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Flat surface detection is one of the most common geometry inferences in computer vision. In this paper we propose detecting
printed photos from original scenes, which fully exploit angular information of light field and characteristics of the flat surface.
Unlike previous methods, our method does not need a prior depth estimation.The algorithm rectifies the mess epipolar lines in the
epipolar plane image (EPI).Then feature points are extracted from light field data and used to compute an energy ratio in the depth
distribution of the scene. Based on the energy ratio, a feature vector is constructed and we obtain robust detection of flat surface.
Apart from flat surface detection, the kernel rectification algorithm in our method can be expanded to inclined plane refocusing
and continuous depth estimation for flat surface. Experiments on the public datasets and our collections have demonstrated the
effectiveness of the proposed method.

1. Introduction

With the rapid development of light field theory [1, 2], light
field cameras such as Lytro [3] and Raytrix [4] are now
available for consumer and industrial use. Different from
2D image captured by traditional camera, light field camera
records extra angular information of the real world and it
provides more possibilities for many traditional computer
vision tasks [5–8].

Flat surface detection is such a prominent task to make
planar structure inference from natural scenes. One potential
application of this issue is detection of printed photo in face-
based verification [9]. Face identification has been widely
applied in industrial world. However, a common problem
of such system suffers whether the face is a real one or just
a printed photo of the authorized face. The main reason
is the loss of depth information when the camera records
the real world. Traditional methods always assume that the
printed faces contain detectable texture patterns or require
a user interaction to solve this problem [10]. However, these
methods are unreliable or inefficient. Depth estimation [11]
can be another option before the authentication, but it may
bring other problems in depth estimation such as occlusion
[12] and shading [13].

In this paper, we analyze the variant and invariant features
of flat surface in EPI representation and propose an algorithm
to detect the flat surface without depth estimation, which
fully exploits angular information of the light field and the
characteristics of flat surface. Our main contributions are as
follows:

(i) An algorithm to rectify EPI for a flat surface, which
can also be expanded to other tasks such as refocusing
in an inclined plane.

(ii) A framework to detect the flat surface in light field by
a two-stage algorithm without depth estimation.

The rest of this paper is organized as follows. In Section 2,
we review the background and the previous works about
flat surface detection. In Section 3, the detailed algorithm is
described. And we give the experimental results in Section 4.
Our conclusion and future work are arranged in Section 5.
Some proofs of related properties are provided in Appendix.

2. Background and Related Work

A light field is a function defined in 4D space named𝑓(𝑥, 𝑦, 𝑢, V) [1] to describe light rays in physical world, where
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(𝑥, 𝑦) and (𝑢, V) describe the distribution of the light in
spatial and angular space, respectively. Under the two-plane
parametrization, when we fix one spatial dimension and one
angular dimension (𝑥∗, 𝑢∗) (or (𝑦∗, V∗)), the EPI appears.
For each point in the real world, there is a corresponding
epipolar line in the EPI, and the slope of this line has a linear
relationship with the depth of this point.

As a basic problem in computer vision, flat surface
detection has been researched for decades but it is not well
developed. Most of techniques detect flat surface using a
prior depth estimation. Zhao et al. [11] proposed to detect
flat surface using the disparity map of the scene; however this
method depends on the accuracy of disparity estimation and
is sensitive to the alignment errors of disparity estimation.
Raghavendra et al. [15] proposed a similar strategy. Instead
of the disparity map used in [11], they proposed to obtain a
rough depth map by using the focus measure. Undoubtedly,
the method also suffers the same problem, that is, inaccuracy
of disparity estimation.Ghasemi andVetterli [14] proposed to
extract energy feature vector based on the change of gradient
of EPI and to distinguish the flat surface from nonflat one by
using a Bayes classifier. The method computes the slope of all
epipolar lines and then takes the variance; it is still a depth-
based method.

Different from the traditional “depthmap to plane fitting”
strategy [11, 15, 16], we detect the Lisad-1 feature point [17]
in 4D light field and then fit the function of the flat surface
by using several feature points in light field directly; finally
the robustness of the function which we build is tested by
another several feature points. If the scene is a flat surface,
the function which is built from several feature points should
also be suitable for other points and vice versa.

