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Abstract of the Dissertation

Toward Computational Oncology: Nonlinear Simulation of Centimeter-Scale

Tumor Growth in Complex, Heterogeneous Tissues

by

Paul Thomas Macklin

Doctor of Philosophy in Mathematics

University of California at Irvine, 2007

Professor John S. Lowengrub, Chair

In this dissertation, we present three increasingly sophisticated mathematical models of

solid tumor growth and new numerical techniques for accurately and efficiently solving these

models. In the first model, we simulate necrotic tumor growth into perfectly-vascularized,

homogeneous tissue. We solve the model using a new level set/ghost fluid method that

can produce accurate solutions on arbitrary domains, even when faced with challenging

topological changes. This model provides a core framework for the development of more

sophisticated models.

After a brief presentation of a new geometry-aware curvature discretization for level

set methods, we focus on a second model where we now include nutrient perfusion and

proliferative pressure dissipation in the tissue surrounding the tumor. Using this model, we

conduct a thorough study of the impact of the tumor microenvironment on tumor growth.

We find that three characteristic morphologies emerge that depend primarily upon the mi-
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croenvironment: invasive, fragmenting growth into nutrient-poor tissue; invasive, fingering

growth into nutrient-rich, biomechanically unresponsive tissue; and compact/hollow growth

into nutrient-rich, biomechanically responsive tissue. We discuss the implications of this

finding on anti-angiogenic and anti-invasive cancer therapies.

The third model treats tumor growth in complex, heterogeneous tissues using a non-

linear nutrient equation and a two-sided pressure equation with geometric jump boundary

conditions. We solve the model using a new level set/ghost cell method that can accu-

rately and efficiently solve nonlinear elliptic PDEs on large, complex domains, even with

geometry-dependent jump boundary conditions. After testing the new technique, we simu-

late the growth of glioblastoma (an aggressive brain tumor) in a large, 1 cm square of brain

tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics

(white and gray matter, cerebrospinal fluid, and bone). We observe growth morphologies

that are highly dependent upon the variable tissue characteristics–an effect observed in real

tumor growth.

We close with a discussion of ongoing research, possible future extensions, the potential

implications of our work, and the long-term goals of computational oncology. We outline

some of the key mathematical, scientific, computational, and clinico-medical challenges

that must be overcome before computational oncology can be accepted as a clinical tool for

patient-tailored cancer therapy.
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Chapter 1

Introduction to Cancer Biology

While cancer has been known even since early civilizations (Franks and Knowles, 2005),

our scientific understanding of cancer has only progressed relatively recently with the devel-

opment of modern investigational tools and techniques. In the late 18th century, Percivall

Pott conducted a pioneering epidemiological study of the high incidence of cancer in chim-

ney sweeps in the United Kingdom that established a positive link between chimney soot

and scrotal cancer, marking the discovery of the first carcinogen (Pott, 1775; Dobson, 1972).

Studies of families with high cancer rates (such as breast cancer) suggested that the risk

for cancer could be inherited, and while the structure of DNA would remain unknown for

several decades, it was postulated that cancer may be related to the function of genes. (e.g.,

see the discussion of the 19th century neurologist Pierre Paul Broca in Lynch et al. (1972)).

In the early 20th century, it was discovered that cell lines infected with a virus developed

cancer. (See the discussion in Farrell (2005) of the 1908 discovery of an infectious chicken

leukemia, as well as the 1910 discovery a virus-induced avian sarcoma by Rous (1910).)

Because viruses were known to inject genetic material into cells, this was further evidence

that cancer may be a genetic disease. Later, as the structure of DNA was understood and

genetic testing techniques were improved, specific cancer genes were isolated and the ge-

netic role in cancer was confirmed. In the 1990s, the pace of discovery was hastened as the

human genome project concluded and genomic mapping techniques improved by orders of

magnitude. Never before has a greater wealth of information on the innermost workings

of the cell been available, raising the possibilities of understanding cancer on a genetic and

molecular level and developing rational drugs for treatment.

Nevertheless, cancer remains a great medical and societal problem, particularly as
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the average human lifespan increases. Improved drugs and therapies, the result of the

substantial biological understanding of cancer genetics, have improved the prognosis for

cancer treatment and even cured specific cancers, but many other cancers remain difficult

to treat, and inspired treatment ideas have sometimes only marginally improved patient

survival. (e.g., see the discussion of two decades of glioblastoma multiforme treatments

in Brandes (2005).) The greater the understanding of cancer and its interaction with the

human body and its systems, the clearer it has become that cancer is a complex problem

that cannot be solved without due consideration of the entire system.

In this dissertation, we shall develop mathematical and computational tools capable of

examining the complex interaction between solid tumors and their host microenvironment

and explore the impact that such tools could have on the development of improved, long-

term treatment protocols.

1.1 Noncancerous Tissue and Carcinogenesis

Most simply stated, cancer occurs when defective genes cause cells to malfunction and

interact with the body in an aberrant, proliferative manner. It is therefore natural to

begin by examining the normal function of noncancerous cells and tissue, followed by an

examination of how a breakdown of cellular machinery can lead to cancer.

1.1.1 The Structure and Function of Noncancerous Tissue

A tissue is a collection of interconnected cells that together perform a similar function.

There are four main types of adult tissue: epithelium is tissue composed of sheets of spe-

cialized cells that perform a specific function; connective tissue consists of a combination

of extracellular matrix (fibronectin, collagen fibers, etc.) and fibroblast cells that create

the matrix; muscle tissue includes not only contractile tissue, but also blood, immune cells,

cartilage, and bone; and nervous tissue, which makes up the bulk of the brain and the

nervous system. The term mesenchyme is often used to refer to all supporting tissues col-

lectively, including connective tissue, muscle, and bone. The epithelial cells that comprise

the functional element of an organ are sometimes called the parenchyme.

Organs are made of one or more of these tissue types and have a standard structure:

a layer of epithelium consisting of specialized cells (e.g., pancreatic islet cells) that perform

the actual function of the organ, supported by a layer of connective tissue (often called
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the stroma). The connective tissue is interlaced by blood vessels, nerves, and lymphatic

vessels, and it may rest on an additional layer of muscle or bone, depending upon the organ.

Collectively, the non-epithelial layers make up the mesenchyme of the organ. A thin, semi-

permeable basement layer (also referred to as the basal lamina) separates the epithelium

from the mesenchyme. See Figure 1.1.

Figure 1.1: Typical mammalian tissue organization, including epithelium and mesenchyme.

To maintain this complex structure in homeostasis, the population of each cell type

must be rigorously maintained, and so cellular proliferation and apoptosis (programmed cell

death) are balanced. Whenever a differentiated cell dies, it must be replaced. A somatic

(adult, non-germline) stem cell senses the loss of the cell and divides either symmetrically

into two new stem cells or asymmetrically into a stem cell and a progenitor cell. The

progenitor cell either further divides or terminally differentiates into the desired cell type,

which must then migrate to the correct position and assume its function. This entire process

is tightly regulated by a complex system of biochemical signals (growth factors) that are

secreted and sensed by all the cells in the structure. The proper response of each cell to

the signals it receives is governed by the activation of receptors on its surface, which then

trigger the activation and/or deactivation of genes within the nucleus (epigenetic events, or

changes to the gene expression). The activated genes then direct the production of proteins

within the cell that regulate cell function as well as the cell cycle. There is a building body

of evidence that the stromal cells play a great role in properly regulating the activity of

stem cells and the differentiation of progenitor cells by creating and responding to growth
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factors and other chemical signals (Lotem and Sachs, 2006; Nelson and Bissell, 2006; Zipori,

2006).

For further information on tissue and organ structure, please see Franks and Knowles

(2005) and the references therein. The review by Blanpain and Fuchs (2006) gives an

excellent overview of (epidermal) stem cells. The work by Zipori (2006) also includes a

discussion of the origin of somatic stem cells and relates them to embryonic development.

The review by Nelson and Bissell (2006) provides an interesting discussion on the role of

signaling between cells and the microenvironment in determining and maintaining tissue

architecture.

1.1.2 The Cell Cycle

Figure 1.2: The cell cycle.

All dividing human cells proceed through the cell cycle, a highly regimented series of

stages involving the growth and eventual division of the cell. In the first stage in the cell

cycle, G1 (gap 1), the cell physically grows, proteins are synthesized, new organelles are

constructed, and the cell prepares for DNA replication. In the following S (synthesis) phase,

the DNA is copied, and in the G2 (gap 2) phase, final preparations are made within the

cell nucleus for the division of the DNA. In the final M (mitosis) phase, the two copies of

the DNA are separated into two nuclei (mitosis), and the cytoplasm and the organelles are

divided into two daughter cells (cytokinesis). See Figure 1.2.
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A cell’s progress through the cell cycle is regulated by the production and balance

of internal chemical signals, which can be divided into two classes: cyclins and cyclin-

dependent kinases (CDKs). The balance of production of these chemicals controls the

speed of progression through the cycle. Receptors on the cell’s surface control the gene

expression levels through complex signaling pathways. The gene expression pattern, in

turn, determines which biochemicals (including cyclins and CDKs) are produced and in

what balance, and thus the rate of progression of the cell cycle is determined through

a complex interaction between the internal biomachinery of the cell and its surrounding

neighbors (Clyde et al., 2006).

The stages in the cell cycle are divided by numerous checkpoints, each of which is

designed to check for critical errors and/or malfunctions of the cell, provide opportunities

to repair damage to the DNA, and control the pace of progression through the cycle. One

major checkpoint is the R (restriction) checkpoint late in the G1 phase, where the cell either

commits to division (and progresses to the S phase) or exits the cell cycle (Zetterberg et al.,

1995; Blagosklonny and Pardee, 2002). The majority of human somatic cells reside in this

“resting” or quiescent cycle, which is denoted G0. There are numerous checkpoints in the S

and G2 phases to detect and repair DNA damage, the most of important of which governs

the progression from G2 into the M phase. See Figure 1.2.

Because the checkpoints are responsible for controlling the progress of the cell toward

eventual cell division, they are of critical importance to cancer. The R checkpoint is of

particular significance: prior to reaching the checkpoint, environmental stimuli can push a

cell into the quiescent G0 state; after the R checkpoint, the cell tends to be less responsive

to extracellular signals, as it is irreversibly committed to division (Sherr, 1996). Indeed,

some very important cancer genes, such as the Rb tumor suppressor gene, are directly tied

to the function of the R checkpoint (Classon and Harlow, 2002). The remaining checkpoints

are primarily relevant to cancer in that they can induce apoptosis if the DNA is sufficiently

damaged, and the failure of a checkpoint can lead to increased genetic instability (Clyde

et al., 2006).

1.1.3 Oncogenes and Tumor Suppressor Genes

Key to maintaining healthy adult tissues and organs is the correct receipt and in-

terpretation of growth and inhibitory signals by each cell. Often, the cell receives both
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growth-promoting and -inhibiting signals, and the final behavior of the cell is determined

by the balance of the signals and the resulting gene expression pattern. Of all the genes

contained in the genome, two types are particularly relevant to the regulation of cellular

proliferation. Oncogenes respond to or create growth signals and promote the progression

of the cell cycle and cell division. Tumor suppressor genes (TSGs) respond to inhibitory

signals, retard or halt the cell cycle, ensure the proper repair of damaged genes, and may

prompt the cell to self-destruct (apoptose) under certain circumstances. Cancer initiation,

or carcinogenesis, starts with the malfunction of one or more of these genes (Hanahan and

Weinberg, 2000).

Some genetic mutations in oncogenes can result in their overexpression. This can

occur in a variety of ways. If errors occur during cell division (e.g., during the M phase),

a daughter cell may mistakenly receive extra copies of an oncogene, an error that is known

as aneuploidy. (For example, see Calcagno et al. (2006), Castro et al. (2006), and Fogarty

et al. (2007).) An uncorrected single point mutation (e.g., during the S phase) can affect the

function of an oncogene (Malumbres and Barbacis, 2001). Errors during cell division may

create a mutant fusion gene, where the protein coding portion of an oncogene is mistakenly

fused with the triggering portion of another, frequently expressed gene. As a result, signals

originally intended for the frequently expressed gene are misrouted to the oncogene. (For

an example of this phenomenon, see Küppers and Dalla-Favera (2001), which describes the

activation of the MYC oncogene by translocation with an immunoglobulin gene.)

Likewise, genetic mutations in tumor suppressor genes can result in their underexpres-

sion. Damage to the protein coding portion of the gene can render it incapable of creating

functional proteins; in some cases, a single point mutation can be disable a gene (Horowitz

et al., 1989). During cell division, one of the daughter cells may fail to inherit one or both

copies of a TSG. Because normal cells possess two copies of each gene, both copies must

be damaged for a total loss of function of the gene. This is known as the Knudson two-

hit model (Knudson, 1971, 2001), which was formulated when studying retinoblastoma in

children and eventually led to the discovery of the Rb tumor suppressor gene by Friend

et al. (1986). The mutation rate depends upon many factors, but because damage to any

base pair of the gene could potentially disable it, the probability of damage to a TSG in-

creases with the size of the gene. If the probability of losing one copy of a TSG due to a

point mutation is p, then the probability of losing both copies is p2, which is exceedingly

small. However, loss of heterozygosity (LOH), in which two copies of the damaged TSG
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are passed to a daughter cell, can result in a significantly higher probability of losing both

copies (Nowak et al., 2002). Furthermore, more recent work suggests that the loss of just

one TSG copy (haplo-insufficiency) can significantly impair the tumor suppressing activity

of a TSG and increase the probability of completing a multi-step carcinogenesis pathway

(Quon and Berns, 2001).

1.1.4 DNA Repair and the Role of Genetic Instability

To protect against uncontrolled cellular proliferation due to damaged tumor suppressor

genes and oncogenes, normal cells possess numerous DNA repair pathways. If an error is

detected during DNA replication, the process is halted until the error can be repaired. If an

error is detected at any other time, the cell cycle is arrested until the error can be repaired,

and if repair is impossible, apoptosis is triggered. Of particular significance is the G2/M

checkpoint, which provides an opportunity for DNA repair prior to mitosis in the M phase.

Tumor suppressor genes such as BRCA1 play an important part in regulating the G2/M

checkpoint (Yarden et al., 2002).

The genes responsible for DNA repair (generally TSGs) can be damaged, leaving a cell

more vulnerable to further genetic damage. In these circumstances, the cell may experience

genetic instability, where more frequent genetic mutations occur and are allowed to accumu-

late. The increased rate of genetic mutation increases the probability of damaging a tumor

suppressor gene, creating a fusion oncogene, duplicating oncogenes, or creating mutations

favorable to carcinogenesis. In fact, many advanced tumors demonstrate genetic instability,

which indicates a potentially important role (Nowak et al., 2002).

1.1.5 Causes of Genetic Damage

Because the genome is encoded as a long sequence of nucleosides (DNA bases) fused

to a sugar-phosphate backbone, it is susceptible to damage by altering the chemical bonds

between the molecules or by altering the molecules themselves. Generally, this can occur by

exposure to chemicals that react directly with either the nucleosides or the sugar-phosphate

backbone of the DNA, or by encountering increased energy that reacts with the tissue to

create reactive chemical species that interact with the DNA.

Chemicals that can directly or indirectly damage the DNA are known as carcinogens.

For instance, when arsenic is metabolized, several reactive oxygen species (ROS) can result,
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including peroxyl radical, superoxide radical, and hydroxl radical (Yu et al., 2006). These

can lead to the formation of DNA adducts, where the radicals (or other mutagens) bind

to either the sugar-phosphate backbone or the nucleotides. These DNA adducts can often

twist and deform the DNA, thereby altering the sequence of the amino acid base pairs,

sometimes in ways that cannot be repaired by the cell’s DNA repair machinery. Benzopy-

rene, a mutagen in tobacco smoke, is also known to create DNA adducts (Sadikovic and

Rodenhiser, 2006). Other chemical-induced DNA damage mechanisms include single strand

breaks (SSBs), double strand breaks (DSBs), and DNA mismatch (mismatch between the

nucleotides in a base pair), for instance. The topic of the specific types of DNA damage and

repair is too extensive for review in this dissertation; the reader is encouraged to consult

the review in Köberle et al. (2005).

Other DNA damage is not caused directly by chemicals encountered in the environment,

but rather by excess energy that can either alter the chemical bonds or introduce reactive

chemical species. Ultraviolet radiation in the 280-320 nm range (UVB) and 320-400 nm

range (UVA) can damage the DNA in several ways. When the UV radiation reacts with

biological molecules, it can create ROS that damage the DNA and other phospholipid

structures in the cell. UV radiation can also interact directly with the DNA by exciting new

bonds between adjacent base pairs, thereby distorting the structure of the DNA molecule.

Both UVA and UVB radiation can create mutagenic bipyrimidine photoproducts by creating

bonds between adjacent pyrimidine (thymine/T and cytosine/C) bases (Douki et al., 2003).

When unrepaired, these lesions can lead to C to T and CC to TT mutations, as well as

possible A insertion mutations. An excellent overview on the effects of UV radiation on the

skin, including DNA damage, can be found in Matsumura and Ananthaswamy (2004).

The depth of penetration by UV radiation increases as the wavelength decreases: UVB

radiation cannot penetrate past the epidermis (the upper layer skin), whereas UVA radia-

tion from 340 to 400 nm affects the basal cell layer (on the boundary between the epidermis

and the dermis), and UVA from 320 to 340 nm acts deeper in the dermis. (e.g., see Mat-

sumura and Ananthaswamy (2004).) Other (ionizing) radiation of shorter wavelengths can

penetrate and affect deeper cells, and due to the shorter wavelengths, impart more energy.

Ionizing radiation of sufficient strength, such as X-ray radiation (0.01-10 nm wavelength),

can interact with tissue anywhere in the body and damages the DNA in several ways. First,

the energetic photons can damage the sugar-phosphate backbone to cause DSBs. Alterna-

tively, photons can strike and damage the DNA base pairs, which can then bond with
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neighboring base pairs and distort the DNA structure (e.g., form bipyrimidine products).

Secondly, when the photons strike the DNA and cause initial damage, energetic electrons

and reactive chemical species (such as ROSs) can be ejected, and these interact with nearby

DNA base pairs to cause additional damage (Elshaikh et al., 2006; Gudkov and Komarova,

2003). It is not uncommon to find multiple DSBs within several base pairs’ distance, or a

combination of DSBs and adjacent base-pair bonds (Kiltie, 2005). As a result, the DNA

damage is more complex and can be more difficult to repair than in UV and chemical

carcinogenesis.

Pathogens can also damage the integrity of the genome. Because DNA viruses insert

their own DNA into the host cell, cellular function is altered. Sometimes, the inserted

genetic material can lead to the disabling of a TSG or the creation of an oncogene. For

example, the human papilloma virus (HPV) inserts viral DNA sequences that inhibit TSG

function. In particular, higher-risk HPV variants (e.g., HPV16) insert the viral E6 onco-

gene, whose associated E6 protein binds and inactivates the pRb protein (Sdek et al., 2006).

The viral E7 oncogene creates the E7 protein that binds to the p53 protein. Both p53 and

Rb are important in regulating the R and G2/M checkpoints, arresting the cell cycle when

DNA damage is detected, and committing the cell to apoptosis when necessary (Eguchi

et al., 2007; Sdek et al., 2006). The loss of Rb function can also lead to gross chromosomal

mutations, such as centrosome amplification and aneuploidy, and indicates chromosomal

instability (Iovino et al., 2006).

Lastly, we note that some deficient genes may be inherited, rather than obtained

through genetic damage. Some families may observe an increased incidence of particu-

lar types of cancer, and this generally is the result of inheriting one or more defective tumor

suppressor genes. This yields a shortcut in the Knudson two-hit model, in that fewer genetic

mutations are necessary for loss of function of a particular TSG. The specificity of famil-

ial cancer tendencies arises from the fact that different cells types each depend on specific

TSGs for proper regulation of proliferation. For instance, inheriting a defective copy of the

Rb gene increases the risk of retinoblastoma, and inherited defective copies of the BRCA1

gene increase the risk of breast cancer (Miki et al., 1994).
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1.1.6 Changes in Gene Expression

The gene expression pattern is important in maintaining the proper balance of pro-

and anti-growth signaling within a cell as well as the status of the cell cycle. Recently,

research has begun to examine the over- and underexpression of genes, rather than outright

genetic damage, as a potential contributor to unchecked cellular proliferation. Because gene

expression patterns are heritable, changes in the gene expression can potentially affect the

malignant transformation of a cell (e.g., by disabling a tumor suppressor gene) in the same

way as a genetic mutation (Jones and Baylin, 2002).

Several biochemical processes are used to control the level of gene expression within

a cell. Of particular importance is DNA methylation, where methyl groups (CH3) are at-

tached to the DNA to prevent the activation and transcription of specific genes. During

early embryonic development, the entire genome is demethylated in all the embryonic cells,

thereby allowing the cells to differentiate according to their destined location and function

(Reik and Walter, 2001). Thus, methylation plays a role in deactivating undesired genes

in specialized cells and is crucial to proper function. Recent work has shown that many

human cancers are globally hypomethylated (i.e., previously silenced genes have become

transcriptionally active) with localized hypermethylation (e.g., deactivated tumor suppres-

sor genes), suggesting an important role for methylation in carcinogenesis as well (Jones and

Laird, 1999; Jones and Baylin, 2002; Lotem and Sachs, 2006). DNA hypomethylation may

also lead to increased chromosomal instability, which can accelerate carcinogenesis through

increased genetic mutation. Interestingly enough, methylation can also affect the suscep-

tibility of cells to genetic damage; methylated cytosine (C) has a shifted absorption band

into the UV range of sunlight, thereby increasing the risk of mutations that could result in

skin cancers (Jones and Baylin, 2002).

As was mentioned in an earlier section, gene expression is also controlled by the level

of activation of cell surface receptors by various signaling factors. Internal chemical levels

can also affect gene expression patterns, regardless of surface signaling. In particular, all

cells continuously create hypoxia-inducible factor (HIF) molecules (e.g., HIF-1α), which are

ordinarily degraded in the presence of oxygen molecules. However, when a cell experiences

hypoxia (a lack of oxygen), the HIF-1α molecules are no longer degraded and are allowed to

carry out their function in activating certain “survival” genes in the cell, particularly those

that decrease cell-cell and cell-ECM adhesion, increase motility, secrete angiogenic growth
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factors, and allow for glycolysis (an inefficient metabolism attained by reacting glucose with

glucose, rather than oxygen) (Harris, 2002; Zagorska and Dulak, 2004; Allen et al., 2006;

Pouysségur et al., 2006).

Lastly, we note that the biochemistry of gene expression is very complicated and in-

volves means other than DNA methylation. For an excellent review on epigenetics, please

see Ducasse and Brown (2006).

1.1.7 When Everything Goes Wrong: Carcinogenesis

Carcinogenesis is a multistage process. Mutation and epigenetic events are exceedingly

rare (on the order of 10−7 per cell division), but given enough time, one of these rare

events will activate an oncogene or silence a tumor suppressor gene in one of the human

body’s approximately 1014 cells. If the cell survives and the mutation escapes its DNA

repair mechanisms, it may eventually acquire another mutation. Over time, the cell (or

its descendants) can acquire a sufficient number of genetic mutations to ignore growth-

inhibiting signaling from its neighbors, bypass its internal controls and checkpoints, and

form a colony (i.e., a tumor) of rapidly proliferating, aberrant cells. If the microenvironment

is conducive, the colony will have a relative survival advantage over the surrounding, normal

cells. This accumulation of sufficient genetic damage marks the beginning of cancer, and

the rapid expansion of the mutated cells is known as clonal expansion. The dynamics of

the spread of a mutation throughout a fixed tissue population is a rich topic of active

research. An excellent discussion of the process can be found in Wodarz and Komarova

(2005). Generally, the process takes tens of years to progress, but it can be accelerated by

chronic exposure to carcinogens. If the mutated cells arose from the epithelium, the resulting

cancer is referred to as a carcinoma, and if the tumor originated in stromal/mesenchymal

cells, it is a sarcoma.

Ordinary, differentiated somatic cells are not immortal: they can only divide a limited

number of times before they reach senescence, the point at which the cell is no longer

allowed to divide, but instead either enters cell cycle arrest or commits apoptosis. Only

stem cells have the capacity for unlimited division. Thus, for a differentiated somatic cell to

mutate and give rise to a cancer, it must regain its capacity for unlimited division through

additional mutations, i.e., become like a stem cell. There is a building body of evidence that

cancer arises not from differentiated somatic cells, but rather from mutated somatic stem
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cells (Beachy et al., 2004; Lotem and Sachs, 2006; Sharifi et al., 2006). In this scenario,

cancerous stem cells divide into both cancerous stem and differentiated somatic cells, with

the cancer stem cells making up a small percentage of the tumor cell population. At a tissue

scale, both models yield the same phenomenon: a mass of rapidly proliferating cells.

1.2 Avascular Solid Tumor Growth

Once a tumor has established a foothold in its host tissue, it begins an early period

of rapid growth as it becomes an in situ cancer. We now discuss the major aspects of this

stage of cancer.

1.2.1 Interaction with the Microenvironment

As the nascent tumor grows in its host tissue, it interacts with the surrounding microen-

vironment in a variety of ways. It mechanically displaces and compresses the surrounding

tissue, including membranes and the pre-existing vasculature. The tumor degrades and

remodels the extracellular matrix (ECM), both biomechanically (e.g., by strain) and bio-

chemically by the secretion of matrix degrading enzymes (MDEs) such as matrix metal-

loproteinases (MMPs) that degrade the ECM. The degradation of the ECM, in turn, can

release ECM-associated growth factors that fuel further tumor growth (Sun and Zhang,

2006). The degradation of the ECM by the MDEs increases increases the ability of the

tumor to push into the surrounding tissue, both by reducing the mechanical rigidity of

the surrounding tissue and by creating extra space for the growing tumor (Hotary et al.,

2003). The combination of proliferation-induced pressure and proteolytic degradation of

the surrounding tissue results in tissue invasion: the invasion of sheets or fingers of tumor

cells into the surrounding tissue along paths of least mechanical resistance. Interestingly,

while proliferation-induced pressure has received little study in the reductionist, cell- and

genetics-oriented approach to cancer research, it may have the greatest impact on invasion

by carcinoma. (See the discussion by Hart (2005), for instance.)

Lastly, we note that there is recent evidence that the tumor induces epigenetic changes

in the surrounding stroma that are conducive to continued tumor growth (Hu et al., 2005;

Zipori, 2006). For instance, carcinomas may release signaling molecules (e.g., interleukin-

1β, or IL-1β) that stimulate the overexpression of hepatocyte growth factor (HGF) in

fibroblast cells in the stroma. The HGF, in turn, acts as a growth-promoting factor in the
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tumor cells, decreases cell-cell adhesion, and increases the secretion of MMPs (Matsumoto

and Nakamura, 2006). There is also evidence of tumor-induced epigenetic changes in the

surrounding non-neoplastic epithelial cells (Ishii et al., 2007).

1.2.2 The Limiting Role of Nutrient Diffusion, Hypoxia, and Necrosis

In this early stage of cancer, the tumor has no vascular system of its own, and so it

must rely upon the host tissue for the delivery of crucial nutrients (e.g., oxygen and glucose)

and growth factors via diffusion. Nutrients diffuse from the surrounding vascularized tissue,

enter the tumor, and are uptaken by proliferating tumor cells. Of particular importance is

the diffusion of oxygen, which generally diffuses on the order of 100-200 µm into tissue before

dropping to levels insufficient for cellular metabolism (Carmellet and Jain, 2000; Cristini

et al., 2003; Fischer et al., 2005; Macklin and Lowengrub, 2005, 2007). When a tumor

grows sufficiently large, on the order of 100-200 µm in radius, oxygen can no longer reach

the center of the tumor, as outer proliferating cells uptake the oxygen for use in metabolic

activity. Therefore, a hypoxic region forms in the center of the tumor. (See Figure 1.3.)

At this stage, however, the rapid proliferation of cells on the tumor boundary continues to

increase the overall volume and size of the tumor.

As the tumor continues to grow, the size of the hypoxic region increases, and oxygen

levels continue to drop in the center. When oxygen levels have dropped to critically low

levels, the hypoxic cells begin to die in a process known as necrosis. (See Figure 1.3). As

opposed to apoptosis, necrosis is a relatively uncontrolled process. The contents of the cell,

including the organelles and any biological chemicals and growth factors, are not disposed

of properly by the cell, but instead are released into the microenvironment and slowly

degraded over time. Water content and cellular material eventually escape through the

interstitial spaces in the tumor, diffuse through the tissue, and are removed by macrophages

(a particular kind of white blood cell). Through this process, the tumor begins to lose

volume, and as the size of the necrotic core grows with the tumor, the rate of volume gain

from proliferation eventually balances with the rate of volume loss from necrosis. This leads

to a halt in the growth of the tumor at a characteristic size of 1-2 mm in diameter.
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Figure 1.3: T47D tumor spheroid displaying the characteristic viable rim (red), hypoxic
region (blue), and necrotic core (brown). Original image from Owen et al. (2004) and
postprocessed and recolored by Paul Macklin to emphasize the regions.

1.3 Vascular Tumor Growth and Metastasis

The next stage in cancer development can be viewed as a response to the hypoxia

and nutrient diffusional limits encountered during avascular growth. The ultimate result is

angiogenesis, where the tumor induces endothelial cells (ECs) to form a new vasculature that

directly supplies the tumor with the nutrients necessary for further expansion. Some of the

same mechanisms responsible for angiogenesis play a role in metastasis, the spread of tumor

cells to distant locations. We now discuss these aspects of advanced cancer development.

1.3.1 Angiogenesis

Hypoxia triggers a number of biological changes in human and animal cells. Hypoxia

inducible-factors, such as HIF-1α, are created within cells regardless of the oxygen levels.

Under normoxic conditions, HIF-1α is inactivated; under hypoxic conditions, HIF-1α ac-

cumulates in the cell and triggers numerous signaling pathways. In particular, genes that

increase cellular motility are activated, and the hypoxic cell begins to secrete tumor angio-

genic growth factors (TAFs) such as vascular endothelial growth factor (VEGF) (Zagorska
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and Dulak, 2004; Kaur et al., 2005; Allen et al., 2006; Pouysségur et al., 2006). These TAFs

diffuse outward from the hypoxic regions of the tumor and eventually reach nearby blood

vessels. We note that in cancers with a mutated VHL tumor suppressor gene, HIFs may be

overexpressed even in normoxic conditions (Rini and Small, 2005).

Blood vessels are composed of tightly connected squamous endothelial cells that are

surrounded by a basement membrane as well as other supporting cells, including smooth

muscle cells and pericytes (Loureiro and D’Amore, 2005). When the endothelial cells detect

the TAF gradient emanating from the tumor, they begin to secrete matrix degrade enzymes

that break down the basement membrane and the extracellular matrix (Ausprunk and

Folkman, 1977). This allows the endothelial cells to migrate away from the blood vessel and

toward the TAF source in the tumor. The original migrating endothelial cells are referred to

as sprout tips; immediately behind the sprout tips, other endothelial cells divide, migrate,

align, and form tubes of polarized endothelial cells surrounding a vascular lumen (Nakatsu

et al., 2003). The vessels then link with other new vessels to form a network of loops in a

process called anastomosis. It can take on the order of 10 to 21 days for new vessels to form

and connect to the parent vessels (Gimbrone et al., 1974; Ausprunk and Folkman, 1977;

Muthukkaruppan et al., 1982).

The end result is a neovasculature that provides the tumor with a direct supply of

oxygen and other nutrients. The eventual configuration of the neovasculature is determined

by the balance of pro- and anti-angiogenic growth factors, as well as by the mechanical

pressures from the growing tumor and flow stresses within the nascent blood vessels (Lehoux

and Tedgui, 1998; Taber, 1998; Quick et al., 2000; Godde and Kurz, 2001; Fisher et al.,

2001). With this fresh supply of nutrients, the tumor can now begin a new stage of rapid

growth into the surrounding tissue.

Angiogenesis is not unique to tumor growth, but is also a key part of wound healing,

the female menstrual cycle, and embryonic development (Carmellet and Jain, 2000; Fischer

et al., 2005). However, we note that tumor angiogenesis is pathological in nature, and the

resulting vasculature is inefficient in a number of ways: the vessels are often “leaky” due

to large gaps between endothelial cells; the newly formed vessels are not as stiff and rigid

as mature vessels and may collapse when subjected to tissue stress (such as that created

by rapidly growing tumors); the basement membrane that forms outside the vessels may

not be fully formed; some of the newly formed vessel walls may be composed of a mosaic

of tumor and endothelial cells; and the tumor neovascular network tends to be much more
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tortuous than regular vascular networks (Folkman, 1995; Carmellet and Jain, 2000). This

inefficiency may hinder drug delivery within tumors (Jain, 1990, 2001; Sinek et al., 2004),

as well as lead to the development of new hypoxic regions within the tumor and additional

sessions of angiogenesis.

1.3.2 Tissue Invasion and Metastasis

A particularly damaging aspect of advanced cancer is metastasis, the spread of tumor

cells to form secondary tumors in distant locations. Metastasis occurs most commonly in

breast, prostate, and lung cancers (Berenson et al., 2006), and it is estimated that over 90%

of all deaths from solid tumors result from metastasis (Gupta and Massagu, 2006). In spite

of the great clinical importance of metastasis, it is the most poorly understood aspect of

cancer (Kaplan et al., 2006).

Metastasis is a complex phenomenon that involves several mechanisms that are closely

related to tissue invasion. When coupled with genetic instability, intrinsic (e.g., senescence,

telomere degradation) and extrinsic selective pressures (e.g., limited nutrients, the basement

membrane, immune system attacks) lead to competition within heterogeneous tumor cell

populations and the eventual selection for pro-metastatic genes (Gupta and Massagu, 2006).

In particular, hypoxia creates a strong selective pressure, leading to increasing internal

HIF-1α levels in the tumor cells and the expression of genes responsible for increased motil-

ity, glycolysis, reduced response to apoptotic pathways, and increased production of matrix

degrading enzymes (Harris, 2002). The selective pressures also lead to increased expression

of genes responsible for locomotion (Prall, 2007). As a result, tumor cells degrade the ex-

tracellular matrix and basement membranes, invade the stroma, and enter the vasculature,

either individually, as small clumps of cells (emboli), or in cohort motion of sheets of cells

linked by cell-cell adhesion (Nabeshima et al., 1995; Gupta and Massagu, 2006).

For sarcomas, which originate from mesenchymal cells that already reside in the stroma,

this is accomplished by the proteolytic degradation of the ECM and the basement membrane

surrounding the stromal capillaries, followed by direct entry into the capillaries. For carci-

nomas, which originate in epithelial cells that are separated from the stroma by a basement

membrane, entry into the vasculature is often indirect via the lymphatic system (Elshimali

and Grody, 2006). The mesenchymally-derived sarcoma cells move with built-in cellular

machinery in a contractile, “amoeboid” manner: by first degrading the ECM on their lead-
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ing edge, adhering to the ECM, and contracting, followed by rebuilding the ECM on the

trailing edge (Vasko and Saji, 2007). Epithelial-derived carcinoma cells initially lack this

locomotive ability, but genetic and epigenetic events can cause these tumor cells to regain

these locomotive mechanisms; the process is often referred to as the epithelial-mesenchymal

transition, or EMT (Prall, 2007; Vasko and Saji, 2007).

Once the metastatic tumor cells have reached the vasculature, they circulate in the

blood. Initially, survival of the circulating tumor cells is inhibited by the immune system,

which kills most of the individual cells; emboli consisting of 5 to 10 cells are more likely to

escape attack by the immune system (Elshimali and Grody, 2006). We note that the role

of the immune system is complex, is poorly understood, and may both promote and inhibit

metastasis. Circulating tumor cells that do survive can eventually lodge in the capillary

bed of distant organs; the most frequent destinations include the liver, lungs, and bones

(Berenson et al., 2006).

However, without further tumor-host interaction, the destination microenvironment

will not support the newly arrived metastatic tumor cells. Different types of tumor cells tend

to metastasize to specific tissues, and the reasons for this are only now being elucidated in

an emerging area of cancer research. This “seed and soil” idea, that only specific tissues are

suitable to each tumor cell line, was first formulated by Stephen Paget in 1889 when studying

breast cancer metastases (Paget, 1889; Dell, 1989; Mundy, 2002). The emerging theory is

that tumors release cytokines, VEGF, and other chemical signals into the circulatory system

that recruit progenitor and endothelial cells from the bone marrow and vasculature that

assist in creating a pre-metastatic niche: a modified microenvironment in a distant host

tissue that is suitable for metastasis by the tumor (Gupta and Massagu, 2006). In the

process, the chemical signals cause epigenetic changes in the endothelial cells in capillary

walls at the destination tissue, which then express additional adhesion molecules and secrete

MMPs to degrade the basement membrane surrounding the capillaries (Hiratsuka et al.,

2002; Elshimali and Grody, 2006; Kaplan et al., 2006). The increased expression of adhesion

molecules on the inner surface of the capillary bed improves the ability of the metastatic

tumor cells to arrest at the destination, and the degraded basement membrane assists in

extravasation of the tumor cells from capillaries into the destination tissue.

Once the metastatic tumor cells successfully invade the destination tissue, they secrete

growth factors that induce additional epigenetic changes in the new microenvironment.

Growth in the new location is similar to the mechanisms of tissue invasion that were in-
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troduced earlier, but with additional elements. Tumor-induced epigenetic changes in the

stromal cells cause them to contribute to matrix remodeling and degradation, even as the tu-

mor cells also secrete MMPs to degrade the matrix. Growth-promoting molecules that were

previously sequestered in the ECM fuel further tumor growth (Elshimali and Grody, 2006).

With ample room to grow and a favorable microenvironment, these tumor cells are able

to develop into secondary tumors. Because the metastatic tumor cells have already been

selected for their invasive phenotype, they are already capable of expressing pro-angiogenic

growth factors to initiate angiogenesis and enter rapid, vascularized growth. The tissue

specificity of this process is likely due to the combination and balance of cytokines and

chemicals secreted by the tumors, which, in turn, depends upon the genetic and epigenetic

makeup of the tumors (Slettenaar and Wilson, 2006). It is thought that only a small frac-

tion of the cells in the primary tumor have the ability to recruit the proper progenitor and

endothelial cells to build the pre-metastatic niche (Gupta and Massagu, 2006).

The scientific understanding of metastasis is advancing rapidly, and the reader is en-

couraged to read the reviews by Elshimali and Grody (2006), Gupta and Massagu (2006),

Kaplan et al. (2006), and Palmieri et al. (2006). The reviews on bone metastases by Lipton

(2004) and Berenson et al. (2006) provide well-written, concrete examples of the process,

and they give an excellent overview of the state-of-the-art in metastasis research.

1.4 Mathematical Modeling Techniques

As we have seen, cancer spans a large range of problems, ranging in spatial scales from

the biochemistry of DNA mutation (on the order of nanometers) to full tumor modeling on

the centimeter scale. Consequently, a wide variety of modeling approaches are used to study

these problems. We now discuss the most major approaches in use today. For further depth,

see the reviews by Adam (1996), Bellomo et al. (2003), Araujo and McElwain (2004a), Byrne

et al. (2006), Sanga et al. (2006), and Quaranta et al. (2005).

1.4.1 Cellular Automata and Agent-Based Models

Cellular automata (CA) models simulate uniformly spaced cells on a rectangular 2-D

or 3-D grid, which are updated according to a set of biophysical rules. CA models are

easy to implement, particularly due to the simple spatial arrangement and connection of

the cells. As it is straightforward to translate biological processes (e.g., complex mutation
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pathways) into new rules, CA methods have the benefit of being biologically-based. When

combined with fields such as nutrient levels, CA models can be used to couple the cells

to their environment. For some recent examples of CA-based modeling, see Kansal et al.

(2000), Anderson (2005), and Mallett and de Pillis (2006).

Agent-based models are similar to CA models, with an important exception: the cells

are no longer assumed to maintain a uniform, rectangular arrangement, allowing for the

modeling of richer biomechanical couplings of cells and their environment. The cells are

treated as distinct objects or agents and are allowed to move, divide, and die individually

according to biologically-based rules. The agent interpretation of the cells makes modern

object-oriented programming languages (e.g., C++ and Java) ideal for implementing these

models.

Because both CA and agent-based models are based upon simple, easily implemented

biological rules and can be made to incorporate complex biochemical machinery (e.g., cell

receptor pathways), they are often preferred by biologists. CA models are well-suited to

study mutation population dynamics and natural selection within tissues. Weaknesses of

the CA approach include the uniform spacing assumption, and the difficulty of relating the

cellular behavior to proliferation-induced biomechanical stress and pressure. In particular,

the uniform spacing of the cells can make it difficult to model complex tissues and organs,

where the various cell types have different arrangements within the tissue. (See Figure 1.1.)

Agent-based models are more ideal for situations of freely-wandering and nonuniformly

arranged cells, such as angiogenesis, carcinogenesis, immune system attacks on tumor cells,

and metastasis. The level of detail of the individual agents can be tailored to the simulation.

Some agent-based models evolve the boundary shapes of the individual cells (e.g., see the

cellular potts work by Mansury et al. (2002), Jiang et al. (2005), and Knewitz and Mombach

(2006)), while others include models of the cell cycle (e.g., Zhang et al. (2007)) and gene

expression and mutation patterns (Abbott et al., 2006). The flexibility of the level of detail,

at times even down to the biochemical level, can make agent-based models easier to calibrate

to biological data.

