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The Pythagorean fuzzy set as an extension of the intuitionistic fuzzy set characterized bymembership and nonmembership degrees
has been introduced recently. Accordingly, the square sum of the membership and nonmembership degrees is a maximum of
one. The Pythagorean fuzzy set has been previously applied to multiattribute group decision-making. This study develops a few
aggregation operators for fusing the Pythagorean fuzzy information, and a novel approach to decision-making is introduced
based on the proposed operators. First, we extend the generalized Bonferroni mean to the Pythagorean fuzzy environment and
introduce the generalized Pythagorean fuzzy Bonferroni mean and the generalized Pythagorean fuzzy Bonferroni geometric mean.
Second, a new generalization of the Bonferroni mean, namely, the dual generalized Bonferroni mean, is proposed by considering
the shortcomings of the generalized Bonferroni mean. Furthermore, we investigate the dual generalized Bonferroni mean in the
Pythagorean fuzzy sets and introduce the dual generalized Pythagorean fuzzy Bonferroni mean and dual generalized Pythagorean
fuzzy Bonferroni geometric mean. Third, a novel approach to multiattribute group decision-making based on proposed operators
is proposed. Lastly, a numerical instance is provided to illustrate the validity of the new approach.

1. Introduction

Decision-making is a common and significant activity in
daily life. In the past decades, decision-making problems in
real life have become increasingly complicated because of the
increasing complexity in economic and social management.
Given the fuzziness and vagueness in decision-making, crisp
numbers are inadequate and insufficient for managing real
decision-making problems. In 1965, Zadeh introduced the
concept of fuzzy set (FS) [1], which is an effective tool
in handling fuzziness and uncertainty. However, FS only
has a membership degree, which is unsuitable in managing
several real decision-making problems. Atanassov [2] intro-
duced the intuitionistic fuzzy set (IFS), which simultaneously
has membership and nonmembership degrees, due to the
shortcomings of FS. A few achievements on IFS have been

reported [3, 4]. Mao et al. [5] introduced a few new cross-
entropy and entropy measures for IFSs and applied them
to decision-making. Liu and Teng [6] introduced the nor-
mal intuitionistic fuzzy numbers and several new normal
intuitionistic fuzzy aggregation operators and applied them
to multiattribute group decision-making (MAGDM). Lak-
shmana et al. [7] proposed a total order on the entire class
of intuitionistic fuzzy numbers using upper, lower dense
sequence in the interval [0, 1]. Lakshmana et al. [8] intro-
duced a new principle for ordering trapezoidal intuitionistic
fuzzy numbers. P. Liu and X. Liu [9] introduced the linguistic
intuitionistic fuzzy set and a few linguistic intuitionistic
fuzzy power Bonferronimean (BM) aggregation operators by
combining IFS and the linguistic terms set and applied them
to MAGDM. Liu et al. [10] introduced the interval-valued
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intuitionistic fuzzy ordered weighted cosine similarity mea-
sure by combining the interval-valued intuitionistic fuzzy
cosine similarity measure with the generalized ordered
weighted averaging operator. Liu [11] used the Hamacher
operations as basis to develop several new aggregation
operators to fuse the interval-valued intuitionistic fuzzy
information.

