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Abstract

The dynamics of the solar corona are dominated by the mayfieldl which creates its structure. The
magnetic field in most of the corona is ‘frozen’ to the plasmeayeffectively. The exception is in small
localised regions of intense current concentrations whiezemagnetic field can slip through the plasma
and a restructuring of the magnetic field can occur. Thisgssdés known as magnetic reconnection and is
believed to be responsible for a wide variety of phenomertlagrcorona, from the rapid energy release of
solar flares to the heating of the high-temperature corona.

The coronal field itself is three-dimensional (3D), but meftour understanding of reconnection has
been developed through two-dimensional (2D) models. Tesis describes several models for fully 3D
reconnection, with both kinematic and fully dynamic modefesented. The reconnective behaviour is
shown to be fundamentally differentin many respects froe2h case. In addition a numerical experiment
is described which examines the reconnection process anabmagnetic flux tubes whose photospheric
footpoints are spun, one type of motion observed to occuhersun.

The large-scale coronal field itself is thought to be gereraly a magnetohydrodynamic dynamo op-
erating in the solar interior. Although the dynamo effeself is not usually associated with reconnection,
since the essential element of the problem is to accounh&ptesence of large-scale fields, reconnection
is essential for the restructuring of the amplified smadllsdlux. Here we examine some simple models of
the solar-dynamo process, taking advantage of their siitypto make a full exploration of their behaviour
in a variety of parameter regimes. A wide variety of dynametidviour is found in each of the models,
including aperiodic modulation of cyclic solutions andemhittency that strongly resembles the historic
record of solar magnetic activity.
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Chapter 1

Introduction

Figure 1.1: The solar corona as observed during the total gallipses ofléft) 1980, close to sunspot
maximum, andright) 1994, close to sunspot minimur8ource: High Altitude Observatory.

Plasmas do not form a significant part of our every-day emwirent and yet the stars, the interplanetary
medium and the interstellar medium are all made of ionisegtgalndeed more than 99% of the visible
matter in the universe consists of plasma. A physical utdeding of these plasmas is, therefore, of
major importance — but hard to come by since the huge spati#d¢sthat characterise the problem are not
available for realistic experiments on Earth. Insteadnéeral laboratory to turn to is the solar corona, the
outer atmosphere of the Sun.

The corona exhibits significant temporal and spatial vdlital{fas has been observed in eclipses for
centuries — see Figure 1.1). Its structure is created by dgnatic field that permeates it and is responsible
for its extreme temperature; in the 1940s the corona wasdféorbe several hundred times hotter than
the underlying visible surface of the Sun, the photosph®seunderstand the corona we must understand
its magnetic field. Where does the field originate? How dobslitave and what are the consequences of
the behaviour? These are some of the questions we will examithis thesis, but first we consider the
structure of the Sun in more detail.

The Sun is estimated to have been luminous for ab@ut 10° years — the only energy source capable



of meeting such a long term requirement is nuclear fusiore flision process occurs in tleere of the
Sun, which extends to 20% of its radius, and is sufficiently (i x 10°K) and densg150 g/cm~?)

to sustain the reactions, the most important of which is ttaégm-proton reaction. Moving further away
from the solar centre, the temperature and density decses$ethat fusion stops, the transition marking
the beginning of theadiative zonewhere energy is transported toward the surface by radiaftiotons
travelling (net) outwards through the region continualtglargo absorption and re-emission, so increasing
their wavelength. When the temperature gradient requiréchhsport the energy flux by radiation is larger
than that of an adiabatically stratified hydrostatic edpilim, the region becomes unstable to convection
(the Schwartzschild criterion). As a result, convectivédfimotions (which are very efficient in energy
transport) occur in the outer 30% of the solar radius, whielkes up theonvection zoneAs a source of
mechanical energy they are ultimately responsible for e snagnetic cycle and hence for the majority of
solar dynamics. Large-scale convective motions are obdesuly indirectly, by their manifestations such
as magnetic activity in the outer solar regions and the sotation profile (deduced by helioseismology),
since they tend to be obscured by smaller-scale motion& @sigranulation) close to the surface.

Helioseismology uses measurements of global acoustitaigaris on the solar surface (in visible light)
to infer properties of the solar interior. Measuring freqoye shifts in these p-mode (pressure-mode) os-
cillations allows the internal velocity profile to be deddceélhe convection zone is found to be rotating
differentially, faster at the equatoP(~ 25 days) than the polesd~ 35 days) and, at mid-latitudes, the
angular velocity contours are approximately radial. Trdiative zone, however, rotates as a solid body,
and there exists a sharp transition between the two rotti@gimes. This transitional layer is known
as thetachocline(Spiegel and Zahn, 1992, see Hughes et al. (2007) for a ree@etv) and estimates of
its width vary from0.1% to 0.9% of the solar radius, depending on how the tachocline is eéfifor a
discussion see Miesch, 2005). The rotation rate of the timdiaone lies between that of the polar region
and the equatorial region of the convection zone and so ayménegative) gradient in the radial angular
velocity across the tachocline exists at low (high) latisid

The radius of the Sul o = 6.96 x 10% m, is defined by its visible surface, tblotospherewhere the
plasma becomes optically thin (as we move radially outwar@ise photosphere is very thin, comprising
only 0.07% of the solar radius, and has a temperature of ab®UK. The photosphere is the inner-most
layer of the Sun that can be observed directly in great ddtailge-scalgranulationandsupergranulation
patterns are seen, which, although associated with caomeetre thought not to pervade the convection
zone but to be confined to approximately only the outer 3% efdblar radius. Sunspotsregions of
extremely intense field concentration, are another majotqdpheric feature. They are seen as small dark
regions drifting across the surface as they are carriednarby the rotating Sun. It was by tracking the
motions of sunspots that the solar differential rotatiors fust inferred.

Inthe layer above the photosphere, known agtitemospherghe temperature rises to arouti)00 K.
Emission inH « gives the chromosphere its distinctive red colour, as seenglsolar eclipses ipromi-
nencegrojecting above the limb. Prominences are regions wherenmd at chromospheric temperatures
is suspended up in the corona by the magnetic field there @manonly referred to as filaments when
observed on the solar disc). THfx emission line can be used to image the chromosphere. Inirieis |
magnetic flux concentrations at the boundaries of photagpheanulation and supergranulation cells ap-
pear as thehromospheric networland the chromosphere is found to be non-uniform, contgiextended
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Figure 1.2: International Sunspot Numbers for the y&@é® — 2005. The International Sunspot Number is
given byR = K(10G + S) whereS denotes the number of observed sunspGtthe number of observed
sunspot groups an&” a quality factor to allow for comparison of results from difént observational
locations. Data from 40—70 stations are used in the measuntsrand is compiled at the Royal Observatory
of Belgium. Source: SIDC, RWC Belgium, World Data Centre for the Sunisylatx, Royal Observatory of
Belgium, 2007.

regions known aspicules— short lasting features in which plasma is ejected towaedctirona. Other
chromospheric features inclugéagesandfibrils.

Thetransition regionis a thin, highly irregular and dynamic layer that consi$tslasma between chro-
mospheric and coronal temperatures. Finally, the outarlafthe solar atmosphere is the solar corona.
The dynamics of all coronal phenomena are controlled by tagnatic field. Although ircoronal seis-
mologythe first attempts are being made to measure the field dinesityg the properties of coronal waves
(Roberts et al., 1984), knowledge of the field is traditibjnabtained by extrapolation from magnetograms
at the photosphere (using potential or force-free mod@lsg corona itself only becomes visible in white
light when the solar disc is occulted — since it is very tergjdts optical emission is several orders of
magnitude less than that of the photosphere. It may, howbeeobserved in great detail in non-visible
wavelengths (such as X-rays) because the brightest emigsibhese wavelengths comes from the corona
and the photosphere is no longer visible.

The solar magnetic field exhibits dramatic spatial and terapariability. Several of the changes are
systematic and occur on very large-scales. For examplajuheber of sunspots on the face of the Sun
varies in time in a cyclic but irregular manner (see Figu®).1.The sunspot cyclevaries in length but
has an average period of approximately 11 years and, iniadgdsignificant variations in cycle amplitude
are present. As sunspots begin to emerge at the beginnirachfaycle, they do so at (relatively) high
latitudes of aroun@7° degrees, but as the cycle progresses emergence tends telosen to the equator,
up to arounds®. Sunspots typically appear in pairs of opposite polaritghwhe axis of a bipolar sunspot
pair being tilted by about® with respect to the equator (Joy’s law). The polarity of thading sunspot
(that closest to equator) in each hemisphere reverseslacgale and has opposite polarity to the leading
sunspots in the opposite hemisphere (Hale's law). The siyple reflects an underlying magnetic cycle
with a period of around 22 years, in which the polar field reesrnear the time of cycle maximum. The
large-scale corona, as demonstrated by Figure 1.1, lodtesdjéferent from solar minimum to maximum,
with coronal holes covering both poles at minima of activitiyile a nearly radial field structure is seen at
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solar maximum where most of the corona is in the form of m&agakyy closed loops.

The coronal magnetic field is capable of storing huge amaafrgsiergy as it is injected via turbulent
photospheric motions. Its structure is observed to be woaliy changing on a wide variety of scales and a
process known asiagnetic reconnectiois of fundamental importance in this respect. Reconnedsitime
only process that can change the magnetic field topologysatitbught to be responsible for maintaining
the unexpectedly high temperature of the corona as wellras fade variety of explosive events such as
solar flaresandcoronal mass ejectionCMES).

In the next section we introduce the equations needed toamettically describe the behaviour of the
solar magnetic field.

1.1 The Equations of Magnetohydrodynamics

In this thesis we will assume the magnetohydrodynamic (Midpproximation. There are a number of
conditions behind this assumption, as discussed in detddi example, Priest (1982), Boyd and Sanderson
(2003). Briefly, MHD is a theory of non-relativistic macragic plasma phenomena. The plasmaiis treated
as a single fluid, with the electron and ion species lockeettoey and is considered quasi-neutral, so
the charge density vanishes. Under the non-relativisBoraption the displacement current (that given
by OE/0t/c? in Ampere’s law) can be neglected. By macroscopic we impét the typical length- and
time-scales of interest are much larger than the typicates@opic length- and time-scales of the ion and
electron dynamics (the ion Larmor radius and gyroperiodthardnean free path time and length).

The equations of MHD are:

Mass conservation 5
0
L iv. =0 11
5 T (pv) =0, (1.1)

the equation of motion(or, momentum conservation)

Dv .
pﬁ——Vp—i—JxB—i—F, (1.2)
the ideal gas law
p=pRT, (1.3)
Ampere’s law
VxB=yj, (1.4)

solenoidal constraint
V-B=0, (1.5)
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Faraday's law
0B

E =-VxE s (16)
Ohm'’s law

E+vxB=R. (1.7)

These equations must also be supplemented by an approgmetgy equation. In the equatioBsis the
magnetic induction, normally referred to as the magnetid fieis the plasma velocityl: the electric field,

j the electric current density, the mass density) the plasma pressure (assumed to be isotroficihe
gas constanf]’ the plasma temperature the magnetic permeabilit¥; denotes other forces which may be
present, such as that due to gravity. Note that if the sotlri@ionstraint holds at some timhe= 0 then,
by taking the divergence of Faraday’s law, it remains vabiddll time¢ > 0. The termR in Ohm’s law
denotes a general non-ideal term. The basic assumptiorsisfive MHD is that the collisional effects in
R are the dominant ones, with the resistivity normally coesid the most important, i. R = j/o where

o is the electrical conductivity.

Itis common to combine (1.4), (1.6) and the resistive fornilo?), to give thenduction equation

%—]? =V x(vxB)+7V’B (1.8)

wheren’ = 1/ (uo) is the magnetic diffusivity. In this thesis we will frequéntabeln = 1/0, a com-
mon, and perhaps misleading, notation in the literaturebiiaining the induction equation, the magnetic
diffusivity has been taken to be uniform. Generally, howethee conductivity is expected to vary in space
through a dependence on the magnetic field and the plasmatatape. We will often take a spatially
dependent conductivity in this thesis and so do not workotliydrom the induction equation, but use it
here to infer important general properties of solar ancbpstysical plasmas. If the terpiV2B in (1.8)

is neglected we obtain thideal induction equation which may be combined with the equatibmass

continuity, (1.1), to give
D (BY_(B) ¢
Dt \ = ’ V.

The equation for the evolution of a material line elementis
D
—(dl)=dl-V
o7 (D) v,

and so we deduce that in the ideal limit the magnetic fieldslim®ve as ifrozeninto the plasma; this is
Alfvén’s theorem. If, however, the advective teWhx (v x B) is neglected, then the induction equation
reduces to a purely diffusive equation.

The ratio of these two terms, in an order of magnitude seagermed thenagnetic Reynolds number
R,, and is a measure of their relative importance:

[V x (v xB)|

R, =
' V2B|
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voBo/lo
7' Bo /1§
lovo

/r]/

The magnetic Reynolds number is nearly always very larggicpéarly so in the solar (and astrophysical)
case because of the huge spatial scales of the systems.nBragnetic field is almost always frozen-into
the plasma and field topology is conserved, with importansequences for dynamics. Non-ideal terms
may become important if the length scales associated wétprtbblem are small, as is the case for example
in thin current sheets. The magnetic field can then slip tiindhe plasma, allowing for reconnection.

Another important dimensionless parameter to help chariaetthe behaviour of the plasma is the
plasma betags, which is the ratio of the gas pressure to the magnetic pressu

_ 2upo
B = B2

In the majority of the corong is very much less than unity, which has the effect of inhilgjtcross-field
transport. Accordingly plasma tends to flow from the chropi@se into the corona along magnetic field
lines. Although there are exceptions — regions with verhtémnperature but low magnetic field may have
valuesg > 1 — most models of the coronal field essentially assyiee 1.

1.2 The Need for a Solar Dynamo

Given the importance of the solar magnetic field in deterngrdoronal dynamics it is natural to ask how
the field originates. A frozen-in primordial field would dgda a time-scale of arount)? years, which is
comparable to the age of the solar system. It is, howevey,difficult to explain the large-scale temporal
variability of the field (manifested for example in the suoispycle shown in Figure 1.2) as consistent with
such a decay. Magnetic fields also are observed in a multdfidther astrophysical bodies. For example:
our galaxy exhibits a large-scale field confined approxitgadtethe plane of its disc (see, for example Han
and Qiao, 1994, and references therein); very strong surfaagnetic fields have been detected on many
other stars (Preston, 1971, Landstreet, 1992, Baliunds &085); on the planetary scale the magnetic field
of the Earth reverses polarity at apparently random intetimaime (e.g. Cox, 1969).

Large-scale solar fields are thought to arise from the ojperaf a dynamo working in the solar interior,
with the first suggestion of self-excited dynamo action bejiven by Larmor (1919); dynamo models
rely on inductive motions of the plasma being able to sudtainfield against the continual energy loss
through Ohmic dissipation. Field amplification occurs thgb a stretching of the existing field, with an
exemplary model of dynamo action being gteetch-twist-fold STF) dynamo of Vainshtein and Zeldovich
(1972), illustrated in Figure 1.3. In the first step of the g@ss, a loop of magnetic field is stretched
until it has twice its original length and so, for a frozenfield, double the field strength. The loop is
then twisted and finally one half folded back on the other #ate a doubled loop with the same cross
section as that of the original loop but now with twice the flékxmechanism such as this will allow the
magnetic energy in an initially smooth field distributionit@rease, and indeed the STF dynamo was the
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Figure 1.3: Cartoon illustrating the stretch-twist-folesience that demonstrates the possibility of expo-
nential growth of the magnetic field. Stretching an incorspitele closed flux tube to twice its original
length reduces its cross section by half. Twisting and fajdjives a tube with twice the flux and the same
original cross section.

first example of &astdynamo, one for which the growth rate of a magnetic field rem@iositive as the
magnetic Reynolds number approaches infinity (with otheagyos being classed alow). However, the
model ignores dissipative effects, failing to take into@aut the strong field gradients that may arise in
the process (particularly at large times) and allow diffasffects to become important. In a more realistic
dynamo model, the precise balance between driving andsilifiumust be considered.

The field is normally decomposed into its toroidal (i.e. lndinal) and poloidal (i.e. contained in
meridional planes) components and the dynamo problem thenulated in two parts: generation of a
toroidal field from the pre-existing poloidal field and gest@rn of a poloidal field from the pre-existing
toroidal field. The first conversion (poloidab toroidal) is now accepted to be due to a drawing out (and
so amplification) of the poloidal field by the Sun’s differiahtrotation, theomega effect The second
conversion process (toroidal poloidal) is significantly more controversial, with no onechanism being
(as yet) universally agreed upon. There are, in additiorersérestrictions on dynamo action in the form of
a number of anti-dynamo theorems, the most famous of whiowl(i@g, 1934) demonstrates that a steady
axisymmetric magnetic field cannot be sustained by dynariorac
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As discussed in Chapter 6, there have now been several azvandynamo theory, beginning with
Parker’s idea of amQ2—dynamo operating in the solar convection zone (Parke5198though much of
the work has side-stepped the difficulty of the nonlineakb@action on the flow by the Lorentz force
by discussing only th&inematicproblem (in which the flow is prescribed and the time variatid the
magnetic field deduced) it has, nevertheless, shown thatrdga can work.

Parker (1955) suggested that non-axisymmetric smalkeskalical convective motions could twist
toroidal field into poloidal loops, with the net effect beittge production of a large-scale poloidal field.
This mechanism is classically known as #ipha effectalthough, both in this thesis and some of the liter-
ature, the term is also used to denote any general toroigalltadal conversion mechanism. A significant
step forward in the mathematical foundations of this theaiye with the introduction ahean-field elec-
trodynamics(Steenbeck et al., 1966). Here the magnetic fi#dd,and flow,v, are written in terms of
mean By (x,t), Vo (x,t)) and fluctuating componentb( (x,t) , vo (x,t)) where the mean fields vary
on length-scales much larger than those of the fluctuatimts.pa@n averaging procedure is taken over
intermediate length-scales and so

B(x,t) =Bg(x,t) + b(x,t), V(x,t)=Vo(x,t)+v(xt),

where(v) = (b) = 0 (if (.) denotes averages). Under these conditions, the indudtisstien, (1.8), can
be written in terms of mean and fluctuating parts, with theagign for the mean field being given by
0By

W:V><(VOxBO)JrvXeJrn’v?Bo,

wheree = (v x b) is a mean electromotive force (e.m.f.) induced by the fluatgacomponents. The
e.m.f. must then be expressed in terms of the mean Bgldo that closure of the system is obtained. A
suitable relation, obtained by considering also the equdtr the fluctuating field, the separation of scales
and assuming the fluctuating flowis isotropic, is given by

E:CYBQ—5VXBO,

which, in turn, gives the evolution equation for the meardfees

OB
i =V x (Vo x Bo) + V x aBy + (if + 8) VB

We see thap reflects a turbulent enhancement of the magnetic diffysasitda (hence the ‘alpha effect’)
parameterises a source-term for the mean field. If the fltiogiaelocity field is not reflectionally sym-
metric thena will be non-zero; this lack of reflectional symmetry is key the development of dynamo
action. In mean-field simulations bothand are given prescribed dependencies on the mean fieldawith
typically falling-off in the presence of strong fields (tlEkyebraicn-quenchingepresents the inefficiency
of the alpha effect on strong magnetic fields). Mean-fieldthéas enjoyed much success in reproducing
many of the observed large-scale solar magnetic featuneb @s the butterfy diagram) — for a review, for
example, Hoyng (2003).

Alternative mechanisms for the regeneration of poloidalnf toroidal field have also been proposed,
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such as the production of poloidal flux through the decay pblair active regions invoked in the Babcock-
Leighton mechanism (Babcock, 1961, Leighton, 1969). Tinesdels utilize the same poloidal to toroidal
conversion mechanism as Parker’s approach but now the-affdiet manifests itself as a surface phe-
nomenon. Solar observations show that bipolar active regggpear on the photosphere with a systematic
tilt (Joy’s law) and therefore have a net north-south dip@letor. In time the active regions decay or diffuse
away and in the process the leading polarities migrate wiver equator whilst the trailing polarities move
toward the poles. The opposite polarities that are tranisg@quatorward from the Northern and Southern
hemispheres cancel by the equator. Crucially, the padaritiat move poleward act to replace the exist-
ing poloidal field and reverse it sign. Thus the decay of l@paktive regions takes the role of a surface
a-effect.

A brief discussion of the sign of the alpha-effect in thesgotess models will also be helpful. Parker
(1955) deduced that the sign of the producttoind the vertical differential rotation gradient must be
negative in the northern hemisphere if the observed equatdmigration of active regions is to take place.
This sign rule holds even if the differential rotation greaxdti and the alpha-effect are in different layers
(Moffatt, 1978, Section 9.7). Through helioseismology diféerential rotation gradient at low latitudes is
known to be positive. In the framework of mean-field theoryaxpect a negative alpha-effect to act in the
lower part of the convection zone. Cyclonic convection es¢broughout the convection zone. However,
considering the observed differential rotation profiléhié type of dynamo action is to lead to the observed
equatorward migration of active regions then we requiregatiee alpha effect in the Northern hemisphere.
Such a negative alpha effect is believed to occur in the I@aerof the convection zone only. In Babcock-
Leighton models however, the alpha-effect is concentritdle surface layers where must be positive
(since the trailing polarities of active regions are at leiglatitudes on the photosphere than the following
polarities). The problem of achieving an equatorward pgagiag dynamo wave is overcome by including
a meridional flow with a short timescale in the model — and ay®abcock-Leighton models must invoke
such a flow for the transport of magnetic flux between the sgpdisource layers.

It is likely to be some time before a full understanding of thanamo process is reached — current
analytical modelling tends to be based on somewhat teatédivndations, and numerical simulations far
from being able to resolve the huge range of length- and soades inherent to the process. In this thesis
(Chapters 6 and 7) we explore an alternative and complemyaaqtaroach to traditional dynamo modelling
and construct simple mathematical models that are expaxteae a similar underlying structure to that of
the full system. Their very simplicity allows us to fully egpe their dynamics and so make inferences about
the properties of both solar and stellar dynamos, while titgysical justification is sufficiently general that
they may be applied to a wide variety of the proposed dynanchargsms.

1.3 Magnetic Reconnection in Two Dimensions

The small-scale amplification of the field is clearly essartt the dynamo process, but does not help in
determining how the observed large-scale fields built umftioe small-scale ones, nor how the large-scale
toroidal field breaks up. Magnetic reconnection must beaesible for both this large-scale generation

and for the localised break-up of the toroidal field. More @ljdspeaking, reconnection is a fundamental
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plasma process that is responsible for a wide range of phemanibeing of importance in solar, space,
astrophysical and laboratory plasmas, for example in:

e Heating the corona to its multi-million degree temperasy(eeg. Parker, 1983).

e Sudden violent events such as solar flares (Parker, 1963} sliis and the corresponding events on
other stars.

e The Earth’'s magnetosphere (where, uniquely for non-teia¢vents, in-situ spacecraft observa-
tions at reconnection sites have been made) as it interdtishe solar wind (Xiao et al., 2006), and
similarly in other planetary magnetospheres (Huddlestah £1997).

e Magnetic flux reduction in gravitationally collapsing postellar clouds, as part of the process of star
formation (Norman and Heyvaerts, 1985, Pringle, 1989).

e Accretion disks, where reconnection is primarily invokedsamechanism for supplying the internal
stresses that are required for efficient transfer of angutanentum (Eardley and Lightman, 1975,
Tout and Pringle, 1992) but also in, for example, the timéajmlity of accretion and the correspond-
ing radiation (Rastaetter and Neukirch, 1997).

e Explaining the non-thermal particle populations preseetitragalactic jets (Romanova and Lovelace,
1992).

e Thelaboratory, particularly in fusion devices. Reconrmeris thought to be the cause of the sawtooth
oscillations that play an important role in determining tmmfinement characteristics of tokamak
fusion plasmas (Porcelli et al., 1996) and lead to majougison of the device. Conversely recon-
nection is useful in spheromaks where it allows the seed fitelse restructured to create a stronger
confining field.

Early models of reconnection were strictly two-dimensigmath the field confined to a plane). Al-
though this is a very special case — occurring only at an X-(yyyperbolic) null point and in the stationary
situation restricting the electric field to being uniformitfwimportant consequences as we will see later)
— it has, nevertheless, informed much of our understandirigeotopic. It is, therefore, worthwhile to
summarize briefly some of the most important aspects of theryh

The Sweet-Parker model (Sweet, 1958, Parker, 1957) is ar-ofemagnitude analysis in which a
current sheet (with length equal to the global externaltiersgale) lies between oppositely directed mag-
netic fields (see Figure 1.4). The model is stationary sottieturrent sheet is maintained and therefore
the inflow must exactly counter the outward magnetic diffnsbf the sheet. In addition, magnetic flux
is assumed conserved between inflow and outflow. Finallypthsma is taken to be accelerated to the
Alfvén speed by the Lorentz force (which sets the width &f ¢hurrent sheet under mass conservation and
incompressibility conditions).

In 2D, the rate of reconnection is given by the value of thetelefield at the null point and measures
the rate at which flux passes through the null —i.e. at whightiansferred between topologically distinct
regions (see Chapter 2). The electric field is traditionatiymalised to a characteristic electric field and
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Figure 1.5: The Petschek mechanism for 2D reconnection.

the resultant Alfvén Mach number used as a dimensionleastijative measure of the reconnection rate.
Reconnection models then determine how the Alfvén Machbrrracales with the Lundquist number (or

global magnetic Reynolds numbes),
Under the above assumptions, the reconnection rate in tieetS®arker model is given by

and is therefore, in practice, very small in the corona duthéovery high Lundquist numbers there. In
order to account for the very fast energy release of solagdlare need an alternative mechanisrnfast

mechanism for which the reconnection rate is very much nmtwae the Sweet-Parker rate.
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Petschek (1964) suggested that slow MHD waves would signifig decrease the size of the diffusion
region and, accordingly, increase the rate of reconnecfidrus in the model the length of the diffusion
region may be considerably smaller than the global extdemgjth-scale. Four standing slow magnetoa-
coustic shock waves are placed at the boundaries of the alastflow regions (see Figure 1.5) and allow
for an additional mechanism for the conversion of magnet&rgy into thermal and kinetic energy. The
inflow region itself is current-free with no external sowspeesent and the Sweet-Parker model is employed
for the diffusion region, the average properties of whiaghmmatched to the external flow region as far as is
allowed (Vasyliunas, 1975). From the experience gained &yymumerical simulations it seems likely that
the configuration only appears when the resistivity is ephdrwithin the diffusion region. The maximum

reconnection rate is given by
™

8 In(S)
which, due to the logarithmic dependence®is, for typical coronal parameter values, several orders of
magnitude greater than the Sweet-Parker rate.

Mpe =



Chapter 2

Background to 3D Reconnection

Figure 2.1: Three-dimensional structure of an M1.8 flareeoled in TRACE 1717 on 21st March 2001
in Active Region 9373, starting at 02:28UT, and peaking ineXs at around 02:37UT.

Although a substantial literature exists describing theirgaof two-dimensional reconnection, an in-
creasing number of observations now show that the solar et@gfield is enormously complex (see
Figure 2.1 for an example of such a magnetic field structumed, so motivate the need for a full three-
dimensional understanding of the problem. Existing thdieensional reconnection models have already
demonstrated the 3D process to be fundamentally differemtany respects to the 2D and therefore have
only further enhanced this need.

The table on the next page summarizes some of the differd&etegen reconnection in 2D and recon-
nection in 3D. In this chapter we describe some of theserdifiges in more detail and further discuss some
of our present ideas on 3D reconnection.

13
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Property Two Three
of Reconnection Dimensions Dimensions
Only at an X-type Anywhere in space,
Location null-point. in the presence or

or absence of null-points.

Exists everywhere in space In general unique velocity doe
Flux transport velocity except at the X-point. not exist. Can be replaced by
multiple transport velocities.

n

Occurs continually and
Change of connectivity Occurs at the X-point. continuously throughout the
non-ideal region.

Counterpart Unique reconnecting Generally no unique
reconnecting fieldlines fieldline exists. counterpart exists.
Fieldline mapping Discontinuous Continuous (except at
separatrices)
Given by the electric field at Given by maximum
Rate of reconnection the null-point. integrated parallel electric

field across non-ideal region.

2.1 Magnetic Flux Velocities

Schindler et al. (1988) considered how appropriate thesid@areconnection that had been developed by
examining 2D theory are when applied to a general 3D scen@hiey concluded that any definition of re-
connection should at least be structurally stable anddoized the theory ajeneral magnetic reconnection
in which reconnection requires only a change in connegtivitplasma elements. A useful mathematical
tool that enables us to address changes in plasma elemergativmity is the concept of anagnetic flux
transport velocity(or flux transporting floyy;, as defined by Hornig and Schindler (1996).

Under ideal evolution,
E+vxB=0, (2.1)

holds and the magnetic field is frozen into the plasma, salieaturl of (2.1) gives
One of the consequences of (2.2) is the conservation of miadhu (Alfvén’s frozen-flux theorem),

/ B - dS = constant,
c

i.e. the flux through a comoving surfa€k(a surface moving witlv) is conserved. This in turn implies the
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conservation of magnetic field lines, together with conagown of magnetic nulls and of knots and linkages
of field lines. The far reaching consequences of (2.2) ontbigon of the magnetic field stem from the
algebraic form of the equation; they make no use of the fattths the plasma velocity. Thus we can ask
whether for a general non-ideal evolution,

E+vxB=R, (2.3)

whereR denotes an arbitrary non-ideal term, there could exist acityl which also yields an equation of
the form (2.1). Such a velocity will, in general, differ fratfme plasma velocity and therefore we write

callingw a flux transporting velocity. If such a transport velocityndze found then the field is frozen-in
with respect to the flux transport velocity and the field tagyl cannot change.