Both CA and agent-based models share some common weaknesses. Because the meth-

ods rely upon the discrete behavior of individual cells to determine emergent system prop-

erties, they can be difficult to analyze. Perhaps more importantly, the computational cost

of the methods increases rapidly with the number of cells modeled, and in the case of

agent-based models, with the complexity of each cellular object. This can make the models
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difficult or impossible to implement without parallel computing when studying large sys-

tems. Nonetheless, some are making the attempt using cellular potts models, albeit on a

very small scale (Alarcón et al., 2004).

1.4.2 ODE Methods

Ordinary differential equations (ODEs) have been used to model cancer for many years.

(See the early work by Greenspan (1976) in modeling solid tumor growth.) ODE models

are generally simpler to analyze and can provide early, useful results, particularly for liquid

tumors (e.g., leukemia) where spatial dependencies are not as important. Unlike cellular

automata and agent-based models, they are well suited to studying large cell populations.

From a computational point of view, ODE models are the simplest and fastest to solve,

allowing for extensive investigations of parameter spaces. However, the usefulness of ODE

models is somewhat mitigated by the fact that they ignore spatial aspects of cancer that

are of critical importance, such as inhomogeneous nutrient delivery, heterogeneous tissue

structure, and angiogenesis. Furthermore, ODE models ignore stochastic effects (e.g., ex-

tinction) that may come into the play for small tumor cell populations. We note that some

PDE models (see below) can be reduced to ODE models when considering special cases,

such as spherical tumor growth.

ODE models are still being used with good success to model heterogeneous tumor

population dynamics. For instance, Shuryak et al. (2006) recently used an ODE model to

estimate the risk of leukemia due to radiotherapy. Piccoli and Castiglione (2006) recently

used optimal control theory to analyze an ODE model of cancer vaccine dosing, while

de Pillis et al. (2006) modeled combination chemotherapy/immunotherapy with a coupled

system of ODEs.

1.4.3 PDE Models

Partial differential equation (PDE) models use systems of PDEs to simulate the spa-

tiotemporal evolution of one or more key variables, such as oxygen, matrix degrading en-

zymes, and tumor angiogenic growth factors. Like ODE models, PDE methods are (com-

putationally) well-suited to studying large cell populations and can be simpler to analyze

than discrete models. The continuous nature of the PDEs makes them more ideal for in-

corporating larger-scale phenomena, such as tissue stress. However, because PDEs tend
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to smooth regions, they can be poorly-suited to studying the motion of smaller groups of

cells. Furthermore, because PDE models are generally phenomenological in nature, they

can be more difficult to calibrate to biological data. We note that both linear and nonlinear

PDE models (generally reaction-diffusion systems) are currently in widespread use in active

research; we refer the reader to the introductory discussion in Chapter 4 for a discussion

of past and present PDE cancer modeling efforts. This dissertation will focus on the use of

PDE models to study tumor-microenvironment interactions with increasing complexity.

1.4.4 Stochastic Models

Stochastic models are often used to study carcinogenesis and population dynamics,

particularly in the context of mutation pathways and natural selection. In this technique,

cell birth, death, and mutation events are modeled as stochastic processes, either at a

discrete level (see mutation modeling in CA and agent-based techniques) or as stochastic

differential equations. Recent examples of stochastic modeling can be seen in an analysis

of the two-hit model in colorectal cancer by Komarova and Wang (2004) and some novel

investigations of optimal tissue design (with respect to preventing cancer) in Komarova

(2005) and Komarova and Cheng (2006).

1.4.5 Hybrid Models

Sometimes, multiple techniques are combined to leverage their relative strengths and

weaknesses. For example, Zheng et al. (2005), Frieboes et al. (2006a), and Macklin et al.

(2007) combine cellular automata models of angiogenesis with PDE models of tumor growth

to study tumor-induced angiogenesis. Another potential application is to use a PDE

reaction-diffusion system to model tumor growth within a structure tissue, with the re-

lease of metastatic emboli modeled by agents. The immune system could also potentially

be modeled individual agents interacting with a PDE-based model of tumor growth. Ge-

netic instability within tumors could be modeled by coupling PDE models with cellular

agents that are governed by stochastic differential equations. As future multiscale models

of cancer emerge, hybrid techniques will likely be at the forefront of the effort.
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1.5 Outline of the Dissertation and Summary of Advances

This dissertation is structured as a chronological ordering of papers that detail progress

from 2003 to 2007 in modeling tumor growth in complex, heterogeneous tissues, along with

the development of numerical techniques necessary for solving the formulated models. In

Chapter 2, we present a level set model of tumor growth that we first studied in Macklin

(2003) and Macklin and Lowengrub (2005). The level set model we describe is a reformula-

tion of a model that was proposed by Cristini et al. (2003), and it was extended to include

volume loss due to necrosis. The work in Chapter 2 forms the core upon which the rest of

the dissertation builds and contains several advances. By reformulating the model in the

level set context, we were able to simulate complex morphological changes in the tumor,

including fragmentation and coalescence of fragments; earlier boundary integral work by

Cristini et al. (2003) was unable to continue past such topological changes. By includ-

ing the necrotic volume loss, we found that necrosis had a destabilizing effect on tumor

morphology. The mathematical model we formulated and solved posed tumor growth as

incompressible fluid flow in a porous medium (the extracellular matrix) and was challeng-

ing to solve numerically due to the curvature boundary conditions. To accurately solve the

problem, we developed a new, higher-order ghost fluid method for solving (interior) linear

elliptic problems on arbitrary domains. We also found that when two interfaces are in

close contact, irregularity in the level set function contributes to inaccuracy in the standard

normal vector and curvature discretizations, which can cause further inaccuracy in simu-

lating the position of the tumor boundary. We solved this problem by introducing the first

adaptive level set-based curvature and normal vector discretization. To improve efficiency

and circumvent a prohibitive third-order (∆t ∼ ∆x3) stability condition, we developed an

accurate velocity extension technique based upon bilinear interpolation and a Gaussian fil-

tration technique that eliminated numerical noise from the normal velocity. Our method

tested second-order accurate, and there was excellent agreement between our results and

the spectrally-accurate boundary integral results from Cristini et al. (2003). We used the

new techniques to simulate long-time necrotic tumor growth and predicted the repeated

encapsulation of non-cancerous tissue.

In Chapter 3, we present an improved adaptive curvature discretization for level set

methods that we first introduced in Macklin and Lowengrub (2006). Our technique tested

second-order accurate, even during complex morphological changes (such as the merger of
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two fluid drops) where existing level set curvature discretizations failed. We briefly presented

an extension of our tumor growth model to include interaction with the local microenviron-

ment and used the new curvature discretization in long-time simulations of tumor growth

into nutrient-poor, biomechanically responsive tissue. The results demonstrated repeated

fragmentation of the tumor into multiple satellite tumors that invaded the surrounding

tissue.

In Chapter 4, we conduct a detailed study of the impact of the microenvironment on

tumor morphology using the numerical techniques from Chapters 2 and 3. We advanced the

model to include nutrient diffusion and pressure dissipation in a small region surrounding

the tumor (the microenvironment). The extended model included normal derivative jump

boundary conditions of the form [D∇σ · n] = 0, which required extensions of our ghost fluid

method. We presented a new discretization of this jump condition that was more stable

than the original method presented by Liu et al. (2000). We presented the first detailed

study of the impact of the microenvironment on tumor morphology, focusing in particular

on the effects of nutrient availability (modeled by varying the external nutrient diffusivity)

and the external tissue biomechanical responsiveness (modeled by the external cellular mo-

bility). We found that while the tumor microphysical parameters (e.g., the nutrient uptake

rate, sensitivity to necrosis, rate of degradation of the necrotic core) had a great impact

on the quantitative aspects of the tumor progression, the microenvironment was the pri-

mary determinant of the tumor morphology. The tumor morphologies could be classified as

according to three types: invasive, fragmenting growth into nutrient-poor tissue; invasive,

fingering growth into nutrient-rich, biomechanically responsive tissue; and compact/hollow

growth into nutrient-rich, biomechanically responsive tissue. These results helped to ad-

vance the mathematical modeling of tumor microenvironments at the macroscopic scale and

provided new understanding of how the microenvironment might affect the response of a

tumor to treatment, particularly anti-angiogenic therapy. Our results also suggested that

anti-invasive adjuvant therapy could be effective when properly applied, particularly if it se-

lectively increases tumor cell-cell and cell-matrix adhesion and does not alter non-cancerous

cellular adhesion.

In Chapter 5, we present new numerical techniques that will be used in a new genera-

tion of tumor growth models. Our new ghost cell method includes the first ghost cell/ghost

fluid discretization of the normal derivative jump boundary condition that does not numer-

ically smear the jump in the tangential derivative jump, is easy to implement, and tests
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better than 1.5-order accurate. By contrast, previous ghost fluid techniques by Liu et al.

(2000) either fail to converge or are at best 0.3-order accurate, and other methods that

properly treat the normal derivative jump boundary condition (e.g., the immersed interface

method (LeVeque and Li, 1994) and the matched interface boundary method (Zhou et al.,

2006; Zhou and Wei, 2006; Yu et al., 2007)) are much more complicated. We present a

new iterative technique for solving nonlinear elliptic PDEs, along with a new approach to

adaptivity that attains between a 10% and 50% reduction in computational time without

the use of complex, adaptive meshes. We also present a new discrete approximation of the

Heaviside function for level set methods that better preserves the local area of regions rep-

resented by level set functions and is both more accurate and computationally simpler than

other Heaviside function approximations when applied to ghost fluid problems with jump

boundary conditions. We apply the technique to Hele-Shaw-like flow in heterogeneous me-

dia and present a simulation of glioblastoma (an aggressive brain tumor) in a 1 cm square of

brain tissue that includes heterogeneous nutrient delivery and varied biomechanical charac-

teristics (white and gray matter, cerebrospinal fluid, and cranium), and we observe growth

morphologies that are highly dependent upon variations in these tissue characteristics. The

work in this chapter advances the state-of-the-art in level and ghost fluid methods and is a

step toward modeling tumor growth in realistic tissues.

In Chapter 6, we discuss future extensions and applications of the mathematical model

and numerical techniques that we developed in this dissertation, as well as potential clin-

ical implications. We close by exploring the future of mathematical modeling of tumor

growth in simulated human tissues and organs and outline several key modeling, scientific,

computational, and clinico-medical advances necessary for ensuring the clinical relevance of

mathematical oncology.
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Chapter 2

Initial Tumor Growth Model

Note:

This chapter is based upon Macklin (2003) and Macklin and Lowengrub (2005), which can

be accessed at http://dx.doi.org/10.1016/j.jcp.2004.08.010.

Chapter Abstract:
We develop an algorithm for the evolution of interfaces whose normal velocity is
given by the normal derivative of a solution to an interior Poisson equation with
curvature-dependent boundary conditions. We improve upon existing techniques
and develop new finite difference, ghost fluid/level set methods to attain full second
order accuracy for the first time in the context of a fully-coupled, nonlinear mov-
ing boundary problem with geometric boundary conditions (curvature). The algo-
rithm is capable of describing complex morphologies, including pinchoff and merger
of interfaces. Our new methods include a robust, high-order boundary condition-
capturing Poisson solver tailored to the interior problem, improved discretizations
of the normal vector and curvature, a new technique for extending variables beyond
the zero level set, a new orthogonal velocity extension technique that is both faster
and more accurate than traditional PDE-based approaches, and a new application
of Gaussian filter technology ordinarily associated with image processing. While
our discussion focuses on two-dimensional problems, the techniques presented can
be readily extended to three dimensions. We apply our techniques to a model for
tumor growth and present several 2D simulations. Our algorithm is validated by
comparison to an exact solution, by resolution studies, and by comparison to the
results of a spectrally accurate method boundary integral method (BIM). We go
beyond morphologies that can be described by the BIM and present accurate sim-
ulations of complex, evolving tumor morphologies that demonstrate the repeated
encapsulation of healthy tissue in the primary tumor domain– an effect seen in the
growth of real tumors.
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2.1 Introduction

The algorithms developed herein are motivated by our interest in modeling tumor

growth and the morphological response of tumors to environmental stimuli and tissue in-

homogeneity. Tumor growth is a fundamental scientific and societal problem. While much

work has been done in the mathematics community on tumor modeling (e.g., see the recent

review (Preziosi, 2003)), the state-of-the-art in modeling and numerical simulation lags be-

hind the current understanding of the biophysical processes. The work presented in this

paper is a step towards closing this gap and can be viewed as a building block towards

a sophisticated virtual cancer simulator. In addition, the methods described in this paper

have application beyond the tumor growth context and can be applied to general systems of

coupled interior Poisson problems on a moving domain with geometric boundary conditions.

The tumor model we consider here was previously investigated by Cristini et al. (2003).

This model is a reformulation of several classical models by Adam (1996), Byrne and Chap-

lain (1996b), Byrne and Chaplain (1996a), Chaplain (2000), Cristini et al. (2003), and

McElwain and Morris (1978). A continuum-level description of tumor growth is used, and

a sharp interface separates the tumor and healthy tissue. The tumor tissue is modeled as

an incompressible fluid, and tissue elasticity is neglected. Cell-to-cell adhesive forces are

modeled by a surface tension at the tumor-healthy tissue interface. The cell velocity is

determined by Darcy’s law, and growth occurs due to pressure gradients induced by mitosis

(cell proliferation). A single nutrient (e.g., oxygen or glucose) is required for cell viability

and mitosis. The nutrient diffuses through the tissue and is consumed by the tumor cells.

This can limit the overall growth through the formation of a necrotic core (region of dead

cells). Tumor cells die when the nutrient level drops below a critical level necessary for cell

viability. This model is appropriate for characterizing solid tumors of sufficient size growing

into soft tissue such as the brain. We note that discrete models such as cellular automata

have been used to simulate tumor growth and are particularly applicable when the tumor

boundary is fractal-like or diffuse (Kansal et al., 2000).

Currently, we do not model a number of important biophysical processes, including

angiogenesis (the formation of new blood vessels), genetic mutations, different cell species,

and more realistic tissue responses (e.g., viscoelastic). These effects can be included in

our framework. In fact, there is very recent work by Zheng et al. (2005) that uses an

adaptive level set method to simulate tumor necrosis, angiogenesis, and tissue invasion.

26



Genetic effects can be incorporated by including different cell species and by varying the

biophysical parameters via a stochastic model. The different cell species can be included in

this framework by introducing an interface for each species, which is straightforward in the

level set approach taken in this paper.

In (Cristini et al., 2003), Cristini et al. presented the first nonlinear simulations of this

continuum model of tumor growth using a spectrally-accurate boundary integral method.

However, the boundary integral method does not allow for inhomogeneous microphysical

parameters and is not well-suited to the complex morphological changes inherent in tumor

evolution, including the pinchoff and coalescence of tumor tissue and the development and

evolution of a necrotic core. The tumor model is a special case of a classical system of

coupled interior Poisson and Poisson-like problems on a moving domain with geometric

boundary conditions. The velocity of the domain boundary is determined from the normal

derivatives of the solutions to the Poisson equations. Therefore, we sought to use a robust,

second order accurate finite difference ghost fluid/level set method. The methods described

in this paper are formulated for the classical system and thus can be applied beyond the

tumor growth context.

Ghost fluid and level set methods have been applied with great success in a wide

variety of physical applications (e.g. see the texts Sethian (1999) and Osher and Fedkiw

(2002)). We first applied standard level set (Sethian, 1999; Osher and Sethian, 1988; Osher

and Fedkiw, 2002), WENO (Jiang and Shu, 1996; Jiang and Peng, 2000), total variation

diminishing Runge-Kutta (Gottlieb et al., 2001; Gottlieb and Shu, 1997), and ghost fluid

methods (Glimm et al., 1981; Fedkiw et al., 1999; Liu et al., 2000; Gibou et al., 2003; Chen

et al., 1997), as well as a standard PDE-based velocity extension (Zhao et al., 1996) to

the tumor growth model. However, because the full moving boundary problem is sensitive

to variations in the curvature, the speed can become noisy when even small perturbations

in the level set function are present. For these equations, the dependence of the normal

velocity upon the derivative of the curvature requires a severe third order CFL time step

restriction (Cristini et al., 2003). Furthermore, we still obtained merely first-order to 1.6-

order convergence, and the standard discretizations for the normal vector and curvature

were highly inaccurate near merging interfaces.

To obtain full second order accuracy in space and time, we develop a new Poisson

solver capable of capturing geometric boundary conditions on a complicated interface. We

develop geometry-aware discretizations of the normal vectors and curvature that automati-
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cally detect and cope with level set irregularity, particularly during morphological changes.

We also develop new gradient and velocity extension techniques that take full advantage of

the geometric information embedded in the level set function to obtain greater accuracy and

faster computational speed than techniques currently in use. As a way to remove the high

order time step constraint, Gaussian filtering is applied to remove small, high frequency

perturbations before they pollute the numerical solution. This is computationally inexpen-

sive, does not degrade the accuracy of the numerical solution, and allows a first order time

step restriction.

Our Poisson solver, an extension of the ghost fluid method found in Liu et al. (2000),

Gibou et al. (2003), and Gibou et al. (2002), retains all the qualities developed therein. In

particular, we avoid the complication of solving on an irregular grid by solving on a simpler

rectangular grid. The solution satisfies the boundary condition at the precise location of the

interface, rather than at nearby nodes. The method is robust and allows a straightforward,

dimension-by-dimension implementation, although a small consideration needs to be made

for the interaction of spatial dimensions in one case. We present numerical evidence that

strongly suggests our algorithm yields second order accuracy, even when applied to the full

moving boundary problem with geometric boundary conditions (e.g., curvature). We note

that Gibou and Fedkiw (2005) recently proposed an extension of the ghost fluid method

that attains fourth-order accuracy on a fixed domain and third-order accuracy for the Stefan

problem (on a moving boundary) without curvature-dependent boundary conditions (i.e.

zero surface tension).

The outline of this paper is as follows. In Section 2, we formulate the classical system

of interior Poisson-like problems on a moving boundary; our tumor growth model is a

special case. Section 3 provides an outline of our general method. In Section 4, we describe

our new interior Poisson solver, our gradient discretization and new gradient extension,

our new velocity extension, our modifed normal vector and curvature discretizations, and

our new application of Gaussian filter technology. In Section 5, we verify the second order

convergence with geometric boundary conditions, compare our results to spectrally-accurate

results in (Cristini et al., 2003), and investigate the effects of the velocity filtering, the new

velocity extension technique, and our modifications to the normal vector and curvature

algorithms. Lastly, in Section 6 we give numerical evidence for second order convergence

in the presence of necrosis and present several simulations of tumor growth that showcase

the robustness of the algorithm through complex morphological changes. This work is a
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continuation of the techniques developed by Macklin (2003) in his M.S. thesis.

2.2 The Equations for the Interior Problem

2.2.1 Interior Equations

We wish to solve a system of Poisson-like problems in a moving domain Ω(t) whose

boundary Σ(t) evolves with a velocity that depends upon the gradients of these solutions.

That is, we solve for a system of functions p1, p2, . . . , pk on Ω ∪ Σ that satisfy



∇2pi = fi(p1, p2, . . . , pi−1, pi,x, t) in Ω

pi = gi(κ,x, t) on Σ
1 ≤ i ≤ k (2.1)

and determine the outward normal velocity of the interface by

V
∣∣∣
Σ

=
k∑

i=1

αi(∇pi · n)
∣∣∣
Σ
, (2.2)

where n is the unit normal vector on Σ oriented outward from Ω, and each ∇pi is a one-

sided “interior” gradient at Σ based on values on Σ and in Ω. In our formulation, each

pi depends upon pi−1, pi−2, . . ., allowing for a partial decoupling of the system, but this

restriction could be removed.

As in (Sethian, 1999; Osher and Sethian, 1988; Osher and Fedkiw, 2002; Peng et al.,

1999), we capture the boundary Σ implicitly by introducing a level set function ϕ defined

on a rectangular domain D ⊃ (Ω ∪ Σ) such that

ϕ(x)





< 0 if x ∈ Ω

= 0 if x ∈ Σ

> 0 else.

(2.3)

In this framework, we call Ω the interior region, Ωo = D\(Σ ∪ Ω) the exterior region, and

Σ the interface between the regions. (Let us denote by A\B the set subtraction B from

A.) To update the interface position Σ in time, we solve the additional Hamilton-Jacobi

equation

ϕt + Ṽ |∇ϕ| = 0 (2.4)

throughout D (Sethian, 1999; Osher and Fedkiw, 2002; Peng et al., 1999). Here, Ṽ is an

extension of V beyond the interface.
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We further stipulate that ϕ is a signed distance function: |ϕ(x)| = d(x, Σ). We ensure

this property by reinitializing ϕ at every time step (Sethian, 1999; Osher and Fedkiw, 2002;

Sussman and Fatemi, 1999). From the level set function, we can readily compute geometric

quantities:

n =
∇ϕ

|∇ϕ| (2.5)

and

κ = ∇ ·
( ∇ϕ

|∇ϕ|
)

. (2.6)

2.2.2 Application: Tumor Growth

We will apply the techniques developed in this paper to a model of tumor growth, which

is a reformulation of several classical models found in Adam (1996), Byrne and Chaplain

(1996b), Byrne and Chaplain (1996a), Chaplain (2000), Cristini et al. (2003), and McElwain

and Morris (1978). Let Ω denote a two-dimensional tumor mass, let Σ be its boundary, let

ΩN denote the necrotic core of Ω (note that ΩN ⊂ Ω), and let us denote the boundary of

ΩN by ΣN . As stated earlier, we enclose Ω = Ω ∪Σ in a larger rectangular domain D, and

we define Ωo = D\Ω.

Let c and p denote a nondimensionalized concentration and pressure, respectively. (See

Byrne and Chaplain (1996b), Cristini et al. (2003), and Macklin (2003) for the model and

nondimensionalization.) The dimensionless parameters include G which is related to the

rate of mitosis (cell proliferation), and GN measures the rate of volume loss due to necrosis

(cell degradation) relative to the rate of mitosis. In addition, the parameter A measures

the rate of apoptosis (“pre-programmed” cell death), and N is the value of c necessary for

cell viability. Note that the necrotic core ΩN is the region where c < N .

From Cristini et al. (2003), the concentration satisfies




∇2c = c in Ω

c|Σ = 1

c = 1 outside Σ,

(2.7)

and the pressure satisfies




∇2p =




−G(c−A) in Ω if c ≥ N

GGN in Ω if c < N

p|Σ = κ

p = 0 outside Σ.

(2.8)
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Note that the concentration is determined solely by the position of the interface Σ and can

be solved independently of the pressure. This allows the necrotic core to be determined

prior to the pressure solve by the region where c−N is negative.

The outward normal velocity is given by Darcy’s law

V |Σ = −n · ∇p, (2.9)

where ∇p is the interior pressure gradient in the region Ω.

2.3 Numerical Solution: General Technique

We begin by enclosing the interface within a larger, rectangular computational domain

D = [a, b]× [c, d]. (We will postpone our discussion of how large [a, b]× [c, d] is for a later

part of this paper.) We then proceed via:

1. Initialize a level set function ϕ to represent the interface Σ while ensuring that there

are sufficiently many computational node points between Σ and the computational

boundary.

2. Check for proximity of the interface Σ to the computational boundary. If there is

insufficient space between Σ and ∂D, then extend x, y, and ϕ. Reinitialize ϕ.

3. Calculate the normal vector n and the curvature κ where required.

4. Solve the Poisson problems for p1, . . . , pk.

5. Calculate the gradients ∇pi inside and on Σ, and extend the components of the

gradients beyond Σ into Ωo.

6. Calculate the normal velocity V in a band about Σ according to (2.2). Extend the

normal velocity orthogonally from the interface Σ, and filter high-frequency numerical

noise from the extended speed.

7. Update ϕ according to (2.4).

8. Repeat (2)-(7) for each step of the time discretization.
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2.4 Discretizations

2.4.1 Interior Poisson Solver

Our solution technique for the Poisson problem was first developed by Macklin (2003)

and is an extension of the ghost fluid methods in Glimm et al. (1981), Fedkiw et al. (1999),

and Liu et al. (2000) to higher-order accuracy. In this method, we solve a general interior

problem for u (which can be either the nutrient concentration c or the pressure p) in a

complex domain 


∇2u = f (u,x) in Ω

u = g (κ,x) on Σ
(2.10)

by embedding the problem in the rectangular domain D and extending u as a constant γ

into Ωo. Thus, we solve the system




∇2u = f (u,x) in Ω

u = g (κ,x) on Σ

u = γ in Ωo.

(2.11)

The solution u can be assumed to be smooth within Ω up to Σ. We assume that Σ is defined

by means of a level set function ϕ as described before. Also, we assume that g is a function

that can be evaluated at all node points near Σ.

Note that the equations governing the tumor nutrient concentration (2.7) and the

u
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Figure 2.1: Ghost Fluid Method: Extrapolation to ûi+1.
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pressure (2.11) can be written in the above form, where

u = c, f(c,x) = c, g(κ,x) = 1, γ = 1 (2.12)

and

u = p, f(p,x) =




−G (c−A) in ΩP

GGN in ΩN

, g(κ,x) = κ, γ = 0, (2.13)

respectively. Note that in the presence of necrosis, the pressure has a discontinuous second

derivative at the boundary of the necrotic core.

The central idea of the discretization technique (Fedkiw et al., 1999; Liu et al., 2000)

begins with the standard centered difference for uxx: if [xi−1, xi+1] lies entirely within Ω,

then

uxx =
ui−1 − 2ui + ui+1

∆x2
+O (

∆x2
)
. (2.14)

However, if the interface intersects [xi−1, xi+1], then u is potentially discontinuous, and the

finite difference approximation in (2.14) is inaccurate. Supposing that the interface occurs

between xi and xi+1, ui+1 is replaced in (2.14) with ûi+1, a smooth extension of u from the

inner domain to xi+1. See Figure 2.1.

As stated above, the pressure has a discontinuous second derivative across the boundary

of the necrotic core. If left untreated (as is done here) this limits the overall accuracy of the

scheme to second order. A higher order accurate treatment can be achieved by applying a

ghost fluid discretization at the boundary of the necrotic region as well as at the interface

Σ.

In our approach, we make three principal approximations. We estimate the location

of the interface between xi and xi+1 by linear interpolation of ϕ; this is known as subcell

resolution (Liu et al., 2000; Gibou et al., 2003, 2002). We approximate the value of the

boundary condition at the interface by cubic interpolation of g near Σ. Lastly, we extrapo-

late ûi+1 from the boundary condition and multiple points within Ω using linear, quadratic,

or cubic extrapolation.

Classification of Node Points

For points contained in Ω, the solver proceeds by constructing an approximation to

∇2u at each point (xi, yj) while considering which points of the 5-point stencil

{(xi, yj), (xi, yj±1) , (xi±1, yj)}
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are contained in Ω, in Ωo, and on Σ. The level set formulation of the interface makes

this classification a straightforward matter:

xi,j ∈





Ω if ϕi,j < −ε

Σ if |ϕi,j | ≤ ε

Ωo if ϕi,j > ε,

(2.15)

where ε is introduced to account for finite machine precision. We take ε = 2εmach, where

εmach = max {ε > 0 : 1.0 + ε = 1.0} (2.16)

in machine floating-point arithmetic. Note that because computer hardware can only

represent finitely-many floating-point numbers, this set has a unique, nonzero maximum.

On most modern, 32-bit machines, this number is typically 2−53 ≈ 1.11 e -16.

Discretizing the Equation

We discretize (2.11) on the full rectangular domain although we are solving the interior

problem. The rows corresponding to the trivially-solvable discretizations are included in

the coefficient matrix because this preserves the row (or column) ordering of the coefficient

matrix, yielding a banded matrix that can be stored efficiently in memory. We proceed by

discretizing (2.11) at each node xi according to the classification of xi and its neighbors by

(2.15).

The discretization on Σ and in Ωo is trivial:

1. Case: xi ∈ Ωo:

By (2.11), ui = γ. To improve the conditioning number of the coefficient matrix, we

shall use
−1
∆x2

ui =
−1
∆x2

γ. (2.17)

2. Case: xi ∈ Σ:

In this case, ui = g(κi, xi). Again, we set

−1
∆x2

ui =
−1
∆x2

g(κi, xi). (2.18)

to improve the conditioning number of the coefficient matrix.
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When considering points in Ω, we must approximate ∇2u. Let us first consider the dis-

cretization of uxx. We shall then approximate ∇2u dimension-by-dimension, as the dis-

cretization of uyy is identical except in one case where the two-dimensionality is important.

We proceed by classifying the node points {(xi±1) , xi} . Consider the following cases:

3. Case: xi ∈ Ω:

(a) Case: xi−1 ∈ Ω and xi+1 ∈ Ω:

In this case, the entire stencil is contained in the inner region, so we can use the

standard second order approximation to uxx = f :

1
∆x2

(ui−1 − 2ui + ui+1) = f(ui, xi). (2.19)

(b) Case: xi−1 ∈ Ω and xi+1 ∈ (Σ ∪ Ωo):

In this case, the interface is located between xi and xi+1 on the right-hand side

of the stencil. Let us denote this location by xΣ. We denote

xΣ = xi + θ ∆x, 0 < θ ≤ 1, (2.20)

where θ is determined by interpolating the level set function ϕ. This provides us

with the subcell resolution introduced earlier. Notice that if θ → 0, then xi ∈ Σ,

and we are in case 2.

Next, let us define S = {xi−1, xi, xi+1, xi+2}. We evaluate g at the points in

S and the corresponding {κi−1, κi, κi+1, κi+2}, apply cubic interpolation, and

evaluate the interpolation at xΣ. Let us denote the value of the interpolation by

gΣ.

We extend u from the interior region to xi+1 and obtain a “ghost value” ûi+1.

We determine ûi+1 by extrapolating from the neighboring values of u contained

in Ω, solving algebraically for ûi+1, and substituting the expression for ûi+1 in

1
∆x2

(ui−1 − 2ui + ûi+1) = f(ui, xi). (2.21)

For completeness, we give linear, quadratic, and cubic extrapolations in Ap-

pendix 2.9. Similar extrapolations are also given in Gibou and Fedkiw (2005).

We note that because all the points in our extrapolations are at least ∆x apart,

the case where θ → 0, if it should occur, poses no difficulty for our discretization.
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(c) Case: xi−1 ∈ (Σ ∪ Ωo) and xi+1 ∈ Ω:

In this case, the interface is located between xi−1 and xi. The discretization is

completely analogous to that in the previous case.

(d) Case: xi−1 ∈ (Σ ∪ Ωo) and xi+1 ∈ (Σ ∪ Ωo):

In this case, the interface intersects the stencil not once but twice; this requires

more careful consideration as a series of subcases:

i. Subcase: xi−1 ∈ Σ and xi+1 ∈ Σ:

We can construct an approximation to uxx by

1
∆x2

(
g(κi−1, xi−1)− 2ui + g(κi+1, xi+1)

)
. (2.22)

ii. Subcase: xi−1 ∈ Σ and xi+1 ∈ Ωo:

In this subcase, we can proceed as in Case 3b with two minor modifications:

we replace ui−1 by g(κi−1, xi−1) in the extrapolation for ûi+1, and the ex-

trapolation must be linear. (We do not allow for extrapolations using both

ui and gΣ because such extrapolations become unstable as θ → 0.)

iii. Subcase: xi−1 ∈ Ωo and xi+1 ∈ Σ:

This case is completely analogous to the previous subcase.

iv. Subcase: xi−1 ∈ Ωo and xi+1 ∈ Ωo:

The interface occurs on both the right- and left-hand sides of the stencil,

and there is insufficient data to extrapolate both ûi−1 and ûi+1. (We avoid

extrapolations using both ui and u(xi + θ∆x), as these become unstable as

θ → 0. Similarly, we avoid extrapolations using ui and u(xi−1 + θ∆x), as

these become unstable as θ → 1.) In this case, we take uxx = 0 and consider

the y-direction. If the same occurs so that we take uyy = 0, we say that the

discretization fails to resolve Σ around (xi, yj) and take the point to fall in

Ωo. Hence, we set
−1
∆x2

ui =
−1
∆x2

γ. (2.23)

Notice that we cannot make such a distinction without considering the two-

dimensionality of the problem. (See Figure 2.2.) We note that in Gibou et al.

(2002) and Gibou and Fedkiw (2005) constant extrapolations are also allowed

and so in those works it was unnecessary to consider the two-dimensionality.
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Figure 2.2: Impact of Two-Dimensionality on the Poisson Solver: In the left figure, the
interface Σ is unresolved near (xi, yj). In the right figure, uyy = 0 but the interface is still
resolved.

When we use this technique with cubic extrapolation, which shall denote it by Poisson3.

Likewise, quadratic and linear extrapolation for û are Poisson2 and Poisson1, respectively.

When using Poisson3, if there are not sufficiently many interior node points for cubic extrap-

olation to û, we use Poisson2 or Poisson1 in that instance. The same applies to Poisson2.

In our work, we solved the resulting linear systems with the stabilized biconjugate gradient

method (BiCG-Stab(2)) (Duff et al., 1998) with a compact banded matrix storage scheme

(Press et al., 1992).

2.4.2 Gradients

The normal velocity in (2.2) requires ∇pi on Σ for each i. For our method, we must

also calculate the gradients in Ω. Let u be a function whose gradient we wish to calculate,

and consider ux. For interior points xi ∈ Ω where ϕ ≤ ε, we use the five-point stencil

ux(xi) =
1

12∆x

(
ui−2 − 8ui−1 + 8ui+1 − ui+2

)
+O (

∆x4
)

(2.24)

when {xi, xi±1, xi±2} ⊂ Ω = Ω ∪ Σ; when only {xi, xi±1} ⊂ Ω, we use the standard second

order centered difference. If one of xi±1 ∈ Ωo, we construct a polynomial interpolation of u

in Ω using two-to-four nearby points in Ω, differentiate the interpolation, and evaluate at

xi. In this way, we can calculate ux to second order or better accuracy at all points in Ω

and on Σ. We obtain the partial derivative uy similarly.
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2.4.3 Extensions

Since we solve the advection equation (2.4), we require an extended normal velocity

in a band surrounding Σ. Because the Poisson solutions pi only have meaningful gradients

(in the context of the interior problem) on Ω, the first step of our extension procedure is

to extend the individual components of the gradients ∇pi beyond Σ into Ωo. Once this is

done, we can evaluate (2.2) at any point near Σ.

To help maintain the accuracy of the level set ϕ, we then use a velocity extension

technique that satisfies the orthogonality criterion ∇V · n = 0, which helps preserve the

spacing of the level set contours. We note that our orthogonal extension is a new technique

based upon bilinear interpolation.

Once we have orthogonally extended the velocity, we apply a Gaussian filter in a narrow

band about the interface; this removes high frequency noise from the speed function that

would otherwise perturb the interface and destabilize the calculation (See Section 2.4.4).

Because the filter only smooths the speed closest to the interface, we must extend the

smoothed velocity one final time. We found this approach works best among the various

combinations of extension and filtering available.

Gradient Extension

As the gradient algorithm only defines the gradients where ϕ ≤ ε, we must extend to

a band of nodes where ϕ > ε. For stability, our technique must preserve information flow

in an outward direction from the interface. The method we describe can be used to extend

any scalar function f defined on Σ and in Ω, and we apply it to the components of the ∇pi

individually.

We extend f to a point x ∈ Ωo by one-dimensional, grid-aligned extrapolation from

points where f has either been previously extended or was originally defined (e.g., in Ω).

We choose the points used in the extrapolation according to whether the normal vector

n = (n1, n2) at x is mostly horizontal (|n1| − |n2| > ε as at point a in Figure 2.3), mostly

vertical (|n2| − |n1| > ε as at point c in Figure 2.3), or mostly diagonal (||n1| − |n2|| ≤ ε

as at point b in Figure 2.3). This allows the use of high-order extrapolation without the

complexity of multidimensional extrapolation; in our work, we used cubic extrapolation.

See Figure 2.3.

To preserve information flow in the outward direction from the interface, we tag the
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Figure 2.3: Gradient Extension: We extend a scalar function beyond Ω ∪ Σ by one-
dimensional, grid-aligned extrapolation. The points used in the extrapolation are chosen
according to the direction of the normal vector. We preserve outward information flow by
choosing the next point for extension according to the value of the level set function at the
remaining points (open circles).

points requiring extension (larger circles in Figure 2.3), and among those points, we choose

the point closest to Σ which has not yet been updated (open circles); notice that by the

level set formulation, this point can be determined by choosing the remaining point with

the smallest positive value of ϕ.

In our simulations, we applied this technique to each component of the ∇pi within a

band of width 5∆x.

Identifying the Closest Point on the Interface.

Ordinarily, it can be an expensive operation to determine the closest point x1 on the

interface Σ to a given point x0 (Adalsteinsson and Sethian, 1999; Sethian, 1999; Osher and

Fedkiw, 2002). However, we can use the information afforded by the level set function ϕ to

make this a simple, efficient operation; no search is required.

At any point x0, the outward normal vector n (x0) points away from the interface, and
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Figure 2.4: Finding the closest point on the interface. W = −ϕ(x0)n(x0).

|ϕ (x0)| gives the distance to the interface. Therefore, the vector

W (x0) = − |ϕ (x0)|n (x0) = −ϕn (2.25)

points towards the closest point on Σ and has length equal to the distance from Σ. The

point

x1 = x0 + W (2.26)

explicitly gives the closest point to x0 on Σ to second order. See Figure 2.4.

Orthogonal Velocity Extension

Once we have a velocity defined in a band about the interface Σ, we apply an extension

routine to ensure that∇Ṽ ·n = 0. We developed an extension based on bilinear interpolation

of the velocity near the interface that proved to be more accurate and less computationally

expensive than PDE-based techniques (e.g., that given by Zhao et al. (1996)). The vector

W defined in (2.25) suggests the new extension technique: if we wish to extend V to x0,

we define W as in (2.25) and

x1 = x0 + W (2.27)

to be the closest point to x0 on the interface. Next, we locate (xI , yJ) such that x1 is

contained in the box [xI , xI+1)× [yJ , yJ+1) and calculate V (x1) with bilinear interpolation

of V at the corners of the box. See Figure 2.4. Lastly, we define Ṽ (x0) = V (x1). Notice
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that as Ṽ is constant along W, which is parallel to −n at all extended points,

∂Ṽ

∂n
≡ 0. (2.28)

This approach differs from the discrete, fast marching velocity extension given by Adal-

steinsson and Sethian (1999) in several ways. First, the fast marching extension technique

extends the velocity outward from the interface while simultaneously updating the level set

function; ours uses an already-updated level set function to aid in the extension process.

We use the level set function to readily locate the closest position on the interface, while the

fast marching technique depends on explicitly reconstructing the zero level set as piecewise

linear curves and considering multiple cases. Also, while the fast marching method depends

upon solving a discretized PDE at every point of extension, ours depends upon a simpler

interpolation of previously known values in a way similar to Malladi et al. (1995).

2.4.4 Velocity Filtering

Because the physical problem is sensitive to variations in the curvature, the speed

can become noisy when even small perturbations in the level set function are present. In

addition, grid effects such as mesh-induced anisotropies can act as sources of numerical

perturbations. In the boundary integral context (Cristini et al., 2003), it was shown that

for these equations, the normal velocity depends upon the derivative of the curvature (i.e.,

V ∼ H(κs), where H is the Hilbert transform and s is arclength). It can be shown that

such velocity fields damp high frequency perturbations δk at the rate − |k|3, where k is

the wave number. Thus, perturbations evolve according to δk ∼ e−|k|
3t at large k. From

this consideration, the high frequency perturbations in the speed and interface position

should be damped away, provided a CFL restriction is satisfied. The CFL restriction for

an explicit boundary integral method is ∆t ∼ ∆s3. An analysis of our ghost fluid/level set

method reveals that this time step restriction also applies, with ∆s replaced by ∆x. This

severe time step restriction can be overcome in a number of ways. For example, in Cristini

et al. (2003), a non-stiff, time integration scheme using a discretization in which the leading

order term (term with the largest number of spatial derivatives) is integrated explicitly.

This effectively removes the third order constraint, leaving only a standard first order CFL

time step restriction. The application of such an implicit time integration scheme in the

level set context is not straightforward. We are currently working to develop such a scheme.
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Another way to remove the high order time step constraint is to use numerical diffusion

to remove small, high frequency perturbations before they pollute the numerical solution.

This has the advantage that it is computationally inexpensive, and if done carefully, it does

not degrade the accuracy of the numerical solution. We find that adapting a Gaussian filter

from image processing applications (Gonzalez and Woods, 1992) to smooth the normal ve-

locity within a prescribed band about the interface provides an efficient means of controlling

the noise without affecting the accuracy. In addition, the Gaussian filtering removes grid

anisotropies as a side benefit.

In one spatial dimension, a Gaussian filter is applied to a function f by

f̂I =
1

σ
√

2π

∑

i

fI−i exp
(
−(i ∆x)2

2σ2

)
∆x, (2.29)

where σ is the standard deviation of the filter. Typically, σ = M∆x for some integer M .

For |i∆x| ≥ 3σ, the exponential function in the convolution has a very small value (less

than approximately .0111); consequently, we can truncate the sum above to

f̂I =
1
S

1
M
√

2π

3M∑

i=−3M

fI−i exp

(
−1

2

(
i

M

)2
)

, (2.30)

where S is the value of the sum for f ≡ 1.

