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At least two well-spaced samples are
needed to genotype a solid tumor
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Abstract

Background: Human cancers are often sequenced to identify mutations. However, cancers are spatially heterogeneous
populations with public mutations in all cells and private mutations in some cells. Without empiric knowledge
of how mutations are distributed within a solid tumor it is uncertain whether single or multiple samples
adequately sample its heterogeneity.

Methods: Using a cohort of 12 human colorectal tumors with well-validated mutations, the abilities to correctly
classify public and private mutations were tested (paired t-test) with one sample or two samples obtained from
opposite tumor sides.

Results: Two samples were significantly better than a single sample for correctly identifying public (99 % versus 97 %)
and private mutations (85 % versus 46 %). Confounding single sample accuracy was that many private mutations
appeared “clonal” in individual samples. Two samples detected the most frequent private mutations in 11 of the
12 tumors.

Conclusions: Two spatially-separated samples efficiently distinguish public from private mutations because private
mutations common in one specimen are usually less frequent or absent in another sample. The patch-like private
mutation topography in most colorectal tumors inherently limits the information in single tumor samples. The correct
identification of public and private mutations may aid efforts to target mutations present in all tumor cells.
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Background
Current high-throughput DNA sequencers allow human
tumor genotyping through targeted panels or with whole
exomes or genomes [1]. Greater sequencing depths and
better algorithms can more accurately measure muta-
tions at increasingly lower frequencies. However, rela-
tively unexplored is the optimal tumor sampling scheme.
Multi-regional sampling of the same tumor illustrate
that intratumoral heterogeneity (ITH), or different muta-
tions in different cells, is very common in human tumors
[2, 3]. Such ITH is not unexpected because mutations
can arise during tumor growth (Fig. 1). Mutations can
be divided into two groups based on when they were
acquired during progression. Public (clonal) mutations
are acquired before growth and are present in the first
tumor cell and all its progeny. Private (subclonal)
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mutations acquired afterwards are present in only some
tumor cells. For an exponential expansion, the frequency
of a private mutation is lower the later it is acquired
during growth.
For therapies directed against specific mutations, it is

important to identify which mutations are present in
nearly all cells. Therefore distinguishing public from pri-
vate mutations is important. Various algorithms can infer
whether a mutation is present in all cells (public) or in
only some cells (private) from mutation frequencies and
ploidy information (see for examples refs [4–6]). However,
under certain scenarios, a private mutation may be
frequent and therefore appear “clonal” in one portion of a
tumor but be completely absent from another.
The crux of tumor sampling is whether the tumor cell

population is uniform (well-mixed) or spatially heteroge-
neous. Liquid tumors such as leukemias are well-mixed
but solid tumors such as colorectal adenocarcinomas
(CRCs) have considerable physical structure (Fig. 1). In
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Fig. 1 Colorectal tumors have glandular architectures (Cancer N is illustrated). Public and private mutations can be organized by ancestry, with
private mutations acquired during growth. Depending on cell mobility, private mutations may segregate during growth into well defined “left”
versus “right” patches, or more complex variegated patches. Importantly, a private mutation “clonal” in one bulk specimen (dotted circle) will
usually be less frequent or absent in a sample taken from the opposite side
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particular, colorectal adenomas and CRCs are composed
of glands which partition cells into small discrete neigh-
borhoods. Glands limit mixing and daughter cells would
tend to remain adjacent. Moreover, during growth, cells
with different private mutations could become widely
separated in the final tumor, segregating private muta-
tions into discrete subclonal patches (Fig. 1). Tumors
with patch-like private mutation topographies would be
impossible to characterize from single samples. The
adequacy of a tumor genotype and optimal sampling
schemes are uncertain without knowledge of tumor mu-
tation topography. Here we demonstrate empirically
with 12 human colorectal tumors (Table 1) that two
widely-spaced samples provide significantly more infor-
mation than single samples.
Table 1 Clinical data

Tumor Type Size (cm) Stage Glands examined Data from ref 7

K adenoma 6 6 left 6 right yes

S adenoma 6 4 left 4 right yes

P adenoma 3.5 3 left 4 right yes

X adenoma 2.5 5 left 5 right yes

O cancer 9.5 3 6 left 5 right yes

A cancer 5.6 1 4 left 5 right new

C cancer 6.4 3 5 left 5 right new

M cancer 3 2 7 left 7 right yes

N cancer 2.3 1 5 left 5 right yes

Wa cancer 3.4 1 5 left 5 right yes

U cancer 3.9 2 5 left 5 right yes

T cancer 5.7 3 5 left 5 right yes
aMSI+, rest are MSI-
Methods
Strategy
Tumor genotyping was previously reported for ten of the
tumors [7, 8]. Briefly bulk samples (~0.5 cm3) were ob-
tained from opposite tumor sides. Individual tumor glands
were isolated with an EDTA washout, which yields nearly
pure tumor cells free of normal stromal cells. Exome
sequencing was performed on bulk DNA extracted from
hundreds of glands, with mutations called with MuTect [9]
at standard high confidence settings. Custom AmpliSeq
panels (Thermo Fisher Scientific) were used to resequence
the bulk specimens at selected loci, with an average depth
of ~700X. Ploidy estimates at the loci were obtained with
the OmniExpress SNP platform (Illumina). This study was
approved by the ethics committee of the University of
Southern California Health Sciences Campus.
Rigorously distinguishing between public and private

