View metadata, citation and similar papers at core.ac.uk

Hindawi

Security and Communication Networks
Volume 2018, Article ID 4723862, 13 pages
https://doi.org/10.1155/2018/4723862

Research Article

brought to you by 4

provided by Crossref

WILEY

Hindawi

Detecting P2P Botnet in Software Defined Networks

Shang-Chiuan Su, Yi-Ren Chen, Shi-Chun Tsai

, and Yi-Bing Lin

Department of Computer Science, National Chiao Tung University, Hsinchu 30050, Taiwan

Correspondence should be addressed to Shi-Chun Tsai; sctsai@cs.nctu.edu.tw

Received 21 January 2017; Revised 24 July 2017; Accepted 20 August 2017; Published 29 January 2018

Academic Editor: Jesus Diaz-Verdejo

Copyright © 2018 Shang-Chiuan Su et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Software Defined Network separates the control plane from network equipment and has great advantage in network management
as compared with traditional approaches. With this paradigm, the security issues persist to exist and could become even worse
because of the flexibility on handling the packets. In this paper we propose an effective framework by integrating SDN and machine
learning to detect and categorize P2P network traffics. This work provides experimental evidence showing that our approach can
automatically analyze network traffic and flexibly change flow entries in OpenFlow switches through the SDN controller. This can
effectively help the network administrators manage related security problems.

1. Introduction

There are many peer-to-peer (P2P) network traffics in the
Internet. Through P2P, cyber threats caused by botnets have
significantly increased in recent years. Attackers can use
botnet to construct various malicious activities. In order to
enforce appropriate network management and security poli-
cies, we need to detect botnet while they are communicating
instead of when the attacks have already happened. As a re-
sult, it is an important and difficult task for network admin-
istrators to identify and categorize P2P traffic types.

A botnet consists of a collection of compromised com-
puters controlled by a botmaster, which issues instructions to
the infected computers through the command-and-control
(C&C) server. The C&C channel of the botnet can be any
communication protocol such as Internet Relay Chat (IRC),
Hyper Text Transfer Protocol (HTTP), or P2P network. Bot-
nets represent a collaborative and highly distributed platform
that conduct a wide range of malicious and illegal activi-
ties, such as launching Distributed Denial of Service (DDoS)
attacks, sending SPAM e-mails and click fraud, and collect-
ing confidential information. In order to mitigate security
threat posed by botnets, many detection methods have been
proposed in the literature over the last decade [1-6]. These
detection methods are based on numerous technical prin-
ciples and assumptions that the botnets produce their own

behaviors and the patterns of network traffic. One of the most
prominent botnet detection methods is based on identifying
network traffic produced by botnets using machine learning
techniques [5-9].

Hu et al. [10] studied characteristic of fast-flux botnet to
find features and used multilevel Support Vector Machine
(SVM) to detect fast-flux botnet. Bilge et al. [11] analyzed
numerous features extracted from NetFlow and built different
detecting models based on various machine learning algo-
rithms (i.e., J48 decision tree, SVM, and Random Forest) to
detect C&C server. Saad et al. [9] and Stevanovic and Ped-
ersen [3] experimented various machine learning algorithms
and compared the detection performance. The main assump-
tion of the machine learning-based methods is that botnets
create distinguishable patterns within the network traffic,
which can be efficiently detected and analyzed by machine
learning algorithms [7]. These methods propose a flexible
detection that does not require traffic payload to exhibit any
anomalous characteristics or much prior knowledge of botnet
traffic patterns.

Software Defined Network (SDN) [12-14] separates the
control plane and the data plane. Usually, there is one SDN
controller in the control plane, and the data plane consists of
network devices. The network devices use specific protocols
such as OpenFlow [15] to communicate with the controller
via the control plane. They just handle packets according to

https://core.ac.uk/display/204756007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-0085-0377
https://doi.org/10.1155/2018/4723862

the flow tables managed by the controller rather than process
packets by themselves. In traditional network environment,
network administrators have to manage each network device
one by one. In contrast, SDN devices can be managed auto-
matically by programming modules for the SDN controller.
Developers can implement network functions by program-
ming their modules and embed them into the SDN controller
to control the packet flows in the data plane. However,
traditional security issues still exist and would be even worse
in SDN [13, 16] if not handled properly.

Zaalouk et al. [17] and Giotis et al. [18] detected malicious
activities by analyzing sFlow records, where sFlow is an
industry standard technology for monitoring networks [19].
They showed how to mitigate damage caused by the malicious
activities with SDN functionality. Some authors focused on
detecting DDoS attack in SDN [20]. However, they did not
automatically manage through SDN functionality. Moreover,
recent versions of OpenFlow protocol can only handle packet
headers up to the OSI transport layer. If we want to manage
network traffic generated from some specific applications or
P2P botnets, an additional agent needs to be developed to
analyze network traffic.

To address the above issues, based on a work by Su [21],
we build a system for P2P botnet traffic detection and applica-
tion categorization. Once we detect traffic generated by
P2P botnet, we can eliminate them with our SDN-enabled
solution. By developing modules of SDN controller, we can
automatically update flow tables in the network devices in
accordance with the analyzed results and then drop packets
with botnet traffic patterns. We can also modify the destina-
tion fields in the packet header to redirect suspicious traffic to
a specific environment (e.g., honeypot) for further analysis.
Our solution can detect P2P botnet traffic efficiently and
guard network automatically.

The rest of the paper is organized as follows. Backgrounds
of botnet and SDN are introduced in Section 2. In Section 3
we propose a P2P botnet detection solution with SDN. In
Section 4 we present experiments and evaluation of our solu-
tion. Related works are compared with our solution in
Section 5. Finally, we conclude with Section 6.

2. Background

2.1. Botnet. The botmaster of a botnet may control infected
systems through one or several C&C servers. Over the
past decade, there are numerous Internet security incidents
caused by botnet. Attackers can use botnet to launch various
malicious activities. Some botmasters also use these compro-
mised machines to do distributed computing, such as data
mining. Modern botnets usually mimic network traffic gener-
ated by normal applications to evade detection from network
security agents. For this reason, detecting a botnet has
become an important research issue. Botnet life-cycle has
been defined by several authors, such as Leonard et al. [22]
and Silva et al. [2], which consists of three stages: infection
stage, C&C communication stage, and attack stage.

In the Infection stage, botmasters infect other computers
through fishing or social engineering and so on. Each
such compromised device is called a “bot.” Victims usually

Security and Communication Networks

are unaware of downloading bot code or malware from a
binary server and become a part of botnet army when they
are opening an email or browsing some web sites. In the
communication stage, botmasters usually use a Command
and Control (C&C) server to update malware code and
propagate commands to bots. Bots also connect to the C&C
server periodically to report their statuses. In the attack stage,
bots controlled by the botmaster launch diverse malicious
activities according to received commands or search for other
victim computers.

