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Abstract

Background: Previous functional MRI (fMRI) studies have demonstrated group differences in brain activity between
deceptive and honest responses. The functional connectivity network related to lie-telling remains largely
uncharacterized.

Methods: In this study, we designed a lie-telling experiment that emphasized strategy devising. Thirty-two subjects
underwent fMRI while responding to questions in a truthful, inverse, or deceitful manner. For each subject,
whole-brain functional connectivity networks were constructed from correlations among brain regions for the
lie-telling and truth-telling conditions. Then, a multivariate pattern analysis approach was used to distinguish
lie-telling from truth-telling based on the functional connectivity networks.

Results: The classification results demonstrated that lie-telling could be differentiated from truth-telling with an
accuracy of 82.81% (85.94% for lie-telling, 79.69% for truth-telling). The connectivities related to the fronto-parietal
networks, cerebellum and cingulo-opercular networks are most discriminating, implying crucial roles for these three
networks in the processing of deception.

Conclusions: The current study may shed new light on the neural pattern of deception from a functional integration
viewpoint.
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Background
Deception is a rather complex mental activity. During
lying, many functions of higher cognition are involved.
Deception has been demonstrated to be associated with
greater activation within the prefrontal cortex compared
to truthfulness [1-6]. In our recent study on deception,
increased neuronal activity was observed mainly in the
dorsolateral prefrontal cortex during lie-telling compared
to truth-telling, and as the capacity for deception in-
creased, the contrast between brain activities (lie vs. truth)
decreased [7]. Most of the previous studies of deception
have focused on brain-activity patterns [1-4,6-17]. Over the
past few years, functional connectivity has been widely used
in the detection of brain dysfunction in neuropsychiatric
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diseases [18]. It remains unclear whether there are
functional connectivity differences between lie-telling
and truth-telling.
In recent years, interest in multivariate pattern analysis

(MVPA) methods based on neuroimaging data has in-
creased [19,20], perhaps because MVPA methods can
provide unique information that is overlooked by uni-
variate group-level statistical analysis approaches [21].
Davatzikos et al. used a high-dimensional non-linear
pattern classification method to discriminate lie-telling
from truth-telling based on brain activity [11], ignoring
the interactions between brain regions (functional con-
nectivity). Whole-brain functional connectivity patterns
may provide a sensitive and informative signature of cog-
nitive processing [22-25], so increased attention is being
paid to examining large-scale functional connections
during cognitive processing using MVPA methods
[22-27]. We also succeeded in differentiating indi-
viduals with antisocial personality disorders from con-
trols using resting-state functional connectivity in a recent
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study [28]. Here, we proposed that MVPA could extract
an informative functional connectivity pattern to identify
deception from truth-telling in an empirical study of
deception.
To perform a specific task, humans are thought to

enter a task-dependent cognitive state [29]. Humans have
two separable and parallel control networks, i.e., fronto-
parietal and cingulo-opercular networks, each of which
exerts top-down control, though with different properties
and over different temporal scales [30,31]. Whether and
how the networks are modulated by deception is an inter-
esting theme.

Materials and methods
Participants
We recruited 45 right-handed native Chinese speakers.
The subjects had normal or corrected-to-normal vision;
they had no history of substance abuse (e.g., alcohol or
drugs) prior to the brain scan; and they had no major
head trauma or a history or current diagnosis of serious
mental disorders, e.g., depression, anxiety neurosis or
schizophrenia, as assessed by two senior psychiatrists.
The exclusion criteria after the MRI experiment were as
follows: their response accuracies in the “true” and
“inverse” conditions were lower than 80%; data with
maximum displacement in any direction during scanning
was greater than 2 mm or head rotations were larger than
2.0 degrees; or they had not devised strategies sufficiently
well during lie-telling scanning. In 13 cases, the scan data
were unsatisfactory (5 subjects had inadequate motiv-
ation for the lie condition, 3 subjects had movement-
related artefacts that were identified post-scanning and
5 subjects had response accuracies during the true and
inverse condition that were below 80%, as shown below).
The final sample consisted of 32 volunteers (mean age =
20.20 ± 1.56 years).
After receiving a detailed description of the study, all

volunteers provided written informed consent. Partici-
pants were paid a base rate of ¥100 for their participation,
in addition to a ¥50 bonus based on their performance.
This study was approved by the Ethical Committee of the
Third Xiangya Hospital of Central South University.

