INCLUSION RESULTS FOR CONVOLUTION SUBMETHODS

JEFFREY A. OSIKIEWICZ and MOHAMMAD K. KHAN

Received 30 January 2003 and in revised form 9 June 2003

Abstract

If B is a summability matrix, then the submethod B_{λ} is the matrix obtained by deleting a set of rows from the matrix B. Comparisons between Euler-Knopp submethods and the Borel summability method are made. Also, an equivalence result for convolution submethods is established. This result will necessarily apply to the submethods of the Euler-Knopp, Taylor, Meyer-König, and Borel matrix summability methods.

2000 Mathematics Subject Classification: 40C05, 40D25, 40G05, 40 G10.

1. Introduction and notation. Let E be an infinite subset of $\mathbb{N} \cup\{0\}$ and consider E as the range of a strictly increasing sequence of nonnegative integers, say $E:=\{\lambda(n)\}_{n=0}^{\infty}$. If $B:=\left(b_{n, k}\right)$ is a summability matrix, then the submethod B_{λ} is the matrix whose $n k$ th entry is $B_{\lambda}[n, k]:=b_{\lambda(n), k}$. Thus, for a given sequence x, the B_{λ}-transform of x is the sequence $B_{\lambda} \chi$ with

$$
\begin{equation*}
\left(B_{\lambda} x\right)_{n}=(B x)_{\lambda(n)}:=\sum_{k=0}^{\infty} b_{\lambda(n), k} x_{k} . \tag{1.1}
\end{equation*}
$$

Since B_{λ} is a row submatrix of B, it is regular (i.e., limit preserving) whenever B is regular.
Row submatrices have appeared throughout the literature [5, $6,8,12$], but they were first studied as a class unto themselves by Goffman and Petersen [7], and later by Steele [14]. The class of Cesàro submethods has been studied by Armitage and Maddox [1] and Osikiewicz [11].

Let A and B be two summability matrices. If every sequence which is A-summable is also B-summable to the same limit, then B includes A, denoted by $A \subseteq B$. Also, B is called a triangle if $b_{n, k}=0$ for all $k>n$ and $b_{n, n} \neq 0$ for all n. The following lemma extends [1, Theorem 1].

Lemma 1.1. Let B be a summability matrix and let $E:=\{\lambda(n)\}$ and $F:=\{\rho(n)\}$ be infinite subsets of $\mathbb{N} \cup\{0\}$.
(1) If $F \backslash E$ is finite, then $B_{\lambda} \subseteq B_{\rho}$.
(2) If B is a triangle and $B_{\lambda} \subseteq B_{\rho}$, then $F \backslash E$ is finite.
(3) If B is a triangle, then B_{λ} is equivalent to B_{ρ} if and only if the symmetric difference $E \triangle F$ is finite.

In particular, $B \subseteq B_{\lambda}$ for any λ.
Proof. Assume $F \backslash E$ is finite and let x be a sequence that is B_{λ}-summable to L. Then there exists an N such that $\{\rho(n): n \geq N\} \subseteq E$. That is, $\{\rho(n): n \geq N\}$ is a
subsequence of $\{\lambda(n)\}$. Since $\lim _{n}\left(B_{\lambda} x\right)_{n}=\lim _{n}(B x)_{\lambda(n)}=L$, we have $\lim _{n}\left(B_{\rho} x\right)_{n}=$ $\lim _{n}(B x)_{\rho(n)}=L$.

Now assume B is a triangle, and hence invertible, and $F \backslash E$ is infinite. Let $F \backslash E:=$ $\{\rho(n(j))\}_{j=0}^{\infty}$ with $\rho(n(j))<\rho(n(j+1))$. Consider the sequence y defined by

$$
y_{k}:= \begin{cases}(-1)^{j}, & \text { if } k=\rho(n(j)) \text { for some } j \tag{1.2}\\ 0, & \text { otherwise }\end{cases}
$$

and let x be the sequence $B^{-1} y$. Then, for every n,

$$
\begin{equation*}
\left(B_{\lambda} x\right)_{n}=(B x)_{\lambda(n)}=\left(B\left(B^{-1} y\right)\right)_{\lambda(n)}=y_{\lambda(n)}=0 . \tag{1.3}
\end{equation*}
$$

Hence, $\lim _{n}\left(B_{\lambda} x\right)_{n}=0$. However, for every j,

$$
\begin{equation*}
\left(B_{\rho} x\right)_{n(j)}=(B x)_{\rho(n(j))}=\left(B\left(B^{-1} y\right)\right)_{\rho(n(j))}=y_{\rho(n(j))}=(-1)^{j} . \tag{1.4}
\end{equation*}
$$

Thus x is not B_{ρ}-summable. Therefore B_{ρ} does not include B_{λ}, which completes the contrapositive of assertion (2). Lastly, assertion (3) follows from (1) and (2) since $E \triangle F$:= $(E \backslash F) \cup(F \backslash E)$.

