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Abstract
Let (G, ·) be a group, (H, +) be an Abelian group, and f : G → H be a function. In this
paper, for a positive integer n, we first give a representation of nth-order Cauchy
difference of f via the function as

C(n)f (x1, x2, . . . , xn, xn+1) =
∑

1≤m≤n+1

(–1)n+1–m
∑

1≤i1<i2<···<im≤n+1

f (xi1xi2 · · · xim ),

where x1, x2, . . . , xn+1 ∈ G. Then, based on the representation, we get some special
solutions of C(n)f = 0 on free groups. Moreover, sufficient and necessary conditions on
symmetric groups and finite cyclic groups are also obtained.
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1 Introduction
It is well known that the solutions to Jensen’s functional equation

f (x + y) + f (x – y) = f (x) (.)

are just all linear functions f (x) = cx + d if we assume that f are continuous, and they
are the set of all homomorphisms (when d = ) on real line R as an additive group. Let
(G, ·) be a group, and (H , +) be an Abelian group. Denote by e ∈ G and  ∈ H the identity
elements, respectively. In [], it was pointed out that the set of solutions is not equivalent to
all homomorphisms on a general group. Therefore, finding out the solutions to equation
(.) on groups becomes an interesting problem (see [, ] and references therein). Note
that these solutions are related to their Cauchy differences [–]. For a function f : G → H ,
its Cauchy differences C(m)f are defined by

C()f = f , (.)

C()f (x, x) = f (xx) – f (x) – f (x),

C(m+)f (x, x, . . . , xm+)

= C(m)f (xx, x, . . . , xm+) – C(m)f (x, x, . . . , xm+) – C(m)f (x, x, . . . , xm+). (.)
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The first-order Cauchy difference C()f will be abbreviated as Cf . In general, C(m+)f =  if
and only if C(m)f is m-additive, and C(m)f =  implies C(n)f =  for n ≥ m []. Fischer and
Heuvers [–] mentioned that any generalized polynomial f with C(m)f =  has a unique
representation of the form f (x) = f(x) + · · ·+ fm(x), where each fj(x), j = , . . . , m, is a j-form.
Besides the properties of solutions satisfying (.), we are also concerned with its general
solutions. In [, ], by using the reduction formulas and relations given in [, ], Ng
provided the general solution of the second-and third-order Cauchy difference equations
on free groups. Some previous results on second order were extended to high order in
[]. Moreover, for the general solution of the third-order Cauchy difference equation on
symmetric groups and finite cyclic groups, see reference [].

Plentiful results were also devoted to the generalized Cauchy difference functional equa-
tions of the form

f (x) + f (y) – f (x + y) = g
(
H(x, y)

)
, (.)

where H is given, and f , g are unknown. Under regularity assumptions on H and a partic-
ular solution f, g, Ebanks [, ] investigated the general solution (f , g) of equation (.).
For particular forms of g(H(x, y)), the existence and stability of solutions to equation (.)
are studied extensively in, e.g., [–].

Note that equations (.) and (.) are concerning functions of one variable. Also, for a
map F : Gn → H , we define the mth partial Cauchy difference with respect to the ith vari-
able ( ≤ i ≤ n), which is connected to the representation of the generalized polynomial F
(see [–, ]).

It is natural to consider the general expression of nth-order Cauchy difference C(n)f and
determine the solutions to equation

C(n)f = , (.)

which becomes the motivation of this paper. Remark that equation (.) for free group
with just one generator has been solved in []. In our paper, the purpose is to determine
all solutions to equation (.) on some given groups. For simplicity, the general solution
to equation (.) will be denoted by

Ker C(n)(G, H) =
{

f : G → H | C(n)f = 
}

. (.)

Obviously, Ker C(n)(G, H) is an Abelian group under the pointwise addition of functions,
and Hom(G, H) ⊆ Ker C(n)(G, H).

2 Some properties on solutions
In this section, we study properties of solutions for nth-order Cauchy differences.

Proposition  For a positive integer n, the nth-order Cauchy difference C(n)f can be ex-
pressed in terms of f as

C(n)f (x, x, . . . , xn, xn+) =
n+∑

m=

(–)n+–m
∑

≤i<i<···<im≤n+

f (xi xi · · ·xim ). (.)
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Proof Claim (.) is true for n = ,  from (.)-(.). Suppose that (.) holds for n – .
Note that

C(n)f (x, x, . . . , xn, xn+)

= C(n–)f (xx, x, . . . , xn, xn+)

– C(n–)f (x, x, . . . , xn, xn+) – C(n–)f (x, x, . . . , xn, xn+)

by (.). Then, we have

C(n–)f (xx, x, . . . , xn, xn+)

= (–)n–f (xx) + (–)n–
∑

≤i≤n+

f (xi )

+ (–)n–
∑

≤i≤n+

f (xxxi ) + (–)n–
∑

≤i<i≤n+

f (xi xi )

+ · · · + (–)
∑

≤i<i<···<in–≤n+

f (xxxi xi · · ·xin– )

+ (–)
∑

≤i<i<···<in–≤n+

f (xi xi · · ·xin– )