To smooth a two-dimensional data array, we use (2.30) first in the x-direction, and then

again in the y-direction. In our calculations, we found that the necessary value of σ depends

upon the spatial resolution but decreases with refinement. Because the filter requires that

f be defined within a distance of 3σ, we only apply the filter to a narrow band around

Σ. In our simulations, we used a narrow band of width 3∆x. As will be shown later, this

technique yields accurate results using only a first order CFL time step restriction.

2.4.5 Level Set Reinitialization and Advection

As in Sussman and Fatemi (1999), we reinitialize ϕ to be a signed distance function by

solving

ϕτ − sign(ϕ0) (1− |∇ϕ|) = 0, (2.31)

where ϕ0 is the level set function prior to reinitialization and τ is pseudo-time. We dis-

cretize the temporal derivative with the third-order total variation diminishing Runge-Kutta
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Method (TVD-RK), and we approximate sign(ϕ0) |∇ϕ| with either the third-order or the

fifth-order WENO scheme (Jiang and Shu, 1996; Jiang and Peng, 2000). We discretize the

sign function according to

signδ(ϕ) = 2
(

Hδ(ϕ)− 1
2

)
, (2.32)

where

Hδ(ϕ) =





0 if ϕ < −δ

1
2

(
1 + ϕ

2δ + 1
π sin

(πϕ
δ

))
if |ϕ| ≤ δ

1 if ϕ > δ,

(2.33)

and δ is a small number (Sussman et al., 1998). In our calculations, we took δ = ∆x.

In our numerical implementation of the level set equation (2.4), we discretize V |∇ϕ|
with the third-order or fifth-order WENO method. We approximate the temporal derivative

with the third-order total variation diminishing Runge-Kuta (TVD-RK) method (Gottlieb

et al., 2001; Gottlieb and Shu, 1997), and we use the CFL condition

∆t ≤ ∆x

4 max |V | . (2.34)

2.4.6 Normal Vectors and Curvature

The standard, second order discretization of the normal vector n uses centered differ-

ences for ϕx and ϕy and normalizes the result. For curvature, the standard second order

method is to calculate each partial derivative in

κ = ∇ · ∇ϕ

|∇ϕ| =
ϕxxϕ2

y − 2ϕxϕyϕxy + ϕyyϕ
2
x(

ϕ2
x + ϕ2

y

) 3
2

(2.35)

using second order, centered differences. Note that this uses a 9-point stencil, and we

discretize ϕxy as in Chen et al. (1997) by

ϕxy(xi, yj) ≈ 1
4∆x∆y

(
ϕi+1,j+1 − ϕi−1,j+1 − ϕi+1,j−1 + ϕi−1,j−1

)
. (2.36)

However, there are cases where these normal vector and curvature discretizations are inac-

curate. If two interfaces approach one another, a “ridge” forms between them where the

derivatives of ϕ are discontinuous. Discretization across this ridge will cause large errors in

the normal vector and curvature for an exact (i.e., unperturbed, error-free) level set. See

Figure 2.5.

Because such ridges tend to introduce error into the surrounding level set function

during reinitialization and advection level set operations, the standard discretizations of
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Figure 2.5: Effect of Level Set Irregularity on κ and n: In the left figure, two interfaces are
close together. The middle curve shows the points equidistant from both interfaces, and
the level set function is irregular along this curve. The standard techniques for calculating
κ and n work well at x0 (where the derivatives of ϕ are continuous), whereas they break
down numerically at x1. The right figure shows a cross-section through x1 of the level set
function; the “peak” in the middle is equidistant from the two interfaces and a point of
irregularity in ϕ.

curvature and the normal vectors are also erratic in the nodes near the ridge. Because

our extension techniques require that the normal vectors point away from the interface,

and as the boundary conditions of the Poisson problems depend on the curvature, it is

critical that we develop a technique to detect these situations and discretize accordingly.

In our approach, we first detect these “ridges” and any other irregularities in the level set

function, create a field of direction vectors near the ridges to assist in determining one-sided

discretizations, and finally discretize the normal vectors and curvature.

Detecting “Ridges” in the Level Set

Recall that for a signed distance function ϕ, |∇ϕ| ≈ 1. Thus, a simple technique to

detect the points on and near a ridge is to compute v = ∇ϕ using centered second order

differences, and then to define a “normal quality function” Q(v) according to

Q(v) = |1− |v|| . (2.37)
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Table 2.1: Discretization of the x-component of n based on the direction vectors.
Case Discretization of x-component of n
(Di−1,j ·Di,j > 0 or |Di−1,j | = 0) and use a left-based stencil for ϕx

Di+1,j ·Di,j ≤ 0
Di−1,j ·Di,j ≤ 0 and use a right-based stencil for ϕx

(Di+1,j ·Di,j > 0 or |Di+1,j | = 0)
(Di−1,j ·Di,j > 0 or |Di−1,j | = 0) and use centered difference for ϕx

(Di+1,j ·Di,j > 0 or |Di+1,j | = 0)
Di−1,j ·Di,j ≤ 0 and use centered difference for ϕx

Di+1,j ·Di,j ≤ 0

We set Qi,j = Q(∇ϕ(xi, yj)). If Qi,j ≥ η for some fixed 0 < η < 1, then the point (xi, yj) is

on or near a ridge. In our testing, we found that η = .1 reliably detects the points on and

near the ridges with few false positives.

Creating a Direction Vector Field

We next introduce a direction field D(x, y) to assist in determining whether two neigh-

boring points are on the same side of a ridge. We require that D(xi, yj) points away from

a ridge if Q ≥ η at (xi, yj) or any one of its eight neighbors in the Cartesian grid, in which

case D(xi, yj) points towards one of the eight neighboring points. Otherwise, D = 0. If

D 6= 0, we take it to be among the set

V = {(0,−1), (0, 1), (−1, 0), (−1,−1), (−1, 1), (1, 0), (1,−1), (1, 1)} . (2.38)

For a function f at (xi, yj), we define the D-difference of ∇f component-wise by:

∂xf =





fi,j−fi−1,j

∆x if Dx = −1
fi+1,j−fi,j

∆x if Dx = 1
fi+1,j−fi−1,j

2∆x if Dx = 0,

(2.39)

where (Dx, Dy) = D(xi, yj); ∂yf is defined similarly.

We determine D component-wise according to the value of Q at (xi, yj) and its eight
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neighbors. For the x-direction,

Dx =





−1 if Qi−1,j < η and Qi+1,j ≥ η

1 if Qi−1,j ≥ η and Qi+1,j < η

0 if Qi−1,j < η and Qi,j < η and Qi+1,j < η

0 if Qi−1,j ≥ η and Qi,j ≥ η and Qi+1,j ≥ η

undetermined otherwise.

(2.40)

We determine Dy similarly. We shall denote D(xi, yj) by Di,j . If Dx or Dy is undetermined,

then we set D′ equal to the element in V most parallel to ∇ϕ (where we again use centered

differences). We set D1 and D2 to be perpendicular to D′, and we define v1 and v2 to

be the D1- and D2-differences of ∇ϕ, respectively. If Q(v1) < Q(v2) + µ, then we choose

Di,j = D1; otherwise, Di,j = D2. It is desirable to choose µ 6= 0 to give the direction field

D a small bias towards one side for points resting exactly on a ridge, as Q(v1) ≈ Q(v2) in

such cases. In our testing, we found µ = 1
8η works well.

Using these direction vectors, we can readily determine if two adjacent points are on

the same side of a ridge or other level set irregularity. Consider, for example, Di−1,j and

Di,j . If the dot product Di−1,j ·Di,j > 0 or Di−1,j = 0, then we say that (xi−1, yj) and

(xi, yj) are on the same side of any and all ridges and level set irregularities.

Discretizing the Normal Vector

To discretize n at (xi, yj), we discretize the x-component of n as in Table 2.1. If we

use a left-based stencil, we use a stencil based of ϕ on

{
(xi−4, yj), (xi−3, yj), (xi−2, yj), (xi−1, yj), (xi, yj)

}
. (2.41)

Let K be the number of points adjacent to and left of (xi, yj) for which all the points are

on the same side of all the ridges; that is, let

K = max{k : Di−`,j ·Di,j > 0 or |Di−`,j | = 0 for all 1 ≤ ` ≤ k}. (2.42)

If K > 5, set K = 5. Then for the left stencil, we approximate ϕx using the K-point

difference of ϕ at {(xi−`, yj)}K
`=0. A right-based stencil for ϕx can be defined similarly, and

the y-component is discretized analogously. The resulting vector is then normalized.
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Discretizing the Curvature

Recall that the standard curvature discretization involves the nine points in the square

[xi−1, xi+1]× [yj−1, yj+1]. If each Qk,` < η for i− 1 ≤ k ≤ i + 1 and j − 1 ≤ ` ≤ j + 1, we

use the standard curvature discretization.

If any Q ≥ η for one of these nine points but Q < η on

P = (xi±1, yj) ∪ (xi, yj±1) ∪ (xi, yj), (2.43)

then we use the alternate discretization of κ via

κ = ∇ · n, (2.44)

where we use second order centered differences for ∂xnx and ∂yny.

If Q ≥ η on any point in P, we have found that no one-sided difference can stably

calculate κ. In such a case, we apply an extension of the previously-defined κ values in a

manner similar to the components of the pressure gradient as described in Section 2.4.2. The

only difference is that rather than fitting a higher-order (up to cubic) polynomial through

the interpolated points and extrapolating, we fit a least-squares line through those data

points. In our testing, we found that this gives much more stable results. Because the

algorithm is one-sided, we apply it twice: once for the undefined curvature values outside

Σ, and once for the undefined curvature values inside Σ.

2.4.7 The Narrow Band/Local Level Set Technique and the Size of the

Computational Domain

Following Malladi et al. (1996) and Peng et al. (1999), we update ϕ within a distance

R of the interface. Given an initialized level set function ϕ, the points which fall within

that distance are

{x : |ϕ(x)| ≤ R + ε} (2.45)

for some small ε. This set is referred to as a “narrow band” about Σ, R is the width of the

band, and the technique is known as the “narrow band” (or “local”) level set method. The

value of R is determined by the numerical implementation; we begin this determination by

considering the smoothed normal velocity.

We require a smoothed normal velocity within three nodes of the interface. Thus,

R ≥ 3∆x. If σ is the standard deviation of the Gaussian filter, then the outermost of these
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Table 2.2: Filtering parameter σ used for each spatial resolution.
∆x σ

0.16 2∆x = 0.32
0.08 3∆x = 0.24
0.04 4∆x = 0.16

smoothed points requires that Ṽ be defined within a rectangle that extends 3σ in all four

mesh directions. The farthest node point within this rectangle is at a distance of 3
√

2σ, so

R ≥ 3∆x + 3σ
√

2.

To extend the velocity to the outermost of these points, we require a valid normal

vector. As we obtain the normal vector with centered difference of ϕ, this requires one-to-

two additional node points. Thus, R ≥ 3∆x+3
√

2σ +2∆x. Lastly, we often multiply R by

a safety factor because the interface tends to change position between intermediate steps of

the TVD-RK method. In our calculations, we chose a safety factor of 1.25. Thus, our band

size is

R = 1.25
(
5∆x + 3

√
2σ

)
= R = 1.25

(
5 + 3M

√
2
)
∆x, (2.46)

where we have used σ = M∆x.

The size of the band for the narrow band level set method determines the size of the com-

putational domain D: it must be large enough to contain the contour {x : ϕ(x) ≤ R + ε}.
We typically allow three-to-four additional nodes of buffer between the edge of the compu-

tational domain and this contour. Thus, whenever

|ϕ(x)| > R + 3∆x, (2.47)

for any x ∈ ∂D, we must extend the computational domain. We therefore modify the width

R of the narrow band to include this distance:

R = 1.25
(
5∆x + 3

√
2σ + 3∆x

)
= R = 1.25

(
8 + 3M

√
2
)
∆x. (2.48)

2.5 Convergence and Testing Results

2.5.1 Convergence of the Full Method: Exact Circular Solution

We tested our algorithm on the full system (2.7)-(2.9) with A = 0.5, G = 20 and N = 0

(i.e. no necrosis). Note that GN is not used in the absence of necrosis. The initial interface
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Table 2.3: Full Convergence Results for WENO5, Poisson2, bilinear velocity extension.
time ∆x = .16 ∆x = .08 ∆x = .04 order
0.05 .005691 .001447 3.634e-4 1.98
0.10 .01111 .002765 7.424e-4 1.95
0.15 .01572 .003869 9.839e-4 2.00
0.20 .01963 .004942 .001259 1.98
0.25 .02405 .005774 .001467 2.02

Σ is a circle of radius 2.0 centered at the origin. According to Cristini et al. (2003), if R(t)

denotes the radius of Σ at time t, the exact solution of this problem is given by solving

R′(t) = −AG
R

2
+ G

I1(R)
I0(R)

, R(0) = 2. (2.49)

The level set function ϕ at time t is given by

ϕ(r, t) = r(x, y)−R(t), (2.50)

where r(x, y) =
√

x2 + y2.

To test the convergence, we measured the maximum absolute error at the common mesh

points within the band B = {(x, y) : |r(x, y)−R(t)| < 0.5}

`band
∞ (∆x) = max

{
|ϕ∆x(xi, yj , t)− ϕactual(xi, yj , t)| : (xi, yj) ∈ B

}
(2.51)

at t = 0.05 to t = 0.25 in 0.05 increments. We tested with ∆x = ∆y = 0.16, ∆x = ∆y = .08,

and ∆x = ∆y = 0.04. In all these calculations, we used linear interpolation of ϕ for the

subcell resolution in the various Poisson solvers. We calculated curvature within a band

of width 3∆x of Σ, we set η = 0.1 for the normal vector and curvature algorithms, and

we chose σ large enough to maintain the expected circular symmetry and convergence at

Table 2.4: Full Convergence Results for WENO5, Poisson1, bilinear velocity extension.
time ∆x = .16 ∆x = .08 ∆x = .04 order
0.05 .01520 .004157 .001535 1.65
0.10 .02650 .008049 .002896 1.60
0.15 .03739 .01111 .004055 1.60
0.20 .04663 .01372 .005074 1.60
0.25 .05528 .01733 .006007 1.60
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Table 2.5: Full Convergence Results for non-necrotic, complex morphology.
time `band∞ (∆x, 2∆x) `band∞

(
∆x, 1

2∆x
)

order
0.05 0.005650 0.001333 2.08
0.10 0.009698 0.002453 1.98
0.15 0.01339 0.003473 1.97
0.20 0.01607 0.004014 2.00
0.25 0.1850 0.004878 1.92
0.50 0.03282 0.007068 2.22
0.70 0.03417 0.009704 1.82

every time step. The values of σ used are given in Table 2.2. Notice that σ decreases with

refinement of the computational mesh, so there is no lower limit on the feature size that can

be resolved by mesh refinement. All calculations used our new bilinear velocity extension

technique.

We define the overall convergence rate at a given time t to be

convergence rate =
log

(
`band∞ (∆x=.16)
`band∞ (∆x=.04)

)

log 4
. (2.52)

We tested all combinations of WENO and Poisson orders and determined that WENO5

with Poisson2 is the best combination of algorithms to yield full second order accuracy.

The convergence results for WENO5-Poisson2 are given in Table 2.3. Furthermore, we

found that using Poisson1 yielded 1.6-order convergence with significantly larger errors.

See Table 2.4 for a characteristic example with WENO5-Poisson1 and bilinear velocity

extension. Similar results have been obtained for simulations including necrotic effects (see

Section 2.6.1).

2.5.2 Convergence of the Full Method for Complex Morphology and

Comparison to Boundary Integral Results

Consider the problem (2.7)-(2.9) with A = 0.5, G = 20 and N = 0 (i.e. no necrosis).

We solve with ∆x = ∆y = 0.08, η = 0.1, WENO5, and Poisson2. The initial shape is given

by

Σ(s) = (2 + .2 cos(2s), 2 + .2 sin(2s)), 0 ≤ s ≤ 2π. (2.53)

There is no analytical solution for this case. Thus, to test convergence, we compare the

solutions at different resolutions. This case has been investigated previously using boundary
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Figure 2.6: Comparison of computed solutions: We compare the WENO5-Poisson2
(dashed curves) and boundary integral (solid curves) solutions from t=0.0 to t=2.50 in
0.5 increments.
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Figure 2.7: Comparison of computed solutions: We continue our WENO5-Poisson2 solution
to additional times which the boundary integral method cannot compute. Note that the
spatial scale is different than in Figure 2.6.

integral methods in Cristini et al. (2003); we also compare our results to these.

In Table 2.5, the differences between the solutions at different mesh refinements in

maximum norm and the associated orders of convergence are shown at various times. The

differences are defined by

`band
∞ (∆x1, ∆x2) = max

{
|ϕ∆x1(xi, yj , t)− ϕ∆x2(xi, yj , t)| : (xi, yj) ∈ B

}
, (2.54)

where the band B consists of the set of common mesh points within a distance of 0.5 of the

Table 2.6: Full Convergence Results for necrotic, complex morphology.
time `band∞ (∆x, 2∆x) `band∞

(
∆x, 1

2∆x
)

order
0.05 0.004290 0.001153 1.89
0.10 0.006469 0.001612 2.00
0.15 0.006852 0.001820 1.91
0.20 0.009999 0.002754 1.86
0.25 0.01360 0.003528 1.95
0.30 0.01804 0.004908 1.88

52



interface. The order of convergence is given by

convergence rate =
1

log 2
log

(
`band∞ (∆x, 2∆x)
`band∞

(
∆x, 1

2∆x
)
)

. (2.55)

The results in Table 2.5 clearly demonstrate that the overall solution is second order accu-

rate.

Next, we compare our simulation to the boundary integral result from Cristini et al.

(2003). Cristini et al. (2003) showed that this tumor undergoes a morphological instability,

and the evolving interface was accurately simulated using a spectrally-accurate boundary

integral method.

In Figure 2.6, we compare our results (dashed curves) to the spectrally-accurate results

(solid curve) from Cristini et al. (2003). This is an especially difficult test due to the

morphological instability which makes the solution very sensitive to numerical errors. There

is excellent agreement between the results. Shortly after the final time (t = 2.531) shown

in Figure 2.6, the boundary integral method breaks down as the tumor boundary self-

intersects, resulting in the capture of healthy tissue within the tumor domain.

In Figure 2.7, we continue our solution. As the tumor grows, healthy tissue is captured

by the tumor multiple times as morphological stability occurs. It is well-known that healthy

tissue often mixes with tumor tissue, especially near the tumor/healthy tissue boundary

(Maher et al., 2001). The collapse of tumors encapsulating healthy tissue has also been

observed (S. Ramakrishnan, private communication). In our simple model, these features

are reflected through the multiple tumor boundary reconnections.

2.5.3 Impact of Speed Filtering

We now demonstrate the necessity of speed filtering in maintaining a first order CFL

time step restriction. We solve the same problem as in Section 2.5.2 with ∆x = ∆y = 0.08,

η = 0.1, WENO5, Poisson2, and no speed filtering.

Without speed filtering, significant perturbations in the interface appear as early as t = 0.02,

leading to large oscillations in the curvature because the coefficient of the curvature is order

one in comparison to the other microphysical parameters. The large variations in curvature

disturb the pressure solution and its gradient near the interface, which creates further feed-

back to disturb the interface. In Figure 2.8, we see that these disturbances quickly grow
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Figure 2.8: Effect of Filtering on Overall Stability and Accuracy: Initially small perturba-
tions have grown to grossly distort the shape of the interface by t = 0.02. The dashed curve
shows the solution at the same time with speed filtering.

to destabilize the entire simulation (solid curve). We show the same calculation with speed

filtering for comparison (dashed curve).

2.5.4 Impact of the New Velocity Extension Technique

We tested the impact of the new bilinear velocity extension technique by solving the

same problem as in Section 2.5.2 with either the bilinear velocity extension or the traditional

PDE-based velocity extension, where one solves the PDE

Ṽτ + sign(ϕ) n · ∇Ṽ = 0 (2.56)

to steady state. Here, Ṽ (τ = 0) equals the unextended velocity (Zhao et al., 1996).

The results, shown in Figure 2.9 at t = 2.50, demonstrate that the bilinear velocity

extension (dashed) gives results superior to those obtained with the PDE-based velocity ex-

tension (dash-dotted) when compared to the boundary integral results (solid) from Cristini

et al. (2003).
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Figure 2.9: Comparison of the velocity extension techniques at t = 2.50 with Poisson2 and
WENO5. The boundary integral solution is given by the solid curve.

2.5.5 Impact of the Curvature and Normal Vector Modifications

To study the impact of our modifications to the curvature and normal vector, we solved

the system (2.7)-(2.9) again with the same setup as in Section 2.5.2. In Figure 2.10, we show

the position of the interface at t = 2.5, 2.75, and 2.77 with both the standard (top) and

modified (bottom) curvature and normal vector algorithms. Because our speed extension

requires normal vectors that point away from the interface, we used the standard PDE-

based extension (see Zhao et al. (1996)) for simulations with the standard curvature and

normal vector routines. In the results that use the standard discretizations, an artificial

“repulsive” effect can be seen that prevents approaching interfaces from merging until much

later times when numerical error finally causes them to merge. In Figure 2.11, we plot the

contours of the curvatures at t = 2.5 around the merging interfaces for both algorithms. As

we can see, the modified curvature (right) is smooth, whereas the standard curvature (left)

is oscillatory.
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Figure 2.10: Effect of the Curvature and Normal Vector Modifications on a Tumor Growth
Simulation: The plots show the solution to the problem in Section 2.5.3 at t = 2.5, t = 2.75,
and t = 2.77. The top row shows the calculation using standard centered differences for κ
and n; the bottom row shows the same calculation with our modified algorithms.

2.6 Numerical Examples with Necrotic Effects

2.6.1 An Example with Symmetric Initial Data

To demonstrate the robustness of our technique, we next solve the system with necrosis.

The initial interface is given by (2.53) as before. Here, A = 0.0 (i.e. no apoptosis), G = 20.0,

N = 0.35, and GN = 1.0. Again, we use ∆x = ∆y = 0.08, σ = 3∆x = 0.24, and η = 0.1.

We use Poisson2 and WENO5 with our bilinear velocity extension method.

We begin by demonstrating the convergence of the overall numerical solution. As

in Section 2.5.2, we determine the order by considering ratios of the differences in the

numerical solutions at three spatial resolutions (2∆x,∆x, and 1
2∆x). The results, given in

Table 2.6, clearly demonstrate the second order accuracy of the overall method, indicating

that necrosis (and the associated discontinuities in the second derivatives of the pressure)

does not affect the result.

In Figure 2.12, the morphologies of the growing tumor are shown. In this figure, we see
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Figure 2.11: Effect of the Curvature and Normal Vector Modifications on a Tumor Growth
Simulation: The left plot shows the curvature at t = 2.5 using the standard algorithms (The
black regions are where κ ∼ −1e3); the right plot shows the curvature using our modified
algorithms at the same time.

that as the tumor grows, healthy tissue is captured as morphological instability occurs, just

as in the non-necrotic case. (See Figures 2.6-2.7.) This capture of healthy tissue is repeated,

leading to a complex, lattice-like structure. A necrotic core (indicated as a black region)

first develops in the center of the tumor, splits, and also changes morphology multiple times.

In our implementation, c = 1 on the boundary of the captured regions. This mimics the

vascularization of the tumor from a third spatial dimension, thereby providing an source

of nutrient internal to the tumor. In addition, the velocity along the boundaries of the

captured regions is determined from Darcy’s law, where the pressure gradient is taken from

the tumor side of the interface. This allows the captured regions to grow or shrink depending

upon the local tumor pressure gradient. For example, if the normal velocity is negative,

this mimics the pulling of healthy tissue from the third spatial dimension into the tumor

interior. This expansion could also be interpreted as mimicking the compressibility of the

healthy tissue. (In the future, we will modify these internal boundary conditions to be more

realistic and allow nutrient to diffuse into the captured healthy tissue instead, and we will

and prescribe limits on the volume change of the captured regions.)

Observe in Figure 2.12 that the necrotic core is roughly equidistant to the tumor/healthy

tissue interfaces; the distance is the (diffusion) length that the nutrient molecules diffuse

before they are consumed by cells. Beyond this diffusion distance, the levels of nutrient are
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Figure 2.12: A simulation including necrotic effects. The necrotic regions are shown in
black.

too low for cells to be viable.

Note that it would be very difficult to perform such a simulation with the boundary

integral techniques used by Cristini et al. (2003) due to the frequent morphological changes
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in both the tumor boundary and the necrotic core.

2.6.2 An Example with Asymmetric Initial Data

We give one final example with necrotic effects. We consider an asymmetric initial

interface. We again solve (2.7)-(2.9) with the initial interface as given in Figure 2.13. Here,

A = 0.5, G = 20.0, N = 0.5, and GN = 1.0. As before, we use ∆x = ∆y = 0.08,

σ = 3∆x = 0.24, and η = 0.1. We use Poisson2 and WENO5 with the bilinear velocity

extension. We plot our solution in 1.00 time-unit increments in Figure 2.13. An evolution

analogous to that seen in Figures 2.6-2.7 and Figure 2.12 is observed. Because the necrotic

parameter is larger in this simulation, the lattice-like structure observed in Figures 2.7 and

2.12 is more pronounced. Notice that despite the initial asymmetry, the lattice structure

attains a level of regularity in its pattern. In addition, growth occurs through a “bump-by-

bump” mechanism, where the tumor expands by the growth of small bumps that invade the

neighboring region. This growth mechanism has been recently observed by Frieboes et al.

(2006b) in experiments on tumor spheroids. See Figure 2.14.

2.7 Conclusions and Future Work

In this paper, we developed a second order accurate ghost fluid/level set algorithm

for the evolution of interfaces whose normal velocity is given by the normal derivatives of

solutions to interior Poisson equations with curvature-dependent boundary conditions. The

algorithm is capable of describing complex morphologies including pinchoff and merger of

interfaces. In particular, we developed a new Poisson solver capable of capturing geometric

boundary conditions on a complicated interface. We developed geometry-aware discretiza-

tions of the normal vectors and curvature that automatically detect and cope with level set

irregularity, particularly during morphological changes. We also developed new gradient

and velocity extension techniques that take full advantage of the geometric information

embedded in the level set function to obtain greater accuracy and faster computational

speed than techniques currently in use. To maintain stability, we applied Gaussian filter

techniques often used in image processing to smooth the extended velocity while preserving

the overall accuracy.

We validated the algorithm by simulating a model for tumor growth and comparing the

numerical results to exact solutions and to spectrally accurate boundary integral results.
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Figure 2.13: A simulation including necrotic effects with asymmetric initial data. The
necrotic regions are shown in black.

We provided numerical evidence that our algorithm (i.e. WENO5 for the level set equation,
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Figure 2.14: In vitro glioblastoma from Frieboes et al. (2006b) growing by the “bump-by-
bump” mechanism.

Poisson2 for the interior Poisson equations, linear interpolation to determine the interface

position, cubic interpolation for the curvature at the interface, bilinear velocity extension

off the interface and Gaussian filtering for the normal velocity) indeed achieves full second

order accuracy, even when the coefficient of the curvature is order one (with respect to the

other microphysical parameters). This is the first such demonstration we are aware of in the

context of a fully-coupled, nonlinear moving boundary problem with geometric boundary

conditions (curvature).

We also went beyond the morphologies that can be described by the boundary integral

method and presented accurate simulations of complex, evolving tumor morphologies that

demonstrate the repeated encapsulation of healthy tissue in the primary tumor domain– an

effect seen in the growth of real tumors.

In future work, we plan to continue developing and simplifying our new normal vector,

curvature, and gradient extension routines. In addition, we will also develop implicit time

integration schemes as an alternative means to remove the stiffness. We will apply and

enhance the numerical techniques we have developed to study the biophysics of tumor

growth. In a future work, we will consider more realistic microphysical parameters (i.e. A,

G and GN ) by allowing spatial and temporal variability in order to study the morphological

response of the tumors to chemotherapy, tissue inhomogeneity, and genetic mutations with

the basic techniques developed here (Macklin and Lowengrub, 2007).
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2.9 Extrapolations for the Poisson Solver

In Section 2.4.1, if Σ intersected [xi−1, xi+1], we discretized uxx at xi by replacing

ui+1 (or ui−1) by an extrapolated value ûi+1 (or ûi−1). For completeness, we give the

extrapolations for these cases here.

If xi < xΣ ≤ xi+1, then we extrapolate from interior and boundary data to replace

ûi+1 in the discretization of uxx at xi. Some possible discretizations include:

1. Cubic Extrapolation: If {xi−3, xi−2, xi−1} ⊂ Ω as described in (2.15), then we

extrapolate ûi+1 from ui−3, ui−2, ui−1, and uΣ, where

uΣ = u(xΣ) = g(xΣ) = gΣ. (2.57)

2. Quadratic Extrapolation: If {xi−2, xi−1} ⊂ Ω, then we define uΣ = gΣ as before,

and we extrapolate ûi+1 from ui−2, ui−1, and uΣ.

3. Linear Extrapolation: If xi−1 ∈ Ω, then we define uΣ = gΣ as before, and we define

a linear extrapolation via

ûi+1 = (1− θ)(ui − ui−1) + gΣ. (2.58)

If xi−1 ≤ xΣ < xi, then we extrapolate from interior and boundary data to replace

ûi−1 in the discretization of uxx at xi. Some possible discretizations include:
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1. Cubic Extrapolation: If {xi+3, xi+2, xi+1} ⊂ Ω, then we use cubic extrapolation

from ui+3, ui+2, ui+1, and uΣ, where

uΣ = u(xΣ) = g(xΣ) = gΣ. (2.59)

2. Quadratic Extrapolation: If {xi+2, xi+1} ⊂ Ω, then we define uΣ = gΣ as before,

and we extrapolate ûi−1 from uΣ, ui+1, and ui+2.

3. Linear Extrapolation: If xi+1 ∈ Ω, then we define uΣ = gΣ as before, and our linear

extrapolation of ûi−1 is

ûi−1 = gΣ − θ(ui+1 − ui). (2.60)
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Chapter 3

Improved Numerical Techniques

with Application to the Tumor

Growth Model

Note:

This chapter is based upon Macklin and Lowengrub (2006), which can be accessed at

http://dx.doi.org/10.1016/j.jcp.2005.11.016.

Chapter Abstract:
An advantage of using level set methods for moving boundary problems is that ge-
ometric quantities such as curvature can be readily calculated from the level set
function. However, in topologically challenging cases (e.g., when two interfaces are
in close contact), level set functions develop singularities that yield inaccurate cur-
vatures when using traditional discretizations. In this note, we give an improved
discretization of curvature for use near level set singularities. Where level set irreg-
ularities are detected, we use a local polynomial approximation of the interface to
construct the level set function on a local subgrid, where we can accurately calcu-
late the curvature using the standard 9-point discretization. We demonstrate that
this new algorithm is capable of calculating the curvature accurately in a variety of
situations where the traditional algorithm fails and provide numerical evidence that
the method is second-order accurate. Examples are drawn from modified Hele-Shaw
flows and models of solid tumor growth.
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3.1 Introduction

Many important physical problems involve the motion of free boundaries or interfaces

with velocities dependent upon curvature. For instance, in Hele-Shaw multiphase flows,

tumor growth, and crystal growth, the motion of interfaces depends nonlocally upon the

derivatives of curvature. Therefore, the stable and accurate computation of curvature is

paramount when simulating such systems. This is particularly important in regions where

interfaces are in near contact.

Level set methods have been used with good success to implicitly track moving in-

terfaces and automatically detect topology changes in these problems (Osher and Fedkiw,

2001, 2002; Osher and Sethian, 1988; Sethian, 1999; Sethian and Smereka, 2003). However,

level set functions develop discontinuities in their derivatives near regions of topological

change, making the curvature discretization problematic. In Macklin (2003) and Macklin

and Lowengrub (2005), it was demonstrated that if the curvature is computed without re-

gard for the local geometry by using standard centered difference algorithms as proposed

by Osher and Fedkiw (2002), Osher and Fedkiw (2001), Osher and Sethian (1988), Sethian

(1999), and Sethian and Smereka (2003), then the curvature becomes oscillatory and in-

accurate for interfaces in near contact. This may lead to sudden spikes in the curvature

error. Refining the mesh near topology changes may delay the onset of these problems

but cannot eliminate them. For example, we show a case in which mesh refinement delays

the formation of spikes but actually increases the spike magnitude. In our example, this

can lead to the blow-up of the solution when using a traditional curvature discretization.

Furthermore, due to computational cost, mesh refinement cannot be continued indefinitely

as the distance between interfaces approaches zero.

In Macklin (2003) and Macklin and Lowengrub (2005), a complicated curvature dis-

cretization was given that addressed the accurate approximation of curvature in complex

2D geometries in the context of a nonlinear model of tumor growth. In this paper, we

introduce a simpler and more robust geometry-aware curvature discretization that can be

extended to 3 dimensions. We calculate the curvature using standard level set methods

when the level set function is sufficiently smooth. Otherwise, our method works by first

constructing a properly-oriented (least squares, quadratic) polynomial approximation of the

interface through a point. With this curve, we create a local level set function with which

to compute the curvature by a standard discretization on a local subgrid.
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In our work, we have found that using a local level set function is more robust in cal-

culating the curvature than directly differentiating an interpolating spline (Macklin, 2003;

Macklin and Lowengrub, 2005). Alternative methods of representing the curve (e.g., B-

splines; see de Boor (1978), Li et al. (2005), and Segall and Sipics (2004)) can be used

together with our method, but we find that quadratic least squares polynomial approxima-

tions are easy to implement and sufficient for second-order accuracy.

Our method calculates the curvature accurately in a variety of difficult topological sit-

uations (e.g., merging interfaces, drop fragmentation), as we demonstrate in examples of

modified Hele-Shaw multiphase flow and in vivo tumor growth. In the Hele-Shaw example,

we present numerical evidence of second-order convergence. Furthermore, we also demon-

strate that in this example, the traditional curvature discretization fails in a way that is

worsened by decreasing the mesh size. Our method is generally applicable to any level set

model involving morphological changes or interfaces in near contact, e.g., multiphase flows

(e.g., Sethian and Smereka (2003)), dendritic crystal growth (e.g., Gibou et al. (2003)), and

image processing (e.g., Osher and Fedkiw (2002) and Sethian (1999)).

3.2 Overview

Traditional level set methods (e.g., Osher and Fedkiw (2002), Osher and Fedkiw (2001),

Osher and Sethian (1988), Sethian (1999), and Sethian and Smereka (2003)) compute cur-

vature as

κ = ∇ ·
( ∇ϕ

|∇ϕ|
)

=
ϕxxϕ2

y − 2ϕxϕyϕxy + ϕyyϕ
2
x(

ϕ2
x + ϕ2

y

)3/2
, (3.1)

where ϕ is an approximation of the signed distance function to the interface Γ. On a

Cartesian grid, this divergence is generally calculated at node points by using a 9-point

stencil with centered differences for all the partial derivatives.

Suppose we have a level set function ϕ defined on a Cartesian grid with mesh points

given by X × Y = {xi}M
i=1 × {yj}N

j=1 and we require the curvature κ(x, y) at an interior

point (x, y) ∈ [xi, xi+1) × [yj , yj+1). If the level set function is sufficiently smooth to com-

pute the curvature κ(xk, y`) at each mesh point (xk, y`) ∈ {xk}i+2
k=i−1 × {y`}j+2

`=j−1, then

we can accurately compute κ(x, y) by calculating the curvature at these 16 mesh points

(with the 9-point stencil) and using bicubic interpolation1. If the level set function is only
1In our testing, this gives a second-order accurate curvature (Macklin, 2003; Macklin and Lowengrub,

2005)
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sufficiently smooth to compute the curvature κ(xk, y`) at each of the four mesh points

(xk, y`) ∈ {xi, xi+1} × {yj , yj+1}, then we proceed with bilinear interpolation instead. It

often occurs that the level set function is insufficiently smooth to allow even a bilinear

interpolation. (See Section 3.3 for a measure of smoothness.) When two interfaces are in

close contact (generally 5-7 nodes apart or less), the derivatives of ϕ become inaccurate and

develop discontinuities in the region between the interfaces. Our method provides a means

to deal with this situation accurately.

We first detect regions where the traditional curvature discretization fails. In these

regions, we find a least squares quadratic, properly-oriented curve γ(s) approximating the

interface Γ near the point (x, y) where we desire the curvature. We have found that directly

differentiating γ to obtain the curvature is not robust, as γ is sensitive to errors in the

parameterization. Instead, we construct a local level set function ϕ̂ about (x, y) and use

the standard 9-point stencil on a locally refined subgrid to discretize the curvature.

3.3 Detecting regions where the traditional curvature fails

In Macklin (2003) and Macklin and Lowengrub (2005), we found that if we defined a

level set quality function by

Q(x, y) = |1− |∇ϕ|| (3.2)

and set a threshold η, then (x, y) is near a singularity of the level set function ϕ whenever

Q(x, y) ≥ η; we compute ∇ϕ using centered finite differences. In our testing, we found that

using η = 0.004 reliably identified such regions without yielding false positives.

Suppose we wish to calculate the curvature at (xi, yj) using the standard 9-point dis-

cretization. If Q(x, y) ≥ η at any (x, y) ∈ {xk}i+1
k=i−1×{x`}j+1

`=j−1, then the level set function

is not smooth enough to accurately discretize the curvature at (xi, yj), and we use our

geometry-aware algorithm instead.

3.4 Approximating the interface with proper orientation

Let (x, y) be contained in the mesh square [xi, xi+1)× [yj , yj+1), with ϕ(x, y) = 0. We

seek to construct an accurate approximation γ(s) = (x(s), y(s)), where s is arclength, of the

interface Γ near (x, y) with proper orientation. Let x3 = (x3, y3) = (x, y), and let s3 = 0

such that γ(s3 = 0) = x3.
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Figure 3.1: Finding points on Γ near x3.
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Figure 3.2: Determining the orientation of (x2,x3,x4): Notice that the z-component of
(y − x3)× (x4 − x3) is negative, so y is on the left side of the curve in this orientation.
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We choose points x2 = (x2, y2) and x4 = (x4, y4) where the interface Γ intersects the

mesh immediately surrounding x3. To improve the stability of the approximating curve we

seek to construct, we choose these points to be at least 1
10∆x away from x3. Similarly, we

choose a point x1 = (x1, y1) where the mesh surrounding x2 intersects Γ and is at least
1
10∆x from x2, and x5 = (x5, y5) is similarly chosen to be close to x4. See Figure 3.1.

We choose the ordering (x1,x2,x3,x4,x5) such that when traversing the curve in the

direction of increasing arclength s, the region where ϕ < 0 is on the left side of the curve.

The orientation of the curve can readily be determined by examining the cross product of

x4 − x3 and y − x3, where y is a point off the curve. See Figure 3.2.

We choose arclengths s1, s2, s4, and s5 such that γ(si) = xi, for 1 ≤ i ≤ 5. We

then approximate these arclengths by using the linear distances between the points. That

is, moving backward along the curve from x3 = γ(s3), s3 = 0, and s2 = − |x3 − x2|,
s1 = s2 − |x2 − x1|; moving forward, s4 = |x4 − x3| and s5 = s4 + |x5 − x4|.

Finally, let x(s) and y(s) be the least squares quadratic curves fitted to {(si, xi)}5
i=1 and

{(si, yi)}5
i=1, respectively. We reset the constant coefficients such that γ(0) = x3 = (x, y).

Notice that because γ(s) is only used to construct the level set function on a local subgrid, it

does not affect the position of the actual contour of the original level set function. Although

we do not show it here, the resulting curve approximates Γ very well; this is reflected in our

numerical tests in later sections.

3.5 Constructing a new local level set and computing the

curvature

Lastly, we construct a local level set function near x3 = (x, y). For a fixed δ > 0, let

X̂ = {x− δ, x, x + δ} and Ŷ = {y − δ, y, y + δ}, so that X̂ × Ŷ is a 3 × 3 grid centered at

x3. See Figure 3.3. Let ϕ̂ be the local level set function on X̂ × Ŷ . We can choose any

desired mesh size δ ≤ ∆x and δ ≤ ∆y.

For each point x̂ = (x̂i, ŷj) ∈ X̂ × Ŷ , we set ϕ̂i,j equal to the signed distance between

x̂ and γ. (The sign is determined based upon whether x̂ is on the left or right side of the

curve.) The end result is a local construction of ϕ on a refined subgrid that avoids level set

singularities. We compute the curvature κ(x, y) using the standard centered differences for

ϕ̂x, ϕ̂xx, ϕ̂xy, ϕ̂yy, and ϕ̂y on the subgrid X̂ × Ŷ .
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Figure 3.3: The local subgrid near x3, with δ = 1
8∆x. In our tests, we used δ = 1

1000∆x.

We tested with δ = ∆x, 1
10∆x, 1

100∆x, and 1
1000∆x. In general, we found that all

these values worked equally well when using a quadratic γ(s). This is because the essential

feature of our technique is that it removes the nearby second interface and locally rebuilds

the level set function accordingly. However, smaller values tended to give more accurate

results when two interfaces were in extremely close contact (less than one mesh point apart).

In our remaining work, we chose δ = 1
1000∆x.