In a situation governed by the ideal Ohm's law, (2.1), thee#y (w) with which the magnetic field
lines may be said to move can be identified with the plasmecitglév). In more general cases we must
first address the question of the existence and uniquen#éss fidix transport velocity. For this we integrate
(2.4) so that it can be compared with other forms of Ohm’s [Biae integration yields

E+wxB=VF, (2.5)

whereF is an arbitrary function (a function of integration). Egoat(2.5) may be compared with the most
general form of Ohm’s law, (2.3); if a flux transporting velyds to exist then we must be able to rewrite
(2.3) in the form of (2.5), i.eR must be of the form

R=(v—w)xB+VF. (2.6)
N——
=u

A sufficient condition (provided ## 0) to represenR. in form of (2.6), and hence for the existencevof
is

B-VF=B-R=B:E. 2.7)
If E-B = 0, thatis, ifR is perpendicular td, then clearly this equation can be solvdd £ 0 being a
trivial solution). Important examples of this situatioredhe resistive two-dimensional caf® € nj), and
the case wheR represents a Hall termR = (ne)~?j x B. In this last example the transport velocity may
be identified with the electron bulk velocity.

A consideration of the 2D case demonstrates some key prepeiftreconnection in 2D. Here (taking
F = 0) the flux transporting floww, is given by

_ExB

W= (2.8)

and exists everywhere except at any null-points (zerd3)okhereR. is non-vanishing. In an ideal region
the flux transport velocityy will, up to its parallel component, coincide with the plasugocity v (note
that (2.8) is actually an equation for the perpendicularponent ofw but that the parallel component may
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be assumed to be zero). However, at null points a singularitige flux transport velocity will exist in
general, with the singularity at X-type null-points beirg trelevant one for reconnection. Locally about
the X-point the floww will have a stagnation type structure; magnetic flux is tpamted by the flow
into and away from the null with the singularity w at the null itself representing the cut and re-joining
(reconnection) of the flux there. The rate at which this osecneasures the reconnection rate and is given
by the electric field strength at the null (see, for exampleiigtler, 2007, p. 274).

Moving back to more general cases, equation 2.7 can alsolbedsié there exists a surface that all
the field lines cross exactly once (which we cattansversal surface Then we can integrate (2.7) along
magnetic field lines in order to deduée Parameterizing the magnetic field line kys) and integrating
R along the field line from the point(0) on the transversal surfac€’Y we obtain

s dx(s) B R-B
F(x) = Ryds + F(x(0 —_— = 0)eC; Ry=———. 2.9
0 = [ Rids+Pexo)). Z = T x0) € s Ry =T 29)
The solution may not exist within the whole domain under aer@tion and, in addition, there are situ-
ations where (2.7) has no solutions and so no flux transgpvetocity exists. For example, if there are
closed magnetic field lines in the domain with

jéR”ds #0,

then the integration (2.9) would fail. In addition, bounglaonditions onF' or w can prevent the existence
of a solution, precisely the situation in three-dimensl@aaonnection. During 3D magnetic reconnection
at an isolated non-ideal region, a flux velodity) satisfyingw = v, on the entire boundary of the non-
ideal region does not exist in general (Hornig and Prie€32Priest et al., 2003). Instead it can be replaced
by a pair of flux velocitiesw;,, andw,,;, say. The behaviour of field lines anchored to one side of the
non-ideal region is described by;,,, wherew,,, coincides withv for flux enteringthe non-ideal region.
Similarly, the behaviour of field lines anchored on the otfide of the non-ideal region may be described
by w,.. wherew,,; coincides withv where fluxleavesthe non-ideal region. In the 3D case the two flux
velocities will not coincide within the diffusion region drthis property allows us to deduce some of the
fundamental features of 3D reconnection.

In a general 3D situation, as a flux tube moves such that itypamters the non-ideal region, the two
flux velocitiesw;,, andw,,,; can be used to track the part of the flux tdmteringthe non-ideal region and
the partieavingthe non-ideal region. Taking the projections into the ndeal region of the flux velocities,
their difference represents a splitting of the two tubeshay enter the non-ideal region. Whilst the tube
continues to move with the velocity = v in the ideal region, the velocity within the non-ideal regio
depends on whetheav;,, or w,,; is used as a tracer. These two flux velocities will differ gwédrere in
the non-ideal region, signifying a continual change in tlagmetic connectivity of the flux passing through
the boundary of the non-ideal region. The implication ig flasma elements in the ideal region that lie
on a field line passing through the non-ideal region will berexcted to different plasma elements on the
other side of the non-ideal region at every moment in timetler words every field line passing through
the non-ideal region continually changes its magnetic eotions. We may continue to track the plasma
elements that lay on the initial flux tube and remain in thaldegion. After some time these will lie on an
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Figure 2.2: Structure of the magnetic field near a potertti@g-dimensional null-point. The solid black
lines marks thespineand the dashed black lines tfam surface.

ideal flux tube no longer be associated with the reconneptiocess. However, plasma elements associated
with thew,,,-flow and those of thev,,;-flow will not generally become again magnetically connddtes.
‘rejoin’).

We will make extensive use of flux velocities in Chapters 3 4 describe the nature of the 3D
reconnection processes under consideration. A furtheugson on the existence and uniquenese of
together with descriptions of the behaviour of magnetic fflugurely diffusive non-ideal situations, can be
found in Wilmot-Smith et al. (2005b).

2.2 Location of Reconnection

Compared with the two-dimensional case, a much wider classamnnection scenarios may be found
in three-dimensional geometries. As already discusse@DinX-points (hyperbolic null points) and O-
points (elliptic null points) are the only generic null ptirof the magnetic field and it is only possible for
reconnection to occur at an X-point, where the flux transpeldcity, w, is of a stagnation type close to the
null point and has a hyperbolic singularity at that locatidmditionally, generation and loss of magnetic
flux can both occur at O-points depending on the nature (ttextdn) of the flux transport velocity near
such a point. Moving into in three-dimensions, reconneatiay be associated with the presence of a null-
point but may also occur when no null-points are presentptireexistence of a unique and non-singular
flux transport velocity (as discussed in the previous sagtimd accordant change in magnetic connection
no longer relies on the presence of a zero of the magnetic field

The structure of three-dimensional null-points is desmtiby, for example, Parnell et al. (1996). The
local structure of the field at an example of a generic 3D rmulhiown in Figure 2.2. Thspineof the
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null-point is an isolated pair of field lines which either éige or converge from opposite directions onto
the null. Thefan plane consists of a family of field lines that branch out-aihdo the null. The field lines in
the fan plane form aeparatrix surfaceéhat divides regions of differing flux connectivity. If twe@garatrix
surfaces intersect, then their line of intersection wilidé four regions of differing flux connectivity. The
line is known as &eparator

At isolated null-points two types of reconnection have biglemtified according to whether the current
is aligned with the spine of the null (Pontin et al., 2004)loe fan of the null (Pontin et al., 2005b). The
models described in Pontin et al. (2004) and (Pontin et @05B) arekinematicones in which the equation
of motion is neglected, the magnetic field prescribed angthema velocity deduced from Ohm’s law (so
the term kinematic is used here in a slightly different seng@e traditional use in dynamo theory). In the
analysis of reconnection with the current aligned with tpims of the null (Pontin et al., 2004) a simple
spiral null point was assumed together with a resistivitalsed about the null. The resultant reconnecting
plasma flow is found to be non-zero only within the envelopéialfl lines linking the non-ideal region,
rotational in its nature and crossing neither the spine @fihil nor the fan plane. In the analysis of Pontin
et al. (2005b) a 3D null was taken with a current parallel ®fim plane (and so the spine of the null is not
perpendicular to the fan plane) and, again, a localisedlerwii the resistivity. The reconnecting plasma
flow deduced is found to transport magnetic flux across battsfline and the fan of the null, so, in the
latter case, transferring flux between domains.

If multiple null points are present in a domain then magnséiparators will be present. Separators
form a 3D analogue of the 2D X-point (Lau and Finn, 1990) sitieey lie at the intersection of four
flux domains and, in addition, the field in a perpendiculassfeection has an X-type structure. It is
thought that currents will tend to accumulate along sepesdBweet, 1969, Longcope and Cowley, 1996),
enabling reconnection to take place there (Lau and FinnQ 1P8est and Titov, 1996). Several numerical
experiments have explored separator reconnection (Galsgad Nordlund, 1997, Parnell and Galsgaard,
2004, Haynes et al., 2007) in some detail and observatiotdgdece has been presented by Longcope et al.
(2005).

Magnetic reconnection in three-dimensions can also occilva absence of a null-point. The consider-
ations of Section 2.1 show that reconnection may take pldemever any non-ideal terms, such as current
concentrations, that can lead to a change in the conngatifjifasma elements are present. An example of
reconnection in the absence of a null-poimdn-nullreconnection, was given by Hornig and Priest (2003).
Since much of the work in this thesis also discusses nonreedinnection the findings of Hornig and Priest
(2003) are summarised in the Section 2.4.

The process of magnetic reconnection changes the topofdgg magnetic field. The change in topol-
ogy itself may be associated with topological features sagmagnetic null points and separators. Then
reconnection may, for example, transfer flux between tagosdly distinct domains, or create new, distinct,
flux domains. However, in three-dimensions a change in magtopology may take place even when no
such features are present. A simple conceptual exampleigsrdted in Figure 2.3. The pre- and post-
reconnection states in this example are topologicallyrdist they cannot be continuously deformed into
each other — but no null points have been involved in the 3gs®. Therefore, to see these topological
changes we will, in general, need to know the magnetic cordtgn of the global system, in which no
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Figure 2.3: lllustrative example of a situation in which algl change in topology can occur in a 3D
domain with no magnetic null points. Two magnetic flux loogstbefore reconnection (some particular
field lines being illustrated in the left-hand image) butyoahe flux loop after reconnection (right-hand
image). Looking only at a subsection of the process (withi ted-box) the change in topology is not
evident.

magnetic flux passes through the boundary, and not just &tésigpart of the configuration. Such isolated
regions are, however, exactly the systems typically aealys both two and three-dimensional models of
magnetic reconnection. Fitting these local models intoglodal process involves extrapolating the field
outside of the model domain (which might be, for example,lzoadinumerical box). However, regardless
of the extrapolation used, there will, during the reconioecprocess, be some change in the topology of
the global system. Figure 2.3 provides an illustrative gxanof the importance of the global system in
reconnection.

2.3 Magnetic Reconnection Rates

As previously discussed, reconnection in two-dimensiakss place at an X-type null-point and transfers
magnetic flux between topologically distinct domains. Téeonnection rate in 2D is a measure of the rate
at which flux is transferred between the distinct domainstargrate in turn is given by the value of the
electric field at the null point. Traditionally, the rate igeessed in terms of the dimensionless quantity the
Alfvén Mach number through the use of a normalisation ofthikpoint electric field to some characteristic
field.

Given the previously mentioned differences between 2D dhdeBonnection the question arises as to
how the reconnection rate should be defined, measured asrgrieted in 3D? These are still partly open
questions. We begin by discussing the case of non-vanishaggpetic field and an isolated non-ideal region
(D) in an otherwise ideal environment (Hesse and SchindI&8)1L9

For this, consider, as illustrated in Figure 2.4, an isalaten-ideal regionD (shaded) with non-
vanishing magnetic field and a loop integral where the logh malong a magnetic field line (shown
in red) passing through and a material line (blue) in the ideal environment. Intégoathe electric field,
E, along this loop and using Faraday’s law (1.6) together Bittkes’ theorem gives

fE-dl:/VxE-dA:—i/B-dA. (2.10)
c s dt Jg

Since the material line is in the ideal region, the electeddfialong that section of the loop must vanish
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Figure 2.4: Example path taken for the loop integral givereqyation (2.10) to demonstrate the relation-

ship between a non-zero integrated parallel electric fieildss a localised non-ideal region and magnetic
reconnection. The path is taken along a magnetic field lihews in red) passing though the non-ideal

region (shaded) and a comoving line (shown in blue) in thalicegion.

and the only contribution to the loop integral comes front tidang the field line passing through. We
therefore deduce that

d B-dA:—/EHdl,
dt /s

where the lind denotes the field line taken throu@h and so if the integrated parallel electric field along
this magnetic field line is non-zero then there must be a ehamthe magnetic flux enclosed by the loop.
The rate of reconnection is then given by the maximum valuthigfintegral acros® (and is given a
positive value since direction of the normal component &ogirface is arbitrary):

% = ‘/E| dl‘. (2.11)

Thus while the expression for the 2D reconnection rate wasngdy the electric field at a point in 3D we
have the integrated electric field along a line. The formoief2.11) is consistent with the 2D one with the
reconnecting flux in 2D being the 3D flux per unit length in thearriant direction.

Similarly, in a system with reconnection taking place at gneic separator, the rate of reconnection
is given by the difference in electric potential betweené¢hes of the separator (Longcope and Cowley,
1996). When multiple separators are present in a domainiffezeshce in potential across each must be
taken into account. Such a system must be carefully anatgsgetermine the total reconnected flux since
it may allow for flux to be transferred simultaneously intalaut of a flux domain at different boundaries
(Parnell et al., 2007).

There are several circumstances for which the rate of resmiom is unknown. Examples include
systems where the non-ideal region contains closed fluxslaog in which the the non-ideal region is not
isolated within the domain considered. In addition, questiregarding the rate of reconnection are often
motivated by energetic considerations in real systemsitiledi$ known about how the rate of reconnection
might relate to any release of magnetic energy in a 3D system.
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2.4 An Isolated Non-Null Reconnection Process

In Chapters 3 and 4 we consider non-null reconnection. Mdi¢hi® work builds on the investigations of
Hornig and Priest (2003) and so we now discuss their mainfggdi

In most of the previous models of reconnection, the nontigggon is bounded only in two-dimensions
and extends to infinity in the third dimension. However, inealistic model for astrophysical plasma
processes, the non-ideal region should be localised ihr@étdimensions since this is the generic situation
in astrophysical plasmas which have length scales along#gmetic field that tend to be much larger than
the mean free path.

Hornig and Priest (2003) analysed such a situation in a negfonon-zero magnetic field, placing
particular emphasis on the evolution of magnetic flux. Theleh¢s a kinematic one witkinematic in this
context, referring to the (non-traditional) situation wle@ magnetic field of a certain form is imposed and
a plasma velocity deduced using Ohm’s law. Since the equafionotion is neglected the question as to
whether the field can be sustained by the plasma flow is ignored

The prescribed magnetic field in the model is a linear X-typefiguration in thexy-plane with a
uniform field component in the thirck] direction and so results in a uniform current. Thus, in otde
obtain a localised non-ideal region, a 3D localisation eftbsistivity is imposed. In a realistic situation it
is expected that finite regions of intense current conctatravill be the main cause of such a localisation
and that it may be reinforced when the resistivity is enhdrmecurrent-driven microinstabilities. In the
model however, the localisation is achieved in this way theoto make analytical progress.

The authors noted that in a general three-dimensionalt&itudor a specified magnetic field, Ohm’s
law may be decomposed into a particular non-ideal solutimham ideal solution:

Enonfid + Vinon—id X B = nj,
Eg+vigxB = 0.

The non-ideal, oparticular solution must be deduced from the imposed magnetic field. |ddadisation

of nj results in the flows associated with the particular solubieing rotational in nature. Identifying the
flux tube consisting of all the field lines linking the non-édeegion as a HFT, the non-ideal plasma flows
are confined to within the HFT and are rotating in oppositesesrabove and below the non-ideal region
itself, as illustrated in Figure 2.5. Thus the particuldusion affects only the flux within the HFT and all
the field lines contained within it are continually changthgir connections.

The kinematic nature of the analysis now allowsdoyideal flow to be superimposed onto the partic-
ular rotational solution. Hornig and Priest (2003) chose tfvo reasons, to examine the effect of an ideal
stagnation flow. The first reason is that such flows are to beagd if thin current sheets are to be built
up and so allow reconnection to begin. The second reasoatigtstagnation flow can transport flux into
and away from the non-ideal region (and the HFT linking the-ideal region), this property allowing for
the effect of the reconnection process on the magnetic flolugen to be seen on a much larger scale.
Whether the rotational or stagnation component of the flodoiminant within the HFT will depend on
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diffusion
region counter—rotational

flows

Figure 2.5: Cartoon illustrating the counter-rotationahf$ (thick solid lines) in the pure solution of Hornig
and Priest (2003). The hyperbolic flux tube (HFT) which eselbthe localized non-ideal region (shaded)
is bounded by the thin solid lines.

their relative strengths, but in either case some flux wilcbeied by the stagnation flow into the HFT,
where reconnection will take place, and then transporteaydvom the region. The combination of the
two flows, known agomposite solutionsay therefore show more similarities to the case of clakgida
reconnection than the particular solutions alone. Thimaltyh the rate of reconnection in both the particu-
lar and composite cases is the same (with the ideal soluéivimt) no associated parallel electric field), the
effect of the reconnection in terms of magnetic flux evolui®quite different.

2.5 Aims

The analysis of Hornig and Priest (2003) left open some itgmbrquestions. One key feature of the

analysis is the ability to impose an arbitrary ideal solutim the non-ideal particular solution. Since this

freedom is not present in the 2D kinematic case it may be agramnt feature of a 3D process. However, it

may also be the case that in a fully ‘dynamic’ analysis in Wahiitee momentum equation is also considered,
the freedom disappears since the flows,,_;q andv;; must also jointly satisfy that equation (Eg. 1.2). In

addition, in order to make analytical progress, the sohgtiere obtained by imposing a localised form for
the resistivity (while the electric current was uniform)tbat a localised non-ideal region could be attained.
It is then natural to ask whether solutions found will diffethe localised non-ideal region is due to a

localised current term instead.
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This thesis aims to examine further the nature of 3D nonseglbnnection and to address these ques-
tions, at least in part. We begin in Chapter 3 by attemptingddress the first question, of freedom within
3D reconnection solutions, by building a fully dynamic 3Daeb Several of the assumptions taken are
the same as those of Hornig and Priest (2003); a stationdutiaoin a non-null field geometry with a
non-ideal region localised in all 3D. We then carry out a pdyation expansion that allows for a splitting
of the variables to be made in such a way that comparisons mdydwn with the particular and compos-
ite solutions of Hornig and Priest (2003). This enables soir@mstances under which the freedom of
imposing ideal flows on reconnection solutions exists.

In Chapter 4, we analyse reconnection in a flux-tube whereuh@nt-concentration is localised in all
three-dimensions, reverting to a kinematic analysis ireotd do so. The model uses an elliptic rather than
hyperbolic field geometry; whilst the imposed magnetic fiegldHornig and Priest (2003) had an X-type
structure in thecy-plane and a uniform third component, our model has an O4tpeture in thecy-plane
(and, again, a uniform third component). The reconnecteemario described corresponds to a situation
in which the footpoints of the flux-tubes are spun in oppoditections and the counter-spinning motion
results in a localised reconnection region in the centredfaigortion of the tube. In the chapter we first
carry out an order-of-magnitude analysis that allows amtine understanding of the process to be built up
before confirming these estimates with a quantitative model

In Chapter 5 we build on the approach of Chapter 4, again amgjyeconnection in flux-tubes where
spinning footpoint motions are imposed but now taking twitially intertwined tubes. The process is
examined by means of a 3D MHD numerical experiment and, agairicular emphasis is placed on the
evolution of magnetic flux within the domain.



Chapter 3

Dynamic Non-Null Reconnection

As discussed in previous section, the analysis of HornigRuest (2003) shows several new features of
3D reconnection but it is a kinematic one — the effects of tipga¢ion of motion are neglected. The aim
of this chapter is to build upon their work by investigatingisolated reconnection process and including
the equation of motion in the analysis, so that the model idlg fdynamic’ one. We wish to determine
whether the additional freedom to impose an ideal flow on Hréqular solution arises through the neglect
of the momentum equation, or whether it is an inherently 3®atf The MHD numerical experiments of
Pontin et al. (2005a) suggest the latter. In that paper 3Dlsitions of a non-null reconnection process with
a localised non-ideal region are described. Several ofgatifes of the kinematic analysis are observed, in
particular a rotational background component to the plaftomathat is of opposite sense on either side of
the non-ideal region. Field-lines linking the non-idealicen are found to be continuously changing their
connnections.

We take the set of resistive MHD equations (neglecting thexrgagnequation), assume stationarity and
imcompressibility, and carry out a perturbation expansibthe equations that allows models of a 3D
reconnection process in the absence of a null-point to bie blhe assumptions taken in making the
expansion are such as to allow Ohm'’s law at the zeroth andofidetrs of the expansion to be written as
ideal and non-ideal equations respectively. These equatice coupled together through the momentum
equation and so the extent to which this coupling restriatsindependence of the zeroth and first order
flows (the analogue of the ideal and non-ideal flows in the rhofiélornig and Priest, 2003) can be
considered.

We begin in Section 3.1 by introducing the expansion teagtighe MHD equations are written in
dimensionless form, a suitable expansion parameter fish{the Alfvén Mach number of the flow) and
the equations obtained by writing variables in a small-peat@r series expansion stated. In Section 3.2
the zeroth order perturbation quantities are chosen in aughy that the full model corresponds to the
particular solutions of Hornig and Priest (2003), while iac8on 3.3 the zeroth order flow is chosen so
that a direct comparison with the composite solutions ofriipand Priest (2003) is found. The choice
of zeroth order flow needed if such a comparison is to be mafteiisd to be somewhat limited and so,

24
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in Section 3.4, we proceed to examine a more general soluédihough the flow associated with this
solution can be viewed as more realistic its form makes Bagmit analytical progress difficult.

The results of this chapter can be found in Wilmot-Smith ef2006a) and Wilmot-Smith et al. (2007a).

3.1 Model Setup

We take the stationary incompressible resistive MHD eguatand non-dimensionalise by setting

2

B B
B = BeB/a V= UeV/, E = UEBGE/vj = = j/ap = _ep/vr = Ler/a
pLe %

where all the dashed quantities are of order one,2ndL., andv, are the typical magnetic field strength,
length-scale and plasma velocity. Thus Ohm’s law becomes

VAe ~er

E/ + V/ X B/ = U—’l?j s (31)

€

whereuv,, is the typical Alfvén speed of the plasma, and

= —
pLeva, ’
is the inverse Lundquist number.
The equation of motion is
M2V V)W = -V +j xB, (3.2)

whereM, = v. /v, is the Alfvén Mach number. For simplicity we choose to negleere the effects that
viscosity and other forces (such as gravity) might have erstiutions. The remaining MHD equations are
given by

V' x B =j, (3.3)
V' xE =0,
V' .B =0,
Vv =0.

Having non-dimensionalised in this way we must now choosgitalde small parameter in which to
carry out the expansion. For this we choose the Alfvén Maahnlver)/, of the flow, and therefore must
take M. < 1. Low Mach number expansions have already been employeckindkelopment of 2D
reconnection theories — for example in the linear reconmeatodels of Priest and Forbes (1986) and their
extention by Jardine and Priest (1988). In this case theresipa of variables is assumed as follows:

B =By + M.By + M?By + M?Bz + - - -,
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v’:v1+Mev2+M(3V3+~-~,

J'= My + MZjo + M3js + -,

E = Eo+ ME, +M*E;+---
= —V'go— MV'§py — MZV'¢o + -,

P =po+ Mep1 + MZpy +--- .

where all the quantitieB;, v;, j;, E;, ¢;, p; are dimensionless. Note that we have labelled the first term
in the expansion of’ with the index1 and have also takejy = 0, so that the lowest order magnetic
field is potential, an assumption that is crucial in allowirgyto find analytical solutions to the equations.
Substituting these expansions into both Ohm’s law and thtémn of motion and comparing powers of
M. we find that at zeroth order the equation of motion is satisfigd p, a constant, while Ohm’s law is
given by

Eog+vi xBg = ﬁ.]l (34)

At first order we obtain
E; +vi X By 4 v2 x Bg = 1j2, (3.5)
0= —V’pl + j1 x Byg. (3.6)

At second order the equations become
E2+V1XB2+V2XB1+V3XBO:ﬁj3, (37)

(vi-V')vi==V'pa +j2 x Bg+ j1 x By, (3.8)

while at third order we have
E3+V1XB3+V2XB2+V3XB1+V4XBO:ﬁj4, (39)

(Vo - V) vi+ (vi- V') va = =V'ps + j3 x B +j2 X By + j1 x Bo. (3.10)

Itis clear that a natural coupling exists not between theesardered equations for Ohm'’s law and the
equation of motion, but rather between Ohm’s law at a givelegrand the equation of motion at the next
order. Thus to solve the system we will have to consider, xangle, equations (3.4) and (3.6) together,
and (3.5) and (3.8) together.

We set
By = bO(kya kz, 1)1 (311)

whereb, and k are constants akd> 0. Thus our basic state is an X-type current-free equilibrinrihe
xy-plane, superimposed on a uniform field in thdirection. The field structure is illustrated in Figure 3.1
The field is assumed to be reconnecting slowly v 4), and is similar to that taken by Hornig and Priest
(2003) although in that case the separatrices are not @tchnright-angles, so allowing for a current.
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Figure 3.1: lllustration of some particular field lines iodiing the structure of the magnetic fidbd.

With this choice of field configuration we can analyticallyagrate the equations

0X(s)
0s

=B (X(s))

to find the equationX (xg, s) of the field line passing through the initial poirg. The components of
X (xg, s) are given by

X = xo cosh(boks) + yo sinh(boks),
Y = yo cosh(boks) + xq sinh(boks), (3.12)
Z = bQS + 29.

with the inverse mappin¥, (x, s), being given by

Xo = x cosh(boks) — ysinh(boks),
Yo = ycosh(boks) — x sinh(boks), (3.13)
Zo = —bgs + z.

The parametes parameterizes the magnetic field line and is related to stamtie \, along field lines by
ds = d\/|B].

As a further simplification we takB; = 0, so that any zeroth-order flow is ideal. This assumption is
not necessary for a complete solution to the system, buei germit us to obtain ideal and non-ideal parts
to Ohm’s law in the zeroth- and first-order equations respelgt with a corresponding equation of motion
for both solutions (at first- and second-order respectjvélfaus the construction of this model allows for
a direct comparison of our solutions with the kinematic oofldornig and Priest (2003) where a similar
decomposition resulted in particular solutions satigytime non-ideal Ohm'’s law, and composite solutions
in which an ideal solution was superposed on this basic.ste have here in addition an equation of
motion for both the particular and ideal solutions and so@arsider also how this alters the results.
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3.2 Particular Solutions

In this section we consider the implications of the firsterdolution alone, by assuming = 0. Ohm’s
law at zeroth order becom& = 0, while the equation of motion is safisfied at zeroth and firdeowith
po andp; constants. This assumption results in the solutions obthibeing equivalent to the particular
solutions of Hornig and Priest (2003) (with the first ordem@hlaw the non-ideal equation), but now also
satisfying the momentum equation. For these particulastiewis it is first necessary to consider equations
(3.5) and (3.8) together:

E; + v x Bo = 7jo, (3.14)

0= —vlpg + j2 x Byg. (3.15)

Under these assumptions it is at fourth order that the edeetfm first appears, and thus the dynamic effects
in our particular solution are primarily the Lorentz foraedathe pressure gradients. Here we will consider
the implications of two different forms for the non-idealrtes, 77j2, with special emphasis placed on the
resulting plasma flows and rate of reconnected flux.

Localisation of the non-ideal termj. can be achieved through a localisation in three dimensifns o
eithern), or of jo, or, in the physically most realistic situation, througloadlisation of both terms. The
important quantity in determining the main results presdrtiere isp;, which is dependent only on the
localisation of the producijs|;, and not on how the localisation is realised. As a simplifwagnd in
order to allow for analytical solutions we here choose tapiie a localisation of the resistivity This
assumption was also taken by Hornig and Priest (2003) whéasgearbolic field similar to that given by
(3.11) resulted in a uniform current in ti#edirection. By taking the curl of (3.15) we obtain

(Bo - V)j2 — (j2- V)Bg =0,
which, assumings = ja(z, y) 2, gives(By - V)j2 = 0, i.e. j» as constant along field lines ®:
jo = f(2® —y?)2. (3.16)

There are a number of ways to chogge? — y?), two of which we examine here. In Section 3.2.1 we
take f to be uniform, as was the case in Hornig and Priest (2003).etii& 3.2.2 we instead assume a
form such that the currerjt is localised along separatrices Bf), which is motivated by the numerical
experiments of Pontin et al. (2005a) where a such a curremblyserved.

3.2.1 Uniform Current

The simplest choice of (z? — y?) is to take

J2 = j20Z,
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wherejs is constant. Such a current can be obtained by taking, fanple the magnetic field
By = —puj2oy®,

which can be expressed as
B2 =V X A22

where
Ag = —pjaoy?/2.

This is a particular solution fdB,. Other particular solutions exist, to each of which we aee fo add any
potential vector field35°" = V¥,. With this perturbation the fiel8, + V2B, retains its X-type structure
in the zy-plane, but now has separatrices inclined at a differentearithe sign ofjy determines whether
the greater angle between separatrices is across#xe (forjoo > 0) or they-axis (forjoy < 0). In this
section we assume, without loss of generality, that< 0.

Now (3.15) allows us to deduge as

kj20bo (2 — 2?)

