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Abstract

Variable selection in genome-wide association studies can be a daunting task and statistically challenging
because there are more variables than subjects. We propose an approach that uses principal-component
analysis (PCA) and least absolute shrinkage and selection operator (LASSO) to identify gene-gene
interaction in genome-wide association studies. A PCA was used to first reduce the dimension of the
single-nucleotide polymorphisms (SNPs) within each gene. The interaction of the gene PCA scores were
placed into LASSO to determine whether any gene-gene signals exist. We have extended the PCA-
LASSO approach using the bootstrap to estimate the standard errors and confidence intervals of the
LASSO coefficient estimates. This method was compared to placing the raw SNP values into the LASSO
and the logistic model with individual gene-gene interaction. We demonstrated these methods with the
Genetic AnalysisWorkshop 16 rheumatoid arthritis genome-wide association study data and our results
identified a few gene-gene signals. Based on our results, the PCA-LASSO method shows promise in
identifying gene-gene interactions, and, at this time we suggest using it with other conventional
approaches, such as generalized linear models, to narrow down genetic signals.

Background
The goal of this paper is to develop and evaluate
prediction methods and tools for genome-wide associa-
tion studies, particularly for variable selection and
dimension reduction. There is a demand for statistical
techniques capable of handling large volumes of data in
genetic studies. Technical advances have enabled the
collection of massive high-dimensional datasets in such
studies. This has called for broadening of the area of

research in dimension-reduction techniques to provide
methods for prediction and variable selection. For
example, during the last decade, Li [1], Tibshirani [2],
and Efron et al. [3] have paved new directions for
dimension-reduction techniques and broadened the area
to other applications of prediction, including genetics.

For this paper, we explore extensions of currently
existing dimension-reduction methods and variable-
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selection methods related to genome-wide association
studies (GWAS) single-nucleotide polymorphism (SNP)
selection and gene-gene interactions for application to
the disease classification problem based on genetic data.
Recently, the focus has shifted to GWAS, where the
emphasis can be placed on assessing whether multiple
markers function together rather than depending on
univariate tests and generalized linear models (GLM).
Dimension-reduction techniques are a powerful tool
because they provide a summary measure of massive
amounts of data. We can apply such techniques to
determine whether multiple marker pathways and gene-
gene interactions are associated with the disease of
interest. The highly dense genetic marker data from the
rheumatoid arthritis study and the published reports
about the study provide an ideal empirical dataset for
developing and testing extensions of dimension-reduc-
tion methods.

There is a demand for statistical techniques to handle
large volumes of data, particularly in the area of genetics.
Genetic data is used to find genetic variants that are
associated with rheumatoid arthritis risk (or other
diseases) through the use of statistical modeling. The
tendency for analyzing genotype data is to use GLM and
univariate tests; however, these models perform poorly
when analyzing high-dimensional data [4,5]. The
research objective of this study is to develop prediction
tools primarily methods for variable selection and
dimension reduction in a GWAS.

In an effort to improve variable selection, Tibshirani [2]
developed the least absolute shrinkage and selection
operator (LASSO), a penalized likelihood approach, for
linear regression. Two important components of variable
selection are prediction accuracy and interpretation.
Ordinary least squares (OLS) is known to estimate
coefficients with small bias but inflated variance. In the
case of a large number of predictors, OLS has difficulty
selecting the subset of predictors that appears to be the
most important or to have the strongest effects. LASSO is
a combination of ridge regression and subset selection
developed to improve OLS by shrinking the coefficient
values and setting some equal to zero. LASSO [2,6] is
similar to OLS with constraints and produces a stable
and interpretable model. Nonlinear extensions of the
LASSO exist such as modeling a binary outcome [6].
Principal-components analysis (PCA) is a nonparametric
dimension-reduction approach. PCA is a linear transfor-
mation of the original data that incorporates second-
order statistics to determine the optimal components
that describe the functional relationship between the
outcome and covariate [7]. The premise of PCA is to
identify the orthogonal linear combinations with the
largest covariance. The benefit to using PCA and LASSO

is that both methods can accommodate correlation, such
as linkage disequilibrium (LD), between SNPs. This
advantage prompted us to select PCA and LASSO to
model SNPs and genes; models such as GLM fail in the
presence of LD [4].