mutations in human tumors is difficult and requires
multiple samples. To define public and private muta-
tions in these tumors, we also genotyped 7 to 14 individ-
ual tumor glands from the sides, because a mutation
found on both tumor sides is not necessarily present in
all cells. We defined public mutations as mutations
present in both bulk samples and in all tumor glands.
With the mutations rigorously defined, we can then test
whether more limited sampling strategies (e.g. one bulk
specimen) can reliably distinguish private from public
mutations.

Gland genotyping
Individual tumor glands contain ~10,000 adjacent cells.
DNA was isolated using a crude lysis (TE and Proteinase
K at 56 C for 4 h followed by boiling for 10 min [8]).
The gland DNA (10 ng) was resequenced as with the
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bulk samples. Locus ploidy was estimated with high
density SNP microarrays and pCBS [10] as with the bulk
samples for 3 to 5 glands per side, using DNA extracted
from the entire gland [7]. In general, ploidy at most
chromosomal segments was identical between glands on
a side, allowing this value to be applied to the rese-
quenced glands. This ploidy information allows mutation
frequency comparisons between public mutations
(present in all tumors) and the private mutations. No
correction for normal cell contamination was applied
because the glands were nearly pure tumor cell
populations.

Tissue microdissections
Two other clinical specimens (paraffin blocks) were ob-
tained from the tumors. Their spatial locations with re-
spect to the bulk specimens are unknown. The
topographical locations of selected public and private
mutations were determined in approximately 8 to 18
small regions containing 3–5 glands microdissected [11]
from their microscopic sections, followed by PCR and
Sanger sequencing, with a manual call threshold of
5 % to call a mutation present. The numbers of mu-
tations analyzed for each tumor are presented as
Additional file 1.

Driver mutations
Driver mutations were identified using the list proposed
by Vogelstein et al. (Table S2A in ref [12]). Driver muta-
tions were further evaluated by the mutationassessor.org
website [13, 14], and had to be activating for oncogenes,
or have medium to high impact or be a nonsense muta-
tion for tumor suppressor loci.

Statistics
A t-test (paired two sample for means) was used to com-
pare the performances of one versus two samples for
correctly calling public or private mutations.

Results
Public and private mutation frequencies often overlap in
single samples
Mutation frequencies depend on tumor purity, locus
ploidy, and whether the mutation is public or private.
After correcting for ploidy and tumor purity, a mutation
at a lower than expected clonal frequency may be a pri-
vate mutation present in only some tumor cells. This
type of analysis works best with high coverage (>100 X
[4, 5]), with the coverage in this study ~700X. However,
the validated public and private mutation frequencies
were not distinct and often overlapped (Fig. 2a, with
data from the 8 other tumors in Additional file 2: Figure
S1). Public mutations have a spread of mutation frequen-
cies around their expected clonal values, which reduces
the precision of this approach. This variation likely reflects
experimental confounders, including biases in the PCR
and sequencing, which would require considerable effort
to eliminate. At the same time, private mutations can also
have mutation frequencies near their expected clonal
values, resulting in their misclassification as public. This
may occur if private mutations grow as well-defined sub-
clonal patches in the final tumor (Fig. 1). Consequently, if
a subclonal patch is sampled, its private mutations will be
indistinguishable from its public mutations because both
have clonal frequencies in that part of the tumor. Using ad
hoc cut points to maximize the known classifications
(Table 2), mutation frequencies usually identify public mu-
tations (97 % average accuracy) but are relatively poor in-
dicators of private mutations (46 % average accuracy)
because many private mutations have “clonal” frequencies
in the single specimens.

Two samples more accurately distinguishes public and
private mutations
In the absence of significant cell intermixing, a second
sample can efficiently distinguish public from private
mutations because a private mutation prevalent on one
side of the tumor should be rare or absent on the oppos-
ite tumor side. A 10/10 rule was empirically employed
to distinguish public from private mutations, with a pri-
vate mutation having a frequency less than 10 % in one
side (Fig. 2b). This two sample strategy was significantly
better (Table 1) in identifying public mutations with an
accuracy of 99.9 % (p = 0.026). It was also significantly
better for identifying private mutations with an accuracy
of 85 % (p < 5×10−4). Private mutation identification was
improved for every tumor except one (Fig. 3). Reflecting
tumor biology, less cell movement is expected in benign ad-
enomas, and private mutations were completely side spe-
cific in the four adenomas. However, two of the 8 CRCs
(Tumors M and N) were problematic because many of their
private mutations were found at relatively high frequencies
on both tumor sides, with correct assignment by the 10/10
rule for only 10 % and 29 % of the private mutations.

