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Abstract
In this paper we prove a coincidence point result in a space which does not have to
satisfy any of the classical axioms that define a metric space. Furthermore, the
ambient space need not be ordered and does not have to be complete. Then, this
result may be applied in a wide range of different settings (metric spaces,
quasi-metric spaces, pseudo-metric spaces, semi-metric spaces, pseudo-quasi-metric
spaces, partial metric spaces, G-spaces, etc.). Finally, we illustrate how this result
clarifies and improves some well-known, recent results on this topic.

1 Introduction
Fixed point theory plays a crucial role in nonlinear functional analysis since, among other
reasons, fixed point results are used to prove the existence (and also uniqueness) of so-
lution when solving various types of equations. The Banach contraction principle is con-
sidered to be the pioneering result of the fixed point theory, and it is the most celebrated
result in this field. The simplicity of its proof and the possibility of attaining the fixed point
by using successive approximations let this theorem become a very useful tool in analysis
and in applied mathematics. The great significance of Banach’s principle, and the reason
it is possibly one of the most frequently cited fixed point theorems in all of analysis, lies
in the fact that its proof contains elements of fundamental importance to the theoretical
and practical treatment of mathematical equations. After the appearance of this result in
Banach’s thesis in , a great number of extensions (in many occasions, as well-known
as the original result, such as those by Krasnoselskii and Zabreiko, Edelstein, Browder,
Schauder, Göhde, Kirk, and Caristi; a comprehensive study can be found in []) have been
proved in various different frameworks (see [, ] in partial metric spaces, [–] in G-
metric spaces, [, ] in fuzzy metric spaces, [, ] in intuitionistic fuzzy metric spaces,
[, ] in probabilistic metric spaces and [, ] in Menger spaces).
In recent times, one of themost attractive research topics in fixedpoint theory is to prove

the existence of a fixed point in metric spaces endowed with partial orders. An initial re-
sult in this direction was given by Turinici [] in . Following this line of research, Ran
and Reurings [] (and later Nieto and Rodríguez-López []) used a partial order on the
ambient metric space to introduce a slightly different contractivity condition, which must
be only verified by comparable points. Thus, they reported two versions of the Banach
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contraction principle in partially ordered sets and applied them to the study of some ap-
plications to matrix equations. Their proofs involved combining the ideas of the iterative
technique in the contractive mapping principle with those in the monotone technique.
This approach led to a very recent branch of this field, with applications to matrix equa-
tions and ordinary differential equations. The literature on this topic has exponentially
risen in recent years. To mention some advances on this topic, we highlight the following
ones. Firstly, in order to guarantee the existence and uniqueness of a solution of periodic
boundary value problems, Gnana-Bhaskar and Lakshmikantham [] (and, subsequently,
Lakshmikantham and Ćirić []) proved, in , the existence and uniqueness of a cou-
pled fixed point (a notion introduced by Guo and Lakshmikantham in []) in the setting
of partially ordered metric spaces by introducing the notion ofmixed monotone property.
Later, the notions of tripled fixed point, quadruple fixed point andmultidimensional fixed
point were introduced by Berinde and Borcut [], by Karapinar and Luong [] and by
Berzig and Samet [] (see also []), respectively.
But the two main ingredients of all extensions are, basically, the same that we can find

in the Banach contraction principle: a complete metric space and a self-mapping verifying
a contractive condition. Although modern versions use, in many cases, different kind of
mappings, the more intensively studied condition is based on the idea that the distance
between the images of any two points (comparable or not) is upper bound by the product
of a constant (small enough) and the distance between those points. The main aim of this
manuscript is to provide a result powerful enough to guarantee that a nonlinear operator
T has, at least, a fixed point, evenwhenwe consider that ameasuremapping does not have
to be an underlying metric structure on the ambient space X and the binary relationship
is not necessarily a partial order on X. To do this, we present a result which can be applied
in the following adverse conditions: the framework is a set X provided with a preorder
and a measure mapping d : X × X → R that does not necessarily verify any of the four
classical properties of a metric space (in fact, it need not be one of the following metric
structures: a metric, a pseudo-metric, a quasi-metric, a pseudo-quasi-metric or a semi-
metric). Furthermore, d has not to be symmetric and the triangular inequality must only
be verified by a kind of comparable points. Even if d would verify some of the classical
properties of a metric, (X,d) would not be a complete space. In this setting, none of the
theorems proved until now can be applied to guarantee that a nonlinear operator (even
if it is a contractive mapping) has, at least, a fixed point. We illustrate our results with a
particular example. Finally, we show that they extend and improve some well-known fixed
point theorems.

2 Preliminaries
Preliminaries and notation about coincidence points can also be found in []. Let n be a
positive integer. Henceforth, X will denote a nonempty set and Xn will denote the product
space X × X × n· · · × X. Throughout this manuscript, m and k will denote nonnegative
integers and i, j, s ∈ {, , . . . ,n}. Unless otherwise stated, ‘for allm’ will mean ‘for allm ≥ ’
and ‘for all i’ willmean ‘for all i ∈ {, , . . . ,n}’. In the sequel, let F : XN → X andT , g : X → X
be three mappings. For brevity, T(x) will be denoted by Tx.

Definition . A binary relation on X is a nonempty subset R of X × X. For simplicity,
we will write x� y if (x, y) ∈R, and we will say that � is the binary relation. We will write
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x ≺ y when x� y and x �= y, and we will write y� x when x� y. We will say that x and y
are �-comparable if x� y or y� x.
A binary relation � on X is transitive if x� z for all x, y, z ∈ X such that x� y and y� z.

A preorder (or a quasi-order) � on X is a binary relation on X that is reflexive (i.e., x� x
for all x ∈ X) and transitive. In such a case, we say that (X,�) is a preordered space (or a
preordered set). If a preorder� is also antisymmetric (x� y and y� x implies x = y), then
� is called a partial order, and (X,�) is a partially ordered space.

All partial orders and equivalence relations are preorders, but preorders are more gen-
eral. From now on, (X,�) will always denote a preordered space.

Definition . Ametric on X is a mapping d : X ×X → [,∞[ satisfying

(M) d(x,x) = ; (M) d(x, y) =  ⇒ x = y;

(M) d(y,x) = d(x, y); (M) d(x, y) ≤ d(z,x) + d(z, y)

for all x, y, z ∈ X. If d is a metric on X, we say that (X,d) is ametric space.
The function d is a premetric if it satisfies (M); a pseudo-metric if it satisfies (M), (M)

and (M); a quasi-metric (or a nonsymmetric metric) if it satisfies (M), (M) and (M);
a quasi-pseudo-metric if it satisfies (M) and (M); and a semi-metric if it satisfies (M),
(M) and (M).

Remark . We point out that there exist different notions of premetric that are not uni-
versally accepted. For instance, Kasahara [] used the term premetric to refer to a quasi-
pseudo-metric defined on a subset of X × X. However, Kim [], in the same issue as
Kasahara, preferred using the term quasi-pseudo-metric (see also Reilly et al. []). For
our purposes and for the sake of clarity, we prefer using the previous definitions because
we consider that it is a more modern nomenclature.

Definition . A fixed point of a self-mapping T : X → X is a point x ∈ X such that
T(x) = x. A coincidence point between twomappingsT , g : X → Y is a point x ∈ X such that
T(x) = g(x). A common fixed point ofT , g : X → X is a point x ∈ X such thatT(x) = g(x) = x.

Remark . If T , g : X → X are commuting and x ∈ X is a coincidence point of T and g ,
then Tx is also a coincidence point of T and g .

Definition . If (X,�) is a preordered space and T , g : X → X are twomappings, we will
say that T is a (g,�)-nondecreasing mapping if Tx� Ty for all x, y ∈ X such that gx� gy.
If g is the identity mapping on X, T is nondecreasing (w.r.t. �).