We investigate PCA [7] and LASSO [2,6,8] methods to
reduce the dimension of the genetic marker data and
detect gene-gene interaction signals on chromosome 6.
We explore the two methods, PCA and LASSO, combin-
ing variable selection and dimension-reduction techni-
ques. The combined approach will further reduce the
dimension of the data to detect signals from variants and
gene-gene interactions in addition to the gene(s)
discovered in the previously published work on rheu-
matoid arthritis [9,10]. The bootstrap will be used to
estimate the standard errors and confidence intervals of
the LASSO coefficient estimates. We will compare the
LASSO-PCA approach to the LASSO method including
the entire set of SNP values, the logistic regression with
individual PCA-PCA interaction, and the logistic regres-
sion with individual SNP-SNP interaction.

Methods
We denote Yi Œ {0, 1} to be the outcome and Zi, k = {0,
1, 2}, k = 1,...,K, to be the SNP variables of a K-
dimensional covariate vector Zi = (Zi,1,...,Zi, k)

T with n
subjects, where i = 1,..,n is the subscript for the ith

subject. Logistic regression is the model of choice for a
binary outcome and it is a member of GLM. We specify Y
to have a binomial distribution, Yi ~bin(n, μi), where the

mean is μ β βi i
T

i
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Tz= , and the link function here
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link function describes the relationship between themean of
the distribution function and the linear predictor. The
log-likelihood is of the form
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LASSO was originally intended for linear regression and it
has been extended to the GLM by Lockhorst [6]. The LASSO
and GLM algorithms are combined to provide a generalized
LASSO algorithm [6] to estimate the LASSO coefficients. The
idea is to use an iteratively reweighted least-squares
approach to compute estimates of the regression coefficients
in a LASSO model while placing a constraint on the
regression coefficients. The generalized LASSO algorithm

begins with initial estimates of μ i i iy h( ) .0 0 5 1= +( ) +( )

and η μi ig( )0 0= ( )( ) , where hi is a specified weight. Initial
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values of b are not needed. Another option it to start with
coefficient values of 0; however, this can take too long to
converge. The covariates that are not constrained can be
swept out. We denote these covariates as Vi, and their
regression coefficient parameters as denoted b. The covari-
ates that are constrained are denoted as Xi, and the
regression coefficient parameters are denoted g. The next

step is to estimate the adjusted response variable, Yi
a , that is

of the form y y mi
a j

i
j

i i
i

i
i,( ) ( ) ( ) ( )= + −( ) ∗⎡

⎣⎢
⎤
⎦⎥η μ , where j

denotes the iteration number, a denotes adjusted, and

m gi
j

i
j

i
j( ) ( ) ( )= ∂ ( ) ∂μ μ . The next step involves projecting

the weighted independent variables and weighted
adjusted dependent variable onto the column space

of WV , where W is a weight and of the form

w h Var mi
j
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i
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The updated covariates and response variable are given by
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regression coefficients for V are estimated as b =
(VTW(j)V)-1VTW(j)Ya,(j). The last step is to solve min(Y*,(j) -
X*,(j)g)T(Y*,(j) - X*,(j)g) subject to ||g||1 ≤ t. The tuning
parameter, t > 0, specifies the amount of shrinkage that will
be applied to the coefficient estimates. The tuning parameter
is estimated by selecting a normalized parameter, s, that
is the ratio of the tuning parameter to the total effect size
of the regression unbounded estimate, which is expressed as
s = t/||(X*TX*)-1 X*TX*||1, 0 ≤ s ≤ 1. It should be noted when
s = 1 there is no shrinkage. The estimates are updated and the
iterative process is continued until convergence.

For each gene, the score derived from the PCA is a linear
combination of the SNPs. This PCA score represents
a summary measure of the SNPs from the g th

gene in a condensed fashion, where the score is
S P Z l L g G Pl g l g

T g
l g, ,

( )
,, , ..., , , ..., ,= = =   1 1 is the lth PCA

component for the gth gene, and Z(g) is the raw SNP data
from the gth gene. The components that account for at least
10% of the variance are chosen, where Dl, g is the summary
measure to determine the percentage of variance for the gth

gene, D d dl g l g l gl

L
, , , %= ( ) ∗=∑2 2

1
100 , and dl, g denotes the

eigenvalues obtained from the PCA for the gth gene.

The R package we used for analysis is LASSO2. LASSO2
has limited capabilities when analyzing categorical data,
such as the inability to estimate the standard errors. As
recommended by Meier et al. [11], we used the bootstrap
[12] to estimate the standard errors and confidence
intervals. A non-zero LASSO coefficient value indicates

the variable should be considered for variable selection
and further investigation is necessary. The bootstrap
confidence interval can indicate the statistical impor-
tance of a covariate from the LASSO. We selected C =
1000 bootstrap samples from the data (Y, Z, S) with
replacement. For each of these bootstrap samples, we

estimated the LASSO coefficient θ β γc c c
∗ ∗ ∗= ( ), for the cth

bootstrap sample where c = 1,...,C and the star (*)
indicates the estimate is from the bootstrap. The average

of the bootstrapped estimate is θ θ∗ − ∗
== ∑C cc

C1
1

[12].

