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ABSTRACT 

Research in automatic retina image analysis has become increasingly important in 

ophthalmology. The retina is the only location where blood vessels can be directly 

visualized non-invasively in vivo. Hence, it serves as a ‘window’ to some of the 

pathologies like glaucoma, cerebrovascular and cardiovascular complications. Any 

change in the optic disc structure, blood vessel width, blood vessel tortuosity, and 

presence of lesion serves as indications of the pathologies. Realizing the importance of 

retina image analysis in pathology detection, there has been increasing research in 

ophthalmology to find statistical proof of correlation between certain retinal features 

with certain types of pathologies. Automatic retina image analysis can play an important 

part in the processing of large number of data required in correlational studies. It also 

provides a more qualitative and standardized assessment of retinal images which is 

harder to achieve in direct ophthalmoscopy. 

In this thesis we present two automatic retinal image analysis algorithms; fovea 

detection and artery-vein classification. The fovea, which lies within the macula region, 

is responsible for high resolution vision. Hence, presence of lesions or changes in the 

morphology of this region may be signs of pathologies such as age-related macular 

disease, which can cause blindness. Automatic detection of fovea allows automatic 

analysis of this region for the identification of macular related diseases. Our detection 

framework models the fovea region as an avascular region coupled with prior 

anatomical information on the fovea position in the retina. The artery-vein classification 

algorithm aims to classify vessels for the purpose of automating the estimation of 

artery-vein ratio (AVR). Numerous researches have shown that AVR is a well-

established indicator of cardiovascular diseases. Automated estimation of AVR is an 

important step to process large number of images, for diagnosis as well as for 

correlational studies.  
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CHAPTER 1 

INTRODUCTION 

1.1 About this chapter 

This chapter presents an overview of the research in this thesis, mainly its objective, 

motivation and finally, the structure of this thesis. All experiments in this thesis are 

done in MATLAB©. 

1.2 Objective 

The objective of this thesis is: 

I. To develop efficient automatic retinal image analysis tools to aid clinical 

diagnosis as well as to allow a more efficient and low-cost large image data 

processing for correlational studies. 

II. To refine and expand the current retina analysis tool previously developed in 

our group, VAMPIRE [1]. 

1.3 Motivation 

Direct ophthalmoscopy is subjective and may vary with doctors. Automatic algorithm-

driven measurements using fundus photography will increase repeatability, and is more 

standardized. Moreover, taking manual measurements from retinal fundus images is 

time consuming and obviously not ideal for the analysis of large image datasets. Hence, 

there is an increasing need for a reliable automatic pathology detection and 

classification of the retina.  

In this thesis, we present two automated retinal image processing algorithms: fovea 

detection and artery-vein classification. Fovea is the region in the retina responsible for 

central photopic and high-resolution vision [26]. Therefore any abnormal changes to 

this region may lead to serious vision loss or even blindness. Various diseases are 
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related to this region, for example, age related macular degeneration (AMD) and 

macular oedema.  

AMD is a disease characterized by yellowish lesions, found in both macula-fovea 

region and peripheral retina [26] whereas macular oedema is a vision threatening 

complication of diabetic retinopathy which is recognized by the presence of exudates in 

the macula-fovea region [108]. Therefore, detection of the fovea is important in order to 

automate the analysis for macula-related diseases. Besides, fovea detection is crucial to 

set up fundus coordinate systems, in which the horizontal axis goes through the optic 

disc and the fovea. Such coordinate systems are important to characterize the spatial 

distribution of lesions, such as the grading of diabetic retinopathy. Numerous work has 

been done to detect this region in color fundus images [18, 19, 20, 21, 23, 24, 25]. The 

main challenge in detecting macula-fovea detection is wide variation of its appearance 

due to pathologies. Several authors have also attempted to detect this region based on its 

relative position to the optic disc using a fixed ratio, disc-to-macula distance to disc-

diameter ratio (DM:DD). However, this ratio is dependent on the size of optic disc and 

cannot be regarded as a constant. This is because optic disc size varies even in healthy 

people. Research has shown significant variation in optic disc size in people of different 

race [109, 110] and gender [109]. In people with retina pathologies, the variation in 

optic disc size is even larger [28, 30]. We developed our fovea detection algorithm 

aiming to address these problems. The method and its results are presented in Chapter 3.  

The second automated retina image processing algorithm we present in this thesis is the 

artery-vein classification. This algorithm was developed to automate arterio-venous 

ratio (AVR) estimation.  The arterio-venous ratio (AVR) is a medical measurement that 

is often used to quantify generalized retinal arteriolar narrowing [47] and has been 

found to have a link with hypertension, risk of diabetes mellitus, risk of coronary heart 

disease and cerebral atrophy [78, 79, 80, 8]. Computer-assisted estimation of AVR is 
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necessary because retinal arteriolar narrowing is difficult to quantify objectively through 

direct ophthalmoscopy and manual estimation. Research has also shown direct 

ophthalmology to be subjective especially in the detection of subtle retinal vascular 

changes [47, 69, 71]. Numerous semi-automated systems [104, 105] and automated 

systems [8, 10, 11, 106] have been developed for AVR estimation to aid in clinical 

research of the relation of AVR with different pathologies. The main challenge in 

developing a fully automated AVR estimation system is artery-vein classification. The 

challenge in artery-vein classification is the lack of an absolute definition for the 

appearance of artery and vein. Although artery is often defined as being brighter, having 

stronger central reflex and thinner compared to vein, it is only true when compared to its 

surrounding vessels. Hence, global classification using these vessel appearance features 

will pose problem. Several authors have also attempted to use vessel structure 

information to classify vessels into artery and vein. However, it is heavily dependent on 

the quality of vessel segmentation. In this thesis, we attempted to solve the problem of 

artery-vein classification. The method and its result are presented in Chapter 5.  

 

1.4 Data set 

In this thesis, all algorithms were run on images from the TENOVUS dataset. 

TENOVUS is a data set of 1,168 color fundus images which are part of Tayside diabetic 

screening programme at Ninewells Hospital, Dundee, in accordance to the current 

regulations (ethics, Caldicott, anonymization). The images were captured with different 

cameras at a similar FOV (field-of-view) around 40°-45°. The resolution ranges from 

760x570, 1728x1152, to 3504x2336, the later ones acquired with a Canon EOS 20D 

and stored as JPEG. They are currently being used in a study to derive retinal 

biomarkers for cardio-vasculature diseases. 
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1.5 Structure of thesis 

In Chapter 1, an overview of the research is presented along with the aim and 

motivation of this thesis. The remainder of this thesis is structured as follows. 

 Chapter 2: Clinical background and motivation 

This chapter introduces the retina, different types of retinal image screening as 

well as the clinical motivation behind retinal image analysis. There is also a 

brief discussion on the importance of automated retina image analysis system 

and finally an introduction on our group’s automated retinal analysis software, 

VAMPIRE.  

 Chapter 3: Fovea detection 

In this chapter, we introduce a retinal landmark detection algorithm we 

developed, fovea detection, which is an important feature for pathology 

diagnosis.  In our algorithm, we utilize prior anatomical information to identify 

the region where fovea is positioned in the retina. To locate the center of the 

fovea region, we model it as the center of an avascular region. We test the 

algorithm and the result is discussed.  

 Chapter 4: Interface tool for AVR estimation  

In this chapter, we introduce a framework for artery-vein ratio (AVR) 

estimation. It combines manual user input using an interface tool and as well as 

automatic computation of branching coefficients and vessel width from the 

automated retinal analysis software developed in our group, VAMPIRE. The 

steps and method for AVR calculation are also presented.  

 Chapter 5: Automatic artery-vein classification  

In this chapter, we propose a method for automatic artery-vein classification in 

an effort to automate the manual user input stage for AVR calculation which we 

discuss in Chapter 4. Our classification method aims to avoid using vessel 
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appearance globally due to the variation of vessel appearance within the same 

image as well as across different images. Hence, we propose local classification 

by comparing each vessel’s intensity value to its nearest neighboring vessel. An 

initial test of the algorithm was performed and its result discussed in this 

chapter.  

 Chapter 6: Conclusion and future work 

Finally, this chapter summarizes the work done in this thesis, and proposes 

possible future work.  
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CHAPTER 2 

CLINICAL BACKGROUND AND MOTIVATION 

2.1 About this chapter 

This chapter gives a brief introduction on the anatomical structure of the retina in 

Section 2.2 and discusses about the types of information that can be obtained from the 

retina in Section 2.3. In Section 2.4, we discuss the different types of retinal image 

screening as well as the motivation behind retinal image analysis. We also look at the 

importance of automated retina image analysis system in Section 2.5 and finally 

introduce our group’s automated retinal analysis software, VAMPIRE, in Section 2.6.  

2.2 The retina 

Retina is the sensory layer of the eye. It contains photosensitive cells which convert 

incident light into signals which is then carried to the brain by the optic nerve. The brain 

then processes the signal and which finally allows us to ‘see’ and interpret the object in 

front of our eyes. The retina contains three important components; optic disc (or optic 

nerve head), macula, and vasculature. 