IFS is a powerful tool in decision-making. An exten-
sion of IFS, which is called the neutrosophic set [12],
was introduced in 1999 to effectively address several real
decision-making problems. In recent years, a few neutro-
sophic aggregation operators have been introduced [13–18].
A new extension of IFS, namely, the Pythagorean fuzzy
set (PFS) [19], has been developed. The difference between
PFS and IFS is that the square sum of the membership
and nonmembership degrees is a maximum of one in PFS,
whereas the sum of the membership and nonmembership
degrees is a maximum of one in IFS. Several studies have
been conducted on PFSs. Gou et al. [20] developed a few
Pythagorean fuzzy functions and studied their fundamental
properties. Zhang and Xu [21] introduced several operations
for the Pythagorean fuzzy numbers (PFNs) and extended
the technique for order preference by similarity to ideal
solution (TOPSIS) method to solve MAGDM problems
with Pythagorean fuzzy information. Several Pythagorean
fuzzy aggregation operators have been introduced because
aggregation operators are vital in decision-making [22].
Yager and Abbasov [23] introduced a few Pythagorean
fuzzy aggregation operators, such as the Pythagorean fuzzy
weighted averaging (PFWA) operator and Pythagorean fuzzy
weighted geometric (PFWG) operator. Ma and Xu [24]
introduced new score and accuracy functions of PFNs and
developed the symmetric Pythagorean fuzzy weighted aver-
aging (SPFWA) operator and the symmetric Pythagorean
fuzzy weighted geometric (SPFWG) operator. Zeng et al. [25]
introduced the Pythagorean fuzzy ordered weighted aver-
aging weighted average distance (PFOWAWAD) operator,
from which a hybrid TOPSIS method was proposed for the
Pythagorean fuzzyMAGDMproblems. Garg [26] introduced
the Pythagorean fuzzy Einstein operations and developed a
few new Pythagorean fuzzy aggregation operators. Peng and
Yuan [27] developed a series of Pythagorean fuzzy point oper-
ators. However, these aggregation operators cannot consider
the correlations among PFNs. Therefore, Peng and Yang [28]
developed several Choquet integral-based operators for the
Pythagorean fuzzy information.

Several aggregation operators, such as the BM [29] and
the Heronian mean (HM) [30], can capture the interrela-
tionship between arguments. These operators have been suc-
cessfully extended to IFSs [31–33] and hesitant FSs [34–36].
However, BMandHMcanonly consider the interrelationship
between any two arguments. Beliakov et al. [37] introduced
the generalized Bonferroni mean (GBM) to overcome the
drawback of BM; GBM has also been extended to IFSs [38].
However, to the best of our knowledge, no research has
been conducted on GBM in the Pythagorean fuzzy environ-
ment. Therefore, it is necessary to extend the GBM to the
Pythagorean fuzzy environment. The shortcoming of GBM
is that it can only consider the interrelationship among any

three arguments. However, the correlations are ubiquitous
among all arguments. To overcome the shortcoming of GBM,
we introduce a few new extensions of BM,which can consider
the interrelationship among all arguments. Therefore, the
main objective of this study is to investigate GBM in PFSs.
This research aims to develop several new GBM aggregation
operators for PFNs and a new approach to MAGDM with
Pythagorean fuzzy information.

The rest of this paper is organized as follows. Section 2
briefly reviews a few basic concepts. Section 3 extends GBM
to PFSs and develops a few generalized Pythagorean fuzzy
BM operators. Section 4 proposes and utilizes several new
GBM operators to aggregate PFNs. Section 5 introduces a
novel approach to MAGDM. Section 6 provides a numerical
example to illustrate the approach. The final section summa-
rizes this study.

2. Basic Concepts

This section reviews a few notions, such as IFS, PFS, and
GBM.

2.1. IFS and PFS. In 1986, Atanassov [2] introduced IFS,
which simultaneously has membership and nonmembership
degrees.

Definition 1 (see [2]). Let 𝑋 be an ordinary fixed set. An IFS𝐴 defined on 𝑋 is expressed as follows:𝐴 = {⟨𝑥, 𝜇𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where 𝜇𝐴(𝑥) and V𝐴(𝑥) represent the membership and
nonmembership degrees, respectively, thereby satisfying 0 ≤𝜇𝐴(𝑥) ≤ 1, 0 ≤ V𝐴(𝑥) ≤ 1, and 𝜇𝐴(𝑥) + V𝐴(𝑥) ≤ 1. For
convenience, the pair ⟨𝜇, V⟩ is called an intuitionistic fuzzy
number (IFN) [39], in which 𝜇 ∈ [0, 1], V ∈ [0, 1], and𝜇 + V ≤ 1. The hesitancy degree is denoted by 𝜋𝐴(𝑥) =1 − 𝜇𝐴(𝑥) − V𝐴(𝑥).

In 2014, Yager [19] introduced PFS, which is a generaliza-
tion of IFS.