IRC and HTTP/HTTPS are two popular communication
protocols in Internet. Due to their popularity and conve-
nience of deployment and management, botmasters have
widely used IRC-based and HTTP-based C&C for deploying
botnets. This type of botnets have centralized C&C network
architecture, and all bots connect to one or few C&C servers.
The main weakness of centralized systems is that they are
vulnerable to single point failure. The centralized botnet can
be identified easily and disabled because of huge amount of
connection between bots and the C&C server. Once the C&C
servers have been discovered and disabled, the entire IRC-
based or HTTP-based botnet could be taken down.

In order to prevent single point of failure, many botmas-
ters deploy their botnet architecture with peer-to-peer (P2P)
communication protocols, such as Kademlia, Bittorent, and
Overnet. These botnets, called decentralized botnets, can use
any of the bots or P2P nodes to issue commands to other
peers or gain useful information. Decentralized botnet offers
higher resiliency than centralized botnet, since every bot or
P2P node could play the role as a client or the server. Even
though some P2P botnets are taken down, the remaining
bots could still communicate with the botmaster and other
nodes to launch malicious activities. To detect cyber threat
from botnet, many solutions have been proposed. These
methods can be generally classified as host-based or network-
based. A host-based method deploys botnet detection at end
point computers, identifying unusual usage of computers,
such as CPU utilization, sensitive registers, and memory
block. Thus host-based detection approach is not affected
by the encrypted communication channel used by botnet
[4]. However, the main drawback of host-based detection
is that it requires monitoring resource usage of every end
host. On the other hand, network-based detection approach
inspects network connection behavior and identifies possible
network traffic patterns in any period of botnet life-cycle.
A network-based method assumes that botnet generates
distinguishable network traffic patterns. There are also some
similar connections and group activities within the botnet.
For example, they would connect to the C&C server, launch
DDoS attacks, or spread spam mails at the same time.

Network-based detection approaches can be further clas-
sified as signature-based and flow-based methods. Signature-
based method analyzes network traffic based on packet level
and signatures of malicious payload through deep packet
inspection (DPI). Therefore, it has higher accuracy for known
attacks. However signature-based method could only analyze
attacks or botnets already known. Network administrators
are responsible for updating signature database frequently to
ensure the safety from the latest detected malware or botnet.

Security and Communication Networks

Moreover, botmasters may evade detection of signature-
based method through encrypted or compressed payload
[2]. Flow-based method, on the other hand, detects botnet
by analyzing connection behavior of network traffic flow. A
flow is usually defined as the packets with the same source
and destination within a specific time period. This detection
method identifies suspicious botnet connection traffic pat-
terns by analyzing features extracted from network flow such
as flow size, duration, and mean packet size. The flow-based
detection does not require inspecting every individual packet
payload but analyzing information from the packet header.
Therefore, flow-based detection is more efficient because it
is not affected by encrypted payload. Moreover, detecting
botnet through inspecting network traffic patterns could
detect not only a specific botnet but also a botnet family with
similar connection behavior. Different botnets in the same
botnet family may have different signatures but similar traffic
patterns or the same malicious activities.

With experimental evidence, we show how to detect P2P
botnet with various functionalities of SDN and machine
learning algorithms, which highlights our contribution of this

paper.

2.2. Software Defined Network. Since the control and the data
planes are separated in SDN, so the network devices do not
need to learn network forwarding rules by themselves. They
forward or drop the packets according to the rules given
by their controller. One popular implementation of SDN
southbound protocols is OpenFlow [23], which regulates the
communication between the controller and switches. Figure 1
illustrates a simplified OpenFlow switch specification. A
flow table consists of flow entries (Figure 1(d)), whose main
components include

(i) match fields: to match against packets;

(ii) priority: to indicate matching precedence of the flow
entry;

(iii) counters: to be updated when packets are matched;

(iv) instructions: to modify the action set or pipeline
processing;

(v) timeouts: to set maximum amount of time or idle time
before flow is expired by the switch;

(vi) cookie: to be used by the controller to filter flow
statistics, flow modification, and flow deletion.

Most OpenFlow controllers can load programmable mod-
ules (e.g., Ryu applets and OpenDaylight Karaf features) to
achieve software-defined networking. Some of the modules
are designed to plan the packet paths between the end hosts
(Figure 1(c)), and each path consists of forwarding rules. The
modules use the Application Programming Interface (API)
provided by the controller to modify the flow tables of Open-
Flow switches by translating their forwarding rules. Thus,
these OpenFlow controllers provide a framework for their
loadable modules to manage the flow entries of OpenFlow
switches.

It is not convenient for network administrators to pro-
gram and manage network devices in traditional network

environment, whereas network service and functionality can
be both achieved easily by using OpenFlow in SDN. In
OpenFlow 1.3 [23], there are almost 40 match field keys
that we can use to compose our forwarding rules. However,
under the current OpenFlow protocol, the switches can only
process the packet header from layer 1 to layer 4 of OSI
model. In other words, they cannot handle the content of
the higher layers in the packets, such as application layer. If
we want to manage network traffic in accordance with the
application layer, the programmable module must do extra
works such as commanding the OpenFlow switches to notify
their controller of the incoming raw packet by OpenFlow
“packet-in” message. Nevertheless, on a busy network, it
consumes much time for OpenFlow switches and OpenFlow
controller to handle OpenFlow “packet-in” messages. In
practice, developers should not process the content of packets
higher than layer 4 of OSI model to prevent such extra works.

3. SDN-Enabled P2P Botnet Detection

The network architecture of our solution is shown in Figure 2,
where the dashed lines from the OpenFlow controller (named
Rule Arbitrator (Figure2(a))) to the OpenFlow switches
(called Data-link Bridges (Figure 2(b))) indicate the manage-
ment connection. We implement the programmable module
whose functionality arbitrates the flow rules of the Data-link
Bridges, so the OpenFlow controller acts as a Rule Arbitrator
after it loads the module. The Data-link Bridges are Open-
Flow switch, whose forwarding behavior is mostly like the
traditional layer 2 switch if Rule Arbitrator does not add any
flow rules. Firstly, the Rule Arbitrator commands the Data-
link Bridges to duplicate all incoming packets to their neigh-
bor Detection Agent(s) (Figure 2(c)). The captured packets
with the same 5-tuple (i.e., source IP address, source port
number, destination IP address, destination port number, and
protocol) information and packets with reverse direction will
be recognized as the same flow if they occur closely within a
short time period. The flow recognition is the process that the
Detection Agent gathers packets into distinguishable flows.
After we have gathered flow-level information, we can extract
several features from these flows to study the behaviors that
occur in the network. The Detection Agent analyzes and
categorizes each flow and then labels the flow as P2P botnet
or benign P2P application through machine learning models,
which are built from the traffic records generated by different
P2P botnet or known P2P applications.