 

Figure 2.1: Structure of the eye – the retina is a light sensitive layer at the back of the eye where 

light is received and transformed into nerve impulse which is then sent to the brain through 

optic nerve. (Source: St Luke’s cataract and laser institute) 
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The optic disc is responsible for transferring signal from retina to the brain to be 

interpreted. Optic disc abnormalities could be a marker for several diseases such as 

glaucoma and astigmatism [88]. In the middle of the macula is the fovea which is 

responsible for central photopic and high resolution vision [26]. Because of this, any 

abnormality occurring within this region may lead to blindness. The vasculature is not 

only responsible for supplying blood to the retina, it also shares similar anatomical and 

physiological characteristics with the cerebral and coronary circulations [47]. Therefore, 

changes in other parts of the body will affect the vasculature in retina. The vasculature 

in the retina has the advantage that it can be viewed by direct ophthalmoscopy or 

through digital retinal imaging. Current research in automated retinal analysis is 

targeted in detecting these landmarks to aid in diagnosis. Automated detection of the 

landmarks are also important to establish a retinal reference coordinate system before 

systems can proceed to perform analysis of identifying pathology entity as well as to 

enable mapping of lesion distribution. In the next section, we will elaborate further on 

the information that can be extracted from retinal images to aid in clinical diagnosis. 

2.3 What the retina can tell us 

2.3.1 Retinal Pathologies 

 

  

Figure 2.2: Left: Healthy retina image (Source: MESSIDOR [49]).  Middle: Retina image with 

AMD (Source: National Eye Institute of the NIH [50]). Right: Retina image with diabetic 

retinopathy (Source: MESSIDOR [49]) 
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What can the retina tell us?  The most obvious answer is of course: changes and 

diseases happening in the retina itself. Retinal pathologies may affect one or more of the 

retina landmarks; macula, optic disc, vasculature, depending of the type of pathology. 

The most pressing eye problem affecting our society today are cataract, glaucoma, age-

related macular degeneration (AMD) and diabetic retinopathy [34]. Figure 2.2 shows 

images of retina with AMD and diabetic retinopathy. AMD is a leading cause of 

blindness worldwide and is a common cause of blindness in people aged more than 50 

years old [34]. A retina with this disease is recognized by the presence of drusen which 

appear as pale, yellowish lesions, found in both macula and peripheral retina [26]. 

Diabetic retinopathy is caused by complications of diabetes mellitus, which can 

eventually lead to blindness. It is the commonest complication of diabetes and is one of 

the leading causes of blindness [34]. Early signs of diabetic retinopathy are 

microaneurysms, small haemorharrges, cotton wool spots, exudates and new vessels 

[89].  

2.3.2 Other Pathologies 

The potential of retinal microvascular abnormalities as predictor or marker of other 

pathologies started as early as the 19
th

 century when Marcus Gunn described the 

relations between retinal microvascular characteristics and hypertension, renal and 

cerebrovascular diseases [62, 63]. More recent researches have found more evidence in 

the associations between retina microvascular abnormalities with risk of hypertension, 

cardiovascular disease, cerebrovascular disease as well as mortality [47, 54, 56, 57, 59, 

60, 61].   

The ability of retina to act as a “window to the human body” is due to the fact that it 

shares similar anatomical and physiological characteristic with the cerebral and 

coronary circulations [47, 64, 65, 66, 67]. This advantage is explained by Keith, 

Wagener, and Barker[68] “because the arterioles are small and are difficult to visualize 
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in the peripheral organs—for example, in the skin, mucous membranes, and voluntary 

muscle— the retina, as seen through the ophthalmoscope, offers a unique opportunity 

for observing these small vessels clinically from time to time. Therefore, we think that 

certain visible changes of the retinal arterioles have been of exceptional value in 

affording a clearer clinical conception of altered arteriolar function throughout the 

body.” 

This has opened up whole new possibilities for the discovery of retina as an indicator of 

diseases elsewhere in the body.  

2.4 Retinal Imaging 

Numerous researches have proven direct ophthalmology to be unreliable and subjective 

especially in the detection of subtle retinal vascular changes [47, 69, 71]. Retinal 

photographs have been suggested to be more reliable in identifying lesions, and retinal 

vascular changes [47, 57]. Kagan et al [71] described large inter-observer (20–42%) as 

well as intra-observer (10–33%) variations in the assessment of different retinal lesions 

with direct ophthalmoscopy. In addition, digital retinal imaging allows patients’ images 

to be stored which makes disease monitoring easier. Patients who stay in rural area 

where experts are not available can be diagnosed by having their retinal photographs 

taken and sent to experts in other countries for analysis.  

Retina can be imaged with several methods:  

 Fundus Photography 

Fundus images can be taken with either mydriatic or non-mydriatic camera. The 

size of field of the images is usually between 30° to 50° depending on the 

camera used. To capture a fundus image, the retina is illuminated and the 

reflected light is captured by a digital sensor. The digital sensor can be charge-

coupled device (CCD) or complementary metal oxide semiconductor active 

pixel sensor (CMOS-APS) [58]. There are two types of retinal fundus images 
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(Figure 2.3), optic disc centered (field-1 type) and macula centered (field-2 

type). All images used in this thesis are macula centered images.  

 

 

Figure 2.3: Left: Field-1 type, optic disc centered retina image (Source: University of 

Michigan Kelogg Eye Centre [87]). Right: Field-2 type, macula centered retina image 

(MESSIDOR [49]) 

  

Color fundus images consist of three channels; red channel (R), green channel 

(G) and blue channel (B). When performing image processing on fundus images, 

we choose only green channel because it has good contrast whereas blue and red 

channel contain more noise in comparison [15, 90, 91]. Hence, throughout this 

thesis, only the green channel of the fundus images is used for all processing 

which includes vessel segmentation, fovea detection as well as artery-vein 

classification. 

 Fluorescein Angiography  

Images are taken by injecting a dye into the patient’s arm and the dye is then 

traced as it flows through the blood vessels in the retina. The dye used is 

fluorescein that absorbs blue spectrum of the light and emits yellow-green light. 

A series of retinal images are taken at an irregular interval of time as the dye 

travels though the blood vessels. It is especially useful to detect blood leakage in 
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the retinal vessels which can be viewed as leakage of the dye in the image. An 

example of fluorescein angiogram sequence is shown at Figure 2.4. 

  

(a)                                                        (b) 

  

                        (c)                                                       (d) 

Figure 2.4: Four phases of fluorescin angiogram sequence: (a) arterial phase (b) arterio-

venous phase (c) venous phase (d) late venous phase. (Source: Optos plc) 

 

 Optical Coherence Tomography (OCT) 

This is a relatively new non-invasive method that captures 3D image of the 

retina. It produces cross-sectional images of the retina, which allows the 

thickness of different layers to be measured. This method has been used to test 

retina’s response to various treatment methods. An example of optical coherence 

tomography is shown at Figure 2.5. 
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Figure 2.5: Optical coherence tomography of the fovea (Source: The Oeil project [92]) 

 

2.5 Automated retinal image analysis 

Recent data has revealed that there are 37 million blind people and 124 million with low 

vision worldwide [34]. The main causes are cataract, glaucoma, corneal scarring, age-

related macular degeneration, and diabetic retinopathy. This indicates the need for a 

more accurate, efficient and low cost retinal analysis systems capable to detect signs of 

pathologies especially in the early stage.  

Automated retina image analysis is a promising solution because: 

I. It is able to process large number of images at low cost operation. One of 

the greatest expenditure in a screening program is the cost for trained manual 

graders [74], where they are often required to grade a large amount of 

images. Hence, computerized system can be used to help reduce the 

workload by eliminating images with no disease.  

II. It is able to provide a more objective and standardized assessment of retinal 

images compared to diagnosis from direct ophthalmoscopy which tends to 

be subjective and unreliable [69, 70, 71, 72, 73]. Studies such as the 

Atherosclerosis Risk in Communities Study (ARIC Study) where retinal 

micro-vascular characteristics were evaluated from retinal photographs, 

using a standardized grading protocol, has proven that computer assisted 

quantification of generalized arteriolar narrowing showed high reliability in 
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the readings taken from the same subject at different times, as well as in 

intra-grader and inter-grader readings [93, 6].  

III. It is able to provide advanced quantitative analysis of the retina. Some 

quantitative analysis such as vessel tortuosity, fractal dimension of the 

vasculature and branching coefficients are hard to quantify with human eye 

or even manually on the retina photographs. Automated system with 

advanced image processing technique allows these to be done in a more 

systematic way.  

Most of the work in automated retinal diagnosis has been emphasized on diabetic 

retinopathy [74]. Research in automated retinal analysis focuses mainly on automating 

the detection of lesions, or detecting features that relate to some diseases or progression 

of disease in the eyes. Early detection of these diseases will prevent possible blindness. 

To date, automatic image detection of retinal pathology has come a long way since its 

birth in the 1970s with more advanced and effective techniques being discovered ever 

since and is rapidly improving. However, progress in computer assisted system for 

retinal analysis is hard to justify because different studies reported accuracy in images 

of different qualities and different pathologies. Moreover, the accuracy reported by 

different authors often use different validation procedure, making comparison between 

algorithms difficult.  

There remain challenges to be solved before automated retinal image analysis systems 

can be used for general clinical diagnosis. The challenges faced by researchers working 

in automated retinal image analysis are not only technical but also due to clinical 

limitations. In the clinical part, there exists ambiguity among ophthalmologist in the 

definition retinal feature, for example vessel tortuosity [95] and macula region [99]. 

Moreover, the same pathology may have different types of pigmentations on patients of 
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different ethnicity [34] and there is also variation in retinal features even in healthy 

images due to gender, and age [109, 110]. 

 

2.6 VAMPIRE: Vessel assessment and measurement platform for 

images of the retina 

VAMPIRE is a tool that performs automatic quantification of retinal vessel properties 

with large collections of retina fundus camera images [1]. The project was started by the 

Computer Vision Group from the University of Dundee with the collaboration of four 

image processing groups and five clinical centres in the UK, Europe and Singapore. 

