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ABSTRACT. Some new coincidence point and fixed point theorems for multivalued mappings in complete
metric space are proved. The results presented in this paper enrich and extend the corresponding results
in [5-16, 20-25, 29].
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1. INTRODUCTION AND PRELIMINARIES.

In recent years, the existence and uniqueness of coincidence points and fixed points for commuting
mappings, weakly commuting mappings and compatible mappings have been considered by several authors
(see [2, 3, 6, 8, 17-28]). The purpose of this paper is to study the existence of coincidence points and fixed
point for multivalued mappings in complete metric space from different aspects. The results presented in
this paper enrich and extend the corresponding results in [S-16, 20-25, 29]. ,

Throughout this paper, letR* = [0, +) and (X, d) a complete metric space. For any nonempty subsets
A and B of X, we denote
d(x,A) =inf{d(x,a): a EA}(x EX),

d(A,B) = inf{d(a,b): a €A, b EB},
H(A,B)-max{s:g d(a,b), f\exg d(b,A)},

CC(X)={A: A is a nonempty compact subset of X},

CB(X)={A: A is a nonempty closed and bounded subset of X}.
and H(:,") is called the Hausdorff metric on CB(X).
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LEMMA 1 [4, Lemma 2.2]. Let (X,d) be a metric space, A CX a nonempty compact subset and
B C X aclosed subset. Ifd(A,B)=0, thenA NB = .

REMARK 1. Even if A and B are both bounded closed subsets, the conclusion of Lemma 1 need not
hold. This can be seen from the following

EXAMPLE 1. Let X = R? and d the Euclidean metric on R%. Letting
p('a ') = min {11 d(" .)}y
it is easy to verify that p(-, ) is a metric on R% Therefore (R% p) is also a metric space, and it is bounded.

Now we consider the following subsets of (R? p):

2,21 .21
A-l(x,y)ER.y x,xzz}

B ={(x,y)ER* y =0}
Then A and B are both bounded and closed and d(A,B) =0, but A NB = &.
LEMMA 2 [5, Theorem 1]. Let ®: R* — R* be an increasing function such that

O(t +) <t for all t>0 (1.1)
and
S @°(t) is finite for all ¢ >0. (1.2)
Then there exists a strictly increasing function ¢: R* — R such that
D(t) < () for all >0 (1.3)
and
3¢°(¢) is finite for ¢ > 0. (1.4)

LEMMA 3 [5]. (i) f ®: R* — R" is strictly increasing and satisfies (1.2), then @ satisfies (1.1).
(ii) Let ®: R* — R* be increasing and satisfies (1.1). If Z®"(#,) is convergent for some ¢, > 0.
Then (1.2) holds.
(iii) Let @: R* = R" be increasing and satisfies (1.1). If # < ®(z) then? = 0.

2. MAIN RESULTS

Recently, Kaneko and Sessa [6] extended the definition of compatibility to include multivalued
mappings and proved the following theorem:

THEOREM 1. Let f: X = X and T: X — CB(X) be compatible continuous mapping such that
T(X)C f(X) and

H(Tx,Ty)smax{d(ﬁ,fj’), d(fx,Tx), d(fy,Ty), -lz-(d(ﬁr,Ty)+d()j’,Tx))}

forallx, y in X, where 0 <h < 1. Then there exists a point x. EX such that fx. € Tx..

As an improvement and generalization of Theorem 1, we have the following

THEOREM 2. Let F: X - CC(X), S, T: X — CB(X) be three multivalued mappings such that
SX)UT(X)CF(X), F(X)is closed and

H(Sx,Ty)s (D(max {d(Fx,Fy), d(Fx,Sx), d(Fy,Ty), %(d(Fx,Iy) +d(Fy,Sx))})
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forallx, y in X, where ®@: R* — R* is an increasing function satisfying conditions (1.1) and (1.2). Then
there exists a point z € X such that
FzNSzNTz = 3.
PROOF. By Lemma 2, there exists a strictly increasing function ¢: R* — R* satisfying conditions
(1.3) and (1.4). For anyx, y in X let us denote

ACey) - max {d(Fe, Fy), d(Fx,S), d@Fy,Ty), 3, Ty) +d(Fy. S0,

Then (2.1) can be reduced as follows:
H(Sx,Ty) = DA (x, y)).
For any x, € X, since S(X) C F(X), there exists an x, € X such that Tx, NSx, = &. Let y, € Fx; NSx,,

then we have

d(y,, Tx,) = H(Sx,, Tx,) (since y, € Sx))

= O(A (xp,.x,))
(@) HKA(x,x;) =0, then d(Fxy, Sx,) = 0. By Lemma 1, Fx,NSx, = . Taking z € Fx,NSx,, then we
have

H(z,Tx,) = H(Sxo, Tx) < (A (%0, X))
= ¢(max {0, 0, d(z,Tx,), %d(z,Txo)})