To show the reason for the necessity of B being a triangle in assertion (2) of Lemma 1.1, consider the matrix B whose $n k$ th entry is

$$
B[n, k]:= \begin{cases}0, & \text { if } n \text { even and } k \neq \frac{n}{2} \tag{1.5}\\ 1, & \text { if } n \text { even and } k=\frac{n}{2} \\ 0, & \text { if } n \text { odd and } n \neq k \\ 1, & \text { if } n \text { odd and } n=k\end{cases}
$$

Then if $\lambda(n):=2 n$ and $\rho(n):=2 n+1, F \backslash E$ is infinite and $B_{\lambda} \subseteq B_{\rho}$.
2. Inclusion results for Euler-Knopp submethods. For $r \in \mathbb{C} \backslash\{0,1\}$, the EulerKnopp method of order r is given by the matrix E_{r} whose $n k$ th entry is

$$
E_{r}[n, k]:= \begin{cases}\binom{n}{k} r^{k}(1-r)^{n-k}, & \text { if } k \leq n, \tag{2.1}\\ 0, & \text { if } k>n\end{cases}
$$

For the case $r=1, E_{1}$ is the identity matrix, and E_{0} is the matrix whose $n k$ th entry is

$$
E_{0}[n, k]:= \begin{cases}1, & \text { if } k=0, n=0,1,2, \ldots \tag{2.2}\\ 0, & \text { otherwise }\end{cases}
$$

It is well known that E_{r} is regular if and only if $0<r \leq 1$ (see [4]).

Let $E:=\{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup\{0\}$ and $r \in \mathbb{C} \backslash\{0,1\}$. The submethod $E_{r, \lambda}$ is the matrix whose $n k$ th entry is

$$
E_{r, \lambda}[n, k]:= \begin{cases}\binom{\lambda(n)}{k} r^{k}(1-r)^{\lambda(n)-k}, & \text { if } k \leq \lambda(n), \tag{2.3}\\ 0, & \text { if } k>\lambda(n) .\end{cases}
$$

Then $E_{r, \lambda}$ is regular if and only if E_{r} is regular.
By a direct application of Lemma 1.1, we have the following inclusion result for the $E_{r, \lambda}$ methods.

Lemma 2.1. Let $E:=\{\lambda(n)\}$ and $F:=\{\rho(n)\}$ be infinite subsets of $\mathbb{N} \cup\{0\}$ and $r \neq 0$.
(1) The method $E_{r, \lambda} \subseteq E_{r, \rho}$ if and only if $F \backslash E$ is finite.
(2) The method $E_{r, \lambda}$ is equivalent to $E_{r, \rho}$ if and only if the symmetric difference $E \triangle F$ is finite.

We now examine the relationship between $E_{r, \lambda}$ and the Borel summability method. Recall that a sequence x is Borel summable to L if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} e^{-t} \sum_{k=0}^{\infty} x_{k} \frac{t^{k}}{k!}=L \tag{2.4}
\end{equation*}
$$

Theorem 2.2. Let $E:=\{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup\{0\}$ and $r>0$. Then the Borel summability method includes $E_{r, \lambda}$ if and only if $S:=(\mathbb{N} \cup\{0\}) \backslash E$ is finite.