VAMPIRE has since been continuously developing with more retina image analysis 

modules being integrated and improved. VAMPIRE’s interface designed for use by 

non-specialists on image processing (e.g, clinicians, geneticists). The system relies on 

the vasculature extraction developed by Soares et al [4] to automatically quantify 

different properties of the vascular network in the retina: vessel width, vessel tortuosity, 

branching angles, and branching coefficients.VAMPIRE has been used to run images of 

resolution ranging from approximately 400x400 to 3000x3000 pixels, acquired by 

various commercial instruments. These include fundus cameras (e.g., Canon CR-DGi 

nonmydriatic at 45_ FOV, TopCon TRC nonmydriatic fundus camera). This software 

had been used for various studies which includes diabetic retinopathy, AMD, and 

relation between retinal micro-vascular abnormalities with stroke, cerebrovascular 

disease and hypertension [51]-[60].  

2.6.1 Optic Disc Location 

 

The optic disc was detected using the algorithm developed in our group previously [16]. 

The optic disc is assumed to be a sub-region which is brighter than the local 

background, the contour is approximately elliptical, and vessels are present in its central 

part.  
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Figure 2.6: Left: the original RGB image. Middle: estimated vessel mask. Right: inpainted 

grayscale image (Source: [16]) 

Vessels are segmented by subtracting the top-hat filtered from the original component 

image and thresholding the result. The segmented vessels are then removed by 

inpainting (Figure 2.6). Final localization of optic disc is performed by optimizing the 

cost function which depends on internal/external contrast in the inpainted image and the 

gradient magnitude on the ellipse border.  

 

2.6.2 Vasculature extraction 

The vessel detection algorithm used in this software was developed by Soares et al [4]. 

To train the classification algorithm, 20 fundus images from the Lothian cohort [32] 

was manually segmented by Dr Tom MacGillivray and Dr Adria Perez Rovira. 

 

Figure 2.7: VAMPIRE interface showing the binary vessel map. Red lines are the vessel 

centerline. Blue circles indicate the retinal coordinate system centered on the optic disc 
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2.6.3 Vessel width 

In order to obtain vessel width, a binary vessel map is first generated using VAMPIRE. 

Vessel width of a certain point in the centreline is estimated by the shortest length from 

the centreline to the vessel border as shown in Figure 2.8. 

 

Figure 2.8: Vessel width estimation from binary vessel map (green cross shows the point of 

interest and dotted blue line shows the width of the vessel) 

 

2.6.4 Branching angles and branching coefficients 

Before calculating branching angles and branching coefficients, it is important to refine 

the location of branching point. To do this, VAMPIRE has implemented the approach 

presented by Tsai et al [101]. This approach generates a circular exclusion area around 

the bifurcations proportional to the width of the parent vessel (Figure 2.9). Vessel 

centerlines outside the circular exclusion area are used to estimate a straight line for 

each vessel branch. The new bifurcation location is estimated as the point that 

minimizes the distance to the three intersecting lines, as shown in Figure 2.9(b). 

The largest vessel connected to the bifurcation is labeled as the parent vessel.  

 
Branching angle is determined as the angle between centerline of the two child vessels, 

centered on the refined branching point. The bifurcation coefficient is determined as 

  
  

     
 

  
  

d 

d 
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Where b =branching coefficient, w1,w2 = widths of child vessel, W = width of parent 

vessel. Width is calculated from the method presented in Section 2.6.3.  

 

 
 

Figure 2.9: Left: Binary vessel segmentation showing the vessel centerline(in red), the detected 

branching point(in blue) and the refined location of the branching point (in green). Right: 

Diagram shows how the new location for the branching point is refined (Source: [101]). 

 

 

 

Figure 2.10: VAMPIRE interface showing a processed retina image (for branching) 

 

In Figure 2.10, green circles are the detected junction points. Users are able to click on 

the junction points to obtain information of the junction, which are the branching 
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coefficient and branching angle. Selected junctions are shown as red circle, parent 

vessels are shown in green line and branches are shown in white line.  

2.6.5 Vessel tortuosity 

VAMPIRE implements novel tortuosity measure which combines both vessel skeleton 

curvature and vessel width, based on the work published by Trucco et al. [100]. The 

authors proposed that tortuosity depends not only on the vessel skeleton but also on the 

vessel width. 

 

Figure 2.11: VAMPIRE interface showing a processed retina image (tortuosity) 

 

In the Figure 2.11, yellow lines are the vessel centerlines whereas red lines are the 

selected vessel for tortuosity calculation. The tortuosity value is shown beside the 

selected vessel.  

2.7 Conclusion  

In this chapter, we have introduced clinical definition of the retina, background of 

retinal image analysis and highlighting its importance in aiding clinical diagnosis and 

research. We have also introduced and discussed the features of VAMPIRE, the 

automatic retina image analysis software previously developed in our group. This thesis 

focusses on developing more modules to be integrated into VAMPIRE. 
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CHAPTER 3 

FOVEA DETECTION 

 

3.1 About this chapter 

In this chapter, we present a method to locate the center of the foveal region in retinal 

fundus images. The center of the foveal region is modeled as the center of the avascular 

region. Instead of using the appearance of the region, which is subject to image 

variations, we locate the fovea center based on an anatomical prior and vessel density. 

The latter is calculated with a Gaussian-weighted window, weighing vessel density 

more in the center of the window. The effect of varying standard deviation on the 

Gaussian weighting window is evaluated experimentally. Experiments with 116 images 

from a diabetes screening program show good accuracy (87% with distance error within 

0.5DD). This chapter is organized as follows. Section 3.2 presents our motivation for 

macula detection as well as introducing clinical definition of macula and fovea. Section 

3.3 discusses about the related work on fovea detection. Section 3.4 presents the 

methodology of our detection algorithm. Section 3.5 discusses the result of our 

algorithm and finally, the chapter is concluded in Section 3.6. 

 

3.2 Introduction 

The macula is a region temporal to optic disc and usually recognized as a dark spot in 

healthy retinal fundus images. Its center is known as the fovea. Ophthalmologists are 

interested in this region for several reasons. Firstly, it is the region responsible for 

central photopic and high resolution vision [26]; hence, any abnormal changes to this 

region may lead to serious vision loss or even blindness. Secondly, it is crucial to set up 

fundus coordinate systems, in which the horizontal axis goes through the optic disc and 
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the fovea. Such coordinate systems are important to characterize the spatial distribution 

of lesions, such as the grading of diabetic retinopathy. Thirdly, automatic detection of 

fovea would contribute to the efficient, semi-automatic analysis of large numbers of 

retinal images.  

Although there is no ultimate agreement on the definition of the macular-fovea region, 

there is still a general anatomical structure on which we can base our detection 

algorithm. The macula is a region that covers four main anatomical regions: fovea 

centralis, fovea, parafovea, and perifovea. At the center of the macula is the fovea 

which is regarded as having the same size as the optic disk [29] and which contains an 

avascular area. Hence, we formulate the fovea localization problem as one of locating 

the center of an avascular zone [26] with the size of the optic disc within a pre-defined 

search region. The avascular zone is defined as the zone with least vessel density 

(Figure 3.1).  

 

Figure 3.1:  Left: retinal image showing the anatomical region of the macula (fovea, parafovea, 

and perifovea). Right: associated vessel map computed automatically. (Source: TENOVUS) 

 

3.3 Related work 

The current macula-fovea detection algorithms in the literature can be grouped into 

three main approaches: detection using macula appearance [25, 23, 18], detection using 

vessel structure [24], and detection using a combination of both [19, 20, 21]. Algorithms 

using macula-fovea appearance model the center of the fovea as the region with the 
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darkest pixel intensity. However this assumption does not work in general; e.g., some 

macular diseases make the macular region appear lighter than usual or severely 

pigmented (Figure 3.2). 

 

Figure 3.2: First row: Healthy retina images which show macula-fovea region as clear dark spot. 

Second row: Diseased retina images where the appearance of macula-fovea region is no longer 

obvious but can still be recognized by its position relative to optic disc and main vessel (Source: 

TENOVUS) 

 

Algorithms that use the vessel network to find the fovea center fit a low-order curve 

(e.g., parabola, ellipse) to the main vessel arcades, then, locate the fovea center as a 

point that lies at a given distance along the parabola main axis. For instance, 

Sinthanayothin et al [18] fix the disc-to-macula distance to disc-diameter ratio 

(DM:DD) as 2.5 disc diameters (DD); Li et al [19] fix a ratio 2DD, whereas Ying et al 

[21] takes the range between 2DD and 2.5DD. However, the DM:DD ratio varies quite 

significantly between individuals due to different age and pathology in the eye. Patients 

with physiological macrodiscs usually have a smaller DM:DD ratio and have been  

reported to have a lowest value of 1.84DD in [28]. For patients with optic nerve 
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hypoplasia, for example, a condition where the optic nerve is underdeveloped and the  

OD appear abnormally small, the DM:DD ratio has been  reported to be more than 3DD 

and to have a largest value of 4.2DD in adults [30].   

Algorithms that combine information from vessel network and macula-fovea 

appearance generally find the main vessel arcade and then detect fovea center as a 

region of darkest pixel intensity within the main vessel arcade [19, 20], or as a dark 

region with low vessel density within the main vessel arcade [21]. 