P2 = P20 + 5

wherepo is constant.

Considering next Ohm’s law, (3.14), we seek a solution shealhthe non-ideal termjs is localised.
Since the currerjt is uniform we must localise the resistivity, To achieve this, together with an analytical
form for the remaining terms, we prescribe a localised foonH; - By, then taking the scalar product of

(3.14) withB determine) as
El . B()

= j2-Bo

One suitable form is to impose

E1 . Bo = elobo exp (—— — (317)

wherel, L > 0. This expression is a function of the coordinates of the fiakes, z¢, yo ands, but, setting
Zop = 0, we may use the inverse field line mappings (3.13) to find anvatgnt expression in terms of
y, andz. Thus we obtain the functiofias

0= =l exp (—Z—Q) exp <2xy sinh (2kz) — (2% + y?) cosh (2kz)> ) (3.18)

12

Providede;( andjso have the same sign this is a positive function. The paranieg@res the length of the
diffusion region in thez-direction, whilel represents the width of the diffusion region in the- 0 plane.
The hyperbolic nature of the field may render it necessaryetorahsé with increasingl to ensure the
diffusion region remains localised. An example of such &dibn region is shown in Figure 3.2, where
the surface) = 0.027),,4.; IS shown. The maximum value gfoccurs at the origin, whemg= e/ j20.
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Figure 3.2: The surfacé = 0.027,,4, COntaining the non-ideal regiaR, with the parameters= 0.1,
L=1,j20=-1,e10=-1,k=0.5.

It remains to findE; andvs. We havell; = —V ¢, so, now thatj is given, we may integrate along the
field lines to deduce;
- /ﬁjz ‘B ds

—/(El-BO) ds. (3.19)

b1

Taking the gradient of this expression gives an analytimahffor E;. Writing

and
(2% + y?) cosh (2kz) — 2zysinh (2kz)
Y= ’
2

we find

(—x cosh (2kz) + ysinh (2kz))
l

(sinh (2kz) — y cosh (2kz)) 9

E; =Qe” ]

T+ Qe”

N (Qe"* (2kay cosh (2kz) — kl(I2 + y?) sinh (2kz2)) N 610676_22/L2> N

The vector product of (3.14) witB, gives the component of; perpendicular t@B, as

(BE1 —7j2) x Bg  (E1— E12/bo) x Bo
bo |Bo|? ’

VQJ_:

We are free to add a velocity component paralleBig and choose to do so in such a way that £he
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Figure 3.3: The velocity fiela,, for (a) = = 1 and (b)z = —1, and the parametets=1,L = 1,e19 = —1,
k =0.5andby = 1.

component ok is zero:

v B
Vo =Vo | — ‘( TBL—ZZP 0 .

This also ensures that the resulting velocity is divergenee.

Thusvs, is given by

(3.20)

v — Qb_i'V ((w sinh (2kz) ; y cosh (2kz)) 54 (x cosh (2kz) l— ysinh (2/{2))?;) .

Figure 3.3 illustrates’y in two particular planes above and below the= 0 plane. The flow is counter-
rotational above and below the= 0 plane, where it vanishes. Non-zero flow is limited to theoegiithin

the hyperbolic flux tube (HFT) which consists of the field Brgassing through the non-ideal region. Near
to the origin the velocity field is almost circular, but becesrdistorted by the magnetic field on moving
away from the plane = 0, as shown in Figure 3.3. The pure solutions of Hornig andsP(2003) are
very similar, themselves being counter-rotational flowthimithe HFT, distorted by the magnetic field.

We are left to consider the remaining second-order equaton), which becomes
Es 4+ v3 x By = 1js. (3.21)

This may be satisfied by taking, = 0, v3 = 0, andjs = 0. We then may solve Ohm’s law at all even
orders, and the equation of motion at all odd orders, by takin

vi=Bi=ji=Ei-1 =0, pi =pi, fori =5,7,9,...

The equation of motion at all subsequent even orders, andsQamat all subsequent odd orders may
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also be solved, at least numerically, to determine comlylatehigher-order quantities. Here we outline a
scheme for Ohm’s law at third order and the equation of madicfiourth order:

—V'¢3 +v4 x By + va X By = jja, (3.22)

p(va V') vo=—=V'ps+js x By + j2 x Ba. (3.23)

Since the components of both, - V) vo andj. x B parallel toB, are known, we may use (3.23) to
calculatep, by integrating along the field lines, starting frgm= p4o (x0, o) in the plane: = 0:

Z/b[)

P4 (To, Y0, 8) = —/ ((v2 - V)ve —j2 x Ba) - Bg ds + p4 (20, y0) -
s=0

Using the inverse field line mappings this expression caretveitten in terms ofc, y, andz andVp,
then deduced. In turn this allows us to find the perpendiadarponent of the currefjt:

. (=Vps—(v2-V)va+j2 x By) x Bg
= BoP '

The freedom to add a component paralleBig may then be used to ensijieis divergence-free.

Turning to (3.22), it is left to determing; andv,. The equation has essentially the same structure as
(3.23), and so may be solved in the same way by again integratbng the field lines to find

¢3(x0,Y0,5) = —/(ﬁj4 —va X By) - Bg ds + ¢3(x0, y0).

The component of the flow, perpendicular t@, is given by:

(=V3 —njs + va x Ba) x By
| Bol? '

V4J_:

Letting ;
4z

vy =vy — —By.

By

ensuresv, is divergence-free so that the continuity equation is Batls This scheme would be effective
even without the assumptid®; = 0, which has been used to allow a direct comparison with therkitic
case. Itis worthwhile to note however that obtaining nugasolutions in this manner is not expected to

be a trivial task.

We now have sufficient information to determine the rate obraected flux. In 2D reconnection with
reconnection at an X-type null point the extension of thd paint along the invariant direction is a null
line, or ‘reconnection line’. With the addition of a uniforfield component in the invariant direction the
line becomes a field line across which the difference in glepbtential across the non-ideal region is
maximal. We therefore identify this line as the reconnattioe and the reconnection rate is given by the
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integral of the parallel electric field along the reconnattine (thez-axis):

d‘I)mag _
dt

/EH dl = / (M. e /5 40 (MF)) a2 = VEM. exoL+0 (M) (3.24)
The parametdrdoes not appear in this expression and so we conclude thexttidyet of the diffusion region
in the zy-plane does not change the reconnection rate. This agréleswsimilar finding in Hornig and
Priest (2003) that the diameter of their non-ideal regi@hrdit affect the reconnection rate.

3.2.2 Localised Current

In this section we assume an alternative form for the cugentWe examine its effect on the remaining
first- and second-order terms and compare the solutionsthage found in the previous section.

We have seelj, is constant along field lines @, i.e. satisfies (3.16). Another obvious choice for
f(x?—y?) is one which produces an enhanced current at the origin hitizirn requireg, to be localised
along the separatrices 8. A suitable example is

o= —22 2 (3.25)
cosh? (z 2 )

A motivation for this choice is given by the numerical sintida of Pontin et al. (2005a) who observed
the evolution of magnetic flux in an isolated diffusion regisithin a hyperbolic flux tube, and thus have
a reconnection process similar in many respects to the oreevetudying. The current concentration was
found to grow throughout the run, and the final profile, as showFigure 3.4, has a ‘bow-tie’ structure.
The choice of current given by (3.25) results in a similarent density profile close to the origin.

Substituting (3.25) into (3.15) gives the presspyas

2 2
P2 = pao — %)\kaojgo tanh (:10)\;234) ) (3.26)
Whereas in the previous example (Section 3.2.1) the preggadient had a stagnation structure, the lo-
calisation of the current now gives a pressure gradientishlatalised along the separatricesi. It is
dependent on the sign ¢4y, taken to be negative here, although at this stage the ciwarbitrary. An
example of the resulting pressuyse is shown in Figure 3.5. The saddle-point pressure profiledgect
consequence of the hyperbolic nature of the field, sincestizeno inertial term in equation (3.15). Such
saddle-point profile would persist in the presence of iaétérms of a magnitude similar to, or less than,
the Lorentz force.

SettingB; = V x A32, we may find a divergence-free fiel8h, which produces the current given by
(3.25). We are unable to use the method of infinite space Gréamctions, since this would require the
contribution of the ‘boundary’ terms oA, at infinity to vanish. Instead we use an eigenfunction exjpans
technique as described in the following paragraph.
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Figure 3.4: Results of a 3D MHD numerical simulation by Porgt al. (2005a). Background shading
indicates the magnitude of the final current density in thered plane, with vectors indicating the plasma
velocity.

Figure 3.5: The pressure profitg for vi = 0, jo = jao/ cosh® (22 — y2) /A?) £, with the parameters
P20 = 2, =1,k = 0.5,j20 =-1 andbo = 2.
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Consider solutions to Poisson’s equation
VA = f(a,y) (3.27)

in the squard < z,y < H with A vanishing on the boundary by assuming the related two-dsineal
eigenfunctions

V2 = —(y

with ¢» = 0 on the boundary. For the square the eigenfunctions are sifessn bothy andz:

o = st (T2 i (222,
H H

om= () + ()

Expanding the solution in terms of these eigenfunctioregiit be written as

A= 30 cosin (M2 Y sin (7T

n=1m=1

wherec,,,, are constants. Substituting this solution into (3.27) aoiihgy V2 = —Cmtnm, We obtain

gmi:l —Cpm Sin (n_;;a:) sin (%) = f(z,y).

Now, using the orthogonal properties of the eigenfunctiand observing that they satisfy the same bound-
ary conditions as the solution, we have

H rH 2 2
—Qnmcnm/o /0 sin (n_g:v) sin (%) dzdy =
H H
. /nmx\ . /mmy
= f(z,y)sin ( —— ) sin ( —= ) dady.
Iy CORICD
which determines the coefficients,,.

Using the above described method to solve

K20
V2Ay = — 25
? coshQ(wz_y )

in the region—H/2 < x,y < H/2 with A, = 0 on the boundary, we obtain

As(z,y) ZZC"’” sin (nm (x/H — 1/2)) sin (mn (y/H — 1/2)), (3.28)

n,m odd

where the coefficients,,, are given by

—4pj20 H/2 - rHI2 gin (na (x/H — 1/2)) sin (ma (y/H —1/2
Cnm: 2 2 2/ / / /2) ( ( / / )) dCCdy
(n? +m?) 7 H/2J—H/2 cosh (m/\}y )
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Figure 3.6: Contours ofl, whereB, = V x A2 andj, = joo/ cosh?(z? — y?)2 with the parameters
j20 =1, A =1, u = 1. Overlayed (darker lines) is the current density configirosh? (22 — y2) = 0.1.

The change of variables = z/\, v = y/\, £ = H/X allows the integrand to be expressed in a form
independent o\, and we obtain the equivalent expression for the coeffisigpt :

_ —AjaX® / " / 7 sin o (/€ — L/D)sin(mn 0/8 < 1/2) g4, (3.9

c =
" (02 + m2) w2 ¢/2)_¢)2 cosh? (u2 — v2)

We find that eachs,,,,, — 0 asn,m — oo and that ad/ — oo eachc,,,, tends to a limiting value. Thus
we use (3.28), with the coefficients (3.29) evaluated nuraédlyi to find a form forB,.

As is a smooth function with opposite sign from thatjef, with the maximum of A2| occurring at
x = y = 0. The contours ofd,, which are field lines foB,, are shown in Figure 3.6. Superimposed
is an outline of the currerjt. The X-type structure of the fielB, becomes flattened by the perturbation
B-; toward they-axis whenjsg < 0 (which is assumed to be the case here) and toward-#vas when
j2o > 0. This is shown in Figure 3.7 where the coefficidif has been taken dg? = 0.5 to illustrate the
effect.

Following the method previously outlined, we now prescabecalised form foE; - By, and determine
N as

. E;-Bo
7 J2-Bo
by taking the scalar product of (3.14) wiBy. Here we assume
2 2)2 2.2 2 2
y - bss x§ + 1
El . BO = elobo exp <—%> exp <—(l)—2 - l2 y0> (330)

with [, L > 0. This is similar to (3.17), with an extra facter (v =)/ 10 |ater ensurg is sufficiently
localised. Using the inverse field line mappings (3.13) td &in equivalent expression in termsofy, and
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Figure 3.7: Magnetic field lines (contours 8f + M2 A,) in thezy-plane withM?2 = 0.5 and the param-
etersjoo = —1,A=1,bp = 1, p = 1 andk = 1.

z we obtain; as

2 — (42 — 22)? 2,2
ﬁ = @e_ﬁ exp (M) Cosh2 <{E Y ) X (331)

J20 k4 A2

2xysinh (2kz) — (2% 4 y?) cosh (2k=2)

which is again a positive function provideg, andj,, are of the same sign.

Figure 3.8(a) shows the diffusion region in this examplés iseen to be very similar to that of Sec-
tion (3.2.1). Although the diffusion region given by (3.183s circular in thecy-plane and elliptical for
non-zeroz values, as illustrated by the cross sections of Figure B.8(lhhis case it is distorted from that
shape by the current now lying along the separatrices of ¢fekifi thexy-plane.

We deduce an analytical form fét; using (3.19) which in turn allows us to fing, | , the component
of vy parallel toBy. This is given by

o~ (B1—iip) x By _ (B~ Eyj2/by) x By
o Bo|? - Bo|? ’

to which we add a velocity component parallel By to set its2-component to zero and ensure it is
divergence-free:

Vo = Vo | — (V2L)z Bo
- IBol?
Setting oo (o
M = —exp PEI
bo
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Figure 3.8: (a) The surfacg = 0.027.,,4., CONtaining the non-ideal regiob given by (3.31), and (b)
cross sections in the= 0 plane of the non-ideal regior3 given by (3.18) (outer circle) and (3.31) (inner
curve). Both figures use the parameters0.1, L = 1, joo = —1,e10 = =1,k = 0.5,k = 0.1, and\ = 1.

the resulting floww, is given by

vo = M (:zrsinh (2k=2) ; ycosh (2kz) N 21y$2 —4y2) N
K

(3.32)

o 2,2
M x cosh (2kz) — ysinh (2kz) oY g
l K4
The additional factoexp(— (z? — y2)2 /k*) introduced in (3.30), and not present in (3.17), has had the
effect of narrowing the HFT away from theaxis. The factor therefore has the same effect on the counte
rotational flowvs, as clearly shown in Figure 3.9, although the qualitativacitire remains largely the
same.

The rate of reconnected flux can again be determinedzTdrds remains the reconnection line,

d(bmag _
dt

/EH dl = / (M. e /5 40 (MF)) 4z = VEM. exoL+0 (M) (3.33)
This equation is precisely the same as that of the previoample, given by (3.24). The shape of the
diffusion region in thery-plane, which is different in both our examples, in turnatdie shape of the HFT
and therefore the structure of the plasma veloeity However in the above expression these dimensions
are unimportant, since it is the length of the diffusion cegalong thez-axis which is key in determining
the reconnection rate. In principle, any decaying functionld have been used to determine this length.

The model used does not allow for a simple scaling of the neection rate with respect to the re-
sistivity or Lundquist number, and so we cannot yet deteentite maximum rate of reconnection. This
is a consequence of three dimensional reconnection beimg cwanplex and having a greater variety of
solutions than the two dimensional case. Consider the salfithe variables at a height= L. above the
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Figure 3.9: The velocity fiela,, for (a) = = 1 and (b)z = —1, and the parametets=1,L = 1,e19 = —1,
k=0.5,bp = 1,andx = 1.

non-ideal region. There the ratio.(/v4,) of the plasma velocity to the Alfvén velocity is given by

Ve w L. L

va. V2R,

whereR,,,. is the global magnetic Reynolds numb&,,. = L.v4,/n, andg = exp (kL. —1/2)is a
factor relating to the geometry of the magnetic field. Theeordy of parameterép > L > [ has been
assumed. The parameténdL, which relate to the structure of the non-ideal region, gnahich relates

to the field geometry, would not in a general 3D reconnecti@nebe arbitrary, but rather determined
by the evolution of the magnetic field before the onset of &mstary phase. Therefore the expression
(3.34) should be interpreted with particular care. Althloagfirst sight it appears to scaleBgLi, each of
the other factors on the right hand side of (3.34) can be margjet than unity and also depend 8p,,
(=1Rm.), L =L(Rn.), g = g(Le, Rn.)). Determining how, /v4, scales withR,, and so whether
or not the reconnection is fast is outside the scope of thiple stationary model. Instead we proceed to
examine the case of ‘composite solutions’.

3.3 Composite Solutions

In many realistic situations the plasma velocity outside HFT will be non-zero, and therefore we here
choose to superimpose an ideal solutien # 0) on the particular solution, giving composite solutiors. |
the kinematic analysis, as given by Hornig and Priest (2008)two solutions are essentially independent,
but in the present dynamic analysis they are coupled in thmentum equation (3.8) by the inertial term
(v1 - V') vi. We now examine the extent to which the coupling restriatsdhoice of the ideal solution,
and investigate how the reconnection process differs letwlee particular and composite solutions.
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In general, the momentum equation given by (3.8) impliesupling between the ideal and non-ideal
Ohm'’s laws given by equations (3.4) and (3.5). However, lfierdlass of ideal plasma flows for which
the curl of the inertial term on the left-hand side of (3.8)ishes, the equations become decoupled. In this
case the effects of a non-trivial solution to (3.4) are apptat second order only in the pressure gradient
Vp2. For ideal flows satisfying this condition the particulafugimns of Section 3.2 may be taken as a
solution to (3.5), and so we have a direct comparison withctiraposite solutions of Hornig and Priest
(2003). We begin by examining an ideal stagnation flowfor whichV x (vy - V) vy = 0. Stagnation
flows are an obvious choice to consider because they candehd build-up of thin current sheets. They
also allow for flux to be brought into and removed from the lses non-ideal region and so change
field-line connectivities away from this region.

Turning first to (3.4), we takey to be the function of the field line coordinates), yo) given by

b0 = X3T0%0. (3:35)

SettingZ, = 0, the inverse field line mappings (3.13) can be used to find aivalgnt expression in terms
of z, y, andz, so determiningy (z, y, z). The component of; perpendicular td, may then be deduced

from (3.4) as
V¢0 X BO

Vil = —W (336)

We use the freedom in choosing the componentgbarallel toB to set thez-component ok to zero:

(VIJ_)ZBO

" (3.37)

V1:V1J_—

This ensures the flow is divergence-free since shmmponent of the curl of equation (3.4) becomes
by (V - v1) = 0. Thus we obtain

¥o o N o
BoA? (z cosh(2kz) — ysinh(2kz)) & + BoA?

vy = (2 sinh(2kz) — y cosh(2kz)) g,
and see tha¥ x (vi-V)vy; = 0. The ideal flow crosses the separatriceBafin the zy-plane, with
streamlines of/; above and below the central plane shown in Figure 3.10.

Since the inertial term in (3.8) may be expressed as the gmadf a scalar function, the equation has
the same structure as in the case of the particular solufishsrev, = 0), which were examined in
Section 3.2. Thus the same formjefmay be taken in both the particular and composite case, artthoe

to assume the form given by .
J20 5
cosh? (””2)\;;’2)

as in the Subsection 3.2.2. A further comparison with theemical simulation of Pontin et al. (2005a) can
now be made; our ideal stagnation flaw in the central plane has a similar profile to the plasma flow at
the end of their simulation when viewed with the correctiotaion according to the current concentration.

j2 =
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Figure 3.10: The ideal plasma velociy for (a) z = 0.5 and (b)z = —0.5, and the parametets) = 1,
k=0.5,bp =2,andA = 1.

Using (3.8) we deduce the pressure temras

2 _ .2 2 2 2
z y) o (2 +y7) (3.38)

_ 2p
P2 = P20 — 3kA"bojao tanh ( 2 TN A

The particular solution may be recovered by settigg= 0, and so it is seen that the inclusion of a zeroth-
order flow has had the effect of introducing an extra term égqptessure, proportional {8 /(A*63). When

o = 0 there are strong gradients in the pressure along the seépasadfB, in the zy-plane. This extra
term has the effect of smoothing out these strong gradievitl, po becoming a smoother function as
o2 /A%b3 is increased. An example of the pressure profile is showngargi3.11, which can be compared
with Figure 3.5 of Section 3.2. The additional term has a ratphysical explanation. It deflects the
incomingv; flow toward the outflow direction, a purely hydrodynamicdéet. Due to the symmetry with
respect to inflow and outflow, there is no net transfer of mégmemergy to kinetic (bulk) energy of the
plasma in this stationary solution, as would be expectedrmee realistic situation. However, we may
model part of this process by requiring - jo x By to be positive. This would result in an initial transfer
of magnetic energy to kinetic energy, but with the lattersaguently transferred to potential energy, since
v - Vp > 0, so no net acceleration can take place. We have here that

wojaok ((2* + y?) cosh (2kz) — 2zy sinh (2kz))
A2 cosh? (12;27’2)

vi-joa X Bg=—

We require this quantity to be positive, which can be ensbgeihking the combinatiop jaok < 0.

Now turning to (3.5) we may use the same quantifieE;, andvs as in Section 3.2.2 to satisfy the
equation.
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Figure 3.11: The pressure profitg (z,y) whenvy # 0, jo = jao/ cosh? ((z2 — y?) /A?) £, and the
parametergsy = 2, b = 2, A =1, k = 0.5, joo = —1, A = 1 andpy = 2. The lower pressure regions
correspond to inflow ofr; and the higher pressure regions to outflow.

The question that arises at this point then is: how do thequdat and composite solutions differ? Or,
in other words, what physical effect does the inclusion efitteal flowv; have on the solution? Since
E, is perpendicular td@, the expression for the rate of reconnection is the same asftifae particular
solution. However the non-vanishing external flow chanpesteaning of this reconnection rate since the
reconnection process can now reconnect flux outside therbgleflux tube. The evolution of magnetic
flux in the two cases is therefore quite different, and mayibealised using the concept of a magnetic flux
velocity as described in Section 2.1. We demonstrate indhewing subsection how the magnetic flux
evolution differs between the particular and the compasitations.

Magnetic flux that does not pass through the diffusion regiasives ideally, i.e. it iSrozeninto the
flow and so initially-connected plasma elements remain eotad. We may track the evolution of plasma
elements in the ideal flow above and below the diffusion negimitially-connected elements will only
remain connected if the field line linking them does not passugh the non-ideal region; otherwise the
elements will change their connectivity. The pair of quihsk velocitiesw,;,, andw,,; can be used to
project into the central plane (= 0) the flow lines corresponding to the ideal evolution abowe below
the non-ideal region. Examining the differences betweenlitres ofw,,, andw,,,; allows us to deduce
how the magnetic flux evolves.

For the stagnation flow described in Section 3.3(a), thevagleprojection is shown in Figure 3.12
(for a particular choice of parameter values). The flow linésv,, (grey lines) in thez = 0 plane are
superimposed on those of,,; (black lines) in the same plane. We are able to divide theepiato three
regions according to the type of reconnective behaviourdbeurs; the separatrices dividing these regions
are shown in Figure 3.13.

In region | the flow lines ofw;,, andw,,; coincide perfectly. The magnetic flux passing through the
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Figure 3.12: Floww,,, (grey) andw,,,; (black) for the solution already described in Section 3.3.

Figure 3.13: Separatricesef;,, (grey) andw,,; black for the solution described in Section 3.3. The region
is divided into three types of reconnective behaviour. Magnflux passing through region | undergoes
ideal evolution. Magnetic flux passing through region Il argbes a slippage-like behaviour while flux

passing through region Il undergoes an evolution simildh&b seen in classical 2D reconnection.
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z = 0 plane in region | evolves ideally, so that initially-context plasma elements will remain connected.
In regions Il and Il the flow lines ofv;,, andw,; do not coincide. For magnetic flux passing through the
z = 0 plane in these two regions we deduce that plasma elements abd below the non-ideal region
that are initially connected will not remain so. Tracking #wvolution of corresponding pairs allows us to
distinguish different types of magnetic flux evolution.

Magnetic flux passing through region Il exhibits a slippdige-behaviour. Initially connected plasma
elements above and below the non-ideal region will changi ttonnections as the flow transports the
magnetic flux linking them into the non-ideal region. On liegthe shadow of the non-ideal region the ini-
tially connected elements are both transported in the sareetidn by the flow and a new ideal connection
is again established for each plasma element. Althouglttmianection will not be with the initial partner,
it will be with a plasma element that was initially close tatlpartner.

Magnetic flux passing through region Il exhibits the typebehaviour most similar to that shown
in classical 2D reconnection. Again, initially-connecdsma elements above and below the non-ideal
region loose their connections as the magnetic flux linkirggt is transported into the non-ideal region.
However, on leaving the shadow of the non-ideal region tliteally-connected plasma elements above
and below the non-ideal region are transported in diffed@eictions by the flow, along opposing ‘wings’
seen in Figure 3.13, and their separation will thereforedase in time, as in the classical 2D reconnection
picture. The new ideal connection for a plasma elemenstihjtabove (below) the non-ideal region will be
with a plasma element that was initially below (above) the-ifdeal region in the distant opposing wing.

Therefore in this composite solution the stagnation flonoisichant, with the rotational flow,, present
as a background flow. A stagnation flow was found to developémuumerical simulations of Pontin et al.
(2005a), although a background counter-rotational ratati flow was also shown to be present, and seen
to fall off with distance from the X-line. The simulation alsonfirmed a continual and continuous change
of field line connectivity. Thus many properties of their siation are captured in the above-described
analytical solution.

We have been able to make a direct comparison between theyparsolutions described in Section 3.2
and the composite solutions described in this section sfoceur choice ofv, the curl of the inertia term
in (3.8) vanishes. In principle we could have chosen othealiflows for this directly comparable analysis
that also have a curl-free inertial term. One example iswhach results from defining the scalar function
¢o as the function of field-line coordinates given by

(bo:%(ﬁ%—yg),

from which we obtain
_ —2¢p9
boA2?
This is also a stagnation flow, but it differs considerabbnirthe flow considered in the previous section;
it does not cross the separatrices of the projectiaBg@bnto thexy-plane, and is independent of the third
coordinatez. When superimposed on the particular solution, howevers#me three regions of differing
flux evolution are present, as illustrated in Figure 3.14e irtflow and outflow channels bounded by the
separatrices of the quasi-flux velocities are now centredrat the separatrices 8 in the z = 0 plane.

V1 (yT+z2). (3.39)
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Figure 3.14: Separatrices of;,, (grey) andw,,; black whenv; is given by (3.39). The same three types
of reconnective behaviour as figure 3.13 are present.

This demonstrates one of the crucial differences betweearl2.5D reconnection and the 3D case. The
crossing of the separatrices by the flow is only a criterionrézonnection in the 2D case. In 3D the
difference betweew,,, andw,,; is the crucial property for reconnection. Another examplthis class of
flows which can be used to form composite solutions is thdiostal ideal flow arising from the choice

b0 = 13 (3 +12) (3.40)
This ideal flow is rotating in the same sense forzaland so does not have the effect of bringing flux into
and away from the non-ideal region.

For the three flows examined in this section, the reconnectite, as determined by the integral of
the parallel electric field along the reconnection line,deritical, but the magnetic flux evolution quite
different. The distinct types of reconnective behavioustrated here, and in paper I, may be distinguished
by considering the associated internal and external reamiiom rates, as introduced by Hornig (2006).

Theexternal reconnection rateeasures the rate at which flux is transported into (and ebaritly out
of) the non-ideal region. This rate is always less than oakguthe total reconnection rate, and thiernal
reconnection rateneasures the difference between the total reconnectieanakthe external reconnection
rate. The electric potential along the flow linesvwof,, andw,,,; is constant, since these are streamlines
of the ideal flow. The difference in electric potential betmehe inflow channels bounded by the separa-
trices of the flow therefore quantifies the external recotioecate, while the internal reconnection rate is
given by the difference between the total rate (measuretidyntegrated parallel electric field along the
reconnection line) and the external reconnection rate.
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The stagnation flow examples illustrated in Figures 3.133%td both correspond to a purely external
reconnection rate. In this situation the separatricesefltiw (which divide regions Il and I11) pass though
the origin, and so the difference in the electric potent&ileen them is equal to the total reconnection
rate, i.e. the difference in electric potential across tbe-ieal region. For an ideal rotational flow, such
as that arising from the electric potential given by (3.46¢ external reconnection rate vanishes and the
reconnection is internal only. Similarly if the ideal flowzero (as in the case of the particular solutions of
paper ) then the reconnection is purely internal. Thus tikerpretation of reconnection rate in this way
allows for a clear distinction between the different typésalutions considered here.

We note also that a combination of internal and externalrreeotion is not excluded in these solutions,
and is expected if a smooth transition between the purelgreat reconnection solutions illustrated in
Figures 3.13 and 3.14 and the purely internal reconnectiond in the particular solution is to be made.
Such a solution exists when the magnitude of the ideal flgvis decreased to be the same, or less than,
that of the non-ideal flow/.v,. In addition to the three regions of differing space flux etioin described
above and illustrated in Figure 3.13, the magnetic flux irs¢hmixed solutions would show rotational
dynamics within part of the HFT.