After a flow has been classified, the Detection Agent
reports the result to the Rule Arbitrator with the 5-tuple
information and the type of P2P botnet or application. The
Rule Arbitrator, afterwards, modifies the related flow tables in
the Data-link Bridges in accordance with the result reported
by the Detection Agent. Finally, the Data-link Bridges auto-
matically drop the malicious packets that are recognized by
the classifiers.

3.1 Traffic Flow and Feature Extractor Module. In order to get
some useful information to classify network traffic between
different hosts, this module (Figure 3(a)) aggregates packets
into network traffic flows with the same 5-tuple information

Security and Communication Networks

(a)

OpenFlow controller

1) OpenFlow protocol
(Security Channel, i.e, SSL)

(1) Forward to controller

(®)

(2) Forward to specific port

(3) Drop or modify packet
fields (set-field)

ackets

SWltLh Switch Metad ETH|ETH| ETH 1P IPv4 | IPv4 | TCP | TCP | UDP UDP
In Port [PHY In Port|Metadata| pi | gre | Type Protocol | Src | Dst | Src | Dst | Src | Dst

FIGURE 1: OpenFlow switch specification.

(c) Detection Agent

(a) Rule Arbitrator

(OpenFlowcontroller)

(d) Host

FIGURE 2: System overview.

after they are mirrored to the Detection Agent. We use
Netmate, an open source tool [24], to capture packets and
transform them into traffic flow, from which we extract
feature vectors for machine learning analysis. This tool has
been frequently used to capture network packets [6, 25]. We
need to define the time frame to capture packets (i.e., a flow
duration). In Section 4, we test different flow durations and
analyze the performances, which are shown in Table 1. Based
on the result, we find that the flow duration with 600 seconds
has the best performance.

3.2. P2P Network Traffic Detection Module. This module
(Figure 3(b)) has the core idea of classification in our design.
After obtaining feature vectors, the module classifies them
with machine learning algorithm. This process contains the
following four parts.

TABLE 1: Evaluation on different flow durations.

Duration Accuracy
15 seconds 81.58%
300 seconds 95.45%
600 seconds 99.88%
3600 seconds 98.34%
36000 seconds 97.70%

3.2.1. Building Detection Model and Training Set. To classify
different P2P network traffics with machine learning algo-
rithm, we need to prepare datasets and choose appropriate
algorithms for training. We adopt the approach used in
PeerRush [5] and collect network traffic samples generated by
different P2P botnets and normal P2P applications from [5].

Security and Communication Networks

Network Traffic flow and
i traffic feature extractor
module

Flow rule modify

on OpenFlow

Rule Arbitrator

Feature P2P Application
vector Detection
Module
Report to Detection
OpenFlow result
controller

Detection Agent

FIGURE 3: Flow diagram of detecting procedures: procedures (a), (b), and (c) are performed in Detection Agent; procedure (d) is executed by

the Rule Arbitrator; the action of (e) is done in the Data-link Bridges.

TABLE 2: P2P traffic dataset used.

Class Protocol Hosts ~ Days Duration Transport
Storm — 13 7 UDP
Zeus — 1 34 UDP
eMule eDonkey 2 9 TCP/UDP
uTorrent BitTorrent 2 9 TCP/UDP
Skype Skype 9 83 TCP/UDP

To train our classification models to find out network
traffic of P2P botnet, we use network traffic trace files of Storm
and Zeus Botnet as malicious training samples. Network
traffic trace files of eMule, uTorrent, and Skype are used
for network traffic samples of benign P2P applications. The
datasets we used for training models are summarized in
Table 2

There are two submodules in this module, that is, Primary
Classification Module and Secondary Classification Module.
For each trace file we build a binary classifier for Detection
Module (Figure 3(b)), with which we can test feature vectors
of network flows and report the analysis result. We build 5
binary classifiers and put them into our Primary Classifica-
tion Module. Additionally, we use the whole dataset with all
kinds of network traffic traces to build a multiclass classifier
as the Secondary Classification Module.

The reason why we use multiple binary classifiers to
build our Primary Classification Module is to have more
flexibility on training and testing, and our detection method
can be modularized. With multiple binary classifiers, we can
use different training sets, different algorithms, and different
parameters for training models. Then we can find an optimal
combination to obtain the best classification performance.
While with a multiclass classifier, we can only train a
model with the same machine learning algorithm, the same
training set, and less flexibility. Moreover, when we test an
instance with a multiclass classifier, we will certainly classify

it into one class of the training set, and that might cause a
misclassification. On the other hand, if we use multiple binary
classifiers to classify a test instance, we could classify it into
“Unknown” if none of the classifiers matches. We build the
Secondary Classification Module with a multiclass classifier,
which is used to classify a test instance when more than one
binary classifier match in the Primary Classification Module.
The Secondary Classification Module can exactly classify the
ambiguous test instance into one class.

3.2.2. Feature Selection. It is crucial in machine learning to
choose an appropriate feature set, which affects significantly
the classification performance. We adopt some features for
P2P application traffic categorization and botnet detection
used in [5, 8, 9, 26]. We list our feature set as follows:

(i) Packet count
(ii) Packet size (min, max, mean and standard deviation)
(iii) Total volume (flow size)

(iv) Interarrival times (min, max, mean, and standard
deviation)

(v) TCP Push flag count

(vi) Duration of the flow
(vii) Total bytes used for headers
(viii) TCP Urgent flag count.

We compare the detection performance of our feature set
with the works by Rahbarinia et al. [5] and Narang et al.
[26]. We evaluate the result of a classifier with the ROC curve
(i.e., Receiver Operating Characteristic curve) and the P/R
curve (i.e., Precision-Recall curve). True positives (TP) are
instances correctly labeled as positives. False positives (FP)
are negative instances incorrectly labeled as positive. True
negatives (TN) correspond to negative instances correctly
labeled as negative. False negatives (FN) are positive instances

TABLE 3: Model comparison for our work and others.

AUC of ROC AUC of P/R curve
Narang et al. [26] 0.982 0.960
Rahbarinia et al. [5] 0.951 0.899
Our result 0.982 0.957

TABLE 4: Performance of different K in K Nearest Neighbors.