+ (–)
∑

≤i<i<···<in–≤n+

f (xxxi xi · · ·xin– ) + (–)f (xx · · ·xn+)

+ f (xxx · · ·xn+),

C(n–)f (x, x, . . . , xn, xn+)

= (–)n–f (x) + (–)n–
∑

≤i≤n+

f (xi )

+ (–)n–
∑

≤i≤n+

f (xxi ) + (–)n–
∑

≤i<i≤n+

f (xi xi )

+ · · · + (–)
∑

≤i<i<···<in–≤n+

f (xxi xi · · ·xin– )

+ (–)
∑

≤i<i<···<in–≤n+

f (xi xi · · ·xin– )

+ (–)
∑

≤i<i<···<in–≤n+

f (xxi xi · · ·xin– ) + (–)f (xx · · ·xn+)

+ f (xx · · ·xn+),

and

C(n–)f (x, x, . . . , xn, xn+)

= (–)n–f (x) + (–)n–
∑

≤i≤n+

f (xi )

+ (–)n–
∑

≤i≤n+

f (xxi ) + (–)n–
∑

≤i<i≤n+

f (xi xi )

+ · · · + (–)
∑

≤i<i<···<in–≤n+

f (xxi xi · · ·xin– )
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+ (–)
∑

≤i<i<···<in–≤n+

f (xi xi · · ·xin– )

+ (–)
∑

≤i<i<···<in–≤n+

f (xxi xi · · ·xin– ) + (–)f (xx · · ·xn+)

+ f (xx · · ·xn+).

Summing over these three equalities, we get

C(n)f (x, x, . . . , xn, xn+) =
n+∑

m=

(–)n+–m
∑

≤i<i<···<im≤n+

f (xi xi · · ·xim ),

and this gives (.). �

Proposition  If f ∈ Ker C(n)(G, H), then the following properties are valid.
(i) For i = , , . . . , n –  and j = , , . . . , i + , we have

C(i)f (x, x, . . . , xj–, e, xj+, . . . , xi+) = . (.)

In particular,

f (e) = . (.)

(ii) C(n–)f is a homomorphism with respect to each variable.

Proof We first check (.). For f ∈ Ker C(n)(G, H), we take x = e in (.). Then, it follows
from (.) that

 = C(n)f (e, x, . . . , xn+)

= C(n–)f (e, x, x, . . . , xn+) – C(n–)f (x, x, . . . , xn+) – C(n–)f (e, x, . . . , xn+)

= (–)C(n–)f (e, x, . . . , xn+) = (–)C(n–)f (e, x, . . . , xn+) = · · ·
= (–)n–Cf (e, xn+) = (–)nf (e),

which gives (.).
Obviously, (.) is true for i = ,  by (.) and (.). Assume that (.) holds for all num-

bers smaller than i ≥ . By induction, for j = , we have

C(i)f (e, x, x, . . . , xi+)

= C(i–)f (x, x, . . . , xi+) – C(i–)f (x, x, . . . , xi+) – C(i–)f (e, x, . . . , xi+)

= –C(i–)f (e, x, . . . , xi+) = ;

for j = ,

C(i)f (x, e, x, . . . , xi+)

= C(i–)f (x, x, . . . , xi+) – C(i–)f (e, x, . . . , xi+) – C(i–)f (x, x, . . . , xi+)

= –C(i–)f (e, x, . . . , xi+) = ;
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and

C(i)f (x, x, . . . , xj–, e, xj+, . . . , xi+)

= C(i–)f (xx, x, . . . , xj–, e, xj+, . . . , xi+)

– C(i–)f (x, x, . . . , xj–, e, xj+, . . . , xi+)

– C(i–)f (x, x, . . . , xj–, e, xj+, . . . , xi+)

= 

in the case j ≥ . This confirms (.).
We infer from (.) and (.) that C(n–)f is a homomorphism with respect to the first

variable. Then by the symmetry among the variables the Cauchy difference of C(n–)f in
its first variable is equivalent to the other variable, and therefore, (ii) is proved. �

Remark  For any function f : G → H , the following statements are equivalent:
(i) The function f ∈ Ker C(n)(G, H).

(ii) C(n–)f is a homomorphism with respect to the j-variable, j ∈ {, , . . . , n + }.

Next, we give two useful lemmas.

Lemma  (Lemma . in []) The following identity is valid for any function f : G → H
and � ∈N:

f (xx · · ·x�) =
∑

m≤�

∑

≤i<i<···<im≤�

C(m–)f (xi , xi , . . . , xim ). (.)

Lemma  (Proposition . in []) Let n be a positive integer. If f ∈ Ker C(n)(G, H), then for
all x ∈ G and p ∈ Z, we have

f
(
xp) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n–
j=

p(p–)···(p–j)
(j+)! C(j)f (x, x, . . . , x︸ ︷︷ ︸

j+

), p ≤  or p ≥ n,

∑p–
j=

p(p–)···(p–j)
(j+)! C(j)f (x, x, . . . , x︸ ︷︷ ︸

j+

),  < p < n.
(.)

The following statement is a vision of Lemma  under the restriction f ∈ Ker C(n)(G, H).