3.4 Accelerating Stagnation Flow

In a realistic situation we would expect to see a plasma flaat thsults in a net transfer of magnetic
energy to kinetic (bulk) energy of the plasma since magresirgy is the main source of energy in the
solar corona. This property must be explicitly prescribecehsince the model does not include the time-
dependent processes external (and possibly prior) to temnection process that lead to the build-up of
a current sheet and corresponding plasma flows. Instead pineperties are represented in the model via
boundary conditions on the flow, magnetic field and presstoéi@s. Thus in the expansion scheme we
may ensure an increase in kinetic energy occurs in the remion process by requiring; - jo x Bg —

v1 - Vpo to be, on average, positive over the volume (which is not s dor the above stagnation flow).
This increase in kinetic energy may be the result of a trarsffenagnetic energy (due to; - jo x By),

a transfer of thermal energy (duetg - Vpy) or a combination of both effects. Numerical experiments,
such as those of Biskamp (1986), Priest and Forbes (1988pr.and Priest (2003), Parnell and Galsgaard
(2004) and von Rekowski et al. (2006), suggest considerpigsma flow that sharply changes its direction
toward the outflow region; in such experiments fast jets abpla emerging from the reconnection region
are observed. We examine in this section an ideal plasma+lgwyhich possesses these properties, using
a method similar to that of Section 3.2.1. Now, however, sitiee curl of the inertial term in (3.8) does
not vanish, there is a much larger degree of coupling betwgeations (3.4) and (3.5), and the particular
solution of Section 3.2 can no longer be used as a solutio®. ).

Just as in the previous section we will consider incompbéssiolutions; a plasma flow with a faster
outflow velocity than inflow velocity must have an associabedflow channel that is narrower than its
inflow channel. To achieve such a flow we impose a non-symmeitriction, ¢, for the lowest order
electric potential, and then deduce the plasma velogitfrom (3.4). For example, we may impogg as
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Figure 3.15: (a) Stagnation-point structure of the velodield vy corresponding togp, =
—poyo tanh(zg)/A? in the planez = 0. As indicated by the closeness of the contours, the plasma ha
a greater velocity along the outflow direction. In the plafi@s = 2, and (¢c)z = —2, the flow is still of a
stagnation type but is now stretched along the diagonaldh an extent that it is almost aligned with the
y = x andy = —xz lines, respectively.

the function of field line coordinates given by

¢o = —%yo tanh (zg) , (3.41)
and use the inverse field line mappings to deduce an equivekpnession in terms of, y andz. An
analytical expression fov; (which is too long to be shown here, but may be easily caledlasing any
symbolic computation package) is found using (3.37). Indhatral region the flow has a stagnation
structure, as shown in Figure 3.15, with single inflow andlowt channels that are of different widths.
Thus, depending on the direction of the flow, and since itésimpressible, an acceleration or deceleration
of the plasma takes place. The physically relevant casesponds to the choicgy > 0, for which the
outflow direction is the narrower channel along thdirection, and so the plasma is accelerated during the
reconnection process.

Turning now to the lowest-order momentum equation in theesgmon scheme, (3.8), we integrate along
the field lines (3.12), starting from the plane= 0 to deduce the pressupe:

Z/b()

pa(x,y,2) = —/ (vi-Vvi)-Bods+ ps(zo,0) - (3.42)
s=0

We first examine solutions obtained when the free functipf, yo) is set to zero. Later in the section

we shall consider another particular example wheréxg, yo) # 0, and show that the choice of this free

function has a considerable effect on the reconnectiongsoc

An example of the pressure profile in the case wheréry,yo) = 0 is shown in Figure 3.16(a).
The expression obtained fpg is dependent o3, and so the pressure profile is independent of the flow
direction. Thus for the casg, > 0 which we are considering here, a pressure gradient existgdahe
outflow direction which is in the direction of the flow, and ssato accelerate the plasma.

The perpendicular component of the currgnt,, can be determined analytically from (3.8) once the



3.4 Accelerating Stagnation Flow 48

Figure 3.16: (a) The pressure profije and (b) the Lorentz forcg, x By in the planez = 0 for an
accelerating stagnation flow,. The free functiorp (zo, yo) in equation (3.42) has been set to zero. The
outflow is aligned with thei-axis, and corresponds to the channel of decreasing peessur

pressure is given:

. (=Vpa—=(vi-V)vi) xBg

J2 = .

Bl

A Lorentz force is present within the outflow channels, anditiscted away from the central line of mini-
mum pressure, as shown in Figure 3.16(b). Thus, since ittialigned with the flow direction, this force
does not act to alter the plasma velocity; in this example drily the pressure gradient which accelerates
the plasma, causing the fast outflow jets. The quantityj., x Bo — v; - Vpq is, on average, positive
over the region provided, > 0, i.e. provided the flow is accelerated from its inflow to owtfldirection.
This net acceleration, a consequence of the pressure gtadisults in a net transfer of thermal energy to
kinetic energy.

The full form of the currenj, may be determined by finding a scalar functid(z, y, z) such that
settingj. = j2, + ABg ensures the current is divergence-free. Takingj., + VA - By = 0 and
integrating along the field lines gives

s=z/bo
Nayz) = — / Vo ds+ A (x0, %0) (3.43)
s=0

= /\(‘Tayvz)—i_/\(anyO)a

where (2o, yo) is a function that we are free to impose on the solution. Thieeatiis then given by
j2 = (Joo + M=, y,2)Bo) + A(zo, y0)Bo = j2 + 5.

wherejs is solely determined by the free function(zo,yo). The termj} also determines the current
along thez-axis because, due to the vanishing divergengg pfalong thez-axis, the thez-component of

j2 vanishes there. Equation (3.5) then implies that the resction rate will be determined by this free
function (together with the form af), rather than by the ideal flow, i.e. governed by the lowest order
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Figure 3.17: Vector-field plot showing the currgatin the planes (a} = 0, (b) z = 2.2, (c) = = 0, (d)

y = 0, in the case wherg; (9, yo) = 0 with the parametergy = 1, A = 1, by = 1, andk = 1. The

thickness of each arrow represents the magnitude of therurector at that point and the same scaling

for the vectors has been used for each of the plots.
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Figure 3.18: (a) The pressure profile and (b) the Lorentz forcg x B for the accelerating stagnation
flow, now with free functiorp, (zo, yo) in equation (3.42) given by (3.44). The outflow is alignedhwit
the y-axis, and corresponds to the channel of increasing pressthis figure may be compared with
figure 3.16.

non-ideal solution.

Equation (3.43) must be integrated numerically. Figure 3lllistrates the curreng, in the planes
z =0,y = 0andx = 0 andz = 2 (for clarity the full 3D grid has not been shown). It can berst®t the
strongest currents are present in the regions where thealaslocityv; is changing rapidly in direction
or magnitude. Thus in the central plare= 0, as shown in Figure 3.17(a), strong currents are found along
the fast outflow jets (see Figure 3.15(a)). Above and bel@awctmtral region strong currents are present
around the lineg = x for z > 0 (see Figure 3.17(b)) angd= —=x for z < 0 (by symmetry), corresponding
to the flow channels illustrated in Figure 3.15(b) and (c)e €hrrent structure along these flow channels is
seen to be complex, with oppositely directed current alordjaaound the lineg = +x. Away from these
regions the current is very weak and has an X-type structupéanes ot = const.

We can make use of the freedom to choose the free fungtion, yo) that arises in the integration for
p2 given by equation (3.42). This function may be chosen ta dite pressure profile, and consequently
also the currenf,. In particular, a form fops (x, yo) may be imposed such that the acceleration of the
plasma is driven by the Lorentz forgg, x By, rather than by the pressure gradient/ps.

One such example is obtained by adding the additional fandiven (in terms of the fieldline coordi-
nates) by

P2 (T0,Y0) = P20 e % (yé - x%) (3.44)

to the pressurg,. The resultant pressure profile is illustrated in Figure8@), where it is seen that the
pressure gradient is still directed along the outflow chiring now acts against the direction of the flow.
Therefore, the acceleration of the plasma is driven egtingthe Lorentz force, with magnetic energy being
transfered to kinetic energy in the reconnection procebs. Torentz force is illustrated in Figure 3.18(b),
where the perpendicular component of the curjehias been deduced using the same method as described
above. The divergence ¢f | along thez-axis remains zero with the inclusion of the extra factorha t
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solution forp,. Thus the reconnection rate in this case is still determawedpletely by the free function
A (z0,yo), and may therefore be the same as in the previous pressuhiemrdriven model.

In both of the examples in this section we must impose a Isedlresistivity in order to ensure a
localised non-ideal region. In principle the remaining mwfitees could then be determined numerically
using the iterative scheme outlined in Section 3.2.

3.5 Summary

In this chapter we have carried out a perturbation exparsidhe 3D stationary MHD equations in the
limit of slow flow. In a series of examples the system has bedred explicitly up to third order, and a
scheme outlined to allow a (numerical) solution at all higtrglers to be obtained.

The expansion scheme allows for a decomposition of Ohm’driégovan ideal and a non-ideal part at
zeroth- and first-order, respectively, together with agganying equations of motion. Such a decompo-
sition of non-ideal, or particular, solutions and idealuimins has been suggested by previous kinematic
analyses (e.g. Hornig and Priest, 2003, Pontin et al., 220@5b) but in this chapter we have shown that
expressing solutions in this way is possible, under cediaqumstances, even when the equation of motion
is also included in the analysis.

In Section 3.2, by assuming the trivial solution for the zbrorder terms (excluding the magnetic
field), we were able to examine the non-ideal solution aldiés directly corresponds to the pure solutions
examined by Hornig and Priest (2003). In the analysis ofigaer solutions we examined two different
magnetic fields, corresponding to a uniform current and toreeat localised along the separatrices of the
basic magnetic field. In these solutions, counter-rotdimgs above and below the non-ideal region are
observed that are limited to within the HFT threading the-rdeal region. The same reconnection rate is
observed in both examples, since the parallel electric &l some extent, independent of the choice of
current. Further, with respect to the reconnection ragegdtimensions of the non-ideal region are important
only along the reconnection line (i.e. the line of maximap, across the non-ideal region, and identified
here with thez-axis) — its extent and structure in thg-plane is unimportant.

The structure of the plasma flow in the particular solutiomnsgthat the reconnection is limited to affect
the field lines within the HFT only. The inclusion of non-iaVv solutions to the zeroth-order equations
equates to the case of ‘composite solutions’ in Hornig anesP(2003). A stagnation flow is natural to
consider; such a flow would bring field lines into the non-idegion, and so allow field line connectivity
further away from this region to be changed, i.e. allow trenmmection process to have a global effect.

Examining the expansion scheme equations it is clear tlaéduation of motion provides a certain
degree of coupling between the ideal and non-ideal solsitiosing some example flows, we have consid-
ered in Section 3.3 to what extent such a coupling restiigt$drm of ideal solution and have considered
the effect of the ideal solution on the reconnection rate|wion of flux and energetics. A particular class
of ideal flows, for which the inertial term in the equation obtion can be expressed as a gradient, may
be imposed on the particular non-ideal solution withowtraiig the form of the current, parallel electric
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field or (in consequence) the reconnection rate. For thess flloe coupling between the two solutions is
relatively weak, affecting only the pressure term in the-ideal solution. A wide range of flows, both in
strength and, more importantly, in profile, belong to thisssl of solution. They may be distinguished by
their effect on the evolution of magnetic flux.

In general, stagnation flows are expected to be presenssick reconnection is to occur, since they al-
low thin current sheets to be built up and so localised n@alicegions to become established. A variety of
symmetric stagnation flows belong to the class of ideal fllhvasnhay be used to form composite solutions.
These flows bring magnetic flux into the non-ideal region flange distances and subsequently remove
the flux. Magnetic flux threading particular channels in teatce of the region shows similar behaviour
to typical 2D reconnection, in the sense that field lines ghun toward the non-ideal region reconnect
with field lines that were initially far away, and the sepamatof initially connected plasma elements in-
creases in time after the flux has left the non-ideal regiorthé same reconnection event, magnetic flux
passing through other regions of the domain can be seen &rgmd slippage-like behaviour. Although
the reconnection rate in the particular and composite meection solutions is quantitatively the same, its
physical interpretation is quite different. The reconi@ttwhich was completely internal for the particular
solution, is now completely external for these stagnatiowsl and this remains the case whether or not the
flow crosses the separatrices of the magnetic field incthplane.

In such symmetric examples there is no net transfer of mageeergy to bulk energy of the plasma.
Non-symmetric stagnation flows, however, such as thoseidenesl in Section 3.4 can convert magnetic
energy into kinetic energy. These ideal flows show highlyedrstreamlines, with fast jets of plasma
emerging from the central region. Although a stronger ciogpbetween the ideal and non-ideal solutions
is present in this situation, we have shown that, just asamtin-accelerating case, the ideal flow itself does
not directly govern the reconnection rate, which is insteéthin the limitations of this model, determined
by a function that is free to be imposed on the solution. Inmexical simulation this free function, which
determines in particular the parallel current along th@neection line, will be defined by the boundary
values for the magnetic field. We have shown how the choicéfefent free functions within the expansion
scheme results in differing physical reconnection scesaly considering two particular free functions
we have illustrated how an acceleration of the plasma mayriwerdby a Lorentz force or by a pressure
gradient. In general, a combination of both effects is alsssjble.

Finally we note that the expansion scheme has been set upiofirdte domain and that the solutions
are valid near the centre of the domain. In a real, finite, aysystem, the type of solution obtained in
a stationary reconnection event will depend on the initied Boundary conditions that are imposed. In
addition, the dimensions of the non-ideal region will be elggent on the dynamics of the event prior to
the onset of the stationary phase, for example on the pradessrent sheet formation. Thus the various
choices that have been considered here for the free fusctinthe expansion scheme, and so the type
of reconnection solution achieved in practice, will depemdsuch conditions. However, each order of
the expansion includes enough free parameters to make theitonde of the new contributions/{, B;)
essentially free, and independent of the lower-order goiat We are hopeful therefore that the example
solutions found are good approximations to full exact sohg, in that the infinite series represented in each
case may be convergent (providefl < 1). Whether the solutions are dynamically accessible cabaot
determined within the scheme.



Chapter 4

Flux-Tube Disconnection

Analytical models for 3D non-null reconnection have, sq fagen based on a hyperbolic field geome-
try. However, as discussed in Section 2.2, in 3D it is thetiooaof non-ideal terms rather than the field
geometry that will determine the location of reconnectidm.this chapter we present a model for flux-
tube disconnection, where an elliptic geometry is takertHermagnetic field. The model is developed to
describe a steady-state situation in which the two footigaha magnetic flux tube are being spun in op-
posite directions and in this stationary state a twist is@né¢in the centre of the flux tube where a region of
localised current is present and reconnection is takingepla qualitative description of the systems evo-
lution is presented in Section 4.2, with a detailed anadyticodel given in Section 4.3. The model may be
categorised as an example of global non-null reconnectiderGeneral Magnetic Reconnecticatheory
we summarize in Section 4.1. Several features of previoyseftoolic) models of non-null reconnection
are found.

The results of this chapter can be found in Wilmot-Smith arids®? (2007).

4.1 General Magnetic Reconnection

There are several features of 2D reconnection models, fonple a plasma flow across the separatrices of
the magnetic field, or a normal electric field component abtioint, that have been proposed as general
definitions for reconnection. It was not until more gene®i, circumstances were considered that the
appropriateness of each of these conditions became clear.

Schindler et al. (1988) first considered how applicablegéhdgas might be to 3D geometries, and
argued that any general definition should be structuradlplst i.e. not depend on small modifications to
the system under consideration. They proposed that a definfirst considered by Axford (1984), based
on a change of connectivity of plasma elements due to a kmzhliiolation of the frozen-in field condition,

53
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BREAKDOWN OF MAGNETIQ

CONNECTION
GLOBAL GENERAL MAGNETIC RECONNECTION
MAGNETIC
DIFFUSION
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Figure 4.1: Classification of breakdown of magnetic coninaciccording to Schindler et al. (1988). Var-
ious branches of General Magnetic Reconnection are showorRiection is classed gibal when a
change in magnetic connectivity occurs for plasma elentéatsdo not themselves pass through the non-
ideal region.

should be used. This is the basis@éneral Magnetic Reconnecti¢8MR). The condition

/mm#m

evaluated along a field-line, is required for GMR, being aggelisation to 3D of the 2D normal electric
field component at an X-point. In order to distinguish betwesconnection and diffusive processes, the
additional requirement that the non-ideal term in Ohm’s (shich itself is the cause of the breakdown
of the frozen-in condition) be localised is also imposed.uiZzgjently, GMR applies only to situations
whereR,,. > 1, i.e. the global magnetic Reynolds number is large. FigutdlHstrates the regimes of
breakdown of magnetic connection and so also the branchgsnafral magnetic reconnection (Schindler
et al., 1988). The breakdown of magnetic connection may heezhby a resistive term in Ohm’s law, but
also by other non-ideal terms, such as the pressure tensor.

Finite-B reconnectiomssumes the magnetic field does not vanish within the naad-idgion, and may
be classified further dscal or global according to how the change in connectivity arises. If a gean
magnetic connectivity occurs for plasma elements that dthemselves pass through the non-ideal region
then the process is global; otherwise it is local. The changmnnectivity necessarily involves plasma
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elements located on different sides of the non-ideal regéand reconnection occurs only for elements
which are, at some time, connected to the non-ideal region.

As the authors pointed out, the separation of plasma elemtigait results from the reconnection process
may be a factor in reconnection modelling, and a reason whgrakscenarios which fit into the GMR
scheme have not been extensively modelled. Stagnation,flelish lead to large separations, may be a
feature of 3D models not because they cross the separatfitesfield, but rather because of the separation
of plasma elements they cause. Models of finite-B reconmebtive shown thaiounter-rotatinglows are
a distinguishing feature of the 3D case (Hornig and Prig¥232Pontin et al., 2005a, Wilmot-Smith et al.,
2006a), and that the orientation of stagnation flows wittpees to the field structure is not important
(Wilmot-Smith et al., 2007a).

Magnetic reconnection models in which the magnetic fielddra®©-type topology have not received
much attention. Recently, however, De Moortel and Galshé2006a,b) presented numerical simulations
of 3D reconnection due to rotational and spinning motionhaf tootpoints of magnetic flux tubes. In
their simulations stagnation flows were observed, togetlir an X-type current structure, although the
magnetic field showed an O-type configuration in cross-seatiplanes. We return to examine and extend
these models in Chapter 5. Here we present a much simplergjethich allows for analytical modelling,
of reconnection that occurs as a result of the counteriontaf the ends of a magnetic flux tube, which we
refer to adlux-tube disconnectiomA qualitative description of the process is outlined in tiext section,
with a more detailed model given in Section 4.3.

4.2 Qualitative Model

Consider a steady-state situation (Figure 4.2) where a atidftux tube, of radiug, has footpoints located
atz = +H and a typical vertical magnetic field strength Assume that the two footpoint ends are being
rotated in different directions with speegl, and that, as a result of the counter-rotation, a twist irfitdd
is produced within: = +L. That is, assume that within the non-ideal region the magyfietd may be
written as

B = ByO + B,2z,~ kbyB + boz,

wherek is a constant indicating the order of magnitude ratio of tieitlal field strength to the guide field.
The flow is assumed to be incompressible, which is satisfisahzatically for a purely azimuthal plasma
velocity that is independent &t

The localised poloidal field component results in a currant therefore a non-ideal region, that is
localised in all three dimensions. The current has a compoparallel to the magnetic field, and does
not close within the non-ideal region; we assume that thermeturrent is diffuse and is spread over a
sufficiently large volume that its local effect may be netgéelc A sketch of the current structure is shown
in Figure 4.3.

Several questions now arise in the analysis. How, in an @fdaagnitude sense, is the twist in magnetic
field related to the driving plasma velocity. Specifically, how do the parametdrandk, which determine
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% [

Figure 4.2: Sketch illustrating the model for flux-tube disnection. A flux tube of radiug is anchored
at its footpointsz = +H which are rotated in opposite directions with spegd The counter-rotation
generates a localised twist within the flux tube in the shadgbn, i.e. between = + L.
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Figure 4.3: Sketch illustrating the form of the current geed by the counter-rotation of the flux-tube
footpoints. The box indicates the boundaries of the noaticegion. A strong current (solid black lines)
gives rise to the localised non-ideal region, with the westknn current (dashed lines) being diffuse.
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Figure 4.4: Path taken to consider a loop integral congjsifrthe central field line, a field line along the
boundary of the non-ideal region (shaded) and two conngctidial lines. The integral of the electric
field around the loop (solid black lines) must vanish due &odtationarity of the process. The central axis
indicated by a dashed line.

the extent of the non-ideal region and the strength of theigal field, respectively, depend @p? Which
parameters determine the rate of reconnection? How is teefaeconnection dependent on the driving
velocity vy?

We can gain an insight into these questions by examining ®ltea/ and Faraday’s law for a steady
state: .
E+vxB=-—j
g

V xE =0,

whereo is the electrical conductivity. Consider the ideal regitwowe and below = +L. Therej = 0,
and Ohm'’s law reduces to
E, + vgbg =0, (41)

whereFE,. is the typical radial electric field. Similarly, along thenteal axis ¢ = 0) the plasma velocity is
zero by symmetry and

1
E,==j.. (4.2)
g

Now, V x B = pj implies that along the axis we also have

1 /B 0B 2kb
_(_9+ e)z 0

) e (4.3)

jz:

Next consider a loop integral, as illustrated in Figure 4d@hsisting of the part of the central field line
from below to above the non-ideal region, a field line on tharutary of the non-ideal region, and two
connecting radial lines. Integrating around this loop asithg Faraday’s law and using the symmetry of
solutions above and below theaxis gives

0= %E -dl ~ 2LE, + 2aE,, (4.4)

since the electric field along the boundary of the non-idegian vanishes. Substituting expressions (4.1),
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(4.2) and (4.3) into relation (4.4) allows us to eliminate tectric fields&,, and £, and obtain an expres-
sion for the plasma velocity in terms of the field parameters:

_ 2nkL
==

o , (4.5)
wheren = 1/ (uo) is the magnetic diffusivity. This expression allows us tdedmine the produckL
when the radius of the tube) and the rotational driving velocityvg) are given. For example, if we
keep the height of the non-ideal regioh)(fixed, any increase im, must be reflected by an increase
in the poloidal field strengthk i.e., the number of turns the field makes within the non-idegion must
increase. Similarly, we could have kédptixed but increased; this would also have the effect of increasing
the number of turns the field makes within the non-ideal negitherefore we deduce that the effect of an
increase in rotation speed) is to increase the number of turns of the field, whether thhcalengthening

of the non-ideal region or by an increase in the number oftofrihe field within the non-ideal region.

Equation (4.5) is the basic expression for the rotationkloity (vg) in terms of the magnetic diffusivity
(), the dimensionsd, L) of the diffusion region and the ratid) of rotational to axial field strength. It
is interesting to see how it differs from the correspondiimgpde expressiony, = n/a) for the inflow
into a Sweet-Parker diffusion region, since here we haveextie factorst and L/a that arise from the
three-dimensionality of our process. The first factor arisgsentially because we have a twisting process
and the second because the electric field comporignsnd £, differ in magnitude.

We may also make an estimate of the rate of reconnectibp.(ddt), i.e. the rate of change of magnetic
flux. This rate is given by the integral of the parallel elexcfield along the reconnection line, i.e. along the

central axis:
dq)rec

dt
where the above expressions, (4.1), (4.2) and (4.3), haarelsed. This shows us that the rate of reconnec-
tion is proportional to the rotational driving velocity. & meconnection rate may be interpreted as the rate
at which all the field lines within the flux tube are changingitttonnections, and so this estimate of the
reconnection rate agrees with our intuitive understandfrige process. In dimensionless terms we have

Ankbo L
a

= /E”dl ~ 2LEZ ~ = 2b0av0, (46)

dq)rec a Vg
=2——. 4.7
dt Huvyg “.7)

Thus the dimensionless reconnection rate is proportiorta Alfvén Mach numbery, /v 4) of the driving
flow and the ratio ¢/ H) of the non-ideal region radiug) to the ambient scale heightl). Thus, ifa/H
andvg /v 4 are significant fractions of unity we have fast reconnecti@n, at a significant fraction of the
Alfvén speed; otherwise the reconnection is slow (seemeb).

In the next section we present an analytical model for therreection process described above. We
show that the exact kinematic solution obtained there agréh the intuitive understanding developed in
this section.
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4.3 Quantitative Model

We present here an axisymmetric analytical model for fluetdisconnection. The model is kinematic (i.e.
the equation of motion is neglected) and stationary, arisfie the following equations:

E—|—v><B:lj, (4.8)
o
V xE =0, (4.9)
V X B = pj,
V-B=0,
V-v=0.

Several of the previous 3D analytical models of reconnactibich have helped to increase our under-
standing of the process have been kinematic (Lau and Fir81,, ¥9ornig and Priest, 2003, Pontin et al.,
2005b). They have demonstrated many features of 3D rectianditat are not presentin 2D but which are
also seen in numerical experiments (Pontin et al., 2005&)dgnamic analytical models (Wilmot-Smith
et al., 2006a, 2007a). A typical feature of reconnectionsimagphysical plasmas is that non-ideal regions
are localised in 3D as a result of intense current conceoitrain such regions the resistivity is expected to
be enhanced by current-driven microinstabilities. Weeafae consider here a magnetic field that leads to
a localised current, and additionally impose a localisatibthe resistivity. This is one of the features that
distinguishes our model from previous kinematic modelsnetzelocalised non-ideal region was obtained
through an enhancement of the resistivity alone.

Working throughout in cylindrical coordinatés 6, z), the magnetic field is prescribed as

2 22

r r
B = 2b0ka exp <—¥ — ﬁ

)é+%z

The azimuthal component of the magnetic field is localisedlsmgenerates a twist in the magnetic field
close to the origin, while at large distances the field is amif in the z-direction. The width of the flux
tube is dependent on the parametgethe extent of the twist in the-direction on the parametér, and the
ratio of the toroidal field to the guide (or axial) field given the parametek. Some typical field lines are
illustrated in Figure 4.5; note that each field line remaingsurface of constant radius.

This simple field configuration allows for a direct integoatito find the equations of the field lines.
This proves to be useful later, where we integrate along #éhe lines in order to obtain expressions for the
remaining terms.

The equationsR (rg, 6y, s) = (R, ©, Z), of the field lines passing through the pofng, 6y, z = 0) are
given by

R:T‘07

O = 2ok s exp (~ 24 - 45), (4.10)
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Figure 4.5: Some typical field lines threading the non-idkathain, for parameteils= 1,a = 1, L = 3,
by = 1.

Z = boS.

The inverse mappin® (, 0, s) = (Ro, ©, Zo), is given by

RO =T,
2 p2s2
O = 2kbosE exp (—— i ) : (4.11)
ZO = —boS.

The twist of the flux tube generates closed poloidal ringuofent, given by

. 4dbok r? 22 rz . n a?—r?
= —exp|——— == — T Z | .
J na P\l 12 L2 a?
An example is shown in Figure 4.6, where the current is sebe ig localised in three-dimensions around
the origin, and has its greatest strength along the axiedfil tube. Now the non-ideal tern};,j in Ohm’s

law (4.8) would already be localised given a uniform eleetriconductivitys. Here, however, we choose
to impose in addition a form for/c leading to a localised magnetic diffusivity We take

1 I

Regions of intense current concentration are expectedstorgie to enhanced diffusivity, and so this pro-
vides a motivation for the form foy chosen here. We take the non-ideal regibnsay, to be inside the
surface defined byj|/oc = 0.02 (|j|/o)max. The expression (4.12) has been chosen such that there is no
return-current withinD. As shown later, this is expected to be the case if the couatational flows
possess a single sign of rotation above th@ane (and the opposite sign below it). With the localmati
imposed onl /o the results presented here are qualitatively the same asniode! in which the return
current is very diffuse.
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Figure 4.6: Vector-field illustration of the localised axismetric current (parameteks= 1,a =1, L =1,
b() = 1, "= 1)

Combining (4.8) and (4.9) and takidy= —V ¢ gives

—Vop+vxB= lj. (4.13)
ag
The non-ideal termyj is now known, and we are left to dedugeandv. The component of (4.13) parallel
to the magnetic field is given by

1
~-Vé-B=-j-B
g

and so an expression fgercan be found by integrating along the magnetic field linepressions for which
are given by (4.10). Starting the integration from the alitiondition¢ = ¢ (9, 6p) atz = 0 we deduce
that

8(r0,00,5) == |25 Bds +0n (r0.00). (4.14)
0

An equivalent expression farin terms of(r, 8, z) can then be obtained using the inverse field line mappings
given by (4.11).

The initial integration conditio (ro, 6) is a free function that will affect the plasma velocityand
so, for a solution confined to a finite region, it representsanidary condition on the solution. We choose
here to set) (9, 8p) = 0 since this is the condition needed for a purely countertianal plasma velocity
that is anti-symmetric about= 0. The corresponding potential, is given as a function of andz by

b= —727( bokL (a2 — T2) e*5T2/“2erf v2z , (4.15)
oopa® L

where erf£) is the error function defined by

¢
erf(¢) = —/0 e du.
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Figure 4.7: Counter-rotating flows (a) above=€ 1) and (b) below £ = —1) the central plane; = 0. The
solid line indicates the boundary 2% of the non-ideal regiothe same planes (parametérs- 1, a = 1,
L:3,b0:1,/L:1,7’]0:1).

Thus, a jump in the electric potential across the non-idegibn exists, with the maximum potential dif-
ference being along the central field line. Outwith the ndaai region the electric field is in the radial
direction only, oppositely directed above and below cépieme ¢ = 0), and confined within the flux tube
consisting of field lines which thread the non-ideal region.

The component of the velocity perpendicular to the magtietid can be deduced from (4.13) as

(=V¢—j/o) xB
|BJ? '

V)] =

We use the freedom to add a component parall® to ensurév - v = 0:

B

v:vL—(vL)Z%.

