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Background
Colour is an important characteristic of effluent and it leads to serious environmen-
tal threat. The highly coloured dyes affect the water bodies by inhibiting sunlight pen-
etration and hence affecting the photosynthetic activity. These highly coloured dyes 
are extensively used for colouring in industries like textile, paper, leather and cosmetic 
industries. Dyes and pigments are highly toxic, carcinogenic and mutagenic (Dutta 1994; 
Yagub et  al. 2014). The worldwide dye consumption in textile industry is more than 
107 kg/year that is mainly used in fabrics (Ahamed et al. 2007).

As dyes have a complex structure and synthetic origin, it is difficult to decolourise and 
various treatment methods have different efficiency in treating dye waste water. There 
are different treatment methods to decolourise dye waste water like coagulation (Orfao 
et al. 2006), Photocatalytic degradation (Sun et al. 2008), electrochemical, degradation 
(Fan et al. 2008), chemical oxidation, ozonation and coagulation (Arslan 2001; Kim et al. 
2005). However, these processes are costly and cannot be effectively used for a wide 
range of dye wastewater.

Adsorption using low cost adsorbents is widely used, since it is one of the most effec-
tive methods for dye removal from wastewaters because of their unique properties in 
adsorption of both cationic and anionic dyes. The advantages of adsorption process are 
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simplicity in operation, inexpensive compared to other separation methods, insensitivity 
to toxic substances and no sludge formation (Waranusantigul et al. 2003).

In treatment of colored effluents different low-cost adsorbents have been investigated 
at the laboratory scale for effective treatment with different degrees of success (Bhat-
tacharyya and Sharma 2005). Some of the low cost adsorbents are, waste pea shells 
(Khan et al. 2014), water chestnut peel (Khan et al. 2013), bamboo sawdust (Khan and 
Nazir 2015), Curcuma angustifolia scales (Maiyalagan et  al. 2014), Curry tree seed 
(Suresh et al. 2011a) Curry tree stem (Suresh et al. 2011b), etc. Still there is a need for 
effective adsorbents in dye wastewater treatment.

In this study the paper compares the ability of two sulphuric acid activated materials 
for removing Basic Violet 14 from aqueous solution using the shells of Calophyllum ino-
phyllum (CS) and Theobroma cacao (TS) shells.

Experimental
Materials

Basic Violet 14 is a triaminotriphenylmethane dye (CI 42,510; Molecular weight: 
337.85 g mol−1; Molecular Formula: C20H19N3·HCl; Maximum Wavelength: 540 nm. The 
molecular structure of Basic Violet 14 is shown in Fig. 1. The dye is inflammable and is 
used in coloring of textile and leather materials. The dye on ingestion may cause nau-
sea, vomiting, diarrhea and the inhalation of dye causes irritation to respiratory tract. In 
humans and animals, its toxicity includes carcinogenic and mutagenic effects (Littlefield 
et al. 1985).

Preparation of adsorbent

The raw material Calophyllum inophyllum (CS) shell and Theobroma cacao (TS) shells 
were collected and it is washed with water to remove the dirt, dust and other surface 
impurities. The washed shells were dried for 24 h. The dried shells were then soaked in 
18N∙H2SO4 (1:2, w/v) and kept in oven at 120  °C for 12 h. This is done to activate the 
carbonaceous material by chemical activation. The product is washed several times with 
distilled water and soaked in 1 % sodium bicarbonate solution for 12 h to remove any 
residual acid and kept in oven at 110 °C for 12 h. The acid treated biomass adsorbent, 
thus obtained is crushed and sieved to uniform particle size using ASTM standard sieve 
(Mesh No. 100). The adsorbents thus obtained were labeled as CS and TS.

Batch adsorption experiments

Adsorption experiments were carried out with CS and TS at a varying dye concentra-
tion with a fixed adsorbent dose. To study the efficiency to remove Basic Violet 14 from 
aqueous solution and to find the isotherm constants, experiments were conducted with, 
50 mL of various concentrations of dye solutions in a conical flask with fixed adsorbent 
dosage. Experiments were carried out in the natural pH of the dye solution at room 
temperature. This mixture was agitated on a mechanical shaker at a constant speed for 
about 2 h. The dye solutions, after agitation were separated from the adsorbent and the 
equilibrium dye concentrations were determined spectrophotometrically by measuring 
the absorbance changes at the wavelength of maximum absorbance (540  nm). Kinetic 
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Fig. 1  SEM micrograph of CS a before dye adsorption, b after dye adsorption and TS adsorbent material  
c before dye adsorption, d after dye adsorption
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experiments were carried out using a mechanical stirrer in the concentration range of 
260–380 mg/L. The percentage dye removal was accessed using the formula.

