

Table 7.10 Pipetting scheme for in vitro translation and transport. a Proteinase K (PK) 
concentration 1 mg/ml. b 10% trichloracetic acid (TCA). 

Precipitated protein is pelleted by centrifugation at 13,000 rpm, 10 min. Supernatant is 

removed and protein dissolved by shaking in 30 μl SDS sample buffer (table 9) at 37°C. 

Proteins are separated on SDS-PAGE and analysed by radiography. 

Solution Component Concentration 

Solution I Tris Base 0.2 M 

 EDTA, pH 7.5 20 mM 

Solution II SDS 8.3% (v/v) 

 Tris Base 83.3 mM 

 Glycerol 29.2% (w/v) 

 Bromphenol Blue 0.03% (w/v) 

SDS sample buffer Solution I 500 μl 

 Solution II 400 μl 

 1 M DTT 100 μl 

Table 7.11 Composition of SDS sample buffer. 
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7.6 PROTEIN ASSAYS 

7.6.1 Bacterial two-hybrid (BTH) system and β-galactosidase assay 
The bacterial two-hybrid system is based on the reconstitution of the adenylate cyclase 

domain of CyaA toxin from B. pertussis (Karimova et al, 1998). Thereby the two 

domains T18 and T25 of CyaA produce cAMP (cyclic adenosine monophosphate) from 

ATP, if in close proximity. Plasmids encoding fusion proteins of T25 and T18 to different 

variants of NapD and the NapA signal peptide, respectively were transformed into the 

cya deficient E. coli strain BTH101. Transformants were plated on McConkey agar 

containing 1% maltose and incubated for 48 hours at 30°C. Red colony formation was 

indicative for positive protein interaction. To quantify the strength of the interaction β-

galactosidase activity was measured. Cultures were grown in LB medium at 30°C until an 

OD600 of ~0.5 was reached. Cell density was measured and 1 ml vortexed together with 

50 μl toluene followed by a 15 min incubation on ice. Crude cell extract was diluted 1:10 

in Buffer Z (16.1 g/l of Na2HPO4 7H2O, 5.5 g/l of NaH2PO4 H2O, 0.75 g/l of KCl, 0.246 g/l 

MgSO4 7H2O) and 0.07% β-mercaptoethanol and equilibrated at 28°C. After adding 4 

mg/ml ONPG (o-Nitrophenyl-β-galactoside) development of a yellow product was 

monitored and reaction stopped by adding 0.5 M Na2CO3. Time of reaction was noted 

and absorption measured at 420 nm. 

The specific β-galactosidase activity is calculated as followed (Equation 7.1): 

 

Equation 7.1 

t = time of reaction [min] 

V = volume of cells [ml] 

7.6.2 In vivo Tat transport assay 
E. coli strain MG1655 producing NapA signal peptide fusions to CAT (chloramphenicol 

acetyl transferase; NapASP-CAT) from plasmid pUNI-REP (Maillard et al, 2007) was 

incubated aerobically at 37°C in LB medium. Growth rate was monitored at an OD600 in a 

Synergy 2 plate reader/incubator (BioTek, Winooski, VT) in absence and presence of 

high concentration of chloramphenicol (200 μg/ml). 

7.6.3 In vivo nitrite production assay (Grieß method) 
Strains were grown anaerobically at 37°C in 100 ml LB medium supplemented with 0.5% 

(v/v) glycerol, 0.4% (w/v) fumarate and 0.2% (w/v) nitrate. Aliquots were taken every 

30 or 60 min for OD600 measurement and nitrite quantification. To calculate the 

concentration of nitrite 200 μl of cell-free supernatant were diluted in 600 μl 100 mM 
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Tris-HCl, pH 7.6 and 400 μl of 2:1 mix of 4% sulphanilamide (in 25% (v/v) conc. HCl) 

and 0.08% (w/v) N-(1-naphthyl)ethylendiamine. Samples were incubated for 15 min at 

room temperature and absorption measured at 540 nm. Nitrite concentration was 

calculated from a standard curve and normalized to cell density. 
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