Theorem  Suppose that f ∈ Ker C(n)(G, H). Then the following identities are valid.
(i) If l ≥ n, then, for mk ∈ Z and xk ∈ G, i = , , . . . , l, such that xk �= xk+, we have

f
(
xm

 xm
 · · ·xml

l
)

=
l∑

k=

( n–∑

j=

mk(mk – ) · · · (mk – j)
(j + )!

C(j)f (xk , xk , . . . , xk︸ ︷︷ ︸
j+

)

)

+
n–∑

i=

∑

≤k<k<···<ki≤l

C(i–)f
(
x

mk
k

, x
mk
k

, . . . , x
mki
ki

)

+ mk mk · · ·mkn

∑

≤k<k<···<kn≤l

C(n–)f (xk , xk , . . . , xkn ). (.)
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(ii) If l < n, then, for mk ∈ Z and all xk ∈ G, k = , , . . . , l, such that xk �= xk+, we have

f
(
xm

 xm
 · · ·xml

l
)

=
l∑

k=

( n–∑

j=

mk(mk – ) · · · (mk – j)
(j + )!

C(j)f (xk , xk , . . . , xk︸ ︷︷ ︸
j+

)

)

+
l∑

i=

∑

≤k<k<···<ki≤l

C(i–)f
(
x

mk
k

, x
mk
k

, . . . , x
mki
ki

)
. (.)

Proof Replacing xk in (.) by xmk
k , we have

f
(
xm

 xm
 · · ·xml

l
)

=
l∑

i=

∑

≤k<k<···<ki≤l

C(i–)f
(
x

mk
k

, x
mk
k

, . . . , x
mki
ki

)
. (.)

We first consider the case l ≥ n. Vanishing of C(i–)f for i > n yields

f
(
xm

 xm
 · · ·xml

l
)

=
l∑

k=

f
(
xmk

k
)

+
n–∑

i=

∑

≤k<k<···<ki≤l

C(i–)f (xk , xk , . . . , xki )

+
∑

≤k<k<···<kn≤l

C(n–)f
(
x

mk
k

, x
mk
k

, . . . , xmkn
kn

)
.

Therefore, by (.) in Lemma  and (ii) of Proposition  we have

f
(
xmk

k
)

=
n–∑

j=

mk(mk – ) · · · (mk – j)
(j + )!

C(j)f (xk , xk , . . . , xk︸ ︷︷ ︸
j+

), (.)

C(n–)f
(
x

mk
k

, x
mk
k

, . . . , xmkn
kn

)
= mk mk · · ·mkn C(n–)f (xk , xk , . . . , xkn ), (.)

which is formula (.).
In the case l < n, (.) is obtained by (.)-(.) directly. This completes the whole

proof. �

3 Solutions on free groups
In this section, we discuss some special solutions of C(n)f =  for the free group on an
alphabet 〈A 〉 with |A | ≥ .

An element x ∈ A can be written in the form

x = an
 an

 · · ·anl
l , where ai ∈ A , ni ∈ Z. (.)

For each fixed a ∈ A and fixed pair of distinct a, b ∈ A , define the functions W , W, W

by

W (x; a) =
∑

ai=a
ni, (.)

W(x; a, b) =
∑

i<j,ai=a,aj=b

ninj, (.)
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W(x; a, b) =
∑

i>j,ai=a,aj=b

ninj (.)

along with (.). Referred from [, ], these functions are well defined. Furthermore, they
satisfy the following relations:

W (xy; a) = W (x; a) + W (y; a), (.)

W(x; a, b) = W(x; b, a). (.)

Proposition  For any fixed a ∈ A and fixed pair of distinct a, b in A , the following
assertions hold:

(i) W (·; a) belongs to Ker C(n)(〈A 〉,Z);
(ii) W(·; a, b) belongs to Ker C(n)(〈A 〉,Z);

(iii) W(·; a, b) belongs to Ker C(n)(〈A 〉,Z).

Proof Statement (i) follows from the fact that x 
→ W (x; a) is a morphism from 〈A 〉 to Z

by (.).
Now we consider statement (ii). Let x, x, . . . , xn+ in the free group 〈A 〉 be written as

x = at
 at

 · · ·atr
r , x = at

 at
 · · ·atr

r , . . . ,

xn+ = atn+,
n+, atn+,

n+, · · ·a
tn+,rn+
n+,rn+ .

Then by (.) we have

C(n)W(x, x, . . . , xn+; a, b)

=
n+∑

m=

(–)n+–m
∑

≤l<l<···<lm≤n+

W(xl xl · · ·xlm ; a, b)

= (–)n
n+∑

l=

W(xl; a, b) + (–)n–
∑

≤l<l≤n+

W(xl xl ; a, b)

+ (–)n–
∑

≤l<l<l≤n+

W(xl xl xl ; a, b) + · · ·

+ (–)
∑

≤l<l<···<ln≤n+

W(xl xl · · ·xln ; a, b)

+ (–)W(xx · · ·xn+; a, b)

= (–)n
n+∑

k=

∑

i<j,aki=a,akj=b

tkitkj

+ (–)n–
∑

≤l<l≤n+

( ∑

≤k≤

∑

i<j,alk i=a,alk j=b

tlk itlk j +
∑

ali=a,al j=b

tlitlj

)