The amount adsorbed at equilibrium qe (mg/g) was calculated by

where Ci and Cf are the liquid phase concentrations of the dye at initial and final con-
centrations (mg/L) respectively. M the mass (g) of adsorbents and V is the volume of dye 
solution (L).

Results and discussion
Characterization of adsorbent

The surface morphologies of the sulphuric acid activated adsorbents CS and TS were 
analyzed by scanning electron microscroscope (SEM). The surface of the adsorbents CS 
and TS prior to adsorption process and after the adsorption was shown in Fig. 1a–d. It 
is clear, that the adsorbents have a rough morphology with considerable porous nature 
where suitable conditions exist for the dye to be trapped and adsorbed into the adsor-
bent. The SEM image of CS shows a good morphology compared to TS for adsorption. It 
is evident from Fig. 1b, that the surface of CS is covered by a layer of Basic Violet 14 and 
significant changes were observed due to dye adsorption. In TS as a result of entrapment 
of the dye into the adsorbent a homogeneously dye adhered surface can be observed in 
Fig. 1d.

The functional groups on CS and TS were identified using FT-IR and the results of the 
characterized samples were shown in Fig. 2a, b. The band at 3421 cm−1 in the adsorbent 
CS represented O–H stretching vibration of alcoholic groups. The band at 2336 cm−1 
corresponds to the N–H stretching (Hameed and El-Khaiary 2008). The band at 
1699 cm−1 is attributed to the C=O stretching of carboxylate anion (Minamisawa et al. 
2004). The band at 1221 cm−1 is assigned to S=O stretching. The band at 860 cm−1 is 
seen due the presence of −SO−

3  group (Kannan 2014; Figueira et al. 1999) and this band 
disappears when CS is loaded with the dye. The functional group in this region seems 
to participate in dye binding. The band at 590 cm−1 is due to C-S stretching. TS shows 
absorption band at 3423 cm−1 due to O–H stretching of hydroxyl groups. The band at 
2930 cm−1 in TS is due to a weak alkyl C–H stretching. The band at 1700 cm−1 is due to 
C=O stretching. The bands at 1623 cm−1 and 1200 cm−1 corresponds to C=C stretch-
ing and S=O stretching. The bands at 861 cm−1 and 871 cm−1 due to S=O indicates the 
presence of –SO3̶ group, is observed to disappear when TS is loaded with the dye and 
hence the functional group in this region participates in dye binding. The presence of 
the band at 590 cm−1 in CS and 589 cm−1 in TS is due to C–S stretching and this band 
is reduced in band height after adsorption and hence, it appears that this group involves 
in adsorption. The surface of the sulphuric acid activated adsorbent surface of CS and 
TS has polar functional group present in it that provides anion exchange capacity for the 
dye. As the reaction proceeds, in CS and TS the negatively charged surface functional 

(1)Percentage dye removal =
Ci − Cf

Ci
× 100

(2)Amount adsorbed (qe) = Ci − Cf ×
V

M
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group interacts strongly with the dye molecule to facilitate the ion exchange process, 
and hence provides good adsorption capacity for the adsorbents.

Effect of adsorbent dosage

To find the effect of adsorbent dosage on to the adsorbate, a fixed adsorbate concen-
tration of 260 mg/L and a constant volume (50 mL) is taken, keeping all other experi-
mental conditions constant. It is observed that the amount of Basic Violet 14 adsorbed 
decreases as the concentration of the adsorbent increases. Thus, it can be observed that 
maximum dye removal occurs at 10 mg to 30 mg in both CS and TS and then decreased 
with increase in adsorbent mass.

From Fig.  3, it is observed that for an increase in CS and TS adsorption from 5 to 
55 mg the dye uptake decreases from 1523 to 258 mg/g for CS and 1069 to 258 mg/g for 
TS. The dye adsorption increases with the increase in adsorbent doses and after a par-
ticular limit the adsorption slowly decreases and becomes constant for CS and TS. The 
increase in percentage colour removal with adsorbent dosage can be attributed to the 
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Fig. 2  FT-IR spectra of a CS, b TS adsorbent material
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availability of more adsorption sites (Garg et al. 2003). Another reason for the decrease 
in adsorption capacity with increase in adsorbent mass is an aggregation/agglomeration 
of adsorbent particles at higher concentrations. It is observed that dye removal by CS 
and TS is effective at a low adsorbent dosage for the removal of Basic Violet 14 from 
aqueous solution.