3 An illustrative example
Let I be the real interval ]–, ] and let X = I∪ {, , , , , } provided with the following
binary relation:

for x, y ∈ X, x� y ⇔

⎧⎪⎨
⎪⎩
either x = y,
or {x, y} = {, },
or (x, y ∈ I and x ≤ y).

http://www.fixedpointtheoryandapplications.com/content/2014/1/218
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Define d :X×X → [,∞[, for all x, y ∈ X, by

d(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

, if {x, y} = {, } or {x, y} = {, },
., if x = y = ,
, if (x, y) = (, ),
, if (x, y) = (, ),
|x – y|, otherwise.

Let g the identity mapping on X. Define T :X→X by

Tx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
 , if x ∈ I,
, if x ∈ {, , , },
–, if x = ,
, if x = ,

for all x ∈X.

Then the following statements hold. Proofs can be found in Appendix .
. The binary relation � is a preorder on X, but it is not a partial order on X.
. The measure mapping d does not hold any of the four classical properties

(M)-(M) that define a metric space. Indeed, it is not a metric on X, neither a
premetric nor any of the following: a pseudo-metric, a quasi-metric,
a pseudo-quasi-metric, a semi-metric or a partial metric.

. Even if d would verify some of the metric properties of Definition ., (X,d) would
not be a complete space.

. T is not a d-contraction (that is, there is no k ∈ [, ) such that d(Tx,Ty) ≤ kd(x, y)
for all x, y ∈ X) because d(T,T) = d(–, ) = , but d(, ) = .

Therefore, none of the theorems proved until now can be applied to the quadruple (X,�,
d,T) in order to guarantee that T has a fixed point.

4 Test functions
One of the most important ingredients of a contractivity condition is the kind of involved
functions. Recently, many classes of families have been introduced, like altering distance
functions, comparison functions, (c)-comparison functions, Geraghty functions, etc. In
this section, we present the kind of functions we will use and we show how other classes
can be seen as particular cases.

Definition . (Agarwal et al. []) We will denote by F the family of all pairs (ψ ,ϕ),
where ψ ,ϕ : [,∞)→ [,∞) are functions, verifying the following three conditions.

(F) ψ is nondecreasing.
(F) If there exists t ∈ [,∞) such that ϕ(t) = , then t =  and ψ–() = {}.
(F) If {ak}, {bk} ⊂ [,∞) are sequences such that {ak} → L, {bk} → L and verifying L < bk

and ψ(bk) ≤ (ψ – ϕ)(ak) for all k, then L = .

Example . If k ∈ [, ) and we define ψk(t) = t and ϕk(t) = ( – k)t for all t ≥ , then
(ψk ,ϕk) ∈F . Furthermore, ψk(t) – ϕk(t) = kt for all t ≥ .

Notice that axiom (F) does not necessarily imply the well known condition ψ(t) =  ⇔
t =  ⇔ ϕ(t) = . Furthermore, we do not impose any continuity condition neither on ψ

http://www.fixedpointtheoryandapplications.com/content/2014/1/218
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nor on ϕ. In order to prove that the familyF is very general, next we will show a variety of
pairs of functions in F that have been previously considered by other authors in the past.
A function φ : [,∞)→ [,∞) is lower semi-continuous if φ(t) ≤ lim infn→∞ φ(tn) for all

sequence {tn} ⊂ [,∞) such that {tn} → t. Similarly, φ is upper semi-continuous if, in the
same conditions, φ(t) ≥ lim supn→∞ φ(tn).

Definition . (Khan et al. []) An altering distance function is a continuous, nonde-
creasing function φ : [,∞)→ [,∞) such that φ(t) =  if and only if t = .

Proposition . If φ is an altering distance function and {am} ⊂ [,∞) verifies {φ(am)} →
, then {am} → .

The following lemma shows some examples of pairs in F .

Lemma. (see []) Letψ ,ϕ : [,∞)→ [,∞) be two functions such thatψ is an altering
distance function.
. If ϕ is lower semi-continuous and ϕ–({}) = {}, then (ψ ,ϕ) ∈F .
. If ϕ is continuous and verifies ϕ–({}) = {}, then (ψ ,ϕ) ∈F .
. If ψ and ϕ are altering distance functions, then (ψ ,ϕ) ∈F .

Notice that the condition ϕ ≤ ψ is not necessary.

Proof We prove item (). Conditions (F) and (F) are obvious. Next, assume that
{ak}, {bk} ⊂ [,∞) are sequences such that {ak} → L, {bk} → L and verify L < bk and
ψ(bk) ≤ (ψ – ϕ)(ak) for all k. Therefore, ψ(bk) ≤ (ψ – ϕ)(ak) = ψ(ak) – ϕ(ak) ≤ ψ(ak).
Hence  ≤ ϕ(ak) ≤ ψ(ak) – ψ(bk) for all k. Letting k → ∞ and taking into account that
ψ is continuous, we deduce that limk→∞ ϕ(ak) = . As {ak} → L and ϕ is lower semi-
continuous, we deduce that ϕ(L) ≤ lim inft→L ϕ(t) ≤ limk→∞ ϕ(ak) = . Hence L = . The
other two items immediately follow from item . �

Example . (see [])
. If a,b >  and we define ψ(t) = at and ϕ(t) = bt for all t ≥ , then (ψ ,ϕ) ∈F . The

case a≥ b is usually included in other papers, but the case a < b is new.
. If ψ(t) = ϕ(t) = t +  for all t ≥ , then (ψ ,ϕ) ∈F . Notice that, in this case, (F)

holds because it is impossible to find such kind of sequences since
≤  + bk =ψ(bk) ≤ (ψ – ϕ)(ak) = . In this case, the condition ψ(t) =  ⇔ t = 
does not hold.

Corollary . Let ψ ,φ : [,∞) → [,∞) be two functions such that ψ is an altering dis-
tance function and φ is upper semi-continuous verifying φ–({}) = {} and φ(t) < ψ(t) for
all t > . Then (ψ ,ϕ) ∈F , where ϕ =ψ – φ.

Proof It follows from item  of Lemma . because ϕ = ψ – φ is lower semi-continuous
and verifies ϕ–({}) = {}. �

A function α : [,∞)→ [, ) is a Geraghty function if the condition {α(tn)} →  implies
that {tn} → .

http://www.fixedpointtheoryandapplications.com/content/2014/1/218
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Lemma . (Agarwal et al. []) If α is a Geraghty function and we define ψ(t) = t and
ϕ(t) = ( – α(t))t for all t ≥ , then (ψ ,ϕ) ∈ F .

In [], the authors used a contractivity condition as follows:

ψ
(
d(Tx,Ty)

) ≤ β
(
ψ

(
d(x, y)

)) · ψ(
d(x, y)

)
,

where ψ is an altering distance function and β is a Geraghty function.

Lemma. Ifψ is an altering distance function and β is a Geraghty function, then (ψ , (–
β ◦ ψ) · ψ) ∈F .

Proof Let ϕ = ( – β ◦ ψ) · ψ , that is, ϕ(t) = ( – β(ψ(t)))ψ(t) for all t ≥ . Notice that the
image of β ◦ ψ is contained in the image of β , which is in [, ). Therefore, β(ψ(s))ψ(s)≤
ψ(s) for all s ≥  (if ψ(s) = , both members are equal, and if ψ(s) > , then β(ψ(s)) ·ψ(s) <
φ(s) since β(ψ(s)) < ).
(F) Since ψ is an altering distance function, then it is nondecreasing.
(F) Assume that there exists t ∈ [,∞) such that ϕ(t) = . Then ( –β(ψ(t)))ψ(t) =

. Since  – β(ψ(t)) > , then ψ(t) = , which means that t = . In such a case, ψ–() =
{} because it is an altering distance function.
(F) Let {ak}, {bk} ⊂ [,∞) be sequences such that {ak} → L, {bk} → L and verify L < bk

and ψ(bk) ≤ (ψ – ϕ)(ak) for all k. Since ψ is continuous, limk→∞ ψ(ak) = limk→∞ ψ(bk) =
ψ(L). Moreover,

ψ(bk) ≤ ψ(ak) – ϕ(ak) =ψ(ak) –
[
ψ(ak) – β

(
ψ(ak)

)
ψ(ak)

]
= β

(
ψ(ak)

)
ψ(ak).