Increased accuracy with topographical sampling
Another strategy to detect private mutations is to
sequence smaller subpopulations such as single glands.
Most tumor glands are clonal for both private and public
mutations [7, 8] and therefore private mutations can be
identified because they are absent from some glands.
This single gland resequencing strategy was used to
identify the public and private mutations in this study,
but single glands are usually not available for analysis.
Instead, one can survey mutation topography in

microscopic sections from readily available paraffin-
embedded tissues (Fig. 4a). Multiple small tumor spots
(3–5 glands) were microdissected from two different



Fig. 2 (See legend on next page.)
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Fig. 2 One versus two samples. a Mutation frequencies in single samples were plotted with respect to ploidy for public (black) or private (red)
mutations for four representative tumors (see Additional file 2: Figure S1 for other tumors). Public mutations have a range of frequencies centered
around their expected clonal values, which complicates classification because many private mutations also have frequencies that overlap with the
public mutations. Black arrows indicate ad hoc cut points to distinguish public from private mutations. The grey shaded areas demonstrate that
many private mutations have frequencies within the ranges of the public mutations, indicating that the private mutations are indistinguishable
from the public mutations. Data from both single samples from the same tumor are presented. “Clonality” is calculated as: (measured mutation
frequency - expected clonal frequency)/expected clonal frequency, with a zero value indicating the measured frequency is at its clonal value.
b With two samples, public mutations are typically frequent on both sides. A private mutation frequent on one side is typically absent or rare on
the other side. A simple 10/10 rule (<10 % frequency in one side, dotted lines) can usually accurately distinguish public from private mutations.
A problematic case (Cancer N) illustrates that distinguishing public from private mutations in well-mixed cancers can be difficult, especially with
aneuploid tumors. Blue X’s indicate private mutations found on both tumor sides
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microscope slides for each tumor. A public mutation
will be detected throughout the tumor whereas a pri-
vate mutation will not. The efficiency of this method
is somewhat diminished because some public muta-
tions were detected in only some tumor regions,
especially for loci that showed evidence of LOH (loss
of multiple adjacent mutations) in the gland samples
(Fig. 4b). LOH as a confounder of public mutations is
further discussed in Additional file 1. Nevertheless,
using a 60 % spot detection threshold, the method
was 100 % accurate for private mutations present in
only some glands on one side, 96 % accurate for private
mutations that were “clonal” in one tumor side, and 74 %
accurate for private mutations found on both tumor sides.
Accuracy in calling public mutations was 94 %.

When more than two samples are needed
The topography of private mutations in the additional
microscopic sections can also indicate when two bulk
specimens do not adequately sample major tumor tree
Table 2 One versus two tumor specimens

Tumor Public
mutations

Private
mutations

Single biopsy Sing

Fraction of public
mutations correctly
called

Frac
mut
calle

K 14 42 1 0.38

S 24 13 1 0.38

P 30 7 1 0.29

X 52 17 0.98 0.71

O 45 6 0.98 0.50

A 36 25 0.94 0.79

C 40 32 0.98 0.55

M 6 17 1 0.10

N 72 29 0.96 0.42

W 95 5 0.97 0.29

U 50 12 0.95 0.54

T 36 19 0.85 0.52

Average 0.97 0.46
branches (Fig. 5). This shortcoming can be inferred if
private mutations are completely absent from large
regions of the microscopic tissue sections, indicating
some early tumor branches were missed by the two bulk
exome sequencing samples. This undersampling was
present in one of the 12 tumors, where public but not
private mutations were detected in one slide (Fig. 5).
However, for the 11 other tumors, at least some of the
private mutations detected in the bulk samples were
also detected in the microscope sections, indicating
the major branches of these tumor trees were likely
sampled.