Experimental design and procedures
In this study, we used the picture choice task [7,32] to
examine the brain network of deception. Each subject
randomly extracted 3 pictures from 10 neutral pictures
(e.g., a pair of shoes, an orange) prior to scanning, and
then decided if the picture presented during scanning
was one of the 3 items by following special instructions.
These instructions comprised three conditions, i.e., a
“true”, an “inverse” and a “lie” condition. During the
true condition, the participants were required to give
accurate, honest responses. During the inverse condition,
the participants were required to give opposite responses;
for example, when the picture presented was one of the 3
items chosen, the subject should press the “No” button
and they were to press the “Yes” button otherwise. During
the lie condition, the participants were required to devise
a strategy to deceive others, with the goal of lying skillfully
and avoiding detection. The subject could devise various
strategies to decide when to respond honestly and when
to respond falsely. For example, in the first lie block, he
could respond in the manner of “TFTTFF” (T: true, F:
false); in the second lie block, he could respond with an-
other method of “FFTTTF”; in the third lie block,
“FTFTFT”; and in the fourth lie block, “TTFFFT”. We
added the “inverse” condition to indicate that lie-telling is
not simply responding oppositely and requires devising a
strategy.
A block design consisting of two sequences was used

in this study. During scanning, the 10 pictures appeared
randomly, the probability of occurrence of each picture
was approximately equal in each sequence, and each
picture appeared, at most, one time in each block. Each
sequence lasted 264 -s and contained six blocks. The
six blocks were presented in a pseudorandom order
(Figure 1a), in which two blocks required true responses,
two required inverse responses and two required lie re-
sponses. Each sequence began with an 8 -s rest period.
Specific instructions regarding the response types were
presented for 4 -s before each block began. Each block
lasted for 24 -s. The rest time that followed each block
lasted for 14 -s (the final rest time for each sequence was
18 -s, Figure 1a).
Each block consisted of six picture stimuli. Each

stimulus was presented for 1 -s and was followed by a
visual fixation crosshair for 3 -s. The participants were
instructed to indicate whether the presented picture was
one of the 3 items that they had chosen beforehand by
pressing the “yes” or “no” button, according to the speci-
fied instructions. At the end of the fixation, a fresh stimu-
lus was presented for 1 -s, followed by a 3 -s fixation
(Figure 1b).
At the beginning of the experiment, the participants

underwent a training session, the block order of which
was different from that during scanning, to familiarize
the participants with the test and the hardware outside
the scanner. During the post-experimental debriefing that
followed the scanning, we first asked what stratagem they
had used in each lie condition, and then asked them to in-
dicate their degree of confidence that they had deceived
someone else on a Likert scale from 0 to 3, with 3 indicat-
ing the highest level of confidence and 0 the lowest. This
procedure was intended to check the degree of the sub-
jects’ motivations to lie. A total of 40 subjects rated
themselves as 2 or higher, and 5 subjects were excluded
because they rated themselves as 1 or lower.



Figure 1 The schematic diagram of the experiment: (a) Pseudorandom order of two sequences. T = true, I = inverse, L = lie. (b) Schematic
representation of a block.
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Image acquisition and pre-processing
Functional images were acquired on a 1.5 Tesla Siemens
Trio scanner at the Third Xiangya Hospital of Central
South University using T2*-weighted echo planar im-
aging with a blood-oxygen-level-dependent (BOLD)
contrast pulse sequence (23 slices, thickness/gap = 5.0/
1.2 mm, matrix = 64 × 64, repetition time = 2000 ms,
echo time = 50 ms, flip angle = 90°, and field of view =
240 mm × 240 mm).
Functional data were pre-processed using a statistical

parametric mapping software package (SPM8, www.fil.
ion.ucl.ac.uk/spm). For each sequence, we discarded the
first 6 volumes to allow for T1 equilibration effects, leav-
ing 126 volumes for further analysis. All datasets were
corrected for temporal offsets and for head movement-
related effects. Data with a maximum displacement in
any direction greater than 2 mm or head rotations larger
than 2.0 degrees were excluded. The resulting datasets
were spatially transformed and resampled to a standard-
ized brain (Montreal Neurologic Institute, 2-mm isotropic
voxels) and then smoothed with an 8-mm full-width half-
maximum Gaussian kernel.
Behavioral data analysis
To ensure cooperation, we calculated the response accur-
acy and response time for each participant and excluded 5
subjects whose response accuracies in the true and inverse
conditions were lower than 80%. In the true condition, ac-
curacy was calculated according to whether the partici-
pants gave accurate and honest responses. For example,
when the picture was one of the 3 items that the subject
had chosen at the beginning, the subject was to press the
“Yes” button, and they were to press the “No” button
otherwise. In the inverse condition, accuracy was calcu-
lated according to whether the participants gave opposite
responses; for example, when the picture was one of the 3
items that the subject had chosen, the subject was to press
the “No” button, and they were to press the “Yes” button
otherwise. In the lie condition, accuracy was calculated
against ground-truth. The items selected by each partici-
pant were collected by the researcher before the scan
session.
To investigate whether response accuracy and response