Proof. If S is finite, then by Lemma 2.1, E_{r} and $E_{r, \lambda}$ are equivalent. But the Borel summability method includes E_{r} for $r>0$ (see [4]). Hence, it also includes $E_{r, \lambda}$. If S is infinite, then it may be written as a strictly increasing sequence of nonnegative integers, say $S:=\{\rho(m)\}_{m=0}^{\infty}$. If $M_{n}:=\max _{0 \leq k \leq n}\left|E_{r}[n, k]\right|$, consider the sequence y defined by

$$
y_{n}:= \begin{cases}(\rho(m)!)^{2}(\rho(m)+1) M_{\rho(m)}, & \text { if } n=\rho(m) \tag{2.5}\\ 0, & \text { otherwise }\end{cases}
$$

and let x be the sequence $E_{r}^{-1} y$; that is, $y=E_{r} x$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(E_{r, \lambda} x\right)_{n}=\lim _{n \rightarrow \infty}\left(E_{r} x\right)_{\lambda(n)}=\lim _{n \rightarrow \infty} y_{\lambda(n)}=0 . \tag{2.6}
\end{equation*}
$$

Hence, x is $E_{r, \lambda}$-summable to 0 . Now observe that for a given n,

$$
\begin{equation*}
\left|y_{n}\right|=\left|\left(E_{r} x\right)_{n}\right| \leq \sum_{k=0}^{n}\left|E_{r}[n, k]\right|\left|x_{k}\right| \leq M_{n} \sum_{k=0}^{n}\left|x_{k}\right| . \tag{2.7}
\end{equation*}
$$

Thus, for $n=\rho(m)$, we have

$$
\begin{align*}
(\rho(m)!)^{1 / \rho(m)} & =\left(\frac{1}{\rho(m)!} \cdot \frac{1}{\rho(m)+1} \cdot \frac{\left|y_{\rho(m)}\right|}{M_{\rho(m)}}\right)^{1 / \rho(m)} \tag{2.8}\\
& \leq\left(\frac{1}{\rho(m)!} \cdot \frac{1}{\rho(m)+1} \sum_{k=0}^{\rho(m)}\left|x_{k}\right|\right)^{1 / \rho(m)} .
\end{align*}
$$

Since $\limsup \sup _{m}(\rho(m)!)^{1 / \rho(m)}=\infty$,

$$
\begin{equation*}
\limsup _{m \rightarrow \infty}\left(\frac{1}{\rho(m)!} \cdot \frac{1}{\rho(m)+1} \sum_{k=0}^{\rho(m)}\left|x_{k}\right|\right)^{1 / \rho(m)}=\infty \tag{2.9}
\end{equation*}
$$

and it follows that $\limsup _{n}\left(\left|x_{n}\right| / n!\right)^{1 / n}=\infty$. Thus, $\sum_{k=0}^{\infty}\left(x_{k} / k!\right) t^{k}$ diverges for all nonzero t and hence x is not Borel summable.

Theorem 2.3. There exists a sequence which is Borel summable but not $E_{r, \lambda}$-summable for any λ and $r>0$.

Proof. Let $r>0$ and consider the sequence x defined by

$$
\begin{equation*}
x_{n}:=n\left(-\frac{1}{r}\right)\left(1-\frac{2}{r}\right)^{n-1} \tag{2.10}
\end{equation*}
$$

Then it can be shown that $\left(E_{r, \lambda} x\right)_{n}=(-1)^{\lambda(n)} \lambda(n)$. Hence x is not $E_{r, \lambda}$-summable for any λ. However,

$$
\begin{align*}
e^{-t} \sum_{k=0}^{\infty} x_{k} \frac{t^{k}}{k!} & =e^{-t} \sum_{k=1}^{\infty}\left[k\left(-\frac{1}{r}\right)\left(1-\frac{2}{r}\right)^{k-1}\right] \frac{t^{k}}{k!} \\
& =\left(-\frac{1}{r}\right) e^{-t} \sum_{k=1}^{\infty}\left(1-\frac{2}{r}\right)^{k-1} \frac{t^{k}}{(k-1)!} \\
& =\left(-\frac{1}{r}\right) t e^{-t} \sum_{k=0}^{\infty}\left(1-\frac{2}{r}\right)^{k} \frac{t^{k}}{k!} \tag{2.11}\\
& =\left(-\frac{1}{r}\right) t e^{-t} e^{(1-2 / r) t} \\
& =\left(-\frac{1}{r}\right) t e^{-(2 / r) t}
\end{align*}
$$