3. The Proposed Approach for
Detecting Flat Surface

It is well observed that, for a flat surface which is parallel
to the camera plane, all epipolar lines in the EPI have the
same slope since they are in the same depth. However, this
invariant property went when the flat surface is tilted to
different angles. By analyzing the properties of flat surface
function, it is noticed that no matter what angle the flat
surface is tilted to, the difference of slope stays the same
(this property is discussed in Section 3.3 and its proof can be
found in Appendix). Based on this invariant property, we first
propose to rectify the slope of epipolar lines in EPI into a same
value 𝑆0 and then to detect the Lisad-1 feature points [17] of
the rectified EPI (the most important advantage of the Lisad-
1 feature points is that it provides the slope of each feature
point, and the extraction of their depth does not suffer any
occlusion or shading problems as they are salient points).The
slope of each feature point ought to be equal to 𝑆0 if the plane
function is true. Finally, we combine the energy ratio from
different EPIs as an energy vector and employ a classifier to
distinguish flat surface from natural scenes.

3.1. Epipolar Plane Image Rectification. On a flat surface, the
depth value of a point has a linear relationship with its 2D
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Figure 1: The relationship between the horizontal axis 𝑥 in image
and its depth is linear if the scene is a flat surface.

image coordinates. When the point is in an EPI with a fixed𝑦∗, its depth can be expressed by a linear function only on 𝑥
(Figure 1),

𝑑 (𝑥) = 𝑎𝑥 + 𝑏, (1)

where 𝑑(𝑥) is the depth of the point (𝑥, 𝑦∗). And we can
derive the slope of each point by

𝑆 (𝑥) = 1
dis (𝑥) =

1
𝑓𝑠/𝑑 (𝑥) =

𝑎𝑥 + 𝑏
𝑓𝑠 , (2)

where dis(𝑥) is the disparity of the point (𝑥, 𝑦∗), 𝑆(𝑥) is the
slope of the point 𝑥 in EPI with the fixed 𝑦∗, 𝑓 is the focal
length of the lens, and 𝑠 is the baseline between two views.
As the camera parameters 𝑓 and 𝑠 are constants, they are
ignored. Equation (2) can be rewritten as

𝑆 (𝑥) = 𝑎𝑥 + 𝑏. (3)

If the linear function is determined, the slope of each
point in EPI can be known and the slope of epipolar lines in
EPI can be normalize into a same value. Suppose one point(𝑥, 𝑢) in the original EPI; its slope is 𝑆(𝑥∗), where 𝑥∗ satisfies
the following function:

𝑥∗ + 𝑢 1
𝑆 (𝑥∗) = 𝑥. (4)

If the slope we hope to normalize to is 𝑆0 (it is called target
slope later), the target point of shearing (𝑥, 𝑢) is (𝑥󸀠, 𝑢), where𝑥󸀠 meets the following function:

𝑥󸀠 = 𝑥∗ + 𝑢 1𝑆0 . (5)

In a brief summary, for a point (𝑥󸀠, 𝑢) in the rectified EPI,
the corresponding point in the original EPI is

(𝑥󸀠 − 𝑢 1𝑆0 + 𝑢
1

𝑆 (𝑥󸀠 − 𝑢 (1/𝑆0)) , 𝑢) . (6)

We can refer to Figure 2 to understand the procedure of
rectification. And Figure 3 gives an example of the original
EPI and the rectified EPI. We can see that only one slope is
remained in EPI after the rectification.
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Figure 2: The relationship between two points in the original EPI and the rectified EPI. The black line refers to the location of the epipolar
line in the original EPI, and the red dashed line refers to the location of the epipolar line in the rectified EPI. After the rectification, the slope
of the red dashed line is the same as the slope of the right black line.

(a) (b)

Figure 3: (a) is the original EPI, and the slopes of different coordinates are different. (b) is the rectified EPI, and there is only one slope
remained in this EPI.

3.2. Line Function Determination. By substituting the depth
range [𝑑min, 𝑑max] and the image size [1,𝑁] into (1), 4 con-
straints are determined to search the value of the parameters(𝑎, 𝑏),

𝑎 + 𝑏 ≥ 𝑑min,
𝑎 + 𝑏 ≤ 𝑑max,

𝑎𝑁 + 𝑏 ≥ 𝑑min,
𝑎𝑁 + 𝑏 ≤ 𝑑max.