Definition 2 (see [19]). Let 𝑋 be an ordinary fixed set; a PFS𝑃 defined on 𝑋 is expressed as follows:𝑃 = {⟨𝑥, 𝜇𝑃 (𝑥) , V𝑃 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (2)

where 𝜇𝑃(𝑥) and V𝑃(𝑥) are themembership and nonmember-
ship degrees, respectively, thereby satisfying 𝜇𝑃(𝑥), V𝑃(𝑥) ∈[0, 1] and (𝜇𝑃(𝑥))2 + (V𝑃(𝑥))2 ≤ 1. Thereafter, the indetermi-
nacy degree is expressed by𝜋𝑃(𝑥)=√1 − (𝜇𝑃(𝑥))2 − (V𝐴(𝑥))2.
Zhang andXu [21] called the pair (𝜇𝑃(𝑥), V𝑝(𝑥)) a PFN, which
can be denoted by 𝑃 = (𝜇𝑃, V𝑃).

Peng and Yuan [27] introduced the comparison law for
PFNs to compare two PFNs.

Definition 3 (see [27]). For any PFN 𝑝 = (𝜇, V), the score
function of p is defined as 𝑠(𝑝) = 𝜇2 − V2. For any two PFNs,
such as 𝑝1 = (𝜇1, V1) and 𝑝2 = (𝜇2, V2), if 𝑠(𝑝1) > 𝑠(𝑝2), then𝑝1 > 𝑝2; if 𝑠(𝑝1) = 𝑠(𝑝2), then 𝑝1 = 𝑝2.
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Zhang and Xu [21] introduced a few operations for PFNs.

Definition 4 (see [21]). Let 𝑝 = (𝜇, V), 𝑝1 = (𝜇1, V1), and 𝑝2 =(𝜇2, V2) be any three PFNs and 𝜆 be a positive real number.
Thereafter,

(1) 𝑝1 ⊕ 𝑝2 = (√𝜇21 + 𝜇22 − 𝜇21𝜇22 , V1V2),
(2) 𝑝1 ⊗ 𝑝2 = (𝜇1𝜇2, √V21 + V22 − V21V22),
(3) 𝜆𝑝 = (√1 − (1 − 𝜇2)𝜆, V𝜆), and
(4) 𝑝𝜆 = (𝜇𝜆, √1 − (1 − V2)𝜆).

2.2. GBM. Beliakov et al. [37] introduced GBM, which can
consider the correlations of any three aggregated arguments
because the traditional BM can only determine the interre-
lationship between any two arguments. Nevertheless, Xia et
al. [38] highlighted that the GBM introduced by Beliakov et
al. [37] has a drawback. Therefore, Xia et al. [38] introduced
a new form of GBM. In the new GBM, the weights of the
arguments are also considered.

Definition 5 (see [38]). Let 𝑝, 𝑞, 𝑟 ≥ 0 and 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛)
be a collection of nonnegative crisp numbers with the weight
vector being 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying 𝑤𝑖 ∈[0, 1] (𝑖 = 1, 2, . . . , 𝑛) and ∑𝑛𝑖=1 𝑤𝑖 = 1. The generalized
weighted BM (GWBM) is defined as follows:

GWBM𝑝,𝑞,𝑟 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 𝑛∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑤𝑗𝑤𝑘𝑎𝑝𝑖 𝑎𝑞𝑗𝑎𝑟𝑘)1/(𝑝+𝑞+𝑟) . (3)

Xia et al. [38] also introduced the generalized weighted
Bonferroni geometric mean (GWBGM).

Definition 6 (see [38]). Let 𝑝, 𝑞, 𝑟 ≥ 0 and 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛)
be a collection of nonnegative crisp numbers with the weight

vector being 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying 𝑤𝑖 ∈[0, 1] (𝑖 = 1, 2, . . . , 𝑛) and ∑𝑛𝑖=1 𝑤𝑖 = 1. If
GWBGM𝑝,𝑞,𝑟 (𝑎1, 𝑎2, . . . , 𝑎𝑛)= 1𝑝 + 𝑞 + 𝑟 𝑛∏

𝑖,𝑗,𝑘=1

(𝑝𝑎𝑖 + 𝑞𝑎𝑗 + 𝑟𝑎𝑘)𝑤𝑖𝑤𝑗𝑤𝑘 , (4)

then GWBGM𝑝,𝑞,𝑟 is called GWBGM.

3. The Generalized Pythagorean Fuzzy
Weighted Bonferroni Mean

This section extends GWBM and GWBGM to fuse the
Pythagorean fuzzy information and proposes several new
Pythagorean fuzzy aggregation operators.