Since $r>0$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} e^{-t} \sum_{k=0}^{\infty} x_{k} \frac{t^{k}}{k!}=\lim _{t \rightarrow \infty}\left(-\frac{1}{r}\right) t e^{-(2 / r) t}=0 \tag{2.12}
\end{equation*}
$$

and hence x is Borel summable to 0 .
3. Convolution methods. Let p and q be sequences of real numbers with $p_{k} \geq 0$, $q_{k} \geq 0, \sum_{k=0}^{\infty} p_{k}=1$, and $\sum_{k=0}^{\infty} q_{k}=1$. The convolution summability method is given by the matrix $C^{*}:=\left(c_{n, k}\right)$ whose $n k$ th entry is

$$
c_{n, k}:= \begin{cases}q_{k}, & \text { if } n=0 \tag{3.1}\\ \sum_{j=0}^{k} c_{n-1, j} p_{k-j}, & \text { if } n \geq 1\end{cases}
$$

It is clear that C^{*} is a nonnegative matrix such that for every $n, \sum_{k=0}^{\infty} c_{n, k}=1$. Some classical summability matrices are examples of the matrix C^{*}. If $0 \leq r \leq 1, p:=\{1-$ $r, r, 0,0, \ldots\}$, and $q:=\{1,0,0, \ldots\}$, then C^{*} is the Euler-Knopp method of order r. If $0 \leq r<1, p:=\left\{0,(1-r),(1-r) r,(1-r) r^{2}, \ldots\right\}$, and $q:=\left\{(1-r),(1-r) r,(1-r) r^{2}, \ldots\right\}$, then C^{*} is the Taylor method of order r, denoted by T_{r}. If $0<r<1$ and $p:=q:=$ $\left\{(1-r),(1-r) r,(1-r) r^{2}, \ldots\right\}$, then C^{*} is the Meyer-König method of order r, denoted by S_{r}. If $p:=q:=\{1 / k!e\}$, then C^{*} is the Borel matrix method B^{*}. Similar forms of the convolution method are known by different names, such as the random-walk method and Sonnenschein method. (Further information on all of these methods may be found in [3, 4, 13].)

If C^{*} is the convolution method formed from the sequences p and q, then let

$$
\begin{equation*}
\mu:=\sum_{j=0}^{\infty} j p_{j}, \quad v:=\sum_{j=0}^{\infty} j q_{j} . \tag{3.2}
\end{equation*}
$$

We note here that for the remainder of this work, p and q are nonnegative sequences whose sums are 1 , and μ and v represent the sums in (3.2). Also, $c_{n, k}:=0$ whenever $k<0$.

We next present some preliminary results concerning the convolution method.
Lemma 3.1. The convolution method C^{*} is regular if and only if $p_{0}<1$.
Proof. See [9].
Lemma 3.2. If $\mu<\infty$ and $v<\infty$, then for every n,

$$
\begin{equation*}
\sum_{k=0}^{\infty} k c_{n, k}=n \mu+v . \tag{3.3}
\end{equation*}
$$

Proof. Note that for $n=0$, the result holds. So assume the result holds for some integer $n>0$. Then

$$
\begin{align*}
\sum_{k=0}^{\infty} k c_{n+1, k} & =\sum_{k=0}^{\infty} k\left(\sum_{j=0}^{k} c_{n, j} p_{k-j}\right)=\sum_{j=0}^{\infty} c_{n, j} \sum_{k=j}^{\infty} k p_{k-j} \tag{3.4}\\
& =\sum_{j=0}^{\infty} c_{n, j}\left(\sum_{i=0}^{\infty} i p_{i}+j \sum_{i=0}^{\infty} p_{i}\right)=\sum_{j=0}^{\infty} \mu c_{n, j}+\sum_{j=0}^{\infty} j c_{n, j}=(n+1) \mu+v .
\end{align*}
$$

By induction, the result follows.

Lemma 3.3. Let C^{*} be the convolution method formed from the sequences p and q and $D^{*}:=\left(d_{n, k}\right)$ the convolution method formed from the sequences p and $\tilde{q}:=\{1,0,0, \ldots\}$. Then for nonnegative integers n, k, and j,

$$
\begin{equation*}
c_{n+j, k}=\sum_{i=0}^{k} c_{n, k-i} d_{j, i} . \tag{3.5}
\end{equation*}
$$

The proof of this lemma is a straightforward induction argument left to the reader.
LEmmA 3.4. Let C^{*} be the convolution method formed from the sequences p and q. If $\mu<\infty, v<\infty, 0<\sum_{j=0}^{\infty}(j-\mu)^{2} p_{j}$, and $\sum_{j=0}^{\infty} j^{3} p_{j}<\infty$, then

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|c_{n, k+1}-c_{n, k}\right|=O\left(\frac{1}{\sqrt{n}}\right) \tag{3.6}
\end{equation*}
$$

Proof. Let $D^{*}:=\left(d_{n, k}\right)$ be the convolution method formed from the sequences p and $\tilde{q}:=\{1,0,0, \ldots\}$. We first prove that the result holds for D^{*}.