3.6 Numerical Examples

3.6.1 Two Drops Merging under Modified Hele-Shaw Flow

Let Γ be an interface describing the boundary of two circular drops of radius 1 centered

at

(2.5 cos θ, 2.5 sin θ) and (−2.5 cos θ,−2.5 sin θ) , (3.3)

respectively, where θ ∈ [0, 2π) is fixed. Let ϕ be a level set function for Γ, and let Γ evolve

with normal velocity

V = 1− n · [∇p] if ϕ(x) = 0, (3.4)
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Figure 3.4: Comparison of methods for merging drops under modified Hele-Shaw flow at
medium resolution. Left: Traditional curvature discretization. Right: Geometry-aware
curvature discretization. Times shown: t = 0.0, 0.75, 1.5, 2.25.
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Figure 3.5: Maximum error in curvature before merging under modified Hele-Shaw flow.
Left: Traditional curvature discretization. Right: Geometry-aware curvature discretization.
Dotted (∆x = 0.10), dashed (∆x = 0.05), solid (∆x = 0.025).

where [∇p] is the jump in the pressure gradient from the inside to the outside of the drops.

The pressure p solves

∇2p = 0 if ϕ(x) < 0 (3.5)
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Figure 3.6: Order of convergence for the geometry-aware curvature for the modified Hele-
Shaw problem.

[p] = κ if ϕ(x) = 0 (3.6)

p = 0 if ϕ(x) > 0, (3.7)

where (3.6) is the Laplace-Young boundary condition, and the surface tension (the coefficient

of the curvature) is nondimensionalized to 1.

The level set function ϕ is updated via

ϕt + Vext |∇ϕ| = 0, (3.8)

where Vext is an extension of V off of Γ.

Under these equations, both circles expand outward at a constant speed of 1 since

p ≡ 1
1+t inside the drops and p ≡ 0 outside the drops. At t = 1.5, the drops merge and thus

become noncircular. Consequently, at this time the curvature is no longer constant along

the interface and instead takes large values near the intersection. The pressure p inside the

drops is then no longer constant, steep pressure gradients emerge, and the Hele-Shaw-like

term of the velocity dominates near the intersection of the circles.

To study the convergence behavior of our curvature technique, we solved this example

with θ = 13 ◦ on a computational domain of [−6, 6] × [−6, 6] with ∆x = ∆y = 0.10 (low

resolution), ∆x = ∆y = 0.05 (medium resolution), and ∆x = ∆y = 0.025 (high resolution)
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using the level set/ghost fluid method as described in Macklin and Lowengrub (2005). In

Figure 3.4, we show the medium-resolution results (∆x = 0.05), where the interfaces are

plotted every 0.75 time units from t = 0 to t = 2.25, and the arrows indicate the direction

of growth. In the left plot, we show the results when using the traditional 9-point curvature

discretization. The singular curvature between the merging interfaces creates steep and

noisy false pressure gradients that prevent the merger of the drops. This behavior of the

traditional algorithm is also seen in the low-resolution study (∆x = 0.10), and at high

resolution (∆x = 0.025), the traditional curvature algorithm becomes so inaccurate that

the simulation is unable to continue past t = 1.486. This is a non-trivial example where the

traditional curvature discretization was inaccurate and led to incorrect simulation behavior,

and decreasing ∆x exacerbated the problem.

On the right side of Figure 3.4, we show the same simulation using our geometry-aware

curvature discretization at medium resolution. (The high-resolution results are indistin-

guishable to graphical resolution.) Level set singularities between the merging interfaces

are first detected at t = 1.33, and the discretization adapts accordingly. The drops merge

at approximately t = 1.48, very close to the exact time of t = 1.50. Immediately after the

merger, sharp cusps form in the interface that are smoothed out due to surface tension. This

demonstrates that our geometry-aware curvature routine is robust and accurate even in situ-

ations involving interfaces with high curvature. Our curvature algorithm also performs well

at low and high resolutions: the drops merge at t = 1.47 for the low-resolution study and

at t = 1.49 for the high-resolution study, and the drops coalesce in a Hele-Shaw-dominated

manner thereafter.

In Figure 3.5, we examine the maximum curvature error for the two curvature dis-

cretizations. In the left plot, we show the maximum curvature error for the traditional

curvature discretization. At low resolution (dotted curve), the error for the traditional dis-

cretization has a spike at t = 1.32. Afterwards, the interface flattens out in the near-contact

regions, the drops fail to merge, and the simulation tends to the wrong solution. Because

the drops flatten rather than merge, the computed curvature is bounded away from the

correct value; consequently, the error curve levels off after this initial spike. At medium

resolution (dashed curve), the occurrence of this error spike is delayed until t = 1.39, but

the magnitude of the spike increases; after the spike, the medium resolution study behaves

similarly to the low-resolution study. At high resolution (solid curve), the appearance of the

error spike is further delayed until t = 1.486, but its magnitude grows to ∼107. Refining the
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computational mesh delays the occurrence but exacerbates the magnitude of the problems

inherent in the traditional curvature discretization; at high resolution, the error spike is so

severe that the simulation is unable to continue.

In the right plot in Figure 3.5, we show the maximum curvature error for our geometry-

aware discretization. The dotted curve gives the error at low resolution, the dashed curve

the medium-resolution error, and the solid curve corresponds to high resolution. Overall,

each mesh refinement improves the accuracy of our geometry-aware curvature discretization,

and our geometry-aware method never experiences the large error spikes that characterize

the traditional discretization. In the last several time steps, the interfaces are in very close

contact (under two mesh lengths), making the conditions for accurately calculating the

curvature very difficult. Even for these times, mesh refinement improves the accuracy.

In Figure 3.6, we show the order of convergence of our geometry-aware discretization:

log
(

max error∆x=0.025
max error∆x=0.050

)

log
(

0.025
0.050

) . (3.9)

Note that we obtain second-order convergence or better for almost all times. The medium-

resolution study first detects level set irregularity at t = 1.33, and the high-resolution study

detects irregularity starting at t = 1.44; after our algorithm detects level set irregularity,

it begins to use our geometry-aware discretization. Thus, between t = 1.33 and t = 1.43,

the medium-resolution study uses the geometry-aware discretization between the merging

interfaces while the high-resolution study continues to use the traditional 9-point stencil. In

this time interval, the interfaces approach one another, the traditional curvature discretiza-

tion loses accuracy for the high-resolution study, and the order of convergence steadily falls.

After t = 1.43, the high-resolution simulation begins to use our geometry-aware discretiza-

tion, and the order of convergence is restored to second-order or better until t = 1.48, at

which time the drops begin to merge.

In the next section, we present examples that demonstrate the behavior of our adaptive

curvature algorithm in the context of solid tumor growth. We shall see that the traditional

curvature discretization again becomes inaccurate, leading to incorrect predictions on the

behavior of the tumor growth models. Thus, the shortcomings of the traditional curvature

discretization negatively impact the scientific investigation of tumor growth.
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Figure 3.7: Comparison of methods for necrotic in vivo tumor growth. The left column
uses the traditional curvature discretization; the right column uses our new geometry-aware
discretization. Time increases from top to bottom in 0.2 increments from t = 0.0 to t = 0.6.
The dark regions indicate necrotic regions where the tumor cells are dying due to lack of
nutrient.

3.6.2 Necrotic In Vivo Tumor Growth

Let ϕ be a level set function whose zero level set denotes the boundary Γ of an avas-

cular tumor growing into a surrounding, non-cancerous tissue. This models the early stage
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of in vivo growth before angiogenesis occurs. Let R = max {dist(x, 0) : x ∈ Γ}, and let

DR = {x : |x| ≤ R + 1} be a region containing the tumor and the non-cancerous tissue

immediately surrounding the tumor where there is no blood vasculature. Outside DR, the

healthy tissue is assumed to have a pre-existing network of blood vessels.

Let c denote the nondimensionalized nutrient concentration within the tumor and the

surrounding tissue. Outside DR, the blood vasculature delivers sufficient nutrient that c is

constant. Within DR, the nutrient diffuses and is consumed as it enters the tumor interior.

Where the nutrient level drops below a threshold value N , the tumor cells become necrotic,

start to die, and are broken down by enzymes. The proliferating tumor cells generate an

internal (oncotic) pressure p that pushes the tumor boundary outward with normal velocity

V via Darcy’s law. The enzymatic breakdown of necrotic tumor tissue is modeled by a

local decrease in the pressure that slows growth. Cell-to-cell adhesive forces are modeled

by a curvature boundary condition on Γ. The non-cancerous tissue in DR is assumed to be

close enough to the tumor to be affected by the pressure changes within the tumor, and the

pressure is assumed to be constant outside of DR. Accordingly, the nutrient concentration

c satisfies

∇2c = c if ϕ(x) < 0 (3.10)

[c] = 0 if ϕ(x) = 0 (3.11)

D∇2c = 0 if ϕ(x) > 0 and x ∈ DR (3.12)

[c] = 0 if x ∈ ∂DR (3.13)

c = 1 if x /∈ DR, (3.14)

the oncotic pressure p is governed by

∇2p = G ·GN if ϕ(x) < 0 and c < N (3.15)

∇2p = −Gc if ϕ(x) < 0 and c ≥ N (3.16)

[p] = κ if ϕ(x) = 0 (3.17)

µ∇2p = 0 if ϕ(x) > 0 and x ∈ DR (3.18)

[p] = 0 if x ∈ ∂DR (3.19)

p = 0 if x /∈ DR, (3.20)

and the normal velocity of the tumor boundary is given by Darcy’s law:

V = −n · ∇p if ϕ(x) = 0. (3.21)
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Here, ∇p is computed on the interior side of the tumor, G is a parameter that relates to

the relative proliferation rate of the tumor cells, GN is a parameter that governs the rate

of tumor cell breakdown in necrotic regions, D is the nutrient diffusivity in healthy tissue,

and µ is the cellular mobility in healthy tissue. This tumor growth model is an extension

of current models given in Cristini et al. (2003), Macklin (2003), Macklin and Lowengrub

(2005), and Zheng et al. (2005) and will be further investigated in a future work (Macklin

and Lowengrub, 2007).

In Figure 3.7, we solve this system with a random initial shape, ∆x = ∆y = 0.08,

G = 20.0, GN = 1.0, and N = 0.35. In the left column, we solve using the traditional

curvature discretization, and in the right column, we use our new geometry-aware discretiza-

tion. Time increases from top to bottom in 0.2 increments from t = 0 to t = 0.6. In the

simulations, widespread fragmentation of the tumor occurs, and the remaining small tumor

nodules move away from one another. The fragmentation is due to the combined effects

of the diffusing nutrient concentration, selective proliferation in the high-nutrient regions

(the nutrient is highest on ∂DR), and the variable pressure outside the tumor. This will be

explored at length in a forthcoming paper (Macklin and Lowengrub, 2007).

Notice that significant tumor fragmentation occurs for both curvature discretizations,

but the discretizations yield significantly different results on the times of fragmentation; the

shape, size, and location of fragments; and whether or not the fragments contain necrotic

regions. This is important in the study of malignant tumors, where the fragmentation of

tumor masses may lead to the development of metastases. Furthermore, the location and

quantity of necrotic tumor cells has a great impact on the development of blood vessels in

tumors (angiogenesis) (Zheng et al., 2005), and so the failures of the traditional curvature

discretization may lead to erroneous predictions of the morphology and the subsequent

vascular development of a tumor.

3.7 Conclusions

We have developed an improved geometry-aware discretization of curvature for use

near level set singularities. In our method, we first detect regions where the traditional

curvature discretization fails. Then, we find a least squares, oriented quadratic polynomial

approximation of the interface centered at the point where we desire the curvature. A local

level set function is constructed, and a standard 9-point stencil is used on a local subgrid
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to discretize the curvature.

We have demonstrated that for complex geometries (e.g., interfaces in near contact),

the traditional curvature discretization produced results that were not improved by mesh

refinement, whereas our geometry-aware algorithm was second-order accurate and robust.

Examples were given for modified Hele-Shaw flow and in vitro tumor growth. In the tumor

growth example, it was demonstrated that an accurate and robust curvature discretiza-

tion is critical for the accurate modeling of the biophysical properties of evolving tumors.

Our method is generally applicable to any level set model involving morphological changes

or interfaces in near contact, e.g., multiphase flows, dendritic crystal growth, and image

processing.

Lastly, we note that the geometry-aware curvature discretization developed here can

be extended to three dimensions by finding an approximating surface

γ(s1, s2) = (x(s1, s2), y(s1, s2), z(s1, s2))

and constructing a 3× 3× 3 local level set function. We also note that this method could

be used to improve the accuracy of normal vector discretizations near level set singularities;

this is currently under study.
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Chapter 4

A Numerical Study of the Effect of

Microenvironment on Tumor

Growth

Note:

This chapter is based upon Macklin and Lowengrub (2007). To access the original paper,

please visit http://dx.doi.org/10.1016/j.jtbi.2006.12.004.

Chapter Abstract:
In this paper, we present and investigate a model for solid tumor growth that in-
corporates features of the tumor microenvironment. Using analysis and nonlinear
numerical simulations, we explore the effects of the interaction between the genetic
characteristics of the tumor and the tumor microenvironment on the resulting tu-
mor progression and morphology. We find that the range of morphological responses
can be placed in three categories that depend primarily upon the tumor microen-
vironment: tissue invasion via fragmentation due to a hypoxic microenvironment;
fingering, invasive growth into nutrient-rich, biomechanically unresponsive tissue;
and compact growth into nutrient-rich, biomechanically responsive tissue. We find
that the qualitative behavior of the tumor morphologies is similar across a broad
range of parameters that govern the tumor genetic characteristics. Our findings
demonstrate the importance of the impact of microenvironment on tumor growth
and morphology and have important implications for cancer therapy. In particular, if
a treatment impairs nutrient transport in the external tissue (e.g., by anti-angiogenic
therapy), increased tumor fragmentation may result, and therapy-induced changes
to the biomechanical properties of the tumor or the microenvironment (e.g., anti-
invasion therapy) may push the tumor in or out of the invasive fingering regime.
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4.1 Introduction

Cancer is a fundamental scientific and societal problem, and in the past few decades,

vast resources have been expended in an effort to understand the root causes of cancer, to

elucidate the intricacies of cancer progression, and to develop effective prevention and treat-

ment strategies. In this paper, we present and investigate a model for solid tumor growth

that incorporates features of the tumor microenvironment. Using analysis and nonlinear

numerical simulations, we explore the effects of the interaction between the genetic charac-

teristics of the tumor and the tumor microenvironment on the resulting tumor progression

and morphology. Implications for cancer therapies are discussed.

Cancer is marked by several increasingly aggressive stages of development. The first

stage, carcinogenesis, is believed to be characterized by a sequence of genetic mutations that

promote growth (i.e., acquisition of oncogenes), circumvent apoptosis (i.e., inactivation

or loss of tumor suppressor genes), or hinder DNA repair processes, thereby increasing

the probability of acquiring oncogenes or inactivating tumor suppressor genes. (e.g. see

Hanahan and Weinberg (2000) and Lehmann (2001).) In the second stage of development,

avascular growth occurs as the cancer cells proliferate and form an in situ cancer. The local

production of matrix-degrading enzymes and subsequent degradation of the extracellular

matrix (ECM) may also play a role in providing room for the tumor to expand into the

surrounding tissue. (See Hotary et al. (2003) and the discussion throughout Anderson

(2005).) Since the tumor lacks a vasculature, nutrients (e.g., glucose and oxygen) are

received only by diffusion through the surrounding tissue. As the tumor grows, less nutrient

reaches the center of the tumor. Interior cells become hypoxic, begin to die (necrose),

and are broken down by enzymes. As cell death in the tumor interior balances with cell

proliferation on the boundary, a spherical tumor may reach a diffusion-limited size, usually

on the order of 2-4 mm. However, if the tumor boundary acquires an irregular shape,

additional nutrient becomes available to the tumor interior due to the increased surface

area to volume ratio, and continued growth may result. Indeed, there are now a number

of in vitro studies in which complex growth morphologies have been observed. (e.g. see

Bredel-Geissler et al. (1992), Mueller-Kleiser (1997), Hedlund et al. (1999), Enmon Jr. et al.

(2001), and Frieboes et al. (2006b).)

The next stage of tumor growth, angiogenesis, is characterized by the development of

a tumor-induced neovasculature that grows from the main circulatory system toward the
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tumor in response to the imbalance of pro-angiogenic growth factors that are released by

hypoxic cells in the tumor (e.g., vascular endothelial cell growth factor, or VEGF) relative

to anti-angiogenic growth factors (e.g., angiostatin) present in the tumor microenvironment

(Carmellet and Jain, 2000). In the final stage of tumor progression, vascular growth, the

tumor is supplied with nutrients from the newly-developed, although typically inefficient

vasculature (Jain, 1990; Haroon et al., 1999; Hashizume et al., 2000). Additional muta-

tions and epigenetic events may occur that lead to increased cellular motility and greater

production of matrix degrading enzymes that degrade the ECM. This can lead to invasion,

where either individual or collections of cancerous cells protrude and/or separate from the

tumor and migrate through the surrounding tissue, or metastasis, where the invading tumor

cells (or cell collections) enter the blood vasculature and/or lymphatic system and travel to

distant locations.

The tumor microenvironment plays a crucial role in these processes. (e.g., see Höckel

et al. (1996), Enam et al. (1998), Schmeichel et al. (1998), Sansone et al. (2002), and Pen-

nacchietti et al. (2003).) For example, hypoxic microenvironments lead to the upregulation

of HIF-1 target genes in both tumor cells and endothelial cells, including those responsible

for the secretion of angiogenic growth factors and matrix degrading enzymes, metabolic

changes such as increased glycolysis, and decreased cell-cell and cell-matrix adhesion (Kaur

et al., 2005; Erler et al., 2006; Pouysségur et al., 2006). These conditions are associated

with increased tumor invasiveness (Kaur et al., 2005; Erler et al., 2006; Pouysségur et al.,

2006) and poor patient outcome (Höckel et al., 1996). However, the effects of the interaction

between intra- and extratumoral processes on tumor progression and morphology are not

well understood. Mathematical modeling has the potential to provide insight into these

interactions though systematic studies of fundamental constituent processes.

Over the past ten years, the interest in the mathematical modeling and numerical sim-

ulation of cancer has increased dramatically. (See the reviews by Adam (1996), Bellomo

et al. (2003), and Araujo and McElwain (2004a), Byrne et al. (2006), Sanga et al. (2006),

and Quaranta et al. (2005).) A variety of modeling strategies is now available, each of

which is well-suited to investigate one or more aspect of cancer. Cellular automata and

agent-based modeling, where individual cells are simulated and updated based upon a set

of biophysical rules, are particularly useful for studying carcinogenesis, natural selection,

genetic instability, and interactions of individual cells with each other and the microenviron-

ment. Because these methods are based on a series of rules for each cell, it is straightforward

81



to translate biological processes (e.g., complex mutation pathways) into model rules. On

the other hand, these models can be difficult to study analytically, and the computational

cost increases rapidly with the number of cells modeled. Because a 1 mm tumor spheroid

has over 500,000 cells, these methods can quickly become unwieldy when studying tumors of

any significant size. For some examples of cellular automata modeling, see Anderson (2005),

Alarcón et al. (2003), and Mallett and de Pillis (2006), and see Mansury et al. (2002) and

Abbott et al. (2006) for examples of agent-based modeling.

In larger-scale systems where the cancer cell population is on the order of 1,000,000 or

more, continuum methods provide a good modeling alternative. Early work (e.g. Greenspan

(1976), Byrne and Chaplain (1996b), Byrne and Chaplain (1996a)) used ordinary differen-

tial equations (ODEs) to model cancer as a homogeneous population, as well as partial

differential equation (PDE) models restricted to spherical geometries. Linear and weakly

nonlinear analyses have been performed to assess the stability of spherical tumors to asym-

metric perturbations (e.g., Chaplain et al. (2001), Byrne and Matthews (2002), Cristini

et al. (2003), and Li et al. (2006), and discussed in the reviews by Araujo and McElwain

(2004a) and Byrne et al. (2006)) as a means to characterize the degree of aggression. Vari-

ous interactions of the tumor with the microenvironment, such as stress-induced limitations

of tumor growth, have also been studied in this context (e.g., Jones et al. (2000), Ambrosi

and Mollica (2002, 2004), Roose et al. (2003), Araujo and McElwain (2004b, 2005), and

Ambrosi and Guana (2006)). Most of the previous modeling has considered single-phase

tumors. More recently, multiphase mixture models have been developed to provide a more

detailed account of tumor heterogeneity. (e.g., see the work by Ambrosi and Preziosi (2002),

Byrne and Preziosi (2003), and Chaplain et al. (2006).)

Very recently, nonlinear modeling has been performed to study the effects of shape

instabilities on avascular, angiogenic, and vascular solid tumor growth. Cristini, Lowengrub,

and Nie used boundary integral methods and performed the first fully nonlinear simulations

of a continuum model of tumor growth in the avascular and vascularized growth stages with

arbitrary boundaries (Cristini et al., 2003). This work investigated the nonlinear regime

of shape instabilities and predicted the encapsulation of external, non-cancerous tissue by

morphologically unstable tumors. Interestingly, shape instabilities were found to occur only

in the diffusion-dominated, avascular regime of growth. The effect of the extratumoral

microenvironment was not considered.

Zheng et al. (2005) extended this model to include angiogenesis and an extratumoral
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microenvironment by developing and coupling a new level set implementation with a hy-

brid continuous-discrete angiogenesis model originally developed by Anderson and Chaplain

(1998). Zheng et al. investigated the nonlinear coupling between growth and angiogenesis.

As in Cristini et al. (2003), it was found that low-nutrient (e.g. hypoxic) conditions may

lead to instability. Zheng et al. did not fully investigate the interaction between the growth

progression and the tumor microenvironment, but their work served as a building block for

recent studies of the effect of chemotherapy on tumor growth by Sinek et al. (2004) and for

studies of morphological instability and invasion by Cristini et al. (2005) and Frieboes et al.

(2006b). Hogea et al. (2006) have also begun investigating tumor growth and angiogenesis

using a level set method coupled with a continuous model of angiogenesis. In addition,

Frieboes et al. (2006a) and Wise et al. (2006) have recently developed a diffuse interface

implementation of solid tumor growth to study the evolution of multiple tumor cell species

during progression.

In Macklin (2003) and Macklin and Lowengrub (2005, 2006), we also considered a level

set-based extension of the tumor growth model that was previously investigated by Cristini

et al. (2003) (described above). In these works, we developed new, highly-accurate numer-

ical techniques to solve the resulting system of partial differential equations in a moving

domain. These numerical methods are more accurate than those used by Zheng et al. (2005)

and Hogea et al. (2006). Using these methods, we modeled tumor growth under a variety

of conditions and investigated the role of necrosis in destabilizing the tumor morphology.

We demonstrated that non-homogeneous nutrient diffusion inside the tumor leads to het-

erogeneous growth patterns that, when interacting with cell-cell adhesion, cause sustained

morphological instability during tumor growth, as well as the repeated encapsulation of

noncancerous tissue by the growing tumor.

In this paper, we extend the tumor growth models considered by Cristini, Lowengrub,

Nie, Macklin, Zheng, and others (for example, Cristini et al. (2003), Macklin and Lowen-

grub (2005), and Zheng et al. (2005), all of which reformulated several classical models

(Greenspan, 1976; McElwain and Morris, 1978; Adam, 1996; Byrne and Chaplain, 1996b,a;

Chaplain, 2000)) to include more detailed effects of the microenvironment by allowing vari-

ability in nutrient availability and the response to proliferation-induced mechanical pressure

(which models hydrostatic stress) in the tissue surrounding the tumor. In our model, the

region surrounding the tumor aggregates the effects of ECM and noncancerous cells, which

we characterize by two nondimensional parameters that govern the diffusional and biome-
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chanical properties of the tissue. Fluids are assumed to move freely through the interstitium

and ECM, and so such effects are currently neglected. The external nutrient and pressure

variations, in turn, affect the evolution of the tumor in our model. Due to the computational

cost of three-dimensional simulations, we shall focus our attention on two-dimensional tu-

mor growth, although the model we develop applies equally well in three dimensions. In

Cristini et al. (2003), it was found that the baseline model predicts similar morphological

behavior for two-dimensional and three-dimensional tumor growth. This has been borne out

by recent three-dimensional simulations by Li et al. (2006). We note that two-dimensional

tumor growth may be well-suited to studying cancers that spread over large areas but are

relatively thin, such as melanoma.

Using our model, we shall conduct a systematic investigation of the effect of the mi-

croenvironment on tumor growth over a broad range of biophysical parameters. In the

process, we shall characterize the behavior predicted by the model and discuss the implica-

tions for cancer treatment. We note that by matching the results to known morphologies,

one may infer the range of validity of the model and obtain estimates of parameter values;

we discuss this at the end of this paper. These simulations are difficult and require the

development of accurate numerical techniques, which we present in this paper.

We find that the range of morphological responses can be placed in three categories that

depend primarily upon the tumor microenvironment. In nutrient-poor microenvironments,

tumors tend to break into small fragments and invade the surrounding tissue, regardless

of the mechanical properties of the surrounding tissue. When placed in nutrient-rich tis-

sue, the tumor morphology depends upon the biomechanical characteristics of the tissue.

Tumors growing into mechanically unresponsive tissue develop buds that grow into long,

invasive fingers. Tumors growing into softer, mechanically responsive tissue develop buds

that do not grow, but rather connect with neighboring buds to capture external ECM. The

overall morphology remains compact, with a large central abscess containing encapsulated

ECM, fluid, and cellular debris similar to a necrotic core. We found that the qualitative

behavior of the tumor morphologies was similar across a broad range of parameters that

govern the tumor genetic characteristics. Our findings demonstrate the importance of the

impact of microenvironment on tumor growth and morphology, and this has implications

for cancer therapy: the impact of a therapy on the microenvironment may either positively

or negatively impact the outcome of the treatment. A treatment that impairs nutrient

delivery in the host tissue (e.g., using anti-angiogenic drugs) may increase tumor fragmen-
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tation, whereas a treatment that normalizies nutrient delivery may reduce or prevent tumor

fragmentation. Therapies that affect the biomechanical responsiveness of the tumor or sur-

rounding host tissue (e.g., anti-invasion therapy that alters cell-cell or cell-matrix adhesion)

may either cause or prevent invasive fingering.

Using our model, we also investigate the internal structure of the tumors, including the

volume fractions of the necrotic and viable portions of the tumor. We find that even during

growth, the internal structure tends to stabilize due to apparent local equilibration of the

tumors as characteristic feature sizes and shapes emerge. We also find that whereas the

tumor morphology depends primarily upon the microenvironment, the internal structure is

most strongly influenced by the genetic characteristics of the tumor, including resistence

to necrosis, the rate at which the necrotic core is degraded, and the apoptosis rate. These

results are not at all obvious from the examination of the model and underlying hypotheses

alone. By hypothesis, the microenvironment, tumor genetics, and tumor morphology are

all nonlinearly coupled. The tumor genetics determine biophysical properties like growth

rates, which, in turn, are mediated by microenvironmental factors such as available nutrient

supply. One would then expect that the tumor genetics have a greater impact on tumor

morphology, and indeed, Cristini et al. (2003) found that the tumor genetics completely de-

termine the morphological behavior when the microenvironment is not taken into account.

While the important role of the microenvironment is consistent with experiments in the

literature, the observed dominance of the microenvironment in determining the morphol-

ogy is intriguing. Likewise, the weak dependence of the internal tumor structure on the

microenvironment and morphology is difficult to predict a priori. The model can be ana-

lyzed to make this prediction for tumor spheroids, but such an analysis ignores variation in

tumor morphology and does not lead to obvious conclusions for the general case, where the

morphology (and presumably volume) of the necrotic core depends upon the morphology

of the tumor boundary.

We note that while our model captures the basic features of tumor growth, it does not

currently incorporate the effects of elastic and residual stress, ECM degradation, signaling

by promoters and inhibitors, angiogenesis, and competition between tumor subpopulations.

These effects represent model refinements that can readily be added to our current modeling

framework. We shall discuss our plans to address these and other refinements in the closing

remarks in Section 4.5.

The contents of this paper are as follows: in Section 4.2, we describe the tumor growth
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Figure 4.1: Diagram of the regions in and near a growing tumor: the tumor Ω is comprised
of viable (proliferating and quiescent) cells in ΩV and necrotic cells in ΩN . The noncancer-
ous tissue surrounding tissue surrounding the tumor, denoted by ΩH , is affected by the
growing tumor, and portions of ΩH may be encapsulated by the growing tumor. Lastly, the
noncancerous tissue ΩO is not affected by the growing tumor.

and microenvironment models, nondimensionalize the resulting systems, and present an

analysis of the internal structure of tumor spheroids that will be helpful in understanding

non-spherical growth. In Section 4.3 and Appendix 4.7, we give the important features of

our level set/ghost fluid method and extend our technique to solve the Poisson-like equa-

tions on the full domain. In Section 4.3.2, we present a convergence study to demonstrate

the accuracy of our technique. In Section 4.4, we present the results of a parameter study of

tumor growth in a variety of microenvironments, categorize the characteristic tumor mor-

phologies, investigate the causal link between microenvironment and tumor morphology,

and analyze the link between the internal tumor structure and the tumor genetic param-

eters. In Section 4.5 and throughout the text, we discuss the clinical implications of the

behavior predicted by our model. In Section 4.5, we also summarize our work, address

known deficiencies in the model, and discuss ongoing modeling refinements.
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4.2 Governing Equations

We study and extend a model for solid tumor growth that applies equally well in two

and three dimensions (Cristini et al., 2003; Macklin, 2003; Macklin and Lowengrub, 2005;

Zheng et al., 2005), which is a reformulation of several classical models (Greenspan, 1976;

McElwain and Morris, 1978; Adam, 1996; Byrne and Chaplain, 1996b,a; Chaplain, 2000).

We model an avascular tumor occupying a volume Ω(t) with boundary ∂Ω, which we denote

by Σ. The tumor is composed of a viable region ΩV where nutrient (e.g., oxygen and glucose)

levels are sufficient for tumor cell viability and a necrotic region ΩN where tumor cells die

due to low nutrient levels and are broken down by enzymes. Note that Ω = ΩV ∪ ΩN .

The growing tumor also interacts with the surrounding microenvironment in the host

tissue; we denote this region by ΩH . The region ΩH contains extracellular matrix (ECM)

and a mixture of noncancerous cells, fluid, and cellular debris. As observed in Cristini

et al. (2003), Macklin (2003), and Macklin and Lowengrub (2005), the growing tumor may

encapsulate regions of ΩH , and so these regions may lack living noncancerous cells. (See

Figure 4.1.) Hereafter, we shall refer to ΩH as noncancerous tissue, although our model

applies equally well to the case in which ΩH contains only ECM, fluid, and cellular debris.

4.2.1 Nutrient Transport

We describe the net effect of nutrients and growth-promoting and inhibiting factors

with a single nutrient c. In the viable region of the tumor ΩV , the nutrient diffuses and

is uptaken by proliferating cells. Letting D̃ = D̃(x, t) denote the nutrient diffusivity, and

defining λV to be the nutrient uptake rate by proliferating tumor cells, then the nutrient is

governed by the reaction-diffusion equation

∂c

∂t
= ∇ ·

(
D̃∇c

)
− λV c, x ∈ ΩV . (4.1)

Taking λV to be constant, note that the total nutrient uptake λV c decreases with c. This

models the fall in metabolic and mitotic behavior (i.e., quiescence) as the tumor cells become

hypoxic. In future work, we shall explicitly model the quiescent tumor cell population, as

these cells are particularly important when considering the efficacy of therapy (Konopleva

et al., 2002; Ravandi and Estrov, 2006).

In the necrotic region ΩN , there is little or no nutrient uptake, as there are few pro-

liferating cells. However, necrosing cells release their intracellular contents, which are both
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cytotoxic/growth-inhibiting (Freyer, 1988; Festjens et al., 2006) and oxygen-reactive (e.g.,

necrotic tissue rapidly reacts with reintroduced oxygen to form reactive oxygen species that

react with and damage biological molecules (Kloner and Jennings, 2001; Galaris et al.,

2006)). Recalling that the general nutrient c models the net effect of nutrients and growth-

promoting and inhibiting factors, we can model these effects with a nutrient decay rate λD.

Thus,
∂c

∂t
= ∇ ·

(
D̃∇c

)
− λDc, x ∈ ΩN . (4.2)

We assume that tumor cells uptake nutrient at a greater rate than noncancerous cells,

and so nutrient uptake is negligible in ΩH (Vaupel et al., 1989; Garber, 2004; Esteban and

Maxwell, 2005; Arvind et al., 2005). Furthermore, we assume that there is little cellular

debris in ΩH and thereby no nutrient decay in that region. Therefore,

∂c

∂t
= ∇ ·

(
D̃∇c

)
, x ∈ ΩH . (4.3)

Summarizing, the nutrient satisfies

∂c

∂t
= ∇ ·

(
D̃∇c

)
− λ(x, t)c, x ∈ Ω ∪ ΩH (4.4)

where

λ(x, t) =





0 x ∈ ΩH

λV x ∈ ΩV

λD x ∈ ΩN .

(4.5)

Because nutrient diffusion, uptake, and decay all occur much more quickly than tumor

growth, the quasi-steady assumption applies and ∂c/∂t ≈ 0.

The tumor cells become necrotic when the nutrient falls below a critical value cN for

cellular viability. Therefore, the viable and necrotic regions can be identified by the nutrient

concentration:

ΩV = {x ∈ Ω : c ≥ cN}
ΩN = {x ∈ Ω : c < cN} . (4.6)

By equation (4.6), the morphology and location of ΩN depends upon c, i.e., ΩN = ΩN (c).

Because λ varies within the tumor based upon the position of the necrotic core ΩN (c),

we see that λ = λ(x, t, c), which makes the nutrient equation nonlinear. However, we

can linearize the problem by setting λD = λV , i.e., λ ≡ λV throughout the tumor. This
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modeling convenience allows us to solve for the nutrient concentration using linear solvers.

In test simulations with nonlinear solvers that we are currently developing (not shown), we

have found that this assumption does not significantly affect the qualitative features of the

necrotic core morphology and the overall tumor progression.

We assume that the nutrient and nutrient flux are continuous across the tumor bound-

ary Σ:

[c] = 0 x ∈ Σ (4.7)
[
D̃∇c · n

]
= 0 x ∈ Σ, (4.8)

where n is the outward unit normal vector.

Here, for any quantity q(x) and any x ∈ Σ, we define

[q (x)] = q (x)
∣∣∣
Ω
− q (x)

∣∣∣
ΩH

= lim
Ω3y→x

q(y)− lim
ΩH3y→x

q(y) (4.9)

to be the jump in q across the boundary Σ.

Nutrient delivery by the blood vasculature and uptake by noncancerous cells are as-

sumed to be in balance outside of Ω ∪ ΩH . Therefore, we take

c ≡ c∞ x ∈ ∂ (Ω ∪ ΩH) (4.10)

on the far-field boundary.

In this paper, we shall consider the special case of avascular growth in piecewise ho-

mogeneous tissue and assume D̃ ≡ DH in ΩH and D̃ ≡ DT in Ω, where DH and DT are

(generally different) constants.

4.2.2 Cellular Velocity Field

The cells and ECM in the host tissue ΩH and the viable tumor region ΩV are affected

by a variety of forces, each of which contributes to the cellular velocity field u. The prolif-

erating tumor cells in ΩV generate an internal (oncotic) mechanical pressure (hydrostatic

stress) that also exerts force on the surrounding noncancerous tissue in ΩH . Tumor and

noncancerous cells and the ECM can respond to pressure variations by overcoming cell-cell

and cell-ECM adhesion and moving within the scaffolding of collagen and fibroblast cells

(i.e., ECM) that provides structure to the host tissue. The ECM in ΩH can deform in

89



response to the pressure. Following previous work, we assume constant cell density and

model cellular motion within the ECM as incompressible fluid flow in a porous medium.

The response of the cells and the ECM to the pressure is governed by Darcy’s law

u = −µ̃∇P x ∈ ΩV ∪ ΩH , (4.11)

where the cellular mobility µ̃ = µ̃(x) measures the overall ability of tissue to respond to the

pressure. We note that µ̃ also measures the permeability of the tissue to tumor cells. See

Ambrosi and Preziosi (2002) and Byrne and Preziosi (2003) for further motivation of this

approach from a mixture modeling point of view.

When tumor cells are in a state of hypoxia, cellular pathways that increase cell mi-

gration may become activated (Höckel et al., 1996; Kaur et al., 2005; Lester et al., 2005;

Erler et al., 2006; Pouysségur et al., 2006). This may be modeled by increasing the mobility

µ̃ as the nutrient level decreases or as a tactic response to nutrient gradients (Friedl and

Wolf, 2003). In this paper, we shall focus upon the effects of proliferative pressure only; the

effects of increased cellular motility in response to hypoxia will be considered in a future

work (Macklin et al., 2007).

The outward normal velocity V of the tumor boundary Σ is given by

V = u · n = −µ̃∇P · n, (4.12)

where n is the outward unit normal vector along Σ. We assume that the normal velocity

is continuous across the tumor boundary Σ, i.e., voids do not form between the tumor and

host tissue.

4.2.3 Proliferation, Apoptosis, and Necrosis

In the viable region ΩV , proliferation increases the number of tumor cells and thus the

volume occupied by the viable region. Apoptosis decreases the total volume of ΩV at a

constant rate λA. We assume that cell birth and death are in balance in ΩH , and so there

is no change in the volume in that region. (Note that if there are no cells in ΩH , then there

is no cell birth or death, and the assumption still holds.) In fact, unvascularized tumors

are often hypoxic, leading to glycolysis in the tumor and acidosis (a reduced pH level) in

the surrounding healthy tissue (Gatenby and Gawlinski, 1996, 2003). Noncancerous cells

cannot survive in this condition, leading to an imbalance in cell birth and death that results
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in a relative survival advantage for tumor cells and a potential volume loss in ΩH when cells

are present. This effect will be considered in a future work.

Putting this together as in Cristini et al. (2003), the change in volume is

∇ · u =





0 x ∈ ΩH

bc− λA x ∈ ΩV .
(4.13)

Here, b is a constant related to the tumor cell mitosis rate.

Throughout the necrotic core ΩN , the enzymatic breakdown of necrotic tumor cells is

assumed to decrease the tumor volume at a constant rate λN . This volume loss can be

imposed via a nonlocal boundary condition on the boundary ΣN of the necrotic core:
∫

ΣN

u · n ds = −
∫

ΣN

(µ̃∇P · n) ds

= −λN |ΩN | , (4.14)

where u · n is the limit from inside ΩV , and |ΩN | denotes the area of ΩN .

As a computational convenience, we can achieve the correct volume loss by continuously

extending the velocity u into ΩN . Instead of using (4.14), we define

∇ · u = −λN , x ∈ ΩN . (4.15)

We assume that voids do not form between the viable and necrotic regions. Therefore,

we choose our extension such that the normal velocity is continuous across the necrotic

boundary, i.e., [u · n] = 0 across ΣN . We note that because ΣN is determined by the

nutrient level, it is not a material boundary and is not advected by the velocity field u; the

extension of the velocity field is used solely to yield the correct volume change in the tumor

necrotic core.

One way to attain this is to extend the pressure continuously into the necrotic core as

well, by taking

u = −µ̃∇P x ∈ ΩN

[P ] = 0 x ∈ ΣN

[−µ̃∇P · n] = 0 x ∈ ΣN . (4.16)

We note that the jump condition [P ] = 0 across ΣN models low cellular adhesion and is

consistent with the increased cellular mobilty observed in hypoxic cells (Brizel et al., 1996;
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Cairns et al., 2001; Höckel and Vaupel, 2001; Postovit et al., 2002; Rofstad et al., 2002;

Pouysségur et al., 2006). We close this section by noting that (4.16) automatically satisfies

[u · n] = 0 on ΣN .

4.2.4 Mechanical Pressure

We can obtain an equation for the mechanical pressure in Ω∪ΩH by combining (4.11)

and (4.13) and by noting the pressure extension in (4.16):

−∇ · (µ̃∇P ) =





0 x ∈ ΩH

bc− λA x ∈ ΩV

−λN x ∈ ΩN .

(4.17)

By the continuity of the normal velocity across the tumor boundary, by Darcy’s law

(4.11) there is no jump in the normal derivative µ̃∇P · n across Σ. Following Cristini

et al. (2003) and others, we model cell-cell adhesion forces in the tumor by introducing a

Laplace-Young surface tension boundary condition. Therefore,

[P ] = γκ x ∈ Σ (4.18)

0 = [u · n] = − [µ̃∇P · n] x ∈ Σ, (4.19)

where κ is the mean curvature and γ is a constant cell-cell adhesion parameter.

Cellular proliferation and death are in balance outside of Ω ∪ ΩH . Therefore,

P ≡ P∞ x ∈ ∂(Ω ∪ ΩH). (4.20)

on the far-field boundary.

In this paper, we shall consider the special case of avascular growth in piecewise homo-

geneous tissue and take µ̃ ≡ µH in ΩH and µ̃ ≡ µT in Ω, where µH and µT are constants

that are generally not equal. Note that because µ̃ is constant within the tumor (and across

ΣN ), the pressure boundary conditions across ΣN in (4.16) are automatically satisfied for

any C1 smooth solution P .

4.2.5 Nondimensionalization

Following Cristini et al. (2003), Macklin (2003), Macklin and Lowengrub (2005), and

Zheng et al. (2005), we first note that the nutrient concentration equation reveals intrinsic
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diffusional length (L) and relaxation time (λ−1
R ) scales:

L =
√

DT

λV
and λR =

µT γ

L3
, (4.21)

Note that L ≈ 200 µm (Cristini et al., 2003; Macklin, 2003; Macklin and Lowengrub, 2005).