< W(d(z,Txy)).
By Lemma 3 (iii) d(z,Tx,) = 0. Since Tx, is closed, z € Tx,. Therefore in this case the conclusion of
Theorem 2 is proved.
() IfA(xyx,)>0, then, by (1.3) we have
d(y,, Tx,) = (A (x5, X)) < ¥A (xp-X,))
Consequently, we can find an y, € Tx, such that

d(y1,¥2) s ¥A (%, X,)). (2.2)
Since T(X) C F(X), for y, € Tx, C F(X), there exists a point x, € X such that y, € Fx,. This implies that

we can find an y, € Fx, N Tx, such that (2.2) holds.
On the other hand, by the assumption we have

d(Sx, y;) s H(Sx, Tx,) < DA (x, x,))-
If A(x,x;)=0, by the same way as stated in the proof of (a) we can prove that the conclusion of
Theorem 2 is true. If A(x,x;) > 0, repeating the same way mentioned above, we can find an x; €X and
y3 € Fx; N Sx, such that
d(y5 y,) = $(A (x5 1,))-
Inductively, we can define two sequence {x,}, {y,} CX such that

EFx, .,N
{”“‘ %on 01 1505, n=0,12,... @2.3)

ybOZEFxZa02nTxbOI
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and

{d(vz,..p Vo +2) < HA (X, X5, 1)) n =012 (2.4)

AV2a3 Y2u12) S WA 12 X2 ,1))
Now we prove that {y,} is a Cauchy sequence in X. In fact, for any positive integer n we have

A%y, Xy, ,y) =max {d(Fx,, Fx, ), d(Fx,, 5x,), d(Fx,,,, Tx,.,)
%(d(Fx,,, Tx,, 1) +d(Fx, ,,, Sx,)}
=max {dVzs Yonsr) A0 Yous1h @Vants Yo i2h
20 Yoo )+ Voo u )

smax {d(Va Yani1r AVns1s Yan 2}
By the same way we can prove that
AQty, 2 X)) SMAX {d(Va sty Yous2h EVonaz Yaus3)}
Consequently, in general, we have

d(yn +1 yu #2) = W)(xn’ xu 01))
= «max {d(yn’ yn 01)’ d(yn +1 yn 02)})’ n= 1’2’ b (2'5)
Ifd(Y, +15 Yus2) >dVas Yuo1) 20, then, by (2.5) and Lemma 3 we have

d(yu +1 Ya 02) = ¢(d(yu +1 yu 02)) < d(yn +1 Y #2)
a contradiction. Therefore we have d(y, .1, Ya.2) sd(y., y..1). Hence we have

d(YI’ yn +l) = «d(}’.-p y,.)) ...

<¢" " d(y, y))), n=12,.. (2.6)
If d(y,, y)=0, i.e. y; =y, denoting z =y, =y, then z =y, € Fx;NSxy, z =y, EFx,NTx;. Hence

z € Fx;NTx,. Similarly using the proof in (a) we can prove z € Sx, Hence the conclusion of Theorem 2
is proved.

Ifd(y;, y,) >0, in view of condition (1.4), we know that £¢" ~'d(y,, y,)) is convergent. It follows

from (2.6) that =d(y,, y,,,) is convergent too. This implies that {y,} is a Cauchy sequence in X. Let it
converge to some point y. in X. Since y, € Fx, C F(X) and F(X) is closed, this shows that y. € F(X).
Hence there exists z € X such that y. € Fz. By (2.1) and (2.3) we have

d(y.,SZ) = d(y" You 4»2) +d(yZn +2 SZ)

Sd(y" y2n02)+H(Tx25¢1’sz) (Siﬂce You ¢2ETX'I- 01)

<d(y, Y2n + 2) + ®(A(z, 29, + 1))

<d(y., ¥,,.,) + D(max {d(Fz, Fx,,,,), d(Fz,Sz),
APt 1y T 1), 5(@(F2 Ty ) + A, SN
=d(y.,y,, ,,) + D(max {d(d(y., y,, ,,),d(y.,52),

011 Yon s 500 Y20, + A0 SN

Letting n — o, we have
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d(y.,Sz) < Pmax [0, d(y.,Sz), 0, -;-d(y.,Sz)} < ®d(y.,Sz)).

By Lemma 3 (iii) we have d(y.,Sz) = 0. Since Sz is closed, so that y. € Sz.
Similarly, we can prove that y. € Tz. Therefore we have y. € Fz NSz NTz.

This completes the proof.
REMARK 2. (i) Theorem 1 is a special case of Theorem 2 with F being a single-valued mapping,
S=Tand ®(t)=h -t, where0<h <1 andt ER*.
(ii) Even if the mapping F in Theorem 2 is assumed to satisfy the condition "F(X) is closed",
Theorem 2 still weakens the continuity and compatibility conditions on T in Theorem 1. This can be seen
from the following Example:

EXAMPLE 2. Let X =R* and fand g be two functions from R* into R* defined by

X, if x<l1, 1
R AR OEECIR
It is easy to see that f(X) is closed, f and g are continuous, but they are not compatible (see [8, Example
2.5)).