Adsorption isotherms

The linear form of three isotherms namely Langmuir and Freundlich and Temkin 
(Hameed and Daud 2008) were used to analyse the isotherm data. The adsorption iso-
therm is important from theoretical and practical point of view. The linear form of the 
equation is given as

(3)Ce/qe = 1/QmaxKL + Ce/Qmax

(4)log qe = 1/n logCe + log KF

(5)qe = B lnA+ B lnCe
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Fig. 3  Effect of adsorbent dosage a CS, b TS adsorbent (C0 = 260 mg/L; V = 0.05 L)
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The values of Qm and KL were calculated from the slope and intercept of the lin-
ear plot (Fig.  4a). The better R2 value for Langmuir isotherm indicates the applicabil-
ity of this model for CS and TS. The applicability of the Langmuir isotherm for both 
CS and TS suggests the monolayer coverage of adsorbate on the surface of adsorbents 
(Langmuir 1918). The isotherm parameters obtained using the linear form of Eq. (3) is 
given in Table 1. The RL value observed indicates the type of isotherm to be favourable 
(0 < RL < 1), linear (RL = 1), unfavourable (RL > 1) or irreversible RL = 0. The value KL is 
the Langmuir constant and C0 is the highest initial dye concentration (mg/L). The value 
of RL is found to be in the range of 0.1761 to 0.1278 for CS and 0.0612 to 0.0417 for TS,

From Table  1, Qm, the maximum monolayer adsorption capacity of CS is found to 
be 1416.43 mg/g and for TS is found to be 980.39 mg/g. The applicability of the linear 
form of the Langmuir model to CS and TS, proved by the high correlation coefficients 
R2 > 0.998 suggests that the Langmuir isotherm provides a good model of the sorption 
system.

(6)RL = 1/(1+ KLC0)
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The Freundlich constants KF and n can be calculated from the slope and intercept of 
the linear plot with log qe versus logCe. The magnitude of the component ‘n’ gives an 
indication of the favourability of adsorption process and KF is the constant related to the 
adsorption capacity.

According to Treybal (1980), it has been shown that n > 1, represents favorable adsorp-
tion. The n value was found to be 1.85 for CS and 3.51 for TS which indicates favourable 
adsorption. 1/n indicates the adsorption intensity of dye onto the adsorbent or surface 
heterogeneity, becoming more heterogeneous as its value gets closer to 0. The isotherm 
constants Kf and n were calculated from the linear form of the model and the value of Kf, 
n, and the Correlation Coefficients are given in the Table 1.

The linear form of the Temkin equation is used to analyze the adsorption data and it 
is observed that the Temkin isotherm fitted well for CS and TS. The Temkin isotherm 
constants were calculated from the plot of qe versus ln Ce (Fig. 4b) and are given in the 
Table 1. In CS and TS the Temkin isotherm fitted well with a high correlation coefficient. 
The isotherm data’s were well represented by the Langmuir, and Temkin isotherm with 
R2 values fitting in the following series, Langmuir > Temkin > Freundlich. In CS and TS 
the R2 values were found to be high (>0.99) for all the three isotherms studied, hence, it 
can be concluded that both monolayer and heterogenous surface conditions exists in the 
present study. Since CS and TS is observed to have good adsorption capacity and hence 
it can be used as an effective, low cost adsorbent as an alternative material to commer-
cial activated carbon in the removal of dyes from aqueous solution.

Kinetics

In order to analyse the adsorption process for pseudo first order and pseudo second 
order model (Hameed and Daud 2008) the kinetic equations were used.

(7)Log
(

qe − qt
)

= log qe−k1/2.303t

(8)t/qt = 1/k2q
2
t + t/qt

Table 1  Langmuir, Freundlich and Temkin constants for CS and TS

CS TS

Langmuir constants

 Qm (mg/g) 1416.43 980.39

 KL (L/mg) 0.018 0.059

 R2 0.9987 0.9984

 RL 0.1761–0.1278 0.0612–0.0427

Freundlich constants

 KF (mg/g) 81.69 238.39

 n 1.8508 3.5075

 R2 0.9978 0.9940

Temkin constants

 KT (L/mg) 0.1322 0.8050

 B1 360.23 197.55

 R2 0.9983 0.9981
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The kinetic study of CS and TS at different initial dye concentration was carried out and 
the kinetic data were analyzed using pseudo first order and pseudo second order model. 
The kinetic parameters give important information for designing and modeling the 
adsorption process. It is observed that the adsorption of dye on the adsorbent surface 
takes place by an initial rapid binding of the dye molecule on the adsorbent.