The resultant velocity field is in the azimuthal directioyoand given by

2nokr _s202 [ V2L, 9 V22 22 5272\ 4
VvV = Te / <7 (6& —57' )el’f T +ﬁ€ / 0,

whereny = 1/oou. An example is illustrated in Figure 4.7. The flow is courriaational, i.e. rotates in
opposite sense above and below the 0 plane (where it vanishes). The magnitude of the flow increase
with distance from the central plane and becomes indep¢ndéright, z, in the ideal region. Non-zero
flow is confined to the flux tube consisting of the field lines#ming the non-ideal region.

How does this velocity compare with the order of magnitudereste given by (4.5) in the previous
section? Above and below the non-ideal region we may obtaiestimate of the typical plasma velocity
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(which, in these regions, is independent of height) by figdhee maximum value of along a radial line.
This maximum velocity turns out to be given by

nokL

Vmaz = K——5—, (4.16)
a
wherekx is the constant given by
V1 V1 1
K= (%) \/271" (75— 5\/177)exp<% - Z5> ~ 5.327. (4.17)

The expression (4.16) is in qualitative agreement with tlieoof magnitude estimate given by (4.5). We
have, therefore, confirmed the intuitive estimate with thalgtical model.

The motivation for our choice af is now apparent. Since the component of the current pataltéle

magnetic field is given by
, 4bok , 5 5 r? 22
jH = ‘ua3 ((l -r ) exp _a2 - 1.2 )

there is a change in the signgfatr = a. A uniform resistivity would then lead to flows in each= const.
plane rotating in different senses for< a and forr > a. Although the magnitude of the rotational flow
for r > a would be small, we choose to set it to zero for simplicity, Impbsing a profile for) that ensures
the non-ideal region is contained within the surface a. We have therefore obtained a kinematic model
for the qualitative description of flux-tube disconnectarilined in Section 4.2.

In this reconnection process all the field lines which thiadugh the non-ideal region are continually
changing their connections, with each field line reconmgcto others within the same surface= rg.
This is one of the features that distinguishes the 3D casa fhe 2D case where field lines are cut and
reconnected at a single point, and therefore the recommecte has a different interpretation in 3D. The
field line which has the maximum difference in potential aband below the non-ideal region is identified
as the reconnection line. In the present model, for symnretagons, the reconnection line is thaxis.
The reconnection rate is given by

do,..  Anobok _ 2/ 2mnobok L
T:/E”dz:/E-Bds:/ ZN020% 22212y, ZVTI00RE
a a

— 00

or, after substituting foo,, ., from equation (4.16),

dd V2T

— = ——2b mazx
dt K 0aY

wherex is the constant given by equation (4.17). Thus the recoiorerdte in the kinematic model is, up
to a constant factor, in agreement with the earlier qualéastimate (4.6).

Previous analytical 3D reconnection models (see, for exantornig and Priest, 2003) have taken
a uniform current and localised the non-ideal region thiolagalisation of the resistivity) alone. Such
models find that the reconnection rate is independent ofahenpeter controlling the radius of the non-ideal
region. Here we find that with a localised current this par@me, does become important in determining
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the reconnection rate.

4.4 Possible Implications of the Momentum Equation

Both the order of magnitude estimate (discussed in Sectidnahd the analytical model (discussed in
Section 4.3) for flux-tube disconnection are kinematic gses, i.e. they neglect the implications of the
momentum equation. We now consider, from a qualitativepgeatve, the extent to which the momentum
equation may alter the solutions. It was shown in Sectio@sadd 4.3 that there is some freedom presentin
the solutions presented. Specifically, the flux-tube magoed to an increase (decrease) in the magnitude
of the rotational driving velocity, either by an increase (decrease) in the lengitf,the non-ideal region,

or by an increase (decrease) in the number of turns prestmibwhe flux tube or by a combination of both
effects. We wish to examine whether this freedom is inhdretite 3D process, or whether it arises through
neglect of the momentum equation.

Assume, then, that the qualitative model presented in @&edtR also satisfies the momentum equation,
p(v-V)v=-Vp+jxB.

Consider the plasma pressure along a field-line boundingjukeéube. In the central plane (= 0) the
plasma velocity ) vanishes and so we may estimate the pressure at the edgetobthas

(_Vp)centre +j xB=0

. 2k2b3
= | - Vp|centre - _]zBQ - o . (418)
na
In a plane of constant above the non-ideal region the Lorentz force vanishes and
(—Vp)top =p(v-V)v
pUy
= | - Vp'top = 7 (419)

Now, since the pressure must be constant along a boundatyifie| the estimates far— Vp|.cntr. and
| — Vpliop given by (4.18) and (4.19), respectively, must be equalweshave that

vy = 4 /ikbo, (4.20)
Hp

or, rewriting in terms of the azimuthal Alfvén velocityyg = kbo/\/210,

Vo = 20 A9.

We may now return to the estimate for the plasma velagjtygiven by equation (4.5), obtained in the
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qualitative analysis of section 3, i.e.
_ 2nkL

a2
Equating this last expression fog with that given by (4.20) determines the paramétawhich determines
the length of the non-ideal region, in terms of the axial fitlgngth and flux-tube radius as

Vo

1 boa®
=)= 2% (4.21)
2pp M
These estimates suggest that a change in the rotationagirelocity () results in a change in the
azimuthal magnetic field. The length ) of the non-ideal region is determined by the axial field rsgta
and tube radius. The expression fogiven by (4.21) also allows us to estimate the rafigq, between the

length and diameter of the non-ideal region,

whereuv 4 is the Alfvén velocitypa = by/+/2up andR,,, = vaa/nis the magnetic Reynolds number based
on the width of the flux tube. Thus the inclusion of the momentguation in the qualitative analysis
suggests that the length of the non-ideal region is very ngueater than its width, resulting in a long thin
current sheet.

4.5 Summary

In this chapter we have presented a stationary model fortflbg-disconnection. The model considers a
straight magnetic flux tube which has a localised twist preseits central region as a result of a counter-
rotational driving velocity imposed at the footpoints oétimagnetic flux tube. The model has a non-ideal
region which is localised in all three dimensions, and actatefield component parallel to the magnetic
field is present within the non-ideal region. These two proge are those required for the process to be
considered as an example of global general magnetic recbonéSchindler et al., 1988). It differs in
many respects from more traditional models of 2D and 3D reeotion; the magnetic field is not of X-type
structure, and the field lines are continually cut throudhloe diffusion region.

An order of magnitude analysis, presented in Section 4l@yalus to understand, from a qualitative
point of view, how the disconnection occurs. An increasé@rbtational driving velocity of the footpoints
results in an increase in the number of turns present witténwisted flux tube. The number of turns may
be altered by increasing the strength of the poloidal fieldponent, increasing the length of the non-ideal
region, or by a combination of both effects. A similar quatiite estimate of the reconnection rate has also
been made, which was shown to be proportional to the rotltiniving velocity and to the magnetic flux
of the tube, i.e. the product of the magnetic field strengthtae radius of the flux tube.

In Section 4.3 we presented an analytical incompressibtbeiaf flux-tube disconnection. Just as with
several such 3D reconnection models, the analysis is kitierirathat the effects of the equation of motion
have been ignored. Instead, the implications of Ohm'’s |lad/fearaday’s law have been considered. The
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analytical solutions confirm the estimates of the flux tubengetry and strength and reconnection rate in
relation to the footpoint velocity. A qualitative estimdtem the equation of motion in Section 4.4 implied
that the ratio {/a) of the diffusion region length to width is of order the magio&keynolds number. In
turn this implies that normally the reconnection is slow aad only be fast wheh/H ~ R,,.



Chapter 5

An MHD Experiment into the Effect of
Spinning Boundary Motions on
Misaligned Flux-tubes

In this chapter we describe a numerical experiment in whitehrtature of a 3D reconnection event is
investigated. The experiment follows a different approom the work described in Chapters 3 and 4 in
that the non-ideal region is not localised in space in ati¢hdimensions and, as we will show, reconnection
at aquasi-separatoreconnection plays the important role in the process. Walibgrefore in Section 5.1
by providing some additional theory behind and motivationthe experiment.

The results of this chapter can be found in Wilmot-Smith aedbortel (2007).

5.1 Introduction

As mentioned in Chapter 2, separator reconnection (PmesTaov, 1996) is thought to play a fundamental
role in coronal heating, with observations directly sugipgsseparator reconnection is occurring in the
corona (Longcope et al., 2005). The coronal magnetic fiekthihored in the photosphere where surface
motions act to displace the flux tubes, providing a Poynting through the base of the corona. The
extremely high magnetic Reynolds numbers of the coronairegery large gradients in the magnetic
field to be built up before non-ideal processes can becomertianmt in localised regions and allow for
energy release. Models for coronal heating therefore nete large-scale motions producing small-scale
structure (Sweet, 1958, Parker, 1957). This may occur irdhe action of complex photospheric flow
acting on simple coronal fields (Parker, 1972, van Ballejgngil986, Galsgaard and Nordlund, 1996)
or through the action of simple photospheric flows on compteonal fields, as in theoronal tectonics
modelof Priest et al. (2002). The model describes each coronpldsdeing anchored to the photospherein

67
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many discrete sources. Thus each loop consists of magnetidiflided by separatrix surfaces into several
distinct domains. Even simple motions of the flux sourcesaftirm current sheets along the separatrices
of the field. Reconnection then allows for dissipation of thierent sheets and thereby a heating of the
corona. In the ‘minimum current corona’ (MCC) model of Looge (1996), flux tubes are represented by
point magnetic charges in a manner that allows the patteflmxotube linkage to be analysed. It is shown
that in the absence of reconnection, current ribbons foamgainagnetic separators. The MCC model finds
an approximation to the current that forms along a sepanati@sponse to displacement of photospheric
footpoints. When the stress along a separator (that résattsthe accumulated current) becomes too large,
reconnection allows for the flux between domains to be chéiagd energy stored in the separator current
released. The underlying assumption of models such as thdkat the coronal field is able to evolve
through a series of flux-constrained equilibria (Priest Raddu, 1975, Titov, 1992).

There are now several numerical experiments that investiggparator reconnection in some detail,
with particular emphasis placed on elementary heatingtevetere, the effect of simple footpoint motions
on current sheet formation and reconnection is considered. relative motion of two magnetic sources
which are not initially connected, but have an overlyingkzaound magnetic field, has been extensively
numerically modelled (Galsgaard et al., 2000, Parnell aatsgaard, 2004, Galsgaard and Parnell, 2005,
Haynes et al., 2007). The flux sources interact through aggareconnection and a complex magnetic
topology is observed.

Here we present 3D numerical simulations of an elementaairigeevent, which build on the papers
of De Moortel and Galsgaard (2006a,b). In that series of rsaibe authors consider the interaction of two
magnetic flux tubes as they are subjected to two distinctstgfenotion imposed on the boundary foot-
points. The first is a large-scale rotating motion in whiclthbaf the footpoints on each of the boundaries
are rotated and the second is a small-scale spinning matishich each footpoint is spun while its posi-
tion remains fixed. The magnetic flux tubes in the spinning e Moortel and Galsgaard (2006b) are
initially perfectly aligned and hence remain so throughbetexperiment. The experimental setup taken is
therefore non-generic, representing a situation extrgmnelikely to arise in the solar context. In the ini-
tial potential field extrapolation of perfectly aligned flagurces there are two flux-domains with a single
boundary between them, while in any other situation wheedfltix tubes are not perfectly aligned there
are four flux-domains and correspondingly four boundaréts/ben domains. It is not clear whether in the
misaligned case, with its additional boundaries and likgfgs for current-sheet formation, the nature of
the reconnection taking place will be the same as in the pyfaligned case. In particular, the rate of
reconnection could be quite different, with correspondimglications for coronal heating.

In this chapter we examine the relevant case for the solameowhere the magnetic flux tubes are
misaligned, imposing the same spinning motions on the tobgbints as De Moortel and Galsgaard
(2006b). One aim of the chapter is to examine the nature a8iheesconnection process that takes place
(Section 5.3). Then in Section 5.4 we use some comparisdmsbr data of one of the cases of De
Moortel and Galsgaard (2006b) and our results to see howetfueanof the reconnection differs for the two
examples. We summarise our results in Section 5.5 but bedhreinext section by briefly describing the
numerical code and experimental setup.
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5.2 Model Setup

We use a parallel numerical code to solve the dimensionlé4B Elquations in the form

0B
5 = -VxE,
E = _(VXB)+nja
j = VxB,
dp
E - —V(pV),
b .
a(pv) = —v-(pVV—FL)_VP‘f'JXBv
0
a_j = —V-(ev) = PV -V + Quisc + QJoute ,

whereB is the magnetic fieldy the plasma velocityE the electric field,j the electric currenty the
resistivity, z the viscous stress tensgr,the density,P the pressuree the internal energyQ,is. the
viscous dissipation an@ j,.;. the Joule dissipation. In addition the ideal gas law is agsljnso that

P = (y—1)e = 2¢/3. The MHD equations have been non-dimensionalised. Dirneasiquantities
may be obtained if characteristic values of three quastéie chosen and the remainder obtained using the
relations

lo
v = —

0 tO )
€0 = P()Ug )
By = wo/(kopo) ,

= 9

Jiv,
TO = RO )
Ey = wvBg,

. By
Jo = —F

Holo

where the magnetic permeabilityy = 47 x 10-"Hm~!, & = 0.6 and the gas constank = 8.3 x
10°m?s~2K 1. This is because in the non-dimensionalisajigrnas been set ag = 1 andR to be equal
to the mean molecular weight.

For a comprehensive description of the numerical code sedliNal and Galsgaard (1997). Here we
summarize some of its main features. A staggered mesh isausetiich the variables are evaluated. The
variablesE andj are calculated at the centre of each edge of a unit cube Bhiadpv are calculated at
the centre of each face apdande at the body centre of the cube. To evaluate spatial derestivsixth-
order finite difference scheme is employed; six operat@seguired ()Tmyz]) that return the derivative of
the variable at-1/2 a gridpoint (in the appropriate direction). For exan‘@jgis given by

O (fign) = fliioin

a b c
s (fijk — fix14k) + AL (ficijk — fit2,5,k) + AL (fi—2,jk — fit3,k)
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wherea = 1 —3b+5¢,b = —1/24 — 5candc = 3/640, and others obtained by permutation of the indices.
Since the result obtained is returned /2 a gridpoint from the input values it may be that no subsequent
spatial interpretation is necessary to find the value at ¢éggired location. If such an interpolation is
necessary however then a fifth-order method is used, thieeiustx numerical operators beiﬂgfyz}, say,
where

Tf (figr) = Jit1/2,5.k (5.1)
a(fijr+ fixrk) F0(ficr ik + firajk) + ¢ (ficojk + fixs,jk) (5.2)

where nows = 1/2—b—¢,b = —1/16 — 3candc = 3/256. To advance the solutions in time a third-order
predictor-corrector method is used. The predictor is glwen

f1(:21 = alfn—l + (1 - al) fn + blfn7

and the corrector by
fnJrl - a2fn71 + (1 - a2) fn + b2fn + Cny(:r)l-

In the above,
ar = 7”27
b1 = Atppip(l+7),
as = 2(1+7)/(24+3r),
by = Atyyie(1+7%)/(243r),
2 = Atlyiip(1+7)/(243r),
ro= Atyyy2/Aty_1)2,

whereAt,, /5 = tny1 — t, andAt,,_y 5 = t, — t,—1. In addition, the code uses artificial fourth-order
viscosity and magnetic resistivity (‘hyper-resistivignd ‘hyper-viscosity’) terms to try and limit diffusion
to short length-scales but still handle the developmentiaierical instabilties.

In the experiment described here we place two positive ssufwhich we label and B for conve-
nience) on the lower boundary of the domain, aligned withittaxis, and two negative sources (labelted
andb) on the upper boundary, aligned with thexis:

B.(xz,y,2=0) = e /TS 4 efrg/rg, (5.3)

B (v.y,2=1) = e/ 4eril, (5.4)
wherery = 0.065, 72 = (z—0.3)° + (y— 0.5)%, 72 = ( —0.7)> + (y — 0.5)%, r2 = (z —0.5)% +

(y —0.3)%,andr? = (z — 0.5)> + (y — 0.7)>. In addition, on both the upper and lower boundaries we take
B, = B, = 0. These sources are shown in Figure 5.1.

The above are initial conditions on the magnetic field andughout the experiment each of the four
flux sources is spun, those on the lower boundary in a cowttekwise direction and those on the upper
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Figure 5.1: Contours plot illustratind| on (a) the lower and (b) the upper boundaries of the domain.
Superimposed are vectors of the imposed spinning drivitagitg in the same planes. The flux sources are
labelledA (left-most source) ané (right-most source) on the lower boundary anflower source) and
(upper source) on the upper boundary. As seen in (c) theraitiedly four regions of differing magnetic
flux connectivity in the domain, with flux connecting sourcésinda labelled Aa, and similarly forAb,

Ba andBb.
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boundary in a clockwise direction:

vg (r,z = 0) = vor1[1l + tanh (p (1 — gr1))] + vor2[1 + tanh (p (1 — gr2))], (5.5)
vg (r,z = 1) = —vors[l 4+ tanh (p (1 — ¢r3))] — vora[l + tanh (p (1 — gr4))], (5.6)

wherevy, = 0.02222, p = 16.8 andq = 5.6. This velocity has been chosen such that the shape of the flux
sources on the boundaries is maintained as they are spurgtdhé source profile given by equations (5.1)
and (5.2) holds throughout the experiment. In the desornigtiof the experimental results we refer to
the spin angle this measures the angle in radians by which the sourceshe®me spun from their initial
positions. Note that the chosen driving velocity is verystmmpared with the typical Alfvén velocity.

Using these initial conditions on the magnetic field at tharimaries of the domain, a potential field
is calculated to fill the domain and imposed as an initial ¢borl The misalignment of the four sources
results in the region being divided into four distinct fluxdains, as shown for the central plane<£ 0.5) in
Figure 5.1(c). The magnetic flux strength decreases rapidfy from the centres of the sources but there
are nevertheless no real magnetic null-points within theaa so that there exist onlyuasiseparators
andquastseparatrices.

The dynamical evolution of the system is obtained by usirgnibmerical code described to solve the
non-ideal MHD equations, in 828% Cartesian box. Periodic boundary conditions are imposeti®sides
of the box. The resultant evolution of the system is desdribehe following sections.

5.3 Experimental results

In this chapter we choose to focus on the basic dynamicaliBual of the system, placing particular em-

phasis on the reconnection mechanism that takes placeefbheme consider first, in Section 5.3.1, the
character of the magnetic flux connectivity and how it depshith spin angle. We proceed in section 5.3.2
to describe the nature and evolution of the current conatotrs before considering the plasma velocities
and implications for the reconnection mechanism in Se@&iaGr3.

5.3.1 Magnetic Flux Connectivities

We start by examining the behaviour of the magnetic flux witim @ngle. With the positions of the mag-
netic source centres on the lower and upper boundaries thedffect of the spinning foot-point motions is
to drive the magnetic field away from potential and may thaneefesult in magnetic reconnection between
the sources.

Figure 5.2 gives a simple, qualitative overview of how thegnetic flux in the domain evolves as the
sources on the boundary are spun. Some illustrative fieés lirave been traced from the two sources on
the lower boundary, coloured red if they are associated sathrceA and green for sourcB. In the initial
potential field, shown in Figure 5.2 (a), flux from each of theér sources is divided equally between the
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Figure 5.2: Selected field lines traced from the two sourcethe lower boundary, at spin angles faj 0
(b)6 = 0.79 (c) # = 1.87 and (d)d = 2.64. Those traced from sourcé are coloured red and those from
sourceB coloured green. The field lines are seen to become incrdagimigted with spin angle and, in
addition, it is seen that the initially equal distributiohftux from a single source on the lower boundary
between both sources on the upper boundary becomes unatiuslareasing spin-angle. Over-plotted are
isosurfaces of current; a twisted current sheet is seerrto ifothe centre of the domain.
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Figure 5.3: Connectivity of a sourcd, say, on the lower boundary with spin angle. Flux with corinéy
Aa is shown in light blue, flux with connectivityld is shown in dark blue and flux which leaves the box in
red.

two upper sources. As the sources are spun the magnetic flag shomain becomes increasingly twisted,
as seen in the sequence of images 5.2 (b-d). In addition, #umetic flux connectivities of the sources
change with increasing spin angle; by the end of the expertinfiex from sourced (B) is predominately
connected to sourde(a). This property is reflected in the traced field lines of 5.2 @uperimposed on
the same diagrams are (the same) isosurfaces of (stronghtuNote that, for clarity, current in the three
grid cells closest to each of the boundaries has been renimmdhe diagrams. Early in the experiment,
a twisted current sheet is seen to form in the centre of theadlgraxtending vertically throughout the box,
and this current sheet persists throughout the simulafiba.will return to examine the twisted current
sheet, but now proceed to examine the evolution of the maxgfihet connectivity in more detail.

We begin by considering the evolution of connectivity of thagnetic sources themselves. It is impor-
tant to note that the sources are non-ideal and we are, tlierefable to follow the evolution in time of
individual field lines exactly at these locations. Instdadeach spin-angle we trace a large number of field
lines from the sources on the lower boundary. For each sulchlifie we deduce its magnetic connection
on the upper boundary and the amount of magnetic flux assdcieith it. In Figure 5.3, field lines have
been traced from sourcé to the upper boundary and coloured dark blue if they are atteddo sourceé
(i.e. if their magnetic connectivity is of typab), light blue if they are connected to sourcéi.e. if their
magnetic connectivity is of typda) and red if they leave the box. As suggested already by toedrfield
lines of Figure 5.2, the total magnetic flux of tyde is seen to decline with spin angle, whilst that of type
Ab is seen to increase. The reconnection mechanism behirgltifaesitions will be discussed later.
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Figure 5.4: Change in magnetic flux connectivity with spiglerof sourceA (B) on the lower boundary.
The solid line shows the percentage of flux with connectlér{Ba), the dashed line the percentage of flux
with connectionda (Bb) and the dot-dashed line the percentage of flux from sodr€B) that leaves the
box.

We can use the information obtained in the field line tracmgléduce the percentage of flux from a
source on the lower boundary connected to each of the twaesum the upper boundary. Figure 5.4
shows the change in these quantities with spin angle, tegetith the percentage of flux which leaves the
box. We deduce that reconnection begins at spin afhge0.5 and the amount of flux with connectivity
Aa (Ab) subsequently decreases (increases) linearly with sgjleamtil 6 ~ 2.3, close to the end of the
experiment, when flux begins to leave the box. At the end oé#tperiment 22.3% of the flux from source
A is connected to sourae so we can therefore deduce that at least 27.7% of the fluxeirsalrce has
been reconnected by spin andle- 2.64. There remains a possibility that a greater percentageohtis
reconnected if flux of typelb reconnects at any stage in the experiment (with flux of tpgto form flux
of type Aa. We later consider the likelihood of such events.

Given then that the magnetic flux connectivity inside the domis changing as the spin-angle increases,
we now examine how these changes become evident in the lgglatia,z = 0.5. We trace a large number
of the field lines passing through the central plane, detegrtiie connection of each field line on both the
upper and the lower boundary, and assign the field line a c@locording to its magnetic connectivity.
Note that the tracing is now beganthe central plane rather than the source footpoints. By simpthese
colours in the central plane we generate a diagram in whieteémtral plane is colour-coded according to
the magnetic connectivity of the flux that pierces it. Fighrg illustrates this connectivity for a sequence
of increasing spin angles, with contours of electric curseperimposed onto the same diagrams to enable
us, at a later stage, to determine the role of the currengifitix evolution.

It can be seen from Figure 5.5 that even by spin-afigle0.65, before reconnection has had a signif-
icant effect on the initially equal distribution of flux typgthe arrangement of flux in the central plane has
been altered by the spinning motions. The four types of flulonger meet at a point, but rather typgs
(red) andAa (light blue) meet along a central line with typd$ (dark blue) andBa (yellow) no longer
coming into contact. A current structure has been seen o f@tween some, but not all, of the boundaries
between the various flux domains. As the spin-angle incesdise area of the central plane pierced by flux
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Figure 5.5: The figure shows a sequence of images at incgeagin-angles in which the magnetic flux
passing through the central plane= 0.5, is coloured according to its magnetic connectivity. Flugw
connectivityAa is indicated in light blueAb in dark blue,Bb in red andBa in yellow. Flux not associated
with any of these connectivity types is not coloured. Ovettpd are contours of current density in the
same plane.
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Figure 5.6: Sequence of images showing contours of cumahti central plane = 0.5 at increasing spin
angles. Four wings of current are seen to extend from a stronignt sheet in the centre of the domain. At
later spin-angles Y-shaped cusps are seen to develop aidseéthe current sheet, seen here for example
atéd = 1.45. (The white line outlines a cross-section described lat¢iné text.)

typesAb andBa increases also. This is certainly not due in its entiretyaimpression or expansion effects
of the flux tubes since we have already found the connees/if the sources themselves to be changing as
a result of magnetic reconnection. At later spin angles (1.70) we observe that the flux types: and Bb

are no longer in contact with the boundary, being entirelyl@ed by the remaining flux types. We note
that the strong central current sheet coincides exactly thi2¢ boundary between the flux typés and Bb

but that the weaker ‘wings’ of current emanating from thet@wisted sheet do not perfectly outline the
remaining boundaries between the various flux types. WerrédLthis point, together with a more detailed
description of the current structure, later in this section

Before doing so, we note that there are several reasons wigy sfithe magnetic flux near the boundary
of thez = 0.5 plane is not associated with any of the four flux types. Thematig sources on the upper
and lower boundaries decay exponentially with distancefttte centre of the source and we have defined
a particular (and, to a certain extent, artificial) radiusvaich we consider each source to end (namely
2rg). Thus, flux traced from the mid-plane falling outside thaslius (on either the upper or the lower
boundaries) is not considered to be associated with a platiftux source. In addition, toward the end of
the simulation, a certain amount of magnetic flux from eactheffour sources leaves the box and may do
so after having passed through the central plane. Thesgsfiee not important in our consideration of the
dynamical evolution of the system.
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5.3.2 Current Evolution

The spinning motions imposed on the foot-points of the flunrees act to spin up the flux in each of
the domains and so generate a shear at each of the interfetveselh domains. We have already noted
that, as seen in Figure 5.2, a strong current sheet, exignditically throughout the box, forms early on
in the experiment. Comparison with the current contouresuagposed on the flux connectivity plots of
Figure 5.5 confirms that this is a quasi-separator currezgtsivhich has formed at the interface between
the four flux domains. The sheet is twisted in the verticadction as a result of the/2 misalignment of
the upper and lower sources. In addition, we can see front&igb that four ‘wings’ of current emanate
from the central current sheet and that these wings appaigignoutline the boundaries between domains.

To examine the nature of the currents within the domain inentl@tail we consider the central plane,
z = 0.5, and show in Figure 5.6 contours of current in that plane fee@uence of increasing spin-angles.
The drop in the spinning velocity at the outside of the fluxrses is seen to result in four ‘rings’ of current
at early spin-angles, with the strongest current seen ahthesections of the rings where the interaction
of spinning motions produces a shearing effect.0By 0.55, the central current sheet together with four
wings of current has formed; this characteristic shapeisterthroughout the remainder of the simulation.
The initial rings of current have been forced outwards by medig pressure. This causes a build up of cur-
rent on the side boundaries of the box which ultimately adiéwx to leave the box. The wings of current
may be identified with quasi-separatrix current sheety earlin the experiment when they perfectly out-
line the boundaries between the flux domains and are seeowowgth spin-angle, extending close to the
boundaries of the domain. The current structure at thedg gtages of the experiment is therefore similar
to that predicted by Green (1965). As reconnection begidslaa evolution is no longer quasi-static, we
observe (Figure 5.5) that the wings of current do not aligih #ie change of flux connectivity. By consider-
ing the variation of certain quantities along a perpendaicséction to the structures, we identify them now
as contact discontinuities (see, for example Priest, 198ing spin-anglg = 1.45 as an example, we
plotin Figure 5.7 the tangential and normal componentse@htlagnetic field, plasma velocity and current,
together with the vorticity, density and total pressurangla line (illustrated by the white line in Figure 5.6)
perpendicular to the current wings in the central planes #den that there is no plasma flow across (i.e.
normal to) the structures but that a discontinuity in thegtartial velocity component exists. In addition,
the total pressure is continuous along the entire crosseseshilst the density shows a jump across both
the current structures (such a density jump is arbitrariiértheory of contact discontinuities) and there is a
normal field component across the structure so distinguisiirom a tangential discontinuity. In order to
determine why there is a discrepancy between the locatioihe @uasi-separatrices and of these wings of
current we must first consider the nature of both the centmabat sheet and the reconnection mechanism.
We therefore return to this point later.

Consider now the evolution of the quasi-separator currfeaets We will refer to its extent in the-
direction as ‘height’, its length in they-plane as ‘length’ and the remaining dimension, its thicdeia
the zy-plane as ‘width’. As seen in the cross-sections througlctiveent structure (Figure 5.6), after its
initial formation, the length of the sheet increases witmsmgle. The growth in length is almost linear
until, até =~ 1.1, the ends of the sheet (in the horizontal direction, alomyth= —z line) bifurcate to
form two Y-type structures which lie along the quasi-separas of the field. No further lengthening of the
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Figure 5.7: Tangential (solid lines) and normal (dasheedjrcomponents of the magnetic field, velocity
and current (upper plots) together with the density, totabpure an¢iv x v| (lower plots) along the line

y = 1.3 — x at spin-angle@ = 1.45 for the central plane = 0.5. The vertical lines denote the location of
the current ‘wings’ along that line (as seen in Figure 5.8)e Variations of these quantities are evidence
for a contact discontinuity at these locations.

sheet occurs, indeed it shrinks slowly with further inceesspin angle. The current is predominately in
the z-direction and this component changes sign at both endsdfhbet, as shown in Figure 5.8 where
spin-angled = 2.26 has been considered as an example. In two-dimensionadlisiteareversed currents
near the ends of diffusion regions have been observed in ricahexperiments (Biskamp, 1986) and are
seen to slow down the outflowing jets in these cases. We tirergfoceed to examine the nature of the
plasma velocities.