We nondimensionalize the nutrient and pressure by

σ =
c

c∞
and p =

L

γ
(P − P∞). (4.22)

As in Zheng et al. (2005), we define the dimensionless numbers

G =
λM

λR
=

bc∞
λR

, GN =
λN

λM
, A =

λA

λM
, and N =

cN

c∞
, (4.23)

where λM = bc∞ gives an intrinsic mitosis rate. The nondimensional parameter G gives the

mitosis rate relative to the rate of relaxation due to cell-cell adhesion in the tumor and is a

measure of tumor aggressiveness. GN and A measure the rates of enzymatic degradation of

the necrotic core and apoptosis relative to the mitosis rate, respectively. N is the threshold

nutrient level for cell viability.

Using these scales, the nondimensionalized nutrient concentration we solve for satisfies




D∇2σ = 0 x ∈ ΩH

∇2σ = σ x ∈ Ω

[σ] = 0 x ∈ Σ

D∇σ
∣∣∣
Ω
· n = ∇σ

∣∣∣
ΩH

· n x ∈ Σ

σ ≡ 1 x ∈ ∂(Ω ∪ ΩH).

(4.24)

Here, D = DH/DT provides a measure of the nutrient richness of the tumor microenviron-

ment relative to the tumor.

The nondimensionalized pressure solves




µ∇2p = 0 x ∈ ΩH

−∇2p = G(σ −A) x ∈ ΩV

−∇2p = −GGN x ∈ ΩN

[p] = κ x ∈ Σ

µ∇p
∣∣∣
Ω
· n = ∇p

∣∣∣
ΩH

· n x ∈ Σ

p ≡ 0 x ∈ ∂(Ω ∪ ΩH).

(4.25)
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Here, µ = µH/µT is a measure of the relative ability of the external tissue to (biomechani-

cally) respond to the pressure, compared to the biomechanical response of the tumor. Using

this definition of µ, the nondimensional normal velocity that we use to update the tumor

boundary position is given by

V = −µ∇p
∣∣∣
ΩH

· n = −∇p
∣∣∣
Ω
· n. (4.26)

In this paper, we model Ω ∪ ΩH to be everything inside of the ball

B(xcent, R + 1), (4.27)

where

R = sup {|x− xcent| : x ∈ Ω} (4.28)

is the largest distance from the center of mass xcent of the tumor. Notice that this ball

contains the tumor Ω and all noncancerous tissue that is within the diffusional distance

from the tumor. See Figure 4.1. Lastly, we note that the viable and necrotic regions of the

tumor are given by

ΩV = {x ∈ Ω : σ(x) ≥ N} (4.29)

ΩN = {x ∈ Ω : σ(x) < N} . (4.30)

4.2.6 Analysis of Volume Fractions for Tumor Spheroids

Following Byrne and Chaplain (1996b) and Cristini et al. (2003), we obtain and analyze

the steady-state, two-dimensional circular solution of the full tumor system; the analysis

for three-dimensional growth is similar. The results of the analysis will be instructive when

we interpret our nonlinear simulation results for more complex geometries.

We shall solve for the exact nutrient concentration, pressure, and tumor boundary

velocity. Using the exact tumor boundary velocity, we can find the equilibrium radii of

the tumor (R∞) and the necrotic core (RN,∞) and calculate the (two-dimensional) necrotic

volume fraction:
Volumenecrotic
Volumetumor

=
(

RN,∞
R∞

)2

. (4.31)

We seek to understand the sensitivity of the necrotic volume fraction to D, µ, A, G, GN ,

and N .
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For simplicity of analysis, we first assume that D À 1 and examine the effects of D

later in this section. If R = R(t) is the radius of the tumor at time t, then σ ≈ 1 in the

region R < r ≤ R + 1, and the nutrient concentration σ(r, t) is given by

σ(r, t) =





I0(r)
I0(R) 0 ≤ r ≤ R

1 R < r ≤ R + 1,
(4.32)

where I0(x) is the 0th modified Bessel function of the first kind.

Once the nutrient concentration profile is known, we can define

RN (t) = {r : σ(r) = N} = I−1
0 (N I0(R)) (4.33)

to be the radius of the necrotic core at time t. Notice that RN is completely determined by

R and N .

The cellular velocity is given by

u = −




p′(r) r 0 ≤ r ≤ R(t)

µp′(r) r R(t) < r ≤ R(t) + 1,
(4.34)

where r is the outward unit vector. By the continuity of the cellular velocity across R(t),

the velocity of the tumor boundary R′(t) is

R′(t) = − lim
r↑R(t)

p′(R(t)) = −µ lim
r↓R(t)

p′(R(t)). (4.35)

When the tumor has reached its equilibrium radius R∞,

0 = lim
r↑R∞

p′(R∞) = µ lim
r↓R∞

p′(R∞). (4.36)

Because p(R∞ + 1) = 0, we see that p ≡ 0 on R∞ < r ≤ R∞ + 1 when the tumor has

reached its steady size, and

0 = µ lim
r↓R∞

p′(R∞). (4.37)

Therefore, µ has no impact on the equilibrium radii R∞ and RN,∞, and hence the equi-

librium necrotic tumor volume fraction. For simplicity of analysis, we shall now assume

µ À 1, in which case the exact solution of the pressure is

p(r) =





d1 + 1
4GGNr2 0 ≤ r ≤ RN

d2 + d3 ln r −G I0(r)
I0(R) + 1

4AGr2 RN < r ≤ R

0 R < r ≤ R + 1,

(4.38)
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where d1, d2, and d3 are chosen to satisfy the continuity and boundary conditions:

d1 +
1
4
GGNR2

N = d3 + d4 ln RN −G
I0(RN )
I0(R)

+
1
4
AGR2

N (4.39)

1
2
GGNRN =

d4

RN
−G

I1(RN )
I0(R)

+
1
2
AGRN (4.40)

d3 + lnR−G +
1
4
AGR2 =

1
R

. (4.41)

Notice that we can explicitly solve for d4 and find the boundary velocity:

R′(t) = −p′(R)

= −G

(
1
2

R2
N

R
(GN −A) +

I1(RN )
RI0(R)

− I1(R)
I0(R)

+
1
2
AR

)
. (4.42)

To find the equilibrium radius R∞, we set (4.42) equal to zero. Notice that G scales

out, and so R∞ (and thereby the equilibrium necrotic volume fraction) depends only upon

A, GN , N , and RN,∞, which itself depends only upon R∞ and N . Therefore, for large D,

the necrotic volume fraction is a function of A, GN , and N , and independent of G and µ. In

fact, we have found that this trend holds for any fixed value of D, and the necrotic volume

fraction is independent of D for values greater than approximately 10. For example, if

G = 20, GN = 1, A = 0, and N = 0.35, then the necrotic volume fraction increases

rapidly from 26.4% (D = 0.25) to 35.8% (D = 10), increases more slowly to approximately

36.3% (D = 20), and then quickly approaches a limiting value of approximately 36.9% as

D increases further.

By solving (4.32) and (4.42), one can examine the evolution of the necrotic volume

fraction as a tumor spheroid approaches its equilibrium size. We have found that the

relative rate of change of the necrotic volume fraction is approximately equal to the relative

rate of change in the spheroid radius. (e.g., if the radius is increasing at 0.1% per time,

then the necrotic volume fraction is increasing at a similar rate.) Thus, a steady necrotic

volume fraction indicates that a tumor spheroid has reached a steady state.

As we shall verify numerically, it turns out that even during growth, the viable and

necrotic volume fractions of nonspherical tumors tend toward constant values that depend

primarily upon A, D, GN , and N . This indicates the emergence of characteristic feature

sizes within the tumor and suggests local equilibration. In large part, the emergent local

configuration is determined by the thickness of the viable rim and the size of the necrotic

core. The viable rim size is determined by how well nutrients penetrate the tumor (D),

96



�
�
�
�
�
�
��

L
L

L
L

L
L

LL
ϕ

ϕ=0

-
x

�
��
y

6
ϕ

�
�
�
�
�

�
�
�
�
�

Σ

Figure 4.2: Representing an ellipse Σ as the zero contour of a level set function ϕ.

the amount of apoptosis (A), and the threshold nutrient level for necrosis (N). The size

of the necrotic core is determined by how quickly necrotic tumor cells are broken down

and removed (GN ). This is in contrast with the spherical tumor case, where the volume

fractions only stabilize when the tumor reaches its (global) equilibrium radius.

We note that because a spheroid has minimum surface area to volume ratio, it provides

a growing tumor with the least access to nutrient and therefore the largest necrotic volume

fraction. Therefore, for non-spheroids, we expect smaller necrotic volume fractions. In

fact, it is the attempt of growing tumors to improve access to nutrient that often drives

morphological instability.

4.3 Numerical Method

We adapt and apply the numerical techniques we recently described in Macklin (2003)

and Macklin and Lowengrub (2005, 2006). Because we anticipate frequent tumor morphol-

ogy changes (e.g., the tumor breaks into fragments, or tumor fragments merge), we use the

level set method: we introduce an auxilliary “level set” signed distance function ϕ satisfying

ϕ < 0 inside Ω, ϕ > 0 outside Ω, and ϕ = 0 on the tumor boundary Σ. See Figure 4.2. For

more information on the level set method and its application to fluid mechanics, please see

Osher and Sethian (1988), Sussman et al. (1994), Malladi et al. (1995, 1996), Adalsteins-

son and Sethian (1999), Sethian (1999), Osher and Fedkiw (2001, 2002), and Sethian and

Smereka (2003).

At every fixed simulation time, our method consists of the following steps:

97



1. Solve for the nutrient with Equation (4.24). Note that this determines the updated

position of the necrotic core boundary ΣN .

2. Solve for the pressure with Equation (4.25).

3. Update the position of the boundary Σ by evolving the level set function ϕ with the

normal velocity V in Equation (4.26).

4. Maintain ϕ as a distance function.

4.3.1 Solution of the Tumor System

We solve for all quantities on a regular Cartesian mesh that is dynamically resized

to contain the growing tumor Ω and the noncancerous tissue ΩH . Both the nutrient and

pressure equations take the form

α∇2u = f1(x, t) + f2(x, t)u in Ω and ΩH (4.43)

[u] = g(x, t) on Σ (4.44)

[α∇u · n] = 0 on Σ (4.45)

u ≡ uO on ∂(Ω ∪ ΩH) (4.46)

where u is either σ or p,

α =





αT in Ω

αH in ΩH ,
(4.47)

and αT and αH are positive constants. We solve with a second-order accurate extension

to the ghost fluid/level set method that we developed in Macklin and Lowengrub (2005).

Please see Appendix 4.7 for new enhancements we have made to the method to satisfy

[α∇u · n] = 0 on the boundary Σ.

The pressure boundary condition requires an accurate curvature discretization. In

Macklin (2003) and Macklin and Lowengrub (2005), we found that standard curvature dis-

cretizations are inaccurate and unstable near singularities that result from morphological

change. In all our numerical simulations, we use a second-order accurate curvature dis-

cretization (in two dimensions) that we developed in Macklin and Lowengrub (2006) to

overcome these problems.
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We update the position of the interface Σ by solving the PDE

∂ϕ

∂t
+ Ṽ |∇ϕ| = 0, (4.48)

where Ṽ (x, t) is an extension of V off of the tumor boundary Σ such that Ṽ ≡ V on Σ.

We construct Ṽ using the bilinear extrapolation we developed in Macklin and Lowengrub

(2005). As described in Macklin (2003) and Macklin and Lowengrub (2005), we filter the

high-frequency variations from Ṽ to attain second-order accuarcy without a third-order

CFL condition.

Lastly, we keep ϕ as a distance function (|∇ϕ| ∼ 1) by solving the PDE

ϕτ − sign(ϕ0) (1− |∇ϕ|) = 0 (4.49)

to steady-state, where τ is pseudo-time and ϕ0 is the level set function prior to reinitializa-

tion (Osher and Sethian, 1988; Malladi et al., 1995, 1996; Adalsteinsson and Sethian, 1999;

Sethian, 1999; Osher and Fedkiw, 2001, 2002; Sethian and Smereka, 2003). We solve the

PDE’s in (4.48) and (4.49) with the third-order total variation-diminishing Runge-Kutta

method (Gottlieb and Shu, 1997; Gottlieb et al., 2001) and the fifth-order WENO method

(Jiang and Shu, 1996; Jiang and Peng, 2000).

4.3.2 Convergence of the Numerical Method

To evaluate the convergence of our extended numerical method, we simulated two-

dimensional tumor growth with D = 100, µ = 50, G = 20, GN = 1, N = 0.35, and A = 0,

and with a complex initial shape. (See the first frame of Figure 4.5.) We simulated up to

time t = 0.15 at three spatial resolutions: ∆x ∈ {0.04, 0.08, 0.16}.
In Figure 4.3 we plot the resulting tumor morphology at low resolution (∆x = 0.16;

upper left plot), medium resolution (∆x = 0.08; upper right plot), and high resolution

(∆x = 0.04; lower left plot). In all three plots, the dark region denotes the necrotic core

ΩN where σ ≤ N . In the lower right plot of Figure 4.3, we compare the position of the

tumor boundary for all three resolutions: the dotted curve is for ∆x = 0.16, the dashed

curve shows ∆x = 0.08, and the solid curve gives ∆x = 0.04. As we can see, there are

considerable differences in the positions of the necrotic core and tumor boundary between

the low- and medium-resolution plots, but far fewer differences between the medium- and

high-resolution plots; this is indicative of fast convergence. In this and all plots hereafter,
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Figure 4.3: Numerical Convergence: Tumor morphology at t = 0.15 at low resolution (upper
left), medium resolution (upper right), and high resolution (lower left). The dark region
denotes the necrotic core ΩN where σ ≤ N = 0.35, and the gray regions show the viable
region ΩV . In the lower right plot, we compare the position of the tumor boundary at
low resolution (dotted curve), medium resolution (dashed curve), and high resolution (solid
curve).

white regions correspond to ΩH , which consists of the ECM, noncancerous cells, and any

other material outside of the tumor. Black regions denote the necrotic core ΩN , and gray

regions show the viable portion ΩV of the tumor.

Defining the order of convergence (of the interface position) similarly to Macklin and

Lowengrub (2005) (but measuring error over the entire computational domain, rather than

in a band near the tumor boundary), the order of convergence for this example was 2.22,
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Figure 4.4: Tumor morphological response to the microenvironment. The external tissue
nutrient diffusivity D increases from left to right, and the external tissue mobility µ increases
from bottom to top. Three major morphologies are observed: fragmenting growth (left),
invasive fingering (lower right), and compact/hollow (upper right). All tumors are plotted
to the same scale, where the indicated length is 25L ≈ 0.5 cm.

thereby demonstrating that our numerical method is capable of accurately simulating tumor

growth, even when faced with complex morphologies.

4.4 Numerical Results

We now investigate the effects of the tumor microenvironment on the morphology and

growth patterns of two-dimensional, avascular tumors growing into piecewise homogeneous

tissues. In all simulations, we set the apoptosis parameter A = 0 because the tumors are as-
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sumed to ignore inhibitory signals for self-destruction (apoptosis). We numerically compute

the solutions using a computational mesh with ∆x = ∆y = 0.08. All tumors are simulated

to a scaled nondimensional time of T = G t = λM t′ = 20, where t′ is dimensional time.

(The dimensional time is given by t′ = T/λM .) Because λ−1
M ∼ 1 day, this nondimensional

time allows us to compare tumors of varying simulated genotypes at fixed physical times.

(e.g., T = 20 ≈ 20 days.)

We shall characterize the effects of the modeled tumor microenvironment on growth by

presenting a morphology diagram. (Figure 4.4.) We simulate growth over a wide range of

microenvironmental parameters (D and µ) with G = 20, GN = 1, and N = 0.35, each with

identical initial shape as in the first frame of Figure 4.5. Recall that D and µ characterize

the relative nutrient diffusivity and biomechanical responsiveness of the exterior tissue,

G measures the tumor aggressiveness (proliferation compared to cellular adhesion), GN

characterizes the rate of degradation of the necrotic core, and N is the threshold nutrient

level for tumor cell viability.

Later in this paper, we shall consider the effect of G, GN , and N . We let

D ∈ {1, 50, 100,∞} and µ ∈ {0.25, 1, 50,∞}. When D = ∞, we set σ ≡ 1 in non-

encapsulated regions of ΩH and only solve the Poisson equation for σ in Ω and the en-

capsulated portions of ΩH (with diffusion constant 1). Likewise, when µ = ∞, we set

p ≡ 0 in non-encapsulated regions of ΩH and only solve the Poisson equation for p in Ω

and the encapsulated portions of ΩH (with mobility 1). In Figure 4.4, we plot the shape

of each tumor at time T = 20.0. In all figures, the black regions denote ΩN where the

tumor is necrotic, the gray regions show the viable tumor region ΩV , and the white regions

correspond to ΩH , which consists of the ECM, noncancerous cells, and any other material

outside of the tumor.

On the horizontal axis, we vary the nutrient diffusivity of the surrounding tissue; as

D increases from left to right, the simulated microenvironment varies from nutrient-poor

to nutrient-rich. On the vertical axis, we vary the mobility of the surrounding material; as

µ increases from bottom to top, the microenvironment ranges from low-mobility to high-

mobility. The greater the mobility µ, the greater the ability of the external, non-cancerous

tissue to respond to the pressure generated by the growing tumor, and tumor cells are more

able to penetrate the tissue.

We observe three distinct tumor morphologies through this broad range of simulated

tissue types. In the nutrient-poor regime on the left side of the diagram, tumors demonstrate
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fragmenting growth, characterized by the repeated breakup of the tumor in response to

the low nutrient level. The nutrient-rich, low-mobility regime in the bottom right of the

morphology diagram is characterized by fingering growth, where buds develop on the tumor

boundary that invade the surrounding tissue, forming long, invasive fingers. The nutrient-

rich, high-mobility regime in the top right of the diagram demonstrates compact/hollow

growth, where the tumors tend to grow into spheroids and typically form abscesses filled

with noncancerous tissue and fluid, similar to a necrotic core. As we shall discuss further

in Section 4.5, these morphologies are similar to those observed experimentally in vitro by

Frieboes et al. (2006b). See Figure 4.18.

We have found that the tumor morphologies in the morphology diagram in Figure 4.4

are qualitatively similar when recomputed with different genetic characteristics (modeled

by A, G, GN , and N), although, as we demonstrate in Section 4.4.2, large changes in the

genetic parameter values can shift the morphology from one type to another. Therefore, a

tumor’s morphology depends primarily upon the characteristics of the microenvironment.

We shall demonstrate this by investigating the three major tumor morphologies in the

following sections.

To better characterize the morphological characteristics of a tumor, we define

S =
(Perimeter)2

4π Area
(shape parameter) (4.50)

LS =
2 Area

Perimeter
(length scale). (4.51)

The shape parameter S is a measure of how noncircular a tumor fragment is. Note that

S ≥ 1, and S increases as a tumor fragment is deformed away from a circle. The length

scale LS is a measure of the smallest dimension of a tumor fragment. For example, for

a rectangular fragment with width W and length L, LS = LW/(L + W ), and LS ∼ W

if W ¿ L. To describe tumors comprised of multiple fragments, we calculate S and LS
for each individual fragment and aggregate the results with a fragment volume-weighted

average.

4.4.1 Fragmenting Growth into Nutrient-Poor Microenvironments

In Figure 4.5, we show the evolution of a tumor growing into a high-mobility, nutrient-

poor tissue, where D = 1 and µ = ∞. Here, G = 20, GN = 1, N = 0.35, and A = 0.

Due to the low nutrient diffusivity D, the nutrient level lies below N in much of the tumor
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Figure 4.5: Long time simulation of fragmenting growth into nutrient-poor (D = 1), high-
mobility (µ = ∞) tissue. Plots are in T = 10.0 increments, G = 20, GN = 1, N = 0.35,
and A = 0.
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Figure 4.7: Top Row: Evolution of the shape parameter S (solid curves) and length scale
LS (dashed curves) for fragmenting tumor growth into nutrient-poor tissue. The left plot
is for growth into high-mobility tissue (D = 1, µ = ∞), and the right plot is for growth into
low-mobility tissue (D = 1, µ = 1). Bottom Row: Evolution of the viable and necrotic
volume fractions for the high-mobility case (µ = ∞; left plot) and low-mobility case (µ = 1;
right plot).

105



x

y

T = 60.00

−15 0 15
−15

0

15

x

y

T = 60.00

−15 0 15
−15

0

15

x

y

T = 70.00

−15 0 15
−15

0

15

x

y

T = 70.00

−15 0 15
−15

0

15

Figure 4.8: Comparison of fragmenting tumor growth into high-mobility tissue (µ = ∞, left
plots) and low-mobility tissue (µ = 1, right plots) at T = 60.0 and T = 70.0.
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Figure 4.9: Parameter study in G and GN for fragmenting tumor growth into nutrient-poor,
low-mobility tissue (D = 1, µ = 1). The tumor aggressiveness parameter G increases from
bottom to top, and the necrotic degradation parameter GN increases from left to right.
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Figure 4.10: The effect of N on fragmenting tumor growth into nutrient-poor, low-mobility
tissue (D = 1, µ = 1): From left to right: N = 0.175, N = 0.350, and N = 0.700. The
top row gives the morphology at T = 20.0, and the bottom row plots the shape parameter
S (solid curves) and length scale LS (dashed curves). G = 20, GN = 1, and A = 0 for all
three simulations.

microenvironment. Accordingly, a large portion of the tumor becomes necrotic and is broken

down by enzymes, leading to early fragmentation. (See T = 10.0 in Figure 4.5.)

In each tumor fragment, cell proliferation is faster on the outer side (toward the outer

boundary of ΩH) where the nutrient level is highest. (See Figure 4.6 to see the nutrient

concentration near a typical tumor fragment.) On the opposite side of each fragment,

the nutrient level is lowest, leading to slow proliferation and necrosis. The net result is

preferential growth of the tumor fragment away from the nutrient-depleted center of the

computational domain. In the nutrient-poor microenvironment, it is advantageous for the

fragments to elongate, thereby increasing the surface area of the fragments and allowing

better access to nutrient. (See T = 20.0 and T = 30.0 in Figure 4.5.) Eventually, when a

tumor fragment grows sufficiently long, necrosis causes the fragment to break into multiple

satellite fragments which are temporarily stabilized by cellular adhesion, and the process

repeats. (See T = 50.0, T = 60.0, and T = 70.0 in Figure 4.5.)

We can gain a more detailed understanding of this repeating elongation-fragmentation
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cycle by examining the evolution of S and LS in the top left plot in Figure 4.7. Initially,

the shape parameter S (solid line) is large but drops rapidly as cell-cell adhesion pulls cells

together and shrinks high-frequency perturbations in the tumor boundary. Thereafter, the

shape parameter steadily rises as the tumor fragments elongate and become increasingly

noncircular. At the same time, the length scale (dashed line) decreases because the width of

the fragments decreases as they elongate. Whenever a fragment becomes sufficiently noncir-

cular, the shape parameter S peaks, and decay of the necrotic core breaks the fragment into

multiple smaller pieces. After the break, the cell-cell adhesion causes the new fragments to

coalesce into spheroids, resulting in a rapid drop in S and an increase in the length scale LS.

Consequently, S reaches a peak when LS reaches a local minimum, and vice versa. As the

trend repeats, S and LS trace out a “sawtooth” pattern in Figure 4.7 that is characteristic

of fragmenting tumor growth. In fact, the formation of smaller fragments at more frequent

time intervals can be observed as smaller sawteeth superimposed on the overall pattern.

The repeated elongation-fragmentation cycle is observed in tumor growth into lower-

mobility, nutrient-poor regions as well. In Figure 4.8, we compare the tumor morphology

at T = 60.0 and T = 70.0 for a high-mobility tissue (left plot: µ = ∞) and a lower-mobility

tissue (right plot: µ = 1); repeated fragmentation is observed in both cases. When growing

into a lower-mobility region, however, it is more difficult for the tumor to deform into

highly-elongated fragments. Instead, the individual fragments grow into larger spheroids

before deforming and breaking into new fragments. All these trends can be observed in

the evolution of the shape parameter S (solid curve) and LS (dashed curve) on the top

right plot of Figure 4.7. The characteristic “sawtooth” pattern can still be seen in the

shape parameter and length scale. However, the oscillations in the shape parameter are

much smaller, which reflects the difficulty in forming large deformations when growing into

low-mobility tissue. The lack of smaller, superimposed sawteeth indicates fewer topology

changes and more localized growth, which is seen in the smaller number of tumor fragments

in Figure 4.8. Because the tumor fragments grow to form larger spheroids before deforming

and fragmenting, the length scale also tends toward higher values in the low-mobility tissue

case.

When examining the internal structure of tumors growing in nutrient-poor (D = 1)

tissues, we find that the high-mobility (µ = ∞; lower left plot in Figure 4.7) and low-mobility

(µ = 1; lower right plot in Figure 4.7) tissue cases are quite similar. The viable and necrotic

volume fractions rapidly approach limiting values that are nearly identical for both tumors,
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at approximately 70% viable area and 30% necrotic area. The similarity of the limiting

values is consistent with our analysis in Section 4.2.6, where we found that the necrotic

volume fraction does not depend upon the tissue cellular mobility µ for steady-state tumor

spheroids. Unlike the case of circular growth where the volume fractions only stabilize once

a (global) steady-state has been achieved, the necrotic volume fraction here stabilizes even

during growth because the tumor features apparently reach local equilibrium between cell

proliferation and necrosis. Interestingly, the necrotic volume fraction is quite similar to

that predicted for spheroids with D = 1 (see Section 4.2.6), albeit somewhat lower, which

indicates that the deformation of the larger tumor fragments marginally increases access to

nutrient.

Tumors growing into nutrient-poor microenvironments demonstrate repeated fragmen-

tation through a wide range of mitosis rates (governed by the parameter G) and necrotic

tissue degradation rates (GN ). In Figure 4.9, we show the tumor morphology at time

T = 20.0 for a variety of values of G and GN and µ = D = 1. Tumor fragmentation is ob-

served in almost all cases, particularly for fast-proliferating, aggressive tumors with higher

values of G. An increased aggressiveness (G) increases the rate of tumor fragmentation.

Similarly, increasing the rate of necrotic tissue degradation (GN ) tends to destabilize the

tumor, also leading to an increased rate of fragmentation. However, this effect is highly

nonlinear: if GN is large relative to G, then proliferation, necrosis, and cellular adhesion can

balance to maintain spheroids and prevent further tumor fragmentation. This can be seen

in the G = 1, GN = 10 case in Figure 4.9: the tumor splits into two spheroids that reach

a steady size while preferentially growing outward toward higher nutrient levels. We note

that for sufficiently low levels of tumor aggressiveness (e.g., G = 0.10), tumor instability

decreases until the steady-state configuration is tumor spheroids, as predicted in Cristini

et al. (2003) for non-necrotic tumors. (Results not shown.)

As was predicted in Section 4.2.6 in the case of tumor spheroids, we found that the

volume fractions of viable and necrotic tissue were largely independent of the tumor ag-

gressiveness parameter G and the microenvironmental characteristics (D and µ) and were

primarily functions of N and GN . For N = 0.35 and GN = 0.10, necrotic tumor cells were

degraded very slowly; consequently, the majority of the tumor (approximately 80%) was

composed of necrotic tissue and 20% by viable cells. Fixing N = 0.35 and increasing GN ,

the volume fraction occupied by necrotic tumor tissue steadily decreased, at approximately

30% for GN = 1 and 5% for GN = 10.
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In the cases where the tumors have not fragmented by T = 20.0, moderate-to-significant

deformation still occurs, and fragmentation is likely at a later time. The occurrence of

repeated tumor fragmentation over a broad range of G and GN demonstrates that in the

nutrient-poor regime, tumor morphology is largely determined by the characteristics of the

surrounding microenvironment, while the genetic characteristics of the tumor (G, GN , A,

and N) determine the size and rate of evolution of the tumor. In addition, increasing the

apoptosis rate A to positive values results in similar morphological behavior, only with more

rapid tumor fragmentation and a greater number of fragments. (Results not shown.)

We examined the impact of N on the morphology of tumor growth in the nutrient-

poor regime, and the results for N ∈ {0.175, 0.350, 0.700} are given in Figure 4.10, where

D = µ = GN = 1 and G = 20. For all three values of N , the tumor demonstrated repeated

fragmentation (top row of Figure 4.10), and therefore all demonstrated the characteristic

sawtooth pattern in S and LS. (Bottom row of Figure 4.10.) As N increases, the volume

fraction of the tumor undergoing necrosis increases from approximately 20% (N = 0.175)

to roughly 30% (N = 0.350) to nearly 40% (N = 0.700), leading to a decrease in the overall

size and spread of the tumor fragments (top row of Figure 4.10).

The finding that tumor morphology in the nutrient-poor regime depends primarily upon

the tumor microenvironment (µ and D) and not the tumor’s genetic characteristics (N , GN ,

and G) has important implications for cancer treatment. In anti-angiogenic therapy, drugs

(e.g., Avastin) are supplied to prevent the neovascularization of the growing tumor and the

surrounding tissue. As we have seen, the resulting nutrient-poor microenvironment may

cause the tumors to fragment and invade nearby tissues, particularly for growth in higher-

mobility tissues. This can negate the positive effects of antiangiogenic therapy and may lead

to recurrence and metastasis. This result is consistent with the findings of Cristini et al.

(2005), who suggested that combining antiangiogenic therapy with adhesion therapy may

counteract the negative problems associated with tumor fragmentation in the nutrient-poor

regime.

4.4.2 Invasive, Fingering Growth

In Figure 4.11, we show the evolution of a tumor growing into a low-mobility, nutrient-

rich tissue, where D = 50 and µ = 1. As in the previous section, G = 20 GN = 1,

and N = 0.35. Because nutrient readily diffuses through the surrounding tissue ΩH , the
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Figure 4.11: Long time simulation of invasive, fingering growth into nutrient-rich (D = 50),
low-mobility (µ = 1) tissue. Plots are in T = 10.0 increments, G = 20, GN = 1, N = 0.35,
and A = 0.

tumor is initially non-necrotic, allowing for unchecked growth and the development of buds

on the tumor periphery that protrude into the surrounding tissue. (See time T = 10

in Figure 4.11.) Due to the cell-cell adhesion (modeled by the pressure jump in (4.18)),

the proliferation-induced mechanical pressure is greatest surrounding any protusions of the

tumor into the healthy tissue and approximately zero near flatter regions of the tumor
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Figure 4.13: Evolution of the shape parameter S (top left), length scale LS (top right),
perimeter (bottom left), and viable tumor area (bottom right) for invasive, fingering growth
into nutrient-rich, low-mobility tissue (thin curves: µ = 0.25, thick curves: µ = 1). In all
plots, dotted lines are for D = 50, dashed lines are D = 100, and solid lines are D = ∞.
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Figure 4.14: Parameter study in G and GN for invasive, fingering tumor growth into
nutrient-rich, low-mobility tissue (D = 50, µ = 1). The tumor aggressiveness parame-
ter G increases from bottom to top, and the necrotic degradation parameter GN increases
from left to right.

boundary. Because the cellular motility µ is low in the noncancerous tissue, the individual

cells and the extracellular matrix cannot move to equilibrate the pressure. As a result,

the cellular velocity field is mostly parallel to the buds, in spite of adequate nutrient levels

between the growing buds. (See the left plot of Figure 4.12 for the nutrient concentration

between two growing buds, and the right plot for the corresponding pressure field.) This

makes it difficult for buds to merge, leading to the formation of long, invasive fingers. (See

T = 30.0 to T = 50.0 in Figure 4.11.) The net effect is highly-invasive growth into the

surrounding tissue. (See T = 50.0 in Figure 4.11.)

Within the nutrient-rich, low-mobility tissue regime, we examined two levels of tissue

mobility (µ ∈ {0.25, 1}) and three nutrient diffusivities (D ∈ {50, 100,∞}), for a total

of six combination of mobility and nutrient diffusivity. In the top left plot in Figure 4.13,

we show the evolution of the shape parameter S for these six simulations. We found that

the shape parameter depended primarily upon the tissue mobility: the three lower-mobility

tissue examples (µ = 0.25, thin dotted, dashed, and solid curves) had an overall higher

shape parameter than the higher-mobility tissue (µ = 1, thick dotted, dashed, and solid
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curves), which reflects a higher degree of deformation. This trend is indeed observed in the

morphologies along the µ = 0.25 row of Figure 4.4. This is because the lower the tissue

mobility, the more difficult it is for cells in the healthy tissue to overcome the cell-cell and

cell-ECM adhesion and move to equilibrate pressure variations, and the more difficult it is

for the ECM to deform in response to the pressure, allowing for the formation of sharper

corners and greater shape instabilities.

This trend is also reflected in the tumor perimeters in the lower left plot of Figure

4.13: overall, the larger deformation in the lower-mobility tissue simulations leads to overall

larger perimeters in the low-mobility tissue cases (thin curves) than in the higher-mobility

tissue cases (thicker curves). As a result of the increased surface area, the low-mobility

tissue tumors had greater access to nutrient. This leads to a surprising result: the increased

morphological instability from growing into lower-mobility tissues improves access to nutri-

ent and leads to larger tumors, as can be seen in the lower right plot in Figure 4.13; for

each fixed nutrient diffusivity, the volume of the viable area of each tumor was larger for

the lower-mobility tissue simulation (µ = 0.25) than for the corresponding higher-mobility

tissue example (µ = 1). For all examples, the shape parameter steadily rose as a function of

time, which reflects the increasing shape instability as the tumors invade the surrounding

tissue; this is characteristic of invasive, fingering growth. This has implications for thera-

pies that target cell-cell and cell-ECM adhesiveness: if the therapy decreases the mobility

in the surrounding microenvironment (by increasing the cell-cell or cell-ECM adhesiveness

or rendering the ECM more rigid), then invasive, fingering growth into the surrounding

tissue is likely. Likewise, any treatment that decreases the permeability of the host tissue

to tumor cells may lead to an increase in tumor invasiveness.

In the upper right plot of Figure 4.13, we see that the length scale LS is most strongly

dependent upon the nutrient diffusivity D, and largely independent of the tissue mobility µ.

As the nutrient diffusivity increases, nutrient is better able to diffuse between the growing

fingers, allowing the nutrient to penetrate farther into the fingers. This allows the tumor

to support thicker fingers, which can be seen in the increased length scale parameter LS
for higher values of D. In all cases, the length scale tended toward a roughly fixed value,

which demonstrates that each tissue can support a specific finger thickness.

As was predicted in Section 4.2.6 for tumor spheroids and observed in the fragmenting

growth regime, the volume ratios of the tumor were nearly independent of the tumor mi-

croenvironment. We examined the viable and necrotic volume fractions for growing tumors
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with µ ∈ {0.25, 1} and D ∈ {50, 100,∞}. In all cases, the volume fractions quickly stabi-

lized, with the viable rim comprising approximately 65% of the tumors and the remaining

35% being made up of necrotic cells. This necrotic volume fraction is slightly less than that

predicted for tumor spheroids with D = 50 (approximately 37% for spheroids), which again

reflects the fact that the tumor’s morphological response to the microenvironment increases

its access to nutrient.

In Figure 4.14, we examine the effect of the tumor aggressiveness parameter G and

the necrotic degradation parameter GN on the invasive, fingering morphology. We fix

D = 50, µ = 1, N = 0.35, and take 0.1 ≤ GN ≤ 10.0 and 1 ≤ G ≤ 100. For lower

tumor aggressiveness values (G = 1) and GN ≥ 1, the fingering effect was significantly

reduced, resulting in more stable, tubular-shaped tumors, an effect that has been observed in

experiments (Frieboes et al., 2006b). These structures form because tumor cell proliferation

(the numerator of G) and cell-cell adhesion (the denominator of G) are roughly in balance

when G = 1. The competition between proliferation and adhesion smooths but does not

completely prevent shape instabilities, which may continue to grow. For sufficiently large

values of G, the invasive fingering morphology was observed in all simulated tumors. For

lower values of GN (left column in Figure 4.14), the low rate of degradation of the necrotic

tumor tissue leads to the formation of very wide fingers; this morphology may be better

described as a collection of spheroids. As GN is increased, the necrotic core is degraded

more quickly, leading to a decreased finger thickness, less stable morphology, and more

aggressive tissue invasion. As GN is increased toward GN = 10 (right column in Figure

4.14), the finger thickness is decreased to the point where the tumor periodically breaks into

fragments and then reconnects, leading to the encapsulation of noncancerous tissue (white

enclosed regions). This morphology, which we refer to as compact/hollow, is characterized

by the presence of a large abscess containing a mixture of necrotic cells, fluid, noncancerous

ECM, and cellular debris, much like a necrotic core. A long-time simulation of a tumor

with the compact/hollow morphology can be seen in Figure 4.15 with a different value of

µ; this morphology will be examined in greater detail in the following section. The effect

of GN on growth is seen to be non-monotonic: increasing GN at first limits the size of the

tumor by decreasing the thickness of the invasive fingers and limiting the overall spread of

the tumor, but after a certain point, instability breaks the tumor and allows greater spread

through the surrounding noncancerous tissue. For example, for G = 10, the total viable

area at time T = 20 drops from 103.3404 when GN = 0.10 to 93.3156 for GN = 1.0, then
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increases to 133.7360 for GN = 10.

Lastly, we studied the effect of N on the invasive fingering growth regime by simu-

lating with N ∈ {0.175, 0.350, 0.700}, G = 20, GN = 1, D = 1, and µ = 1. As in the

fragmenting case, we found that varying N changes the tumor evolution quantitatively but

not qualitatively. As N increases, the thickness of the viable rim and the overall spread of

the tumor decrease, and the necrotic volume fraction increases (N = 0.175: approximately

25%; N = 0.35: nearly 35%; N = 0.70: over 40%.).

4.4.3 Compact, Hollow Growth

In Figure 4.15, we show the evolution of a tumor growing into a high-mobility (µ = 50),

nutrient-rich (D = 100) tissue, where G = 20, N = 0.35, and GN = 1. In the beginning

(T = 0.0 to T = 5.0 in Figure 4.15), growth is very similar to the invasive, fingering case.

Because the noncancerous tissue is nutrient-rich, the tumor only develops a necrotic core

after an initial period of growth, after which shape instabilities (buds) appear. However,

because the noncancerous tissue has a greater mobility µ, the cells and extracellular matrix

in the surrounding noncancerous tissue are more free to move and relieve the pressure

caused by the growing tumor. Consequently, the buds on the outer edge of the tumor do

not invade the surrounding tissue, but instead flatten and periodically merge, encapsulating

healthy tissue in the process (T = 10.0 to T = 20.0 in Figure 4.15), a process that has been

previously observed in boundary integral simulations of tumor growth (Cristini et al., 2003).

In the meantime, necrotic tissue on the inside boundary of the tumor continues to degrade,

leading to the formation of a large abscess in the tumor core filled with a mixture of

noncancerous tissue and cellular debris (T = 15.0 and T = 20.0 in Figure 4.15). We expect

that in reality, any noncancerous cells contained in the abscess may also undergo necrosis,

and due to the presence of matrix degrading enzymes in the tumor, encapsulated ECM

should be degraded. This suggests an evolution similar to those seen for smaller values of

G. We shall further investigate these effects in a future work.

Within the nutrient-rich, high-mobility regime, we examined two levels of mobility

(µ ∈ {50,∞}) and three nutrient diffusivities (D ∈ {50, 100,∞}). In all plots, G = 20,

GN = 1, N = 0.35, and A = 0, thin curves denote lower-mobility (µ = 50) simulations, and

thick curves give higher-mobility (µ = ∞) simulations. In all plots, the dotted lines are for

D = 50, the dashed lines are D = 100, and the solid lines correspond to D = ∞.

116



x

y

T = 0.00

−11 0 11
−11

0

11

x

y

T = 5.00

−11 0 11
−11

0

11

x

y

T = 10.00

−11 0 11
−11

0

11

x

y

T = 15.00

−11 0 11
−11

0

11

x

y

T = 20.00

−11 0 11
−11

0

11

Figure 4.15: Long time simulation of compact tumor growth into nutrient-rich, high-
mobility tissue (D = 100, µ = 50). Plots are in T = 10.0 increments, with G = 20,
GN = 1, N = 0.35, and A = 0.0.

In the top left plot of Figure 4.16, we plot the evolution of the shape parameter S
for all these simulations. In all cases, the shape parameter increased in an eratic manner,

which is indicative of frequent increases in morphological complexity. This is a reflection of

the frequent formation and merger of buds, and of the encapsulation of noncancerous tissue

by the growing tumor seen in Figure 4.15, and the behavior is similar for all simulations
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Figure 4.16: Evolution of the shape parameter S (left) and length scale LS (right) for
compact growth into nutrient-rich, high-mobility tissue (thin curves: µ = 50, thick curves:
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Figure 4.17: Parameter study in G and GN for compact tumor growth into nutrient-rich,
high-mobility tissue (D = 50, µ = ∞). The tumor aggressiveness parameter G increases
from bottom to top, and the necrotic degradation parameter GN increases from left to right.
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except for the D = 50, µ = ∞ case. In that case, the encapsulation of tissue is much less

frequent, and the behavior is similar to fragmenting growth: the tumor breaks into two

halves, each of which resembles the elongated fragments observed in fragmenting growth.