time were related to response type, two-way repeated
measures ANOVAs were employed.
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Functional connectivity networks for truth and lie processing
We first obtained time series of the lie and true condi-
tions. In this step, we made a regression for head motion
to account for motion artefacts, used a high-pass filter
of 1/128 Hz to remove low-frequency noise, and then
segmented and concatenated the time series in terms of
the lie and truth conditions individually.
As implemented by Dosenbach et al. [30], we function-

ally defined nodes using the same 160 MNI coordinates
and trimmed them to ensure no overlap with each other.
These nodes were selected and defined based on separate
meta-analyses of task-related fMRI studies. The distance
between all ROI (regions of interest) centers was at least
10 mm. For a more detailed description, see [30]. All
time-series across the same condition were divided into
the 160 regions. For each subject, the time-series for each
region were extracted using singular value decomposition
(SVD) and we retained the top 2 eigenvariates from each
region. According to studies by Pantazatos et al. [22,23],
compared with the mean signal in each region, SVD helps
to avoid inadvertently ignoring important variation within
regions or averaging them away. Nuisance covariates,
including the global mean and white matter and cere-
brospinal fluid signals, were removed from the time
series of each condition prior to time-series extraction
of ROI [28,33-35]. For each eigenvariate, Pearson’s cor-
relation coefficients were used to evaluate the functional
connectivity between each pair of regions, and we ob-
tained two condition-dependent functional networks for
each subject that were expressed as a 160 × 160 sym-
metrical matrix for each condition. By removing the 160
diagonal elements, the 12720 upper triangular elements
of the functional connectivity matrix were normalized
using Fisher’s z-transformation [36] and then used as the
features for all subsequent multivariate pattern analyses.

Pattern analysis of functional connectivity to distinguish
lie-telling from truth-telling
When classification features were obtained, support
vector machines (SVM) were employed to solve the
classification problem [37,38]. An SVM classifier aims
to find a hyperplane maximizing the margin between
positive and negative samples while simultaneously
minimizing misclassification errors in the training set
[39]. In this study, linear SVMs were used together
with filtering feature selection based on the Kendall
tau rank correlation coefficient [28,40] and leave-two-
out cross validation (LTOCV). There were 64 examples
for each condition (2 eigenvariates from each condi-
tion, 32 subjects in total). During each iteration of 64
rounds of LTOCV, both examples (2 eigenvariates from
the same condition of the same subject) from one condi-
tion were withheld from the dataset. Subsequently: 1) the
Kendall tau rank correlation coefficient was calculated
over the remaining training data; 2) the features were
ranked by absolute tau- score and the top N were selected;
and 3) these selected features were used to train the classi-
fier and predict the categories of the withheld test exam-
ples. Finally, we calculated the classification accuracy. To
determine the optimal number of the selected features, we
repeated the classification with a varying number of fea-
tures that were ranked by their tau- scores.
To assess the statistical significance of the LTOCV re-

sults, we used permutation tests [41,42]. The training data
labels were randomly permuted 10,000 times for permuta-
tion testing. We then performed LTOCV on every per-
muted training set and defined GR0 as the generalization
rate obtained by the classifier trained on the real class la-
bels. When GR0 exceeded the 95% (P < 0.05) confidence
interval of the classifier trained on randomly re-labeled
class labels, the classifier was proposed to have reliably
learned the relationship between the data and the labels.
The P-value showed the probability of observing a classifi-
cation prediction rate of no less than GR0.

Results
Behavioral data
In the true, inverse, and lie conditions, the response
accuracies of the 32 subjects were (94.56 ± 4.45%),
(87.67 ± 6.36%), and (44.37 ± 11.56%), respectively, and
the reaction times were (0.68 ± 0.27 s), (0.85 ± 0.34 s),
and (0.95 ± 0.45 s), respectively. We found significant
effects of response type, characterized by longer reac-
tion times (P < 0.0001) and reduced response accuracies
(P < 0.0001) in the lie task, indicating that subjects per-
formed the lie task appropriately.