K Accuracy AUC of AUC of /R Avg. time cost in
ROC curve sec
1 91.13% 0.873 0.805 0.026
2 91.19% 0.916 0.842 0.019
3 91.56% 0.931 0.855 0.019
4 91.43% 0.941 0.859 0.018
5 91.43% 0.939 0.856 0.018
6 91.13% 0.948 0.866 0.019
7 91.66% 0.952 0.876 0.019
8 91.23% 0.950 0.867 0.019
9 91.50% 0.951 0.862 0.019
10 91.16% 0.952 0.868 0.019

incorrectly labeled as negative. Then define True Positive Rate
=TP/(TP + FN); False Positive Rate = FP/(FP + TN); Recall =
TP/(TP + FN); and Precision = TP/(TP + FP). The ROC
curve is a plot of True Positive Rate on the y axis against
False Positive Rate on the x-axis. The P/R curve is a plot
of Precision on the y-axis against Recall on the x-axis. The
experiment results show that our feature set has close or
slightly better performance both in ROC curve and in P/R
curve as shown in Table 3, since our areas under the curves
(AUC) are close to 1.0 but with fewer features.

3.2.3. Classifier. We experimented for training the classifier
with different machine learning algorithms in Primary Clas-
sification Module. We use Sklearn [27], a package written
in Python, to conduct the experiments. We have tested the
performance of K Nearest Neighbor Algorithm (KNN) and
Support Vector Machine (SVM).

The training phase of KNN stores the feature vectors and
class labels of the training samples. Let K be a user-defined
constant. In the classification phase, an unlabeled vector (a
test instance) is classified by assigning the label which is most
frequent among the K nearest training samples around this
vector [28]. We experiment the performance for K = 1 to 10
and the result is summarized in Table 4. We see that the best
result for KNN in our tests is with K = 7.

The Support Vector Machine Algorithm constructs a
hyperplane with maximum margin, which can make the best
separation of training data between different classes. At the
testing stage, the SVM classifies a test feature vector based
on the side of the hyperplane that the vector locates. We
analyze the performances of KNN and SVM with 10-Fold
Cross Validation for verification and the results are shown in
Table 5.

Security and Communication Networks

TABLE 5: SVM versus KNN with 30111 instances and 10-Fold Cross
Validation.

SVM KNN
Avg. training time 225.845 seconds 0.371 seconds
Avg. accuracy 97.55% 94.14%
Avg. AUC of ROC 0.997 0.967

TABLE 6: Training P2P traffic dataset summary.
Traffic class Flows
Storm 60000
Zeus 44786
eMule 60300
uTorrent 62800
Skype 57750
Total 285636
TABLE 7: Evaluation of KNN binary classifier.

Traffic class ROC AUC P/R AUC
Storm 0.987 0.982
Zeus 0.987 0.962
eMule 0.971 0.959
uTorrent 0.985 0.977
Skype 0.980 0.958

Considering efficiency, we find that the detection perfor-
mances of these two algorithms are similar, but the training
time of SVM is much longer. As a result, we use KNN as our
classification algorithm for the binary classifier in Primary
Classification Module. However, we can always replace it with
another method when necessary.

While training the models, we use roughly the same
amount of traffic flow samples for each class in order to
balance the training sample of all application classes. Table 6
summarizes the training set which we used to train each
classifier in Primary Classification Module. We also use the
10-Fold Cross Validation to evaluate the performance of each
binary classifier as shown in Table 7.

For the Secondary Classification Module, we adopt the
Random Forest Algorithm, which has very good classifica-
tion performance. The most important issue in Secondary
Classification Module is that we need to accurately separate
the ambiguous instances, so the Random Forest Algorithm
is an appropriate choice. The Random Forest Algorithm is a
classification algorithm with several decision trees. A deci-
sion tree is a flowchart-like tree, where each internal node
denotes a test on an attribute, each outgoing link indicates an
outcome of the test and each leave node has a class label. The
topmost node of a tree is the root node. The basic concept
of Random Forest Algorithm is that it needs to randomly
sample some subsets from the whole training set to build
decision trees. After building the decision trees, we can have
the classification result obtained from the majority of the
decision results.

Security and Communication Networks

TABLE 8: Random forest training summary.

Random forest

Flows (feature vectors) used for training 281786 flows
Avg. training time 1850.025 seconds
Avg. accuracy 99.77%
Avg. AUC of ROC 0.999

Avg. AUC of P/R curve 0.999

We examine the performance of Random Forest Algo-
rithm and evaluate it with the 10-Fold Cross Validation.
Table 8 shows the result of our experiment.

3.2.4. Traffic Analysis. For analyzing the network traffic, we
mirror each packet passing through the Data-link Bridge to
the port that the corresponding Detection Agent attaches.
Note that we design a mechanism that allows a Detection
Agent to communicate with the SDN controller and send a
“registering” packet first when the Detection Agent starts to
run. The registering packet is secret, so the hosts could not
pretend to be the Detection Agent. When the Rule Arbitrator
receives the registering packet sent from the Detection Agent,
it gathers the following information: the identifier of the
Data-link Bridge to which the Detection Agent is connected,
the port on which the Detection Agent is attached, and the
MAC and IP address of the Detection Agent.

We show the sequence diagram in Figure 4. First,
the Rule Arbitrator (Figure 4(a)) initializes the flow tables
(Figure 4(1)) in the Data-link Bridges (Figure 4(b)) to trap the
registering packet that may be sent later from the Detection
Agent (Figure 4(c)). The entries of the initial flow tables
are secret to prevent malicious hosts (Figure 4(b)) from
pretending to be the Detection Agent. When the Detection
Agent (Figure 4(c)) starts to work, it sends the registering
packet to its neighbor Data-link Bridge (Figure 4(2)), which
then notifies the Rule Arbitrator of the registering packet
wrapped in the OpenFlow packet-in message. In other words,
we implement the packet-in event handler in the Rule
Arbitrator’s module to gather the information of the packet-
in message, which contains the ingress port number, the
identifier of the OpenFlow bridge, and so on. Hence, the
Rule Arbitrator, then, can add a flow entry to command
the Data-link Bridge to duplicate incoming packets from
the other ingress ports to the port which the Detection
Agent is attached on. At the same time, the Detection Agent
monitors its network interface and captures received packets
(Figure 4(6)). We use Netmate in the Detection Agent to
capture received packets and recognize them as distinguish-
able traffic flows in accordance with the 5-tuple information
of packet header, and the Detection Agent extracts features
from the flows and transforms them into feature vectors for
analysis. After that, if it is an alarming result, the Detection
Agent will send the result to the Rule Arbitrator via Restful
API (Figure 4(7)), and then the Rule Arbitrator modifies the
flow tables of the corresponding Data-link Bridge to drop
matched malicious packets (Figure 4(8)).