(See the uppermost tumor in Figure 4.17 for a closer view of this morphology.) For all six

simulations, the values of S are generally higher than for the other growth regimes. This

is because the tumor consists of two concentric boundaries like a ring: a complex, outer

boundary with many shape instabilities, and a necrotic inner boundary. Accordingly, the

compact/hollow tumors have a much greater ratio of perimeter to area. The length scale LS,

shown in the top-right plot of Figure 4.16, generally decreases for all simulations, with signs

of tending toward a limiting value. This is because as the tumors grow, a characteristic rim

thickness emerges, but the frequent encapsulation of noncancerous tissue causes the length

scale to fluctuate in time.

We examined the viable and necrotic volume fractions for each of these simulations.

As was the case with fragmenting and fingering growth, the percentages were nearly iden-

tical (approximately 65% − 75% viable and 30% − 35% necrotic) for all cases throughout

most of the simulation time. The necrotic volume fraction was substantially less than the

approximate 37% predicted for tumor spheroids with D ≥ 10, and also generally less than

that observed for invasive, fingering tumors with equal values of D. This is because the

buds on the tumor periphery increase access to nutrient, are small enough to have very

little necrotic tissue, and thereby reduce the necrotic volume fraction.

In Figure 4.17, we examine the effect of the tumor aggressiveness G and the necrotic

degradation rate GN on the compact tumor morphology. In all these simulations, we fix

D = 50, µ = ∞, and N = 0.35. For lower values of G (bottom of the plot), the tumors

remain in compact morphologies that fail to encapsulate noncancerous tissue, although

shape instabilities may occur at long times. When G = 1, cell proliferation (numerator of

G) and adhesion (denominator of G) are roughly in balance, which shrinks but does not

completely prevent shape instabilities. For larger values of G (upper portion of the plot),

the cell proliferation rate outstrips cell-cell adhesion, resulting in folds in the outer tumor

surface that encapsulate noncancerous tissue. For fixed values of G, we see that increasing

the necrotic tissue degradation rate parameter GN shrinks the necrotic volume fraction

of the tumors. In the cases where noncancerous tissue has been encapsulated (G > 1),

increasing GN increases the size of the central tumor abscess.

Lastly, as in the fragmenting and fingering cases, we found that varying N changes the
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Figure 4.18: in vitro experimental evidence from the study by Frieboes et al. (2006b) of
predicted tumor morphologies. Lower left: low glucose, 1% FBS. Lower right: high
glucose, 1% FBS. Upper left: low glucose, 10% FBS. Upper right: high glucose, 10%
FBS.

tumor evolution quantitatively but not qualitatively. As N increases, the thickness of the

viable rim decreases, the necrotic volume fraction increases, and morphological instability

also increases.

4.5 Discussion and Future Work

In this work, we have extended previous models of tumor growth and developed a

framework to investigate the interaction between avascular solid tumors and their microen-

vironments during growth. In particular, we model the perfusion of nutrient through the

tumor and the surounding microenvironment, the build-up of pressure in the tissue from

the proliferation of cancerous cells, cell-cell and cell-ECM adhesion, and the loss of tumor

volume due to necrosis.
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Following previous models of solid tumor growth (Greenspan, 1976; McElwain and

Morris, 1978; Adam, 1996; Byrne and Chaplain, 1996b,a; Chaplain, 2000), the genetic char-

acteristics of the tumors are modeled by a small number of nondimensional parameters.

One parameter, G, measures the tumor aggressiveness. A second parameter A measures

the susceptibility of tumor cells to apoptosis, a third parameter N gives the critical nutrient

level for tumor cell necrosis, and a fourth parameter GN measures the enzymatic breakdown

of necrotic tumor cells.

The biophysical characteristics of the microenvironment are modeled by a parameter

D that measures the nutrient diffusivity of the host tissue relative to the diffusivity in the

tumor, and a mobility parameter µ. The parameter D can be used to model normoxia (high

D) or hypoxia (low D) in the microenvironment. The parameter µ models the combined

effects of adhesion (both cell-cell and cell-ECM) and the capacity of the ECM to deform

in response to pressure induced by tumor cell proliferation. The proliferative (oncotic)

pressure serves as a simple model of tissue stress.

Using this framework, we investigated the effect of the microenvironment on tumor

growth with a variety of genetic parameter combinations. In almost all cases, we found that

the qualitative features of tumor morphologies are primarily determined by the microen-

vironmental parameters (D and µ). The parameters that characterize the tumor genetics

(G, GN , N , and A) generally affect quantitative aspects of the tumor progression, such as

the size, the amount of invasion into the host tissue, the rate of growth, and the degree of

morphological instability.

We found that the internal structure of the tumors (i.e., the necrotic and viable volume

fractions of the tumors) depends primarily upon D, GN , and N , and very little upon µ and

G. Furthermore, we found that these volume fractions tend toward constant values even

during growth, which indicates the emergence of characteristic feature sizes within the

growing tumors and suggests a local equilibrium is attained. This is in contrast to the

case of tumor spheroids, whose volume fractions only stabilize once a global steady state is

established.

We observed three distinct morphologies: fragmenting, invasive/fingering, and com-

pact/hollow growth. If the microenvironment is nutrient-poor (low D), tumors tend to

break into small fragments and spread throughout the microenvironment, regardless of the

cellular mobility µ. Within this nutrient-poor growth regime, decreasing the microenvi-

ronmental mobility µ (by increasing the noncancerous cell-cell and cell-ECM adhesion or
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increasing the rigidity of the ECM) decreases the extent of the fragmentation and slows

invasion into the surrounding tissue, but does not completely prevent the hypoxia-induced

morphological instability. We note that unstable tumor morphologies in the nutrient-poor

regime have also been observed by Anderson (2005) and Cristini et al. (2005).

The invasive, fingering morphology was found in cases of growth into nutrient-rich, low-

mobility microenvironments. We found that increasing nutrient perfusion does not prevent

this invasive morphology, and the lower the microenvironmental mobility µ, the greater the

degree of morphological instability and invasiveness. Tumors growing into nutrient-rich,

high-mobility tissues develop compact/hollow morphologies. A hallmark of this growth

regime is the formation and merger of buds on the tumor periphery, which leads to the

encapsulation of noncancerous regions ΩH and the formation of a large abscess (a mixture

of noncancerous cells, ECM, fluid, and cellular debris) in the tumor interior. Qualitatively,

the interior abscess is similar to a necrotic core.

Within each of these three growth regimes, we investigated the effects of the genetic

parameters G, GN , and N . We found that lowering G, which corresponds to decreasing

the tumor proliferation rate and/or increasing the tumor cell-cell adhesiveness, can stabi-

lize growth, an effect that is already known. On the other hand, increasing GN , which

corresponds to an increased rate of degradation of the necrotic regions, tends to destabilize

growth. Increasing N leads to smaller tumors.

Our results have important implications for therapy. Since decreasing the nutrient lev-

els in the microenvironment tends to increase tumor fragmentation and invasion into the

surrounding tissue, caution must be exercised when considering anti-angiogenic therapies.

If this therapy is aimed at destroying the neovasculature as much as possible, this could lead

to the adverse effect of inducing morphological instability that may lead to additional tu-

mor fragmentation and invasion. Indeed, a number of experimental studies have now shown

that anti-angiogenic therapies may increase the tendency of tumors to fragment and invade

surrounding host tissue. (e.g., Sakamoto (1987), Rubinstein et al. (2000), DeJaeger et al.

(2001), Rofstad and Halso (2002), Seftor et al. (2002), Lamszus et al. (2003), and Bello et al.

(2004).) Conversely, we found that increasing the nutrient levels in the microenvironment

leads to greater morphological stability and increased compactness of the tumor, thereby

rendering the tumors more resectable. Consequently, our results support the contention

of Cristini et al. (2005) that treatments that seek to normalize the tumor vasculature (by

selectively “pruning” weak blood vessels with targeted anti-angiogenic therapy) may sta-
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bilize the tumor morphology by providing the tumor with increased access to nutrient.

Since such treatments may also increase the accessibility of the tumors to chemotherapeu-

tic agents (Jain, 2001; Sinek et al., 2004), our results provide additional support for the use

of targeted anti-angiogenic therapy as an adjuvant therapy to chemotherapy and resection.

This is currently under investigation.

Our findings may have particular significance for breast cancer treatment when con-

sidered alongside other known effects of hypoxia. In our simulations, hypoxia, such as that

caused by anti-angiogenic therapy, increases tumor morphological instability and invasive-

ness. In recent findings by Erler et al. (2006), it was shown that hypoxia upregulates lysl

oxidase (LOX), which, in turn, is associated with estrogen receptor (ER)-negative breast

cancer cells. This is of clinical importance, because ER-negative breast cancers are unsuited

to hormone-based therapies and generally have worse prognosis (Chi et al., 2006). There-

fore, when indiscriminant anti-angiogenic therapy is applied to breast cancer, it may lead

to the fragmentation of the tumor into smaller, more invasive tumors which are resistant to

further treatment.

As was pointed out by Cristini et al. (2005), another approach to therapy is to use

anti-invasive drugs such as Met inhibitors (Boccaccio et al., 1998; Bardelli et al., 1999;

Morotti et al., 2002) or hepatocyte growth factor antagonists (Date et al., 1998; Michieli

et al., 1999) in addition to anti-angiogenic therapies. Such therapies affect the cell-cell and

cell-ECM adhesive properties of the tumor. A recent experimental study on mouse models

of malignant glioma shows that fragmentation can be prevented, and the elimination of

tumor satellites may be achieved by a combined anti-angiogenic and anti-invasive therapy

(Bello et al., 2004). In the nutrient-poor growth regime, increasing the cell-cell and cell-

ECM adhesion of the microenvironment (i.e., reducing µ) can help to limit the rate of

tumor fragmentation and the extent of tissue invasion. Decreasing the permeability of the

microenvironmental ECM to tumor cells by other means such as making the extra-tumor

ECM more dense, stiffer, and less able to support tumor cell movement could also attain

this effect.

Interestingly, the opposite approach is warranted in the nutrient-rich growth regime. In

this regime, increasing µ in the extra-tumor ECM decreases the extent of invasive fingering.

Thus, in a nutrient-rich tissue, an approach to therapy is to increase the permeability of the

microenvironment ΩH to tumor cells. This can be accomplished by decreasing the cell-cell

and cell-ECM adhesion in the microenvironment ΩH (while leaving tumor cells unaffected),
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or equivalently, by increasing the tumor cell-cell and cell-ECM adhesion. We note that this

effect may also be attained by decreasing the stiffness or density of the surrounding ECM.

Such subtleties highlight the importance of considering tumor-microenvironment interac-

tions when planning therapies that affect the adhesive and mechanical properties of the

tumor, the surrounding tissue, or both.

It is important to ask whether the morphologies predicted here in our study occur

during real tumor growth. In fact, by characterizing the range of behavior in the tumor

growth model and comparing to experiments, we may predict physically relevant parameter

ranges. For example, in our studies, we have taken the aggressiveness parameter G ≥ 1.

In simulations not presented, we have found that taking G < 1.0 with apoptosis A = 0.0

may result in stable, circular tumor morphologies during avascular growth. We note that in

recent work, Frieboes et al. (2006b) predicted a lower value of G for morphologic instability

(0.6 ≤ G ≤ 0.9 for marginal stability, and G > 0.9 for very unstable behavior) based upon

an approximation of a similar theoretical model of spheroid growth that accounted only for

apoptosis and not necrosis. This analysis overpredicts instability.

Interestingly, all of the morphologies found in this work have been seen in an in vitro

tumor growth study performed as part of a joint experimental/computational investigation

of tumor growth by Frieboes et al. (2006b). In that study, tumor spheroids were placed in

a solution containing various levels of glucose and fetal bovine serum (FBS). The levels of

glucose and FBS were both found to affect the tumor progression and morphology. When

the glucose level was low, the in vitro tumors shed cells and fragmented. The degree to

which this occurred depended upon the level of FBS. When the FBS level was low, growth

was slow and a limited amount of tumor fragmentation was observed. See the lower left

plot of Figure 4.18 for a characteristic image. When the level of FBS was high, the growth

was faster, the tumors developed bulbous protrusions, and many fragments were formed.

See the upper left plot of Figure 4.18. When the glucose level was high and the FBS level

was low, invasive fingers developed, and fragmentation was limited. See the lower right

plot of Figure 4.18. When the levels of glucose and FBS were both high, the tumors had

roughly spherical shapes with bulbous protrusions on the surface. The tumors shed cells

that strongly connected with each other, creating networks. See the upper right plot in

Figure 4.18. Very interestingly, if FBS can be correlated with the permeability of the ECM

to tumor cells (in this case, the ECM is created by the tumor cells themselves), then this

behavior correlates very well with our predictions using the parameters D and µ (high

124



glucose and FBS levels correspond to large D and µ, respectively). This will be a subject

of future study.

Now that the general capabilities of the basic model have been demonstrated, we are

working to extend the realism of our simulator by modeling additional biophysical effects,

including more detailed modeling of the internal structure of the tumors and the surround-

ing tissue. In collaboration with A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, and S.R.

McDougall, we are fully coupling our tumor growth model with the DATIA (dynamic adap-

tive tumour-induced angiogenesis) model of McDougall et al. (2006). With our improved

models, we plan to further investigate the dynamics of tumor growth, the complex inter-

play between the microenvironment and the tumor, and possibilties for improved therapies.

With an improved model in hand, we hope to calibrate it to specific cancers, allowing for

specific predictions that can be verified in a laboratory setting. Our ultimate goal is the

development of efficient, effective, and eventually individualized treatment regimens.
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4.7 Improvements to the Ghost Fluid Method

We now describe a second-order accurate extension of the ghost fluid method (Fedkiw

et al., 1999; Liu et al., 2000; Gibou et al., 2002, 2003; Gibou and Fedkiw, 2005) to solve the

Poisson-like system

α∇2u = f1(x, t) + f2(x, t)u in Ω and ΩH (4.52)

[u] = g(x, t) on Σ (4.53)
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Figure 4.19: Discretizing α∇2u across the interface at xΣ by a ghost fluid extension to ûi+1.
Care must be taken to enforce the jump boundary conditions [u] = g and [α∇u · n] = 0.

[α∇u · n] = 0 on Σ (4.54)

u ≡ uO on ∂(Ω ∪ ΩH) (4.55)

on arbitrary domains embedded in a rectangular domain Ωcomp, where

α =





αT in Ω

αH in ΩH ,
(4.56)

and αT and αH are positive constants.

In Macklin and Lowengrub (2005), we developed a second-order accurate extension of

the ghost fluid method to solve this system in the case where ΩH = ∅ and [α∇u · n] is not

specified on the boundary Σ. We now extend the method to solve the present system.

We discretize each partial derivative of α∇2u separately, and so we can focus our atten-

tion on the discretization of αuxx at a node point xi ∈ Ω. If

xi−1 = xi−∆x and xi+1 = xi +∆x are both contained in Ω, then we discretize αT uxx with

the standard second-order stencil:

αT uxx = αT
u(xi−1)− 2u(xi) + u(xi+1)

∆x2
+O(∆x2). (4.57)

However, if xi+1 ∈ ΩH , then the boundary must separate xi and xi+1 at some point

xΣ = xi + θ∆x, where 0 < θ < 1. In this scenario, we must modify our stencil by first
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extending the solution in Ω to a “ghost fluid point” û(xi+1) in ΩH ; we replace u(xi+1) by

û(xi+1) in the discretization of αT uxx in (4.57). See Figure 4.19. We proceed by a quadratic

extrapolation of u from u(xi−2), u(xi−1), and u(xΣ)
∣∣∣
Ω

= limx↑xΣ
u(x) to û(xi+1).

We discretize (4.53) by

u(xΣ)
∣∣∣
Ω

= u(xΣ)
∣∣∣
ΩH

+ g(xΣ, t), (4.58)

where the jump notation is as defined in (4.9). If g is a function that is only defined at mesh

points, then we evaluate g(xΣ, t) by cubic interpolation of g(xi−1, t), g(xi, t), g(xi+1, t), and

g(xi+2, t).

We discretize (4.54) by

αT

u(xΣ)
∣∣∣
Ω
− u(xi−1)

(1 + θ)∆x
= αH

u(xi+2)− u(xΣ)
∣∣∣
ΩH

(2− θ)∆x
. (4.59)

This discretization is similar to the discretization of Liu et al. (2000), although we use

different points in the discretization for improved numerical stability. We note that this

discretization approximates the jump condition [α∇u · n] as [αux] = 0 and [αuy] = 0 when

discretizing the x- and y-derivatives. (In three dimensions, [αuz] = 0 as well.) This is

equivalent to assuming that the interface cuts the stencil at a right angle. Wherever this

assumption is inaccurate, any tangential jump in α∇u is partially smeared out numerically.

This limitation is characteristic of all current ghost fluid methods and is a trade-off for

the dimension-by-dimension simplicity of the discretization. We are currently investigating

solutions to this problem.

By combining (4.58) and (4.59), we can completely eliminate u(xΣ)
∣∣∣
Ω

and u(xΣ)
∣∣∣
ΩH

from the discretization of αT uxx. This allows the discretization of the entire Poisson system

to be written in the form of a linear system Lu = b, which can be solved by standard

linear solvers. In our work, we used the stabilized biconjugate gradient method BiCG-

Stab(2). (van der Vorst, 1992; Sleijpen et al., 1994; Duff et al., 1998) The case where

xi−1 /∈ Ω is handled analogously, and the discretization of αHuxx is similar. We discretize

the far-field boundary condition (4.55) as in Macklin and Lowengrub (2005), where we define

ΩO = Ωcomp\(Ω ∪ ΩH) to be the far field tissue and set

1
∆x2

u(xi) =
1

∆x2
uO, x ∈ ΩO. (4.60)

This dimension-by-dimension discretization allows the use of the same method in both 2D

and 3D problems, transforms the difficult problem of solving a diffusional problem on an

127



arbitrary domain to the simpler problem of diffusion on a rectangle, and is easy to extend

to greater accuracy.

In our testing, we found this method to be second-order accurate. (See Section 4.3.2

for convergence testing results.) We are investigating the numerical smearing of tangential

jumps in α∇u, but our technique is currently the state-of-the art in solving Poisson-like

systems on arbitrary evolving domains when using the ghost fluid approach. An alternative

approach for overcoming the tangential smearing problem is the immersed interface method,

which requires the use of local coordinates (based on the normal and tangential directions

of the interface) to modify the discretization (LeVeque and Li, 1994).
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Chapter 5

New Numerical Techniques for the

Study of Tumor Growth in Large,

Heterogeneous Tissues

Chapter Abstract:
In this paper, we present a ghost cell/level set method for the evolution of in-
terfaces whose normal velocity depend upon the solutions of linear and nonlinear
quasi-steady reaction-diffusion equations with curvature-dependent boundary con-
ditions. Our technique includes a ghost cell method that accurately discretizes nor-
mal derivative jump boundary conditions without smearing jumps in the tangential
derivative; a new iterative method for solving linear and nonlinear quasi-steady
reaction-diffusion equations; an adaptive discretization to compute the curvature
and normal vectors; and a new discrete approximation to the Heaviside function.
We present numerical examples that demonstrate better than 1.5-order convergence
for problems where traditional ghost cell methods either fail to converge or attain
at best sub-linear accuracy. We apply our techniques to a model of tumor growth
in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and
a pressure equation with geometry-dependent jump boundary conditions. We simu-
late the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square
of brain tissue that includes heterogeneous nutrient delivery and varied biomechan-
ical characteristics (white and gray matter, cerebrospinal fluid, and bone), and we
observe growth morphologies that are highly dependent upon the variations of the
tissue characteristics–an effect observed in real tumor growth.
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5.1 Introduction

The algorithms we develop in this paper are motivated by our interest in modeling

tumor growth in complex, heterogeneous tissues. Cancer is a fundamental scientific and

societal problem, and in the past several decades, intensive research has been focused on

understanding the complexity of cancer progression, developing new therapies, and formu-

lating optimal treatment protocols. While much work has been done in the mathematical

community on tumor modeling (e.g., see the reviews by Adam (1996), Bellomo et al. (2003),

Araujo and McElwain (2004a), Byrne et al. (2006), Sanga et al. (2006), and Quaranta et al.

(2005)), to date there has been little work in modeling tumor growth in realistic, heteroge-

neous tissues on large spatial scales. The methods we present this paper will provide the

foundation for a biologically-detailed millimeter-to-centimeter-scale model of tumor growth

in heterogeneous tissues with realistic features (e.g., mechanically soft and hard regions,

bone, and inhomogeneous nutrient delivery) (Macklin et al., 2007; Frieboes et al., 2007;

Lowengrub and Macklin, 2007; Macklin, 2007). However, the methods described in this

paper have applications beyond the tumor growth context and can be applied to general

systems of linear and nonlinear quasi-steady reaction-diffusion problems on moving, hetero-

geneous domains.

In previous work (Macklin, 2003; Macklin and Lowengrub, 2005, 2006, 2007), we investi-

gated simpler models of tumor growth using a level set/ghost fluid method that we developed

in Macklin (2003) and Macklin and Lowengrub (2005); our technique tested second-order

accurate when applied to interior problems, including the tumor growth model. (Hereafter,

we refer to ghost fluid methods as ghost cell methods to emphasize that they have applica-

tions beyond fluid mechanics.) In Macklin and Lowengrub (2006), we improved the accuracy

and robustness of level set-based curvature calculations in cases where two interfaces are

in close contact, and we extended our approach to the two-sided problem in Macklin and

Lowengrub (2007). However, this work still smeared any jumps in the tangential deriva-

tive across the interface, assumed homogeneous tumor microenvironments (with piecewise

constant biophysical parameters) and was not capable of simulating growth into complex

tissue structures. We note that Zheng et al. (2005) and Hogea et al. (2006) have also used

level set methods to study tumor growth and angiogenesis, but this work also assumed ho-

mogeneous tissues and used lower-order accurate level set methods. Frieboes et al. (2006a,

2007) and Wise et al. (2006) have begun studying 3D tumor growth using a diffuse interface
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approach, while others have begun studying the tumor problem using multiphase mixture

models (e.g., see Ambrosi and Preziosi (2002), Byrne and Preziosi (2003), and Chaplain

et al. (2006)). Still others use discrete models, such as cellular automata and agents (e.g.,

see Abbott et al. (2006), Anderson et al. (2006), and Byrne et al. (2006) for some recent

examples).

In this paper, we present a ghost cell/level set method for the evolution of inter-

faces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady

reaction-diffusion equations with curvature-dependent boundary conditions. We introduce

a new normal derivative jump discretization for the ghost cell method that accurately dis-

cretizes the jump without numerically smearing any tangential derivative jump. In this

approach, the normal jump is written as a combination of two grid-aligned jumps that are

easier to compute. This addresses a longstanding problem with the ghost cell method, and

in numerical testing, our extended ghost cell method achieves better than 1.5-order accu-

racy in cases where the traditional normal derivative jump stencil either fails to coverge

or attains sub-first-order accuracy, regardless of mesh refinement. We also present a new

adaptive normal vector calculation that allows us to robustly calculate appropriate nor-

mal vectors even in the presence of multiple, non-convex regions; we use this new adaptive

normal vector discretization in our improved ghost cell method.

To solve nonlinear quasi-steady reaction-diffusion equations on large domains, we de-

velop a nonlinear adaptive Gauss-Seidel-type iterative method (NAGSI) that can solve both

linear and nonlinear problems using a localized update on a regular Cartesian mesh and

is fully compatible with ghost cell extrapolations. NAGSI is an adaptive solution method

that uses a dynamic selection criterion to focus computational effort without the need for a

complex adaptive mesh. We find that NAGSI is second-order accurate when used to solve

a variety of linear and nonlinear problems, and its adaptivity achieves between a 10% and

50% reduction in computational time.

We apply these techniques to nonlinear moving boundary problems where the velocity

of the boundary depends upon the gradients of linear and nonlinear quasi-steady reaction-

diffusion equations. When testing on a modified Hele-Shaw flow problem, our overall method

demonstrates second-order accuracy. In the Hele-Shaw type problem, we simulate a growing

drop of incompressible fluid in a medium with heterogeneous permeability; the drop grows

preferentially in the regions of highest permeability. We also apply the techniques developed

in this paper to model the growth of glioblastoma (an aggressive brain tumor) in a large
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(1 cm × 1 cm), heterogeneous section of brain tissue, including white and gray matter with

differing biomechanical properties, cerebrospinal fluid, and bone. The numerical advances

presented in this paper enabled us to solve this complex problem in a short period of time

(under 24 hours of computation) while observing new behavior, such as preferential growth

of the tumor in regions of reduced biomechancial resistance.

The outline of this paper is as follows. In Section 5.2, we introduce the general system

of quasi-steady, linear and nonlinear reaction-diffusion equations that we solve on moving

domains. In Section 5.3, we discuss the level set method, present our techniques for ro-

bustly and accurately calculating geometric quantities (i.e., curvature and normal vectors),

introduce the ghost cell method, present our new normal derivative jump discretization

that preserves the tangential derivative jump, and introduce our nonlinear adaptive Gauss-

Seidel-type iterative (NAGSI) scheme for solving linear and nonlinear quasi-steady reaction-

diffusion equations. We close Section 5.3 by combining these techniques to solve the general

system presented in Section 5.2. In Section 5.4, we test the numerical convergence of our

new ghost cell method using the new normal derivative jump discretization and the NAGSI

solver, as well as our overall technique. In Section 5.5, we present examples derived from

Hele-Shaw flow in a heterogeneous material and tumor growth in a complex, heterogeneous

simulated tissue. We discuss our results and future work in Section 5.6.

5.2 The Equations for the Quasi-Steady Reaction-Diffusion

System

We wish to solve systems of (potentially nonlinear) quasi-steady reaction-diffusion equa-

tions on a domain D that is divided into two subdomains Ω(t) and Ωc(t) by a moving in-

terface Σ(t). See Figure 5.1. The interface Σ(t) evolves with a velocity that depends upon

the gradients of these solutions. That is, we solve for a system of functions p1, p2, . . . , pk on

D that satisfy equations of the form

0 = ∇ · (Di(x, t, pi)∇pi) + fR,i (x, t, p1, · · · , pi) pi

+fS,i (x, t, p1, · · · , pi)
(5.1)

on D\Σ, coupled with jump boundary conditions

[pi] = gi (5.2)

[Di∇pi · n] = hi (5.3)
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Figure 5.1: Regions for the general nonlinear quasi-steady reaction-diffusion moving bound-
ary system.

on Σ and either Dirichlet, Neumann, or extrapolation (extrapolated from the interior of the

domain) boundary conditions on ∂D. Here, n is the outward unit normal vector (pointing

into Ωc), and we define a jump in a quantity q at a point xΣ ∈ Σ by

[q(x)] = qin − qout

= lim
Ω3x→xΣ

q (x)− lim
Ωc3x→xΣ

q (x) . (5.4)

In the case where gi = 0 and hi = 0, this reduces to a regular (linear or nonlinear) diffusion

problem throughout the domain D.

The interfacial outward normal velocity V is given by

V =
k∑

i=1

αi∇pi · n. (5.5)

5.3 Numerical Solution Techniques

Before discussing our solution technique for the overall system, we introduce the key

methods that will be required. Our overall technique is centered around a level set/ghost cell

method which we first developed for a tumor growth problem in Macklin (2003), Macklin

and Lowengrub (2005), Macklin and Lowengrub (2006), and Macklin and Lowengrub (2007).

For completeness, we shall describe the overall approach, with a focus on new improvements

in the method.
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5.3.1 Narrow Band/Local Level Set Method

Level set methods were first developed by Osher and Sethian (1988) and have been

used to study the evolution of moving surfaces that experience frequent topology changes

(e.g., merger of regions and fragmentation), particularly in the contexts of fluid mechanics

and computer graphics. (See the books by Sethian (1999) and Osher and Fedkiw (2002)

and the references by Osher and Sethian (1988), Osher and Fedkiw (2001), and Sethian and

Smereka (2003).) In the level set method, the location of a region Ω is captured implicitly

by introducing an auxilliary signed distance function ϕ that satisfies




ϕ(x) < 0 x ∈ Ω

ϕ(x) = 0 x ∈ Σ = ∂Ω

ϕ(x) > 0 x ∈ Ωc

|∇ϕ(x)| ≡ 1.

(5.6)

In the level set approach, instead of explicitly tracking the position of interface Σ and

manually handling topology changes, the level set function is updated by solving a PDE,

which automatically accounts for the interface motion and all topology changes. If V is

the outward normal velocity of the interface, then we update the position of the interface

implicitly via

ϕt + Ṽ |∇ϕ| = 0, (5.7)

where Ṽ is an extension of V off of the interface. The extension Ṽ is often obtained using a

Hamilton-Jacobi PDE. (e.g., see Zhao et al. (1996) and Adalsteinsson and Sethian (1999).)

The fast marching method developed by Adalsteinsson and Sethian (1999) constructs an

extension Ṽ while simultaneously reinitializing the level set function using an ordered se-

quence of discrete operations, but is only first-order accurate. In Macklin and Lowengrub

(2005) we developed a bilinear extension technique that is both faster and more accurate

than the traditional, PDE-based approach.

Solving (5.7) can introduce numerical error into the level set function that perturbs it

away from being a distance function, even for special choices of Ṽ that are constant in the

normal direction from the interface (Adalsteinsson and Sethian, 1999; Sethian, 1999) and

thereby preserve distance functions. This is compensated for by reinitializing the level set

function at regular intervals by solving

ϕτ = sign(ϕ0) (1− |∇ϕ|) (5.8)

134



to steady state (Peng et al., 1999; Sussman and Fatemi, 1999). Here, τ is pseudo-time, and

ϕ0 is the original level set function prior to the reinitialization.

We discretize the spatial operator |∇ϕ| in (5.7) and (5.8) using the fifth-order weighted

essentially non-oscillatory (WENO) method (Jiang and Shu, 1996; Jiang and Peng, 2000),

and we discretize pseudo-time in (5.8) using the third-order total variation-diminishing

Runge-Kutta method (TVD-RK) from Gottlieb and Shu (1997) and Gottlieb et al. (2001).

Due to the computational cost and the complexity of our tumor system, we currently

discretize time in (5.7) using a forward Euler algorithm and a small step size. We discretize

the sign function as in Sussman and Fatemi (1999).

Lastly, because the primary purpose of a level set function is to track the position of

the interface Σ over time, its accuracy is most important on and near the interface. To find

the best compromise between accuracy and computational efficiency, we seek to update ϕ

only as much as is necessary to accurately advect the interface. This can be done using

the narrow band/local level set technique (Malladi et al., 1996; Peng et al., 1999). Given

an initialized level set function ϕ, only the points that fall within a fixed distance of the

interface are updated during level set operations (e.g., velocity extensions and level set

reinitialization). In the level set context, the narrow band can be identified by

{x : |ϕ(x)| ≤ R} , (5.9)

where R > 0 is a fixed constant that is chosen to suit the problem. In our work with the

tumor problem, we use R = 20∆x. In some cases, we shall use a semiband {x : ϕ(x) ≤ R}.

5.3.2 Calculating Geometric Quantities

One of the advantages of the level set method is that the level function encodes all the

geometric information. In particular, the outward-facing normal vector n is given by

n =
∇ϕ

|∇ϕ| , (5.10)

and the mean curvature can be computed via

κ = ∇ · n = ∇ ·
( ∇ϕ

|∇ϕ|
)

. (5.11)

As we noted and used in Macklin and Lowengrub (2005) and Macklin and Lowengrub (2006),

the level set function can also be used to estimate the closest point xΣ = (xΣ, yΣ) on the
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Figure 5.2: Two interfaces in close contact: Points along the central dashed line are equidis-
tant from both interfaces, resulting in discontinuities in the level set derivatives. The level
set function ϕ tends to be an inaccurate approximation of a distance function and irregular
in the adjacent gray areas.

interface to a given point x = (x, y) by

xΣ = x− ϕ(x)n(x). (5.12)

These geometric quantities can readily be calculated at computational grid points using

standard centered differences. If a geometric quantity (e.g., curvature) is desired at a non-

grid point x′, then we calculate the geometric quantity at nearby node points and interpolate

to find the desired quantity at x′ (Macklin, 2003; Macklin and Lowengrub, 2005, 2006). In

our work, we have generally used bicubic interpolation (or cubic interpolation when x′ lies

on a grid edge but not on a computational grid point).

However, as we demonstrated in Macklin (2003) and Macklin and Lowengrub (2005),

the level set function can develop discontinuities in its derivatives in regions that are equidis-

tant from multiple portions of the interface. Furthermore, advecting and reinitializing the

level set function tends to introduce error into the regions near these irregularities. This

can lead to difficulty when computing normal vectors and curvature when two interfaces

are in close contact, introducing inaccuracy into the geometric quantities. See Figure 5.2.

In Macklin and Lowengrub (2006), we introduced a new, geometry-aware curvature

discretization to automatically detect and accurately deal with this scenario. To calculate

the curvature κ at a point xΣ = (xΣ, yΣ) on the interface, recall that we need to compute

and interpolate the curvature κi,j at nearby computational node points. Using the level set
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quality function

Q(x) = |1− |∇ϕ (x)|| (5.13)

that we first defined in Macklin (2003) and Macklin and Lowengrub (2005), we detected

level set irregularity whenever Q ≥ η for some threshold η > 0. (In our work, we have

generally used η ∼ 0.001.) To calculate the curvature κi,j at a computational node point

(xi, yj), we evaluated Q at each of the nine grid points in {(xi+k, jj+`) : −1 ≤ k, ` ≤ 1}. If

Q < η at each of these points, then the level set function was deemed sufficiently smooth

to calculate the curvature κi,j using the standard 9-point curvature stencil




ϕx ≈ ϕi+1,j−ϕi−1,j

2∆x ϕy ≈ ϕi,j+1−ϕi,j−1

2∆y

ϕxx ≈ ϕi−1,j−2ϕi,j+ϕi+1,j

∆x2 ϕyy ≈ ϕi,j−1−2ϕi,j+ϕi,j+1

∆y2

ϕxy ≈ ϕi+1,j+1−ϕi−1,j+1−ϕi+1,j−1+ϕi−1,j−1

4∆x∆y

κi,j ≈ ϕxxϕ2
y−2ϕxϕyϕxy+ϕyyϕ2

x

(ϕ2
x+ϕ2

y)
3
2

,

(5.14)

which is second order accurate where the level set function is smooth (Macklin, 2003; Mack-

lin and Lowengrub, 2005). If we could calculate the curvature κi,j at enough nearby points to

compute a bicubic or bilinear interpolation at xΣ, then we used that interpolated curvature

value.

If Q > η at one of the points on the stencil, we constructed a positively-oriented local

approximation of the interface γ(s) = (x(s), y(s)) by finding five points {xk = (xk, yk)}2
k=−2

with x0 = xΣ on the interface and calculating a quadratic least squares polynomial fit.

After adjusting γ to ensure that γ(0) = xΣ, we then used γ to construct a local level set

function that effectively removed the influence of the nearby irregularity, which we could

then discretize using the standard 9-point stencil. In our numerical testing, this geometry-

aware, adaptive curvature discretization was second order accurate, even during periods of

topological change such as the merger of drops in modified Hele-Shaw flow (Macklin and

Lowengrub, 2006). In more recent testing, we have found that so long as γ is a least squares

quadratic or cubic polynomial fit and not a direct interpolation of the five points xk on the

interface, it can be differentiated directly to compute the curvature.

We now extend this technique to calculate normal vectors. Suppose we desire the

normal vector at a computational node point (xi, yj). If the level set is sufficiently smooth

at the four points of {(xi−1, yj), (xi, yj−1), (xi+1, yj), (xi, yj+1)} (i.e., Q < η at those points),
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then we use the standard normal vector discretization




ϕx ≈ ϕi+1,j−ϕi−1,j

2∆x

ϕy ≈ ϕi,j+1−ϕi,j−1

2∆y

n ≈ 1√
ϕ2

x+ϕ2
y+ε

(ϕx, ϕy) ,

(5.15)

where ε is a small positive number used to avoid division by zero; we use ε ∼ 10−16 in our

work.

Otherwise, we identify the closest point on the interface xΣ by (5.12), construct the

approximating curve γ(s) = (x(s), y(s)) through xΣ as in the adaptive curvature algorithm,

and directly differentiate the curve to determine the unit tangent and outward normal

vectors:

s =
γ′(0)
||γ′(0)|| =

1√
(x′(0))2 + (y′(0))2

(
x′(0) , y′(0)

)
(5.16)

n =
1√

(x′(0))2 + (y′(0))2

(
y′(0) , −x′(0)

)
. (5.17)

We have found that both quadratic and cubic least squares polynomial fits are suffi-

ciently smooth for this direct differentiation of the normal and tangent vectors.

5.3.3 The Ghost Cell Method

We wish to solve quasi-steady reaction-diffusion problems of the form




0 = ∇ · (D(x)∇p) + fR(x)p + fS(x) x ∈ Ω ∪ Ωc

[p] = g x ∈ Σ

[D∇p · n] = h x ∈ Σ,

(5.18)

coupled with standard (e.g., Dirichlet, Neumann, or extrapolation) boundary conditions on

∂D.

Standard finite differences cannot be applied across the interface due to the jump

boundary conditions across Σ. The ghost cell method was developed to deal with this

issue when solving elliptic problems by creating “ghost” computational points and using

those ghost points in standard finite difference discretizations (Glimm et al., 1981; Fedkiw

et al., 1999; Liu et al., 2000; Gibou et al., 2002, 2003). In Macklin (2003) and Macklin and

Lowengrub (2005), we extended the ghost cell method to attain second-order accuracy on

interior problems (i.e., p is constant in Ωc) with boundary conditions that depend upon
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the geometry (e.g., curvature) and without a jump condition on the normal derivative.

A similar extension to the ghost cell method was presented in Gibou and Fedkiw (2005)

to solve Laplace’s equation without geometric boundary conditions and yielded fourth-

order convergence on fixed domains and third-order convergence on moving boundaries.

In Macklin and Lowengrub (2007), we extended our approach to solve systems like (5.18)

in the case where h = 0 and D was constant in Ω and Ωc (with different constants). We

applied the method to model avascular tumor growth in Macklin and Lowengrub (2007) and

verified second-order accuracy for our overall solutions, although our method numerically

smeared jumps in the tangential derivative. In the following section, we present our new

ghost cell scheme, which includes a new technique for discretizing the normal derivative

jump condition without smearing the tangential derivative jump.

Alternative approaches for overcoming the tangential smearing problem include the im-

mersed interface method (IIM) (LeVeque and Li, 1994) and the matched interface boundary

(MIB) method (Zhou et al., 2006; Zhou and Wei, 2006; Yu et al., 2007). The IIM requires

the use of local coordinates (based on the normal and tangential directions of the inter-

face) to properly discretize the normal derivative jump. The MIB method is a high-order

generalization of the IIM and the ghost cell method that constructs elaborate extensions

of the solution to several ficticious points on both sides of the interface; the extensions

are designed to explicitly satisfy [p], [∂p/∂s], and [D∂p/∂n] simultaneously. The ghost cell

method has several advantages over these alternatives. Because the method is applied in a

dimension-by-dimension manner, it is simple to implement and can be trivially extended to

higher dimensions. Its accuracy can easily be improved by using higher-order extrapolations

on each side of the interface. Like the MIB method, our new ghost cell method satisfies

the normal derivative jump boundary condition without smearing the tangential derivative

jump, but it retains the dimension-by-dimension aspect of the ghost cell method and does

not require the explicit treatment of the tangential derivative jump. It is also much simpler

to implement and can be incorporated into existing ghost cell frameworks.

Ghost Cell Extrapolations for the Diffusional Term

Suppose we wish to discretize the x-derivative of ∇·(D(x)∇p) at a computational node

point x = (xi, yj), and assume that D is C1 with respect to x throughout Ω and Ωc. (The

diffusion constant may be discontinuous across the interface Σ; this case is treated below.)
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Figure 5.3: A typical ghost cell extrapolation p̂i+1. Particular care must be taken to satisfy
[p] = g and [D∇p · n] = h without numerically smearing any tangential derivative jump
[∇p · s].

If (xi−1, yj), (xi, yj), and (xi+1, yj) are all in the same region, i.e.,

ϕi−1,j ≤ 0, ϕi,j ≤ 0, and ϕi+1,j ≤ 0, (5.19)

or

ϕi−1,j > 0, ϕi,j > 0, and ϕi+1,j > 0, (5.20)

then we can use the standard second-order discretization

∂x (D(x)px) ≈ 1
∆x2

(
D−

x pi−1,j −
(
D−

x + D+
x

)
pi,j + D+

x pi+1,j

)

D−
x = D

(
xi − 1

2
∆x, yj

)

D+
x = D

(
xi +

1
2
∆x, yj

)
. (5.21)

Suppose, however, that (xi, yj) and (xi+1, yj) are not in the same region. Assume

without loss of generality that (xi, yj) ∈ Ω and (xi+1, yj) ∈ Ωc; the case where (xi, yj) ∈ Ωc

and (xi+1, yj) ∈ Ω is treated similarly. Then the interface Σ must separate (xi, yj) and

(xi+1, yj) at some point

xΣ = (xΣ, yj) = (xi + θ∆x, yj), (5.22)

where 0 < θ ≤ 1. In this scenario, we must modify our computational stencil by extending

the solution in Ω to a “ghost cell point” p̂i+1,j in the other region; we replace pi+1,j in (5.21)

with the extrapolation p̂i+1,j . See Figure 5.3. If (xi−2, yj) and (xi−1, yj) are both in Ω, then
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we obtain p̂i+1,j as a quadratic extrapolation of p from pi−2,j , pi−1,j , and u`:

p̂i+1,j =
2(1− θ)
2 + θ

pi−2 − 3(1− θ)
1 + θ

pi−1 +
6

(1 + θ)(2 + θ)
p`. (5.23)

If (xi−1, yj) ∈ Ω but (xi−2, yj) /∈ Ω, then we obtain p̂i+1,j by linear extrapolation from

pi−1,j and p`:

p̂i+1,j =
−(1− θ)

1 + θ
pi−1,j +

2
1 + θ

p`. (5.24)

If (xi−1, yj) /∈ Ω, then we use the constant extrapolation p̂i+1,j = p`. Note that in all

cases, we require p`. In the ghost cell approach, p` is determined by the jump boundary

conditions. We shall return to this point in the next section.