(7)

By solving these constraints, the searching space of (𝑎, 𝑏) is
obtained (it is labeled with red in Figure 4). Then (𝑎, 𝑏) is
generated by dividing the searching space into discrete grids.

We rectify the EPI by using each possible combination of(𝑎, 𝑏). A Lisad-1 feature [17] is the local extrema in scale-depth
spaces by convolving the EPIs with scale variation kernels.
As the Lisad-1 feature point provides the slope information,
the feature points are extracted and the ratio 𝑟 of the feature
points which have the same slope with the target slope 𝑆0 in
all feature points is computed.

𝑟 = ∑|𝐹|𝑖=1 𝑔 (𝑆 (𝐹𝑖) = 𝑆0)|𝐹| ,

𝑔 (𝑥) = {{{
1 𝑥 = 1
0 𝑥 ̸= 1,

(8)

where 𝐹 is the set of the Lisad-1 feature points extracted from
the rectified EPI. |𝐹| is the size of the set 𝐹. 𝑆(𝐹𝑖) is the slope
of the 𝑖th feature point.

For a flat surface, if (𝑎, 𝑏) is known, all epipolar lines
should have the same slope value with the target slope 𝑆0 (see
Figure 3) after rectification. So we select the optimal (𝑎, 𝑏)
which results in the largest ratio 𝑟.

3.3. The Proposed Strategy. Practically, we can not use the
ratio of only one EPI to detect the flat surface since it is too
regional to represent the whole scene. We take the following
two useful properties into consideration to solve the problem:

(i) The value of 𝑎 should be a constantwith different fixed𝑦∗ if the scene is a flat surface.
(ii) The value of 𝑏 should have a linear relationship with

the variable 𝑦 if the scene is a flat surface.

These two properties are obvious and can be proved easily
(see Appendix). With these two properties, we formulate our
strategy as a plane fitting stage and a feature extracting stage.

In the plane fitting stage, the plane function (the common𝑎 and the function of 𝑏 with 𝑦) is fitted by using a series of
parameters (𝑎, 𝑏) calculated from several EPIs. And in the
feature extracting stage, the parameters (𝑎, 𝑏) of each EPI are
computed by using the function of the plane. If the scene is
a flat surface, the plane function that we build from previous
EPIs should also be suitable for other EPIs; that is to say the
slope value in all rectified EPIs should be equal to the value𝑆0 and vice versa. This is the core idea of our strategy. The
detailed description can be seen in Algorithm 1.

3.4. Expand to Inclined Plane Refocus. The traditional
method shears the EPI [3, 18] to achieve refocusing; the
displacement of each point is the same value as the plane we
hope to refocus on is a plane which is parallel to the camera
plane, in which all points in the plane are in a same depth.

𝐿𝛼 (𝑥, 𝑢) = 𝐿0 (𝑥 + 𝑢(1 − 1
𝛼) , 𝑢) , (9)

where 𝐿0 denotes the input EPI and 𝐿𝛼 denotes the sheared
EPI by a value of 𝛼.

Under the framework of our algorithm, we can obtain
the line function of each EPI after the plane fitting stage, and
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Figure 4: With the 4 constraints mentioned in (7), the solution space of the parameters (𝑎, 𝑏) is obtained and it is labeled with red.

(1) Input: Light field LF, slope range [𝑑min, 𝑑max], the
number of training samples 𝐾1, the number of testing
samples 𝐾2

(2)Output:The energy ratio 𝑅 of the feature points which
have the same slope value with 𝑆0 in all feature points
which come from all rectified EPIs.

(3) /∗Plane fitting stage∗/
(4) Choose𝐾1 EPIs from LF randomly.
(5) Calculate the best parameters (𝑎𝑖, 𝑏𝑖) of each EPI by

using the algorithm mentioned in Section 3.2.
(6) Select the 𝑎0 which has the most frequency in all 𝑎𝑖 as

the common 𝑎. And fit the linear function of 𝑏 with 𝑦
by using the 𝑏𝑖 whose 𝑎𝑖 equals to 𝑎0.