Figure 5 shows the flow diagram of testing phase of the
P2P Application Detection Module running in a Detection

Agent. After we extract the feature vector from each network
flow, we obtain the classification result by testing it with
all binary classifiers in Primary Classification Module. Each
binary classifier will have a testing result, indicating yes or no
(true or false). If there is only one or no classifier that has the
testing result indicating yes, then we label this testing instance
accordingly or classity it as Unknown, respectively. If there are
at least two classifiers that label this testing instance positively,
then do a further test with the Secondary Classification Mod-
ule to classify this ambiguous testing instance. Finally, we get
an analysis report that contains the 5-tuple information (e.g.,
srcip = “1.1.1.17, srcport = 15931, dstip = “2.2.2.2”, dstport =
80, and proto = 6) and the classification result (e.g., Zeus
Botnet).

3.3. Report to the Rule Arbitrator. If the classification result of
the Detection Agent matches any class of the P2P botnets or
benign applications which we are interested in, the Detection
Agent will notify the Rule Arbitrator to adjust the flow entries
in Data-link Bridges in accordance with the classification
result. We use RESTful API [29] as the communication
method between the Detection Agent and the Rule Arbitra-
tor. While the Detection Agent finishes the analysis, it collects
the 5-tuple information and classification result, puts them
into the body of RESTful HTTP request with the JSON for-
mat, such as {“5 tuple”:{“src ip”:“1.1.1.17, “src port™:15931, “dst
ip”:“2.2.2.2”, “dst port”:80, “protocol”:6}, “application”:“Zeus
Botnet”}, and sends it to the Rule Arbitrator.

3.4. Modify Flow Entry on the Data-link Bridges. When the
Rule Arbitrator receives the RESTful HTTP request sent from
the Detection Agent, it will modify flow tables according
to the RESTful HTTP request in the Data-link Bridges. All
related Data-link Bridges will thus handle packets according
to their flow tables. For example, when the Rule Arbitrator
receives a RESTful HTTP request which indicates that the 5-
tuple information is source IP address = 1.L.1.1, TCP port =
15931, destination IP address = 2.2.2.2, TCP port = 80, the
communication protocol is TCP (6), and the class is Zeus
botnet, it will add a flow entry in the Data-link Bridges
where the match field is set as OFPMatch (srcip = “L11.1%,
sreport = 15931, dstip = “2.2.2.27, dstport = 80, proto = 6),
and the action field will be DROP. Thus, if there is any
packet that matches the match field, it will be considered as
a Zeus botnet-related and will be dropped when it get into
the Data-link Bridges. In other words, packets matching the
P2P botnet traffic pattern will be dropped after our analysis.
Additionally, we can control the lifespan of flow entries by
setting their idle_timeout or hard_timeout attribute. We can
also design a database to record victims that involve in botnet
communication and set the time out of flow entries as 5
minutes when the first time the victims are detected, and
30 minutes for the second time, and so on. Thus, we can
drop suspicious packets or forward them for further analysis,
such as honeypots by modifying the destination of the packet
field (i.e., set-field). Our system can thus achieve automatic
management of network traffic.

8 Security and Communication Networks
(a) Rule (b) Data-link (c) Detection (d) Hosts
Arbitrator Bridges Agent
@ Initialize flow tables
(® Send a registering packet
® Send packet-in
® Add new flow
rules to mirror ® Generate network
packets to agent traffic from P2P
botnet
(©® Mirror packets
@ Report results via
RESTful API
Add new flow rules to
manage network
traffic (i.e, drgp) (® Generate network
traffic from P2P
botnet
Drop packets *
Time
FIGURE 4: Sequence diagram of bot detection.
Feature Testing
vector
L 7
/ One class One class One class One class One class
classifier classifier classifier classifier classifier
for Storm for Zeus for eMule for uTorrent for Skype
Primary Classification Module l

Multiclass classifier for additional disambiguation

Secondary Classification Module

&’ZP Application Detection Module

Class
— report

FIGURE 5: Testing phase of P2P Application Detection Module.

4. Experiments and Evaluation

4.1. System and Network Environment Implementation. With
the virtualization technique, we use OpenStack [30] to build
our virtual network experimental environment. OpenStack
is an open source cloud computing software platform devel-
oped by Rackspace Hosting and NASA. We launch five virtual
machines as network nodes and devices with libvirt [31] and
KVM [32] for our experiment test bed. We make one of
the virtual machines as the controller node in OpenStack,
one as network node, and the other three virtual machines
as compute nodes. In the controller node, we install related
packages. We also install Neutron, which is responsible for
all network related job in the network node. We build
virtual OpenFlow switches with Open vSwitch [33] in the
network node and all compute nodes. We integrate the

Open vSwitches with OpenStack; thus every VM launched by
OpenStack can be plugged with an Open vSwitch. We install
the Ryu controller in the network node, and we bind the
Ryu controller on the IP address of network node to allow
Open vSwitches to connect to Ryu controller with the IP
address. We design our own Ryu controller app by extending
the sample code of Ryu app (i.e., simple_switch_13.py [34])
to manage forwarding rules and dynamically add or modify
flow entries by the event handler.

4.2. Data Collection. From the authors of PeerRush [5], we
collect network traffic trace files generated from P2P botnets
and normal P2P applications. We use the Zeus and Storm
botnet trace files in the dataset as the botnet network traffic
and the network trace files of eMule, uTorrent, and Skype as
benign P2P application network traffic.

Security and Communication Networks

(c) Detection Agent

g%

(b) Data-link Bridge
(OpenFlow switch)

(d) Packet-out Bridge
(OpenFlow switch) A
I
1
I

(OpenFlow controller)

FIGURE 6: Implementation with Traffic Generator: (a) the Rule Arbitrator as in Figure 3(a); (b) the Data-link Bridge as in Figure 3(b); (c) the
Detection Agent as in Figure 3(c); (d) the packet-out bridge which simulates the hosts as in Figure 3(d); (e) the Traffic Generator reads the

traffic trace file and instructs the packet-out bridges to replay.

4.3. Traffic Generator. To verify that our system does detect
P2P botnet in real network traffic, we need to replay the
network traffic trace files and simulate the network behaviors
of real P2P botnets and applications. In order to do that, we
build a Traffic Generator to replay the packets in the network
traffic trace files and to simulate the network behaviors of P2P
hosts.

We generate network traffic with the Traffic Generator
(Figure 6(e)) and the packet-out bridges (Figure 6(d)) with
the popular packet replay tool: TcpReplay [35]. A common
practice deploys virtual machines or uses physical machines
to replay network traffic trace file and verify the system
security or the performance of firewall [9, 18]. However, the
main drawback is that the trace files are usually collected at
the gateway of the network or from a single machine such as
HoneyPot [36]. If we would like to replay these network traffic
trace files on multiple hosts or VMs and simulate the network
behavior between multiple hosts, then we have to modify
the information in the trace files, such as source/destination
IP addresses and source/destination ports, and then rewrite
them into several versions for different hosts to replay. This
would be a tedious job.