The variance of the bootstrapped estimate is

V C cc

Cθ θ θ∗ − ∗ ∗
=( ) = −( ) −( )∑1

1 2

1
[12]. An estimate

of the bias of θ is B̂ = −∗θ θ [12]. The normal-theory

interval is used to estimate the 95% bootstrap con-
fidence interval. We assume θ has a normal distribution,

θ θ~ ,N B V ∗( )( ) , and the confidence interval is of the

form θ θα− ± ( )−
∗ˆ

/B z V1 2 [12].

Results
The HLA-DRB1 gene on chromosome 6 has been linked
to rheumatoid arthritis [9]. Based on this finding, we
decided to evaluate markers from chromosome 6. We
focused on markers from a subset of the genes that were
explored in studies conducted from 1992 to 2003 [9]. A
total of 135 SNPs were considered for analysis from
28 genes: AP (n = 1), HLA class (n = 16), MICA-MICF
(n = 6), TAP (n = 2), and TNF (n = 3). PLINK has been
used for quality control. From chromosome 6, there are
35,574 markers, with 33,585 SNPs left after removing
those that failed the Hardy-Weinberg equilibrium test
(p ≤ 0.001), the missingness test (GENO > 0.1), and the
frequency test (minor allele frequency < 0.01). We have
removed the SNPs that did not meet the quality control
criteria.

The intercept was the only variable swept out in the
LASSO model. The number of components selected with
PCA ranged from one to two. All PCA scores and the
corresponding PCAgene_a-PCAgene_b interactions were
entered into the LASSO model to determine whether
there was gene-gene interaction. Here, the PCAgene_a is a
PCA score from the ath gene and the PCAgene_b is a PCA
score from the bth gene, where a ≠ b. Table 1 has the
results indicating 16 potential interactions with their
bootstrap standard error and bootstrap confidence
interval. Based on the bootstrap estimates, only two
gene-gene interactions of HLA-DRA × HLA-DRB9 and
HLA-DRA × MICA were significant. Of these 16 potential
gene-gene interactions, we entered the raw SNP values
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and the corresponding SNPgene_a-SNPgene_b interactions
into the LASSO model to determine whether the same
genetic relationships exist. Here, the SNPgene_a is a SNP
from the ath gene and the SNPgene_b is a SNP from the bth

gene, where a ≠ b. Eleven gene-gene interactions were
suggested from the LASSO-SNP method, while three of
these gene-gene interactions were suggested from the
LASSO-PCA analysis. However, the final results are the
same from both the LASSO-PCA and LASSO-SNP
method, where there were two significant gene-gene
interactions of HLA-DRA × HLA-DRB9 and HLA-DRA ×
MICA. We did explore selecting the components using a
scree plot; it often selected too many components with
noise. In addition, we set the value of the normalized
parameter to 0.5 and explored various normalized
parameter values to determine the optimal value for
variable selection. Our analysis was inconclusive on the
best measure to select an optimal value and we will
explore this further in the future.

Additionally, we ran logistic regression models with the
individual SNPgene_a-SNP_gene_b interactions and the
individual PCAgene_a-PCAgene_b interactions to compare
methods. A multiple-comparison procedure was applied
using the Benjamini and Hochberg [13] method, which
controls the false-discovery rate. With the individual

SNP-SNP interaction from the logit model, we found
337 significant interactions that reduced to 78 unique
gene-gene interactions; out of these, 11 overlapped with
the LASSO findings. For the individual PCAgene_a-
PCAgene_b interactions in the logit model, we found 37
gene-gene interactions and only 5 overlapped from the
LASSO findings. The two gene-gene interactions consis-
tently found to be significant across all four approaches
were HLA-DRA × HLA-DRB9 and HLA-DRA × MICA. This
suggests that the individual SNP-SNP interactions may
function jointly instead of independently. Further
investigation of the LASSO and PCA approach will be
pursued. A third approach was explored that involved
placing all 135 SNPs in a LASSO model to determine
whether there were any variant-variant signals. There
were limitations to this approach due to the large
amount of categorical data and large number of
interactions. We did not pursue this method much
further after recognizing the analysis had to be split into
three LASSO models.