(7) /∗Feature extracting stage∗/
(8) Choose𝐾2 EPIs from LF randomly.
(9) Calculate the parameters (𝑎𝑖, 𝑏𝑖) of each EPI by using

the common 𝑎 and the linear function of 𝑏 with 𝑦.
(10) Rectify each EPI with its (𝑎𝑖, 𝑏𝑖) by using the algorithm

mentioned in Section 3.1.
(11) Extract the Lisad-1 feature points of all rectified EPIs.
(12) Count the ratio 𝑅 of the feature points which have

same slope value with 𝑆0 for each EPI, and contruct a
the feature vector by combining these ratios in a
descending order.

(13) Employ a classifier to distinguish flat surface from
natural scenes.

Algorithm 1: The proposed strategy for flat surface detection.

then we shear each point in EPI with a different displacement
according to the line function

𝐿𝑎,𝑏 (𝑥, 𝑢) = 𝐿0 (𝑥 + Δ𝑥, 𝑢) , Δ𝑥 = 𝑢 1
𝑎𝑥 + 𝑏 , (10)

where 𝐿0 denotes the input EPI and 𝐿𝑎,𝑏 denotes the sheared
EPI by two parameters (𝑎, 𝑏) of the line function.

In other words, we just need to set the target slope 𝑆0
as +∞, in which the epipolar line is perpendicular to the
horizontal axis. Two refocus results of ourmethod can be seen
in Figure 5; as the data captured by us is a 3D light field (1
angular dimension), there is only defocus blur in horizontal
direction and no defocus blur in vertical blur.

3.5. Depth Estimation for Inclined Plane. Similarly, if the
scene is a flat surface, we can estimate its depth with the
common 𝑎 and the function of 𝑏 obtained from the plane
fitting stage. The detailed description is as follows:

(i) Calculate the parameters (𝑎, 𝑏) of the line function for
each EPI.

(ii) Calculate the disparity of each point in EPI according
to

dis (𝑥) = 1
𝑎𝑥 + 𝑏 . (11)

We detect the flat surface by using a small set of EPIs, and
we fit the function of this plane at the same time. With the
function of the flat surface, the depth map can be obtained by
substituting the coordinate into the function of the plane.

Different from the traditionalmultilabelingmethods [19],
our depth estimation results are continuous since we know
the function of the flat surface. Two of our results are shown
in Figure 6.

4. Experimental Results

4.1. Experimental Setup. To better analyze the performance
of our algorithm, we select two different datasets. The HCI
light field dataset [20] and its printed edition are selected to
analyze the properties of energy ratio. It is noticed that the
printed photos are tilted to different degrees in order to better
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(a) (b)

Figure 5: (a) is the refocus result by using the correct inclined plane parameters, and it is an all-in-focus image. (b) is the result by using
wrong parameters, and it is noticed that there is only defocus blur in horizontal direction.

(a) (b)

(c) (d)

Figure 6: (a) and (c) are two light fields captured from the printed Medieval dataset at different degrees. (b) and (d) are the corresponding
depth maps estimated by using our plane function (red represents large depth value and blue represents small depth value). It can be seen
that the depth map is continuous, and there are no noticeable “stairs” in this result.

evaluate our algorithm. The experimental environment and
printed light fields can be seen in Figure 7. Apart from this,
the EPFL light field dataset [14] is selected to do a comparison
with the previous work. As this dataset is captured by a Lytro
camera, the experimental results on this dataset can better
reflect the pros and cons of the algorithm.

We implement the algorithm in the Matlab 2014b, on OS
X 10.11.1 with 8 gigabytes of RAM and 2.7GHz of processor.
The running time of our implementation for a 9 × 9 × 768 ×768 × 3 light field is measured in seconds but does not excel
the time complexity of [14]. This time can be accelerated to
microseconds by using GPU.

In the stage of determining line function, we divide the
searching space of (𝑎, 𝑏) into an 11 × 11 grid. The target

slope 𝑆0 we hope to normalize to is not important in our
rectification; actually it can be an arbitrary value. In the plane
fitting stage, we select 11 EPIs to obtain the function of the
plane and select another 15 EPIs in the feature extracting
stage. The SVM classifier is employed to distinguish the flat
surface from the natural scenes.