Let us show that L =  reasoning by contradiction. Suppose that L > . Since ψ is nonde-
creasing,

 < ψ(L)≤ ψ(bk) ≤ β
(
ψ(ak)

)
ψ(ak) ≤ ψ(ak).

In particular, ψ(ak) �=  and

ψ(bk)
ψ(ak)

≤ β
(
ψ(ak)

) ≤  for all k.

Letting n → ∞, we deduce that {β(ψ(ak))} → . Since β is a Geraghty function, ψ(L) =
limn→∞ ψ(ak) = , which contradicts that ψ(L) >  because L >  and ψ is an altering
distance function. �

In [], the authors used a contractivity condition as follows:

ψ
(
d(Tx,Ty)

) ≤ ψ
(
N(x, y)

)
– ϕ

(
N(x, y)

)
,

where N(x, y) =max

(
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)


)
, ()

ψ is continuous and ϕ verifies that {ϕ(tn)} →  implies that {tn} → .

http://www.fixedpointtheoryandapplications.com/content/2014/1/218
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Lemma. Letψ ,ϕ : [,∞)→ [,∞) be two functions such thatψ is an altering distance
function and ϕ verifies the following condition:

if {tn} ⊂ [,∞) and
{
ϕ(tn)

} → , then {tn} → . ()

Then (ψ ,ϕ) ∈F .

Proof (F) Since ψ is an altering distance function, then it is nondecreasing.
(F) Assume that there exists t ∈ [,∞) such that ϕ(t) = . Letting tn = t for all n≥ 

and applying (), we deduce that t = . In such a case,ψ–() = {} because it is an altering
distance function.
(F) Let {ak}, {bk} ⊂ [,∞) be sequences such that {ak} → L, {bk} → L and verify L <

bk and ψ(bk) ≤ (ψ – ϕ)(ak) for all k. Hence  ≤ ϕ(ak) ≤ ψ(ak) – ψ(bk) for all k. Letting
k → ∞ and taking into account that ψ is continuous, we deduce that limk→∞ ϕ(ak) = .
By condition (), L = limk→∞ ak = . �

A comparison function is a nondecreasing function φ : [,∞) → [,∞) such that
limn→∞ φn(t) =  for all t > .

Lemma . If φ is a continuous comparison function, and we define ψ(t) = t and ϕ(t) =
t – φ(t) for all t ≥ , then (ψ ,ϕ) ∈F .

Proof It is clear that every comparison function φ verifies φ(t) < t for all t > . In such a
case, if φ is continuous, then φ() = , so φ(t) ≤ t for all t ≥ . Moreover, if φ(t) = t, then
t = .
(F) Since ψ is an altering distance function, then it is nondecreasing.
(F) Assume that there exists t ∈ [,∞) such that ϕ(t) = . Then φ(t) = t, so t = .

In such a case, ψ–() = {} because it is an altering distance function.
(F) Let {ak}, {bk} ⊂ [,∞) be sequences such that {ak} → L, {bk} → L and verify L < bk

and ψ(bk)≤ (ψ – ϕ)(ak) for all k. Therefore

bk =ψ(bk) ≤ (ψ – ϕ)(ak) = φ(ak) < ak .

Letting k → ∞, we deduce that limk→∞ φ(ak) = L. Therefore, as φ is continuous, φ(L) =
limk→∞ φ(ak) = L, which is only possible when L = . �

In [], Berzig et al. introduced the notion of pair of generalized altering distance func-
tions, which is a pair (ψ ,φ), where ψ ,φ : [,∞) → [,∞), verifying the following condi-
tions:
(a) ψ is continuous;
(a) ψ is nondecreasing;
(a) limn→∞ φ(tn) = �⇒ limn→∞ tn = .
The condition (a) was introduced by Popescu in [] and Moradi and Farajzadeh in

[]. Notice that the above conditions do not determine the values ψ() and φ(). If φ < ψ

in (,∞), then (ψ ,ϕ =ψ – φ) ∈F . This is the case of Lemma ..
After we have shown many different contexts in which some pairs of F appear, we

present some of their useful properties.

http://www.fixedpointtheoryandapplications.com/content/2014/1/218
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Lemma . (Agarwal et al. []) Let (ψ ,ϕ) ∈F .
. If t, s ∈ [,∞) and ψ(t) ≤ (ψ – ϕ)(s), then either t < s or t = s = . In any case, t ≤ s.
. If t ∈ [,∞) and ψ(t)≤ (ψ – ϕ)(t), then t = .
. If {ak}, {bk} ⊂ [,∞) are such that ψ(ak)≤ (ψ – ϕ)(bk) for all k and {bk} → , then

{ak} → .
. If {ak} ⊂ [,∞) and ψ(ak+) ≤ (ψ – ϕ)(ak) for all k, then {ak} → .

Remark . In [], Berzig introduced the class of shifting distance functions, which are
pairs of functions ψ ,φ : [,∞)→R verifying the following two conditions:

(i) for u, v ∈ [,∞), if ψ(u) ≤ φ(v), then u≤ v;
(ii) for {un}, {vn} ⊂ [,∞) with limn→∞ un = limn→∞ vn = ω, if ψ(un) ≤ φ(vn) for all

n ∈N, then ω = .
Pairs of functions in F are intimately related with the class Fshi of pairs of shifting dis-

tance functions, but they are different. On the one hand, pairs inFshi can take values in R,
but pairs in F take values in [,∞). On the other hand, if a pair (ψ ,ϕ) verifies (F) and
(F), then the pair (ψ ,φ = ψ – ϕ) satisfies (i). Furthermore, if (ψ ,φ = ψ – ϕ) satisfies (ii),
then (ψ ,ϕ) satisfies (F).

5 A fixed point theoremwithout an underlyingmetric structure
The main aim of this section is to show sufficient conditions in order to ensure that T and
g (given in Section ) have a coincidence point. To set the framework, throughout this
section, let (X,�) be a preordered space, and let d : X ×X → R and T , g : X → X be three
mappings. The following definitions are usually consideredwhenX has ametric structure.
However, we do not suppose, a priori, any condition on the mapping d. Indeed, we will
only be able to prove that d takes nonnegative values as a consequence of a particular
version of the triangular inequality. However, in general, we do not consider necessary to
assume this sign constraint.

Definition . We will say that a sequence {xm} ⊆ X:
• d-converges to x ∈ X (and we will write {xm} d→ x or simply {xm} → x) if for all

ε >  there existsm ∈N such that d(xm,x)≤ ε for all m ≥m;
• is d-Cauchy if for all ε >  there existsm ∈N such that d(xm,xm′ ) ≤ ε for all
m′ ≥m≥m.

Wewill say that (X,d) is complete if every d-Cauchy sequence in X is d-convergent in X.

With respect to the previous notions, the following remarks must be done.

Remark .
• When the distance measure d is not symmetric (that is, it does not verify axiom
(M)), the definition of convergence or Cauchyness of sequences usually depends on
the side, because d(xn,xm) and d(xm,xn) can be different. This is the case, for instance,
of quasi-metric spaces. In such cases, the previous definitions correspond to the idea
of right-convergence and right-Cauchyness (see Jleli and Samet []) because the more
advanced term (which is nearer to the limit) is placed at the right argument of d.
Similarly, it can be defined the notions of left-convergence (using d(x,xm)) and
left-Cauchyness (using d(xm′ ,xm)) of sequences. Notice that some of the concepts we
will present can also be introduced by the right side or by the left side. However, in

http://www.fixedpointtheoryandapplications.com/content/2014/1/218
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order not to complicate the notation, we prefer avoiding the term right- in all
definitions and theorems.

• In [, Section ], the authors did a complete study (completion, topology and
powerdomains) of spaces verifying axioms (M) and (M), which they called
generalized metric spaces. They solved the previous discussion using the terms
forward convergent sequences (for right-convergent sequences) and backward
convergent sequences (for left-convergent sequences). However, as we will not assume
(M) nor (M), we also prefer avoiding these prefixes.