We take advantage of the functionality that OpenFlow
controllers can send packets through OpenFlow switches
(i.e., Packet Out) to build our Traffic Generator. First, we
launch the Traffic Generator (Figure 6(e)), and it reads the
network traffic trace file (i.e., the pcap file Figure 7(b)) and
then uniformly assigns all IP addresses occurring in the
network trace file to the packet-out bridges (Figure 7(d))
according to the number of the packet-out bridges or any
specific arrangement. Thus we map all P2P host IP addresses
to the packet-out bridges and treat each of them as a gateway
of a subnet. The host IP addresses are treated as the P2P host

addresses. After that, we make the Traffic Generator read the
network trace file again to send Packet Out from the packet-
out bridge whose source IP address corresponds to the source
IP of packet and propagate the packet to the packet-out
bridge whose IP is used as the destination IP address. We can
simulate the scenario in the traffic trace file and mimic the
P2P network communication behavior. We show the details
of Traffic Generator as follows. We use RESTful API to control
and trigger the process of the Traffic Generator.

(1) Load Trace File into the Traffic Generator. At first, the
Traffic Generator reads packets in the network trace file
(i.e., the pcap file). Then it extracts the source IP address
and destination IP address and records the information
of the packet-out bridges, such as MAC address, the port
number connecting to their neighbor Data-link Bridge, and
the identifier number given by the Traffic Generator.

(2) Start Preprocessing. In this step, the source and destination
IP addresses of each packet in the file which are read by the
Traffic Generator, and then they are uniformly mapped to the
Packet-out Bridges. In other words, each IP address of the P2P
hosts is mapped to one of the Packet-out Bridges. The purpose
of this step is simulating that the P2P hosts are connected to
their mapped Packet-out Bridge.

(3) MAC Learning. To make packets propagate properly with
their IP addresses, we need to make the Data-link Bridges
perform the MAC learning initiated by their controller, which
is the Rule Arbitrator. In this step, Packet-out Bridges send an
ARP request packet to each other and reply when receiving
the requests. After all of them have been done, the Data-link
Bridges have accomplished the MAC learning.

10

Security and Communication Networks

Traffic Generator
(OpenFlow controller)

Packet-out Bridge
(OpenFlow switch)

Packet-out Bridge
(OpenFlow switch)

FIGURE 7: Traffic Generator: generate traffic with Ryu controller and Open vSwitch.

(4) Handle Packet One by One. After MAC learning, the Traf-
fic Generator reads the packets again from the network trace
file and modifies the source and destination MAC addresses
of the packets to their mapped address of the Packet-out
Bridge. As a result, each packet can be sent from the Packet-
out Bridge mapped to its original source IP address and
received by the Packet-out Bridge mapped to its original
destination IP address. Therefore, the communication among
P2P hosts is simulated.

(5) Send Packet Out. At the final step, the Traffic Generator
sends packets out from the specific Packet-out Bridge accord-
ing to the mapping between source IP addresses and the
identifier numbers of the bridge. Note that, with this setting,
we can define the replay speed, such as sending the packets
with the clock rate of CPU or delaying a few milliseconds
between two consecutive packets, or we can also send out
the packets following the timestamp to simulate the original
transfer rate.

4.4. Evaluation. We experiment with the network trace files
of different P2P botnets [5] and benign P2P applications. We
would like to point out that the accuracy follows from the
learning algorithms and the features vectors. Whenever there
are new learning algorithms, there is a chance to improve the
accuracy further. Through evaluation results, we show that
our approach achieves what we expected.

We choose records of 24 hours for each P2P network trace
file. These records are different from the dataset we used to
train classifiers earlier. Table 9 summarizes the data we used
for evaluation. Note the packet number for Zeus is much
smaller, because the acquired dataset has fewer traffic from
Zeus.

We use the Traffic Generator to replay packets, which are
mirrored to Detection Agent through the Data-link Bridges.
The Detection Agents analyze the network traffics and send
the analysis report to the Rule Arbitrator with RESTful
API. Then the Rule Arbitrator gives specific flow rules to

TABLE 9: Network traffic evaluation and detection accuracy.

Class Packets Flows Detection accuracy
Storm 1747562 39281 92.824%

Zeus 21714 9098 98.299%
eMule 1104034 8905 95.046%
uTorrent 1067949 33087 92.752%
Skype 1177166 8121 95.024%

TABLE 10: Real world evaluation result.

Class True positive rate False positive rate
Storm 94.16% 1.41%

Zeus 98.46% 0.13%
eMule 96.04% 0.43%
uTorrent 91.75% 0.07%
Skype 93.47% 0.48%

related Data-link Bridges according to the analysis result. We
test every traffic sample independently. Table 9 shows the
detecting performance.

To perform an experiment closer to real world scenario,
we mix different network traffic trace files of P2P botnets and
P2P applications. Again we can effectively analyze and detect
network traffics generated from different P2P botnets and
benign P2P applications. The results are shown in Table 10.

The experimental results provide evidences showing that
our approach can effectively distinguish P2P malicious pack-
ets from normal ones with pretty good accuracy. From Tables
9 and 10, the performances are close. Since the sample of
Zeus is relatively rare, there is a good chance of building a
good model from the training data. Thus, it has the highest
accuracy. Among which Storm and uTorrent have lower
accuracy in both scenarios. As the number of test packet is
much larger, it is likely that the training model can be further
improved with more training data.

Security and Communication Networks

5. Related Works

There are many works addressing botnet detection. Some
appeared before the SDN technology. We first survey those
without SDN. Then we review those with SDN.

5.1. Network-Based and Flow-Based Botnet Detection. There
are many researches about detecting botnet based on various
algorithms, assumptions, and system architectures, especially
the network-based and flow-based botnet detection. Since
modern botnets usually use P2P as their architecture, related
researches of detecting P2P botnet are getting more attention
these years.

Alshammari and Zincir-Heywood [37] showed that C4.5
based approach performs much better than other machine
learning algorithms on the identification of both SSH and
Skype traffic. This work focused on the application of ma-
chinelearning on identifying some network traffics. However,
botnet detection is not discussed in their work.

Graham et al. [38] experimented on how flow export
could be used to capture network traffic parameters for
identifying C&C server within a virtual machine of a cloud
platform. They used NetFlow exported from virtual switches
to detect C&C botnets within virtualized infrastructures. In
their analysis phase, a neural network algorithm was used to
detect traffic patterns among captured traffic. It is not a typical
machine learning algorithm. They did mention the SDN
technology for the protection phase. But we do not see any
related discussion in their implementation.