Classification results
To determine the optimal size of the feature subset, we
repeated the classification with a varying number of
different features and found that the classifier's best
performance was achieved when selecting the 17 most
discriminating functional connections (Figure 2a). The
classification accuracy was 82.81% (85.94% for the lie
condition, 79.69% for the true condition) via LTOCV.
Permutation tests revealed that the proposed classifier
learned the relationship between the data and the labels
with a less than 0.0001 risk of being wrong (P < 0.0001,
Figure 2b).
With this in mind, we performed multiple tests. When

extracting only one eigenvariate per region, the max-
imum accuracy was 62.5% for the 1st eigenvariate when
25 functional connection feathers were used and 54.69%
for the 2nd eigenvariate when 36 functional connection
feathers were used. This may have occurred because lar-
ger regions encompassed other functional subregions
that were not included in the analysis. Another possible
reason is that for many regions, the 1st eigenvariate may



Figure 2 Performance evaluation of the classifier. (a) The curve of the generalization rate to the number of features. (b) Permutation
distribution of the estimate (repetition times: 10,000). GR0 is the generation rate obtained by the classifier trained on the real class labels. With
the generalization rate statistic, this figure reveals that the classifier learned the relationship between the data and the labels with a <0.0001
probability of being wrong.
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reflect variation caused by other conditions/blocks within
the run that were not considered in the current classifica-
tion analyses, or it could be a combination of all of the
above[22,23]. When we used 320 × 320 matrices resulting
from two principal components per node, the maximum
accuracy was 62.5% when 19 functional connection
feathers were used. This method may have utilized ser-
ial information. When we split the top 2 eigenvariates
from each node into separate examples, we may have
better utilized the correlate information between the
two component networks.

Functional connectivity pattern of lie-telling differs from
that of truth-telling
The selected functional connectivity feature set may be
slightly different in each iteration of LTOCV. A total of
37 features emerged during LTOCV when selecting the
17 most discriminating functional connections. The dis-
criminative power of each feature was computed by multi-
plying the mean Kendall tau correlation coefficient by the
occurrence rate across all iterations of cross-validation
[28], and the 15 features that appeared in no fewer than
52 iterations were found to have the largest discrimina-
tive power and could best distinguish the two conditions
(Figure 3a). These highly discriminating functional con-
nections represented condition-modulated functional
connectivity patterns, including 10 stronger connections
that exhibited positive modulation by deception and 5
weaker connections that exhibited negative modulation
by deception (Table 1). The results of two-tailed two-
sample t-tests revealed that the 15 most discriminating
functional connections were significantly different be-
tween lie-telling and truth-telling (P < < 0.001).
One of the most intriguing findings here was that these

modulated functional connections were mostly spatially
remote (i.e., long-range; length > 80 mm; Figure 4, Table 1).
These analyses revealed that longer connections contrib-
uted more to deception (73.3%) than did shorter connec-
tions (26.7%). The 15 functional connections with high
discriminative power connected 26 brain regions. Accord-
ing to a canonical template of resting-state networks [30],
the 26 brain regions were grouped into six networks:
cingulo-opercular, fronto-parietal, default, sensorimotor,
occipital and cerebellar. Summing the feature weights for



Figure 3 Characteristic analyses of deception-modulated functional connectivity. (a) τ value distribution of all 37 features represented in
the LTOCV. The horizontal axis represents each functional connection and the vertical axis represents the weighted Kendall tau correlation
coefficient. (b) Summarized weights for each of the six communities.
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each network, the results revealed that the cingulo-
opercular control network had the greatest sum total of
feature weights (Figure 3b, Table 2), suggesting that they
were the best relative predictors. In addition, the cere-
bellar and fronto-parietal control networks had large
weights. Another finding was that these deception-
modulated connections were mostly between networks
(80%; Table 2). We also used leave-four-out cross valid-
ation (LFOCV) when decoding the processing of lying, i.e.
four examples from one subject were withheld from the
dataset. For the relevant results, please see the Additional
file 1.