• Notice that if d does not verify (M), then the limit of a sequence, if there exists, might
not be unique.

• And if d only takes nonpositive values, then all sequences converge to all points.

Definition . We will say that a subset A ⊆ X is (d,�)-nondecreasing-closed if any d-
limit of any �-nondecreasing sequence of points of A is also in A.

[{xm} ⊆ A, {xm} d→ x ∈ X,xm � xm+,∀m
] ⇒ x ∈ A.

Similarly can be defined the concepts of (d,�)-nonincreasing-closed set and (d,�)-
monotone-closed set, and, more generally, a d-closed set, when any d-limit of any conver-
gent sequence of points of A is also in A.

Definition . A mapping T : X → X is (d,�)-nondecreasing-continuous at x ∈ X if we
have that {Txm} d-converges to Tx for all �-nondecreasing sequence {xm} d-convergent
to x.

In a similar way, the concepts of (d,�)-nonincreasing-continuous mapping and (d,�)-
monotone-continuous mapping may be considered and, more generally, a d-continuous
mapping, when {Txm} d-converges to Tx for all sequence {xm} d-convergent to x.

Definition . We will say that a point x ∈ X is a d-precoincidence point of T and g if
d(Tx, gx) = d(gx,Tx) = .

In the following results, we will assume some of the following conditions.
(a) T(X)⊆ g(X).
(b) T is (g,�)-nondecreasing.
(c) There exists x ∈ X such that gx � Tx.
(d) There exists (ψ ,ϕ) ∈F such that

ψ
(
d(Tx,Ty)

) ≤ (ψ – ϕ)
(
d(gx, gy)

)
for all x, y ∈ X for which gx� gy. ()

(e) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X such that x� y� z.
(f ) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X such that x� y� z.
(g) Every �-nondecreasing, d-Cauchy sequence in X is d-convergent in X .
(h) If {xm} is a nondecreasing sequence and {xm} d-converges to x ∈ X , then xm � x for

all m.
(i) d(x, z) ≤ d(y,x) + d(y, z) for all x, y, z ∈ X such that y� x and y� z.

http://www.fixedpointtheoryandapplications.com/content/2014/1/218


Roldán-López-de-Hierro and Shahzad Fixed Point Theory and Applications 2014, 2014:218 Page 10 of 24
http://www.fixedpointtheoryandapplications.com/content/2014/1/218

(j) Every d-precoincidence point of T and g is a coincidence point of T and g (that is, if
d(Tx, gx) = d(gx,Tx) = , then Tx = gx).

As we have shown in Section , notice that a mapping d verifying (a)-(i) does not have
to verify any of the conditions that define a metric on X.

Remark . A priori, d can take negative values inR. However, condition (f ) lets us prove
some constraints about the sign of d. Indeed, if we take x = y = z in condition (f ), we deduce
that d(x,x) ≥  for all x ∈ X. Furthermore, if y = x in (f ), it follows that d(x, z) ≥  for all
x, z ∈ X such that x � z. This does not mean that d is nonnegative because d could take
negative values when z ≺ x or x and z are not �-comparable.

Remark . As we shall show in the proofs, the mapping d could only be considered on
the set 	 = {(x, y) ∈ X : x � y}, that is, we will only use d|	 : 	 → R. In this case, the
previous remark shows that, as usual, d(	)⊆ [,∞[.

Theorem . Let (X,�) be a preordered space and let T , g : X → X be two mappings ver-
ifying (a)-(c). Then there exists a sequence {xm}m≥ such that gxm+ = Txm � Txm+ = gxm+

for all m ≥ . In particular,

gx � gx � gx � · · · � gxm– � gxm � gxm+ � · · · .

Proof Since Tx ∈ T(X) ⊆ g(X), there exists x ∈ X such that Tx = gx. Then gx � Tx =
gx. Since T is (g,�)-nondecreasing, Tx � Tx. Now Tx ∈ T(X) ⊆ g(X), so there exists
x ∈ X such that Tx = gx. Then gx = Tx � Tx = gx. Since T is (g,�)-nondecreasing,
Tx � Tx. Repeating this argument, there exists a sequence {xm}m≥ such that gxm+ =
Txm � Txm+ = gxm+ for allm ≥ . �

Theorem . Let (X,�) be a preordered space and let d : X × X → R and T , g : X → X
be three mappings verifying (a)-(e). Then any sequence {gxm}m≥ such that Txm = gxm+ for
all m≥ , is d-Cauchy ({xm} is given as in Theorem .).

Proof Since gxm+ � gxm+ for allm ≥ , it follows from (d) that, for allm ≥ ,

ψ
(
d(gxm+, gxm+)

)
=ψ

(
d(Txm,Txm+)

) ≤ (ψ – ϕ)
(
d(gxm, gxm+)

) ≤ ψ
(
d(gxm, gxm+)

)
.

By item  of Lemma ., the sequence {d(gxm+, gxm+)} d-converges to zero. Using the
same reasoning, since gxm+ � gxm+ for all m ≥ , it follows that {d(gxm+, gxm+)} also
d-converges to zero. Therefore

{
d(gxm, gxm)

}
m≥ →  and

{
d(gxm, gxm+)

}
m≥ → . ()

Let us show that {gxm} is d-Cauchy reasoning by contradiction. Suppose that {gxm} is not
d-Cauchy. Then there exist ε >  and partial subsequences {gxn(k)} and {gxm(k)} verifying

k < n(k) <m(k) < n(k + ) and d(gxn(k), gxm(k)–) ≤ ε < d(gxn(k), gxm(k))

for all k ≥  ()
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(m(k) is the least integer number, greater than n(k), such that d(gxn(k), gxm(k)) > ε). Since
n(k) ≤m(k) –  <m(k), we have gxn(k) � gxm(k)– � gxm(k). By (e),

ε < d(gxn(k), gxm(k)) ≤ d(gxn(k), gxm(k)–) + d(gxm(k)–, gxm(k)) ≤ ε + d(gxm(k)–, gxm(k)).

Therefore, the sequence {bk = d(gxn(k), gxm(k))}k≥ satisfies

lim
k→∞

bk = ε and ε < bk for all k. ()

Now, let us apply condition (e) and () to gxn(k)– � gxn(k) � gxm(k)–, and we deduce, for
all k,

d(gxn(k)–, gxm(k)–) ≤ d(gxn(k)–, gxn(k)) + d(gxn(k), gxm(k)–) ≤ d(gxn(k)–, gxn(k)) + ε. ()

By (d), we also have, for all k,

ψ
(
d(gxn(k), gxm(k))

)
=ψ

(
d(Txn(k)–,Txm(k)–)

) ≤ (ψ – ϕ)
(
d(gxn(k)–, gxm(k)–)

)
. ()

By item  of Lemma ., it follows that

d(gxn(k), gxm(k)) ≤ d(gxn(k)–, gxm(k)–) for all k.

Joining this inequality and (), we deduce that, for all k,

d(gxn(k), gxm(k)) ≤ d(gxn(k)–, gxm(k)–) ≤ d(gxn(k)–, gxn(k)) + ε.

Letting k → ∞ and using () and (), we deduce that the sequence {ak = d(gxn(k)–,
gxm(k)–)}k≥ also verifies {ak} → ε, and by (), we have that ψ(bk) ≤ (ψ – ϕ)(ak) for all k.
Since (ψ ,ϕ) ∈F , axiom (F) guarantees that ε = , which is a contradiction with the fact
that ε > . This contradiction shows that {gxm} is a d-Cauchy sequence. �

After the previous technical results, we give the main results of this manuscript.

Theorem . Let (X,�) be a preordered space and let d : X ×X →R and T , g : X → X be
three mappings which fulfil conditions (a)-(h). Assume that the following condition holds.
(p) g(X) is (d,�)-nondecreasing-closed.
Then there exists z ∈ X such that the sequence {gxm} (defined in Theorem .) d-converges

to gz and to Tz. Furthermore, if (i) holds, then z is a d-precoincidence point of T and g .