The correlation coefficient (R2) value from Table 2 shows that the pseudo second order 
model provides the best fit for the adsorption of CS and TS. The correlation coefficient 
of 0.9973 to 0.9983 for CS indicates that it is a good correlation for pseudo second order 
model and hence this model is suitable to provide the best fit when compared to the 
pseudo first order model. The correlation coefficient in TS is >0.997 for pseudo second 
order model and <0.996 in pseudo first order model. This confirms that pseudo second 
order model provides the best fit in both CS and TS.

A Plot of log(qe − qt) versus time for CS and TS enables to calculate the rate constant 
k1 and from the slope and intercept of the plot qe(pred) can be calculated. The adsorp-
tion kinetics of Basic Violet 14 from aqueous solution by CS and TS is studied and the 
influence of various operating parameters on the adsorption process is evaluated. It is 
observed that the dye uptake was very rapid and the saturation time was found to be 
60 min in CS and 40 min in TS.

A plot of t/qt versus t enables to calculate the rate constant k2 that is used to calculate 
the initial sorption rate h as follows

Now, the initial sorption rate h, rate constant k2 and qe(calc) for CS and TS can be obtained 
from the plot of t/qt versus t (Fig. 5). The qe values calculated from the pseudo-second 
order model system is in better agreement with the experimental qe values for CS and 
TS. The second order rate constant k2 was found to increase and decrease Basic Violet 
14 concentration in CS. A similar trend was observed in the literature for the increase 
and decrease in k2 with an increase in solute concentration (Ahmad and Rahman 2011). 
However, in most of the adsorption systems, there exists a trend between the initial dye 
concentrations and k2 with a decreasing k2 value with the increase in initial dye con-
centration. A similar trend was observed in TS, with a decrease in k2 for an increase 
in initial dye concentration (Ho 2004). The correlation coefficient (R2) of the linear plot 
is very high (>0.997) for all the concentrations studied in pseudo second order model. 

(9)h = k2q
2
e

Table 2  Kinetic model values for the adsorption of Basic Violet 14 on to CS and TS

Adsor-
bent

Concen-
tration 
(mg/L)

qe(exp) 
(mg/g)

Pseudo first order values Pseudo second order values

qe(Calc) 
(mg/g)

k1 (min−1) R2 qe(Calc) 
(mg g−1)

k2 (g mg−1 
min−1)

h (mg g−1 

min−1)
R2

CS 260 133.71 123.19 7.83 × 10−2 0.9959 142.85 7.96 × 10−4 16.24 0.9980

300 169.23 127.84 7.18 × 10−2 0.9950 169.49 8.27 × 10−4 23.75 0.9983

340 191.29 125.14 6.52 × 10−2 0.9915 196.07 8.42 × 10−4 32.37 0.9973

380 185.93 151.01 6.70 × 10−2 0.9953 199.60 5.74 × 10−4 22.87 0.9979

TS 260 133.71 74.03 10.13 × 10−2 0.9904 140.84 2.14 × 10−3 42.45 0.9985

300 145.91 92.44 9.70 × 10−2 0.9968 147.05 1.69 × 10−3 36.54 0.9985

340 167.81 104.47 9.44 × 10−2 0.9952 172.41 1.38 × 10−3 41.02 0.9978

380 149.19 73.65 9.05 × 10−2 0.9961 153.84 2.00 × 10−3 47.33 0.9980
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The material surface has negatively charged surface functional group which interacts 
strongly with the cationic dye influencing the adsorption process. The values of kinetic 
constants and qe of Basic Violet 14 adsorption onto CS and TS are given in Table 2.

The Table 3 gives the adsorption capacity of some low cost adsorbents used for the 
adsorption of dyes along with CS and TS. It is clear that in this study the adsorption 
of the basic dye by the sulphuric acid activated materials prepared from CS and TS is 
good when compared with some of the adsorbents already reported for the adsorption 
of basic dyes from aqueous solution.