If D is continuous across the interface Σ, then D+
x may be used in the ghost cell

approximation without modification. If D is discontinuous across Σ, then we replace it

with an extension D̂+
x in a manner analogous to p̂i+1,j . Suppose that D is defined at

computational node points. If (xi−2, yj) and (xi−1, yj) are both in Ω, then we use quadratic

extrapolation:

D̂+
x =

3
8
Di−2,j − 5

4
Di−1,j +

15
8

Di,j . (5.25)

If (xi−1, yj) ∈ Ω but (xi−2, yj) /∈ Ω, then we use linear extrapolation from Di−1,j and Di,j :

D̂+
x = −1

2
Di−1,j +

3
2
Di,j . (5.26)

If (xi−1, yj) /∈ Ω, then we use constant extrapolation D̂+
x = Di,j .

The case where we require a ghost cell extrapolation p̂i−1,j is completely analogous, and

the y-derivative is discretized in exactly the same manner. To apply the method to a 3-D

problem, we need only repeat the process separately for the z-derivative term ∂z (D(x)pz).

Determining p` from the Jump Boundary Conditions

As we have seen, the ghost cell extrapolations require p`. At the same time, the

jump boundary conditions have not yet been applied to the scheme. By introducing the

jump boundary conditions into the ghost cell extrapolation, we can simultaneously satisfy

the jump conditions while eliminating p` from the extrapolation, instead expressing the

discretization solely in terms of computational node points.

First, we discretize the jump boundary condition by

p` − pr = −sign(ϕi,j)g(xΣ). (5.27)
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The −sign(ϕi,j) term ensures that the jump condition has been applied in the proper di-

rection from region Ω to region Ωc.

This introduces an additional, non-grid point pr into our calculation. However, by

considering the normal derivative jump condition, we shall have two equations for p` and pr,

allowing us to completely eliminate them from the extrapolation. The proper discretization

of the normal derivative jump [D∇p · n] across the interface has been an open problem since

the introduction of the ghost cell method for the Poisson problem (Fedkiw et al., 1999; Liu

et al., 2000; Gibou et al., 2002). Suppose that we wish to discretize [D∇p · n] at the point

xΣ = (xΣ, yj) = (xi + θ∆x, yj) from the preceding discussion. In Liu et al. (2000), the

normal derivative jump was discretized as

[D∇p · n] =
(

D
∂p

∂n

)

`

−
(

D
∂p

∂n

)

r

≈ D`
p` − pi,j

θ∆x
−Dr

pi+1,j − pr

(1− θ)∆x
, (5.28)

where

Dr = lim
ζ↓x+θ∆x

D (ζ, yj) , D` = lim
ζ↑x+θ∆x

D (ζ, yj) ,

pr = lim
ζ↓x+θ∆x

p (ζ, yj) , and p` = lim
ζ↑x+θ∆x

p (ζ, yj) . (5.29)

Notice that this is equivalent to assuming that the normal vector cuts the computational

mesh at a right angle (i.e., n = (1, 0)), potentially leading to numerical smearing of any

jump in the tangential derivative. Furthermore, if θ ∼ 0 or θ ∼ 1, then the discretization

can be unstable due to the uneven spacing of the stencil points. See the left frame in

Figure 5.4. In numerical testing in Liu et al. (2000), this stencil was less than first-order

accurate due to the low order of the discretization (first-order left and right differences of

the derivative), coupled with the numerical smearing of the tangential derivatives.

In Macklin and Lowengrub (2007), we introduced a new discretization for the normal

derivative jump in the case where [D∇p · n] = 0:

[D∇p · n] ≈ D`
p` − pi−1,j

(1 + θ)∆x
−Dr

pi+2,j − pr

(2− θ)∆x
. (5.30)

This discretization guarantees that all three stencil points (xi−1, yj), (xΣ, yj), and (xi+1, yj)

are at least ∆x apart and consequently solves the stability problem. However, the discretiza-

tion still numerically smears any jump in the tangential derivative because it approximates

the normal vector as n = (1, 0). See the right frame in Figure 5.4.
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Figure 5.4: Left: The traditional, unstable stencil for [D∇p · n] from Liu et al. (2000).
Right: Our stablized extension of this stencil from Macklin and Lowengrub (2007).

We now introduce a new normal derivative jump discretization that eliminates the

numerical smearing of the jump in the tangential derivative. Let n = (nx, ny), and suppose

that nx · ny ≥ 0, i.e., the normal vector faces up and right or down and left. Assuming no

additional nearby interfaces (so that all right and left points are contained within the same

regions), we begin by defining

ur = (xi+2 − xΣ, 0) = ((2− θ)∆x, 0) ,

vr = (xi+1 − xΣ, yj+1 − yj) = ((1− θ)∆x,∆y) ,

u` = (xi−1 − xΣ, 0) = (−(1 + θ)∆x, 0) , and

v` = (xi − xΣ, yj−1 − yj) = (−θ∆x,−∆y) .

(5.31)

See the left frame in Figure 5.5.

Figure 5.5: Our new first-order (left) and higher-order (right) computational stencils for
the normal derivative jump [D∇p · n].

143



Because ur and vr are linearly independent, they form a basis for R2, and we can write

n = arur + brvr, (5.32)

where ar and br are obtained by solving the linear system

(ur · ur) ar + (vr · ur) br = (n · ur)

(ur · vr) ar + (vr · vr) br = (n · vr) .
(5.33)

Using this, we can express (∂p/∂n)r as a combination of grid (ur) and off-grid (vr)

directional derivatives:
(

∂p

∂n

)

r

= (∇p)r · n
= ar (∇p)r · ur + br (∇p)r · vr

= ar ||ur|| (∇p)r ·
ur

||ur|| + br ||vr|| (∇p)r ·
vr

||vr||
= ar ||ur||

(
∂p

∂ (ur/ ||ur||)
)

r

+ br ||vr||
(

∂p

∂ (vr/ ||vr||)
)

r

, (5.34)

where

||ur|| = (2− θ)∆x, ||vr|| =
√

(1− θ)2∆x2 + ∆y2. (5.35)

Using one-sided, first-order differences, we obtain the approximation
(

∂p

∂n

)

r

≈ ar ||ur|| (pi+2,j − pr)
||ur|| + br ||vr|| (pi+1,j+1 − pr)

||vr||
= ar (pi+2,j − pr) + br (pi+1,j+1 − pr) . (5.36)

Similarly, u` and v` form a basis for R2, and we can express

n = a`u` + b`v`, (5.37)

rewrite the normal derivative as
(

∂p

∂n

)

`

= a` ||u`||
(

∂p

∂ (u`/ ||u`||)
)

`

+ b` ||u`||
(

∂p

∂ (v`/ ||v`||)
)

`

, (5.38)

and approximate it (to first-order) as
(

∂p

∂n

)

`

≈ a` (pi−1,j − p`) + b` (pi,j−1 − p`) . (5.39)
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By combining (5.36) and (5.39), we obtain a new discretization of [D∇p · n] = h:

[D∇p · n] ≈ D`

(
a` (pi−1,j − p`) + b` (pi,j−1 − p`)

)

−Dr

(
ar (pi+2,j − pr) + br (pi+1,j+1 − pr)

)

= −sign(ϕi,j)h(xΣ). (5.40)

When we combine this with the jump condition in (5.27), p` and pr are completely

determined. In practice, we implement this new discretization in the following way:

1. We construct 2 × 2 linear systems for ar and br and and a` and b` and solve them

exactly using the standard inversion for 2× 2 systems.

2. We construct a 2×2 linear system for pr and p` using the jump condition for p`−pr and

the normal derivative jump discretization in (5.40). We solve this linear system for p`

and pr using the standard 2× 2 inversion and use p` in the ghost cell discretization.

The case where nx · ny < 0 is similar: we replace pi+1,j+1 by pi+1,j−1 in vr, and we

replace pi,j−1 by pi,j+1 in vr. All other calculations are identical. The case of discretizing

[D∇p · n] at a point (xi − θ∆x, yj) is completely analogous, and the discretization in the

y-direction is identical. In the 3-D case, we would proceed similarly by defining third basis

vectors such as

wr = (xi+1 − xΣ, 0, zk+1 − zk) =
(
(1− θ)∆x, 0, ∆z

)
,

w` = (xi − xΣ, 0, zk−1 − zk) =
(
−θ∆x, 0,−∆z

)
.

(5.41)

This method has several advantages. In the spirit of the ghost cell method, the new

stencil can be expressed entirely in terms of computational grid points and the jump inter-

face location. Furthermore, the discretization can be applied in a dimension-by-dimension

manner, just as in existing ghost cell methods. The implementation is simple and can be

readily substituted into existing code in place of previous normal discretizations. Because

the stencil discretizes D∂p/∂n in the true direction of the normal vector, it should result in

more accurate numerical solutions with less numerical smearing of the tangential derivative

jump. (Indeed, we shall verify that our method is first-order accurate, even in situations

where the discretization by Liu et al. (2000) fails to converge; the discretization we present

in the next section attains above-1.5-order accuracy.) Lastly, we note that if n = (1, 0) or

n = (−1, 0), then the normal derivative jump discretization in (5.40) simplifies to (5.30).

This further illustrates the point that earlier discretizations of the normal derivative jump

were equivalent to assuming that the interface cuts the computational grid at a right angle.
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Higher-Order Approximations of [D∇p · n]

By using additional stencil points (with the same definitions of u`, ur, v`, and vr),

we can improve the accuracy of the normal derivative jump discretization. If (xi+1, yj),

(xi+2, yj), and (xi+3, yj) are all in the same region, we can replace the grid-aligned partial

derivative in (5.34) with the second-order approximation
(

∂p

∂ (ur/ ||ur||)
)

r

≈ −(5 + 2θ)
(2− θ)(3− θ)∆x

pr +
(3− θ)

(2− θ)∆x
pi+2,j

− (2− θ)
(3− θ)∆x

pi+3,j . (5.42)

See the right frame of Figure 5.5.

Similarly, if (xi, yj), (xi−1, yj), and (xi−2, yj) are all in the same region, then we can

replace the grid-aligned partial derivative in (5.38) with the second-order approximation
(

∂p

∂ (u`/ ||u`||)
)

`

≈ − (1 + θ)
(2 + θ)∆x

pi−2,j +
(2 + θ)

(1 + θ)∆x
pi−1,j

− (3 + 2θ)
(1 + θ)(2 + θ)∆x

p`. (5.43)

Because v` and vr generally do not intersect the computational mesh at grid points,

interpolation of nearby grid points is required to improve the accuracy of the off-grid direc-

tional derivatives in (5.34) and (5.38).

If (xi+1, yj), (xi+1, yj+1), (xi+1, yj+2), and (xi+2, yj+2) are all in the same region, then

we can replace the off-grid directional derivative in (5.34) by the higher-order approximation
(

∂p

∂ (vr/ ||vr||)
)

r

≈ − 3
2 ||vr||pr +

2
||vr||pi+1,j+1

− 1
2 ||vr|| [θpi+1,j+2 + (1− θ)pi+2,j+2], (5.44)

where the bracketed term is a linear interpolation to obtain a point along the path of vr.

See the right frame of Figure 5.5.

Similarly, if (xi, yj), (xi, yj−1), (xi, yj−2), and (xi−1, yj−2) are all in the same region,

then we can improve our approximation of the off-grid derivative in (5.38) with
(

∂p

∂ (v`/ ||v`||)
)

`

≈ − 3
2 ||v`||p` +

2
||v`||pi,j−1

− 1
2 ||v`|| [(1− θ)pi,j−2 + θpi−1,j−2]. (5.45)
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Putting all this together, the higher-order discretization of [D∇p · n] = h is given by

[D∇p · n] ≈ D`a`

(
−(1 + θ)2

(2 + θ)
pi−2,j + (2 + θ)pi−1,j − (3 + 2θ)

(2 + θ)
p`

)

+D`b`

(
−3

2
p` + 2pi,j−1 − 1

2

[
(1− θ)pi,j−2 + θpi−1,j−2

])

−Drar

(−(5 + 2θ)
(3− θ)

pr + (3− θ)pi+2,j − (2− θ)2

(3− θ)
pi+3,j

)

−Drbr

(
−3

2
pr + 2pi+1,j+1 − 1

2

[
θpi+,j+2 + (1− θ)pi+2,j+2

])

= −sign(ϕi,j)h (xΣ) . (5.46)

In principle, all these partial differences can be made more accurate still by using

additional node points. In particular, one could use quadratic or cubic interpolations in the

off-grid directional derivative differences.

5.3.4 NAGSI: a Nonlinear Adaptive Gauss-Seidel type Iterative method

for solving Nonlinear Quasi-Steady Reaction-Diffusion Equations

We now develop a fully-nonlinear, adaptive method to solve the nonlinear reaction-

diffusion equation

0 = ∇ · (D (x, p)∇p) + fR (x, p) p + fS (x, p) , x ∈ D, (5.47)

where D is a rectangular domain in Rn and standard boundary conditions (e.g., Neumann,

Dirichlet, or extrapolation) have been assigned. Here, fR and fS are the reaction and source

terms, respectively. Without loss of generality, we assume that fR ≤ 0; if this condition is

not satisfied, then the positive part of fR p can be rewritten as part of the source term fS .

The diffusivity D is assumed to be smooth and strictly positive. For simplicity, we shall

consider the 2-D case where D = [a, b]× [c, d]; the n-D case is completely analogous.

To solve (5.47), we solve the related equation

∂p

∂τ
= ∇ · (D (x, p)∇p) + fR (x, p) p + fS (x, p) (5.48)

to steady state, where τ is pseudo-time. For numerical stability, we begin by implicitly

discretizing pseudo-time with a backwards Euler difference, lagging the dependence of D, fR,

and fS on p, and applying the standard second-order centered difference to the diffusional

term:

pn+1
i,j − pn

i,j

∆τ
=

1
∆x2

(
D−

x pn+1
i−1,j −

(
D−

x + D+
x

)
pn+1

i,j + D+
x pn+1

i+1,j

)
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+
1

∆y2

(
D−

y pn+1
i,j−1 −

(
D−

y + D+
y

)
pn+1

i,j + D+
y pn+1

i,j+1

)

+fR (xi, p
n
i ) pn+1

i + fS (xi, p
n
i ) +O (

∆τ + ∆x2 + ∆y2
)
,

D−
x = D

(
xi − 1

2
∆x, yj ,

1
2

(
pn

i−1,j + pn
i,j

))
,

D+
x = D

(
xi +

1
2
∆x, yj

1
2

(
pn

i,j + pn
i+1,j

))
,

D−
y = D

(
xi, yj − 1

2
∆y,

1
2

(
pn

i,j−1 + pn
i,j

))
,

D+
y = D

(
xi, yj +

1
2
∆y,

1
2

(
pn

i,j + pn
i,j+1

))
. (5.49)

Here, pn
i,j = p (xi, yj , τn), xi = a + i∆x, yj = c + j∆y, τn = n∆τ , and ∆x, ∆y and ∆τ are

spatial and pseudo-temporal discretization step sizes, respectively.

This system has the form

A (x,pn)pn+1 = b (x,pn) (5.50)

which can be solved to steady state by constructing the operator A (x,pn) and right-hand

side b (x,pn) and solving the linear system in (5.50) with an iterative method (e.g., BiCG-

Stab(`) from Sleijpen et al. (1994)) at every pseudo-time step until the system reaches steady

state. However, constructing these operators may be computationally expensive, making

the method disadvantageous. Furthermore, after some initial large change throughout the

computational domain, the solution may only be rapidly changing on a small subset of the

domain. In such a case, the majority of the computational cost of constructing and solving

a new linear system at every pseudo-timestep will be unnecessary.

By changing the points used in the discretization of ∇·(D∇p), we can make the scheme

semi-implicit. Assuming that we sweep through grid points with increasing i and j:

pn+1
i,j − pn

i,j

∆τ
=

1
∆x2

(
D−

x pn+1
i−1,j −

(
D−

x + D+
x

)
pn+1

i,j + D+
x pn

i+1,j

)

+
1

∆y2

(
D−

y pn+1
i,j−1 −

(
D−

y + D+
y

)
pn+1

i,j + D+
y pn

i,j+1

)

+fR (xi, p
n
i ) pn+1

i + fS (xi, p
n
i ) +O (

∆τ + ∆x2 + ∆y2
)
,

D−
x = D

(
xi − 1

2
∆x, yj ,

1
2

(
pn+1

i−1,j + pn
i,j

))
,

D+
x = D

(
xi +

1
2
∆x, yj

1
2

(
pn

i,j + pn
i+1,j

))
,

D−
y = D

(
xi, yj − 1

2
∆y,

1
2

(
pn+1

i,j−1 + pn
i,j

))
,
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D+
y = D

(
xi, yj +

1
2
∆y,

1
2

(
pn

i,j + pn
i,j+1

))
, (5.51)

which we can solve algebraically for pn+1
i,j based upon known quantities:

pn+1
i,j =

pn
i,j

∆τ +
D+

x pn
i+1,j+D−x pn+1

i−1,j

∆x2 +
D+

y pn
i,j+1+D−y pn+1

i,j−1

∆y2 + fS

(
xi, yj , p

n
i,j

)

1
∆τ + D−x +D+

x
∆x2 + D−y +D+

y

∆y2 − fR

(
xi, yj , pn

i,j

) . (5.52)

Using this, we now introduce a 2-D scheme:

Step 1: Discretize the domain [a, b]× [c, d] by

a = x0, · · · , xi = a + i∆x, · · · , xm = a + m∆x = b (5.53)

c = y0, · · · , yj = c + j∆y, · · · , yn = c + n∆y = d. (5.54)

Step 2: Store an initial guess in the 2-D array p = {pi,j}.

Step 3: Update the boundary points {p0,j , pm,j}n
j=0 and {pi,0, pi,n}m

i=0 according to the

boundary conditions.

Step 4: Choose a tolerance ε, and set r > ε.

Step 5: While r > ε:

Part a: For 1 ≤ i < m and 1 ≤ j < n:

i: Set r = 0.

ii: Calculate pn+1
i,j based upon Equation 5.52.

iii: If ri,j =
∣∣∣pn+1

i,j − pn
i,j

∣∣∣ > r, set r = ri,j .

iv: Overwrite pi,j with the newly calculated pn+1
i,j .

The resulting scheme, which overwrites previous values pn
i,j with updated values pn+1

i,j

while sweeping through the domain, is a nonlinear Gauss-Seidel-like iterative (GSI) method.

To prevent biases (e.g., asymmetry) from the update order, we alternate sweeping directions:

up and right (increasing i and j), then up and left (decreasing i, increasing j), then down

and left (decreasing i and j), and then down and right (increasing i and decreasing j). By

overwriting the current values in the {pi,j} data structure with newly-calculated values, the

proper indexing of the pseudo-time index in the discretization of ∇ · (D∇p) is automatic.

149



There are numerous advantages to this technique. First and foremost, there is no need

to invert a large linear system at every iteration. Second, because the scheme makes use

of updated information while sweeping through the domain (unlike Jacobi-like iterations),

the effects of lagging D, fR, and fS (with respect to pseudo-time) are reduced. Because

(5.52) updates the solution based upon local operations (i.e., it only requires information

on nearby computational nodes), it is parallelizable and simple to implement, particularly

on shared-memory architectures. Lastly, we note that this technique is fully compatible

with the ghost cell method of enforcing jump boundary conditions on irregular domains by

replacing the appropriate point in the stencil with a ghost cell extrapolation. (e.g., replace

pn
i+1,j with p̂n

i+1.j .)

We note that Gauss-Seidel-like iterative methods have been used to solve nonlinear

problems in the past, generally in the context of nonlinear optimization. (e.g., see Hallett

et al. (1996) and Chatterjee and Chong (1997).) The idea of adapting linear iterative meth-

ods to solving nonlinear problems is not new. (e.g., see Vrahatis et al. (2003).) However,

most of those techniques use complicated, block structures, which in themselves require

iterative solutions and are not as well-suited to adaptivity.

Adaptivity

The local nature of our GSI technique allows for a new approach to adaptivity using

a regular Cartesian mesh. On any sweep through the solution domain, as the solution

converges, the numerical solution tends to change most on a small fraction of the computa-

tional nodes. Therefore, we can select computational nodes where the numerical solution is

changing most rapidly and use (5.52) to update only those nodes. The modified, nonlinear

adaptive GSI technique (NAGSI) is as follows:

Step 1: Discretize the domain [a, b]× [c, d] by

a = x0, · · · , xi = a + i∆x, · · · , xm = a + m∆x = b (5.55)

c = y0, · · · , yj = c + j∆y, · · · , yn = c + n∆y = d. (5.56)

Step 2: Store an initial guess in the 2-D array p = {pi,j}.

Step 3: Update the boundary points {p0,j , pm,j}n
j=0 and {pi,0, pi,n}m

i=0 according to the

boundary conditions.
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Step 4: Choose a tolerance ε, and set r > ε.

Step 5: While r > ε:

Part a: For 1 ≤ i < m and 1 ≤ j < n:

i: Set r = 0.

ii: Calculate pn+1
i,j based upon (5.52).

iii: If ri,j =
∣∣∣pn+1

i,j − pn
i,j

∣∣∣ > r, set r = ri,j .

iv: Overwrite pi,j with the newly calculated pn+1
i,j .

Part b: Set a threshold η < r. In our work, we have used η = 1
4r.

Part c: Sweep through the domain again (with a different sweep direction), this time

creating a list L = {(ik, jk)}N
k=1 of nodes where ri,j > η.

Part d: Repeat M times:

i: For 1 ≤ k ≤ N , update pik,jk
according to Equation 5.52.

The scheme is illustrated schematically in Figure 5.6.

In our work, we use M = 2; in testing, we have found that additional iterations through

the selected nodes L resulted in little change in the approximate solution. This is because

L behaves as a small, irregular subdomain of D with fixed boundary conditions (i.e., the

remaining computational nodes), and so an elliptic equation can approach a steady state on

the subdomain quickly. However, the optimal choice of M may depend upon the problem

under study and could potentially be dynamically chosen; we are currently investigating

these approaches.

While the method does need to sweep through the entire computational domain for

some of the iterations, its adaptivity is based upon the same philosophy of traditional adap-

tive mesh techniques of focusing computational effort adaptively where it is most needed,

leading to accelerated convergence when compared to non-adaptive, fixed grid methods. In

testing on level set problems with large solution gradients, we have found that the adap-

tivity decreases the computational time of NAGSI by 10% to 50% (results not shown).

Furthermore, the strategy for choosing the list L of flagged points can be tailored to the

computational problem. (e.g., in level set methods, one might choose L to include a narrow

band about the zero level set.) Because the method requires little extra effort to implement,

it can conceivably be used to improve performance in existing computational frameworks
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Figure 5.6: Overview of the NAGSI adaptivity: upper left: We sweep through the entire
domain and update all points. We then set a threshold η not exceeding the residual. upper
right: We sweep through the entire domain again (using a different sweep pattern) and flag
all points where the change exceeded the threshold η. lower left and right: We sweep
through and update the flagged points only, for one or more times.

with a minimum of reprogramming. Lastly, we note that while we have focused our adap-

tivity approach on improving performance on fixed, regular grids, we believe it is possible

to apply a similar philosophy to irregular grids by choosing local discretizations that can

be applied to selected mesh points for improved performance.

5.3.5 Solving the Overall System

We solve the overall model from Section 5.2 using a level set/ghost cell method that

uses the methods we just introduced. At every fixed time t, our method consists of the

following steps:

Step 1: Maintain ϕ as a distance function, and pre-compute any required geometrical quan-

tities, such as normal vectors and curvature. Use the geometry-aware discretization

discussed in Section 5.3.2.

Step 2: Solve the quasi-steady reaction-diffusion problems for each pi using NAGSI. (See

Section 5.3.4.) In the event that jump boundary conditions [pi] and [Di∇pi · n] are
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prescribed, use the ghost cell extrapolations described in Section 5.3.3.

Step 3: Calculate and extend the normal velocity V :

Part a: Calculate ∇pi for each i in the narrow band {x : |ϕ(x)| ≤ R} using second-

order centered differences if all points in the stencil are in the same region (all

inside Ω or all outside Ω). Otherwise, use high-order, one-sided Taylor expan-

sions. In our work, we use five-point stencils when possible, and degrade to

lower-order one-sided stencils as necessary.

Part b: Use our bilinear velocity extension from Macklin and Lowengrub (2005) to

create a normal extension Ṽ of V =
∑

αi∇pi · n.

Part c: Problems with geometric boundary conditions (e.g., those that depend upon

the curvature κ) require that ∆t ∼ ∆x3 to maintain stability. To avoid this

prohibitive time step restriction, apply the Gaussian filtering technique we de-

veloped in Macklin (2003) and Macklin and Lowengrub (2005) to the extended

velocity Ṽ , which removes high-frequency noise from the velocity. Note that if

the jump boundary conditions of the pi do not require the curvature, then this

filtering may not be required.

Part d: Use our bilinear velocity extension from Macklin and Lowengrub (2005) to

extend the filtered velocity.

Part e: Calculate the CFL condition ∆t = ∆x

2max(eV )
.

Step 4: Construct Ṽ |∇ϕ| using fifth-order WENO. Use this to advect the interface Σ.

Step 5: (Optional) If using a higher-order Runge-Kutta approximation, repeat steps (2)-

(4) for each part of the Runge-Kutta scheme.

5.4 Convergence of the Numerical Techniques

We now present convergence results for the newly developed numerical techniques and

the overall scheme. For a given norm ||·||, we define two orders of convergence. If ph is a

numerical solution computed on a computational grid with mesh length h, and if the exact
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Traditional Stencil
∆x `∞ error
0.16 0.168897
0.08 0.170776
0.04 0.168131
order 0.00751

New Stencil (1st order)
∆x `∞ error
0.16 0.00295862
0.08 5.11947e-4
0.04 9.22828e-5
order 2.50

New Stencil (Higher order)
∆x `∞ error
0.16 0.00331730
0.08 5.73877e-4
0.04 8.18444e-5
order 2.67

Table 5.1: Comparison of the [D∇p · n] stencil for the traditional (left), first-order new
(middle), and higher-order new (right) methods on Example 1.

solution p is known, then we define

order of convergence =
log

( ||ph1
−p||

||ph2
−p||

)

log
(

h1
h2

) (5.57)

where the norm is computed at the computational node points, and h2 < h1 are two different

mesh lengths.

If the exact solution is unknown, then we solve on meshes with mesh lengths h1 = h,

h2 = 1
2h, and h3 = 1

4h, and we compute the order of convergence via

order of convergence =
log

( ||ph−ph2 ||
||ph2

−ph3 ||
)

log (2)
, (5.58)

where each norm is computed on the common grid points. In our work, we use the discrete

maximum `∞ norm for all convergence testing.

5.4.1 Convergence of the Ghost Cell Method with the New [D∇p · n] sten-

cils and NAGSI

Example 1: An Example with Large Tangential and Normal Jumps:

To test the convergence and impact of our new normal derivative jump discretization,

we studied the following problem

∇2p = 0 if |x| < 1 (5.59)

∇2p = 0 if |x| > 1 (5.60)

[p] = x + y if |x| = 1 (5.61)
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[∇p · n] = x + y if |x| = 1 (5.62)

u = 0 if x ∈ ∂ ([−2, 2]× [−2, 2]) , (5.63)

whose solution is

p(x, y) =





x + y if |x| ≤ 1

0 else.
(5.64)

Note that the solution in (5.64) has a nonzero jump in tangential derivative:

[∇p · s] = (1, 1) · (y,−x) = y − x, (5.65)

where s is the positively-oriented tangent vector along boundary of the circle.

We solved this system with mesh sizes ∆x ∈ {0.16, 0.08, 0.04}, using our new NAGSI

solver along with the ghost cell extrapolations described above, using both the tra-

ditional, grid-aligned normal derivative stencil from Liu et al. (2000) and the new

normal derivative jump stencils. The traditional stencil from Liu et al. (2000) (as

stabilized in Macklin and Lowengrub (2007)) failed to converge (left part of Table

5.1), with visible distortions in the solution (blue squares in Figure 5.7.) In contrast,

when we recomputed the solution using our new normal derivative jump stencils, we

obtained 2.50- and 2.67-order convergence for our first-order and higher-order sten-

cils, respectively (middle and right parts of Table 5.1, respectively). Thus, we see

that preserving the accuracy in the tangential derivative jump can have a substantial

impact on the overall accuracy of the solution and is necessary for convergence in this

example.

Example 2: An Example with a Large Tangential Jump and no Normal Jump:

We solved the same system as in the previous example, but with

[∇p · n] = 0 if |x| = 1. (5.66)

In this example, the traditional stencil converged, but only to order 0.319 (top part

of Table 5.2). In contrast, our first-order method attained 1.11-order accuracy (lower

left part of Table 5.2), and our higher-order method achieved 1.53-order convergence

(lower right part of Table 5.2).
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Figure 5.7: Comparison of solutions along the line y = x using the traditional (blue squares)
and new (red circles) [D∇p · n] stencils using ∆x = 0.04. The exact solution is given by
the solid black line.

difference `∞ norm
p0.16 − p0.08 0.0282768
p0.08 − p0.04 0.0226730

order 0.319

difference `∞ norm
p0.16 − p0.08 0.0201711
p0.08 − p0.04 0.00936549

order 1.11

difference `∞ norm
p0.16 − p0.08 0.00655476
p0.08 − p0.04 0.00226471

order 1.53

Table 5.2: Comparison of the [D∇p · n] stencil for the traditional (top) and new first-order
(bottom left) and higher-order (bottom right) methods on Example 2.
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Traditional Stencil
∆x `∞ error
0.16 0.647074
0.08 0.540950
0.04 0.458996
order 0.248

New (1st Order) Stencil
∆x `∞ error
0.16 0.244280
0.08 0.101704
0.04 0.0492541
order 1.16

New (Higher Order) Stencil
∆x `∞ error
0.16 0.0401866
0.08 0.00830349
0.04 0.00312614
order 1.84

Table 5.3: Comparison of the [D∇p · n] stencil for the traditional (left) and new first-order
(middle) and higher-order (right) methods on Example 3.

Example 3: An Example with Large Normal Jumps and Zero Tangential Jumps:

To further investigate the accuracy of our new normal jump stencil, we studied the

following problem:

∇2p = −4 if |x| < 1 (5.67)

∇2p = 0 if |x| > 1 (5.68)

[p] = 0 if |x| = 1 (5.69)

[∇p · n] = −2 if |x| = 1 (5.70)

p = 0 if x ∈ ∂ ([−2, 2]× [−2, 2]) , (5.71)

whose solution is

p(x, y) =





1− x2 − y2 if |x| ≤ 1

0 else.
(5.72)

Due to the jump boundary condition, this problem is sensitive to the discretization

of the discontinuous source term: error in the numerical integral of the source term

inside |x| ≤ 1 will vertically shift the quadratic (interior) part of the solution, and

due to the coupling of the interior and exterior normal derivatives, error in the source

term will lead to error in the exterior region as well. We treat the discontinuous source

term by solving

0 = ∇2p + 4 H(−ϕ), x ∈ [−2, 2]× [−2, 2], (5.73)

and we discretize H with a numerical Heaviside function H̃. See Section 5.8 for fur-

ther discussion on the choice of H̃.
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Notice that this solution has no jump in the tangential derivative. Nonetheless, the

traditional normal jump stencil (again, as stabilized in Macklin and Lowengrub (2007))

yields sub-first-order convergence (left part of Table 5.3), whereas our new stencil is

first-order accurate (middle part of Table 5.3), and the higher-order method is 1.84-

order accurate. Thus, we can see that the failure of the traditional [D∇p · n] stencil

to properly separate the normal and tangential jumps degrades the accuracy of the

entire solution, even in the absence of a tangential derivative jump.

5.4.2 Convergence of the Overall Method

We examined the convergence of the overall method by studying a drop moving under

Hele-Shaw-type flow in a heterogeneous medium. Let Σ be the boundary of a circle of radius

1 centered at
(
5
√

2, 5
√

2
)
.

We represent Σ as the zero contour of a level set function ϕ on the computational

domain D = [0, 10] × [0, 10] containing both Ω = {x ∈ D : ϕ(x) < 0} and its complement

Ωc = {x ∈ D : ϕ(x) > 0}.
The drop has normal velocity

V = −µ∇P · n if x ∈ Σ, (5.74)

which we implement in the level set context as

ϕt + Ṽ |∇ϕ| = 0, (5.75)

where Ṽ is the normal extension of the velocity off of Σ that we described in Macklin and

Lowengrub (2005).

The pressure P satisfies

0 = ∇ · (µ∇P ) + H(−ϕ) if x ∈ Ω ∪ Ωc (5.76)

[P ] = κ if x ∈ Σ (5.77)

[µ∇P · n] = 0 if x ∈ Σ (5.78)

(5.79)

with

µ = η + (1− η)e−1.5
“√

x2+y2−5
√

2
”8

if x ∈ D (5.80)

η = 0.0001, (5.81)
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t ||ϕ0.2 − ϕ0.1||∞ ||ϕ0.1 − ϕ0.05||∞ order
0.1 0.0504799 0.0184189 1.45
0.2 0.0946371 0.0179485 2.40
0.3 0.0665503 0.0396410 0.747
0.4 0.130442 0.0342100 1.93
0.5 0.231275 0.0335707 2.78

average order of convergence 1.86

Table 5.4: Convergence of the Overall Method

and with boundary conditions

P ≡ 0 on ∂D. (5.82)

See Figure 5.8 for a plot of the permeability µ. Note that this models the growth of a drop

of incompressible fluid in a heterogeneous domain, where fluid is added at a constant rate

throughout the drop domain via the Heaviside source term H(−ϕ).

We chose three spatial resolutions: ∆x = ∆y = 0.20 (low resolution), ∆x,∆y = 0.10

(medium resolution), and ∆x = ∆y = 0.05 (high resolution). We used the discrete numeri-

cal Heaviside function that we describe in Section 5.8. We used a simple, first-order forward

Euler time discretization with CFL condition

∆t ≤ max
(

∆x

2max |V | , 0.05
)

. (5.83)

and fifth-order WENO for V |∇ϕ|. As in Macklin (2003) and Macklin and Lowengrub

(2005), we used Gaussian filtering to attain a first-order CFL stability condition while

maintaining accuracy. In these simulations, we used a smoothing parameter (standard

deviation) of σ = 2∆x = 0.40 for low resolution, σ = 3∆x = 0.30 for medium resolution,

and σ = 4∆x = 0.15 for high resolution.

We calculated the order of convergence (of the level set function ϕ) at times

t ∈ {0.10, 0.20, 0.30, 0.40, 0.50} according to (5.58). Due to the small time step, the time

error is small and is consequently dominated by the spatial error. The average order of con-

vergence was 1.86. See Table 5.4. We shall discuss the behavior of the solution in Section

5.1.
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Figure 5.8: Permeability µ for the convergence example.

5.5 Numerical Examples

5.5.1 Hele-Shaw-type Flow in Heterogeneous Media

We solved the Hele-Shaw-type problem from the overall convergence study with

∆x = ∆y = 0.10, D = [0, 10] × [0, 10], and the permeability µ shown in Figure 5.8 un-

til t = 1.8. The solution is plotted in 0.20 time increments in Figure 5.9. As volume is

added to the drop Ω (via the Heaviside source term in the pressure equation), pressure

builds inside the drop that pushes the boundary Σ outward and causes the region Ω to

grow. Because the permeability µ varies between 0.0001 and 1 throughout the domain, the

drop grows preferentially inside the region where µ ∼ 1. See Figure 5.9. Because volume

is added at a constant rate throughout the drop, the rate of growth is proportional to the

volume of the drop; this can be observed as an increasing distance between solution curves.

5.5.2 Tumor Growth in Heterogeneous Tissues

We now demonstrate our technique by applying it to a nonlinear tumor growth problem.

Let ϕ be a level set function whose zero contour denotes the boundary Σ of an avascular

tumor Ω = Ω(x, t) growing into a surrounding, non-cancerous tissue Ωc = Ωc(x, t). This

models the early stage of in vivo growth before the onset of angiogenesis. We take our

computational domain D to be a rectangular region that fully contains Ω and Ωc; note that
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Figure 5.9: Outward growth of the medium-resolution (∆x = ∆y = 0.10) solution in
t = 0.20 increments for the convergence example.

D = Ω ∪ Ωc.

Let c denote the non-dimensionalized nutrient concentration within the computational

domain, scaled by the far-field nutrient value in well-vascularized, non-pathological tissue.

We scale space by the oxygen diffusional length scale L ≈ 200 µm. Outside the tumor, the

blood vasculature (with density B) delivers nutrient, which diffuses into the tumor and is

consumed by proliferating cells. As the tumor grows, less nutrient reaches the interior, until

it drops to a level cH where tumor cells become hypoxic. The hypoxic tumor cells become

quiescent and consume less nutrient. If the tumor continues to grow and the interior nutrient

level drops further below a critical threshold cN , the tumor cells begin to die (necrose).

When cells necrose, they release their cellular contents, which are both oxygen-reactive

(e.g., see Kloner and Jennings (2001) and Galaris et al. (2006)) and growth-inhibiting.

These processes can be modeled as

0 = ∇ · (D∇c)− λc(x, c)c + λc
bulk(1− c)B(x)H(ϕ) if x ∈ Ω (5.84)

∇c · n = 0 if x ∈ ∂D, (5.85)

where B is the pre-existing blood vessel density, λc
bulk is the nutrient delivery rate in the pre-

existing blood vasculature, D is the nutrient diffusivity, and λc(x, c) is chosen to combine

the rates of nutrient uptake (in the viable and hypoxic portion of the tumor) and decay

(in the necrotic portion of the tumor); we assume no nutrient uptake in the non-cancerous

tissue Ωc. Normalized by the nutrient uptake rate in the viable region, the uptake and
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decay function is modeled by

λc(x, c) =





0 if x ∈ Ωc

1 if x ∈ Ω and 1 ≥ c > cH

q(c) if x ∈ Ω and cH ≥ c > cN

λc
N if x ∈ Ω and cN ≥ c.

(5.86)

Here, λc
N is the rate of nutrient decay in the necrotic core, and q(c) is a polynomial that

smoothly connects regions and is chosen to satisfy

q(cH) = 1

q′(cH) = 0

q

(
cH + cN

2

)
= λc

H (5.87)

q(cN ) = λc
N

q′(cN ) = 0, (5.88)

where λc
H is the rate of nutrient uptake by hypoxic cells. In our numerical example, we

shall take cH = 0.3, cN = 0.2, λc
H = 0.5, and λc

N = 0.25. In this case,

q(c) = −20000c4 + 18500c3 − 6275c2 + 930c− 50.75. (5.89)

Notice that this makes our nutrient equation nonlinear.

We model the tumor as an incompressible fluid growing in a porous medium, and

so the local rate of change in tumor volume is given by ∇ · u, where u is the cellular

velocity field. Proliferating tumor cells in the viable rim of the tumor generate an internal

biomechanical pressure p that increases the tumor volume (at a rate proportional to the

nutrient level c) and pushes the tumor boundary outward with normal velocity V via Darcy’s

law (u = −µ∇p). The enzymatic breakdown of necrotic tumor tissue is modeled by a local

decrease in the pressure that reduces volume (at a constant rate GN ) and slows growth.

Cell-to-cell adhesion is modeled as a surface tension (curvature) boundary condition on

Σ. The non-cancerous tissue in Ωc is also assumed to be affected by the tumor-generated

pressure, but the cells in Ωc do not proliferate. We model the pressure by

∇ · u = −∇ · (µ∇p) =





0 if x ∈ Ωc

c if x ∈ Ω and c > cH

0 if x ∈ Ω and cH ≥ c > cN

−GN if x ∈ Ω and cN ≥ c

(5.90)
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with boundary conditions

[p] =
1
G

κ if x ∈ Σ (5.91)

[µ∇p · n] = 0 if x ∈ Σ. (5.92)

We model the normal velocity of the tumor boundary by Darcy’s law:

V = −µ∇p · n if ϕ(x) = 0. (5.93)

We choose boundary conditions on p along ∂D to suit the problem under study. Here,

G is a parameter that characterizes the tumor aggressiveness (the rate of proliferation

compared to the cell-cell adhesion time scale), GN is a parameter that governs the rate of

tumor cell breakdown in necrotic regions, and µ is the cellular mobility. This tumor growth

model is an extension of current models given in Cristini et al. (2003), Macklin (2003),

Macklin and Lowengrub (2005), Zheng et al. (2005), and Macklin and Lowengrub (2006,

2007), and will be further extended and investigated in future work (Macklin et al., 2007;

Lowengrub and Macklin, 2007).