(iii) Theorem 2 extends and improves also the corresponding results of [7, 8, 20-25].
As a consequence of Theorem 2 we have the following result:
COROLLARY 1. LetT;: X — CB(X)(i =1,2,...) and

H(Tx Ty) = Smax{d(e, ), d@e.Ti), Ty ST +A0TRN),  in) @)

for all x, y in X, where ®@: R* — R" is an increasing function satisfying conditions (1.1) and (1.2). Then
the fixed point set {x: x ETx}, i = 1,2,... are nonempty and equal to each other. Moreover, if at least
one of {T;} is continuous, then they are all closed.

PROOF. For the sake of convenience we prove the conclusions of Corollary only for the case of i=1
and j=2.

By Theorem 2, there exists anz € X such thatz €T,z N 7T, z.

Now we prove that the fixed point sets of 7) and T, are equal to each other. In fact, if u is a fixed

point of T, i.e. u € Tyu, then we have
d(u,T,u)<H(Twu,T,u)

s<l>(max{d(u,u), d(u,Twu), d(u,T,u), %(d(u,Tzu)+(d(u,Tlu))})

< (D(max{o, 0, d(u,T,u), %d(u,T,u)})
< O(d(u,T,u)).
By Lemma 3 (iii), we have d(u,T,u) = 0. Since T,u is closed, u €T, u.

By the same way we can prove that if w is a fixed point of T, then w is also a fixed point of T,. Hence

we have {x EX: x ETyx} = {x EX: x ET,x}.
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Next, we prove that if T} (or T,) is continuous, then the set of fixed points {x €X: x € T\x} is a closed
set. In fact, let {x,} C {x EX: x ET;x} andx, —> x asn —» ». Sincex, € T\x, and T)x, — T;x asn — o,
we have

dx,Tx)sd(x,x,)+d(x,,Tx)
=d(x,x,)+H(Tx,,T,x) =0 as n — ,

i.e.d(x,Tix) = 0. Therefore x € Tx.

This completes the proof.

REMARK 3. If all the mapping T}, i = 1,2,... in Corollary 1 are single-valued, then T}, i = 1,2,...
have a unique common fixed point in X.

In fact, let u, v € X be two common fixed points of 7;, i = 1,2,..., then we have

d(u,v)= d(Tu,Ty)

< ®(max {d(u,v), d(u,Tu), dv,Tyv),
2@, Tp)+d, Tu)))

= ®(max {d(u,v), 0, 0, d(u,v)})
<(d(u,v)), for all i, j, i=j.
Hence we have d(u,v) =0, ie.u =v.

REMARK 4. The results of [5, Theorem 9], [9, 10, 11, 12, 13, Theorem 1], 14, Theorem] and [15,
Theorem 1, 3, 4] are all the special cases of Corollary.

DEFINITION. A function W(t,, b, &5, £, &5): R** = R* is called to satisfy the condition (W), if it is
nondecreasing in each variable and there exists an increasing function ®(t): R* — R"* satisfying the
conditions (1.1) and (1.2) such that

WY(t,t,t,at,bt) < B(t), Vt20,a+b=3,a, b=1,2.

THEOREM 3. Let F: X - CC(X), S, T: X — CB(X) be three multivalued mappings such that

SX)UTX)CF(X), F(X)is closed and satisfies the following conditions:

H(Sx,Ty) s¥(d(Fx,Fy), d(Fx,Sx), d(Fy,Ty), d(Fx,Ty), d(Fy,Sx)) (2.8)
for all x, y in X, where W(t,, &, 1, £,, 15): R*S —» R* satisfies condition (). Then there exists a pointz EX
such that Fz2NSz NTz = .

PROOF. Let

r‘-max{d(Fx,Fy), d(Fx,Sx), d(Fy, Ty), %(d(Fx,Iy)w(Fy,s:c))}.

Without loss of generality we can assume thatd(Fx, Ty) = d(Fy,Sx) (otherwise, it can be proved similarly).
Then we have
t" = max {d(Fx,Fy), d(Fx,Sx), d(Fy,Ty)},

t'= %(d(Fx, Ty) + d(Fy,Sx)) = d(Fy,Sx)

2t" 2 d(Fx,Ty) + d(Fy,Sx) = d(Fx,Ty)
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Using condition (¥) and (2.8) we have

H(Sx,Ty)sW(t,t,17,2 ) s (1)

-(D(Max{d(Fx,Fy), d(Fx,Sx), d(Fy,Ty), %(d(Fx,I}')+d(Fy,Sx))}).

Therefore, F, S, T satisfies all conditions of Theorem 2. The conclusion of Theorem 3 follows from
Theorem 2 immediately.
From Theorem 3 we can obtain the following

COROLLARY 2. LetT;: X — CB(X), i = 1,2,... satisfy the following condition
H(T x,T y)sW(d(x,y), d(x,Tx), d(y,T;y), d(x,T;y), d(y,Tx)), Vi, j, i=j
for all x, y in X, where W(t,, 5, 5,4,1): R** — R* satisfies condition (¥). Then the fixed point sets

{x EX: x ETx}, i =1,2,... are nonempty and equal to each other. Moreover, ifone of T, i = 1,2,...
is continuous, then they are closed.
REMARK §. Corollary 2 generalizes the corresponding result of [29].
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