Definition 7. Let 𝑠, 𝑡, 𝑟 > 0 and 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛)
be a collection of PFNs with their weight vector being 𝑤 =(𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying𝑤𝑖 ∈ [0, 1] and∑𝑛𝑖=1 𝑤𝑖 =1. If

GPFWBM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛)
= ( 𝑛⨁
𝑖,𝑗,𝑘=1

𝑤𝑖𝑤𝑗𝑤𝑘 (𝑝𝑠𝑖 ⊗ 𝑝𝑡𝑗 ⊗ 𝑝𝑟𝑘))1/(𝑠+𝑡+𝑟) , (5)

then GPFWBM𝑠,𝑡,𝑟 is called the generalized Pythagorean
fuzzy weighted Bonferroni mean (GPFWBM).

We can obtain the following theorem according to Defi-
nition 4.

Theorem 8. Let 𝑠, 𝑡, 𝑟 > 0 and 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛) be
a collection of PFNs.The aggregated value by GPFWBM is also
a PFN and

𝐺𝑃𝐹𝑊𝐵𝑀𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = ((√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ,
√1 − (1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)).
(6)

Proof. According to Definition 4, we can obtain

𝑝𝑠𝑖 = (𝜇𝑠𝑖 , √1 − (1 − V2𝑖 )𝑠) ,
𝑝𝑡𝑗 = (𝜇𝑡𝑗, √1 − (1 − V2𝑗)𝑡) ,

𝑝𝑟𝑘 = (𝜇𝑟𝑘, √1 − (1 − V2𝑘)𝑟) .
(7)

Thus,𝑝𝑠𝑖 ⊗ 𝑝𝑡𝑗 ⊗ 𝑝𝑟𝑘
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= (𝜇𝑠𝑖𝜇𝑡𝑗𝜇𝑟𝑘, √1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟) .
(8)

Thereafter,𝑤𝑖𝑤𝑗𝑤𝑘 (𝑝𝑠𝑖 ⊗ 𝑝𝑡𝑗 ⊗ 𝑝𝑟𝑘)
= (√1 − (1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘 ,
(√1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘) .

(9)

Furthermore,

𝑛⨁
𝑖,𝑗,𝑘=1

𝑤𝑖𝑤𝑗𝑤𝑘 (𝑝𝑠𝑖 ⊗ 𝑝𝑡𝑗 ⊗ 𝑝𝑟𝑘)
= (√1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘 ,
(√ 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟))𝑤𝑖𝑤𝑗𝑤𝑘) .
(10)

Therefore,

GPFWBM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = ((√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ,
√1 − (1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)).
(11)

Hence, (6) is maintained. Thereafter,

0 ≤ (√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ≤ 1,
0 ≤ √1 − (1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ≤ 1. (12)

Thereafter,

((√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟))2

+ (√1 − (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟))
2

= (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑖 𝜇2𝑡𝑗 𝜇2𝑟𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) + 1 − (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ≤ 1
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+ (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)
− (1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − V2𝑖 )𝑠 (1 − V2𝑗)𝑡 (1 − V2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) = 1,
(13)

thereby completing the proof.

Moreover, GPFWBM has the following properties.

Theorem 9 (idempotency). If 𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑛) are equal,
that is, 𝑝𝑖 = 𝑝 = (𝜇, V), then𝐺𝑃𝐹𝑊𝐵𝑀𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = 𝑝. (14)

Proof.

GPFWBM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛)
= ( 𝑛⨁
𝑖,𝑗,𝑘=1

𝑤𝑖𝑤𝑗𝑤𝑘 (𝑝𝑠𝑖 ⊗ 𝑝𝑡𝑗 ⊗ 𝑝𝑟𝑘))1/(𝑠+𝑡+𝑟)
= ( 𝑛∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑤𝑗𝑤𝑘𝑝)1/(𝑠+𝑡+𝑟) = 𝑛∑
𝑖=1

𝑤𝑖 𝑛∑
𝑗=1

𝑤𝑗 𝑛∑
𝑘=1

𝑤𝑘𝑝
= 𝑝.