+ (–)n–
∑

≤l<l<l≤n+

( ∑

≤k≤

∑

i<j,alk i=a,alk j=b

tlk itlk j
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+
∑

≤p<q≤

∑

alpi=a,alqj=b

tlpitlqj

)
+ · · ·

+ (–)
∑

≤l<l···<ln≤n+

( ∑

≤k≤n

∑

i<j,alk i=a,alk j=b

tlk itlk j

+
∑

≤p<q≤n

∑

alpi=a,alqj=b

tlpitlqj

)

+ (–)
( ∑

≤k≤n+

∑

i<j,aki=a,akj=b

tkitkj +
∑

≤p<q≤n+

∑

api=a,aqj=b

tpitqj

)

=
(

(–)n
∑

≤k≤n+

∑

i<j,aki=a,akj=b

tkitkj

+ (–)n–
∑

≤l<l≤n+

∑

≤k≤

∑

i<j,alk i=a,alk j=b

tlk itlk j

+ (–)n–
∑

≤l<l<l≤n+

∑

≤k≤

∑

i<j,alk i=a,alk j=b

tlk itlk j + · · ·

+ (–)
∑

≤l<l<···<ln≤n+

∑

≤k≤n

∑

i<j,alk i=a,alk j=b

tlk itlk j

+ (–)
∑

≤k≤n+

∑

i<j,aki=a,akj=b

tkitkj

)

+
(

(–)n–
∑

≤l<l≤n+

∑

ali=a,al j=b

tlitlj

+ (–)n–
∑

≤l<l<l≤n+

∑

≤p<q≤

∑

alpi=a,alqj=b

tlpitlqj

+ · · · + (–)
∑

≤l<l<···<ln≤n+

∑

≤p<q≤n

∑

alpi=a,alqj=b

tlpitlqj

+ (–)
∑

≤p<q≤n+

tpitqj

)

� I + I,

where

I = (–)n
∑

≤k≤n+

∑

i<j,aki=a,akj=b

tkitkj

+ (–)n–
∑

≤l<l≤n+

∑

≤k≤

∑

i<j,alk i=a,alk j=b

tlk itlk j

+ (–)n–
∑

≤l<l<l≤n+

∑

≤k≤

∑

i<j,alk i=a,alk j=b

tlk itlk j + · · ·

+ (–)
∑

≤l<l<···<ln≤n+

∑

≤k≤n

∑

i<j,alk i=a,alk j=b

tlk itlk j

+ (–)
∑

≤k≤n+

∑

i<j,aki=a,akj=b

tkitkj. (.)
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By the symmetry we can see that for any  ≤ k ≤ n +  and i < j, the coefficient of the item
tkitkj in (.) is identical and equals

(–)n
(

n


)
+ (–)n–

(
n


)
+ (–)n–

(
n


)

+ · · · + (–)
(

n
n – 

)
+ (–)

(
n
n

)

= (– + )n = ,

which gives I = . Now compute

I = (–)n–
∑

≤l<l≤n+

∑

ali=a,al j=b

tlitlj

+ (–)n–
∑

≤l<l<l≤n+

∑

≤p<q≤

∑

alpi=a,alqj=b

tlpitlqj

+ · · · + (–)
∑

≤l<l<···<ln≤n+

∑

≤p<q≤n

∑

alpi=a,alqj=b

tlpitlqj

+ (–)
∑

≤p<q≤n+

tpitqj. (.)

Obviously, for any  ≤ p < q ≤ n + , the coefficient of the item tpitqj in (.) is identical and
equals

(–)n–
(

n – 


)
+ (–)n–

(
n – 



)
+ (–)n–

(
n – 



)

+ · · · + (–)
(

n – 
n – 

)
+ (–)

(
n – 
n – 

)

= (– + )n– = ,

which gives I = . This concludes assertion (ii).
Statement (iii) follows from (.) directly. �

4 Solutions on symmetric groups
The symmetric group on a finite set X is a group whose elements are all bijective maps
from X to itself and whose group operation is that of the map composition. If X =
{, , . . . , m}, then it is called a symmetric group of degree m, denoted by Sm. In this section,
we consider C(n)f =  for G = Sm.

Proposition  If f ∈ Ker C(n)(Sm, H), then for any i = , , . . . , n, we have

C(n–)f (x, x, . . . , xi–, yy · · · yp, xi+, . . . , xn)

= C(n–)f (x, x, . . . , xi–, yπ ()yπ () · · · yπ (p), xi+, . . . , xn) (.)

for all xi, yj ∈ Sn, i = , , . . . , n, j = , , . . . , p, and all rearrangements π .
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Proof Note that C(n–)f is a homomorphism with respect to each variable and H is an
Abelian group, which yields

C(n–)f (x, x, . . . , xi–, yy · · · yp, xi+, . . . , xn)

= C(n–)f (x, x, . . . , xi–, y, xi+, . . . , xn)

+ C(n–)f (x, x, . . . , xi–, y, xi+, . . . , xn)

+ · · · + C(n–)f (x, x, . . . , xi–, yp, xi+, . . . , xn)

= C(n–)f (x, x, . . . , xi–, yπ ()yπ () · · · yπ (p), xi+, . . . , xn).