 

3.4 Methodology 

3.4.1 Algorithm overview 

First, the optic disc contour is approximated by an ellipse and located using our 

algorithm reported elsewhere [16]. A vasculature map is calculated using vessel 

segmentation algorithm developed by Soares et al [15] to obtain the location of blood 

vessels. Both optic disc detection and vessel segmentation is performed within 

VAMPIRE. A parabola with vertex in the centre of the optic disc is then fitted to the 

vessel map to locate the approximate path of the main arcade visible. A search region 

for the fovea is then formed from anatomical priors and posterior probabilities estimated 

from sample images. Within the search region, a cost is calculated for each candidate 

position; the lowest-cost one is taken as the best estimate of fovea position. Details of 

each stage are given in the following sections. The overall fovea detection algorithm is 

shown in Figure 3.3. Henceforth, r will denote the radius of the optic disc, DD denotes 

disc diameter and DM:DD denotes disc-to-macula distance to disc-diameter ratio.  
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Figure 3.3: Overall fovea detection algorithm  

 

3.4.2 Determining a search region 

We consider three anatomical constraints to identify a search region for the fovea. First, 

we establish a range for the disc-to macula distance to disc-diameter distance ratio 

(DD:DM). Second, we constrain the search region to be within the parabola 

approximating the main arcade (Figure 3.5). Third, following [27], we further confine 

the search region to be located below the upper boundary of optic disc. We obtain the 

final search region by intersecting the three constraints. Within it, candidate pixels are 

sampled for cost evaluation with a spatial step of 1/6 of the optic disc radius (Figure 

3.6). 

3.4.2.1 Disc to Macula ratio (DM:DD) 

 

We estimated the probability distribution for DM:DD from a sample set of 126 

screening images, which are not used for testing the fovea location algorithm. The 

images chosen have good quality and the fovea is obvious, to ensure that the DM:DD 

information we obtain is as accurate as possible.  



24 

 

 

(a) 

 

(b) 

Figure 3.4: (a) Distribution of DM:DD ratio obtained from 126 sample images. (b) QQ plot of 

the DM:DD ratio obtained from the sample images. Red line is the theoretical quantile from 

normal distribution and blue dots represent the sample quantile.  

 

We approximate this distribution with a Gaussian (Lilliefors test at 5% significance 

level, p value= 0.430). Liliefors is used to test the null hypothesis that the distribution of 

the data comes from a normally distributed population. Figure 3.4(a) shows the 

graphical illustration of the sample distribution which approximates a normal 
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distribution. Figure 3.4(b) shows the QQ plot of the sample data. It can be seen that the 

data (dotted blue) is close to the red linear line which represents the normal distribution.  

Assuming the data to be normally distributed from the statistical tests, we then fix the 

DM:DD range within 3 standard deviations from the mean, i.e., 1.82DD to 3.56DD. 

3.4.2.2 Main Arcade Approximation  

 

The main arcades are the large retinal vessels emerging from the optic disc and lying 

within areas of with high vessel density [21] and can be approximated with a parabola. 

To select the points to use for parabola fitting, the vessel binary map is first 

skeletonized. A r×r square neighbourhood is considered around each skeleton point, 

and vessel density and average width estimated within it. A vessel density map and an 

average width map are then calculated and combined by linear summation. Vessel 

points are then clustered into four clusters using the combined map and a K-means 

algorithm. Points in the highest-valued cluster are chosen for parabola fitting using the 

following equation: 

  (   )       (   )            (   )       (   )       (1) 

Here, θ is the orientation angle of the parabola axis with respect to the x axis of the 

image, and a/4 is the focal length. The parabola vertex has co-ordinates (h,k) and is 

chosen as the point inside the optic disc with the highest vessel density. This is 

estimated by the number of vessel pixels in the vessel map within a r×(r/2) search 

window. The fit estimates the two parameters, a and  . The parabola is fitted by 

minimizing the algebraic distance, i.e., the residual of Equation (1) when numerical 

values are used, with the Nelder-Mead algorithm [31]. 
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Figure 3.5: Left: Retinal vessel map with vessel pixels chosen for arcade location (parabolic fit) 

in red. Right: Result of parabolic fit (parabola and its axis shown in black). 

 

3.4.2.3 Final Search Region  

 

In order to establish the final search region, we combined the anatomical priors 

previously discussed: fovea lies within a certain range of DM:DD from optic disc and 

within the main arcade. We also incorporated another anatomical prior to further 

confine the search region to be below the upper boundary of the optic disc [27]. Within 

the search region, candidate pixels are sampled for cost evaluation with a spatial step of 

1/6 of the optic disc radius. The method for cost calculation is explained in Section 

3.4.4. 

 

Figure 3.6: Combination of three anatomical priors to obtain the final search region  
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3.4.4 Fovea center localization 

To locate the fovea, we evaluate each sampled location in the search region (Figure 

3.6). As the fovea is taken to be about the size of the optic disc (Section 3.2), a square 

window of optic disc size is centered on each point of the search region and evaluated. 

As blood vessels are less visible in the fovea than in surrounding regions, we compute 

the vessel density from the binary vessel map and apply with Gaussian weights, so that 

higher weights are given to central points where the avascular region is expected 

(Figure 3.7). The weights are normalized so that they sum to one.  

 

Figure 3.7:  Illustration of vessel density weighting. Left: Gaussian mask profile (red is largest). 

Centre: binary vessel window. Right: weight of each vessel point (red is largest). 

 

 

The final vessel density estimate for a candidate location is the sum, over the square 

window, of the point wise product of the weights and the binary vessel map. The 

location with the lowest vessel density within the whole search region is taken as the 

best estimate of the center of the fovea. Figure 3.8 gives an illustration of the search 

algorithm. 
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Figure 3.8: Illustration of the search algorithm.  

 

In Figure 3.8, the first row represents a search position closer to the fovea center 

whereas the second row represents a search position further from the fovea center. 

Column 2 and 3 show calculated vessel density from the patch, one with Gaussian 

weighting and another without. The algorithm is designed to choose the position with a 

smaller magnitude of vessel density. Hence, if vessel density calculation is not Gaussian 

weighted, it will choose any random position with low vessel density instead of a 

position with an avascular region in the center. This will result in the algorithm 

choosing the wrong position. An example is shown in Figure 3.8 where algorithm chose 

the position in the second row, which is further away from the fovea compared to the 

position in the first row.  
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3.5 Experimental result 

3.5.1 Materials 

We evaluated our algorithm on 116 color fundus images from the TENOVUS dataset. 

The images we used were of high resolution (2336x3504) and were of type-2 field, i.e., 

centered on the macula. To test the algorithm performance with varying quality, the test 

images were divided into three difficulty (quality) levels: good (66 images), medium 

(30), and difficult (20). Quality was determined by the visibility and integrity of the 

macula region. 

3.5.2 Ground truth 

A software tool was developed to obtain ground truth input from annotators.  

 

Figure 3.9: Interface tool to obtain ground truth for fovea position 

 

Above is a screenshot of the tool where observers were asked to mark the fovea centre 

(shown as blue point in image. We compared the results from our algorithm with 

annotations provided by 2 observers, a practicing ophthalmologist and a trained image 

processing expert. To estimate intra-observer variability the images were annotated 

twice by each observer in independent sessions. The two observers acted independently. 
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Intra-observer Good Medium Difficult All Images 

Observer 1 4.42% ± 2.98% 8.09% ± 10.05% 10.63% ± 8.01% 6.44% ± 6.85% 

Observer 2 5.99% ± 3.85% 6.96% ± 5.03% 10.37% ± 7.72% 6.99% ± 5.21% 

Inter-observer Good Medium Difficult All Images 

Observer 1 vs 

Observer 2 5.52% ± 3.09% 8.66% ± 4.48% 16% ± 6.36% 8.14% ± 6.36% 

 

Table 3.1: Euclidean distance error between intra observer and intra observer, as percentages of 

disc diameter. 

 

Table 3.1 shows the paired Euclidean differences for intra-observer and inter-observer. 

The difference is expressed as mean±SD in % of the disc diameter. The mean difference 

increases from good to difficult images for both intra- and inter-observer figures, 

reflecting the increasing uncertainty of location of the fovea center as the image quality 

degrades.  

We used the Bland-Altman method to measure the agreement between intra-observer 

and inter-observer. The analysis was performed separately for X and Y values of the 

fovea center coordinate.  
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Figure 3.10: Bland Altman plots of X and Y values for intra-observer difference in Observer 1. 

 

 

 

  



32 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Bland Altman plots of X and Y values for intra-observer difference in Observer 2. 
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Figure 3.12: Bland Altman plot of X and Y value for inter-observer difference 
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Figure 3.10, 3.11 and 3.12 show Bland-Altman plots, respectively, for intra- and inter-

observer differences for X and Y values, where X and Y are the co-ordinates of the 

points selected as fovea center. The two clusters for the X plots reflect the different 

location of the fovea in left and right eyes. The inter-observer differences have a larger 

mean than intra-observer differences, as expected, but the limits of agreement 

(mean±2SD in unit of pixel) are comparable. For example, the limit of agreement of X 

value for Observer 1 is between -62.4 and 66.7 pixels. In disc diameter units, the limit 

of agreement is expressed as -0.16DD and 0.17DD, which is small enough for us to be 

confident that there is strong agreement between the two annotations taken by Observer 

1. The limits of agreement are also comparatively small for Observer 2 (-0.13DD to 

0.15DD) as well as for inter-observer difference between the two observers (-0.12DD to 

0.18DD). 