Notice that, in the previous result, g and T need not be continuous.

Proof Theorem . guarantees that {gxm} is d-Cauchy. Since it is �-nondecreasing, con-
dition (g) implies that there exists y ∈ X such that {gxm} d-converges to y (that is,
{d(gxm, y)} → ). Moreover, since g(X) is (d,�)-nondecreasing-closed, y ∈ g(X), so there
exists z ∈ X such that y = gz. Applying (h), gxm+ � y = gz for allm and, hence,

ψ
(
d(gxm+,Tz)

)
=ψ

(
d(Txm+,Tz)

) ≤ (ψ – ϕ)
(
d(gxm+, gz)

)
= (ψ – ϕ)

(
d(gxm+, y)

)
.
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Since {d(gxm, y)} → , item  of Lemma . guarantees that {d(gxm+,Tz)} → , that is,
{gxm+} d-converges to Tz.
Now suppose that (i) holds. By (h), gxm+ � Tz for allm and (i) implies that

d(gz,Tz) ≤ d(gxm+,Tz) + d(gxm+, gz) and

d(Tz, gz) ≤ d(gxm+, gz) + d(gxm+,Tz).
()

Therefore d(gz,Tz) = d(Tz, gz) = . �

Theorem . Let (X,�) be a preordered space and let d : X ×X →R and T , g : X → X be
three mappings which fulfil conditions (a)-(h). Suppose also:

(p′) T and g are (d,�)-nondecreasing-continuous and commuting and, at least, one of the
following conditions holds:

(p′
) T is a �-nondecreasing mapping.

(p′
) g is a �-nondecreasing mapping.

(p′
) If z,ω ∈ X and {zm} ⊆ X is a �-nondecreasing sequence such that {gzm} d-

converges to z and to ω at the same time, then d(z,ω) = d(ω, z) = .

Then there exists y ∈ X such that the sequence {gym} (defined in Theorem .) d-converges
to gy and to Ty at the same time. Furthermore, if (i) holds, then y is a d-precoincidence point
of T and g .

In any case, T and g have, at least, a d-precoincidence point.

Proof Theorem . guarantees that {gxm+} is d-Cauchy. Since it is�-nondecreasing, con-
dition (g) implies that there exists y ∈ X such that {gxm} d-converges to y. Thus, taking into
account that g and T are (d,�)-nondecreasing-continuous, {ggxm} d-converges to gy and
{Tgxm} d-converges to Ty. Furthermore, since T and g are commuting, Tgxm+ = gTxm+ =
ggxm+ for allm, which means that {ggxm} d-converges, at the same time, to gy and to Ty.
Next, assume that (i) holds, and we claim that y is a d-precoincidence point of T and g .

Firstly, if T (or g) is a �-nondecreasing mapping, then the sequence {ggxm} = {Tgxm–} is
�-nondecreasing. Since it d-converges to gy and toTy, property (h) implies that ggxm � gy
and ggxm � Ty for allm. Reasoning as in (), we conclude that y is a d-precoincidence point
of T and g . Secondly, if T and g are not necessarily �-nondecreasing mappings, we could
apply (p′

) to the sequence {gxm} in order to deduce that d(gy,Ty) = d(Ty, gy) = , that is, y
is a d-precoincidence point of T and g . �

We summarize and improve all previous results in the following theorem.

Theorem . Let (X,�) be a preordered space and let d : X ×X →R and T , g : X → X be
three mappings verifying the following properties.

(a) T(X) ⊆ g(X).
(b) T is (g,�)-nondecreasing.
(c) There exists x ∈ X such that gx � Tx.
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(d) There exist (ψ ,ϕ) ∈F such that

ψ
(
d(Tx,Ty)

) ≤ (ψ – ϕ)
(
d(gx, gy)

)
for all x, y ∈ X for which gx� gy.

(e) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X such that x� y� z.
(f ) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X such that x� y� z.
(g) Every �-nondecreasing, d-Cauchy sequence in X is d-convergent in X .
(h) If {xm} is a �-nondecreasing sequence and {xm} d-converges to x ∈ X , then xm � x for

allm.
(i) d(x, z) ≤ d(y,x) + d(y, z) for all x, y, z ∈ X such that y� x and y� z.
(j) Every d-precoincidence point of T and g is a coincidence point of T and g .

Assume also either

(p) g(X) is (d,�)-nondecreasing-closed, or
(p′) T and g are (d,�)-nondecreasing-continuous and commuting and, at least, one of the

following conditions holds:

(p′
) T is a �-nondecreasing mapping.

(p′
) g is a �-nondecreasing mapping.

(p′
) If z,ω ∈ X and {zm} ⊆ X is a �-nondecreasing sequence such that {gzm} d-

converges to z and to ω at the same time, then d(z,ω) = d(ω, z) = .

Then T and g have, at least, a coincidence point.

Notice that condition (j) does not mean that d(x, y) =  implies x = y.

Remark . If g is the identity mapping on the ambient space, then the quadruple (X,�,
d,T) introduced in Section  verifies all conditions (a)-(j) and (p)-(p′) (see more details in
Appendix ).

Remark . Obviously, similar results can be stated changing the following hypothesis.

(̃b) T is (g,�)-nonincreasing.
(̃c) There exists x ∈ X such that gx � Tx.
(̃g) Every nonincreasing, d-Cauchy sequence in X is d-convergent in X .
(̃h) If {xm} is a nonincreasing sequence and {xm} d-converges to x ∈ X , then xm � x for

all m.
(̃p) g(X) is (d,�)-nonincreasing-closed.
(̃p′) T and g are (d,�)-nonincreasing-continuous and commuting and, at least, one of the

following conditions holds:

(̃p′
) T is a �-nonincreasing mapping.

(̃p′
) g is a �-nonincreasing mapping.

(̃p′
) If z,ω ∈ X and {zm} ⊆ X is a �-nonincreasing sequence such that {gzm} d-
converges to z and to ω at the same time, then d(z,ω) = d(ω, z) = .

The unicity of the coincidence point cannot be guaranteed unless additional conditions
are imposed. A result in this direction is the following.
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Theorem . Under the hypothesis of Theorem ., let x, y ∈ X be two coincidence points
of T and g verifying that there exists u ∈ X such that gu� gx and gu� gy. Then d(Tx,Ty) =
d(Ty,Tx) = d(gx, gy) = d(gy, gx) = .

Proof Define u = u. Since Tu ∈ T(X) ⊆ g(X), there exists u ∈ X such that gu = Tu. Re-
peating this process, there exists a sequence {um}m≥ such that gum+ = Tum for allm ≥ .
We claim that {gum} d→ gx and {gum} d→ gy. Firstly, we reason using x, but the same argu-
ment is valid for y.
Indeed, notice that gu = gu � gx. As T is (g,�)-nondecreasing, then Tu � Tx = gx,

whichmeans that gu � gx. Again, gu � gx impliesTu � Tx = gx, whichmeans that gu �
gx. By induction, it is possible to prove that gum � gx for allm ≥ . Using condition (d), it
follows that ψ(d(gum+, gx)) = ψ(d(Tum,Tx)) ≤ (ψ – ϕ)(d(gum, gx)) for allm ≥ . Thus, by
item  of Lemma ., {d(gum, gx)} → . The same argument proves that gum � gy for all
m ≥  and {d(gum, gy)} → . As a consequence, by (i), d(Tx,Ty) = d(gx, gy) ≤ d(gum, gx) +
d(gum, gy) for allm, which lets us conclude that d(Tx,Ty) = d(gx, gy) = . �

Corollary . Under the hypothesis of Theorem ., assume the following conditions.
• For all coincidence points x, y ∈ X of T and g , there exists u ∈ X such that gu� gx and
gu� gy.

• g is injective on the set of all coincidence points of T and g .
• If z,ω ∈ T(X) verify d(z,ω) = d(ω, z) = , then z = ω.
Then T and g have a unique coincidence point. Furthermore, if T and g are commuting,

it is a common fixed point of T and g .