This proves (.). �

Proposition  Let τ be an arbitrary -cycle in Sm, and f ∈ Ker C(n)(Sm, H). Then we have

f
(
τ ) = , (.)

C(n)f (τ , τ , . . . , τ ) = (–)nf (τ ) =

⎧
⎨

⎩
nf (τ ) if n is even,

–nf (τ ) if n is odd,
(.)

nf (τ ) = . (.)

Proof We only need to prove (.). To this end, we need the following facts.
(i) If n is even, then

(
n + 



)
+

(
n + 



)
+

(
n + 



)
+ · · · +

(
n + 
n + 

)

=
(

n + 


)
+

(
n + 



)
+

(
n + 



)
+ · · · +

(
n + 

n

)
. (.)

(ii) If n is odd, then
(

n + 


)
+

(
n + 



)
+

(
n + 



)
+ · · · +

(
n + 

n

)

=
(

n + 


)
+

(
n + 



)
+

(
n + 



)
+ · · · +

(
n + 
n + 

)
. (.)

Note that by (.)

C(n)f (τ , τ , . . . , τ )

= (–)n
(

n + 


)
f (τ ) + (–)n–

(
n + 



)
f
(
τ ) + (–)n–

(
n + 



)
f
(
τ )

+ · · · + (–)
(

n + 
n

)
f
(
τ n) +

(
n + 
n + 

)
f
(
τ n+). (.)

We first prove the even case of (.). When n is even, by (.), (.) becomes

C(n)f (τ , τ , . . . , τ )

=
(

n + 


)
f (τ ) +

(
n + 



)
f (τ ) +

(
n + 



)
f (τ ) + · · · +

(
n + 
n + 

)
f (τ )
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=
((

n + 


)
+

(
n + 



)
+

(
n + 



)
+ · · · +

(
n + 
n + 

))
f (τ )

=



n+∑

j=

(
n + 

j

)
f (τ ) =




( + )n+f (τ )

= nf (τ ),

which confirms the even case. When n is odd, by (.), (.) becomes

C(n)f (τ , τ , . . . , τ )

= –
(

n + 


)
f (τ ) –

(
n + 



)
f (τ ) –

(
n + 



)
f (τ ) – · · · –

(
n + 

n

)
f (τ )

=
(

–
(

n + 


)
–

(
n + 



)
–

(
n + 



)
– · · · –

(
n + 

n

))
f (τ )

= –



n+∑

j=

(
n + 

j

)
f (τ ) = –




( + )n+f (τ )

= –nf (τ ).

This completes the proof. �

Proposition  For any -cycle σ,σ, . . . ,σn and f ∈ Ker C(n)(Sm, H), we have

C(n–)f (σ,σ, . . . ,σn) = C(n–)f
(
(), (), . . . , ()

)
. (.)

Proof For any -cycle σ, there exists z ∈ Sm such that σ = z()z–. Hence, for any
x, x, . . . , xn ∈ Sm, by (.) we have

C(n–)f (σ, x, x, . . . , xn)

= C(n–)f
(
z()z–, x, x, . . . , xn

)

= C(n–)f
(
()zz–, x, x, . . . , xn

)

= C(n–)f
(
(), x, x, . . . , xn

)
. (.)

Similarly, for any  ≤ i ≤ n,

C(n–)f (x, x, . . . , xi–,σi, xi+, . . . , xn)

= C(n–)f
(
x, x, . . . , xi–, z()z–, xi+, . . . , xn

)
,

= C(n–)f
(
x, x, . . . , xi–, ()zz–, xi+, . . . , xn

)
,

= C(n–)f
(
x, x, . . . , xi–, (), xi+, . . . , xn

)
. (.)

In particular, (.) follows from (.)-(.). �

Lemma  Assume that

C(j)f (σ,σ, . . . ,σj+) = C(j)f
(
(), (), . . . , ()

)
(.)
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for every -cycle σ,σ, . . . ,σj+ ∈ Sm, j = , , . . . , n – . Then for any x, y,β , τi ∈ Sm and rear-
rangements π , where β , τi are -cycles, we have

f (ττ · · · τp) = f (τπ ()τπ () · · · τπ (p)), (.)

f (xβy) = f
(
x()y

)
, (.)

f (β) = f
(
()

)
(.)

for every f ∈ Ker C(n)(Sm, H).

Proof First, for any -cycle τi ∈ Sm, i = , , . . . , p, and rearrangement π , it follows from
(.), (.), and (.) that when p ≥ n,

f (ττ · · · τp)

=
p∑

i=

f (τi) +
∑

≤i<i≤p

Cf (τi , τi ) +
∑

≤i<i<i≤p

C()f (τi , τi , τi )

+ · · · +
∑

≤i<i<···<in≤p

C(n–)f (τi , τi , . . . , τin )

=
p∑

i=

f (τπ (i)) +
p(p – )


Cf

(
(), ()

)
+

p(p – )(p – )


C()f
(
(), (), ()

)

+ · · · +
p(p – )(p – ) · · · (p – n + )

(n)!
C(n–)f

(
(), (), . . . , ()

)

= f (τπ ()τπ () · · · τπ (p)),

which gives the case of p ≥ n in (.). The case of p < n is similar to verify. This confirms
the proof of (.).