(15)

Theorem 10 (monotonicity). Let 𝑝𝑖 = (𝜇𝑝𝑖 , V𝑝𝑖) (𝑖 = 1, 2,. . . , 𝑛) and 𝑞𝑖 = (𝜇𝑞𝑖 , V𝑞𝑖) (𝑖 = 1, 2, . . . , 𝑛) be two collections
of PFNs. If 𝜇𝑝𝑖 ≤ 𝜇𝑞𝑖 and V𝑝𝑖 ≥ V𝑞𝑖 holds for all i, then𝐺𝑃𝐹𝑊𝐵𝑀𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ 𝐺𝑃𝐹𝑊𝐵𝑀𝑠,𝑡,𝑟 (𝑞1, 𝑞2, . . . , 𝑞𝑛) . (16)

Proof. Let GPFWBM𝑠,𝑡,𝑟(𝑝1, 𝑝2, . . . , 𝑝𝑛) = (𝜇𝑝, V𝑝) and
GPFWBM𝑠,𝑡,𝑟(𝑞1, 𝑞2, . . . , 𝑞𝑛) = (𝜇𝑞, V𝑞). Given that 𝜇𝑝𝑖 ≤ 𝜇𝑞𝑖 ,
we can obtain𝜇2𝑠𝑝𝑖𝜇2𝑡𝑝𝑗𝜇2𝑟𝑝𝑘 ≤ 𝜇2𝑠𝑞𝑖 𝜇2𝑡𝑞𝑗𝜇2𝑟𝑞𝑘 ,(1 − 𝜇2𝑠𝑝𝑖𝜇2𝑡𝑝𝑗𝜇2𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘 ≥ (1 − 𝜇2𝑠𝑞𝑖 𝜇2𝑡𝑞𝑗𝜇2𝑟𝑞𝑘)𝑤𝑖𝑤𝑗𝑤𝑘 ,

1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑝𝑖𝜇2𝑡𝑝𝑗𝜇2𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘
≤ 1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑞𝑖 𝜇2𝑡𝑞𝑗𝜇2𝑟𝑞𝑘)𝑤𝑖𝑤𝑗𝑤𝑘 .
(17)

Therefore,

(√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑝𝑖𝜇2𝑡𝑝𝑗𝜇2𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)
≤ (√1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑞𝑖 𝜇2𝑡𝑞𝑗𝜇2𝑟𝑞𝑘)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) .
(18)

Thus,

((√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑝𝑖𝜇2𝑡𝑝𝑗𝜇2𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟))2

≤ ((√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − 𝜇2𝑠𝑞𝑖 𝜇2𝑡𝑞𝑗𝜇2𝑟𝑞𝑘)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟))2 ,
(19)

which means 𝜇2𝑝 ≤ 𝜇2𝑞. Similarly, we can obtain V2𝑝 ≥ V2𝑞.

If 𝜇2𝑝 < 𝜇2𝑞 because V2𝑝 ≥ V2𝑞, then GPFWBM𝑠,𝑡,𝑟(𝑝1,𝑝2, . . . , 𝑝𝑛) < GPFWBM𝑠,𝑡,𝑟(𝑞1, 𝑞2, . . . , 𝑞𝑛);
If 𝜇2𝑝 = 𝜇2𝑞 and V2𝑝 > V2𝑞, then GPFWBM𝑠,𝑡,𝑟(𝑝1, 𝑝2,. . . , 𝑝𝑛) < GPFWBM𝑠,𝑡,𝑟(𝑞1, 𝑞2, . . . , 𝑞𝑛);
If 𝜇2𝑝 = 𝜇2𝑞 and V2𝑝 = V2𝑞, then GPFWBM𝑠,𝑡,𝑟(𝑝1, 𝑝2,. . . , 𝑝𝑛) = GPFWBM𝑠,𝑡,𝑟(𝑞1, 𝑞2, . . . , 𝑞𝑛).

Therefore, the proof of Theorem 10 is completed.