5.3.3 Plasma Velocities and Reconnective Behaviour

We show, in Figure 5.9, vector field plots @f,, v,) in the central plane at various spin-angles (note that
the third velocity component,, is an order of magnitude less than bethandv,). At early spin-angles,

0 = 0.35 for example, the velocity in the central plane is clearlyiknto that imposed on the upper and
lower boundaries, with four counter-rotational flow regigumesent. The intersection of these regions results
in a stagnation flow profile stronger than the remaining roteti components and it is this stagnation flow
which dominates the later velocity profiles. Plasma flows,iahd is ejected from, the central current sheet.
The inflow streamlines are seen to be curved and diverging.olitflow, particularly at later spin angles,
is diverted out along the quasi-separatrices of the field.

Let us now consider the nature of the inflow region in moreitjgtaying particular attention to the
magnetic field and gas pressure. We show in Figure 5.10 pdfilthe gas pressure and magnetic pressure
in the inflow region for the central plane. We observe the gasgure to be decreasing as the plasma flows
in toward the quasi-separator current sheet, suggestmnigptlow is undergoing an expansion. In addition
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Figure 5.9: Plasma flows in the central planes= 0.5 for a sequence of increasing spin-angles showing
the key stages in the velocity evolution. A stagnation flowrfs with strong outflow jets along the central

current sheet.
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Figure 5.10: Behaviour of the gas (solid line) and magnetasked line) pressures in the inflow region.
Here a cut along the ling = = has been taken at spin angle= 1.37 for the central plane = 0.5. The
gas pressure is seen to decrease whilst the magnetic préssigases.

the reverse behaviour is observed in the magnetic pressufikepvhich increases toward the current sheet
so that the expansion may be further characterised as ofaivensode type.

Combining all these pieces of information we note that theasion is strongly reminiscent of thkix
pile-upregime (Priest and Forbes, 1986) with its characteridyi¢ahg diffusion regions. This model was
extended further in the non-uniform theory of Priest and (E#90) to also take reversed current spikes
and separatrix plasma jets into account. Shocks in theio(ipressible) model are rather weak and indeed
we cannot consider any of the structures in this 3D experimetrue shocks. There are, however, several
differences between the 2D theory and this 3D model. In themeection process, magnetic flux of types
Aa and Bb are brought together and reconnect across the centratggjaaiator current sheet to form flux
of typesAb and Ba. However, as distinct from the 2D theory, in this 3D case ttegnetic field has an
O-type structure in cross sections of consta(figure 5.11(b)) and it is the vertically orientated fluxttha
is reconnected. Thus reconnection can occur all along thsi<peparator current sheet and the location of
reconnection will depend on where the flux comes into contétbtthe sheet. With reconnection occurring
everywhere along the sheet, significant amounts of magfhetics being carried into the sheet close to the
centre of the domain. Figure 5.11(a) shows four particuéddfiines which illustrate this process, together
with contours of current in the central plane. The sheardd-fiees in the inflow regions (the red line of
type Bb and light blue line of typeda) are carried into the central current sheet where they reatnThe
strong outflow then carries the reconnected field lines otli@turrent sheet and they are seen to have less
shear (the dark blue line of typéb and yellow line of typeBa), with these example lines being almost
straight. Note that the field lines shown in this figure areilfastrative purposes only and all taken at the
same spin-angle, i.e. they do not represent the same lireapd post-reconnection.

The magnetic flux that pierces the central plane close todhtact discontinuity is twisted in such a way
that it passes through the quasi-separator current sheatde the top or bottom of the box (Figure 5.12)
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Figure 5.11: (a) Four illustrative field-lines being cadri@to the central current sheet before reconnec-
tion (red, light blue) and away from the sheet having receotetwe(dark blue, yellow), together with con-
tours of current in the central plane. The post-reconnediédd lines are seen to have less shear than the
pre-reconnection lines. (b) An X-type field structure isgemet only in vertical cross-sections, while in
horizontal sections, such as that illustrated here, the fiak an O-type topology.

and reconnects there. Thus the reason behind the misaligrohéhe wings of current (identified with
contact discontinuities) and separatrices of the field bexoevident. Reconnection is taking place along
the entire height of the quasi-separator current sheethimichange of connectivity is not immediately
apparent at different heights within the domain. The candé&continuities themselves are an artifact of
the initial flux distribution and the spinning motions imgadson that distribution. They outline the divide
between flux types which would have existed had no recormetdaken place.

5.4 Discussion

Examining in more detail the flux connectivity diagrams fbe tmid-plane (shown in Figure 5.5), an
interesting pattern of behaviour is seen within the cerdwafent sheet at intermediate spin-angles (see
0 = 0.92,1.24 for example). As an illustration, an enlargement of thisisags shown at spin-angle

0 = 1.19 in Figure 5.13 left). Although in Section 5.3 we have somewhat loosely refetoetie ‘quasi-
separator current sheet’, this diagram, with its region2@fsolated flux-connectivity type, indicates the
magnetic connectivity of the region is really very complend only becomes simple again in later stages of
the experiment (as shown in Figure 5.1i§t)). This effect does not result from a lack of resolution @& th
current sheet in the later stages; the current sheet remvailisesolved throughout the experiment through
the use of hyper-resistivity (see Nordlund and Galsgad@87) A detailed investigation into the magnetic
topology of a particular 3D MHD reconnection experiment wagied out by Haynes et al. (2007), where
a sequence of bifurcations was identified which resulteténnitial field topology becoming increasingly
complex, before eventually simplifying in the later stagéthe experiment. From the preliminary inves-
tigations presented here, it seems that a complex pattemmaghetic connectivity is also present in this
system. It would be interesting to carry out a more detaitwéstigation into the connectivity pattern and
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Figure 5.12: Magnetic field lines traced from the centrahpl& = 0.5) close to the separatrices of the
field and away from the quasi-separator current sheet irpthae. The field lines pass through the quasi-
separator current sheet toward the top (left hand figureptioin (right hand figure) of the box where they
reconnect. Superimposed are contours of current in vaplaumes of constant height.

its evolution and consider the implications for the recantio& process. This, however, is beyond the scope
of the simple descriptive content of this chapter.

As discussed in Section 5.1, one of the motivations to cemsigconnection in these misaligned flux
tubes is to make a comparison with the case of the same spifooitpoint motions imposed on perfectly
aligned flux tubes, as described by De Moortel and Galsg&@@6p) and, in particular, to examine how
the nature of reconnection differs between the two sitnatio

The spin-angle for the onset of reconnectiol is 1.46 in the aligned case artl= 0.40 in this mis-
aligned situation. The difference in spin-angt®y( = 1.06) corresponds to a time difference in the solar
corona of0.6 hours (for a discussion of how the non-dimensional quastiiescribed in this experiment re-
late to coronal parameters see De Moortel and Galsgaar@&§20 his is a significant difference between
the two cases given that the coronal recycling time is eséichto be as little a$.4 hours.

The likely reason behind the disparity in reconnection bhisees can be found by comparing the
plasma velocities and build-up of current in the two experits. In the misaligned case, the imposed
boundary flows propagate into the box in such a way as to fortagmation-flow early in the experiment,
as shown at = 0.35 in Figure 5.9. However, in the aligned case, the countarrspg boundary flows
effectively cancel as they propagate into the mid-plang, sm a stagnation-flow is only initiated at a
later stage through the effect of magnetic pressure. Stagrfiows have the effect of amplifying current
concentrations and, accordingly, a build-up of sufficiemtrent to allow for reconnection to take place
occurs sooner in the misaligned case. The evolution of maxinj| in a central square of side-length
0.4 and in the mid-planez(= 0.5) with spin-angle is shown, for both experiments, in Figurgdgeft).
Although the initial current development begins in both eximents at the same spin angle, the initial
growth is faster for the misaligned case. In both situatitwese then follows a period where the maximum
current decreases with spin angle before undergoing a desfmase of increase. In the aligned case it is
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Figure 5.13: Flux connectivities in a central square witthie mid-plane encompassing the non-ideal re-
gion, for (eft) # = 1.19 and ¢ight) # = 1.58. The colour scheme is the same as that for Fig. 5.5. A
complex topology is present in the early stages of the erperi, becoming much simpler as the spin-

angle increases.
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Figure 5.14: left) The change in maximum current (within the central squarsiad 0.4 in thez = 0.5
plane) with spin angle. The thick solid line represents teemfr /2 misaligned flux sources and the thick
dashed line the case of aligned flux sources. The vertiozs Imark the spin angle at which reconnection
begins in both casesright) Flux connectivities for the misaligned (solid line) anégakd (dashed line)
cases, as described in the main body of the text.
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only in this second phase of current growth that reconnedttégins (vertical dashed line).

The nextimportant comparison is in how, once initiated rétie of reconnection differs between the two
setups. In order to make this comparison we consider howdteeptage of flux with certain connectivities
changes with spin angle. In the misaligned case flux with eotivity Aa is considered. This flux-type
initially constitutes 50% of the flux from sourc4, and the percentage decreases with spin-angle after
reconnection begins. For the aligned case the percentafigxalemaining at its original flux source is
considered (for one of the sources on the lower boundaryis i$hnitially 100% of the flux in the source
and again decreases with spin-angle after the onset of mection. These quantities are represented in
Figure 5.14(ght) where thexz-axes for both cases have been aligned in such a way that #et oh
reconnection is coincident. We see that during the inittedge of reconnection the rate of decrease of
flux of the considered connectivity is very similar in bottsea. This suggests that the same reconnection
mechanism may be responsible for the evolution of both systé\s spin-angle increases a change in the
gradient of flux connectivity occurs in the aligned caselighad spin-anglé = 2.8, indicating flux is now
changing connectivity faster. Examining the flux evolutiothat experimentin more detail we observe that
this discrepancy is due to flugavingthe box, i.e. additional reconnection occurring acrosdthendaries
of the domain, rather than a change in the reconnection mesrhavithin the central current sheet. Thus
it is interesting to note that although the current sheetahgeeater cross-sectional length in the aligned
than the misaligned case (with the additional flux domaintiénmisaligned case restricting current sheet
growth), this does not result in a different rate of reconioec

One notable difference found between the two experimeritstise geometry of the central current
sheet. In the aligned case the sheet is straight, while inmisaligned case a twisted sheet forms as a
result of ther /2 difference in orientation of the upper sources. In the ngsa&d case the initial potential
field contains four distinct flux domains which allows for thebsequent development of quasi-separatrix
current sheets; these are necessarily absent in the alkmpediment (or, alternatively, can be considered
as coincident with the quasi-separator current sheet). ddemwe have shown that the quasi-separatrix
current sheets in the misaligned case, which later becom@ciodiscontinuities, are not important in the
reconnection process itself. The comparable reconnegdies found in the two experiments confirms this
to be the case and is further evidence that the reconneatimesgs is concentrated in the quasi-separator
current sheet.

Finally we note that there are several limitations in theegipental setup. Perhaps the most important
of these is in the plasma which, since the field strength decreases rapidly movingydvean the upper
and lower boundaries toward the centre of the domain witigsgs pressure profile is initially uniform, is
significantly higher than that found in the solar corona.ddidon, the experiment ends @t= 2.64 when
periodic boundary conditions begin to affect results. Tugld be seen as a shortcoming; perhaps further
interesting dynamics would have been found at later spiteandiowever, bearing in mind the counter-
spinning nature of the drivers, we can consider the trudiootaf a single source to k= 2 x 2.64, already
a significant angle compared with observed solar-like fluations (see, for example, Brown et al., 2001).
As mentioned several times, the magnetic sources thenssaheenon-ideal and so a certain amount of
slippage of the field occurs within each source. Although waaot consider such behaviour to be of great
consequence on the global field-evolution, the non-idesldees prevent us from tracking the behaviour
of individual field-lines with spin-angle. It would be highinformative to examine such behaviour and
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worthwhile therefore to re-run the experiment with an ideaindary condition imposed. Such a condition
could be achieved by specifying a suitable resistivity pepfis considered, for example, by Pontin et al.
(2005a).

5.5 Summary

We have described a simple numerical experiment in whichnthgnetic footpoints of two, initially po-
tential, intertwined flux tubes are spun, while their pasis remain fixed. Magnetic flux is divided into
four domains and the footpoint motions act to twist the flud areate current sheets at the boundaries
between the domains. A central twisted quasi-separatoecusheet forms early on in the experiment
and a stagnation flow develops. The flow brings oppositelgatird flux in toward the quasi-separator
current sheet and reconnection takes place everywherg #lofihe quasi-separator current sheet grows
in cross-sectional length before its endpoints bifurcat®tm Y-type points. In planes of constant height
the situation strongly resembles the 2D nonlinear recaioremodels of Priest and Lee (1990), with their
fast reconnection rates. Strong jets of plasma flow acr@ssdgnetic separatrices and regions of reversed
current are found close to the ends of the diffusion regidre flill three-dimensionality of the experiment
modifies the regime, with the magnetic field having a locally @-type structure. In addition, the field
topology is found to be highly complex. One time-dependéateis that the current sheets which initially
form along the boundaries between flux domains (i.e. qugsmtrix current sheets) move away from
these boundaries as the sources are spun and reconnedins teeoccur. They are, at later spin angles,
instead identified as contact discontinuities.

The experiment described here can be compared with the @oerig case of aligned magnetic flux
tubes given by De Moortel and Galsgaard (2006b). Any degre@salignment of the magnetic flux tubes
has a significant effect on the magnetic connectivity of fetesm, since four flux domains will initially be
present (instead of just two in the aligned case). In botlesrpents a central quasi-separator current sheet
forms in the centre of the domain and in the misaligned casecarrent structure is modified by the pres-
ence of four wings of current that initially outline the atiolnal separatrices of the field. Once reconnection
begins, however, the rate at which magnetic flux changesiteectivity is very similar for both cases. In-
deed reconnection in the misaligned case is found to ocdyradong the central quasi-separator current
sheet; the extra wings of current are not found to modify tleeg@ss. These two observations suggest the
same reconnection mechanism to be operating in both casampwrtant difference is found regarding the
onset time for reconnection. It is found that strong cusetgvelop at earlier spin-angles in the misaligned
case and that, as a result, magnetic reconnection beginsisooapping the relevant spin-angles to coronal
timescales the onset time is found to @&3 hours in the misaligned case buB5 hours in the aligned
case. Combining this chapter and De Moortel and Galsga®@b{f) the two most extreme situations of
flux-tube alignment have been considered and we are ableftineto deduce the implications for any gen-
eral case. We expect reconnection to begin sooner the magkeththe initial magnetic flux-tubes but for
it to proceed at the same rate once initiated.



Chapter 6

Low-Order Dynamo Models

6.1 Introduction

Direct evidence of solar magnetic activity through the obastons of sunspots dates back to the early
1600s, with indirect evidence coming from both measuremehtosmogenic radioisotopes in tree rings
and ice cores over the past 10,000 years. A systematic re¢adtivity in other late-type stars began

in 1966 with the Mt. Wilson Ca Il H+K project (Duncan et al., 949 Baliunas et al., 1995, Saar and

Brandenburg, 1999). The survey has given rise to many stuatighe dependence of activity with such

large-scale parameters as stellar age, mass and rotaton ra

The stars in the Mt Wilson survey show several distinct tygfesctivity. Baliunas et al. (1995) divided
the stars into four categories based on the variability &irtamission: those with no significant variability,
those with long-term changes in emission (on a timescakgtgréhan 20 years), those with irregular emis-
sion and those with cyclic variation. The Sun itself fallsithe final category. The activity periods in the
cyclic stars range from around 20 years to just 2.5 year$es8tin’s own average cycle period of 11 years
falls in the centre of the observed range. Considering the rdversal of the magnetic field along with the
11-year sunspot cycle gives a periodicity of 22 years forsthlar magnetic cycle. Detailed examination
of the sunspot cycle record shows a variation in the length@factivity period from 9 to 14 years, with
a longer term modulation of the cycle on a period of about 8ryéthe Gleissberg cycle) believed to be
present. In addition, the Sun has undergone several gramidheniBeer et al., 1998), the last of which
being the Maunder minimum during 1645-1715 AD (Eddy, 1976yt-and Schatten, 1996). Proxy data,
for example!®Be in ice-cores (Wagner et al., 2001), indicate a statidyicignificant spectral peak with
frequencies corresponding to approximately 205 and 21@fsyét is possible, therefore, that Grand Min-
ima may occur in clusters with a period of just over two-hwthlyears and that the clusters reoccur on a
timescale of 2100 years. There is not currently enough datlidw us to infer similar events in other stars.

From a physical point of view, magnetic activity in solapéystars is likely to be a result of hydro-
magnetic dynamo action (Parker, 1955, Ossendrijver, 2008jting B = B,e, + Bgey + Bge, it is
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conventional to discuss the origin of global stellar fielddgérms of their toroidal B,.e, + Byey, in the
direction of the differential rotation) and poloidaBge,) components. A mechanism for the generation
of toroidal field from the poloidal component (known as fheffect; Parker 1955) and for the subsequent
regeneration of poloidal field from the toroidal componehe-effect; Parker 1955) must exist. Solar
observations, for example the tracking of surface featsuel as sunspots, indicate a differential rotation,
with the equator rotating faster than the poles. Helioseisgy has shown this persists throughout the
convection zone (Schou et al., 1998), with the rotation weyynostly latitudinally. In a thin layer between
the convection zone and the radiative layer — known as thetdine — a strong radial shear in the angular
velocity exists. Thus differential rotation in the solatarior generates the toroidal field by stretching the
poloidal field lines, a process known as teeffect. It also acts to amplify the toroidal field, and if the
Q-effect occurs largely in the tachocline layer then flux atmr (due to the sub-adiabatic temperature gra-
dient and consequent suppression of buoyancy there) can oeer timescales sufficiently long for strong
fields to be built. Evidence of surface differential rotatltas been found in other stars and it is very likely
that these persist to greater depths, as in the Sun. ThuQ;¢fiect is possibly a common mechanism for
toroidal field generation in stars.

For the re-generation of the poloidal field from the toroickaiponent several mechanismas have been
invoked: for example, a convective alpha-effect throughba convection zone based on the twisting of
toroidal fields by helical turbulence (Parker, 1955, Steskland Krause, 1969, Gilman and Glatzmaier,
1981, Brandenburg et al., 1990, Tobias, 1997 )yaeffect in or near the tachocline arising from instabittie
in the plasma flows or buoyantly rising magnetic flux tubegrigeMas et al., 1994, Schmitt et al., 1996,
Thelen, 2000, Dikpati and Gilman, 2001) and the decay @fdiliipolar sunspot pairs near the solar surface,
known as the Babcock-Leighton mechanism (Babcock, 196ghten, 1969, Durney, 1997, Dikpati and
Charbonneau, 1999, Nandy and Choudhuri, 2002, Chatterge 2004).

Many solar and stellar dynamo models have been proposettyhataccount for the flux production,
cycle period and amplitudes (Durney, 1997, Brooke et aD228ushby, 2003, Chan et al., 2004, Charbon-
neau et al., 2004, and references therein), as well as ottlekmown features observed on the Sun, such
as the equatorward drift of sunspots during the cycle andvbkition of the surface radial field; some have
included related (and possibly integral) processes suchagmetic buoyancy and meridional circulation
(Ferriz-Mas et al., 1994, Nandy and Choudhuri, 2002, Chah 2004, Charbonneau et al., 2005). These
models range from detailed numerical simulations to extersets of partial differential equations with
various physical motivations. Full simulations of the dymaprocess with high magnetic Reynolds num-
bers are currently out of reach computationally — althouggh Brun et al. (2004) for a global simulation
of dynamo action in a turbulent rotating spherical shell. diluvork has centered on mean field dynamo
theory, with axisymmetrie--w dynamos attracting the most attention.

A self-consistent magnetohydrodynamic treatment of mdr@ mechanisms thought to be behind
stellar dynamos, such as differential rotation and othrgyelascale flows, is a formidable task. In addition,
it is highly likely that the nature of the dynamo, for any givetar such as the Sun, has evolved over
the lifetime of the star with the evolution of the properti@sits convection zone, primarily mediated
through spin-down and angular momentum losses via steltadsi{Mestel and Spruit, 1987). Therefore a
brief consideration of some of the important parametersdetermine the behaviour of stellar dynamos is
useful (for more detailed discussions, see, for examplgellet al. (1984b) and Montesinos et al. (2001)).
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A measure of the efficiency of the dynamo mechanism is themdgnaumber {V,;) — the ratio of the source
terms to the dissipative terms in the dynamo equations —wdiépends on various physical properties of
the stellar convection zone. Another important paraméiar éssentially describes the evolutionary state
of stellar convection zones is the Rossby numRBgr, It can be shown thaV; ~ 1/R02 (see, for example,
Durney and Latour, 1978). Since the rotation period, defthktellar convection zones and convective
turn-over time evolves with stellar evolution, ba¥y and R, are expected to change over any given star’'s
lifetime. Specifically as stars age, their Rossby numbeegses with the corresponding increase in rotation
period. It has been shown that the groups of stars with iteeg@nd regular activity are distinguished by
their Rossby number (Noyes et al., 1984a, Hempelmann €1986). Stars withR, < 1 show irregular
and strong emission, while the regular and constant starthase withR, > 1. A possible explanation for
this division is to explain the magnetic activity as beinggmed by a nonlinear dynamical system whose
output changes from constant to periodic to chaotic as argowgparameter (such as the dynamo number)
linked to rotation is increased. The intensive computaioature of full numerical dynamo models means
that a full exploration of their behaviour in a wide range af@ameter space is not easily achievable. In this
thesis we adopt a different and parallel approach. We aactstsimple models which may have a similar
underlying mathematical structure as that found in thedyditem. This enables us to explore a wide range
of parameter space in the models, corresponding to the veidety of stellar behaviour that is expected
to be governed by the same physical principles. Studies®kihd are therefore complementary to works
such as those cited in the earlier paragraph.

The construction of low-order models of the solar dynamotteaditionally utilised one of two alterna-
tive approaches. The first is to derive sets of Ordinary [Déiféial Equations (ODES) via a truncation of
the Partial Differential Equations (PDEs) of mean-fieldceledynamics (Zeldovich et al., 1983, Martens,
1984, Weiss et al., 1984, Jones et al., 1985, Schmalz and 194, Roald and Thomas, 1997, Covas
and Tavakol, 1997). This approach has the advantage thlattean in the truncated set of ODEs has an
obvious physical interpretation as it has been derived fasnanalogous term in the PDEs. The lowest
order truncation, resulting in just two governing ODEs, i®¥n not to produce dynamo action, which is
in itself suggestive of a drawback of such a truncation pdace, namely that the dynamics associated with
truncated models is often fragile and sensitive to the lef/gluncation.

A second approach is to construct low-order models basedwnai-form equations utilising the theory
of nonlinear dynamics, either by using symmetry argumenks/difurcation analysis (Tobias et al., 1995,
Knobloch and Landsberg, 1996). Here the dynamics found eahbown to be generic and therefore robust.
However, the drawback in this case is that the physicalpngtation of a set of low-order equations is less
transparent as there is no obvious physical analogue fared gérm in the equations.

We explore both approaches here. In the next section we eesanrbbust model derived using normal-
form theory. In the following chapter, Chapter 7, we adopbaah approach to the lowest-order truncation
of the full PDEs, taking the physical separation of sourecengeknown to exist in the solar dynamo into
account in a simple way. As a result the two ODEs obtainedtnycttion of the PDEs are converted into
two delay differential-equations (DDEs) and dynamo actiatihen found.

The results of this chapter are based on Wilmot-Smith e@D%a) and Wilmot-Smith et al. (2007b).
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6.2 Construction of the Model

The model considered in this chapter is an extension of gx@tet in Tobias et al. (1995). In that paper, a
third-order model was derived using a Poincaré-Birkhoffmal form for a saddle-node—Hopf bifurcation,
to obtain a system exhibiting generic and therefore robelabiour. This normal form was chosen since
it has a bifurcation structure that gives qualitatively idmbehaviour to that observed in stars as solutions
along a cut through parameter space are examined.

Considering stellar magnetic activity observations weegkpqualitatively speaking, that, as the evolu-
tion of a star is tracked backwards in time (i.e. as its rotatate increases), periodic cyclic solutions will
bifurcate from a steady free-field state in a supercriticaptbifurcation. These regular cyclic solutions
will, in turn, give way to trajectories lying on a two-toruter a supercritical secondary Hopf bifurcation,
reflecting periodic solutions with amplitude modulatioriime. Finally, this activity should become chaot-
ically modulated to account for those stars with irreguletivity. Indeed, such a bifurcation structure is
mirrored in mean-field PDE models as the non-dimensionaboresof rotation rate (the dynamo number
D) is increased (Tobias, 1996, Pipin, 1999, Bushby, 2005).

In the model of Tobias et al. (1995), the magnetic field wasodgiosed in the usual way into its
toroidal part, represented hy and its poloidal part, represented 4y The third coordinate of the system,
z, represents all the hydrodynamics of the system, includadjfferential rotation and convection. Though
a consideration of normal-form theory, the basic systerakist to be given by

z = ,LL—ZQ—(JCQ—FyQ),
z = (Aaz)z—wy, (6.1)
g = (Ataz)y+wz.

For . > 0 the equations (6.1) have have two fixed poinfts; and P~, given by the solutions to
r =0,y =0,z = £,/u. These correspond to field-free, purely hydrodynamic,tgmig where the flows
are statistically steady and arise from the saddle-nodedaifion atu = 0. Thus the parameter controls
the hydrodynamics of the system, so is related to effects asahermal forcing and rotation. The term
(x2+4?) in the z-equation, being quadratic in the magnetic field, represttietback reaction of the Lorentz
force on the field. Its coefficient has been chosen to be lesszibro so that the secondary Hopf bifurcation
is supercritical.

By settingz = 0, we see thah gives the growth-rate (i.e. strength of the dynamo actidn) andy
andw the basic cycle frequency (the location of the bifurcatiarves in the model is independentwy.
In a more complicated PDE model these features would bedinkth the dynamo number.

For the system of equations (6.1) the secondary Hopf bifime#s found to be degenerate and, to break
this degeneracy, a cubic term must be added to the model. i& tarim, cz3, was added to the equation
and to takec < 0 so that solutions on the-axis remain finite. This inclusion introduces another fixed
point to the system, again on theaxis and and associated additional line of saddle-nodedzfions (at
= 4/27c%).
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The system derived thus far is axisymmetry essentially dimoensional — it may be written in cylindri-
cal polars as:

2 = p—z22—r? 4,
T = Ar+azr,
¢ = w.

The addition of a symmetry-breaking term would add physiealism to the system and making the system
fully three-dimensional would allow for chaotic dynamidsor these reasons the authors chose to add a
cubic term to thei equation to break the normal form axisymmetry. However,ekact choice of term

is arbitrary and the term chosen in Tobias et al. (1995) isproportional to(:zc2 + y2) z, the motivation
being to preserve the invariance of thaxis. Thus the system of ODEs now takes the form

f=p— 2 — @4y + e,

= (\+az2)r —wy +dz(z? + ), (6.2)
y=A+az2)y+wz.

See Tobias et al. (1995) for further details of the modelibdéon.

In order to demonstrate the type of behaviour that such a hyields, Tobias et al. (1995) fixed all
parameters except farandu and chose a parameterized path through\they plane to demonstrate the
bifurcation structure of the model. In summary, the showed tas the controlling parameter was increased,
purely hydrodynamic solutions lost stability in a primargpf bifurcation to oscillatory solutions. In turn
these gave way to quasiperiodic solutions, where the bgsie s modulated on a longer timescale and
solutions lie on a two-torus in phase-space. Further isergathe parameter led to a breakdown of the torus
and a transition to chaos. The solution then took the fornctv@ periods, interspersed chaotically with
minima. Such solutions are associated with close-approahinvariant manifold and near heteroclinicity.

However, as noted by Ashwin et al. (2004), a limitation of thedel is that the choice of term to break
the normal form axisymmetry in Tobias et al. (1995) resuita loss of equivalence of the system under
the transformationr — —z,y — —y which corresponds t@# — —B. In this chapter we choose an
alternative term, which does not suffer from the above diaathge, to break the axial symmetry. Again,
the exact choice of cubic term is arbitrary; available teames for exampley?3, x22, xy?, zyz, (v + y) 22
etc. Similarly the choice made in Tobias et al. (1995) ofudahg this term in the: equation was arbitrary,
they equation would also be suitable. In view of these considmratve choose to add a term proportional
to (23 — 3xy?) to thei-equation and one proportional (8z%y — y*) to they-equation. Thus the model
becomes

S )
&= M\r —wy + azx + d(z — 3zy?), (6.3)

§ = \y +wzr + azy + d(32%y — ).
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This new system of equations is invariant under the transfitionz — —z,y — —y and thez-axis
remains invariant — these are the two basic properties tatsfied by the symmetry-breaking term. The
physical motivation behind our exact choice becomes clégnithe system is written in cylindrical polars:

F=p— 2% =12+ c2d,
7= (X + az)r + dr® cos(2¢), (6.4)
¢ = w + dr? sin(2¢).