 

3.5.3 Determining the optimal weighting Gaussian 

To determine the optimal size of the weighting Gaussian window, we plotted the 

difference program-observer against different sizes of the Gaussian weighting window, 

given by its standard deviation, σ. This provides an appreciation of the algorithm 

performance at varying spatial scales. Smaller standard deviations put higher emphasis 

on smaller, more localized central regions.  
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   Observer 1_1     Observer 1_2     Observer 2_1     Observer 2_2   

σ Good Med Diff Average Good Med Diff Average Good Med Diff Average Good Med Diff Average 

R/8 
0.742 0.633 0.450 0.664 0.773 0.633 0.450 0.681 0.758 0.633 0.450 0.673 0.712 0.733 0.450 0.672 

R/4 
0.758 0.667 0.400 0.673 0.788 0.667 0.450 0.698 0.773 0.700 0.500 0.707 0.758 0.733 0.550 0.716 

R/2 
0.758 0.700 0.600 0.715 0.742 0.667 0.650 0.707 0.773 0.633 0.650 0.716 0.742 0.767 0.650 0.733 

R 
0.758 0.533 0.550 0.664 0.742 0.533 0.550 0.656 0.773 0.533 0.600 0.681 0.682 0.600 0.650 0.655 

2R 
0.682 0.567 0.550 0.629 0.652 0.567 0.550 0.612 0.697 0.500 0.600 0.629 0.636 0.600 0.650 0.629 

Without 

Gaussian 
0.667 0.600 0.550 0.629 0.621 0.533 0.500 0.578 0.697 0.500 0.500 0.612 0.621 0.600 0.550 0.603 

 

Table 3.2: Fraction of images with distance error within 25% of the optic disc diameter, for varying σ value. “Observer 1_2” for example, means “second-time 

annotations from Observer 1” 
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   Observer 1_1     Observer 1_2     Observer 2_1     Observer 2_2   

σ Good Med Diff Average Good Med Diff Average Good Med Diff Average Good Med Diff Average 

R/8 
0.894 0.833 0.750 0.853 0.909 0.867 0.700 0.862 0.924 0.833 0.700 0.862 0.924 0.833 0.650 0.853 

R/4 
0.909 0.800 0.700 0.845 0.924 0.800 0.700 0.853 0.924 0.800 0.650 0.845 0.924 0.800 0.650 0.845 

R/2 
0.909 0.800 0.750 0.853 0.924 0.833 0.750 0.870 0.924 0.800 0.700 0.853 0.924 0.800 0.700 0.853 

R 
0.894 0.767 0.650 0.819 0.909 0.767 0.650 0.828 0.909 0.767 0.700 0.836 0.909 0.767 0.700 0.836 

2R 
0.894 0.767 0.650 0.819 0.909 0.767 0.650 0.828 0.879 0.767 0.700 0.819 0.909 0.767 0.700 0.836 

Without 

Gaussian 
0.894 0.800 0.650 0.828 0.894 0.800 0.650 0.828 0.864 0.800 0.700 0.819 0.894 0.800 0.700 0.836 

 

Table 3.3: Fraction of images with distance error within 50% of the optic disc diameter, for varying σ value. “Observer1_2”, for example, means “second-time 

annotation from Observer 1” 
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Table 3.2 shows the fraction of images for which the distance error between the 

program estimate and the observer annotation is within 25% of the optic disc diameter 

(approximately 382 pixels in the test images) from the center, computed for 5 different 

σ values of the Gaussian weighting window as well as without the Gaussian weighting, 

for the 3 image quality classes. Table 3.3 shows the fraction of images for which the 

distance error is within 50% of the optic disc diameter from the center. In Table 3.2, the 

Gaussian window with σ = r/2 has the best average performance; in Table 3.3, the 

Gaussian windows with σ = r/2 and σ = r/8 achieve equal scores. Hence, we chose the 

Gaussian window with σ = r/2 as the best performing algorithm because it performs best 

even in a stricter condition (25% DD).  

3.5.4 Result and discussion  

The detection accuracy was quantified by the distance between the fovea center detected 

by the algorithm and the ground-truth fovea center. Figure 3.13 and figure 3.14 shows 

the distance (difference) histograms and associated cumulative histograms for σ = r/2. 

The x-axis of the histograms is in disc diameter (DD) unit. The cumulative histograms 

shows that 90% of the error histogram lies within 0.35DD (for both observers) for good 

quality images, 0.73DD (observer1) and 0.8DD (observer2) for medium quality, 0.8DD 

(observer1) and 0.73DD (observer2) for difficult quality. Although for observer 2 the 

cumulative error for medium quality images is higher than that of difficult quality 

images, the medium quality images has higher fraction of images at lower distance error 

(Figure 3.14). 
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              Good Medium Difficult 

   

   

 

Figure 3.13:  Result for Observer 1. First row: Histograms of distance error per quality class for σ = r/2. Second row: corresponding cumulative histograms. X axis 

values are in OD diameters (1 OD diameter ≈ 382 pixels). 
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         Good Medium Difficult 

   

   

 

Figure 3.14:  Result for Observer 2. First row: Histograms of distance error per quality class for σ = r/2. Second row: corresponding cumulative histograms. X axis 

values are in OD diameters (1 OD diameter ≈ 382 pixels). 
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Finally, Figure 3.15 illustrates the results of the automatic fovea detector on 3 images 

from each of the 3 quality classes.  

 

Good Medium Difficult 

   

   

   

 

Figure 3.15:  Result of fovea detection algorithm on 3 different quality images. Shown in each 

image is the OD boundary, fitted parabola and parabola axis (in black) and detected fovea 

center, shown as the blue point. 
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3.6 Conclusion 

In this chapter, we presented a fovea detection algorithm utilizing prior anatomical 

information of the fovea. Experimental results are evaluated on ground truth from 2 

annotators. We found from experiment that modeling the fovea region with Gaussian 

template of size r/2 produces the best result. From the experimental results, we conclude 

that the proposed algorithm is a potentially effective method to locate the fovea center 

in retinal images of various qualities. Results are dependent on the quality of the vessel 

segmentation used; therefore, for retina images in which the vasculature is not clear, the 

algorithm may not be able to detect the correct foveal avascular region accurately. 

Moreover, the appearance of the avascular region may be severely altered in retinas of 

patients with advanced-stage macular diseases [27]; in some cases, however, our 

algorithm was still capable to generate reasonable location estimates (e.g., Fig. 3.15, 

middle row, right). In the following chapters, we will present our work on computer-

assisted arterio-venous ratio (AVR) estimation and artery-vein classification.  
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CHAPTER 4 

TOOL FOR ARTERIO-VENOUS RATIO (AVR) 

ESTIMATION 

 

4.1 About this chapter 

This chapter describes the method and steps involved to obtain arterio-venous ratio 

(AVR). We developed a user interface tool to allow user to select vessels and branching 

points for AVR estimation. These vessels and branching points are then processed by 

VAMPIRE to obtain the corresponding vessel widths and branching coefficients. The 

AVR is then estimated using the protocol devised by Knudtson et al [2]. This tool was 

developed to aid in the clinical research of the relation of AVR with pathologies (i.e, 

hypertension and cerebral atrophy). This chapter is organized as follows. Section 4.2 

introduces arterio-venous ratio (AVR) and its significance in clinical research. Section 

4.3 discusses about the AVR estimation protocol from the literature and explains our 

choice of method for AVR estimation used in our system. Section 4.4 presents our 

computer-assisted AVR estimation system which uses VAMPIRE and the user interface 

tool we developed. Conclusions are given in Section 4.5. 

 

4.2 Introduction 

The arterio-venous ratio (AVR) is a medical measurement that is often used to quantify 

generalized retinal arteriolar narrowing [47]. Retinal arteriolar narrowing is a condition 

where retinal microvasculature changes due to chronically elevated blood pressure and 

other processes [78]. It has been found to have a link with hypertension, risk of diabetes 

mellitus, risk of coronary heart disease and cerebral atrophy [78, 79, 80, 8]. However, 

retinal arteriolar narrowing is difficult to quantify objectively through direct 

ophthalmoscopy and manual estimation. Hence, numerous researches have been done to 
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develop computer assisted AVR estimation with a standardized protocol. Semi-

automated estimated AVR as a measure of generalized retinal arteriolar narrowing has 

been used in several studies such as the atherosclerosis risks in communities (ARIC) 

study [6, 81, 82], the Blue Mountains Eye Study[83, 84], and the Beaver Dam Eye 

Study[85, 86].   

4.3 AVR estimation protocol 

AVR is generally known as ratio of arteriole width to venular width. A study to 

compare different AVR calculation methods was done by Hemminski et al [48]. In their 

study, they compared four different formulae on both left and right eye. The formulae 

they used for comparison are;  

i. central retinal arteriolar equivalent (CRAE)/ central retinal venular 

equivalent (CRVE); 

ii. mean arteriole width/ mean venule width; 

iii. sum of widths of arterioles/ sum of widths of venules; 

iv. sum of squares of widths of arterioles/ sum of squares of widths of venules. 

They found that AVR calculated by CRAE/CRVE has the best repeatability. In 

addition, there is no significant difference between CRAE/CRVE measurements taken 

from left eye and right eye [48, 76, 77]. This indicates the suitability of this formula to 

represent vascular changes in the eye of the patient. The central retinal arteriolar 

equivalent (CRAE) was first derived by Parr et al [5]. It is estimated from arteriolar 

widths around a predefined zone concentric with the optic disc. The zone is fixed to be 

0.5DD to 1DD from optic disc margin. The zone (0.5DD-1DD) is chosen based on the 

data which showed that arteriolar widths appear to decrease significantly after this 

distance from the optic disk in patients with hypertension [47].  