4.2. Analysis of the Energy Ratio. We compute the energy
ratio for each EPI in the first dataset and plot their distribu-
tion in Figure 9. The horizontal axis is the line number, and
the vertical axis is the energy ratio for each EPI. It can be seen
that the energy ratio of natural scenes may reach a high value
sometimes, but mostly it is very small and far away from the
flat surface. Apart from this, the energy ratio distribution of
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Figure 7: The left top one is our experimental environment. Others are printed light fields. Note that the scene in the left top is just one of
the different situations, and our datasets contain 5 different tilt angles.

Table 1: The detection accuracy comparison.

Ours Ghasemi and Vetterli [14]
Printed (P) 94% 92%
Natural (N) 94% 86%

flat surface is not only large but also stable; in contrast, natural
scenes do not meet these properties.

It is noticed that there are always some EPIs which have
large energy ratios in original scenes (the first half of the blue
curve in Figure 8). The main reason for this phenomenon is
that these EPIs are selected to fit the plane function, and the
fitted plane function ismore suitable for these areas.However,
it may not be suitable for other EPIs (the second half of the
blue curve in Figure 8), and this is the reason why we select
other EPIs to combine the feature vectors.

4.3. Further Experiments and Comparison. In order to better
evaluate the accuracy of our algorithm in real data captured
by light field camera, we run our code in another public
light field dataset captured by Ghasemi and Vetterli [14]. The
dataset consists of 50 light fields of printed photos and 50 light
fields of natural scenes.

To test and verify our algorithm in a classification setting,
we used a SVM model with cross validation [21]. The results
can be seen in Table 1.

Our detection precision is clearly superior to Ghasemi
and Vetterli’s method [14]. This improvement is prominent
especially in the detection of natural scenes, where 7 natural
scenes are misclassified as flat surface in [14] and only 3 in
our method. We further analyze these failed data and find

that most textures of the scene lie on one continuous depth
plane and there are a few textures on others. The feature
points which come from this continuous plane play a more
vital role and lead to a higher energy ratio. In Figure 8(a),
most feature points lie on the cardboard and a few points
on the foreground, the fitted plane is close to the cardboard
plane, and it leads to high energy ratio (the blue curve in
Figure 8(e)). Then for the flat surface, the value of wrong
classified samples is 3 as well. By analyzing these samples, it
is noticed that the number of feature points is too little to
estimate the plane function accurately. In Figure 8(c), there
are more feature points in the bottom of the scene and a
few points in the top which lead to a wrong fitting of the
parameters 𝑏 in Section 3.3. Figures 8(e) and 8(f) show the
energy ratio distribution of these failed samples.

5. Conclusion

In this paper, we propose an algorithm to rectify the EPI of
a flat surface, which normalizes the mess slope of epipolar
lines in EPI into a same slope. And this algorithm can
be easily expanded to the inclined plane refocus and the
continuous depth estimation for flat surface. Then, we pro-
pose a framework for flat surface detection, which learns a
function of the flat surface by using several EPIs and tests this
function by using another several EPIs. The results show that
our algorithm performs well for most scenes, and the more
complex the scene, the better the performance.

We may continue to study the limits of the algorithms,
such as in terms of low texture scene which leads to the
insufficient feature points.
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Figure 8: (a)–(d) are four failed samples of our algorithm, where (a) and (b) are misclassified as flat surface, and (c) and (d) are misclassified
as natural scenes. The green points are the Lisad-1 points. (e) and (f) are the corresponding distributions of energy ratio.
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Figure 9: The energy ratio distribution for different light fields.

Appendix

The proof of two properties mentioned in Section 3.3 is
described here.

(1) Assume that the plane function is
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0. (A.1)

(2) Substituting any fixed 𝑦∗ into the function, (A.1)
becomes

𝐴𝑥 + 𝐶𝑧 = −𝐵𝑦∗ − 𝐷 ⇐⇒
𝑧 = −𝐴𝐶𝑥 −

𝐵𝑦∗ + 𝐷
𝐶 . (A.2)

(3) The term −𝐴/𝐶 is replaced by 𝑎, and the term −(𝐵𝑦∗+𝐷)/𝐶 is replaced by 𝑏.
𝑎 = 𝐴

𝐶 ,
𝑏 = −𝐵𝐶𝑦∗ −

𝐷
𝐶 .

(A.3)

It can be found that the value of 𝑎 is a constant with different
fixed 𝑦∗ and the relationship of 𝑏 and 𝑦∗ is linear.
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