In the following section we examine some of the propertiethisf model.

6.3 Results

We examine the behaviour of the system\and,; are varied and fix the parameters:, d, andw as
a=3, c¢=-04, d=04, w=1025.

Following Tobias et al. (1995) we have chosen todfix 3 andc = —0.4 so that both the line of saddle-
node bifurcations gt = 4/27¢? and secondary Hopf bifurcations@t= —2a/3c are far from the origin as
shown in Figure 6.1. As with system (6.2) the choicesaloes not greatly alter the bifurcation structure,
but it does change the ratio of the modulation cycle to theeudgihg cycle. We have chosen = 10.25,
since it results in a ratio similar to that observed in the.Sun

To allow us to choose a suitable path through parameter sp@eg which to study solutions of (6.3) we
examine the bifurcation set for the system; this is showriguife 6.1(a). We see that the line of secondary
Hopf bifurcations, which ford = 0 was identical to the positive-axis, has moved leftward in our new
model (6.3). A heteroclinic region, which is shaded in thegdam, replaces the degenerate heteroclinic
bifurcation that exists whed = 0, as in Tobias et al. (1995). We have not indicated all therbétions
lying inside this wedge owing to the complexity of the regisome details of which are described in for
example Champneys and Kirk (2004). The main dynamical featobserved are described as follows, and
a small section is illustrated in Figure 6.1(b).

Trajectories within this region lie on a torus, and the riofahumber associated with each orbit may
be either rational or irrational. In the case of a rationgtion numberp/q (p,q € Z), since thez-axis
is invariant under the flow, the orbit will turg times around the-axis andp times around the primary
periodic orbit before closing in on itself. This resonanée&momenon does not occur when the rotation
number is irrational; in this case no point on the torus issitad in a finite time. The resonance regions are
found to be slim tongues which open out smoothly from the sdaoy Hopf bifurcation, and are bounded
by curves of saddle-node bifurcations of periodic orbitgKK1991). Some of these curves are illustrated
in Figure 6.1(b), although since a tongue exists for eadhrrat numberp/q, there is a countable number
in total. Horseshoes are introduced into the flow, resuliiom the heteroclinic crossings of the stable and
unstable manifolds of two of the fixed points, and this cad leechaotic dynamics within the region (Kirk,
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Figure 6.1: Bifurcation curves for Equations (6.3) with= 3, c = —d = 0.4, andw = 10.25. (a) Global
bifurcation set (with bifurcations in the shaded region teai.) (b) Boundaries of some of the resonance
tongues, with fractions indicating the order of each reacra
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Figure 6.2: The one-parameter path in tg: plane, given by (6.5), along which solutions are examined.
The direction of increasing is in the positivey-direction.

1991).

To illustrate the new dynamics, we examine the model’s bielbaalong a one-parameter path in the
A—u plane, chosen so that solutions along the path mimic thereddstellar behaviour as rotation rate is
increased. We choose the parameterization

p=va

= H (o e (-2)] 69

whereQ) € [0, 00). Clearly the path satisfies the requiremgnt 0. It passes through the primary Hopf
bifurcation to the left of the:-axis and then through the heteroclinic region, stayingeltm theu-axis
(which is where the complicated dynamics occur). The patim tiends back to this axis to give stable
dynamo action a® — co. The path is illustrated in Figure 6.2.

In this section we present the numerical results obtainextbgrating the system (6.3) using the Runge-
Kutta Fehlberg numeric method in MAPLE. Although we can Elgshink of Q as representing the effects
of rotation on the system, we cannot link it directly with aplyysical parameters such as the Rossby
number. As we shall show, the behaviour of the system of émsm{6.3) along the parameterized path
(6.5) is similar to that found by Tobias et al. (1995).

For smallS2, all trajectories are attracted to one of the fixed points¢barespond to purely convecting
states. Magnetic instability sets in@t= 7.69 x 10~3 with a primary (supercritical) Hopf bifurcation,
so that periodic trajectories are apparent, a typical exawipwhich is shown in Figure 6.3. The radius
of the periodic orbit grows a® is increased, giving solutions for the magnetic field (repreed here by
x2) that grow in amplitude with increasir@. The period of oscillation remains approximately constant
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Figure 6.3: Magnetic activity solution for (6.3) as a fulctiof time along the parameterized path (6.5) at
2 = 0.1. A small amplitude oscillation is present, whose amplitgd®wys ad? is increased.

throughout, since it is controlled largely by the variablewith small perturbations to the period arising
from the axisymmetry breaking term. As the amplitude of thegnetic field grows, the Lorentz force
becomes important, varying periodically with half the perof the field, as does the velocity.

At Q = 0.214 (whereX < 0), the path crosses the line of the secondary Hopf bifurnatihere a
torus bifurcates from the periodic orbit. The solutions £6t) andy(¢), which were periodic before the
secondary Hopf bifurcation are now also modulated on a Iotigiescale, which results in an oscillatory
magnetic field with significant amplitude variations in timat @ = 0.76, for example, solutions are
quasiperiodic, as shown in Figure 6.4 (a,c). Nearby to suesigeriodic trajectories, the path also moves
through various resonance regions, an example of whicloissin Figure 6.4 (b,d) wher@ = 0.74. The
solutions forx(t) andy(t) appear to be qualitatively similar but we see that the ttajgavinds exactly six
times around the-axis in one period before returning to its original locatidNear the frequency-locked
regions where the winding numbers are irrational but closerationap/q, the orbit can spend most of its
time in a phantom periodic orbit from which it occasionallylacks.

Quasiperiodic solutions do not persist far from the seconétopf bifurcation, with the resonance
tongues closing off as it is approached. @sis increased the torus grows and begins to approach the
invariantz-axis. In addition the torus becomes less smooth, with firgtkles, then folds developing on
the attractor. The dynamics are qualitatively unchangethbysaddle-node bifurcation, reachedlat=
(0.925)? ~ 0.8573, although two of the three stationary points that existetl this point are destroyed
in the bifurcation. The resonance tongues that are asedaidth the frequency locking of the flow persist
(despite the breakdown of the torus), giving rise to windofyseriodicity along the trajectory. The effect
of the transition to chaos is best illustrated by taking Bar@ sections through the plagpe= 0. We show
this in Figure 6.5, where the appearance of folds on the@®eotarks a transition to chaos. The modulation
of the underlying cycle in the time series feandy becomes irregular.

The activity cycle, represented heredsy shows irregular bursts of activity followed by variabladghs
of no activity. The time series for (which represents the velocity) oscillates between vahess to the
two stationary points = 4, /u. An example is shown in Figure 6.6.

As Q is further increased an interesting phenomena is obsesedions with an intermittent character
are present, such as that illustrated in Figure 6.7. The-senees forz(t) andy(t) flip between different
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Figure 6.4: Solutions along the parameterized path (6.3)e 3D trajectory plot is shown for (a) the
guasiperiodic solutions & = 0.76, and for (b) the frequency locking & = 0.74. The corresponding
activity cycles, represented hy, are shown, with (c§2 = 0.76 and (d)2 = 0.74.
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Figure 6.5: Poincaré sections through the plane 0. (a) AtQ2 = 0.76 the section is well defined and
smooth. (b) At slightly larger values &t, wrinkles start to appear on the attractor, illustrateceter
Q) = 1.68 (c) The transition to chaos is evidenced by folds appearimghe attractor, shown here for

Q = 3.64.
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Figure 6.6: Chaotic solutions along the parameterized (@aH) at2 = 3.64 showing (a) the activity cycle,
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Figure 6.7: Example solutions along the parameterisedgiath= 11.023, with (a) the time series far(t)
and (b) the resultant magnetic activity cycle. Solutioresfaund to have an intermittent nature.

states which leads to a magnetic activity cycle with episaafeeduced and enhanced magnetic activity.

6.4 Summary

Our understanding of stellar magnetic activity in sol&elstars and its dependence on parameters such as
the Rossby number is deepening through studies such askherbiect at the Mt Wilson Observatory. The
magnetic activity found in this survey divides stars ndtyrimto those with constant emission, periodic
emission, irregular emission and long term changes in éomig8aliunas et al., 1995). Younger stars,
which rotate relatively rapidly and have higher dynamo narsptend to be those with irregular emission,
while older slower rotators (which have low dynamo numbgejl to show periodic or regular emission
(Hempelmann et al., 1996).

Stellar dynamos are governed by highly complex non-lingatesns of equations, the modelling of
which has been approached in a number of ways, from variqestpf mean field model to elaborate
numerical simulations. A partial understanding of the kition structure of such models can be gained
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by studying low-order models, consisting of coupled nagdinordinary differential equations. Using such
a theoretical model one can explore qualitatively the ¢féincreasing rotation by looking at a system’s
behaviour in parameter space, for example by increasinglyhamo number. For slow rotators (small
dynamo numbers) we would expect to observe a field-free, stétea sequence of bifurcations leading to
periodic, quasiperiodic, and finally irregular emissionttesdynamo number is increased.

Here we have extended the model of Tobias et al. (1995) tadiechn axisymmetry-breaking term
that maintains the underlying symmety, — — B, that corresponds to reversal of the field. Many of
the parameters can be tied loosely to physical effects; Wervsince the system has not been derived
directly from a set of governing equations we cannot relaetdirectly to physical parameters such as the
Rossby number. We have demonstrated that the bifurcatouesee proposed by Tobias et al. (1995) is
present in the new system of equations, with solutions gbiomg field-free to periodic, quasiperiodic and
chaotic as the forcing parameter is increased. Furthermeigave identified a new type of solution that is
characterised by the occurrence of long and deep minimespeesed with increased chaotic activity with
clusters of shorter minima.

These results are of interest as they can be related to athisery, as discussed above. Moreover the
results presented here are robust and so can be relatedhiuteations that are found in more compli-
cated (but less transparent) models based on Partial &itffiet Equations. Such an analysis of simplified
mathematical systems can scientifically complement thoseenical studies that attempt to model fully
either a particular stellar system, or, at a more ambitieusl| solve the full set of magnetohydrodynamic
dynamo equations. They can even give a guide as to the tyfrehatiour to be expected in such systems.



Chapter 7

A Time-Delay Model for Solar and
Stellar Dynamos

In this chapter we propose a physically motivated model é&tarsand stellar dynamos. As with that of the
previous chapter, the simple nature of the model allows @espdore a wide range of parameter space. We
begin in Section 7.1 by providing a physical motivation tmsider delay differential equations in dynamo
modelling.

The results of this chapter can be found in Wilmot-Smith e(2006b).

7.1 Introduction

Which of the various proposedeffect mechanism(s) is (are) dominantly at work in steéleriors such as
the solar convection zone is a matter of debate. It is celn@mivever that the various-effects proposed (see
Section 6.1) operate at different layers in the convectamezZMason et al., 2002) where they may, or may
not, spatially coincide with th@-effect. The latter, for the Sun, is believed to be primairilyhe tachocline
layer. For a dynamo mechanism with a spatial segregatidmeofito source layers for tHe anda-effects

it is clear that there must be an efficient means of communicéthrough flux transport) between the two
distinct source regions (see Figure 7.1 for a discussiomerspatial geometry of the problem). Magnetic
buoyancy plays a role in this by transporting strong torbildx from the base of the convection zone to
the upper layers (i.e., from the-effect layer to thev-effect layer). How the dynamo loop is closed through
flux transport from thev-effect layer back to th@-effect layer differs from one model to another, based on
which a-effect mechanism the model invokes.

For ana-effect operating in the tachocline, which is also the laoabf the Q-effect, the spatial co-
incidence implies that the communication between the solagers is almost instantaneous, i.e., toroidal
field generated by th@-effect is immediately available for regenerating the fedbfield. In the interface

100
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Convection
Zone

Figure 7.1: A cartoon depicting the concept of flux transgiare delays in the interior of a solar-like star.
This meridional cut (in the—0 plane) shows the convection zone and some part of the nagliaterior.

A region of strong shear in the differential rotation (susttlae solar tachocline) is depicted in dark gray
— the dynama-effect (which generates toroidal field from the poloidainfmonent) acts in this layer. The
dynamoa-effect (which regenerates poloidal field from the toroictainponent) is shown here in light gray
and acts in a layer located near the surface; the locationeafteffect layer depends on which physical
mechanism is invoked to account for it (see text). For theadymto function, communication between
the two segregated dynamo source layers should take plas®rie means of flux transport. This process
involves unavoidable time delays. In this paper, the tinkengor poloidal flux to be transported from the
a-effect layer to the)-effect layer and toroidal flux to be transported from fheffect layer to thev-effect
layer, are quantified in the time delays andTy, respectively.

dynamo (Parker, 1993) — based on the convectraffect — a negative convectiveeffect is located in the
convection zone only, below which titeeffect operates in the tachocline. A discontinuity in thegmetic
diffusivity occurs across the interface between the talithe@and the convection zone. The separation of
sites for the generation of poloidal and toroidal field methiey interact primarily through diffusion or tur-
bulent flux pumping (Tobias et al., 2001) — which is the priynaansporter of flux from the-effect layer

in the convection zone back to tiieeffect in the tachocline. The same spatial physical simectharac-
terises dynamos based on areffect due to buoyancy instabilities and located just @bitne tachocline
or in the base of the convection zone (Ferriz-Mas et al., 19%4larger segregation of the two source
layers differentiates the spatial physical structure ef Babcock-Leighton mechanism, where a positive
a-effect acts in the surface layers. In this case it is advedtix transport by meridional circulation (see
Nandy, 2004, for a review) and to some extent turbulent pamghat transports the surface poloidal flux
to the tachocline where the-effect resides. An unavoidable time-delay — due to thedfitiihe required to
transport magnetic flux from one source region to anothertemadizes in those dynamo models that have
physically distinct source layers. In this chapter, we anexplore the role of this time-delay in solar and
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stellar dynamo activity.

The removal of all spatial dependence in low-order ODE msid#gscription of the field evolution
gives an implied instantaneous communication betweenvibdield components (toroidal and poloidal)
that would not occur in spatially segregated models. Thedhiction of certain time delays in a system of
ODEs, so converting them to a set of delay differential eiquat(DDES), can take account of such a spatial
segregation. Indeed time-delays are intrinsic to PDE nsoithalt include meridional circulation, since this
circulation effectively introduces a delay that is coméedo the cycle period.

The notion of time-delay has earlier been studied in theendrdf a finite delay in the feedback of
the magnetic fields on the dynamo source terms (Yoshimui#)19ime delay dynamics have also been
examined in the specific case of the Babcock-Leighton madehe use of one-dimensional iterative maps
(Durney, 2000, Charbonneau, 2001) that include the long tilelay between the production of toroidal
field from poloidal field, but ignore dissipative effects. s have been shown to be in good agreement
with spatially extended numerical models (Charbonneal,&G05). Thus, in addition to stochastic forcing
and dynamical nonlinearity, the possibility arises thagarlved irregularities in solar and stellar cycles may
result from the effect of time delays in the underlying plegsprocesses that generate these cycles.

In this chapter we introduce time-delays into a set of treed¢aynamo equations, thereby construct-
ing a time-delayed system that includes both dissipatifects (which are absent in 1D iterative maps),
and a delay in both the conversion processes (from toroidpbtoidal component and vice-versa). The
underlying physical mechanism remains relatively transpisand can, in general, be applied to study dy-
namo models based on a diverse seat-affect mechanisms. In this model, a low or vanishing tine¢ag
physically resembles a scenario in which the dynarreffect and-effect are spatially coincident. Finite
time delays properly account for the two-layer charactedysfamos based on spatially segregated source
regions and the role that magnetic flux transport (e.g., atedivia meridional circulation or magnetic
buoyancy) plays in these models. It is shown that the intctidn of time delays can have a considerable
effect on the dynamics and lead to significant fluctuatiorsysle amplitude.

We begin in Section 7.2 by deriving the model before exangjriig behaviour in two important pa-
rameter regimes in Section 7.3. One regime is that for whiettime delay is smaller than the dissipative
timescale. We characterise solutions in this regime, wtiereffect of the time-delays dominates over that
of dissipation, aflux transport dominatedind find that relatively regular activity identifies theséusions.
The case where the time delay is larger than the dissipatiastale is characterised as thifusion domi-
natedregime, and we find irregular activity is more easily excitethis case. We discuss the implications
of our results for solar and stellar dynamos and summariedgs$ults in Sections 7.4 and 7.5.
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Figure 7.2: Dependence of the quenching factdif = a/ay), on toroidal field strength, for the parame-
tersByin = 1, Biae = 7.

7.2 Model Setup

Considering only the source and dissipative processe®idythamo mechanism and through a truncation
via removal of all spatial dependence, we obtain the egustio

dB¢ - w B¢
dt - L T¢’
dA A
— =aBy— =,
dt Tp

whereB,, represents the toroidal field antthe poloidal field. In this simplest possible case the evotut
of each component is a result of the combination of a sourcegss (first term on the R.H.S. of the above
equations) and a diffusive process (second term on the B.H-& the toroidal field the source processis a
conversion from the poloidal field (tie-effect), dependent on the differential rotatiofnot to be confused
with the rotation rate), and the length scale over whichti dc (the length of the tachocline, for example).
Diffusion of the field itself, occurring through ohmic decéyparameterised by, — which represents the
diffusion timescale for the toroidal field. The evolutiontb® poloidal field is also a combination of two
similar actions; diffusion, witfr, representing the diffusion timescale for the poloidal fieldd a source in
the conversion from toroidal field via theeffect.

To account for alpha-quenching we take a general fornnfgiven bya = «aqf, whereqy is the
amplitude of thex-effect andf is the quenching factor approximated here by the non-lifigaation
1+ erf(Bi (t)— B2, )1 — erf(Bi (t) — B2Z..)]

_ min max ) 71
f ; (7.1)

Figure 7.2 illustrates a typical profile fgf. The form for f has been chosen such that the function
that represents the alpha-effect has an upper threshold(lighated toB,,,...) above whicha = 0 and,
similarly, a lower threshold limit (related tB,,;,,) below whicha: = 0. The motivation for the including
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a possible lower operating limi#3,,;,, comes from the suggestion of a critical threshold in theittal
field in stellar interiors over which toroidal flux ropes bem® magnetically buoyant and rise up into the
alpha-effect source region (Durney, 1995). This lowerghodd due to magnetic buoyancy limits field
strengths and has been shown to play a crucial role in datergtihe amplitude of dynamo activity (Nandy,
2002). An upper limit to the field strengths on which the ahefffect operates is, in mean-field models,
associated witlalpha-quenchingvhere the Lorentz force associated with strong toroidal$§i@hpedes the
small-scale helical turbulent motions. In the Babcockglh¢édbn mechanism the upper limit stems from the
ineffectiveness of the Coriolis force on strong toroidakftubes. Simulations of rising flux tubes suggest
that tubes with strength greater than aroufdkG will rise to the solar surface without the tilt crucial in
imparting the poloidal field (D’Silva and Choudhuri, 1993yet al., 1994). The exact form chosen for
is arbitrary (just as is the algebraic form for alpha-quenglin traditional mean-field models of the solar
cycle). We discuss in Section 7.4 the implications of makdiffgrent choices.

In a dynamo with spatially segregated source regions, camuation between the two layers would not
be instantaneous as in the above equations. To take acdathig,dwo physically motivated distinct time
delays are introduced into the equations; the first beinga tielay for the conversion of poloidal field into
toroidal field, T;, and the second a time delay for the conversion of toroidil fiireo poloidal field, T} (see
Figure 7.1). Time delays will appear in all conversion psses, and so the equations become

4B, (1) _ w Ba (1)
= TA(-To) - — (7.2)
P — 0 (By = 12)) By - 1)~ 2. 7.9

Thus a system of two coupled DDESs has been obtained to desbeldynamo, with the only nonlinearity

being the parameterisation of the source term for the paldield. The time delays signify that the gen-
eration of any component of the magnetic field (on the L.HfShe above equations), at a given instant
in time, is dependent on the magnitude of the other compafehe magnetic field (appearing in the first
term on the R.H.S.) at an earlier time — corresponding toithe tlelay. Thus, this system of DDEs has an
in-built memory mechanism capable of “remembering” thesgalof magnetic fields from an earlier time
equal to the time delays. We show in Section 7.3 that growdhgfi®ns to these equations are possible.

The time delayly accounts for the time taken for a poloidal flux tube to be tpanted from the site of its
production back to the tachocline. In the Babcock-Leightmthanism the meridional circulation advects
surface poloidal field back to the the tachocline (whichpfrmid-latitudes at the surface to mid-latitudes at
the tachocline, takes on the order of 10 years). Often ind@kéhe high magnetic Reynolds numbét, ()
regime, this class of advection-dominated models assumagethere are negligible dissipative losses during
this transport. The meridional circulation then govefgsn Babcock-Leighton models. We might expect
the delay to be shorter in the interface dynamo (with dowawiax transport accomplished by turbulent
flux pumping — which again has negligible dissipative e8atiiring transport), particularly if the-effect
is deep-seated. The time delay should be vanishingly smakgatially coincident source layers (with
both the2 and a-effects in the tachocline, for example). Note that to soxterd, poloidal flux can be
brought down to th&-effect layer through simple spatial diffusion (as oppotedther mechanisms, this
also destroys the flux during transport). If indeed the gpdiffusive transport is faster and more efficient
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than all other means of transport, tHenshould correspond to the spatial diffusion timescale arelr@as

to account for dissipation during flux transport (see Secta! for a discussion on this). The important
point to remember is that, if there are competing mechanfenffux transport, the one with the shortest
timescale should be the governing one (as this would be nffoseat).

The time delayl; accounts for the time taken for a toroidal flux tube to buolyarise to the site
of poloidal field production. The timescale for the buoyaserof a flux rope from the interior to the
photosphere is rather short, being of the order of three hspand sd; <« T. However/ T, ; # 0 in any
model for which there is a spatial segregation between tbdayers.

The diffusion timescales for the poloidal and toroidal fiateé given by

_ Lics _ Lios
p— T T¢ — T
Tlp N

whereLgcz is the width of the solar convection zone (in general, it $tdne the separation of the two
source layers).scz = 0.3Rs ~ 2.1 x 10m. If we take the toroidal diffusivityy, to be equal to the
poloidal diffusivity,n,, thenns = 1, ~ 10'? cm?s™! a widely accepted value, and sg, ~ 13.8 years.
Alternatively, due to the strong, coherent nature of tharstdroidal magnetic field that can suppress the
magnetic diffusivity by as much as two orders of magnitude might have), < n, (for a discussion see

Chatterjee et al., 2004), so increasingo 74 ~ 1380 years.

Given the simplified nature of the model, the use of solar patar values in the system would not
be helpful in any attempt to quantify dynamics. Rather, theflaliscussion of their values is intended to
provide an indication of the comparative magnitudes of #rens, which is shown later to be critical in
determining dynamics.

As an aid to understanding the underlying structure of theehave can reduce the system (7.2, 7.3)
to a single second-order equation 8y, by differentiating (7.2) and substituting (7.3) féA(t — Tp)/dt
(note the evaluation at the delayed tifie— 7;)). This, among others, generates a term proportional to
A(t — Tp) which in turn is substituted for by (7.2). The resulting etpris

72 + B = Tf(B¢ (t=To—T1)) By (t —To — T1), (7.4)

d2 B¢ 1 + i dB¢ 1 [6701%%
dt TpTo

T Tp

which can be supplemented by (7.2) for the solutioméf). The system (7.2, 7.4) is equivalent to (7.2,
7.3) and therefore has the same set of solutions.

The time delays, andT; appear in (7.4) as a sum, so it appears to be their sum thapisriant
in determining the dynamics. If the right-hand side of (i43et to zero the equation becomes that of a
damped oscillator. In the case whete= T, the oscillator is critically damped, while in all other case
it is over-damped. Thus, for toroidal field strengths owgsid the range wher¢ is non-zero, we might
expect the system to behave as a damped oscillator. Fod&bffeld strengths within the range whefe
is non-zero, the term on the right-hand side of (7.4) is intgodr We will show in Section 7.3 that some
analogies of the full system with a damped driven oscillator be made.
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To examine solutions to this system we numerically integthe equations, basing the code on the
NDelayDSolve.m package in Mathematica. An initial solatio the problem in the rangec [—T 44, 0]
is specified, wher@,,,.. = max{Ty,71}. The effect of various initial conditions is discussed as th
solutions are presented.

The model is relatively simple, but gives rise to a wide ranfjdynamic behaviour. Here some pa-
rameter regimes are examined which suffice to illustratetmeplexity the system is capable of displaying
and its relevance to our understanding of solar and steylaamhos. From (7.4) the sum of the two time
delays is expected to be important in determining the dynsmiherefore, we examine two extreme cases
in particular. One case is wherg , > Ty + T3, which we call the flux transport dominated regime
and consider in Section 7.3.1. The cagg < Ty + 11, is called the diffusion dominated regime and is
considered in Section 7.3.2. In both of these regimes weowilsider solutions for positive and negative
dynamo numberN, (which is related to the Rossby numberMds oc 1/R2) (Durney and Latour, 1978).

In particular we will consider the effect of increasiffgp| since from stellar observations a change in the
dynamics is expected across a parameter space coveringaagBNp (and consequentli,) values.

7.3 Results

SettingTy = 71 = 0 in equations (7.2) and (7.3) corresponds to a dynamo modéhiich there is no time
delay in the magnetic flux transport between the two sourgi@mns (a situation that could result when the
source regions are spatially coincident and there is no diet&y involved in thex-quenching mechanism
via the Lorentz feedback). In this two-dimensional systesnen the conditior,, 74 > 0 is applied, we
obtain only two qualitatively different solutions; eithér and B4 both decay to zero, or they are both
attracted to a non-zero fixed point of the system. These fixaatpare given by solutionsi(t) = a,
By(t) = b, suchthatf (b) = L/(aowTyTp) anda = Lb/wT,. Thus the solutions described in the following
sections all arise from the inclusion of time delays in thedelo We note that in the linear analysis of
the dynamo equations Parker (1955) found wave-type saolsitichen the spatial derivatives are explicitly
accounted for. The time delays we will introduce later congage for the information lost by simplifying
the spatial terms as we have above.

When at least one of the time delays is non-zero, oscilladohytions to the system may be obtained.
In the solar case the strength of the toroidal field is muchtgrehan the poloidal field. This can always be
reproduced for non-zero solutions by takiag/L| > |aog|. Although(Bg) > (A) may also be achieved
in some parameter regimes withy/L| < |ay|, these cases are more limited. The parameBgrs, and
Binax Will be fixed throughout a$3,,,;,, = 1, B = 7. Qualitatively similar solutions to those outlined
below can be attained with different particular values®f;, and B,,....; see Section 7.4 for a further
discussion of this point.
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7.3.1 Flux Transport Dominated Regime

Solutions obtained in the regime where the diffusion tinadsx are large compared to the time delays
(p, 70 > To + T1) are examined in this section. Physically, this scenariamaghat the flux transport
(mediated by either, or the collective action of, meridiarigulation, magnetic buoyancy and turbulent flux
pumping) occurs efficiently and within a duration of time pwéich dissipative effects are not important.

In this model the dynamo number is given By = agwr,74/L. We begin by examining solutions
for Np < 0, takingw < 0, a9 > 0, and take a sequence of increasing absolute value of dynamber
Np (and therefore decreasing Rossby numBg). This corresponds to increasing the rotation rate of the
star. The cut through parameter space givewp¥ + 2ay = 0 is taken, so that the relative strength of the
source terms for poloidal- and toroidal-field productiomeén the same, and all other parameters are fixed
as

76 =15, 7 = 15, Bpin = 1, Brnaz =7, To = 2, T1 = 0.5, andw/L 4 20 = 0.

The initial solutions are specified as the consta@,i,, + Bmaz)/2 for both A andBy.

On this sequence a periodic orbit bifurcates from the fixeidtpat the origin whenVp = —12.696.
The orbit then becomes periodically modulated, so fiatand A both show oscillatory behaviour, with
amplitudes modulated on a longer timescale. The amplitfideoalulation increases along the parameter
path, butB, lies within the rangd— B,,a4, Bmaz) for all time. An example is shown in Figure 7.3,
whereNp = —13.01. For Np < —17.11 solutions forBy are no longer contained within the range
[—Bimaz, Bmagz]- Solutions are now periodic, with bothand B, showing cyclic behaviour, with a constant
period and amplitude, a typical example of which is illustthin Figure 7.4. The rising phase of both
solutions is steeper than the declining phase, and a shargethin the first derivatives of both and By
can be seen during each declining phase.

Both the period and amplitude of the oscillation increast wicreasing N |, as shown in Figure 7.5.
There is a linear dependence of amplitude on dynamo nhumleerseveral orders of magnitude, while the
period of the cycle varies logarithmically. As is eviderdrfr Figure 7.6, an increase in the sdim+ 13
also increases both the periods and amplitudes. Solutnain qualitatively the same as those illustrated
in Figure 7.3 untilly + T} ~ 50.

Next we consider solutions for positive dynamo numk¥ép > 0. Again periodic solutions to the
system can be obtained, but there are important distinrgtiorbe made from the cagép < 0. On
increasing the dynamo number the first bifurcation leadsetdogic solutions in which bot(¢) and
By(t) are of single sign only, an@,(¢) is not contained within the rande-B,,4., Bimas)- A typical
example is illustrated in Figure 7.7. The characterisgeptrising phase of the cycle and slower declining
phase remain, as does the sharp change in derivatideanid B4 at the end of each declining phase. The
same qualitative dependence of cycle amplitude and peridubth total time delay andVp| as that for
Np < 0isrecovered.