To obtain CRAE, paired vessels were combined to estimate trunk vessel, and then trunk 

vessels were combined iteratively until all vessels are combined into the summary 
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measure, CRAE. The formula used to calculate vessel trunk width from a vessel pair is 

shown as the following:  

   √      
        

                  

Where Wc= width of vessel trunk, Wa= width of smaller branch, Wb= width of larger 

branch. 

Hubbard et al [75] later derived a corresponding formula for central retinal venular 

equivalent (CRVE):  

    √      
        

          

The final AVR is calculated as CRAE/CRVE.  

The main shortcoming in Parr’s method is that it requires a careful mapping of retinal 

vessels to trace vessel pairs, which is laborious and difficult [6].  Hence, Hubbard et al 

[6] further proposed a simplified version of the method which is less time consuming 

and correlates well with Parr’s method [74]. However, this improvised method still has 

two main limitations [2]; it is dependent on scale because of the presence of coefficient 

in the formulae and it is affected by the number of vessels. Later, Knudtson et al [2] 

proposed an improvement of the method which addresses the limitations of the previous 

method. The formulae they proposed to calculate vessel trunk from vessel pair are: 

   
 

√   
√  

     
   

   
 

√   
√  

     
    

Where BCA= branching coefficient of artery, BCV=branching coefficient of vein 

WA = width of artery trunk, WV = width of vein trunk, W1 = width of smaller branch,  

W2 = width of larger trunk. 
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4.4 Computer-assisted AVR estimation 

Computer-assisted AVR estimation can be categorized into semi-automatic [104, 105] 

and automatic system [8, 10, 11, 106]. The overall flow of the algorithm for automatic 

AVR estimation system is shown in Figure 4.1.  

 

 

Figure 4.1: Overall algorithm flow for automatic estimation of AVR 

Our implementation of computer-assisted AVR estimation is a semi-automatic one. We 

developed a user interface tool to enable clinicians to provide input manually ROI and 

vessel selection as well as artery-vein classification.  Subsequently optic disc detection, 

vessel segmentation and vessel width estimation will be implemented with VAMPIRE. 

Figure 4.2 gives an illustration of our system.  

 

 

Figure 4.2: Our implementation of semi-automatic estimation of AVR. Blue box indicates 

automatic process whereas red box indicates manual process.  
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Our system has been used by ophthalmologists and geneticist to obtain AVR values for 

images acquired within the Tayside diabetic screening programme at Ninewells 

Hospital, Dundee, for correlational studies (i.e., to find correlation between AVR and 

cardiovascular disease). 

4.4.1 User interface tool 

This section describes the user interface tool used by clinicians to provide manual input 

on ROI and vessel selection, and in parallel, artery and vein labelling of each vessel. 

Below are brief instructions on how to use the tool.  

 

 

  

 

Figure 4.3: User interface tool stage 1 

 

 

Figure 4.4: User interface tool stage 2 

User will first be prompted to 

enter name and session. 

Click ‘Open Folder’ to choose 

folder containing images to 

process.  
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Figure 4.5: User interface tool stage 3 

 

Figure 4.6: User interface tool stage 4 

 

Figure 4.7: User interface tool stage 5 

 

 

First; click around OD edges to 

define OD boundary. 

An ellipse will be fitted to the 

points. Ellipse is fitted by the 

algorithm developed by Pilu et al 

[7]. 

At this stage, user will select 

vessel of interest for calculation 

of AVR within the region of 

interest which is the second 

concentric zone (0.5DD-1DD). In 

parallel, users will also 

distinguish manually arteries from 

veins. Shown on the figure, vessel 

with red point represents artery 

whereas vessel with blue point 

represents vein.  
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Figure 4.8: User interface tool stage 6 

 

 

4.4.2 AVR calculation 

We estimated the AVR value based on protocol devised by Knudtson et al [2], as 

discussed in Section 4.3. The CRAE and CRVE formula proposed by Knudtson et al 

require branching coefficients (BCA and BCV) as the parameter. To obtain these 

parameters, a subset of images (12 images) was processed to obtain branching 

coefficients of artery and vein branches using VAMPIRE. BCA value obtained for 

artery is 1.25(comparable to theoretical BC of 1.26 [46], and experimentally calculated 

arteriolar BC 1.28 [2]), and for vein is 1.17 (comparable to the experimentally 

calculated venular BC 1.11[2]). Upon obtaining the branching coefficient, CRAE and 

CRVE value and subsequently AVR value can be calculated for each image for clinical 

studies. Algorithm to calculate AVR is shown in the pseudo-code below: 

Third; User will select branching 

points for branching coefficient 

calculation which will be used as 

a parameter in the CRAE and 

CRVE formulae. 
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Algorithm: To calculate AVR 

Input: Vector ArteryW which contains all widths of selected arteries and  

Vector VeinW which contains all widths of selected veins. 

Output: AVR 

Sort ArteryW and VeinW in descending order 

 

W2=ArteryW; 

while |W2| ~= 1 do 

    W1=W2; 

    W2=[]; 

    while |W1| >1 do 

Select the thickest vessel and thinnest vessel from W1 and store  

BCA*sqrt(W1(1)^2 + W1(end)^2 in vector W2.    

    end while 

  

    if |W1|==1 then 

        W2(a+1)=W1; 

        W1=[]; 

    end if      

end while 

CRAE=W2; 

 

 

W2=VeinW; 

while |W2| ~= 1 do 

    W1=W2; 

    W2=[]; 

    while |W1| > 1 do 

Select the thickest vessel and thinnest vessel from W1 and store  

BCV*sqrt(W1(1)^2 + W1(end)^2 in vector W2.    

    end while 

  

    if |W1|==1 then 

        W2(a+1)=W1; 

        W1=[]; 

    end if       

end while 

CRVE=W2; 

 

AVR=CRAE/CRVE; 
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4.5 Conclusion  

 

In this chapter, we have introduced the method used to estimate arterio-venous ratio 

(AVR), a clinical measurement that is often linked to cardiovascular diseases. We have 

also demonstrated how we obtain AVR values semi-automatically from retinal images 

using VAMPIRE and the user interface tool we developed to obtain input from user 

manually. This system has been used by ophthalmologist and geneticist from Ninewells 

Hospital, Dundee to study the predictive power of AVR for cardiovascular diseases. In 

the next chapter, we will present an artery-vein classification framework in which we 

attempt to automate vessel selection and vessel classification which is currently done 

manually using the user interface tool presented in this chapter.  
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CHAPTER 5 

 ARTERY-VEIN CLASSIFICATION 

5.1 About this chapter 

In this chapter, we present a method for automatic artery-vein calculation. The region of 

interest for AVR calculation is set to be 0.5DD-1DD from optic disc margin, which 

follows the protocol by Knudtson et al [2]. Vessels are selected within this region based 

on the criteria that they are not crossing vessel and are of the suitable width. Each vessel 

is then compared to its nearest neighboring vessel. Comparison is done based on the 

mean of intensity value in the green channel. Initial experiment with 56 images (284 

veins, 219 arteries) shows promising result (accuracy of 240/284 for vein and 201/219 

for artery). This chapter is organized as follows. Section 5.2 introduces the motivation 

for artery-vein classification as well as the possible features that can be used for 

classification. Section 5.3 discusses about the related work in artery-vein classification. 

Section 5.4 presents the methodology of our algorithm. Section 5.5 discusses our result 

and finally the chapter is concluded in Section 5.6. 

 

5.2 Introduction 

In Chapter 4, we presented a user interface tool where the selection of arteries and 

veins, and artery-vein classification were done manually by user. In this chapter, we 

attempt to automate these two steps with the main focus on artery-vein classification. 

Arteries are blood vessels that carry oxygenated blood and veins are blood vessels that 

carry de-oxygenated blood. In fundus images, arteries generally appear to be brighter, 

thinner and larger ones have a stronger central reflex more often than veins. Apart from 

being an important step towards the automatic estimation of AVR, accurate 

categorization of arteries and veins is important from the medical point of view because 
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certain pathologies affect only either artery or vein [13]. Therefore, artery and vein 

classification is a basis for automated system to recognize these types of diseases by 

analyzing the different effect on arteries and veins individually. Here, we target only the 

classification of vessels for the purpose of AVR calculation. Although, in general, 

artery-vein classification is a difficult problem, our literature search reveals that arteries 

and veins can be distinguished from each other based on their appearance and structural 

pattern as listed below; 

I. Appearance 

i. Arteries tend to have smaller width than veins [104]; 

ii. Arteries tend to be brighter than veins [103, 12]; 

iii. Arteries tend to have stronger central light reflex than veins [11, 102]; 

 
 

Figure 5.1: Vessel and its extracted intensity profile 

 

The central reflex coefficient is a measurement of a vessel’s central light 

reflex [11]. Figure 5.1 shows the intensity profile extracted from a vessel. 

The center peak is the reflection by the vessel, which is captured in the 

central reflex coefficient. The formula used to calculate this coefficient is 

b

a
CRC   where a=distance between central reflex and the lowest intensity 

of the profile, and b=distance between highest intensity and lowest intensity 

of the profile.  
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Figure 5.2: The figure shows two pairs of artery and vein cropped from a retina 

image. The artery can be recognized as having a brighter color, stronger central 

reflex on the centre, and being slightly thinner than vein.  