Saad et al. [9] focused on detecting P2P botnet based on
machine learning algorithm and flow-based method. They
defined 17 different features within botnet’s communication
and control stage. They experimented the detecting per-
formance of 5 different machine learning algorithms (i.e.,
Support Vector Machine, Nearest Neighbors Classifier, Arti-
ficial Neural Network, Naive Bayes Classifier, and Gaussian
Based Classifier). They also created a dataset for experiment
by merging the botnet dataset and benign dataset together.
They got botnet network traffic of Storm botnet and Waledac
botnet from the French section of the honeynet project,
and they asked Traffic Lab at Ericsson Research in Hungary
for benign network traffic generated from different P2P
application and web browsing and gaming network traffic
such as Quake and World of Warcraft. They used TcpReplay
to replay the mixed packets and used WireShark to capture
and record this traffic with the ISOT dataset [39] to evaluate
its detection framework. Again, SDN and related techniques
are not mentioned in their work. As in our experiments,
they noticed that SVM algorithm took much more time for
training. We have similar prediction rate as theirs, but we
further integrate with SDN mechanism for automatic net-
work management.

Rahbarinia et al. [5] proposed a different botnet detection
framework for traditional network. They not only detected
P2P botnet but also categorized different kind of unwanted
P2P traffic. They constructed their detection framework
by considering the characteristic that a different P2P appli-
cation creates distinguishable network traffic pattern. In
their design, they build a classification profile for every P2P

1

application to analyze and categorize network traffic. They
also collect different kind of botnet network traffic sample
(i.e., Storm, Zeus, and Waledac) and different kind of benign
network traffic of P2P application for experiment. They
applied machine learning algorithms for training and pre-
diction. Their experiment result shows that their profile has
well performance on categorize network traffic. Based on
this work, we integrate it with SDN technology for network
management.

Narang et al. [8] used a 2-tuple conversation approach for
P2P botnet detection and relied only on the information
obtained from the TCP/UDP/IP headers. They also used
machine learning algorithms to classify the traffic and
obtained pretty good prediction rate. Their work has nothing
to do with SDN and the traffic data for analysis is different
from ours.

5.2. Anomaly Detection in SDN. Braga et al. [20] proposed a
detection frame work for lightweight DDos flooding attack.
They implemented a NOX controller [40] app and collected
several features of flow rules in OpenFlow switches under
the controller periodically and used Self-Organizing Map
(SOM) algorithm to analyze if there is any DDoS attack
happening. They built a test bed and used a DDoS attack
tool named Stacheldraht to launch DDoS attack for evalu-
ating the detection performance. Their results showed that
their framework could collect features for analysis with low
overhead and obtained pretty good detection performance.
The differences between our work and theirs are that we
detect botnet behavior and pattern by collecting and analyz-
ing packets and network traffic passing through OpenFlow
switches directly, and we analyze and detect suspicious botnet
network traffic behavior in their communication and control
stage, instead of the attack stage. Furthermore, when they
find the DDoS attack happening, they need to notify the
network administrator for additional handling instead of
automatically adding flow rules to cut off the network traffic
with SDN.

Giotis et al. [18] used sFlow [41] to collect network flow
information and analyze the anomaly behavior (i.e., DDoS
attack, Worm propagation, port scan, etc.) by calculating the
entropy of source IP address, source port, destination IP
address, and destination port between network flows. They
used Nox controller and Open vSwitch to build their exper-
imental environment and used TcpReplay to replay packets
and traffic samples collected in their test environment. Their
result shows their system can collect flow information with
sFlow efficiently and mitigate the damage by modifying flow
rules in flow table when finding any anomaly behavior. The
main differences between theirs and our work are that they
do not focus on detecting P2P botnet or P2P application, and
their test environment is much simpler than ours (i.e., they
used only one OpenFlow switch). Moreover, since our system
separates Detection Framework (i.e., Detection Agent) from
SDN controller, the effect on network performance is negli-
gible.

Wijesinghe et al. [42] applied IPFIX for capturing the
traffic flow from the OpenFlow switches to detect bots. Their
main focus is to deal with the bot attacks in data plane.

12

They defined generic template with IPFIX that can be applied
to SDN switches from different vendors. They also used
machine learning to classify the traffic, but they did not
address much on the performance and the features used. We
use different method to collect traffic information.

Recently, Yan et al. [43] gave a very nice survey on SDN
and DDoS attack in cloud, while the integration of P2P botnet
detection and machine learning is not their focus.

6. Conclusion

In the past few years, the network security incidents have
increased significantly. Although there are many researches
about P2P botnet detection, most of them need further
assistance from network administrator. In summary, this
paper makes the following contributions.

(i) We propose a system which can detect and categorize
P2P traffic in SDN with machine learning, automati-
cally and flexibly adjust flow entries to manage net-
work traffic, and thus reduce the load of network
administrator.

(ii) We experiment our system in a test bed to evaluate
the performance of classification accuracy and traffic
management. Experiment results show that our sys-
tem can detect all the considered types of P2P net-
work traffic with high accuracy rate and automatically
manage traffic with flow entries through SDN con-
troller.

We believe similar techniques can be applied to real network
environment and can orchestrate with other network security
system in traditional network and SDN.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the Ministry of Science
and Technology of Taiwan under Contracts MOST 105-2622-
8-009-008, 105-2221-E-009-103-MY3, and 106-3113-E-009 -
001.

References

(1] Z. Abaidy, M. Rezvani, and S. Jha, “MalwareMonitor: An SDN-
based framework for securing large networks,” in Proceedings
of the 2014 ACM CoNEXT Student Workshop, pp. 40-42, aus,

December 2014.

[2] S.S.C.Silva, R. M. P.Silva, R. C. G. Pinto, and R. M. Salles, “Bot-
nets: A survey, Computer Networks, vol. 57, no. 2, pp. 378-403,
2013.

[3] M. Stevanovic and J. M. Pedersen, “An efficient flow-based bot-
net detection using supervised machine learning,” in Proceed-
ings of the International Conference on Computing, Networking
and Communications (ICNC ’14), pp. 797-801, IEEE, February
2014.

Security and Communication Networks

[4] S. Shin, Z. Xu, and G. Gu, “EFFORT: efficient and effective bot
malware detection,” in Proceedings of the IEEE Conference on
Computer Communications (INFOCOM ’12), pp. 2846-2850,
Orlando, Fla, USA, March 2012.

[5] B.Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “PeerRush: Min-
ing for unwanted P2P traffic,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics): Preface, vol. 7967, pp. 62-82,
2013.

[6] S. Guntuku, P. Narang, and C. Hota, “Real-time Peer-to-Peer
Botnet Detection Framework based on Bayesian Regularized
Neural Network,” CoRR 2013.