Most driver mutations are public mutations
Generally driver and passenger mutations respectively
segregated with public and private mutations (Table 3).
However 3 of the 34 driver mutations (12 %) were pri-
vate mutations not present in all tumor cells, indicating
the potential for improper therapeutic targeting. Every
tumor had at least one public driver mutation.
le biopsy Two biopsies Two biopsies

tion of private
ations correctly
d

Fraction of public
mutations correctly
called

Fraction of private
mutations correctly called

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 0.29

0.99 0.10

1 0.80

1 1

1 0.95

0.99 0.85



Fig. 3 Two samples significantly improves the identification of most public and private mutations
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Discussion
Distinguishing public from private mutations is import-
ant for understanding tumor biology and for designing
targeted therapies. Therapies against private mutations
are unlikely to eliminate the tumor whereas public driver
Fig. 4 The topographical distributions of private mutations on microscope
mutations are detected in most microdissected regions (yellow circles) but
small regions (blue circles) in Cancer N. b Mutation topographic distributio
using a 60 % detection threshold (dotted line). Public mutations found in o
LOH. The high proportions of microdissected areas positive for the private
reflect that even immediately adjacent glands may have different private m
mutations are likely essential for tumorigenesis. ITH is
common in human tumors, which complicates genotyping
because mutations and their frequencies may differ
throughout the tumor. Here we illustrate with 12 tumors
the magnitude of the problem. It is difficult to distinguish
slides can also distinguish public from private mutations. a Public
a private mutation found on both tumor sides is present in only some
ns on microscope slides can distinguish public from private mutations
nly some small areas (red circles) may be secondary to subsequent
mutations found on both sides in Cancers N and M (blue circles) may
utations in these well-mixed cancers



Fig. 5 Hypothetical diagram illustrating how additional samples (microscopic sections, dotted boxes) can determine when two bulk samples
(dotted circles) miss a major tumor tree branch. A public mutation (yellow circle) is present in nearly all the small regions but a private mutation
(and 16 others) is missing from the left section of Cancer A. This finding suggests that the left tumor branch (green) was not sampled by the two
initial bulk specimens
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private from public mutations in single samples because
their mutation frequencies often overlap even when cor-
rected for ploidy. Mutation frequencies provide no clear
guide to public versus private mutations. By contrast, two
samples from opposite tumor sides and a simple 10/10
rule more effectively identifies private mutations, even
without ploidy information.
The efficiency of spatial sampling reflects that during

growth, private mutations can only spread to parts of a
tumor (Fig. 1). A subclonal mutation prevalent in one
part of a tumor is by definition less common or absent
in another part of the tumor. This spatial strategy be-
comes limited in well-mixed tumors, where private mu-
tations are more evenly spread. This problem was
observed in only 2 of the tumors, indicating that most
colorectal tumors have well-defined patch-like private
Table 3 Most driver mutations are public mutations

Tumor Public (drivers) Private (drivers)

K 14 (1) 42 (0)

S 24 (3) 13 (0)

P 30 (4) 7 (0)

X 52 (3) 17 (0)

O 45 (1) 6 (0)

A 36 (2) 25 (1)

C 40 (1) 32 (0)

M 6 (1) 17 (2)

N 38 (3) 17 (1)

W 95 (5) 5 (0)

U 50 (4) 12 (0)

T 36 (2) 19 (0)
mutation distributions. Sequencing smaller tumor sub-
populations (single glands or small regions on micro-
scope slides) can further distinguish private from public
mutations.
The “genotype” of a tumor is nebulous because tumors

are populations of cells, and each cell is likely to have
different mutations, as exemplified by single cell sequen-
cing studies [15]. One systematic way to organize a
tumor genotype is through ancestry, with public muta-
tions present in the first tumor cell and private muta-
tions acquired along the branches (Fig. 1). Because
earlier mutations are more prevalent in growing popula-
tions [16], the major early tree branches are relatively
easier to detect with current exome sequencing (about
10 % sensitivity [9]). Most primary colorectal tumors
have simple star-like trees, reflecting single “Big Bang”
expansions where most detectable private mutations
arise early during tumorigenesis [7]. Consistent with the
idea that private mutation frequencies depend primarily
on when they occur during growth and not on selection,
most private mutations appeared to be passive passen-
gers acquired during the growth conferred by the public
driver mutations.
Although spatial sampling requires sequencing three

(“right” and “left” tumor and normal) rather than two
samples, no ploidy information is required to classify
public and private mutations. The patch-like topograph-
ies of subclones and their private mutations in many hu-
man colorectal tumors inherently limit the amounts of
representative information that can be obtained from
single tumor samples, whether for DNA sequencing or
other biomarker measurements. Additional sampling
and sequencing to greater depths will inevitable detect
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more private mutations, but in most cases, two widely
spaced tumor samples appear to adequately sample the
major tumor tree branches and their private mutations.
Spatial sampling may be less effective in other solid
tumor types where less glandular structure is present
and cell mixing more extensive. Although tumor se-
quencing data are complex, simple tumor ancestral trees
outline how and why spatial sampling is efficient.

Conclusions
The empirical data in this study illustrate that two sam-
ples are significantly more accurate than a single sample
for distinguishing public from private mutations in colo-
rectal tumors. The correct identification of public muta-
tions may aid efforts to target mutations present in all
tumor cells.
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