Proof Let x, y ∈ X be two coincidence points of T and g . Then gx = Tx ∈ T(X) and gy =
Ty ∈ T(X). By Theorem ., d(gx, gy) = d(gy, gx) = . Therefore gx = gy. As g is injective on
the set of all coincidence points of T and g , we conclude that x = y.
Now let x ∈ X be a coincidence point of T and g , and let z = Tx. By Remark ., z is also

a coincidence point of T and g . Then x = z = Tx = gx, so x is a common fixed point of T
and g . �

Taking ψ(t) = t and ϕ(t) = ( – k)t for all t ≥  in the previous results, we obtain the
following particular case.

Corollary . Theorems ., ., ., ., ., . and Corollary . also hold if we replace
condition (d) by the following one.

(d′) There exists k ∈ [, ) such thatd(Tx,Ty) ≤ k d(gx, gy)for all x, y ∈ X for which gx� gy.

6 Consequences
This section is devoted to show how to apply Theorem . in many different contexts, and
how to deduce unidimensional, coupled, tripled, quadruple and multidimensional fixed
point theorems (for completeness, they are included in Appendix ).

6.1 Fixed/coincidence point theorems in partially orderedmetric spaces
In this subsection we show that different results in partially orderedmetric spaces, includ-
ing unidimensional, coupled, tripled, quadruple and multidimensional fixed point theo-
rems, can be seen as simple consequences of Theorem ..
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Corollary . Theorems A., A. and A. follow from Theorem ..

However, Theorems A. and A. cannot be applied to the example of Section .

Corollary . Theorem A. follows from Theorem ..

Proof Let Y = X provided with the partial order (x, y) � (u, v) if and only if x � u and
y� v, and the metric δ : Y × Y → R

+
 given by δ((x, y), (u, v)) = max(d(x,u),d(y, v)) for all

(x, y), (u, v) ∈ Y . Define TF : Y → Y by TF (x, y) = (F(x, y),F(y,x)) for all (x, y) ∈ Y , and let G
be the identity mapping on Y . Let X = (x, y) ∈ Y . Then the hypothesis of Theorem A.
implies the hypothesis of Theorem . (for instance, TF is (�,G)-nondecreasing because
F has themixed�-monotone property). The contractivity condition holds since, if (x, y) �
(u, v),

δ
(
TF (x, y),TF (u, v)

)
= δ

((
F(x, y),F(y,x)

)
,
(
F(u, v),F(v,u)

))
=max

(
d
(
F(x, y),F(u, v)

)
,d

(
F(y,x),F(v,u)

))
=max

(
d
(
F(x, y),F(u, v)

)
,d

(
F(v,u),F(y,x)

))
≤max

(
k

(
d(x,u) + d(y, v)

)
,
k

(
d(v, y) + d(u,x)

)) ≤ k

max

(
d(x,u),d(y, v)

)
= kδ

(
(x, y), (u, v)

)
.

Theorem . assures us that TF and G have a coincidence point, that is, F has a coupled
fixed point. �

Tripled, quadruple and multidimensional theorems can be proved similarly using X,
X and Xn, obtaining the following result.

Corollary . Theorems A., A. and A. follow from Theorem ..

We remark that the techniques used in this paper might be applied in order to prove
other coupled, tripled, quadruple, n-tupled fixed point theorems in the framework of var-
ious abstract spaces, e.g., partial metric spaces, cone metric spaces, fuzzy metric spaces,
b-metric spaces, etc.

6.2 Fixed/coincidence point theorems in quasi-metric spaces
Recall that a mapping q : X × X → [,∞) is a quasi-metric on X if it satisfies (M), (M)
and (M), that is, if it verifies, for all x, y, z ∈ X:

(q) q(x, y) =  if and only if, x = y,
(q) q(x, y) ≤ q(x, z) + q(z, y).

In such a case, the pair (X,q) is called a quasi-metric space. Some preliminaries about
convergence, Cauchy sequences and completeness in quasi-metric spaces can be found in
[, ].
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Theorem . Let (X,q) be a complete quasi-metric space and let T , g : X → X be given
mappings. Suppose that T(X) ⊆ g(X) and that there exists (ψ ,ϕ) ∈F such that

ψ
(
q(Tx,Ty)

) ≤ ψ
(
q(gx, gy)

)
– ϕ

(
q(gx, gy)

)
for all x, y ∈ X.

Then T and g have a unique coincidence point.

Proof Assume that � is the preorder in X given by x� y for all x, y ∈ X, that is, all points
are �-comparable. Then all conditions of Theorem . hold. Moreover, as g(X) is (d,�)-
nondecreasing-closed, we deduce that T and g have, at least, a coincidence point. Further-
more, if u and v are two distinct coincidence points of T and g , then

ψ
(
q(gu, gv)

)
=ψ

(
q(Tu,Tv)

) ≤ ψ
(
q(gu, gv)

)
– ϕ

(
q(gy, gv)

)
< ψ

(
q(gu, gv)

)
,

which is a contradiction. �

If g is the identity mapping on X, we have the following statement.

Corollary . Let (X,q) be a complete quasi-metric space and let T : X → X be a given
mapping. Suppose that there exists (ψ ,ϕ) ∈F such that

ψ
(
q(Tx,Ty)

) ≤ ψ
(
q(x, y)

)
– ϕ

(
q(x, y)

)
for all x, y ∈ X.

Then T has a unique fixed point.

If ψ(t) = t for all t ≥ , we have the following particular case.

Corollary . (Jleli and Samet [], Theorem .) Let (X,q) be a complete quasi-metric
space and let T : X → X be a mapping satisfying

q(Tx,Ty) ≤ q(x, y) – ϕ
(
q(x, y)

)
for all x, y ∈ X,

where ϕ : [,∞)→ [,∞) is continuous with ϕ–() = {}.Then T has a unique fixed point.

6.3 Fixed/coincidence point theorems in G-metric spaces
Following [, ], recall that a generalized metric on X (or, more specifically, aG-metric on
X) is a mapping G : X ×X ×X → [,∞) verifying the following properties.

Definition .

(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y)≤G(x, y, z) for all x, y, z ∈ X with y �= z;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) (rectangle inequality) for all x, y, z,a ∈ X .

In such a case, the pair (X,G) is called a G-metric space. Some preliminaries about con-
vergence, Cauchy sequences and completeness in quasi-metric spaces can be found in [,
, , ].
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Lemma . (see, e.g., [, ]) Let (X,G) be a G-metric space and let us define qG,q′
G :

X → [,∞) by

qG(x, y) =G(x, y, y) and q′
G(x, y) =G(x,x, y) for all x, y ∈ X.

Then the following properties hold.
. qG and q′

G are quasi-metrics on X .Moreover,

q′
G(x, y)≤ qG(x, y)≤ q′

G(x, y) for all x, y ∈ X. ()

. In (X,qG) and in (X,q′
G), a sequence is right-convergent (respectively, left-convergent)

if and only if it is convergent. In such a case, its right-limit, its left-limit and its limit
coincide.

. In (X,qG) and in (X,q′
G), a sequence is right-Cauchy (respectively, left-Cauchy) if

and only if it is Cauchy.
. In (X,qG) and in (X,q′

G), every right-convergent (respectively, left-convergent)
sequence has a unique right-limit (respectively, left-limit).

. If {xn} ⊆ X and x ∈ X , then {xn}
G−→ x ⇐⇒ {xn}

qG−→ x ⇐⇒ {xn}
q′
G−→ x.

. If {xn} ⊆ X , then {xn} is G-Cauchy ⇐⇒ {xn} is qG-Cauchy ⇐⇒ {xn} is q′
G-Cauchy.

. (X,G) is complete ⇐⇒ (X,qG) is complete ⇐⇒ (X,q′
G) is complete.