  

iv. Arteries tend to be straighter whereas veins are more tortuous [102]. 

Tortuosity is a measure of retinal vessel morphology [38]. It is commonly 

defined as the integral of the curvature square along the path of the vessel, 

normalized by the total path length [38]. Example of tortuous and less 

tortuous vessels is shown in Figure 5.3. Tortuosity measure as a 

classification feature may not be a good choice. This is because, in a healthy 

eye, retinal blood vessels are straight or gently curved. However, in some 

diseased eyes, the blood vessels become tortuous, i.e. they become dilated. 

The tortuosity may be focal occurring only in a small region of retinal blood 

vessels, or it may involve the entire retinal vascular tree [36]. This will cause 

wrong identification of vessels type.  

 

Figure 5.3: Left: two examples of less tortuous vessels. Right: two examples of 

more tortuous vessels. 
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II. Structural pattern  

i. Arteries normally alternate with veins around the optic disc [8, 102]; 

ii. Arteries never cross arteries and veins never cross veins; if crossing 

occurs, the darker vessel is the vein and vice versa [13, 102]. 

 

 

 

 

 

 

Figure 5.4: Illustrates the alternate pattern of arteries and veins. The arrows point to     

crossing site between vessels which involve an artery and a vein.  

 

5.3 Related work  

Several authors have used vessel appearance as their classification feature to classify 

vessels into arteries and veins. Ruggeri et al [33] used colour features such as variance 

of red channel and mean of hue value. However, they divided the image into four 

quadrants and classify the vessels separately in order to counter the effect of uneven 

illumination and contrast of the retina image. Tramontan et al [11] extended Ruggeri’s 

work and used only central reflex as their classification feature in a different dataset. 

Muramatsu et al [10] used features from red, green, blue channels and contrast from 

each channels for their classifier. These authors reported promising results on their 

dataset suggesting that vessel appearance features are good classifiers of arteries and 

veins. However, one of the most common problems with using appearance is variability 

across images and subjects. This can be caused by differences in camera setting, 

A 

A 

V 

V 

A 

V 

V 
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artifacts and difference in pigmentation of the retinal pigment epithelium below the 

blood vessels [8].  

Kai Rothaus et al [13] applied only structural pattern of the vessel to classify arteries 

and veins. Their algorithm first detects vessel crossing and perform vessel labeling 

based on the fact that vessel crossing must involve one artery and one vein. Their 

classification algorithm does not only aim to classify vessels for large and well 

contrasted vessels for AVR calculation. It is able to classify the whole retinal vessel 

tree. The authors tested their algorithm using both ground truth vessel segmentation as 

well as automatically segmented vessel map using vessel segmentation algorithm by 

Soares et al. Automatically segmented vessel map, as expected, poses more problems to 

the algorithm due to the sometimes wrong and incomplete automatic segmentation of 

vessel which creates unconnected vessel segments. This method is highly dependent on 

the quality of segmented vessel map and even with user intervention and ground truth 

vessel map, classification of vessels using vessel crossing as criteria is often 

complicated and does not always produce satisfactory result.  

Some authors combined appearance features with vessel tree structure. Niemeijer et al 

[8] used color features from red channel, green channel, hue and saturation to train their 

classifier. For final labelling of the vessels, they used the prior information that vein and 

artery always come in pair. Vàzquez et al [9] and Kondermann et al [12] used color 

features combined with vessel tracking in order to improve their classification result.  
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5.4 Methodology 

5.4.1 Algorithm overview 

Retina images were first pre-processed to correct uneven illumination using the 

algorithm developed by Foracchia et al [37]. Only the green channel is used for 

classification purpose because it has the best vessel contrast compared to other channels 

[15, 90, 91]. Optic disc detection and vessel segmentation is performed with VAMPIRE 

as explained in Section 2.6. First, we determine the region of interest for AVR 

calculation which is 0.5DD-1DD from optic disc margin. Then, vessels from this region 

are selected automatically in order to filter out unwanted vessels such as crossing 

vessels, combined vessels, and very thin vessels. The algorithm for vessel selection is 

explained in detail in Section 5.4.2. Next, we obtain mean of intensity value from the 

selected vessels. Each selected vessel is then classified by local comparison of intensity 

value with its nearest neighboring vessel. The overall algorithm is shown in Figure 5.5. 

 

Figure 5.5: Flow diagram of our artery-vein classification framework. 
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5.4.2 Region of interest and vessel selection 

First, the optic disc is located using the VAMPIRE software [1]. Then, a concentric 

region of interest is defined at 0.5DD to 1DD from the optic disc margin (refer to Figure 

5.6). The region of interest is selected based on the protocol by Knudtson et al [2].  

 

 

Figure 5.6: Left: Region of interest (0.5DD-1DD) Right: Selected vessels 

 

Next, we proceed to choose vessels from this region of interest. The vessels are first 

segmented from the image and tracked using the VAMPIRE software [1]. All vessels 

that lie in the region of interest are chosen and then filtered to remove unwanted vessel. 

After filtering, the vessel candidates (Figure 5.5) will be classified as either artery or 

vein.  

The types of unwanted vessels are listed below. 

 Crossing vessels 

Sometimes a vessel may be detected wrongly at the crossing point between 

artery and vein. This ‘crossing vessel’ is not an actual vessel but wrongly 

detected as one. It lies between two junctions and branching angle at the 

junctions is less than 45° [102]. This occurs when the binary map is thinned to 

one pixel centerline using MATLAB’s implementation of thinning algorithm 

[107]. The section where artery and vein cross becomes the centerline of a vessel 

fragment when the thinning algorithm is applied (Figure 5.5). 
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Figure 5.5:  Left: Cropped image at vessel crossing. Right: Cropped binary vessel map 

at vessel crossing. The vessel pointed by the arrow is crossing vessel which resulted 

from the crossing of an artery and a vein (branching points shown in green circle). 

 

Hence, our algorithm identifies this X shape crossing vessel by detecting vessel 

fragment that lies between two junction points and the branching angle at each 

junction is no more than 45°.  

 

 

 Combined vessels 

 

Figure 5.6: Left: original image of a vessel pair. Right: binary vessel map of the vessel 

pair.  

 

 

Parallel vessels that are too close to each other may be falsely segmented as one 

vessel. In Figure 5.6, original image shows a pair of parallel vessels, one vein 

and another artery. However in the binary vessel segmentation map, they are 

detected as one large vessel. This type of vessel will be excluded from the final 

selection of vessels for AVR calculation. The algorithm to implement this is 

shown below. 
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Algorithm: To exclude combined parallel vessels  

Input: Tree structure, Width: vector vessel width,  

Output: Updated tree structure 

Sort vector Width in descending order. 

             W = average of 3
rd

 largest vessel and 4
th

  largest vessel   

                    in the vector of vessel width 

for v=1:tree.numVessels 

 if vessel is within region && vessel width/W>=1.5 then 

  Exclude this vessel from candidate vessel;            

 end if 

end for  

                                                     

      

 Very thin vessel  

For AVR calculation, vessels that are too small are excluded. This is because 

small vessels usually have poorer border contrast (Figure 5.7), and this will 

affect vessel width calculation which will subsequently affect the final AVR 

value. To do this, vessels with width that is less than 50% of the largest vessel in 

the region of interest will be excluded from the final selection.  

 

 

 

 

 

Figure 5.7: First row: thick vessels showing better contrast on vessel edge. Second row: 

thin vessel showing very poor contrast on vessel edge. 
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5.4.3 Classification features 

As explained in Section 5.3, the appearance of retinal vessels such as color, brightness, 

central reflex, and width changes with location within the same image as well as across 

different images. 

 
(a)                                                                          (b) 

Figure 5.8: (a) 1st row; veins from the same image. 2nd row; arteries from the same image  

(b) 1st row: veins from different images. 2nd row: arteries from different images. 

 

Figure 5.8 shows the appearance variation of artery and vein segments taken from 

different areas within the same image (Figure 5.8(a)) and across different images 

(Figure 5.8(b)). We can see that, arteries and veins do not show very much difference in 

terms of their appearance such as color, central reflex and width. We cannot claim that 

veins always have darker color, small central reflex and larger width. This is because 

there are also brighter, smaller veins or veins with larger central reflex. This can be seen 

clearly in Figure 5.8 where vessel segments were taken from different images as well as 

from different areas within the same image. Hence, from this observation, we can safely 

assume that almost none of the vessel’s appearance (color, width, central reflex) feature 

for discrimination is globally valid. However, if classification is done locally, the 

discriminative power of vessel appearance features increases.  Figure 5.9 illustrates this 

statement.  
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    (a)         (b)   

Figure 5.9: (a) Single vessel   (b) Vessel with its nearest vessel 

 

When given a single vessel, it is often impossible to recognize it as either an artery or 

vein just by looking at its appearance. However, when the region is enlarged to include 

its nearest neighboring vessel, the vessel can often be recognized as a vein by 

comparing their appearance (darker, larger width, less central reflex). Therefore, vessel 

appearance is only meaningful if it is not taken as an absolute value, but as a 

comparative value (e.g, darker in color). In this algorithm, we compare each vessel to its 

nearest neighboring vessel. To compare neighboring vessels, we chose the mean of the 

intensity in the green channel. The green channel is chosen because it shows the best 

contrast between arteries and veins compared to the red and blue channel.  

 

 

Figure 5.10: Figure shows the 3 channels of a color fundus image. From left: Red channel, 

Green channel and Blue channel 

 

Henceforth, the mean of the intensity in green channel will be denoted as Gmean.  