Let $\phi(t):=\left(\sqrt{2 \pi} e^{t^{2} / 2}\right)^{-1}$ and $x_{n, k}:=(k-n \mu) / \sigma \sqrt{n}$, where $\sigma^{2}:=\sum_{j=0}^{\infty}(j-\mu)^{2} p_{j}$. Then

$$
\begin{align*}
\sqrt{n} \sum_{k=0}^{\infty}\left|d_{n, k+1}-d_{n, k}\right| \leq & \sqrt{n} \sum_{k=0}^{\infty}\left|d_{n, k+1}-\frac{1}{\sigma \sqrt{n}} \phi\left(x_{n, k+1}\right)\right| \\
& +\sqrt{n} \sum_{k=0}^{\infty}\left|\frac{1}{\sigma \sqrt{n}} \phi\left(x_{n, k+1}\right)-\frac{1}{\sigma \sqrt{n}} \phi\left(x_{n, k}\right)\right| \tag{3.7}\\
& +\sqrt{n} \sum_{k=0}^{\infty}\left|\frac{1}{\sigma \sqrt{n}} \phi\left(x_{n, k}\right)-d_{n, k}\right| .
\end{align*}
$$

The first and the third terms on the right-hand side of the inequality are bounded by a result of Bikjalis and Jasjunas [2]. For the middle term, the mean value theorem yields

$$
\begin{align*}
\sqrt{n} \sum_{k=0}^{\infty}\left|\frac{1}{\sigma \sqrt{n}} \phi\left(x_{n, k+1}\right)-\frac{1}{\sigma \sqrt{n}} \phi\left(x_{n, k}\right)\right| & =\frac{1}{\sigma} \sum_{k=0}^{\infty}\left|\phi^{\prime}\left(\xi_{n, k}\right)\right|\left(x_{n, k+1}-x_{n, k}\right) \tag{3.8}\\
& <\frac{K}{\sigma} \int_{\mathbb{R}}\left|\phi^{\prime}(t)\right| d t<\infty
\end{align*}
$$

where $\xi_{n, k} \in\left(x_{n, k}, x_{n, k+1}\right)$ and $K>0$ is some constant. Thus, the result holds for the convolution method D^{*}. Then, by Lemma 3.3,

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|c_{n, k+1}-c_{n, k}\right| & =\sum_{k=0}^{\infty}\left|\sum_{i=0}^{k+1} q_{k+1-i} d_{n, i}-\sum_{i=0}^{k} q_{k-i} d_{n, i}\right| \\
& =\sum_{k=0}^{\infty}\left|q_{k+1} d_{n, 0}+\sum_{i=1}^{k+1} q_{k+1-i} d_{n, i}-\sum_{i=0}^{k} q_{k-i} d_{n, i}\right|
\end{aligned}
$$

$$
\begin{align*}
& \leq p_{0}^{n} \sum_{k=0}^{\infty} q_{k+1}+\sum_{k=0}^{\infty} \sum_{i=0}^{k} q_{k-i}\left|d_{n, i+1}-d_{n, i}\right| \\
& \leq p_{0}^{n}+\sum_{i=0}^{\infty}\left|d_{n, i+1}-d_{n, i}\right| \sum_{k=i}^{\infty} q_{k-i} \\
& =p_{0}^{n}+\sum_{i=0}^{\infty}\left|d_{n, i+1}-d_{n, i}\right|=O\left(\frac{1}{\sqrt{n}}\right) . \tag{3.9}
\end{align*}
$$

4. Equivalence results for convolution submethods. Let $E:=\{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup\{0\}$. The convolution submethod C_{λ}^{*} is the matrix whose $n k$ th entry is

$$
\begin{equation*}
C_{\lambda}^{*}[n, k]:=C^{*}[\lambda(n), k] . \tag{4.1}
\end{equation*}
$$

Lemma 4.1. The convolution submethod C_{λ}^{*} is regular if and only if $p_{0}<1$.
Proof. If $p_{0}<1$, then C^{*} is regular and hence C_{λ}^{*} is also regular. Conversely, if C_{λ}^{*} is regular and $p_{0}=1$, then $C_{\lambda}^{*}[n, k]=q_{k}$ for all n and k. Since $\sum_{k=0}^{\infty} q_{k}=1$, there exists a \hat{k} such that $q_{\hat{k}} \neq 0$. Then $\lim _{n} C_{\lambda}^{*}[n, \widehat{k}]=q_{\hat{k}} \neq 0$, which contradicts the regularity of C_{λ}^{*}.