Conclusion
In GWAS there is an overwhelming amount of data and
it can be difficult to distinguish between true signals and
spurious results based only on single-marker analysis.

Table 1: LASSO results

LASSO/PCA approach LASSO/SNP approach

Gene × Gene Lasso coef (SE) CI Lasso coef (SE) CI

HLA-B × HLA-DQB1a -0.0446 (0.0600) (-0.162, 0.073)
HLA-B × HLA-DRA 0.0452 (0.0781) (-0.108, 0.198)
HLA-DMB × HLA-DQA2b -0.0044 (0.0435) (-0.090, 0.081)
HLA-DPA1 × MICA 0.0197 (0.0261) (-0.031, 0.071)
HLA-DPB1 × MICAa, b 0.1047 (0.0601) (-0.013, 0.223)
HLA-DQA2 × TNFRSF21 -0.0356 (0.0230) (-0.081, 0.010)
HLA-DQB1 × TNF -0.1848 (0.1073) (-0.395, 0.026)
HLA-DRA × HLA-DRB9a, b 0.2334 (0.0817) (0.073, 0.394)c -0.3574 (0.0872) (-0.528, -0.186)c

HLA-DRA × MICAa, b -0.1125 (0.0528) (-0.216, -0.009)c -0.2665 (0.0826) (-0.428, -0.104)c

HLA-DRA × TNF 0.1214 (0.0933) (-0.062, 0.304)
HLA-DRA × TNFRSF21 -0.0252 (0.0232) (-0.071, 0.020) -0.0078 (0.0465) (-0.099, 0.083)
HLA-F × MICD -0.0042 (0.0435) (-0.089, 0.081)
MICA × MICBa, b -0.0307 (0.0330) (-0.095, 0.034)
MICA × TNF 0.0280 (0.0514) (-0.073, 0.129)
MICA × TNFAIP3 -0.0179 (0.0230) (-0.063, 0.027)
TAP2 × TNF 0.0202 (0.0354) (-0.049, 0.090)
HLA-DPB1 × TAP2a 0.0372 (0.0812) (-0.122, 0.196)
HLA-DQB1 × HLA-DRAa -0.0068 (0.0433) (-0.092, 0.078)
HLA-DQB1 × MICD -0.0316 (0.0417) (-0.113, 0.050)
HLA-DRA × TAP2a -0.0715 (0.0565) (-0.182, 0.039)
MICA × TAP2a -0.0482 (0.0434) (-0.133, 0.037)
MICB × MICDa 0.0478 (0.0539) (-0.058, 0.153)
MICB × TAP2a 0.0933 (0.0768) (-0.057, 0.244)
MICD × TAP2 0.1257 (0.0933) (-0.057, 0.309)

aLogistic model with significant SNPgene_a-SNPgene_b interactions.
bLogistic model with significant PCAgene_a-PCAgene_b interactions.
cSignificant finding; gene_a is the ath gene and gene_b the bth gene where a ≠ b.
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Our approach is focused on assessing whether multiple
markers act together in producing the phenotype. We
demonstrate a combined approach of a dimension-
reduction method, PCA, and a variable-selection
method, LASSO, to detect gene-gene interaction signals.
We have extended the LASSO method to estimate
standard errors and confidence intervals with the
bootstrap.

Interestingly enough, whether the principal-component
score or the raw SNP values were placed into the LASSO,
the final results were the same. The results from the
individual interaction PCA logit models and individual
interaction SNP logit models had overlapping results and
revealed the same interactions found in the LASSO
method. This suggests the PCA-LASSO method shows
promise. At this time we suggest using it with other
conventional approaches to narrow down genetic signals.
The advantage to our method is that highly collinear data
and a large number of variables can be reduced to a
manageable dimension, where LD is accommodated by
LASSO and PCA. Also, a large number of SNPs can be
represented as a function of a gene.

A limitation of this current work is that we cannot
conclude whether our PCA-LASSO method is an
improvement over other gene-gene variable-selection
methods. We will further investigate the threshold of the
number of covariates in the LASSO model. We propose
to do simulation studies in the future that will compare
the PCA-LASSO approach to other variable selection
methods [4,11]. Simulation studies are necessary to
determine the properties of the PCA-LASSO approach.
We will also pursue study of the normalized parameter
in our future work.

List of abbreviations used
GLM: Generalized linear models; GWAS: Genome-wide
association studies; LASSO: Least absolute shrinkage and
selection operator; LD: Linkage disequilibrium; OLS:
Ordinary least squares; PCA: Principal-components
analysis; SNP: Single-nucleotide polymorphism.
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