Theorem . Let (X,G) be a complete G-metric space and let T , g : X → X be given map-
pings. Suppose that T(X) ⊆ g(X) and that there exists (ψ ,ϕ) ∈F such that

ψ
(
G(Tx,Ty,Ty)

) ≤ ψ
(
G(gx, gy, gy)

)
– ϕ

(
G(gx, gy, gy)

)
for all x, y ∈ X.

Then T and g have a unique coincidence point.

Proof It follows from Theorem . applied to the quasi-metric qG(x, y) = G(x, y, y) for all
x, y ∈ X (as in Lemma .). �

To conclude the paper, we include two appendices: in the first one, we recall some cel-
ebrated theorems that can be seem as particular cases of our main results; in the second
one, we prove the statements announced in Section  and why our results can be applied.

Appendix 1: Some recent results we generalize
The following statements are well-known fixed point theorems in partially orderedmetric
spaces.

TheoremA. (Ran and Reurings []) Let (X,�) be an ordered set endowed with a metric
d and T : X → X be a given mapping. Suppose that the following conditions hold:
(a) (X,d) is complete.
(b) T is nondecreasing (w.r.t. �).
(c) T is continuous.
(d) There exists x ∈ X such that x � Tx.
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(e) There exists a constant k ∈ (, ) such that d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X with
x� y.

Then T has a fixed point.Moreover, if for all (x, y) ∈ X there exists z ∈ X such that x� z
and y� z, we obtain uniqueness of the fixed point.

Nieto and Rodríguez-López [] slightly modified the hypothesis of the previous result
obtaining the following theorem.

Theorem A. (Nieto and Rodríguez-López []) Let (X,�) be an ordered set endowed
with a metric d and T : X → X be a given mapping. Suppose that the following conditions
hold:
(a) (X,d) is complete.
(b) T is nondecreasing (w.r.t. �).
(c) If a nondecreasing sequence {xm} in X converges to some point x ∈ X , then xm � x for

allm.
(d) There exists x ∈ X such that x � Tx.
(e) There exists a constant k ∈ (, ) such that d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X with

x� y.
Then T has a fixed point.Moreover, if for all (x, y) ∈ X there exists z ∈ X such that x� z

and y� z, we obtain uniqueness of the fixed point.

Theorem A. (Harjani and Sadarangani []) Let (X,�) be a partially ordered set and
suppose that there exists a metric d in X such that (X,d) is a complete metric space. Let
T : X → X be a nondecreasing mapping such that

ψ
(
d(Tx,Ty)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
for all x� y,

where ψ and φ are altering distance functions.Also assume that, at least, one of the follow-
ing conditions holds.

(i) T is continuous, or
(ii) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x for

all n.
If there exists x ∈ X with x � Tx, then T has a fixed point.

Theorem A. (Bhaskar and Lakshmikantham []) Let (X,�) be a partially ordered set
endowed with ametric d. Let F : X×X → X be a givenmapping. Suppose that the following
conditions hold:

(i) (X,d) is complete;
(ii) F has the mixed monotone property;
(iii) F is continuous or X has the following properties:

(X) if a nondecreasing sequence {xn} in X converges to some point x ∈ X , then xn � x
for all n,

(X) if a decreasing sequence {yn} in X converges to some point y ∈ X , then yn � y for
all n;

(iv) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
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(v) there exists a constant k ∈ (, ) such that for all (x, y), (u, v) ∈ X ×X with x� u and
y� v,

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]
.

Then F has a coupled fixed point (x∗, y∗) ∈ X ×X.Moreover, if for all (x, y), (u, v) ∈ X ×X
there exists (z, z) ∈ X ×X such that (x, y)� (z, z) and (u, v)� (z, z), we have unique-
ness of the coupled fixed point and x∗ = y∗.

TheoremA. (Berinde and Borcut []) Let (X,�) be a partially ordered set and suppose
that there is ametric d on X such that (X,d) is a completemetric space. Let F : X×X×X →
X be a mapping having the mixed g-monotone property. Assume that there exist constants
j,k,� ∈ [, ) with j + k + � <  such that

d
(
F(x, y, z),F(u, v,w)

) ≤ jd(x,u) + kd(y, v) + �d(z,w)

for all x, y, z,u, v,w ∈ X with x � u, y � v, z � w. Suppose that either F is continuous or
(X,d,�) has the following properties:
(a) if a nondecreasing sequence {xm} → x, then xm � x for allm;
(b) if a nondecreasing sequence {ym} → y, then ym � y for allm.
If there exist x, y, z ∈ X such that

x � F(x, y, z), y � F(y,x, y) and z � F(z, y,x),

then there exist x, y, z ∈ X such that

x = F(x, y, z), y = F(y,x, y) and z = F(z, y,x).

A quadruple version was obtained by Karapınar and Luong in [].

TheoremA. (Karapınar and Luong []) Let (X,�) be a partially ordered set and (X,d)
be a complete metric space. Let F : X × X × X × X → X be a mapping having the mixed
monotone property. Assume that there exists a constant k ∈ [, ) such that

d
(
F(x, y, z,w),F(u, v, r, t)

) ≤ k


[
d(x,u) + d(y, v) + d(z, r) + d(w, t)

]
for all x, y, z,u, v,w ∈ X with x � u, y � v, z � r and w � t. Suppose that there exist
x, y, z,w ∈ X such that

x � F(x, y, z,w), y � F(y, z,w,x), z � F(z,w,x, y) and

w � F(w,x, y, z).

Suppose that either F is continuous or (X,d,�) has the following properties:
(a) if a nondecreasing sequence {xm} → x, then xm � x for allm;
(b) if a nondecreasing sequence {ym} → y, then ym � y for allm.
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Then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = x, F(y, z,w,x) = y, F(z,w,x, y) = z and F(w,x, y, z) = w.

Later, Berzig and Samet extended the previous result to the multidimensional case in
the following way.

Theorem A. (Berzig and Samet []) Let (X,�) be a partially ordered set and suppose
that there is a metric d on X such that (X,d) is a complete metric space. For N , m positive
integers, N ≥ ,  ≤ m <N , let F : XN → X be a continuous mapping having the m-mixed
monotone property. Assume that there exist the constants δi ∈ [, ) with

∑N
i= δi <  for

which

d
(
F(U),F(V )

) ≤
N∑
i=

δid(xi, yi)

for all U = (x, . . . ,xN ),V = (y, . . . , yN ) ∈ XN such that

x � y, . . . , xm � ym, xm+ � ym+, . . . , xN � yN .

If there exists U () = (x() , . . . ,x()N ) ∈ XN such that

x() � F
(
x()

[
ϕ( :m)

]
,x()

[
ψ(m +  :N)

])
,

...

x()m � F
(
x()

[
ϕm( :m)

]
,x()

[
ψm(m +  :N)

])
,

x()m+ � F
(
x()

[
ϕm+( :m)

]
,x()

[
ψm+(m +  :N)

])
,

...

x()N � F
(
x()

[
ϕN ( :m)

]
,x()

[
ψN (m +  :N)

])
,

where ϕ, . . . ,ϕm : {, . . . ,m} → {, . . . ,m}, ψ, . . . ,ψm : {m + , . . . ,N} → {m + , . . . ,N},
ϕm+, . . . ,ϕN : {, . . . ,m} → {m + , . . . ,N}, and ψm+, . . . ,ψN : {m + , . . . ,N} → {, . . . ,m},
then there exists (x,x, . . . ,xN ) ∈ XN satisfying

x = F
(
x
[
ϕ( :m)

]
,x

[
ψ(m +  :N)

])
,

...

xm = F
(
x
[
ϕm( :m)

]
,x

[
ψm(m +  :N)

])
,

xm+ = F
(
x
[
ϕm+( :m)

]
,x

[
ψm+(m +  :N)

])
,

...

xN = F
(
x
[
ϕN ( :m)

]
,x

[
ψN (m +  :N)

])
.
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Theorem A. (Dutta and Choudhury []) Let (X,d) be a complete metric space and let
T : X → X be a self-mapping satisfying the inequality

ψ
(
d(Tx,Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for all x, y ∈ X, where ψ ,ϕ : [,∞[→ ∞ are both continuous and monotone nondecreasing
functions with ψ(t) = ϕ(t) =  if and only if t = . Then T has a unique fixed point.