Enlarged 

region 
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Figure 5.11: Retina image showing vessels chosen by the algorithm and the number attached to 

the vessel indicated the order of magnitude of mean of green channel value.  

 

Figure 5.11 shows vessels that were selected automatically by our vessel selection 

algorithm, described in detail in Section 5.4.2. The number attached to the vessel is the 

order of magnitude of mean intensity value, (i.e., ‘1’ indicates the highest Gmean value 

and ‘6’ indicates the lowest Gmean value for this image). Artery should have a higher 

value of Gmean compared to vein because it is brighter. The next section will explain 

how the nearest neighboring vessel is chosen for each vessel as well as the method to 

classify the vessels into arteries and veins. 
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5.4.4 Classification method 

This section shows step by step how our vessel classification algorithm is implemented 

starting from vessel selection to artery-vein classification. The overall flow of the 

algorithm can be seen in Figure 5.5.  

 

  

Figure 5.12: Left: binary vessel map of the image. Right: Image with the selected vessels in 

black 

 

After vessel segmentation and optic disc detection, the region of interest (0.5DD-1DD) 

was defined. Then, vessel candidates were chosen using method described in Section 

5.4.2. Figure 5.12 shows the vessel candidates for the image, which are selected by our 

algorithm. Then, starting from the centerline of each vessel, all vessel pixels that lie 

within 80% of vessel width and within the region of interest (0.5DD-1DD) are included 

in the calculation of Gmean for that vessel. The reason only vessel pixels that lie within 

80% of vessel width are chosen is to ensure that no non-vessel pixels are included in the 

calculation of Gmean. 
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Figure 5.13: Left: The cropped region for each selected vessel where mean of green channel will 

be calculated. Right: : Vessel candidates with calculated Gmean, represented in colors; (black, 

blue, cyan, green, yellow, white, dotted black, dotted blue, dotted green, dotted yellow, dotted 

white) in the order of decreasing Gmean magnitude. 

 

Next, for each of the vessel candidate, its nearest vessel is found. The nearest vessel is 

found by searching for the vessel with the smallest angular disparity centered on the 

optic disc as shown in Figure 5.14.  

 

Figure 5.14: Illustration of how nearest vessel is found for every vessel candidate. 

 

Each vessel is compared to its nearest vessel by Gmean. The vessel with higher value of 

Gmean (brighter) is classified as the artery.  
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Iteration 1 Iteration 2 

Iteration 3 Iteration 4 

Iteration 5 Iteration 6 

Figure 5.15: Shows the first 6 iterations of the vessel pairing. Vessel selected (in black), its 

nearest neighbour vessel (in white). Vessel label is shown where V=vein, A=artery. The number 

beside each vessel shows the Gmean value. Artery should have a higher Gmean.  
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Figure 5.15 shows the first 6 iterations of vessel pairing. The number of iteration equals 

to the total number of vessel candidates. Each vessel candidate will be paired with its 

nearest neighbour vessel and vessel classification will be done by comparing the Gmean 

value. The final result of algorithm on this image is shown in Figure 5.16. 

 

 

Figure 5.16: Final result (blue indicates vein and yellow indicates artery). The label beside each 

vessel is the ground truth label (A=artery, V=vein) 

 

 

5.5 Experimental result 

5.5.1 Materials 

To test our algorithm we used 56 color fundus images obtained from the TENOVUS 

data set (Section 1.4). All images we used are of high resolution, 2336x3504 and are of 

good quality in terms of clarity and vessel contrast. From the 56 images, a total of 503 

vessels (284 veins, 219 arteries) were classified. Vessels were automatically chosen by 

our vessel selection algorithm.  
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5.5.2 Result and discussion  

From the experiment result, 240 veins were correctly classified out of 284 veins and 201 

arteries were correctly classified out of 219 arteries. An illustration of the result of the 

algorithm is shown in Figure 5.17.  

  

  

  

 

Figure 5.17: Experimental result (blue indicates vein and yellow indicates artery). The label 

beside each vessel is the ground truth label (A=artery, V=vein) 
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The algorithm works well if the vessels are properly segmented and if there are not 

many vessel crossings and vessel fragments in the region of interest. The failure of this 

algorithm is mainly due to over-fragmented vessel.  

 

 

 

Figure 5.18: An example of wrong result caused by fragmented vessel. Left: binary vessel map 

Right: Color fundus image showing result of the algorithm. 

 

Figure 5.18 shows an example of wrong result of this algorithm. As can be seen from 

the figure, the chosen vessels are fragments of an actual vessel. Hence, when pairing 

algorithm tries to pair up the fragments with its nearest neighbour vessel, the wrong 

vessel or vessel fragment will be chosen and hence, producing the wrong result. 

Moreover, the current algorithm uses threshold to filter out combined vessel and vessels 

that are too thin (Section 5.4.2). This works well when there is not much variation in the 

vessel widths as can be seen in the result displayed in Figure 5.17. However, when 

vessel widths vary a lot due to pathologies, the vessel selection algorithm discussed in 

Section 5.4.2 is not so effective. Hence, a possible future direction to improve this 

algorithm is to develop a more effective algorithm to filter out wrongly segmented 

vessel fragments and minimize the use of threshold in selecting vessel candidates for 

artery-vein classification.  
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5.6 Conclusion 

In this chapter, we presented an automatic artery-vein classification algorithm. Vessel 

candidates which will be classified were carefully selected to exclude unwanted vessels 

such as crossing vessels, combined vessels and thin and low contrasted vessels. Each 

vessel was then classified based on the color feature taken from the green channel, 

Gmean. Classification was done locally by comparing each vessel candidate with its 

nearest neighboring vessel. The aim of local classification is to solve the problem of 

wide global variation of vessel appearance. A pilot experiment was done with 56 

images (284 veins, 219 arteries). Result shows 240 veins were correctly classified out of 

284 veins and 201 arteries were correctly classified out of 219 arteries. The algorithm is 

a potentially effective method for artery-vein classification. However, it also faces the 

same problem as Kai Rothaus et al [13] in that it is dependent on the quality of 

segmented vessel map. Any missing or wrongly detected vessel segment will result in 

erroneous vessel classification. Therefore, the possible future directions to improve this 

algorithm is to improve on the quality of vessel segmentation as well as improving the 

algorithm used to select proper vessel candidates for artery-vein classification.  
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CHAPTER 6 

CONCLUSION 

6.1 About this chapter 

 

In this chapter, we review and summarize the work presented in this thesis. This chapter 

is organized as follows. Section 6.2 summarizes the main conclusion of experiment as 

well as the future direction for macula detection. Section 6.3 summarizes the AVR 

estimation system developed in our team and finally Section 6.4 summarizes the 

conclusion of experiment as well as future direction for artery-vein classification.    

6.2 Fovea detection 

In Chapter 3, we have presented an automated fovea detection algorithm. Our algorithm 

avoided the use of fovea appearance due to the wide variation of macula-fovea 

appearance especially in diseased images. The detection algorithm models the fovea 

region as an avascular based on anatomical information. Search region was defined 

based on anatomical priors; lies within main arcade, lies within a certain range of 

DM:DD and lies below the upper boundary of optic disc.  We obtained the range of 

DM:DD from a sample data of 126 images, in contrast to common practice where 

DM:DD is often fixed as a constant (2DD or 2.5DD). Result was compared to 

annotation by two annotators. We tested our algorithm on 116 images of high resolution 

and of different qualities (good, medium and difficult). The best result reported from 

this algorithm was 73.3% (with the criteria that detected fovea center lies within 

0.25DD of ground truth fovea center) and 87% (with the criteria that the detected fovea 

center lies within 0.5DD of ground truth fovea center). The main limitation of this 

algorithm is that it is dependent on the quality of vessel segmentation. Therefore, a clear 

future direction is to improve the vessel segmentation. 
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6.3 Tool for arterio-venous ratio (AVR) estimation 

In Chapter 4, we have presented the semi-automated AVR estimation system developed 

in our team. This system is a combination of VAMPIRE and a user interface tool 

develop by the author to obtain manual input from user. The users of this system are the 

clinicians from Ninewells Hospital, Dundee to aid their clinical research of the relation 

of AVR with cardiovascular diseases as well as other pathologies. Future work should 

make this system a fully automated one, where automatic artery-vein classification 

plays an important part. Our work in artery-vein classification was presented in Chapter 

5.  

6.4 Artery-vein classification 

In Chapter 5, we have presented an automated artery-vein classification algorithm in an 

attempt to fully automate the semi-automated AVR estimation system presented in 

Chapter 4. Instead of using vessel color as an absolute feature we used the color 

information as a comparative feature, where we compared each vessel to its nearest 

neighbouring vessel and classify the brighter vessel as the artery. We tested our 

algorithm on 56 (284 veins, 219 arteries) good quality images of high resolution. The 

result was, 240 veins were correctly classified out of 284 veins and 201 arteries were 

correctly classified out of 219 arteries. The main limitation of this algorithm is that 

because vessels are classified by comparing with the nearest neighbouring vessel, 

selection of wrong neighbouring vessel will result in erroneous classification. This often 

occurs when vessels are severely fragmented or wrong detection of vessel. Moreover, 

the algorithm used to filter out very thin vessels was based on threshold, which is not 

ideal. Therefore, a possible future direction to improve our method is  to develop a more 

effective vessel selection algorithm as well as to improve the quality of vessel 

segmentation.  
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