Some analogies of solutions in this regime to a damped dogeillator can be made to help explain
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Figure 7.3: Time series, in the flux transport dominatedmegifor top) the poloidal field, fniddle) the
toroidal field, and fotton) the magnetic activity (energyBj,, for dynamo numbeNp = —13.01 and the
parametersy = 15, 7, = 15, Buin = 1, Biae =7, To =2, T1 = 0.5,w/L = —0.34, andag = 0.17.
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Figure 7.4: Typical time series fa¥p < 0 in the flux transport dominated regime fdog) the poloidal
field, (middle) the toroidal field, andi{ottor) the magnetic activity. Here the parametgrs= —1.5, ag =
0.75, Bmin =1, Bmas =7, 74 = 15, 7, = 15, Ty = 2, andT} = 1/2 have been used.
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Figure 7.5: Change of cycle period (solid line) and ampktdashed line) with the magnitude of the
dynamo numbenNp|, in the flux transport dominated regime fdfp < 0. The parameters arg, =
15, 7 = 15, Bpin = 1, Biaz = 7, To = 2, T1 = 0.5 andw/L 4 20 = 0.
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Figure 7.6: Change of cycle period (solid line) and ampksi(tashed line) with time del&y + 11, in the

flux transport dominated regime fofp < 0. The parameters arg = 15, 7, = 15, Byin = 1, Baz =
T, w/L=-1, apg = 0.5andTy = 4T.
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Figure 7.7: Typical time series for the toroidal field fgp, > 0 in the flux transport dominated regime. The
parameter§ = —0.5, agp = 0.2, Bpin = 1, Biaz = 7, 7 = 15, 7, = 15, Ty = 2, andT; = 1/2
have been used, and the initial solutiBp(t) = —5, A(t) = —5 over the range € [—2.5, 0] taken.
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these properties. Recall that a driven oscillator withqaid driving force can be described by the equation

A2z b dzx k
—t—— 4+ —z = - 5 (Qt
dt2+mdt+mx feos (02),

(whereg > 0), which has the steady state solution

p

x(t) = cos (U + @),
VEE + (k-0
where® represents the phase shift and is given by
0m—k
o= tff—— ). 7.5
arcco < b ) (7.5)

The non-zero time lags mean that the right-hand side of exquét.4) is out of phase with the solution.
Thus, this term acts as a driver to the system wBilgt — T, — T1) is within the rangé—B,,42, Bmaa],
which we call theforcing region

For negative dynamo number, along the sequence of inceeéSin|, the first bifurcation results in
a periodic solution contained entirely within the rangeB; oz, Bmaz]. Thus for this solutionf ~ 1
and B, (t) = Bocos(2). If f = 1in (7.4), takingr, = 7, = 7 and assuming the driver acts purely
sinusoidally asB, cos(Q2(t — Ty)) whereT,; = T, + T1, we have

—NpB Q*r—1

This expression must be equivalent to our assumpti(t) = By cos(t), and so equating the two
expressions gives

02r -1
QTy = arccot(TT) , (7.6)
_ND
araze b (7.7)

We may use this equivalence to explain the value at which én@gic orbit bifurcates from the fixed
point and also the frequency of the resultant oscillatioor the parameter values used abdig,= 2.5,
7 = 15, equation (7.6) implie§? = 0.228, for which the corresponding oscillation periodRs= 27.58.
Given this value fof2, Np can be deduced from equation (7.7)¥s = —12.67. These values correspond
closely to the bifurcation value found in the simulationg\g = —12.696, for which the simulated period
was P = 27.54. Sincecos (Q + @) = — cos (Ot + ¢ + 7/2) we might also expect to obtain periodic
solutions forNp > 1. Instead, growing solutions are found and indeed ffet 1, there exist solutions to
equation (7.4) of the forniB, (t) ~ exp(At) with real\ > 0 precisely whenVp > 1.

When the dynamo number is sufficiently high that solutiorsray longer contained within the range
[~ Bimaz, Bmaz|, the analogy with the driven oscillator may still be usedymaith the driver acting only
intermittently on the solution. Qualitatively, the cycleybe described as follows. The driver starts acting
on the system at a tindg, + 7} after the solutiorB,(¢) enters the forcing region, and continues to act until
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atimeT, + T; after the solutionB,(¢) has left the forcing region. This corresponds to the stesipgi
phase of the cycle. After this time the term on the right-hsidé of equation (7.4) is zero and it becomes
that of a damped oscillator. After reaching a maximum in ltssaute value the solution then decays, until
B4 (t — Ty — T1) again enters the forcing region, where a sudden change graaéent of B, (¢) occurs as
the driver again starts to act on the system.

The sign of the term on the right-hand side of equation (7et¢mnines the nature of the driving. If
this term has negative sign when it acts on the system thesotb#on will be driven in the- B,; direction,
whereas if the term has positive sign then the solution véltbiven in thet+ B, direction. The lengthly
diffusive time-scales when compared to the time-delaysrmeis,; (t — Ty — 17 ) is of the same sign a8, (¢)
whenBy(t) decays tat B,,... Thus, if Np < 0 the solution is forced in the same direction as the decay,
and a change in the sign of solution occursNI§ > 0 then the solution is forced against the direction of
decay, and the resulting solutions are of single sign only.

This mechanism predicts an increase in the amplitude ofybke df, for example, the strength of the
driving is increased, or if the driving term acts on the syster a greater length of time. An increase in
dynamo numbeiNp | by keepingr, 4 fixed and increasing botl, andw/ L has the effect of increasing the
amplitude of the forcing, since the term on the right-hamié ©if (7.4) depends upon the produgto/ L.
Over several orders of magnitude, as shown in Figure 7.8 tlkea linear relationship between the cycle
amplitude and the produabw/L. Lettingr, = 7, = 7 say, using (7.4) we expect the decay to be governed
by exp (—t/7). Thus, with greater amplitude it will take a longer time fbetsystem to decay and re-enter
the forcing region. This timescale agrees closely with @afiound in the simulations, and predicts a period
increasing logarithmically with amplitude, as is seen igufe 7.5. The length of time the driving term acts
on the system will depend on the sum of the time delays, simeelitiving term acts on the system until a
time T, + T after the solutionBy(t) has left the forcing region. Thus an increase in the sum ofithe
delays also increases the amplitude of oscillation, as shinwWrigure 7.6, and accordingly the period of
oscillation.

It is worthwhile here to compare the behaviour of this tinedagied system with numerical simula-
tions of spatially extended solar dynamo models with réaliaternal rotation profiles; specifically, those
Babcock-Leighton models in which meridional circulatiactsaas a transporter of flux between the two
source regions. If the circulation is fast (and so the timleydsmall) the dynamo is more efficient and its
period is smaller. Conversely, if the circulation is slomdaime delay large), the period is higher (see
Hathaway et al. (2003) for solar observations which supistargument, and Nandy (2004) for a review
on the role of meridional circulation in determining the ipdrand amplitude of such dynamo models).
Also, for slow circulation speeds (corresponding to laigeetdelays in our model), although subject to the
condition that the circulation timescale is still shortean the diffusion timescale, since magnetic fields
stay in the source regions for a longer time, the inductifectfesults in higher amplitudes, in agreement
with the results of our time-delayed system.
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Figure 7.8: Diffusion dominated regime time-series wih < 0 for (top) the poloidal field, fiddle) the
toroidal field, and §otton) the magnetic activity, and the parametérs= -2, oy = 1 and7, = 74 =
1, Ty =10, Ty = 4.
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7.3.2 Diffusion Dominated Regime

Solutions for which the diffusion timescales are smallantkime delays+,, 7, < Ty + 11) are discussed
in this section. Physically, this corresponds to a scenanhich significant (ohmic) dissipation alters the
magnitude of the fields on a timescale comparable to the famsport between the source regions.

A wide variety of dynamics occur in this case. Again we begmelsamining solutions for which
Np < 0. Toillustrate some of these we fix the parametgrs- 74 = 1, Ty = 10, 77 = 4 and examine a
sequence of increasing absolute value of dynamo numbe(with values ofB,,,;,, andB,,,,, unchanged).
Again the cut through parameter space givewBy. + 2« = 0 is taken, so that the relative strength of the
source terms for poloidal and toroidal field production rantee same. The initial solution is taken as the
constan{By,in + Bmaz)/2 for both A andB,.

For all initial conditions with—1 < Np < 0, solutions are attracted to the fixed point at the origin,
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Figure 7.9: Time series for the magnetic activity with, < 0 and the parameters = —10, oy = 5,
Tp:7'¢:1, T0:10, T1:4
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Figure 7.10: Time series for the magnetic activity witty, < 0 and the parameters = —16, ap = 8,
Tp:T¢=1, T0:10, T1:4.
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Figure 7.11: Time series for the toroidal field wil¥ip, > 0 and initial solutionA(t) = By (t) = cos(t).
The parameters = -3, ag = —1,7, = 74 = 1, Ty = 10, T} = 4 have been taken.

A,By — 0. WhenNp < —1 oscillatory solutions which are characteristically innégy are obtained. A
typical example of solutions obtained at low dynamo numbellustrated in Figure 7.8, where the time
series for the poloidal field4, toroidal field, B4, and magnetic activit;Bi, are shown. Note tha, does
not always lie within the range- B,,,42, Bmas|. Both A andB,, show a long-term cycle (approximatelys

of which are illustrated here), where the fields oscillateveen positive and negative signs, and is regular
in its length, P say. The parameters taken in Figure 7.8 result in an averged® = 31.6 time-units.
Within each half-cycle the field also oscillates, leading tame series for the magnetic activity which does
not have an underlying magnetic sequence oscillating ltyesitive and negative signs. Both the period
and amplitude of the activity cycle are irregular.

As the dynamo number is increased, amplitude modulatiatslematime-spans where magnetic activity
is considerably reduced, as apparent in Figures 7.9 and Alt®ugh the basic cycle persists throughout
these episodes, the field strengths are significantly béievaverage values. The episodes become more
regular with increasing dynamo number; a pattern to thetsvsrclear in Figure 7.10 for example. Just
as in the flux transport dominated case the amplitude oflatoih increases with dynamo number, as
illustrated in Figures 7.8-7.10. However, the maximum atage is now not constant from cycle to cycle.
For a given set of parameters, 7, Tp andT}, there exist certain parameter valug&l andc such that
the amplitude of solution is relatively regular, with Figuf.10 providing an example of this. Fixing L,

o, Tp andTy in such a case and increasing the total time d&lay 71 no longer gives rise to a predictable
trend in behaviour as found in the flux transport dominatee @ad illustrated in Figure 7.6. In this regime,
the mean amplitude of solution remains constant with irgiregl, + 71, butxs the duration of minima and
number of cycles between each minima varies irregularlig wicreasindl, + 7.

Next, looking at solutions for positive dynamo numb¥y, > 0, we find that the form of initial solution
specified becomes important in determining the nature odhgtion obtained. For initial solutions whose
sign varies on a time-scale comparable or less than theslifftime-scale, it is possible to obtain solutions
which are qualitatively similar to those for whidlip < 0. An example is shown in Figure 7.11 where the
initial solution A(t) = By(t) = cos(t) fort € [T, — T1, 0] has been specified. This may be compared to
Figure 7.8, wheréVp < 0. On increasingVp the maximum field strength is again seen to increase, with
periods of reduced activity occuring at higher dynamo numbe

A second type of solution occurs féfp, > 0, in which single signed oscillations of irregular amplieud
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Figure 7.12: Time series for the toroidal field witfi, > 0 and constant initial solution. The parameters
£ =-3, a=~-1,7, =74 =1, Ty = 10, T1 = 4 have been taken.

and period are present. These solutions arise when thal isitiutions vary only slowly when compared

to the diffusive time-scales. An example is shown in Figurg27 where the constant initial solutions
A(t) = By(t) = 5 fort € [-Tp — T1,0] have been taken but the same parameters for Figure 7.11 used.
In these low dynamo number solutions the minimum in magresté&rgy is non-zero for sustained periods

of time. On increasing the dynamo number periods of reductvdity in these single signed oscillations
become apparent, in which between bursts of activity thd figkength is near zero.

The analogy with a damped driven oscillator given by equafi4) can help explain some of these
features. Inthe cas€p < 0, equations (7.7) and (7.6) may again be used to explain tiné@idifurcation
from a steady state to cyclic behaviour. Substituting 1, T; = 14 into (7.7) implies©2 = 0.196 at this
bifurcation, corresponding to a peridd = 31.95. Substituting this value fof2 into (7.6) to gives the
dynamo number at the point of bifurcation &3, = —1.039, corresponding closely to that found in the
simulations.

For sufficiently low dynamo number the amplitude of the soluts small, and s@,; is, for most of the
time, within the range— B,,,4.., Bmaz] Over which the driving term on the right hand side of equafibd)
operates. When the solution is outside of this range the difissivity ensures the field decays to within
this range once again on a timescale shorter than the sure tifrte delays. This rapidity when compared
to the time delays distinguishes the solution from the flaasport dominated case since each time the
delayed solutiorB, (t — T, — T1) decays tat B,,.q., the solutionB, (t) will have different magnitude, and
may be of different sign, so changing the nature of the dgifamce. In this manner the short diffusive time-
scales ensure it is possible to obtain double-signed asoitls whenNp > 0 (which cannot be achieved
in the flux transport dominated regime). Such a solutioresetin the sign of3,(¢) being different to
By(t — To — Th) whenBy(t — Tp — T1) decays to lie within the range- B4z, Bmaz]. This will ensure
that the term on the right-hand side of (7.8)B, (¢t — Tp, — 11), acts to drive the solution toward a different
sign. At some > 0 the solutionB,(t) will leave the rang— B4, Bmas], but now the rapid decay of
the solution has the result th&, (¢t — Tp — T1) may be of different sign td,(¢), given suitable initial
conditions. Such conditions were specified in Figure 7.1ene double-signed oscillations occur.
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7.4 Discussion

A number of generalisations can be made to the above andiygiarticular it has been assumed throughout
thatr, = 74. In the more generic case, whete# 14, the qualitative nature of the results described above
remains. The same behaviour is to be expected from equatidh<ince, when the solutioB(t) lies
outside of the rangé— B4, Bmas] @nd the driving term is zero, a change frogm= 74 to 7, # 75

has the effect of converting the system from a damped oswilta an overdamped oscillator, for which
solutions are qualitatively similar.

It has been assumed that during the flux transport no disggpeffects act on the fields — the source
terms in equations (7.2) and (7.3) are proportionabfd and«, respectively. In the most general case
the fields may be subject to dissipative losses during thesiisportation from one source region to another.
Accordingly, extra loss factors can be introduced to theaéiqus to take dissipation into account, which
we would expect to become important only when flux transpmohtyi spatial diffusion, specifically in the
diffusion dominated regime. In this case the general forthefequations should be

dBy(t) _w _qy/r sy Bo(t)

—n —1I°¢ At —Tp) —T¢ , (7.8)
dA A
—dLEt) =aof (B¢ (t—"T1) 67T1/7¢) e T/ By (t—Th) — Tit)- (7.9)

The additional multiplicative exponential factors aresgdo unity (and hence unimportant) in the flux
transport dominated case, but small (and hence importaniel diffusion dominated case. However, in
both situations qualitatively similar behaviour to thasdeébed in Section 7.3 may be obtained given a
suitable re-scaling of the parametersL anday (corresponding to an increase in dynamo number). The
resultant solutions are then of greater amplitude compaitadthe system (7.2), (7.3), since it can be seen
from equation (7.4) that an exponential term within the gunémg factorf will have the effect of increasing
the range ofB,, over which forcing operates.

We considered a particular choice of algebraieffect that gives rise to the possibility of having both a
lower and an upper cut-off in the range over which dheffect operates. In the examples illustrated above,
the value ofB,,,;,, is such that thev-effect is non-zero throughout the rangeB, .., Bz ], although its
value decreases rapidly outside the rafid@®,in|,|Bmaz|]. With an increase oB,,,;, such that there is
some finite range betweér B,,,4, Bmas|, CeNtred atB, = 0, where then-effect is zero, the majority
of the solution types described above can be recovered. Xdeptons are the behaviour at low dynamo
numbers, both in the diffusion dominated case shown in Ei@u8, and in the flux transport dominated case
shown in Figure 7.3. These solutions rely on the quenchictgfg being non-zero withif—B,,.q., Bimax)
andB,(t) being contained within that range. This is no longer the eédgea higher value, ;. .

If an explanation of both the flux transport dominated antudibn dominated regimes in terms of an
analogy with a damped driven oscillator can be invoked, themature of the driving term (given by the
right-hand side of equation (7.4)) is important. In the fa@se since the diffusive timescales are long when
compared to the time delays, and once the soluBg(t) is not within the rangé— By, 44, Bimas] for all
time, the sign combinatiof, (¢t) By (t — Tp — 11) will always be positive when the driving term begins
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Figure 7.13: Time series for the toroidal field in the diffusidominated case witVp < 0 and using the
parameter§ = —6, ag = 3, 7, = 74 = 0.5, Ty = 10, T1 = 4. The dashed lines indicate the boundaries
of the forcing region and the thick solid lines are of len@th+ 77 = 14 corresponding to the total time
delay. The first two bars have been placed to illustrate ativegeign combination 0By (t) B, (t — 1o —T1)
which leads to further oscillation within a half cycle, amattfinal two bars to illustrate the positive sign
combination ofB, (t) B, (t — Ty — T1) present at the end of each half-cycle.

to act during the declining phase of each cycle. This pratitity leads to the regularity in the system, to
the single-signed oscillations fé¥, > 0 and to the double-signed oscillations ¥, < 0. In the second
case, since the rapid diffusivities ensure the solutiomrnstto the forcing region in a timescale shorter than
the time delays, the sign combinati®y (¢) B, (t — Ty — T4 ) will not be fixed as in the diffusive case. Thus,
the sign of the driving term will vary between cycles and witkach half-cycle, leading to irregularity

in the system. Figures 7.13 and 7.14 illustrate these sffetihey show typical solutions in each of the
regimes, with bars corresponding to the length of the timaydesuperimposed on the solution to illustrate
the sign combinations @B, (¢)B,(t — Tp — 11) and, in the flux transport dominated case, the change in
gradient of the solution as it enters the forcing region.

7.5 Summary

To summarise, we have constructed a physically motivatedaed stellar dynamo model, which includes
time delays (in the flux transport), to study the effects @t segregation of the dynamo source-regions
in stellar convection zones. The model can be generalizstutty a diverse set af-effect mechanisms
located at different layers in stellar convection zoneshsas the tachocline, or the base of the convection
zone, or near the surface. This can be achieved by varyingnigedelays to appropriately account for
the dominant flux transport mechanisms that are unique teeifspdynamo model based on a particular
a-effect mechanism. This can be, for example, the meridioimalilation timescale in Babcock-Leighton
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Figure 7.14: Time series for the toroidal field in the flux spart dominated case witNp, < 0 and using
the parameters = —0.008, ap = 0.008, 7, = 74 = 100, Ty = 40, T1 = 10. The dashed lines indicate
the boundaries of the forcing region and the thick soliddiaee of lengtil, + 77 = 50 corresponding
to the total time delay. The bars have been placed to illtesfiestly the change in gradient of solution as
By (t — Ty — T1) enters the forcing region (before which the solution is pudéfusive) and secondly the
switch in the solution from being driven to being purely dgfve as the solutiol, (¢ — T, — 1) leaves
the forcing region.

dynamo models, or the turbulent pumping timescale in iatarflor other) dynamo models that do not rely
on meridional circulation. Motivated by stellar activitgervations and the wide parameter space it offers,
we have explored the dynamics of our model by increasingyhamo numbefV,; (consequently reducing
the Rossby numbeR,), specifically for two extreme regimes.

In the flux transport dominated regime some similarity to sb&ar cycle is seen. On increasing the
dynamo number a transition from no magnetic activity to lketciry behaviour occurs. The solutions show
polarity reversal however only in the case of negative dymammber, which, when the differential rotation
w/Lis assumed to be negative (as is observed in the high lagiad®f the solar tachocline), corresponds
to a positive alpha effect (as is the case in the BabcockHteigmechanism). The steep rising phase and
longer declining phase resembles that of the sunspot dy@esimilarity of the solar cycle to a non-linear
relaxation oscillator was noted in Mininni et al. (2001). é&ected, upon increasing the dynamo number,
the level of magnetic activity increases. Although the peof the magnetic cycle is significantly longer
than both the length of the time delays and the diffusive sicates, the expected qualitative behaviour of
the dynamo (i.e., increasing period of oscillation and aiugé with increasing time delays) is recovered.
However, events such as grand-minima would be hard to expiathis model-regime without invoking
some form of stochasticity in the poloidal source term ohiding some other physics. Nevertheless, given
the similarity of the solutions in this case with other agpexd the solar cycle, we conclude that the solar
dynamo is possibly (in its present state of activity) in thxfiransport dominated regime.

The modelis capable of irregular behaviour, including Bigant amplitude modulation, in the diffusion
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dominated regime. In this case the magnetic cycle showsipotaversal for both positive and negative
dynamo numbers, and has an average length, about whichvitsstroall variations. The average length
of each magnetic cycle is of the same order as the sum of thditveodelays. Amplitude modulation
is seen for solutions along a cut through parameter spacespumding to increasing dynamo numbers,
although the character of the modulation varies considgraBor small dynamo numbers episodes of
minimal activity are present which are short compared tociiede period, and that are spaced irregularly
in time. On increasing the dynamo number, the duration ofis/eecomes longer, and is regular in both
length and spacing for larger dynamo numbers. These ph&sedwred activity are reminiscent of the
solar Maunder minima; however, the overall nature of themetig activity is qualitatively similar to many
stars in the Mt. Wilson project which show highly irregulahavior. This may imply that these latter

stars, which exhibit irregular magnetic activity, suppbmamos whose underlying physics is similar to the
diffusion dominated regime of our model.

It would be possible to take a cut through parameter spacesggonding to increasing dynamo number,
that links both of these regimes. Taking an increasevw/L| but a decrease i, 7, in such a way as to
increaseNp|, moves solutions from the regular oscillations preserti@fiux transport dominated regime,
to the irregular nature of the diffusion dominated reginre] sncreases the level of magnetic activity. This
is exactly the behaviour observed in solar-like stars, whnagnetic activity is distinguished by rotation
rate (recall that low Rossby numb&y, corresponds to high dynamo numb¥yg). While this particular
cut through parameter space may be artificial because itislea how field diffusivities are affected by
rotation rate, the principle of increasing a system paranatd observing a qualitative change in solutions
provides an useful analogy to stellar activity observation



Chapter 8

Summary and Future Work

8.1 Summary

In Chapter 3 we used an expansion technique to address ome gfiestions raised by the work of Hornig
and Priest (2003): does the freedom to impose an ideal flovhemparticular reconnective solution arise
from the neglect of the momentum equation or is it inherettiédBD process? The investigations presented
suggest the latter, with several examples found in whichlided non-ideal solutions are decoupled. In
these solutions the inclusion of an ideal flow does not chdnge&econnection rate itself, but does have
a significant effect on the evolution of magnetic flux and leeolbanges the interpretation of the recon-
nection rate. The fundamental counter-rotational recotiveeplasma flows previously found to arise as a
consequence of the 3D localisation of the non-ideal regiereweonfirmed.

In the analysis of Chapter 3, as well as in previous model€ofeonnection processes (Hornig and
Priest, 2003, Pontin et al., 2004, 2005b), the localisaifdhe non-ideal region is imposed via a localisation
of the plasma resistivity;. In Chapter 4 we presented an example of a 3D reconnecti@egson which
the current term itself is localised in all three-dimensiorThe field geometry considered is elliptic —
reconnection in such a geometry can only occur in 3D. We deesl qualitative and quantitative models
for the process, termétlix-tube disconnectigrand determined how the reconnection rate and size of the
non-ideal region scale with the imposed plasma velocities.

In Chapter 5, a numerical experiment modelling an elemgriteating event was described. In the ex-
periment two intertwined magnetic flux tubes were taken wjiimning driving velocities imposed on their
magnetic footpoints. The distribution of magnetic flux waldwed in time and magnetic reconnection,
which exhibited flux pile-up characteristics, was found t@ur continuously across a central separator
current sheet. Several comparisons were made with a sie¥f@@riment, described by De Moortel and
Galsgaard (2006b), in which the same boundary driving vidsovere imposed in initially separate mag-
netic flux tubes, and the two situations were shown to haveyroammon characteristics.

In the remaining two chapters of the thesis we explored ibatyy different question of how the large-

121
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scale solar magnetic field is continually regenerated vigadyo action. Chapter 6 presented a third-order
ODE model of a dynamo, derived via bifurcation theory, thapthys the underlying mathematical structure
expected to be present in spatially extended models. Tibised for an in-depth investigation of the nature
of solutions present in various regions of parameter spelte model is able to reproduce many of the basic
types of behaviour found in observations of solar-typesstiarthe appropriate parameter regime, a chaotic
modulation of the basic cycle is present, together with wayperiods of low activity such as that observed
during the Maunder minimum.

The simple model for the dynamo process presented in Chaptas derived from physical motivations
and consists of two coupled delay (or functional) differ@rgquations. Through the use of time delays the
generation of field components in spatially segregatedr$agad the communication between them was
modelled. A variety of dynamic behaviours were found toeiis the model, with different parameter
regimes giving rise to periodic and aperiodic oscillatioRso characteristic regimes were found, the flux-
transport dominated regime (in which the time delays arellemihan the dissipative timescale) and the
diffusion dominated regime (where the opposite situatiofound). The Sun itself is expected to be in the
flux-transport dominated regime, whose solutions weredduarbe regular.

8.2 Questions outstanding

There are several questions arising from the work presenttts thesis. We briefly detail some of these
questions here.

Chapter 3: Dynamic Non-Null Reconnection

e We detailed some examples in which the scheme is solvedcéplip to third order. In principle
the remaining orders can be solved numerically. To do sdwegmsolving all quantities on a grid on
the hyperbolic-flux tube. What is the best way to do this? thsa scheme is set up then we can
examine a number of factors, the most obvious and importaingtthe nature of the higher-order
terms.

e How is the rate of reconnection determined in the model?

e Is it possible to include additional physical effects (sashthe Hall term) in the expansion and still
obtain a similar scheme? If so, what are the consequencaslatling these terms?

e Can we make a sufficiently good choice of the free functiorts\ariables in the first few orders of
the scheme to allow a closed solution to be obtained (thimsasemewhat unlikely).

Chapter 4: Flux-Tube Disconnection

e Onedrawback to the analysis presented is in the neglectofitimentum equation (i.e. the kinematic
nature of the analysis). Is a straight flux-tube physicadlglistic? The momentum equation should
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determine whether the tube expands or contracts (or bothisaspun (for a similar investigation see
Browning and Hood (1989)).

o It will probably not be very easy to include the momentum digumain the analytical work (although
approaching the problem via the expansion scheme of Chaptexy give some insight). Instead,
or in addition, a 3D MHD numerical investigation of the prein would be interesting. In such
an experiment it would be possible to take a flux-tube andwugaliylramp-up a spinning footpoint
velocity on the ends of the tube. Accordingly, such an experit would be useful in addressing
questions relating to the stability and dynamic accessilaf the solution.

e On a slightly different note, is it possible to find field lineappings (and therefore carry out an
analysis similar to the quantitive one presented here) fomeerbolic magnetic field with a localised
current?

Chapter 5: An MHD experiment into the effect of spinning boundary motions on misaligned flux-
tubes

The material presented in this chapter corresponds onlypelminary investigation of the numerical
experiment. A significant number of questions have not beleinessed and will need to be in future. For
example:

e What is the nature of the magnetic flux connectivity in theeskpent and how does the connectivity
evolve in time? Having gained such a knowledge, what do wa labout the reconnection process?

e Is it possible to track magnetic field lines attached to fl@reents in time? To do so would enable
a better understanding of where the reconnection is takee@and the nature of the reconnection.

e A flux pile-up regime is often associated with a higrenvironment. The values ¢f used in the
experiment are unrealistically high if the situation isépresent a coronal environment. It would be
interesting to redesign the experiment with a |6wand see whether the same behaviour persists.

Chapter 7: A Time-Delay Model for Solar and Stellar Dynamos

The solar dynamo is in the flux-transport dominated regimiéhodigh solutions in this category show
several similarities to the solar dynamo, modulation ofieyamplitude and variable cycle lengths are not
observed. However the amplitude of the solar meridionalutation is known to vary significantly with
Snodgrass and Dailey (1996) finding that

The activity-cycle-related time variations of the merithbmotion are as large as the motion
itself ... there are no latitudes at which the motion is sieddring the course of the cycle.

Is it possible that, with the inclusion of a variable meritib circulation in the model (corresponding to a
variable time-delayl)), amplitude and period modulation and even intermitterayla arise in the flux-
transport dominated regime? Preliminary investigatiarggest so. Figure 8.1 shows the time series for
Bi and A2 for a solution in the flux-transport dominated regime whBfeés varied in time stochastically
by 80% of its mean value. A full investigation into this phaomen is currently underway, attempting to
answer questions such as:
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Figure 8.1: Time-serieB2 and A? with a stochastically varying time-deldy. The solutions show signif-
icant amplitude and period modulation.

e How do long-term fluctuations in the time-del@y affect the cycle?

e What is the nature of solutions when stochastic fluctuatiotise time-delayl}, are taken? How do
they differ for various coherence times and amplitude oftflations?

e What is the effect of including time variation in the amptiuof the alpha effect (i.e. ing)?
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