[7] M. Stevanovic and J. M. Pedersen, “Machine learning for iden-
tifying botnet network traffic;” Tech. Rep., Aalborg University,
Aalborg, Denmark, 2013.

P. Narang, S. Ray, C. Hota, and V. Venkatakrishnan, “PeerShark:
Detecting peer-to-peer botnets by tracking conversations,” in
Proceedings of the 2014 IEEE Computer Society’s Security and
Privacy Workshops, SPW 2014, pp. 108-115, usa, May 2014.

[9] S. Saad, I. Traore, A. Ghorbani et al., “Detecting P2P botnets
through network behavior analysis and machine learning,” in
Proceedings of the 9th Annual International Conference on Pri-
vacy, Security and Trust (PST ’11), pp. 174-180, IEEE, Montreal,
Canada, July 2011.

[10] X.Hu, M. Knysz, and K. G. Shin, “Measurement and analysis of
global TP-usage patterns of fast-flux botnets,” in Proceedings of
the IEEE INFOCOM 2011, pp. 2633-2641, chn, April 2011.

L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers
through large-scale NetFlow analysis,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ACSAC
2012, pp. 129-138, usa, December 2012.

[12] F Hu, Q. Hao, and K. Bao, “A survey on software-defined net-
work and OpenFlow: from concept to implementation,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181-
2206, 2014.

[13] Y.Jarraya, T. Madi, and M. Debbabi, “A survey and a layered tax-

onomy of software-defined networking,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 1955-1980, 2014.

[14] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: a
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14-76, 2015.

[15] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” Computer Commu-
nication Review, vol. 38, no. 2, pp. 69-74, 2008.

o

(11

[16] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the
2nd ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’13), pp. 55-60, Hong Kong,
China, August 2013.

[17] A.Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “OrchSec:
an orchestrator-based architecture for enhancing network-se-
curity using network monitoring and SDN control functions,”
in Proceedings of Network Operations and Management Sympo-
sium (NOMS ’14), pp. 1-9, IEEE, Krakow, Poland, May 2014.

[18] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an effective
and scalable anomaly detection and mitigation mechanism on
SDN environments,” Computer Networks, vol. 62, pp. 122-136,
2014.

Security and Communication Networks

[19] “sFlow: Sampled flow;” http://www.sflow.org/.

[20] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding
attack detection using NOX/OpenFlow,” in Proceedings of the
35th Annual IEEE Conference on Local Computer Networks
(LCN ’10), pp. 408-415, Denver, Colo, USA, October 2010.

[21] S.-C. Su, Detecting P2P Botnet in Software Defined Network,
National Chiao Tung University, Hsinchu, Taiwan, 2015.

[22] J.Leonard, S. Xu, and R. Sandhu, “A framework for understand-
ing botnets,” in Proceedings of the International Conference on
Availability, Reliability and Security, ARES 2009, pp. 917-922,
jpn, March 2009.

[23] “OpenFlow Switch Specification Version 1.3.0,” https://www
.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

[24] “NETMATE: Network Measurement and Accounting System,”
http://archive.li/6ylim.

[25] R. Alshammari and A. Nur Zincir-Heywood, “A flow based
approach for SSH traffic detection,” in Proceedings of the 2007
IEEE International Conference on Systems, Man, and Cybernet-
ics, SMC 2007, pp. 296-301, can, October 2007.

[26] P. Narang, J. M. Reddy, and C. Hota, “Feature selection for
detection of peer-to-peer botnet traffic,” in Proceedings of the 6th
ACM India Computing Convention: Next Generation Computing
Paradigms and Technologies, Compute 2013, ind, August 2013.

[27] “scikit-learn: Machine Learning in Python,” http://scikit-learn
.org/.

[28] “K Nearest Neighbor Algorithm,” http://en.wikipedia.org/wiki/
K-nearest_neighbors_algorithm.

[29] “Representational State Transfer;” http://en.wikipedia.org/wiki/
Representational_state_transfer.

[30] “OpenStack: Open source software for creating private and
public clouds,” http://www.openstack.org/.

[31] “Libvirt: The virtualization API,” http://libvirt.org/.

[32] “KVM: A Full Virtualization Solution for Linux on x86 Hard-
ware Containing Virtualization Extensions (Intel VT or AMD-
V),” http://www.linux-kvm.org/page/Main_Page.

[33] “Open vSwitch: Production Quality, Multilayer Open Virtual
Switch,” http://openvswitch.org/.

[34] “A Component-based Software Defined Networking Frame-
work,” http://osrg.github.io/ryu/.

[35] “TcpReplay: Replay The Traffic Back Onto The Network,” http://
tcpreplay.synfin.net/.

[36] “The Honeynet Project,” http://www.honeynet.org/project.

[37] R. Alshammari and A. N. Zincir-Heywood, “Machine learning
based encrypted traffic classification: Identifying SSH and
Skype,” in Proceedings of the IEEE Symposium on Computational
Intelligence for Security and Defense Applications, CISDA 2009,
can, July 2009.

[38] M. Graham, A. Winckles, and E. Sanchez-Velazquez, “Botnet
detection within cloud service provider networks using flow
protocols,” in Proceedings of the 13th International Conference
on Industrial Informatics, INDIN 2015, pp. 1614-1619, gbr, July
2015.

[39] “SOT: combination of several existing publicly available mali-
cious and non-malicious datasets,” ISOT Research Lab, http://
www.uvic.ca/engineering/ece/isot/datasets/.

[40] N. Gude, T. Koponen, and J. Pettit, “NOX: towards an operating
system for networks,” Computer Communication Review, vol.
38, no. 3, pp. 105-110, 2008.

[41] P. Phaal, “sFlow Specification Version 5,” 2004.

13

[42] U. Wijesinghe, U. Tupakula, and V. Varadharajan, “Botnet de-
tection using software defined networking,” in Proceedings of the
2015 22nd International Conference on Telecommunications, ICT
2015, pp. 219-224, aus, April 2015.

[43] Q. Yan, E R. Yu, Q. X. Gong, and J. Q. Li, “Software-defined
networking (SDN) and distributed denial of service (DDoS)
attacks in cloud computing environments: a survey, some re-
search issues, and challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 602-622, 2016.

http://www.sflow.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
http://archive.li/6y1im
http://scikit-learn.org/
http://scikit-learn.org/
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.openstack.org/
http://libvirt.org/
http://www.linux-kvm.org/page/Main_Page
http://openvswitch.org/
http://osrg.github.io/ryu/
http://tcpreplay.synfin.net/
http://tcpreplay.synfin.net/
http://www.honeynet.org/project
http://www.uvic.ca/engineering/ece/isot/datasets/
http://www.uvic.ca/engineering/ece/isot/datasets/

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