Theorem A. (Luong and Thuan []) Let (X,�) be a partially ordered set and suppose
that there is a metric d on X such that (X,d) is a complete metric space. Let F : X ×X → X
be a mapping having the mixed monotone property on X such that there exist two elements
x, y ∈ X with x � F(x, y) and y � F(y,x). Suppose that there exist ψ ∈ � and ϕ ∈ 

such that

ψ
(
d
(
F(x, y),F(u, v)

)) ≤ 

ψ

(
d(x,u) + d(y, v)

)
– ϕ

(
d(x,u) + d(y, v)



)

for all x, y,u, v ≥ X with x� u and y� v. Suppose either
(a) F is continuous, or
(b) X has the following properties:

(i) if a nondecreasing sequence {xm} → x, then xm � x for allm,
(ii) if a nonincreasing sequence {ym} → y, then ym � y for allm.

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y,x), that is, F has a coupled fixed
point in X.

Appendix 2: Proof of statements of Section 3 and Remark 5.4
Recall that I = ]–, ], X = I∪ {, , , , , },

x� y ⇔

⎧⎪⎨
⎪⎩
either x = y,
or {x, y} = {, },
or (x, y ∈ I and x≤ y),

and d :X×X → [,∞[ and T :X →X are defined by

d(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

, if {x, y} = {, } or {x, y} = {, },
., if x = y = ,
, if (x, y) = (, ),
, if (x, y) = (, ),
|x – y|, otherwise.

Tx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
 , if x ∈ I,
, if x ∈ {, , , },
–, if x = ,
, if x = .

We firstly prove some properties of this space.

(P) The binary relation� is a preorder onX (reflexive and transitive), but it is not a partial
order since � , �  and  �= . Furthermore, if x, y ∈ X and x� y, then

x ∈ I ⇔ y ∈ I; x ∈ {, } ⇔ y ∈ {, }; x ∈ {, , , } ⇒ y = x.

If x� y� z, then either x, y, z ∈ I or x, y, z ∈ {, } or x = y = z ∈ {, , , }. The same
is true if y� x and y� z.
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(P) d does not verify (M) because d(, ) = ..
(P) d does not verify (M) since d(, ) =  but  �= .
(P) d does not verify (M) since d(, ) =  and d(, ) = .
(P) d does not verify (M): if x = , y =  and z = , then d(x, y) =  and d(z,x) + d(z, y) = .
(P) (X,d) is not complete. Since I = ]–, ]⊂ X and d|I×I is the Euclidean metric on I, then

the sequence {xm = – + /m}m∈N is d-Cauchy but it is not d-convergent in X.
(P) If {xm} is a �-nondecreasing sequence in X, then one, and only one, of the following

cases holds.

� xm ∈ I for all m.
� xm ∈ {, } for all m.
� There exists z ∈ {, , , }such that xm = z for all m (that is, xm is a constant

sequence).

It follows from that fact that points of I (respectively, {, }, {, , , }) are only �-
related with points of I (respectively, {, }, themselves), and x � xm for all m ∈ N.

(P) If {xm} is a �-nondecreasing, d-convergent sequence in X, then one, and only one, of
the following cases holds.

� xm ∈ I for all m. In this case, its d-limit is also in I.
� xm ∈ {, } for all m. In this case, its d-limit is also in {, }.
� There exists z ∈ {,, } such that xm = z for all m. In this case, its d-limit is z.

It follows from (P). Notice that z �=  since d(, ) = . > .
(P) T is not a d-contraction (that is, there is no k ∈ [, ) such that d(Tx,Ty) ≤ kd(x, y) for

all x, y ∈X) because d(T,T) = d(–, ) =  but d(, ) = .

Now we prove assertions (a)-(j), (p) and (p′) taking into account that g is the identity
mapping on X.

(a) T(X)⊆X. It is obvious.
(b) T is �-nondecreasing. Let x, y ∈ X be such that x� y and x �= y. By (P), if x ∈ I, then

y ∈ I and x ≤ y. Then Tx = x/ ≤ y/ = Ty, being Tx,Ty ∈ I, so Tx � Ty. If x ∈ {, },
then y ∈ {, }, so Tx = Ty. The case x ∈ {, , , } is impossible since y �= x.

(c) There exists x ∈X such that x � Tx. If x = –, then x = –� –/ = Tx.
(d) There exists k ∈ [, [ such that d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X for which x� y. Let

k = / and assume that x, y ∈ X are such that x� y. By (P), if x ∈ I, then y,Tx,Ty ∈ I

and d(Tx,Ty) = |x/ – y/| = |x – y|/ = (/)d(x, y). If x ∈ {, }, then y ∈ {, } and
d(Tx,Ty) =  = d(x, y). If x ∈ {, , , }, then y = x and Tx = Ty ∈ {–, , } ⊂ I. There-
fore d(Tx,Ty) = .

(e) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X such that x � y � z. By (P), there are only
three cases. If x, y, z ∈ I, the triangular inequality holds because it is true in R provided
with the Euclidean metric. If x, y, z ∈ {, }, then all distances are zero. Finally, if x = y =
z ∈ {, , , }, all distances are either zero (if x = y = z ∈ {,, }) or . (if x = y = z = ).

(f ) d(x, y)≤ d(x, z)+d(y, z) for all x, y, z ∈X such that x� y� z. It is similar to the previous
one using (P).

(g) Every d-Cauchy, �-nondecreasing sequence in X is d-convergent. It follows from (P).
(h) If {xm} is a �-nondecreasing sequence and {xm} d-converges to x ∈ X, then xm � x for

all m. It also follows from (P).
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(i) d(x, z) ≤ d(y,x) + d(y, z) for all x, y, z ∈ X such that y� x and y� z. It is similar to (e)
using (P).

(j) Every d-precoincidence point of T and g is a coincidence point of T and g . Assume
that d(Tx, gx) = d(gx,Tx) = . Since Tx ∈ T(X) ⊂ I, it is impossible Tx, gx ∈ {, } or
Tx, gx ∈ {, } (the only cases, far from I, in which the distance between them can be
zero). Then d(Tx, gx) =  implies thatTx, gx ∈ I and  = d(Tx, gx) = |Tx–gx|, soTx = gx.

(p) g(X) =X is �-nondecreasing d-closed. It is immediate: indeed, g(X) =X is d-closed.
(p′) T and g are (d,�)-nondecreasing-continuous and commuting, and g is �-nonde-

creasing. It is only necessary to prove that T is (d,�)-nondecreasing-continuous. Ac-
tually, it follows from (P) since there are only three cases: if xm ∈ I for allm, its d-limit
x is also in I, and {Txm = –xm/} d-converges to Tx = x/; if xm ∈ {, } for all m,
then x ∈ {, } and Txm =  = Tx for all m; finally, if there exists z ∈ {,, } such
that xm = z for all m, then x = z = xm for all m.

Wepoint out thatT is not d-continuous: if xm =  and x = , then {xm} → x but {Txm =
T = –} does not d-converge to T = .
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6. Kadelburg, Z, Nashine, HK, Radenović, S: Common coupled fixed point results in partially ordered G-metric spaces.

Bull. Math. Anal. Appl. 4, 51-63 (2012)
7. Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory

Appl. 2009, Article ID 917175 (2009)
8. Fang, JX: On fixed point theorem in fuzzy metric spaces. Fuzzy Sets Syst. 46, 107-113 (1992)
9. Gregori, V, Sapena, A: On fixed point theorem in fuzzy metric spaces. Fuzzy Sets Syst. 125, 245-252 (2002)
10. Alaca, C, Turkoglu, D, Yildiz, C: Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 29, 1073-1078

(2006)
11. Cho, YJ, Roldán, A, Martínez-Moreno, J, Roldán, C: Coupled coincidence point theorems in (intuitionistic) fuzzy

normed spaces. J. Inequal. Appl. 2013, Article ID 104 (2013)
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