Discussion
In this study, we imitated deception that emphasized
strategy devising. The results demonstrated that the
functional connectivity pattern provided sufficient infor-
mation to decode deception. The most discriminating
functional connections included 10 stronger ones with
positive modulation by deception and 5 weaker ones with
negative modulation by deception, which were mostly
spatially remote and located between networks. The
connectivities related to the cingulo-opercular, cerebellar
and fronto-parietal networks are most discriminating, im-
plying crucial roles for these three networks in the pro-
cessing of deception.

A method to estimate deception-modulated functional
connectivity
Recent fMRI studies have characterized deception from
the brain activity patterns but have ignored the func-
tional connectivity between brain regions. In the current
study, a multivariate pattern analysis with whole-brain
functional connectivity revealed that whole-brain func-
tional connectivity patterns are able to differentiate lie-
telling from truth-telling with a promising accuracy of
82.81% (85.94% for lie-telling, 79.69% for truth-telling),
suggesting that whole-brain functional connectivity
could provide a sensitive and informative signature for
decoding the processing of deception at the individual
level and complementing univariate statistical analyses.
Analyses of functional connectivity could shed new light
on the neuronal patterns of deception, further indicating
that brain conditions may not only be tied to the activity



Table 1 Deception-modulated functional connections

Modulated features MNI coordinates Length (mm) τ value P value

( x, y, z )

Increased connections (lie > true)

aPFC/inf_cerebellum (29, 57, 18)/(−34, −67, −29) 147 0.4688 3.1675E-06

vFC/post_occipital (43, 1, 12)/(27, −91, 2) 94 0.4609 3.7259E-06

vIPFC/inf_cerebellum (39, 42, 16)/(−34, −67, −29) 139 0.4233 5.5833E-05

dACC/occipital ( 9, 20, 34)/(20, −78, −2) 105 0.4204 2.6348E-05

post_insula/thalamus (−30, −28, 9)/(11, −12, 6) 44 0.4121 1.3363E-04

vPFC/post_occipital (34, 32, 7)/(29, −81, 14) 113 0.4185 1.1820E-04

aPFC/sup_parietal (27, 49, 26)/(34, −39, 65) 97 0.4165 1.7691E-05

vFC/temporal (−48, 6, 1)/(43, −43, 8) 104 0.4064 1.0832E-04

IPL/occipital (−53, −50, 39)/(−44, −63, −7) 49 0.4070 5.2067E-05

IPS/inf_temporal (−36, −49, 60)/(−61, −41, 2) 64 0.3454 5.7618E-05

Decreased connections (lie < true)

vFC/med_cerebellum (5, −75, −11)/(43, 1, 12) 88 −0.4561 1.7871E-05

IPL/inf_cerebellum (−48, −47, 49)/(−6, −79, −33) 98 −0.4531 2.0318E-06

lat_cerebellum/occipital (−24, −44, −25)/(45, −72, 29) 100 −0.4229 1.3987E-04

vIPFC/temporal (46, 39, −15)/(43, −43, 8) 85 −0.4007 3.3076E-05

inf_cerebellum/post_occipital (18, −81, −33)/(27, −91, 2) 37 −0.3667 5.7618E-05
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of a set of brain areas but also to the way the regions are
connected functionally [22,23,43-45].

Deception-modulated network
Humans are thought to enter a task-dependent cognitive
state when performing a specific task [29]. Humans have
two separable and parallel control networks, i.e., fronto-
parietal and cingulo-opercular networks [30,31]. In our
current study, the connectivity related to the fronto-
parietal networks, cingulo-opercular networks and cere-
bellum exhibited the highest discriminative power. When
performing lie-telling tasks, the subjects may adopt task
sets that flexibly configure information processing under
the control of the two networks in response to changing
task demands.
In this study, the connection between the dACC and

occipital cortex was found to strengthen during decep-
tion. Abe et al. [8] found that the ACC was activated
when deceptively responding to previously experienced
stimuli. The ACC may monitor the reading of and
deceptive responding to a stimulus [10]. The ACC has
been implicated in neurobiological models of cognitive
control, the inhibition of competing or prepotent re-
sponses, the mediation of conflict, and reward and mo-
tivation [46,47], particularly in decision making [48-50].
It has also been suggested that the dACC/msFC may
form part of an attention or executive control system
[51-53]. It stands to reason that the connection between
the dACC/msFC and the occipital cortex may carry out
functions that are most central to the implementation
of deception.
Some connections related to the prefrontal cortex