On the other hand, for all x, y,β ∈ Sm, there exist -cycles σi, τj, z ∈ Sm, i = , , . . . , p, j =
, , . . . , q, such that x = σσ · · ·σp, y = ττ · · · τq, and β = z()z–. Noting that z = δδ · · · δr

for some -cycles δ, δ, . . . , δr ∈ Sm, we obtain

f (xβy) = f
(
σσ · · ·σpδδ · · · δr()δ–

r δ–
r– · · · δ–

 ττ · · · τq
)

= f
(
σσ · · ·σp()δδ · · · δrδ

–
r δ–

r–ττ · · · τq
)

= f
(
x()y

)

by (.). In particular, taking x = y = e in (.), we get formula (.). This completes the
proof. �

According to Lemma , we give the following main result in this section.

Theorem  Assume that (.) holds. Then f is a solution to the equation C(n)(Sm, H) = 
if and only if there is h ∈ H such that nh =  and

f (x) =

⎧
⎨

⎩
 if x is even,

h if x is odd.
(.)
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Proof We first deal with the necessity. Let f ∈ Ker C(n)(Sm, H). Then, for any x ∈ Sm, there
exist -cycles αi ∈ Sm, i = , , . . . , p, such that x = αα · · ·αp. In view of (.), (.), and
(.), we get that for p ≥ n,

f (x) = f (αα · · ·αp)

=
p∑

i=

f (αi) +
∑

≤i<i≤p

Cf (αi ,αi ) +
∑

≤i<i<i≤p

C()f (αi ,αi ,αi )

+ · · · +
∑

≤i<i<···<in≤p

C(n–)f (αi ,αi , . . . ,αin )

= pf
(
()

)
+

p(p – )


Cf
(
(), ()

)
+

p(p – )(p – )


C()f
(
(), (), ()

)

+ · · · +
p(p – )(p – ) · · · (p – n + )

n!
C(n–)f

(
(), (), . . . , ()

)

=
(

p


)
f
(
()

)
+

(
p


)(
(–)f

(
()

))
+

(
p


)(
(–)f

(
()

))

+ · · · +
(

p
n

)(
(–)n–f

(
()

))

=
((p



)
+ (–)

(
p


)
+ (–)

(
p


)
+ · · · + (–)n–

(
p
n

))
f
(
()

)
. (.)

Let

g(p) =
(

p


)
+ (–)

(
p


)
+ (–)

(
p


)
+ · · · + (–)n–

(
p
n

)
.

We claim that

g(p) ∈
⎧
⎨

⎩
n
Z if p is even,

n
Z +  if p is odd.

(.)

We first prove the even case. Obviously, (.) is true for p =  since g() = . For an in-
ductive proof, suppose that (.) holds for p = t, t ∈N. Then we have

g(t + ) – g(t)

=
((

t + 


)
–

(
t


))
+ (–)

((
t + 



)
–

(
t


))

+ (–)
((

t + 


)
–

(
t


))
+ · · · + (–)n–

((
t + 

n

)
–

(
t
n

))

=  + (–)
(


(

t


)
+

(
t


))
+ (–)

(

(

t


)
+

(
t


))
+ · · ·

+ (–)n–
(


(

t
n – 

)
+

(
t

n – 

))

=
(

 + (–)
(

t


)
+ (–)

(
t


)
+ · · · + (–)n–

(
t

n – 

))
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+
(

(–) · 
(

t


)
+ (–) · 

(
t


)
+ · · · + (–)n– · 

(
t

n – 

))

� J + J,

where

J =  + (–)
(

t


)
+ (–)

(
t


)
+ · · · + (–)n–

(
t

n – 

)

= (–)
((

t


)
+ (–)

(
t


)
+ · · · + (–)n–

(
t

n – 

))

= (–)
(

g(t) – (–)n–
(

t
n – 

)
– (–)n–

(
t
n

))

= g(t) – (–)n
(

t
n – 

)
– (–)n+

(
t
n

)

and

J = (–) · 
(

t


)
+ (–) · 

(
t


)
+ · · · + (–)n– · 

(
t

n – 

)

= –
((

t


)
+ (–)

(
t


)
+ · · · + (–)n– ·

(
t

n – 

))

= –
(

g(t) – (–)n–
(

t
n

))

= –g(t) + (–)n+
(

t
n

)
,

which yields g(t + ) – g(t) = –(–)n( t
n–

)
and g(t + ) ∈ n

Z. This confirms the even
case of (.). When p is odd, (.) is true for p =  because of g() = . Suppose that
(.) holds for p = t – , and then we get

g(t + ) – g(t – )

=
((

t + 


)
–

(
t – 



))
+ (–)

((
t + 



)
–

(
t – 



))

+ (–)
((

t + 


)
–

(
t – 



))
+ · · · + (–)n–

((
t + 

n

)
–

(
t – 

n

))