Theorem 11 (boundedness). Let 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛)
be a collection of PFNs. If 𝑝+ = (max𝑖(𝜇𝑖),min𝑖(V𝑖)) and 𝑝− =(min𝑖(𝜇𝑖),max𝑖(V𝑖)), then𝑝− ≤ 𝐺𝑃𝐹𝑊𝐵𝑀𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) ≤ 𝑝+. (20)

Proof. FromTheorem 9, we can obtain

GPFWBM𝑠,𝑡,𝑟 (𝑝−, 𝑝−, . . . , 𝑝−) = 𝑝−,
GPFWBM𝑠,𝑡,𝑟 (𝑝+, 𝑝+, . . . , 𝑝+) = 𝑝+. (21)

FromTheorem 10, we can obtain

GPFWBM𝑠,𝑡,𝑟 (𝑝−, 𝑝−, . . . , 𝑝−)≤ GPFWBM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ GPFWBM𝑠,𝑡,𝑟 (𝑝+, 𝑝+, . . . , 𝑝+) . (22)
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Therefore, 𝑝− ≤ GPFWBM𝑠,𝑡,𝑟(𝑝1, 𝑝2, . . . , 𝑝𝑛) ≤ 𝑝+.
Thereafter, we extendGWBGMtoPFSs and introduce the

generalized Pythagorean fuzzy weighted Bonferroni geomet-
ric mean (GPFWBGM).

Definition 12. Let 𝑠, 𝑡, 𝑟 > 0 and 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛)
be a collection of PFNs with their weight vector being 𝑤 =(𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying𝑤𝑖 ∈ [0, 1] and∑𝑛𝑖=1 𝑤𝑖 =1. If

GPFWBGM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

= 1𝑠 + 𝑡 + 𝑟 𝑛⨂
𝑖,𝑗,𝑘=1

(𝑠𝑝𝑖 ⊕ 𝑡𝑝𝑗 ⊕ 𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘 ,
(23)

then GPFWBGM𝑠,𝑡,𝑟 is called GPFWBGM.

We can obtain the following theorem based on Defini-
tion 4.

Theorem 13. Let 𝑠, 𝑡, 𝑟 > 0 and 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛)
be a collection of PFNs.The aggregated value by GPFWBGM is
also a PFN and

𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = (√1 − (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟),
(√1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − V2𝑠𝑖 V
2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)).

(24)

Proof. Through Definition 4, we can obtain

𝑠𝑝𝑖 = (√1 − (1 − 𝜇2𝑖 )𝑠, V𝑠𝑖) ,
𝑡𝑝𝑗 = (√1 − (1 − 𝜇2𝑗)𝑡, V𝑡𝑗) ,
𝑟𝑝𝑘 = (√1 − (1 − 𝜇2𝑘)𝑟, V𝑟𝑘) ,

(25)

𝑠𝑝𝑖 ⊕ 𝑡𝑝𝑗 ⊕ 𝑟𝑝𝑘= (√1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟, V𝑠𝑖V𝑡𝑗V𝑟𝑘) . (26)

Thereafter,

(𝑠𝑝𝑖 ⊕ 𝑡𝑝𝑗 ⊕ 𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘

= ((√1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘 ,
√1 − (1 − V2𝑠𝑖 V

2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘) .

(27)

Therefore,
𝑛⨂
𝑖,𝑗,𝑘=1

(𝑠𝑝𝑖 ⊕ 𝑡𝑝𝑗 ⊕ 𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘
= ((√ 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟))𝑤𝑖𝑤𝑗𝑤𝑘 ,
√1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − V2𝑠𝑖 V
2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘) ;

(28)

thus,

GPFWBGM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = 1𝑠 + 𝑡 + 𝑟 𝑛⨂
𝑖,𝑗,𝑘=1

(𝑠𝑝𝑖 ⊕ 𝑡𝑝𝑗 ⊕ 𝑟𝑝𝑘)𝑤𝑖𝑤𝑗𝑤𝑘
= (√1 − (1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟),
(√1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − V2𝑠𝑖 V
2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)).

(29)
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Hence, (24) is maintained. Thereafter,

0 ≤ √1 − (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ≤ 1, (30)

0 ≤ (√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − V2𝑠𝑖 V
2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ≤ 1. (31)

Therefore,

(√1 − (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟))
2

+ ((√1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − V2𝑠𝑖 V
2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟))2 = 1

− (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) + (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − V2𝑠𝑖 V
2𝑡
𝑗 V
2𝑟
𝑘 )𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) ≤ 1

− (1 − 𝑛∏
𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟)
+ (1 − 𝑛∏

𝑖,𝑗,𝑘=1

(1 − (1 − 𝜇2𝑖 )𝑠 (1 − 𝜇2𝑗)𝑡 (1 − 𝜇2𝑘)𝑟)𝑤𝑖𝑤𝑗𝑤𝑘)1/(𝑠+𝑡+𝑟) = 1,

(32)

thereby completing the proof.