The following theorem compares C_{λ}^{*} with C^{*} for bounded sequences.
THEOREM 4.2. Let C^{*} be the convolution method formed from the sequences p and q with $\mu<\infty, v<\infty, 0<\sum_{j=0}^{\infty}(j-\mu)^{2} p_{j}$, and $\sum_{j=0}^{\infty} j^{3} p_{j}<\infty$. Let $E:=\{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup\{0\}$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda(n+1)-\lambda(n)}{\sqrt{\lambda(n)}}=0 \tag{4.2}
\end{equation*}
$$

then C^{*} and C_{λ}^{*} are equivalent for bounded sequences.
Proof. By Lemma 1.1, $C^{*} \subseteq C_{\lambda}^{*}$ for any λ. So assume $\lim _{n}(\lambda(n+1)-\lambda(n)) / \sqrt{\lambda(n)}=$ 0 and let x be a bounded sequence that is C_{λ}^{*}-summable to L. Consider the set $S:=$ $\{\rho(n)\}:=(\mathbb{N} \cup\{0\}) \backslash E$. If S is finite, then Lemma 1.1 shows that C_{λ}^{*} and C^{*} are equivalent for all sequences. So assume S is infinite. Then there exists an N such that for $n \geq N$, $\rho(n)>\lambda(0)$. Since E and S are disjoint, for $n \geq N$, there exists an integer m such that $\lambda(m)<\rho(n)<\lambda(m+1)$. We write $\rho(n):=\lambda(m)+j$, where $0<j<\lambda(m+1)-\lambda(m)$. Then, for $n \geq N$,

$$
\begin{align*}
\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{m}\right| & =\left|\sum_{k=0}^{\infty} c_{\rho(n), k} x_{k}-\sum_{k=0}^{\infty} c_{\lambda(m), k} x_{k}\right| \\
& =\left|\sum_{k=0}^{\infty} c_{\lambda(m)+j, k} x_{k}-\sum_{k=0}^{\infty} c_{\lambda(m), k} x_{k}\right| . \tag{4.3}
\end{align*}
$$

By Lemma 3.3, this becomes

$$
\begin{align*}
\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{m}\right| & =\left|\sum_{k=0}^{\infty}\left(\sum_{i=0}^{\infty} c_{\lambda(m), k-i} d_{j, i}\right) x_{k}-\sum_{k=0}^{\infty} c_{\lambda(m), k} x_{k}\right| \\
& =\left|\sum_{k=0}^{\infty} x_{k}\left[\left(\sum_{i=0}^{\infty} c_{\lambda(m), k-i} d_{j, i}\right)-\left(\sum_{i=0}^{\infty} c_{\lambda(m), k} d_{j, i}\right)\right]\right| \\
& \leq\|x\|_{\infty} \sum_{k=0}^{\infty} \sum_{i=0}^{\infty} d_{j, i}\left|c_{\lambda(m), k-i}-c_{\lambda(m), k}\right| \\
& =\|x\|_{\infty} \sum_{i=0}^{\infty} d_{j, i} \sum_{k=0}^{\infty}\left|\sum_{l=0}^{i-1} c_{\lambda(m), k-l}-c_{\lambda(m), k-l-1}\right| \tag{4.4}\\
& \leq\|x\|_{\infty} \sum_{i=0}^{\infty} d_{j, i} \sum_{k=0}^{\infty} \sum_{l=0}^{i-1}\left|c_{\lambda(m), k-l}-c_{\lambda(m), k-l-1}\right| \\
& =\frac{\|x\|_{\infty}}{\sqrt{\lambda(m)}} \sum_{i=0}^{\infty} d_{j, i} \sum_{l=0}^{i-1} \sqrt{\lambda(m)} \sum_{k=0}^{\infty}\left|c_{\lambda(m), k-l}-c_{\lambda(m), k-l-1}\right|
\end{align*}
$$