=  + (–)
(


(

t – 


)
+

(
t – 



))
+ (–)

(

(

t – 


)
+

(
t – 



))
+ · · ·

+ (–)n–
(


(

t – 
n – 

)
+

(
t – 
n – 

))

=
(

 + (–)
(

t – 


)
+ (–)

(
t – 



)
+ · · · + (–)n–

(
t – 
n – 

))

+
(

(–) · 
(

t – 


)
+ (–) · 

(
t – 



)
+ · · · + (–)n– · 

(
t – 
n – 

))

� J + J,
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where

J =  + (–)
(

t – 


)
+ (–)

(
t – 



)
+ · · · + (–)n–

(
t – 
n – 

)

= (–)
((

t – 


)
+ (–)

(
t – 



)
+ · · · + (–)n–

(
t – 
n – 

))

= (–)
(

g(t – ) – (–)n–
(

t – 
n – 

)
– (–)n–

(
t – 

n

))

= g(t – ) – (–)n
(

t – 
n – 

)
– (–)n+

(
t – 

n

)

and

J = (–) · 
(

t – 


)
+ (–) · 

(
t – 



)
+ · · · + (–)n– · 

(
t – 
n – 

)

= –
((

t – 


)
+ (–)

(
t – 



)
+ · · · + (–)n– ·

(
t – 
n – 

))

= –
(

g(t – ) – (–)n–
(

t – 
n

))

= –g(t – ) + (–)n+
(

t – 
n

)
,

which yields g(t + ) – g(t – ) = –(–)n(t–
n–

)
and g(t – ) ∈ n

Z + . This completes the
proof of (.). According to (.) and (.), equation (.) becomes

f (x) =

⎧
⎨

⎩
 if x is even,

f (()) if x is odd.

This proves that when p ≥ n, f must be of the form (.) with h = f (()).
When p < n,

f (x) = f (αα · · ·αp)

=
p∑

i=

f (αi) +
∑

≤i<i≤p

Cf (αi ,αi ) +
∑

≤i<i<i≤p

C()f (αi ,αi ,αi )

+ · · · +
∑

≤i<i<···<ip–≤p

C(p–)f (αi ,αi , . . . ,αip– )

+ C(p–)f (α,α, . . . ,αp)

= pf
(
()

)
+

p(p – )


Cf
(
(), ()

)
+

p(p – )(p – )


C()f
(
(), (), ()

)

+ · · · +
p(p – )(p – ) · · ·

(p – )!
C(p–)f

(
(), (), . . . , ()

)

+ C(p–)f
(
(), (), . . . , ()

)

=
(

p


)
f
(
()

)
+

(
p


)(
(–)f

(
()

))
+

(
p


)(
(–)f

(
()

))
+ · · ·
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+
(

p
p – 

)(
(–)p–f

(
()

))
+ (–)p–f

(
()

)

=
((

p


)
+ (–)

(
p


)
+ (–)

(
p


)
+ · · · + (–)p–

(
p

p – 

)
+ (–)p–

)
f
(
()

)

=
(

–



(
(–)

(
p


)
+ (–)

(
p


)
+ (–)

(
p


)
+ (–)

(
p


)

+ · · · + (–)p–
(

p
p – 

)
+ (–)p

)
+




)
f
(
()

)

=
(

–



(– + )p +



)
f
(
()

)

=

⎧
⎨

⎩
 if p is even,

f (()) if p is odd.

This implies that when p < n, f must be of the form (.) with h = f (()).
Now we turn to the sufficiency. Let f : Sm → H be defined by (.), where h is a con-

stant with nh = . In order to prove C(n)f = , by the symmetry of x, x, . . . , xn+, it suf-
fices to verify that it holds when x, x, . . . , xk are odd and xk+, xk+, . . . , xn+ are even for
any k = , , . . . , n + . To this end, we only need to verify the following two cases: (i) k is
odd; (ii) k is even. In fact, for case (i), by (.) we have

C(n)f (x, x, . . . , xn+)

=
∑

≤m≤n+

(–)n+–m
∑

≤i<i<···<im≤n+

f (xi xi · · ·xim )

=
(

(–)n
(

k


)
+ (–)n–

(
k


)(
n +  – k



)
+ (–)n–

(
k


)(
n +  – k



)

+ · · · + (–)k–
(

k


)(
n +  – k
n +  – k

))
h

+
(

(–)n–
(

k


)
+ (–)n–

(
k


)(
n +  – k



)
+ (–)n–

(
k


)(
n +  – k



)

+ · · · + (–)k–
(

k


)(
n +  – k
n +  – k

))
h

+
(

(–)n–
(

k


)
+ (–)n–

(
k


)(
n +  – k



)
+ (–)n–

(
k


)(
n +  – k



)

+ · · · + (–)k–
(

k


)(
n +  – k
n +  – k

))
h

+ · · ·

+
(

(–)n–k+
(

k
k

)
+ (–)n–k

(
k
k

)(
n +  – k



)
+ (–)n–k–

(
k
k

)(
n +  – k



)

+ · · · + (–)
(

k
k

)(
n +  – k
n +  – k

))
h

=
((

k


)
(–)k–(– + )n+–k

)
h +

((
k


)
(–)k–(– + )n+–k

)
h

+
((

k


)
(–)k–(– + )n+–k

)
h + · · ·
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+
((

k
k

)
(–)k–k(– + )n+–k

)
h

= ,

which confirms the odd case. With a similar discussion, the proof of the even case is also
obtained. �

5 Solutions on finite cyclic groups
Let Cm = 〈a | am = e〉 be a cyclic group of order m with generator a. In this section, we
study a general solution on the finite cyclic group Cm.