Similar to GPFWBM, the GPFWBGM has the same
properties. The proofs of these properties are similar to that
of the properties of GPFWBM. Accordingly, the proofs are
omitted to save space.

Theorem 14. Let 𝑠, 𝑡, 𝑟 > 0 and 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛)
be a collection of PFNs.

(1) Idempotency. If 𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑛) are equal, that is, 𝑝𝑖 =𝑝 = (𝜇, V), then
GPFWBGM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = 𝑝. (33)

(2) Monotonicity. Let 𝑞𝑖 = (𝜇𝑞𝑖 , V𝑞𝑖) (𝑖 = 1, 2, . . . , 𝑛) be two
collections of PFNs. If 𝜇𝑝𝑖 ≤ 𝜇𝑞𝑖 and V𝑝𝑖 ≥ V𝑞𝑖 holds for all i,
then

GPFWBGM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ GPFWBGM𝑠,𝑡,𝑟 (𝑞1, 𝑞2, . . . , 𝑞𝑛) . (34)

(3) Boundedness. If 𝑝+ = (max𝑖(𝜇𝑖),min𝑖(V𝑖)) and 𝑝− =(min𝑖(𝜇𝑖),max𝑖(V𝑖)), then𝑝− ≤ GPFWBGM𝑠,𝑡,𝑟 (𝑝1, 𝑝2, . . . , 𝑝𝑛) ≤ 𝑝+. (35)

4. Dual Generalized Pythagorean Fuzzy
Weighted BM

The primary advantage of BM is that it can determine
the interrelationship between arguments. However, the tra-
ditional BM can only consider the correlations of any
two aggregated arguments. Thereafter, Beliakov et al. [37]
extended the traditional BM and introduced GBM, which
can determine the correlations between any three aggregated
arguments. Xia et al. [38] introduced GBWM and GBWGM
given that the GBM introduced by Beliakov et al. [37]
still has a few drawbacks. However, GBWM and GBWGM
can only consider the interrelationship between any three
aggregated arguments. We introduce a new generalization of
the traditional BM because the correlations are ubiquitous
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among all arguments. The new generalization of the tradi-
tional BM is called the dual GBM (DGBM) to distinguish
the new aggregation operator from the GBM introduced
by Beliakov et al. [37] and Xia et al. [38]. Furthermore,
we develop the dual generalized weighted BM (DGWBM)
and dual generalized weighted Bonferroni geometric mean
(DGWBGM) to consider the weights of the arguments.

Definition 15. Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of
nonnegative crisp numbers with the weight vector being𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying 𝑤𝑖 ∈ [0, 1] (𝑖 =1, 2, . . . , 𝑛) and ∑𝑛𝑖=1 𝑤𝑖 = 1. If

DGWBM𝑅 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 𝑛∑
𝑖1 ,𝑖2,...,𝑖𝑛=1

( 𝑛∏
𝑗=1

𝑤𝑖𝑗𝑎𝑟𝑗𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗 , (36)

where 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑛)𝑇 is the parameter vector with 𝑟𝑖 ≥0 (𝑖 = 1, 2, . . . , 𝑛), then DGWBM𝑅 is called DGWBM.

Several special cases can be obtained given the change of
the parameter vector.

(1) If 𝑅 = (𝜆, 0, 0, . . . , 0), then we obtain

DGWBM(𝜆,0,0,...,0) (𝑎1, 𝑎2, . . . , 𝑎𝑛) = ( 𝑛∑
𝑖=1

𝑤𝑖𝑎𝜆𝑖 )1/𝜆 , (37)

which is the generalized weighted averaging operator.
(2) If 𝑅 = (𝑠, 𝑡, 0, 0, . . . , 0), then we obtain

DGWBM(𝑠,𝑡,0,0,...,0) (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 𝑛∑
𝑖,𝑗=1

𝑤𝑖𝑤𝑗𝑎𝑠𝑖 𝑎𝑡𝑗)1/(𝑠+𝑡) , (38)

which is the weighted BM.
(3) If 𝑅 = (𝑠, 𝑡, 𝑟, 0, 0, . . . , 0), then we obtain

DGWBM(𝑠,𝑡,𝑟,0,0,...,0) (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= ( 𝑛∑
𝑖,𝑗,𝑘=1

𝑤𝑖𝑤𝑗𝑤𝑘𝑎𝑠𝑖 𝑎𝑡𝑗𝑎𝑟𝑘)1/(𝑠+𝑡+𝑘) , (39)

which is the GWBM.