(PFC) region were found to exhibit high discriminative
power. Previous neuro-imaging studies have shown that
the PFC plays a significant role in deception [5,54,55].
Many studies have suggested that the anterior PFC
(aPFC) maintains task and context information [56-58].
The aPFC may provide more specific representations of
plans, subgoals, rules [59,60], and/or strategies [61] for
complex task paradigms. The aPFC has been associated
with complex higher-order task-control functions [58,62].
In our study, the connectivities between the aPFC and the
inferior cerebellum and the post occipital cortex may be
in response to high demands on working memory and
control by deception.
Some previous studies have suggested that the connec-

tion between the thalamus and the insula played a prom-
inent role during implicit emotion perception [22,23]. We
speculate that such functional connectivity may be related
to the emotional conflict caused by lie-telling. The IPS is
thought to play a major role in the top– down control of
attention [63]. Dosenbach et al. proposed that the IPS oc-
cupies a central integrative position in the fronto-parietal
network that exerts top–down control [64]. The connec-
tion between the IPS and the inferior temporal gyrus may
help load, transmit, or instantiate the required task-set pa-
rameters at the beginning of each task period. The IPL is
sensitive to conflict at the level of stimulus presentation



Table 2 Deception-modulated network

Network Total Within networks Between networks (absolute)

Cingulo-opercular 1.6466 0.8186 0.828

Cerebellum 1.2954 0 1.2954

fronto-parietal 0.8761 0 0.8761

Occipital 0.8275 0 0.8275

Default 0.7572 0.3454 0.4118

Sensorimotor 0.6667 0 0.6667

Figure 4 Deception-modulated functional connectivity. Regions are color-coded by category. Red represents the cingulo-opercular network;
green represents the fronto-parietal network; dark blue represents the default network; light blue represents the sensorimotor network; purple
presents the occipital network; and yellow represents the cerebellum. Functional connectivities are also color-coded, with blue lines representing
stronger connections and gray lines representing weaker connections.
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[65] and the cerebellum may generate error codes [66].
The connection between the IPL and cerebellar regions
suggests that the IPL may receive cerebellar error signals
that support the rapid, continual fine-tuning of control
settings and decision making.
The finding of connections related to cerebellar re-

gions was not surprising: although the main function of
the cerebellum is motor processing, previous studies
have underlined the importance of the cerebellum in
various cognitive domains, including executive functions
[67,68], working memory [69-72], and attention [73,74].
These functions of the cerebellum are crucial for decep-
tion. The cerebellum has also been identified as involved
in processing error codes [30,31,75,76]. The cerebellum
may send error codes to both control networks and/or it
may receive error information from one or both of the
control networks of the brain. The cerebro-cerebellar
circuits may underlie the involvement of the cerebellum
in deception.
To successfully avoid detection, the deceiver must

calculate the odds of being detected, remember the
previous responses given, inhibit the normal propen-
sity towards truth-telling, and then choose an appro-
priate strategy prior to making a response. As such, it
is possible that the deception-modulated network and
functional connections are the result of the complex
interplay of working memory, response inhibition, sus-
tained attention, mental calculations and execution
that is necessary for our subjects to make deceptive
responses. Greater cognitive load, as an important and
integrated feature characterizing lying, may consist of
these components. This greater cognitive load during
lying was also reflected in reaction times as mentioned
previously. In the current study, the varying functional
connections may reflect the greater cognitive load, and the
classification may be picking up differences in cognitive
load and processing time-on-task.

Long-range characteristic of deception-modulated
connectivity
Long-range connectivity is important for the functional–
anatomical organization of the human brain [77]. Long-
range functional connections tend to increase over time,
indicating that long-range functional connections are
related to intelligence development [30,78]. Long-range
connectivity has also been suggested to be related to
higher cognitive functions [79]. In our study, the increases
in long-range connectivity modulated by deception were
interesting, and may have occurred in response to in-
creased cognition or increased intelligent demand during
lie-telling.
The present study demonstrated that deception could

be classified using whole-brain functional connectivity
MRI. The identified discriminating functional connectivity
may shed new light on the neural pattern of lie-telling
from a functional integration viewpoint. The main find-
ings will be confirmed with a larger independent dataset
in the future. There are some limitations to the task
design. Deception in the current experiment was not
an authentic representation of deception in real-life
situations. The block design of deception experiments
has limited external validity. In our future studies, more
valid designs will be considered, e.g., an event-related de-
sign [80-83]. However, varying functional connections
may reflect the greater cognitive load, and the classifica-
tion may be picking up differences in cognitive load and
processing time-on-task. Therefore, we will study lying
from this perspective in the future.
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