Adsorption mechanism

The adsorption kinetic data of CS and TS were analysed to identify the diffusion mecha-
nism using the Intraparticle diffusion model proposed by Weber and Morris (Weber and 
Morris 1963)

where kp is the intraparticle diffusion rate constant and C is the intercept that is obtained 
from the slope of the plot of qt versus t1/2 (Fig. 6). The kp for CS and TS were found to 

(10)qt = kpt
1/2

+ C
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Fig. 5  Pseudo second order Kinetics plot for the adsorption of Basic violet 14 onto a CS and b TS adsorbent



Page 11 of 14Suresh ﻿SpringerPlus  (2016) 5:633 

be in the range of 95.92 to 130.82 for CS and 98.53 to 115.12 for TS. The two phases in 
the CS and TS intraparticle diffusion plot represents an initial surface adsorption in the 
reaction and then the next phase is intraparticle diffusion. In the plot of qt versus t1/2 
for CS and TS if the straight line passes through the origin, then intraparticle diffusion 
is the only rate controlling step, or if it does not pass through the origin, then surface 
adsorption is the rate controlling step. In the present study for both CS and TS the plot 
does not pass through the origin, hence surface adsorption is the rate controlling step. 
The intercept C value in Table 4 discusses about the thickness of the boundary layer. The 
increase in the constant C for CS and TS indicates internal mass transfer and hence the 
increase in thickness of the boundary layer. 

Three types of mechanism are involved in the adsorption process like film diffusion, 
particle diffusion and the adsorption of the solute molecules on the interior surface of 
the adsorbent (Chingobe et al. 2006). Since, the third step is fast and negligible it is nec-
essary to distinguish between film and particle diffusion. Therefore Boyd model is used 
to study the actual slow step using the expression (Boyd et al. 1947)

where, F represents the fraction of dye adsorbed at any time t, and Bt is a mathematical 
function of F. The Bt versus time plot (Fig.  7) For CS and TS distinguishes film diffu-
sion and particle diffusion. If the plots are linear and pass through the origin, then the 
slowest step in the adsorption process is the particle diffusion and if the linear plot does 
not pass through the origin then film diffusion controls the adsorption process. In this 
study the plots for CS and TS were found to be linear, at all concentrations and does not 
pass through the origin, confirming surface adsorption as the rate limiting step. The dye 
cation interacts strongly with the negatively charged surface functional group in the sul-
phuric acid activated materials resulting in effective adsorption. The B values were used 
to calculate the effective diffusion coefficient, Di (m2/s) using the following relationship

The B values were calculated for CS and TS and the results are shown in the Table 4.

(11)Bt = −0.4977− ln(1− F)

(12)B =
π2Di

r2

Table 3  Adsorption capacities of different low cost adsorbents for dye removal from aque-
ous solution

Adsorbent Dyes Adsorption capacity (mg/g) References

Neem sawdust Basic Violet 10 2.35 Khattri and Singh (2000)

Sugarcane dust Basic Violet 10 13.90 Ho et al. (2005)

Coir pith Basic Violet 10 2.56 Namasivayam et al. (2001)

Activated sludge biomass Basic Violet 3 113.6 Chu and Chen (2002)

Sugarcane dust Basic Violet 3 3.79 Khattri and Singh (1999)

Deoiled Soya Basic Violet 14 12.03 Gupta et al. (2008)

Bottom ash Basic Violet 14 6.39 Gupta et al. (2008)

Curcuma angustifolia Scales Basic Violet 14 208.33 Maiyalagan et al. (2014)

Calophyllum inophyllum Shells Basic Violet 14 1416.43 This work

Theobroma cacao Shells Basic Violet 14 980.39 This work
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Table 4  Intraparticle diffusion coefficient and diffusion coefficient (Di) for CS and TS

Adsorbent Concentration (mg/L) Kip (mg/g min0.5) Di (cm2/s)

CS 260 95.92 9.16 × 10−11

300 112.18 8.41 × 10−11

340 130.82 7.64 × 10−11

380 116.80 7.85 × 10−11

TS 260 98.53 1.18 × 10−10

300 100.37 1.13 × 10−10

340 115.12 1.11 × 10−10

380 109.29 1.06 × 10−10

Conclusion
Basic Violet 14 adsorbs effectively in the surface of the two sulphuric acid activated 
adsorbents CS and TS and equilibrium is attained in 60 min for CS and 40 min for TS. 
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Fig. 6  Intraparticle diffusion plot for the adsorption of Basic violet 14 onto a CS and b TS adsorbent
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The isotherm data prove monolayer adsorption for CS and TS and the adsorption capac-
ity was found to be 1416.43  mg/g for CS and 980.39  mg/g for TS. The kinetic study 
proves that the pseudo second order model provides the best fit for both the adsor-
bents. Film diffusion process is involved in the adsorption of Basic Violet 14 onto CS and 
TS. The comparative studies on the adsorption of prepared activated carbons CS and 
TS onto Basic Violet 14 showed a higher percentage of dye removal for CS. This study 
shows that the sulphuric acid activated adsorbent CS and TS can be used as an effective 
material in the adsorption of Basic Violet 14 from aqueous solution.
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