By Lemma 3.4, there exists an $M>0$ such that

$$
\begin{equation*}
\sqrt{\lambda(m)} \sum_{k=0}^{\infty}\left|c_{\lambda(m), k-l}-c_{\lambda(m), k-l-1}\right|<M \tag{4.5}
\end{equation*}
$$

Then, by Lemma 3.2,

$$
\begin{equation*}
\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{m}\right| \leq \frac{\|x\|_{\infty}}{\sqrt{\lambda(m)}} \sum_{i=0}^{\infty} d_{j, i} \sum_{l=0}^{i-1} M=\frac{\|x\|_{\infty} M}{\sqrt{\lambda(m)}} \sum_{i=0}^{\infty} i d_{j, i} \leq \frac{\|x\|_{\infty} M}{\sqrt{\lambda(m)}} \cdot j \mu . \tag{4.6}
\end{equation*}
$$

Since $0<j<\lambda(m+1)-\lambda(m)$,

$$
\begin{equation*}
\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{m}\right|<\|x\|_{\infty} M \mu \cdot \frac{\lambda(m+1)-\lambda(m)}{\sqrt{\lambda(m)}}=o(1) \tag{4.7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
0 \leq\left|\left(C_{\rho}^{*} x\right)_{n}-L\right| \leq\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{m}\right|+\left|\left(C_{\lambda}^{*} x\right)_{m}-L\right|=o(1)+o(1)=o(1) \tag{4.8}
\end{equation*}
$$

Therefore, the sequence $C^{*} x$ may be partitioned into two disjoint subsequences, namely $\left(C_{\lambda}^{*} x\right)_{n}=\left(C^{*} x\right)_{\lambda(n)}$ and $\left(C_{\rho}^{*} x\right)_{n}=\left(C^{*} x\right)_{\rho(n)}$, each having the common limit L. Thus, x must be C^{*}-summable to L, and hence C^{*} and C_{λ}^{*} are equivalent for bounded sequences.

The following theorem is a well-known result due to Meyer-König (see [10, Theorem 25]).

THEOREM 4.3. The methods $E_{r}(0<r<1)$, $S_{r}(0<r<1), T_{r}(0<r<1)$, and the Borel method are equivalent for bounded sequences.

Since the Euler-Knopp methods of order $0<r<1$, Taylor methods of order $0<$ $r<1$, Meyer-König methods of order $0<r<1$, and the Borel matrix method all have generating sequences satisfying the conditions in Theorem 4.2, the following corollary is immediate.

Corollary 4.4. Let $E:=\{\lambda(n)\}$ be an infinite subset of $\mathbb{N} \cup\{0\}$ and $0<r<1$. If λ satisfies condition (4.6), then $E_{r, \lambda}, E_{r}, T_{r, \lambda}, T_{r}, S_{r, \lambda}, S_{r}, B_{\lambda}^{*}, B^{*}$, and the Borel method are all equivalent for bounded sequences.

The next theorem presents an equivalence relationship between the C_{λ}^{*} submethods.
THEOREM 4.5. Let C^{*} be the convolution method formed from the sequences p and q with $\mu<\infty, v<\infty, 0<\sum_{j=0}^{\infty}(j-\mu)^{2} p_{j}$, and $\sum_{j=0}^{\infty} j^{3} p_{j}<\infty$. Let $E:=\{\lambda(n)\}$ and $F:=\{\rho(n)\}$ be infinite subsets of $\mathbb{N} \cup\{0\}$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\rho(n)-\lambda(n)}{\sqrt{\lambda(n)}}=0 \tag{4.9}
\end{equation*}
$$

then C_{λ}^{*} and C_{ρ}^{*} are equivalent for bounded sequences.
Proof. Let x be abounded sequence and consider the sequences $M(n):=\max \{\lambda(n)$, $\rho(n)\}$ and $m(n):=\min \{\lambda(n), \rho(n)\}$. We write $M(n):=m(n)+j$, where $j:=M(n)-$ $m(n)$. For $n \geq 1$, we have

$$
\begin{align*}
\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{n}\right| & =\left|\sum_{k=0}^{\infty} c_{\rho(n), k} x_{k}-\sum_{k=0}^{\infty} c_{\lambda(n), k} x_{k}\right| \\
& =\left|\sum_{k=0}^{\infty} c_{M(n), k} x_{k}-\sum_{k=0}^{\infty} c_{m(n), k} x_{k}\right| \tag{4.10}\\
& =\left|\sum_{k=0}^{\infty} c_{m(n)+j, k} x_{k}-\sum_{k=0}^{\infty} c_{m(n), k} x_{k}\right| .
\end{align*}
$$