Theorem  Assume that mC(k)f (a, a, . . . , a︸ ︷︷ ︸
k+

) = , k = , , . . . , n – , and m = n, mf (a) = .

Then f is a solution to the equation C(n)(Cm, H) =  if and only if it is given by

f
(
ap) =

⎧
⎪⎪⎨

⎪⎪⎩

∑n–
j=

p(p–)···(p–j)
(j+)! C(j)f (a, a, . . . , a︸ ︷︷ ︸

j+

) if p ≤  or p ≥ n,

∑p–
j=

p(p–)···(p–j)
(j+)! C(j)f (a, a, . . . , a) if  < p < n,

(.)

where p ∈ Z and f (a), C(n–)f (a, a, . . . , a) satisfy

mC(n–)f (a, a, . . . , a) = , (.)

mf (a) =  if m < n or m > n, (.)

C(m–)f (a, a, . . . , a) =  if m = n. (.)

Proof Let f : Cm → H be a function satisfying C(n)f = . Then, by (.) we see that f also
satisfies (.). Now using (.), (ii) of Proposition , and the fact am = e, we get

mC(n–)f (a, a, . . . , a) = C(n–)f
(
am, a, . . . , a

)
= C(n–)f (e, a, . . . , a) = ,

which gives (.). Furthermore, let p = m in (.), according to the assumptions of
mC(k)f (a, a, . . . , a) = , k = , , . . . , n – , mf (a) = , and m = n, (.)-(.) are obtained.
This proves (.)-(.) and implies the necessity.

To give out the sufficiency, we claim that (.)-(.) give a well-defined function on Cm.
Indeed, when m > n, it suffices to verify the following four cases: (i) p + m ≥ n and n – m ≤
p ≤  or p ≥ n; (ii) p + m ≥ n and  < p < n; (iii) p + m ≤  and p ≤ –m < ; (iv)  < p + m < n
and –m < p < n – m < .

For case (i), by (.) we have

f
(
ap+m)

– f
(
ap)

=
n–∑

j=

(p + m)(p + m – ) · · · (p + m – j)
(j + )!

C(j)f (a, a, . . . , a)

–
n–∑

j=

p(p – ) · · · (p – j)
(j + )!

C(j)f (a, a, . . . , a)
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= mf (a) +
n–∑

j=

(
(p + m)(p + m – ) · · · (p + m – j)

(j + )!
–

p(p – ) · · · (p – j)
(j + )!

)

× C(j)f (a, a, . . . , a). (.)

It is easy to see that the coefficient C(j)f (a, a, . . . , a) is an integer multiple of m for j =
, , . . . , n – , and therefore, by (.)-(.) and the assumption of mC(k)f (a, a, . . . , a) = ,
k = , , . . . , n – , (.) equals .

For case (ii), we compute that

f
(
ap+m)

– f
(
ap)

=
n–∑

j=

(p + m)(p + m – ) · · · (p + m – j)
(j + )!

C(j)f (a, a, . . . , a︸ ︷︷ ︸
j+

)

–
p–∑

j=

p(p – ) · · · (p – j)
(j + )!

C(j)f (a, a, . . . , a︸ ︷︷ ︸
j+

)

= mf (a) +
p–∑

j=

(
(p + m)(p + m – ) · · · (p + m – j)

(j + )!

–
p(p – ) · · · (p – j)

(j + )!

)
C(j)f (a, a, . . . , a︸ ︷︷ ︸

j+

)

+
n–∑

j=p

(p + m)(p + m – ) · · · (p + m – j)
(j + )!

C(j)f (a, a, . . . , a︸ ︷︷ ︸
j+

). (.)

With the same discussion as in case (i), (.) equals . The proofs of the other two cases
are similar to case (i).

When m < n, it suffices to verify the following five cases: (i) p + m ≥ n and n – m < p < n;
(ii) p + m ≥ n and p ≥ n; (iii) p + m ≤  and p ≤ –m; (iv)  < p + m < n and –m < p < ;
(v)  < p + m < n and  < p < n – m. Since the proof is similar to the case of m > n, we omit
the details.

When m = n, it suffices to verify the following four cases: (i) p + m ≥ n and  < p < n;
(ii) p + m ≥ n and p ≥ n; (iii) p + m ≤  and p ≤ –m; (iv)  < p + m < n and –m < p < .
Similarly to the cases of m > n and m < n, the proof of m = n is omitted. �
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16. Brzdȩk, J: Remarks on hyperstability of the Cauchy functional equation. Aequ. Math. 86, 255-267 (2013)
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