We simulated this tumor system on a computational domain

D = [0, 50] × [0, 50] with ∆x = ∆y = 0.10, with tissue and tumor properties chosen to

model the evolution of glioblastoma in brain tissue. Because the oxygen diffusional length

scale is approximately 200 µm, this corresponds to an approximately 1 cm square of simu-

lated brain tissue. We set G = 20, GN = 1, λc
bulk = 1, cH = 0.3, cN = 0.2, and used q(c)

as given in (5.89). We model growth in a complex, heterogeneous brain tissue as shown in

the first frame in Figure 5.10. In the white region, µ = 0.0001, D = 0.0001, and B = 0,

which models a rigid material such as the skull. In the black regions, µ = 10, D = 1,

and B = 0, which models an incompresible fluid (cerebrospinal fluid). The light and dark

gray regions model tissues of differing biomechanical properties (white and gray matter).

In the light gray regions, µ = 1.5, D = 1, and B = 1; in the dark gray regions, µ = 0.5,

D = 1, and B = 1. The red region (color images are available online) denotes the initial

shape and position of the simulated tumor. We smoothed µ, B, and D using a Gaussian

filter with standard deviation σ = 3∆x = 0.3 to satisfy smoothness requirements of the

reaction-diffusion equations. We used (linear) extrapolation boundary conditions on the

pressure along x = 0, y = 0, and y = 50 to simulate growth into a larger, unshown tissue,

and we set p = 0 along the rigid boundary at x = 50.
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We simulated from t = 0 to t = 60. Using a 3.3 GHz Pentium 4 workstation and a C++

implementation, the 501 × 501 simulation required under 24 hours to compute. Because

our (mitosis) time scale ranges from approximately 18 to 36 hours for this problem, this

corresponds to 45 to 90 days of growth. We plot our solution in t = 5.0 (approximately 5

days) increments in Figures 5.10 and 5.11. In those plots, red regions correspond to viable

tumor tissue (where c > cH), blue regions denote hypoxic tumor tissue (cH ≥ c > cN ),

and brown regions denote necrotic tumor cells (cN ≥ c). (Please see the online version of

the article for color figures.) In this simulation, the tumor grows rapidly until the nutrient

level drops below cH = 0.30 (see t = 5.0), at which time a large portion of the tumor

becomes hypoxic. The tumor continues to grow at a slower rate until the interior of the

tumor becomes necrotic. (See t = 10.0.) This causes non-uniform volume loss within the

tumor and contributes to morphological instability. We note that because the biomechanical

responsiveness is continuous across the tumor boundary and the microenvironment has a

moderate nutrient gradient, this simulation corresponds to the border between the invasive,

fingering growth regime and the invasive, fragmenting growth regime that we investigated

in Macklin and Lowengrub (2007).

However, additional effects can be seen that were not observed in the aforementioned

study. As the tumor grows out of the biomechanically permissive tissue (light gray; µ = 1.5)

and into the biomechanically resistant tissue (dark gray; µ = 0.5), its rate of invasion into

the tissue slows. (See t = 15 to 25.0.) This results in preferential growth into the permissive

(light gray) material, a trend which can be clearly seen from t = 30.0 onward. When the

tumor grows through the resistive tissue (dark gray) and reaches the fluid (black), the tumor

experiences a sudden drop in biomechanical resistance to growth. As a result, the tumor

grows rapidly and preferentially in the 1/2 mm fluid structures that separate the tissue.

Such growth patterns are not observed when simulating homogeneous tissues.

Other observed differences are due to our new treatment of hypoxic (quiescent) tumor

cells. Certain regions that we had previously classified as necrotic (in Macklin (2003) and

Macklin and Lowengrub (2005, 2006, 2007)) are now treated as quiescent. As a result, tumor

volume loss is reduced, and in particular, this may result in large hypoxic regions that have

little or no viable rim. Had these regions been treated as necrotic, the invasive fingers

would have been thinner, and the tumor may have fragmented. Therefore, the separate

treatment of the hypoxic regions can have a significant impact on the details of the invasive

morphology of the tumor. We shall investigate this effect in greater detail in future work.
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Figure 5.10: Long-time tumor simulation from t = 0.0 days (top left) to t = 35.0 days
(bottom right) in 5 day increments. The color version of this figure is available online.
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Figure 5.11: Long-time tumor simulation (continued) from t = 40.0 days (top left) to
t = 60.0 days (bottom) in 5 day increments. The color version of this figure is available
online.
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5.6 Conclusions and Future Work

In this paper, we built upon our earlier work from Macklin (2003) and Macklin and

Lowengrub (2005, 2006, 2007) to develop an accurate ghost cell/level set technique for

evolving interfaces whose normal velocity is given by the normal derivatives of solutions

to linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent

boundary conditions. The technique is capable of describing complex morphologies evolving

in heterogeneous domains. The algorithm involved several new developments, including a

new ghost cell technique for accurately discretizing jumps in the normal derivative without

smearing jumps in the tangential derivative, a new adaptive solver for linear and nonlinear

quasi-steady reaction-diffusion problems (NAGSI), an adaptive normal vector discretization

for interfaces in close contact, and an accurate discrete approximation to the Heaviside

function.

We demonstrated the accuracy, efficiency, and capabilities of the method on a vari-

ety examples. For instance, we considered a model of solid tumor growth consisting of a

fully nonlinear reaction-diffusion equation for the nutrient and a pressure equation that

includes geometric boundary conditions. We solved the tumor system in a heterogeneous

environment including complex structures (white and gray matter, cerebrospinal fluid, and

bone), much like human brain tissue. We observed growth morphologies that were highly

dependent upon the variations in the cellular mobility and the nutrient delivery–an effect

observed in real tumor growth. The accuracy of the algorithm is a key step in the devel-

opment of a new generation of predictive tumor growth models that can eventually lead

to clinical applications. In future work, we will conduct a more thorough study of tumor

growth in inhomogeneous tissue, investigate models of tumor-microenvironment coupling

that include active remodeling of the tissue by the tumor (Lowengrub and Macklin, 2007),

and study the effects of coupling tumor growth to complex models of angiogenesis with

Alexander Anderson, Mark Chaplain, Steven McDougall, and Vittorio Cristini.
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5.8 A Simple Numerical Heaviside Function

Given a discretized domain with grid points {xi}m
i=0×{yj}n

j=0 and a function f defined

on those node points, we wish to define a numerical Heaviside function H̃(f) = Hi,j(f) on

the computational node points which approximates the true Heaviside function

H(f) =





0 if f < 0

1 if f ≥ 0
(5.94)

and such that

Hi,j(f)∆x∆y ≈
∫ xi+

1
2
∆x

xi− 1
2
∆x

∫ yj+
1
2
∆y

yj− 1
2
∆y

H (f(s, t)) ds dt, (5.95)

i.e., the numerical Heaviside function approximates the percentage of the computational

node centered at (xi, yj) that is occupied by the region {x : f(x) > 0}. We accomplish this

by examining the value of f at (i, j) and the eight surrounding computational nodes:

Hi,j(f) =
i+1∑

s=i−1

j+1∑

t=j−1

w|s−i|,|t−j|H(fi,j), (5.96)

where the weights are given by the relative areas of the sub-grid sections in Figure 5.12,

and can be written as

wm,n =
22−m−n

16
=





1
16 if m = 1 and n = 1

1
8 if m = 1 and n = 0

1
8 if m = 0 and n = 1

1
4 if m = 0 and n = 0.

(5.97)

See Figure 5.12. For the function in the figure, Hi,j(f) = 11
16 .

To study the accuracy of this numerical Heaviside function, we calculated the order

of the convergence for the third ghost cell method example in Section 5.4.1 using our
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Figure 5.12: The weights w used for computing our numerical Heaviside function at a node
(i, j).

discrete Heaviside function. For comparison, we also considered the Heaviside function

from Sussman and Fatemi (1999)

H̃δ(f) =





0 if f < −δ

1
2

[
1 + f

δ + 1
π sin

(
πf
δ

)]
if |f | ≤ δ

1 if f > δ

(5.98)

with δ = ∆x, and the Heaviside function function in recent work by Engquist et al. (2005):

H̃δ(f) =





0 if f ≤ −δ

1
2

(
1 + f

δ

)
if |f | < δ

1 if f ≥ δ,

(5.99)

where we used δ = ∆x.

The results, given in Table 5.5, demonstrate approximately first-order convergence of

the problem using the Sussman and Fatemi Heaviside function (left part of Table 5.5),

slightly better than first-order convergence for the Engquist et al. Heaviside function (mid-

dle part of Table 5.5), and near-second-order convergence for our discrete Heaviside function

(right part of Table 5.5). The key to this problem is the accurate approximation of the source

term without smearing the integral of the source outside of the circle |x| ≤ 1. All three

methods approximate the area of the circle to second-order accuracy (not shown), but only

the discrete Heaviside approximation was designed to accurately approximate the area of

the region locally as well as globally.
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Sussman and Fatemi (1999)
∆x `∞ error
0.16 0.0269720
0.08 0.00776372
0.04 0.00671369
order 1.00

Engquist et al. (2005)
∆x `∞ error
0.16 0.0307405
0.08 0.00843434
0.04 0.00598091
order 1.18

discrete Heaviside function
∆x `∞ error
0.16 0.0401866
0.08 0.00830349
0.04 0.00312614
order 1.84

Table 5.5: Convergence of a ghost cell problem using a Heaviside function, computed with
the continuous approximation by Sussman and Fatemi (1999) (left), the continuous ap-
proxmation by Engquist et al. (2005) (middle), and our discrete Heaviside approximation
(right).
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Chapter 6

Looking Forward

In the near term, we shall apply the methods developed in this dissertation to model

tumor growth in large, centimeter-scale tissues with increasingly detailed structure and

biophysics. We are now including the effects of ECM remodeling by tumor cells, and we have

introduced a new structure variable S to model the presence (S = 1) or absence (S = 0) of

rigid objects such as bone or foreign objects. To provide a better link between the molecular

and macroscopic scales, we are currently reformulating the microphysical parameters (the

cellular mobility µ, the genetic parameters G, A, GN and N , any taxis coefficients, and

the various diffusivities and uptake rates) as functional relationships between these and the

molecular model variables (the nutrient level, pressure, extracellular matrix density, etc.).

For example, the cellular mobility should be a non-monotonic function of ECM density, and

it should be nearly zero in rigid structures like bone. On the other hand, hypoxia is known

to reduce cell-cell and cell-matrix adhesion in advanced cancer cells, which can be modeled

as an increase in the cellular mobility. We shall model the functional cellular mobility as

µ = µ (x, t, S, E, σ) , (6.1)

where E is the ECM density, S is the structure variable, and σ is the oxygen level. We

shall model the other microphysical parameters in a similar fashion.

In other ongoing work, we are coupling our tumor growth model with a sophisticated

model of angiogenesis (McDougall et al., 2006). In the coupling, hypoxic regions of the tu-

mor secrete pro-angiogenic growth factors that diffuse into the surrounding tissue and recruit

endothelial cells to grow toward the tumor and create a new vascular network. We couple

with the dynamic adaptive tumor-induced angiogenesis (DATIA) model of McDougall et al.
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(2006), which includes such effects as blood flow, blood rheology (with haematocrit), wall

shear stress-induced vessel branching, and blood flow-induced vascular network remodeling.

In our coupling, only blood vessels with active flow supply oxygen to the tumor, which

subsequently affects hypoxia in the tumor and the spatial distribution of angiogenic growth

factors. This, in turn, further affects the vascular network topology, oxygen delivery, and

future tumor growth. Furthermore, proliferation-induced pressure can squeeze closed the

new blood vessels, which further affects both the network topology and the tumor’s growth

and morphology. We shall explore these and other aspects in coming work (Macklin et al.,

2007).

In the longer term, we are working toward the goal of predictive computational oncology :

the use of computer simulations to study cancer in real human beings and make clinically-

relevant predictions. Along the path toward that goal, we will continue to expand the

sophistication of the tumor and tissue models, couple them to improved angiogenesis models,

and introduce pharmacokinetic models for the study of drug-tumor-patient interactions. As

we further develop our computational expertise, we shall simulate cancer in larger 2D and

3D tissues and eventually in virtual patients. If we succeed in these goals, the potential

implications are vast. A validated virtual tissue simulator could provide a valuable testbed

for understanding both healthy and diseased human tissue beyond the context of cancer.

Coupled with a sophisticated cancer model, our simulator could provide a virtual laboratory

to reduce or eliminate animal testing, efficiently explore broad combinations of treatments,

select promising new treatments more quickly, and reduce the financial risk and time to

market for new cancer drugs. In the educational context, medical students and doctors

could use an advanced tumor-patient simulator to explore treatment protocols and gain

experience in a risk-free, interactive environment.

However, several mathematical, scientific, computational, data processing, and clinico-

medical challenges must be surmounted if we are to attain these long-term goals. The

mathematical model must include a better treatment of tissue stress and residual strain,

and the motion of many tissue components (e.g., water, collagen, various cell types, cellular

debris, etc.) must be accounted for; mixture models with well-founded conservation and

interaction laws may provide a means for addressing these difficulties. The effect of the host

immune system must be included, both for modeling immunotherapy and understanding

the role of the immune system in both preventing and promoting the spread of cancer. The

motion of individual and clumps of metastatic tumor cells must be incorporated into the
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model if metastasis and invasion are to be properly understood. These issues may possibly

be addressed by the use of hybrid models that combine a continuum treatment of the

tissue-scale phenomena with agent-based models of the immune system (e.g., white blood

cells, haematopoietic stem cells, etc.) and metastatic cells. The functional relationships

between the microphysical parameters and the simulated physical variables must be better

understood. We are investigating the idea of integrative modeling to address this problem,

where coordinated biological experiments are used to inform the modeling process at every

step of the way.

Once these modeling issues have been addressed, a key scientific challenge remains:

current modeling approaches to date have been phenomenological in nature, limiting the

value of model predictions. (Prediction results are not necessarily unique because the same

prediction may obtained with several combinations of parameters.) Future models must

be more tightly constrained to identify the parameters as uniquely as possible. Our recent

move to reformulate the microphysical parameters is one approach to addressing this is-

sue, because the parameters will be determined by (experimentally-validated) functions of

physical quantities and genetic characteristics of the tumor cells, rather than unconstrained

and free. This approach could be combined with hybrid models and upscaling to further

incorporate molecular data and uniquely determine the model parameters. Such an ap-

proach would help the transition from phenomenological to physical, where the model can

be uniquely initialized from physically measurable quantities.

From a computational point of view, simulating increasingly complex, coupled systems

in 3D on large domains will be challenging. The efficiency of existing numerical methods

must be improved, such as by implementing adaptive meshes and combining NAGSI with

nonlinear multigrid approaches. Ultimately, these computations will likely require parallel

computing, and so numerical methods should be formulated with parallel architectures in

mind. Indeed, new computer workstations are increasingly parallel, with 2, 4 or more

computational cores on a single chip, and new high-end graphics cards can be used as

programmable, highly-parallel vector processing machines (Owens et al., 2007). Making

use of this newfound computational power on commodity hardware should allow high-

performance computing with consumer hardware, but will require careful algorithm design

and an openness to new computer architectures and technologies.

Assuming that realistic models are formulated, validated, and efficiently implemented,

additional challenges remain. Patient data, consisting of collections of MRI, PET scan,
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X-ray, ultrasound, and other image data, handwritten doctor’s notes, biopsies, and genetic

testing must be integrated to initiate any patient-tailored simulator. This will involve com-

putational challenges, such as segmentation of medical imagery into separate tissue types

and structure, classification of those tissues, and the assignment of tissue properties, per-

haps from large databases of known tissue characteristics for various tissue types. Biopsies

and other tumor data must be translated into model biophysical parameters. It is most

likely that these goals must be attained with incomplete patient datasets, especially in cases

where patients are weak or testing is deemed too invasive or expensive.

Lastly, medical and clinical challenges must be overcome. Any simulator must be pow-

erful enough to accurately model the tumor-patient interaction and progression, yet simple

enough for a non-Ph.D. doctor or technician to initialize and run. The data must be pre-

sented in a format that is informative, easy to understand, and trustworthy. A virtual cancer

patient will likely require FDA approval for clinical use and must therefore have a proven

reliability. Significant outreach and education will be required in the medical community if a

virtual cancer simulator is to be seriously regarded as a clinical tool for planning a patient’s

treatment, with proven reliability an essential first step. For instance, our current models

predict that over-aggressive anti-angiogenic therapy that completely shuts down nutrient

supply to the tumor may increase tumor invasiveness and could potentially increase metas-

tasis, and that normalizing nutrient delivery may stabilize tumor morphologies. However,

in a clinical context, it could be very difficult to convince a patient and his/her physician

that “feeding a tumor is better than starving it as quickly as possible.” Indeed, many

current oncologists define the success of a treatment by how quickly and by what amount

tumor volume is decreased, even while our current models predict that this may worsen the

patient’s long-term prognosis by increasing the chance of metastasis and recurrence. Such

institutional wisdom has been developed over several decades of clinical experimentation,

and only a thoroughly-developed, highly-accurate, and well-validated model with a proven

track record will be seriously considered, and only with sustained public outreach beyond

the mathematical community.

In spite of these challenges, now is a promising time for computational oncology. Tumor

models have progressed rapidly from their simple state just a few years ago to include many

important biological aspects of cancer progression. Emerging models of tissue structure

and tumor-tissue interaction are showing a hint of things to come, with increasing realism

and the potential for integrating the vast mountain of biological data into the functional
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relationships that govern and couple the microphysical parameters and variables. The

biomathematics community has begun to acquire the vocabulary and background necessary

to communicate with biologists, and it has begun to seek expertise within the biomedical

community. At the same time, there is increasing awareness in the biomedical community

that cancer systems are far too complex to study without a modeling framework. The

time is ripe for increasing dialog between the mathematical and biological communities,

and mathematical-biomedical collaborations are already springing up across the country

(e.g., at the Tufts University/Caritas St. Elizabeth’s Medical Center in Boston and at the

University of Texas Health Science Center in Houston) and around the world (for instance,

between the University of Dundee and the Vanderbilt Medical Center). Now is truly an

exciting time to be involved in biomathematics and computational oncology!

175



Bibliography

R. G. Abbott, S. Forrest, and K. J. Pienta. Simulating the Hallmarks of Cancer. Artif.

Life, 12(4):617–34, 2006. doi: 10.1162/artl.2006.12.4.617.

D. Adalsteinsson and J. A. Sethian. The Fast Construction of Extension Velocities in Level

Set Methods. J. Comput. Phys., 148(1):2–22, 1999. doi: 10.1006/jcph.1998.6090.

J. Adam. General aspects of modeling tumor growth and the immune response. In J. Adam

and N. Bellomo, editors, A survey of models on tumor immune systems dynamics, pages

15–87. Birkhauser, Boston, MA, 1996.

T. Alarcón, H. M. Byrne, and P. K. Maini. A cellular automaton model for tumour growth in

inhomogeneous environment. J. Theor. Biol., 225(2):257–274, 2003. doi: 10.1016/S0022-

5193(03)00244-3.

T. Alarcón, H. M. Byrne, and P. K. Maini. Towards whole-organ modelling

of tumour growth. Progress Biophys. Mol. Biol., 85(2-3):451–472, 2004. doi:

10.1016/j.pbiomolbio.2004.02.004.

J. W. Allen, S. R. Khetani, R. S. Johnson, and S. Bhatia. In Vitro Liver Tissue Model

Established from Transgenic Mice: Role of HIF-1alpha on Hypoxic Gene Expression.

Tissue Engineering, 12(11):3135–47, 2006. doi: 10.1089/ten.2006.12.3135.

D. Ambrosi and F. Guana. Stress-modulated growth. Math. Mech. Solids, 2006. doi:

10.1177/1081286505059739. (in press).

D. Ambrosi and F. Mollica. On the mechanics of a growing tumor. Int. J. Eng. Sci., 40

(12):1297–1316, 2002. doi: 10.1016/S0020-7225(02)00014-9.

176



D. Ambrosi and F. Mollica. The role of stress in the growth of a multicell spheroid. J.

Math. Biol., 48(5):477–499, 2004. doi: 10.1007/s00285-003-0238-2.

D. Ambrosi and L. Preziosi. On the closure of mass balance models for tumor growth.

Math. Mod. Meth. Appl. Sci., 12(5):737–754, 2002. doi: 10.1142/S0218202502001878.

A. R. A. Anderson. A Hybrid Mathematical Model of Solid Tumour Invasion: The Im-

portance of Cell Adhesion. IMA Math. App. Med. Biol., 22(2):163–186, 2005. doi:

10.1093/imammb/dqi005.

A. R. A. Anderson and M. A. J. Chaplain. Continuous and discrete mathematical

models of tumor-induced angiogenesis. Bull. Math. Biol., 60(5):857–900, 1998. doi:

10.1006/bulm.1998.0042.

A. R. A. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta. Tumor Morphology

and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment. Cell,

127(5):905–915, 2006. doi: 10.1016/j.cell.2006.09.042.

R. P. Araujo and D. L. S. McElwain. A mixture theory for the genesis of residual stresses

in growing tissues II: Solutions to the biphasic equations for a multicell spheroid. SIAM

J. Appl. Math., 66(2):447–467, 2005. doi: 10.1137/040607125.

R. P. Araujo and D. L. S. McElwain. A history of the study of solid tumor growth: The

contribution of mathematical modeling. Bull. Math. Biol., 66(5):1039–1091, 2004a. doi:

10.1016/j.bulm.2003.11.002.

R. P. Araujo and D. L. S. McElwain. A linear-elastic model of anisotropic tumour growth.

Euro. J. Appl. Math., 15(3):365–384, 2004b. doi: 10.1017/S0956792504005406.

R. Arvind, C. Wang, and S. L. Schreiber. Perturbational profiling of a cell-line model

of tumorigenesis by using metabolic measurements. PNAS, 102(17):5992–7, 2005. doi:

10.1073/pnas.0502267102.

D. H. Ausprunk and J. Folkman. Migration and proliferation of endothelial cells in pre-

formed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res., 14

(1):53–65, 1977. doi: 10.1016/0026-2862(77)90141-8.

177



A. Bardelli, M. L. Basile, E. Audero, S. Giordano, S. Wennström, S. Ménard, P. M. Co-

moglio, and C. Ponzetto. Concomitant activation of pathways downstream of Grb2 and

PI 3-kinase is required for MET-mediated metastasis. Oncogene, 18(5):1139–46, 1999.

P. A. Beachy, S. S. Karhadkar, and D. M. Berman. Tissue repair and stem cell renewal in

carcinogenesis. Nature, 432(7015):324–331, 2004. doi: 10.1038/nature03100.

L. Bello, V. Lucini, F. Costa, M. Pluderi, C. Giussani, F. Acerbi, G. Carrabba, D. Pannacci,

Marilou Caronzolo, S. Grosso, S. Chinkaruk, F. Colleoni, X. Canron, G. Tomei, G. Deleris,

and A. Bikfalvi. Combinatorial administration of molecules that simultaneously inhibit

angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of

malignant glioma. Clin. Cancer Res., 10(13):4527–37, 2004.

N. Bellomo, E. de Angelis, and L. Preziosi. Multiscale modelling and mathematical problems

related to tumor evolution and medical therapy. J. Theor. Med., 5(2):111–136, 2003. doi:

10.1080/1027336042000288633.

J. R. Berenson, L. Rajdev, and M. Broder. Pathophysiology of Bone Metastases. Cancer

Biol. Ther., 5(9):1078–1081, 2006.

M. V. Blagosklonny and A. B. Pardee. The restriction point of the cell cycle. Cell Cycle, 1

(2):103–110, 2002.

C. Blanpain and E. Fuchs. Epidermal Stem Cells of the Skin. Annu. Rev. Cell Dev. Biol.,

22:339–73, 2006. doi: 10.1146/annurev.cellbio.22.010305.104357.
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B. Köberle, J. P. Wittschieben, and R. D. Wood. DNA repair and cancer. In Knowles and

Selby (2005), chapter 4, pages 61–77. ISBN 0-19-852563-X.

N. L. Komarova. Cancer, aging and the optimal tissue design. Sem. Cancer Biol., 15(6):

494–505, 2005. doi: 10.1016/j.semcancer.2005.07.003.

N. L. Komarova and P. Cheng. Epithelial tissue architecture protects against cancer. Math.

Biosci., 200(1):90–117, 2006. doi: 10.1016/j.mbs.2005.12.001.

N. L. Komarova and L. Wang. Initiation of Colorectal Cancer: Where do the Two Hits

Hit? Cell Cycle, 3(12):1558–1565, 2004.

M. Konopleva, S.-R. Zhao, W. Hu, S.-W. Jiang, V. Snell, D. Weidner, C. E. Jackson,

X. Zhang, R. Champlin, E. Estey, J. C. Reed, and M. Andreeff. The anti-apoptotic

genes Bcl-X-L and Bcl-2 are over- expressed and contribute to chemoresistance of non-

proliferating leukaemic CD34(+) cells. Brit. J. Haematology, 118(2):521–534, 2002. doi:

10.1046/j.1365-2141.2002.03637.x.
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and P. Comoglio. Mutant Met-mediated transformation is ligand-dependent and can be

inhibited by HGF antagonists. Oncogene, 18(37):5221–31, 1999.

Y. Miki, J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian, Q. Liu,

C. Cochran, L. M. Bennett, W. Ding, et al. A strong candidate for the breast and

ovarian cancer susceptibility gene BRCA1. Science, 266:66–71, 1994. doi: 10.1126/sci-

ence.7545954.

A. Morotti, S. Mila, P. Accornero, E. Tagliabue, and C. Ponzetto. K252a inhibits the

oncogenic properties of Met, the HGF receptor. Oncogene, 21(32):4885–93, 2002. doi:

10.1038/sj.onc.1205622.

W. Mueller-Kleiser. Three dimensional cell cultures: from molecular mechanisms to clinical

applications. Am. J. Physiol., 273(4):C1109–C1123, 1997.

G. R. Mundy. Metastasis to bone: causes, consequences and therapeutic opportunities.

Nat. Rev. Cancer, 2(8):584–93, 2002. doi: 10.1038/nrc867.

V. R. Muthukkaruppan, L. Kubai, and R. Auerbach. Tumor-induced neovascularization in

the mouse eye. J. Natl. Cancer Inst., 69(3):699705, 1982.

191



K. Nabeshima, T. Moriyama, Y. Asada, N. Komada, T. Inoue, H. Kataoka, A. Sumiyoshi,

and M. Koono. Ultrastructural study of TPA-induced cell motility: human well-

differentiated rectal adenocarcinoma cells move as coherent sheets via localized modula-

tion of cell-cell adhesion. Clin. Exp. Med., 13(6):499508, 1995. doi: 10.1007/BF00118189.

M. N. Nakatsu, R. C. A. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Prez-del

Pulgard, P. M. Carpenter, and C. C. W. Hughes. Angiogenic sprouting and capillary

lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin

gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res., 66:102–112, 2003. doi:

10.1016/S0026-2862(03)00045-1.

C. M. Nelson and M. J. Bissell. Of Extracellular Matrix, Scaffolds, and Signaling: Tissue

Architecture Regulates Development, Homeostasis, and Cancer. Ann. Rev. Cell Dev.

Biol., 22(1):287–309, 2006. doi: 10.1146/annurev.cellbio.22.010305.104315.

M. A. Nowak, N. L. Komarova, A. Sengupta, J. V. Prasad, I.-M. Shih, B. Vogelstein, and

C. Lengauer. The role of chromosomal instability in tumor initiation. Proc. Natl. Acad.

Sci. USA, 99(25):16226–16231, 2002. doi: 10.1073/pnas.202617399.

S. Osher and R. Fedkiw. Level Set Methods: An Overview and Some Recent Results. J.

Comput. Phys., 169(2):463–502, 2001. doi: 10.1006/jcph.2000.6636.

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer, New

York, NY, 2002. ISBN 0-387-95482-1.

S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algo-

rithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

doi: 10.1016/0021-9991(88)90002-2.

M. R. Owen, H. M. Byrne, and C. E. Lewis. Mathematical modelling of the use of

macrophages as vehicles for drug-delivery to hypoxic tumour sites. J. Theor. Biol., 226

(4):377–391, 2004. doi: 10.1016/j.jtbi.2003.09.004.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krueger, A. E. Lefohn, and T. J.

Purcell. A survey of general-purpose computation on graphics hardware. Comput. Graph-

ics Forum, 26(1):80–113, 2007. doi: 10.1111/j.1467-8659.2007.01012.x.

192



S. Paget. The distribution of secondary growths in cancer of the breast. Lancet, 133(3421):

571–573, 1889. doi: 10.1016/S0140-6736(00)49915-0.

D. Palmieri, C. E. Horak, J.-H. Lee, D. O. Halverson, and P. S. Steeg. Translational

approaches using metastasis suppressor genes. J. Bioenerg. Biomembr., 38(3-4):151–161,

2006. doi: 10.1007/s10863-006-9039-9.

D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-Based fast local level set

method. J. Comput. Phys., 155(2):410–438, 1999. doi: 10.1006/jcph.1999.6345.

S. Pennacchietti, P. Michieli, M. Galluzzo, M. Mazzone, S. Giordano, and P. M. Comoglio.

Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene.

Cancer Cell, 3(4):347–361, 2003. doi: 10.1016/S1535-6108(03)00085-0.

B. Piccoli and F. Castiglione. Optimal vaccine scheduling in cancer immunotherapy. Physica

A: Stat. Theor. Phys., 370(2):672–680, 2006. doi: 10.1016/j.physa.2006.03.011.

L.-M. Postovit, M. A. Adams, G. E. Lash, J. P. Heaton, and C. H. Graham. Oxygen-

mediated regulation of tumor cell invasiveness. Involvement of a nitric oxide signaling

pathway. J. Biol. Chem., 277(38):35730–7, 2002. doi: 10.1074/jbc.M204529200.

P. Pott. Chirurgical observations relative to the cataract, the polypus of the nose, cancer of

the scrotum, different kinds of ruptures, and the mortification of the toes and feet. Hawes,

London, 1775.

J. Pouysségur, F. Dayan, and N. M. Mazure. Hypoxia signalling in cancer and approaches

to enforce tumour regression. Nature, 441(25):437–443, 2006. doi: 10.1038/nature04871.

F. Prall. Tumour budding in colorectal carcinoma. Histopathology, 50(1):151–162, 2007.

doi: 10.1111/j.1365-2559.2006.02551.x.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

ISBN 0-521-43108-5.

L. Preziosi, editor. Cancer Modeling and Simulation. CRC, Boca Raton, LA, 2003. ISBN

1-58488-361-8.

193



V. Quaranta, A. M. Weaver, P. T. Cummings, and A. R. A. Anderson. Mathematical

Modeling of Cancer: The future of prognosis and treatment. Clinica Chimica Acta, 357

(2):173–9, 2005. doi: 10.1016/j.cccn.2005.03.023.

C. M. Quick, W. L. Young, E. F. Leonard, S. Joshi, E. Gao, and T. Hashimoto. Model of

structural and functional adaptation of small conductance vessels to arterial hypotension.

Am. J. Physiol. Heart Circ. Physiol., 279(4):H1645H1653, 2000.

K. C. Quon and A. Berns. Haplo-insufficiency? Let me count the ways. Genes Dev., 15

(22):2917–21, 2001. doi: 10.1101/gad.949001.

F. Ravandi and Z. Estrov. Eradication of leukemia stem cells as a new goal of therapy in

leukemia. Clin. Cancer Res., 12(2):340–344, 2006.

W. Reik and J. Walter. Genomic imprinting: paternal influence on the genome. Nat. Rev.

Genet., 2(1):21–32, 2001. doi: 10.1038/35047554.

B. I. Rini and E. J. Small. Biology and Clinical Development of Vascular Endothelial

Growth Factor-Targeted Therapy in Renal Cell Carcinoma. J. Clin. Oncology, 23(5),

2005. doi: 10.1200/JCO.2005.01.186.

E. K. Rofstad and E. F. Halso. Hypoxia-associated spontaneous pulmonary metastasis in

human melanoma xenographs: involvement of microvascular hotspots induced in hypoxic

foci by interleukin. Br. J. Cancer, 86(8):301–308, 2002. doi: 10.1038/sj/bjc/6600052.

E. K. Rofstad, H. Rasmussen, K. Galappathi, B. Mathiesen, K. Nilsen, and B. A. Graff. Hy-

poxia promotes lymph node metastasis in human melanoma xenografts by up-regulating

the urokinase-type plasminogen activator receptor. Cancer Res., 62(6):1847–53, 2002.

T. Roose, P. A. Netti, L. L. Munn, Y. Boucher, and R. Jain. Solid stress generated by

spheroid growth estimated using a linear poroelasticity model. Microvasc. Res., 66(3):

204–212, 2003. doi: 10.1016/S0026-2862(03)00057-8.

P. Rous. A transmissible avian neoplasm. (Sarcoma of the common fowl). J. Exp. Med., 12

(5):696–U46, 1910.

J. L. Rubinstein, J. Kim, O. Tomoko, M. Zhang, M. Westphal, D. F. Deen, and M. A.

Shuman. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results

in increased vascular cooption. Neoplasia, 2(4):306–314, 2000.

194



B. Sadikovic and D. I. Rodenhiser. Benzopyrene exposure disrupts DNA methylation and

growth dynamics in breast cancer cells. Tox. Appl. Pharm., 216(3):458–468, 2006. doi:

10.1016/j.taap.2006.06.012.

G. Sakamoto. Infiltrating carcinoma: major histological types. In D. L. Page and T. J.

Anderson, editors, Diagnostic Histopathology of the Breast, pages 219–222. Churchill-

Livingstone, London, United Kingdom, 1987.

S. Sanga, J. P. Sinek, H. B. Frieboes, J. P. Fruehauf, and V. Cristini. Mathematical modeling

of cancer progression and response to chemotherapy. Expert. Rev. Anticancer Ther., 6

(10):1361–76, 2006. doi: 10.1586/14737140.6.10.1361.

B. C. Sansone, P. P. Delsanto, M. Magnano, and M. Scalerandi. Effects of anatomical

constraints on tumor growth. Phys. Rev. E, 64(2):21903ff, 2002. doi: 10.1103/Phys-

RevE.64.021903.

K. L. Schmeichel, V. M. Weaver, and M. J. Bissel. Structural cues from the tis-

sue microenvironment are essential determinants of the human mammary epithelial

cell phenotype. J. Mammary Gland Biol. and Neoplasia, 3(2):201–213, 1998. doi:

10.1023/A:1018751124382.

P. Sdek, Z. Y. Zhang, J. Cao, H. Y. Pan, W. T. Chen, and J. W. Zheng. Alteration of cell-

cycle regulatory proteins in human oral epithelial cells immortalized by HPV16 E6 and

E7. Int. J. Oral Maxillofac. Surg., 35(7):653–657, 2006. doi: 10.1016/j.ijom.2006.01.017.

E. A. Seftor, P. S. Meltzer, D. A. Kirshmann, et al. Molecular determinants of human

uveal melanoma invasion and metastasis. Clin. Exp. Metastasis, 19:233–246, 2002. doi:

10.1023/A:1015591624171.

A. E. Segall and M. J. Sipics. The influence of interpolation errors on finite-element calcu-

lations involving stress-curvature proportionalities. Finite Elem. Anal. Des., 40(13-14):

1873–1884, 2004. doi: 10.1016/j.finel.2003.11.006.

J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,

New York, NY, 1999. ISBN 0-521-64557-3.

J. A. Sethian and P. Smereka. Level set methods for fluid interfaces. Ann. Rev. of Fluid

Mech., 35(1):341–372, 2003. doi: 10.1146/annurev.fluid.35.101101.161105.

195



N. Sharifi, B. T. Kawasaki, E. M. Hurt, and W. L. Farrar. Stem Cells in Prostate Cancer:

Resolving the Castrate-Resistant Conundrum and Implications for Hormonal Therapy.

Cancer Biol. Ther., 5(8):910–906, 2006.

C. J. Sherr. Cancer Cell Cycles. Science, 274(5293):1672–1677, 1996. doi: 10.1126/sci-

ence.274.5293.1672.

I. Shuryak, R. K. Sachs, L. Hlatky, M. P. Little, P. Hahnfeldt, and D. Brenner.

Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mech-

anisms and Estimating Risks. J. Natl. Cancer Inst., 98(24):1794–1806, 2006. doi:

10.1093/jnci/djj497.

J. Sinek, H. Frieboes, X. Zheng, and V. Cristini. Two-dimensional Chemother-

apy Simulations Demonstrate Fundamental Transport and Tumor Response Lim-

itations Involving Nanoparticles. Biomed. Microdev., 6(4):197–309, 2004. doi:

10.1023/B:BMMD.0000048562.29657.64.

G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema. bicgstab(`) and other hybrid

Bi-CG methods. Numer. Algorithms, 1(7):75109, 1994. doi: 10.1007/BF02141261.

V. I. F. Slettenaar and J. L. Wilson. The chemokine network: A target in cancer biology?

Adv. Drug Deliv. Rev., 58(8):962–974, 2006. doi: 10.1016/j.addr.2006.03.012.

X.-F. Sun and H. Zhang. Clinicopathological significance of stromal variables: angiogenesis,

lymphangiogenesis, inflammatory infiltration, MMP and PINCH in colorectal carcinomas.

Mol. Cancer, 5:43, 2006. doi: 10.1186/1476-4598-5-43.

M. Sussman and E. Fatemi. An Efficient, Interface Preserving Level Set Re-Distancing

Algorithm and its Application to Interfacial Incompressible Fluid Flow. SIAM J. Sci.

Comput., 20(4):1165–1191, 1999. doi: 10.1137/S1064827596298245.

M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solu-

tions to incompressible two-phase flow. J. Comput. Phys., 114(1):146–159, 1994. doi:

10.1006/jcph.1994.1155.

M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An Improved Level Set Method

for Incompressible Two-Phase Flows. Comput. Fluids, 27(5-6):663–680, 1998. doi:

10.1016/S0045-7930(97)00053-4.

196



L. A. Taber. An optimization principle for vascular radius including the effects of smooth

muscle tone. Biophys. J., 74(1):109114, 1998.

H. A. van der Vorst. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for

the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):631–644,

1992. doi: 10.1137/0913035.

V. V. Vasko and M. Saji. Molecular mechanisms involved in differentiated thyroid cancer

invasion and metastasis. Curr. Opin. Oncol., 19(1):11–17, 2007.

P. Vaupel, F. Kallinowski, and P. Okunieff. Blood flow, oxygen and nutrient supply, and

metabolic microenvironment of human tumours: a review. Cancer Res., 49(23):6449–

6465, 1989.

M. N. Vrahatis, G. D. Magoulas, and V. P. Plagianakos. From linear to nonlinear iterative

methods. Appl. Num. Math., 45(1):59–77, 2003. doi: 10.1016/S0168-9274(02)00235-0.

S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini. Three-dimensional Diffuse-

Interface Simulation of Multispecies Tumor Growth-I: Numerical Method. Bull. Math.

Biol., 2006. (in review).

D. Wodarz and N. L. Komarova. Computational Biology of Cancer. World Scientific,

Hackensack, NJ, 2005. ISBN 9812560270.

R. I. Yarden, S. Pardo-Reoyo, M. Sgagias, K. H. Cowan, and L. C. Brody. BRCA1 regulates

the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat. Genet., 30:

285–9, 2002. doi: 10.1038/ng837.

H.-S. Yu, W.-T. Liao, and C.-Y. Chai. Arsenic carcinogenesis in the skin. J. Biomed. Sci.,

13(5):657–666, 2006. doi: 10.1007/s11373-006-9092-8.

S. Yu, Y. Zhou, and G. W. Wei. Matched interface and boundary (MIB) method for

elliptic problems with sharp-edged interfaces. J. Comput. Phys., 224(2), 2007. doi:

10.1016/j.jcp.2006.10.030.

A. Zagorska and J. Dulak. HIF-1: the knowns and unknowns of hypoxia sensing. Acta

Biochimica Polonica, 51(3):563–585, 2004.

197



A. Zetterberg, O. Larsson, and K. G. Wilman. What is the restriction point? Curr. Opin.

Cell Biol., 7(6):835–842, 1995. doi: 10.1016/0955-0674(95)80067-0.

L. Zhang, C. A. Athale, and T. S. Deisboeck. Development of a three-dimensional multiscale

agent-based tumor model: Simulating gene-protein interaction profiles, cell phenotypes

and multicellular interaction patterns in brain cancer. J. Theor. Biol., 244(1):96–107,

2007. doi: 10.1016/j.jtbi.2006.06.034.

H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to mul-

tiphase motion. J. Comput. Phys., 127(1):179–195, 1996. doi: 10.1006/jcph.1996.0167.

X. Zheng, S. M. Wise, and V. Cristini. Nonlinear simulation of tumor necrosis, neo-

vascularization and tissue invasion via an adaptive finite-element/level set method. Bull.

Math. Biol., 67(2):211–259, 2005. doi: 10.1016/j.bulm.2004.08.001.

Y. C. Zhou and G. W. Wei. On the ficticious-domain and interpolation formulations of

the matched interface and boundary (MIB) method. J. Comput. Phys., 219(1):228–246,

2006. doi: 10.1016/j.jcp.2006.03.027.

Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei. High order matched interface and boundary

method for elliptic equations with discontinuous coefficients and singular sources. J.

Comput. Phys., 213(1):1–30, 2006. doi: 10.1016/j.jcp.2005.07.022.

D. Zipori. The mesenchyme in cancer therapy as a target tumor component, effector cell

modality and cytokine expression vehicle. Cancer Metastasis Rev., 25(3):459–467, 2006.

doi: 10.1007/s10555-006-9012-4.

198