Then, as in the proof of Theorem 4.2, we have

$$
\begin{align*}
\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{n}\right| & \leq O(1) \frac{j}{\sqrt{m(n)}}=O(1) \frac{M(n)-m(n)}{\sqrt{m(n)}} \\
& =O(1) \sqrt{\frac{\lambda(n)}{m(n)}} \frac{|\rho(n)-\lambda(n)|}{\sqrt{\lambda(n)}} \tag{4.11}\\
& =O(1) \cdot O(1) \cdot o(1)=o(1) .
\end{align*}
$$

Then if x is C_{λ}^{*}-summable to L,

$$
\begin{align*}
0 \leq\left|\left(C_{\rho}^{*} x\right)_{n}-L\right| & \leq\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{n}\right|+\left|\left(C_{\lambda}^{*} x\right)_{n}-L\right| \\
& =o(1)+o(1)=o(1) . \tag{4.12}
\end{align*}
$$

Similarly, if x is C_{ρ}^{*}-summable to L, then

$$
\begin{align*}
0 \leq\left|\left(C_{\lambda}^{*} x\right)_{n}-L\right| & \leq\left|\left(C_{\rho}^{*} x\right)_{n}-\left(C_{\lambda}^{*} x\right)_{n}\right|+\left|\left(C_{\rho}^{*} x\right)_{n}-L\right| \tag{4.13}\\
& =o(1)+o(1)=o(1) .
\end{align*}
$$

Thus, C_{λ}^{*} and C_{ρ}^{*} are equivalent for bounded sequences.
Acknowledgment. The authors would like to thank the referee for several helpful suggestions that have improved the exposition of this work.

References

[1] D. H. Armitage and I. J. Maddox, A new type of Cesàro mean, Analysis 9 (1989), no. 1-2, 195-206.
[2] A. Bikjalis and G. Jasjunas, Limit theorems in the metric of the spaces L_{1} and l_{1}, Litovsk. Mat. Sb. 7 (1967), 195-218.
[3] N. H. Bingham, Tauberian theorems and the central limit theorem, Ann. Probab. 9 (1981), no. 2, 221-231.
[4] J. Boos, Classical and Modern Methods in Summability, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
[5] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan, London, 1950.
[6] J. A. Fridy, Submatrices of summability matrices, Int. J. Math. Math. Sci. 1 (1978), no. 4, 519-524.
[7] C. Goffman and G. M. Petersen, Submethods of regular matrix summability methods, Canad. J. Math. 8 (1956), 40-46.
[8] J. D. Hill, Some properties of summability. II, Bull. Amer. Math. Soc. 50 (1944), 227-230.
[9] M. K. Khan, Statistical methods in analysis. I. Some Tauberian theorems for absolute summability, Pakistan J. Statist. 7 (1991), no. 1, 21-32.
[10] W. Meyer-König, Untersuchungen über einige verwandte Limitierungsverfahren, Math. Z. 52 (1949), 257-304 (German).
[11] J. A. Osikiewicz, Equivalence results for Cesàro submethods, Analysis (Münich) 20 (2000), no. 1, 35-43.
[12] G. M. Petersen, Inclusion between limitation methods, Math. Z. 65 (1956), 494-496.
[13] B. Shawyer and B. Watson, Borel's Methods of Summability, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994.
[14] W. F. Steele, Summability of infinite sequences by submatrix methods, Ph.D. Dissertation, University of Pittsburgh, Pennsylvania, 1961.

Jeffrey A. Osikiewicz: Department of Mathematical Sciences, Kent State University, Tuscarawas Campus, 330 University Dr. NE, New Philadelphia, OH 44663-9403, USA

E-mail address: josikiewicz@tusc.kent.edu
Mohammad K. Khan: Department of Mathematical Sciences, Kent State University, Kent, OH 44242-0001, USA

E-mail address: kazim@math. kent.edu

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