Definition 16. Let 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑛) be a collection of
nonnegative crisp numbers with the weight vector being𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying 𝑤𝑖 ∈ [0, 1] (𝑖 =1, 2, . . . , 𝑛) and ∑𝑛𝑖=1 𝑤𝑖 = 1. If

DGWBGM𝑅 (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= 1∑𝑛𝑗=1 𝑟𝑗 ( 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

( 𝑛∑
𝑗=1

(𝑟𝑗𝑝𝑖𝑗))∏𝑛𝑗=1𝑤𝑖𝑗) , (40)

where 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑛)𝑇 is the parameter vector with 𝑟𝑖 ≥0 (𝑖 = 1, 2, . . . , 𝑛), then DGWBGM𝑅 is called DGWBGM.

Similar to the DGWBM, we can consider some special
cases given the change of the parameter vector.

(1) If 𝑅 = (𝜆, 0, 0, . . . , 0), then we obtain

DGWBGM(𝜆,0,0,...,0) (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= 1𝜆 ( 𝑛∏

𝑖=1

(𝜆𝑎𝑖)𝑤𝑖) , (41)

which is the generalized weighted geometric averaging oper-
ator.

(2) If 𝑅 = (𝑠, 𝑡, 0, 0, . . . , 0), then we obtain

DGWBGM(𝑠,𝑡,0,0,0,...,0) (𝑎1, 𝑎2, . . . , 𝑎𝑛)= 1𝑠 + 𝑡 𝑛∏𝑖,𝑗=1 (𝑠𝑎𝑖 + 𝑡𝑎𝑗)𝑤𝑖𝑤𝑗 , (42)

which is the weighted Bonferroni geometric mean.
(3) If 𝑅 = (𝑠, 𝑡, 𝑟, 0, 0, . . . , 0), then

DGWBGM(𝑠,𝑡,𝑟,0,0,...,0) (𝑎1, 𝑎2, . . . , 𝑎𝑛)= 1𝑠 + 𝑡 + 𝑟 𝑛∏
𝑖,𝑗,𝑘=1

(𝑠𝑎𝑖 + 𝑡𝑎𝑗 + 𝑟𝑎𝑘)𝑤𝑖𝑤𝑗𝑤𝑘 , (43)

which is the GWBGM.
We extend DGWBM and DGWBGM to PFSs, as well as

introduce several new aggregation operators for fusing the
Pythagorean fuzzy information.

Definition 17. Let 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection
of PFNswith their weight vector being𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇,
thereby satisfying 𝑤𝑖 ∈ [0, 1] and ∑𝑛𝑖=1 𝑤𝑖 = 1. Thereafter,
the dual generalized Pythagorean fuzzy weighted Bonferroni
mean (DGPFWBM) is defined as

DGPFWBM𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)
= ( 𝑛⨁
𝑖1 ,𝑖2,...,𝑖𝑛=1

( 𝑛⨂
𝑗=1

𝑤𝑖𝑗𝑝𝑟𝑗𝑖𝑗))1/∑𝑛𝑖=1 𝑟𝑗 , (44)

where 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑛)𝑇 is the parameter vector with 𝑟𝑖 ≥0 (𝑖 = 1, 2, . . . , 𝑛).
We can derive the following theorem based on Defini-

tion 4.

Theorem18. Let𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection of
PFNs. Hence, the aggregated value by DGPFWBM is also PFN
and𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

= ((√1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
√1 − (1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗).
(45)
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Proof. Through Definition 4, we obtain

𝑝𝑟𝑗𝑖𝑗 = (𝜇𝑟𝑗𝑖𝑗 , √1 − (1 − V2𝑖𝑗)𝑟𝑗) ,
𝑤𝑖𝑗𝑝𝑟𝑗𝑖𝑗

= (√1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗 , (√1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗) .
(46)

Therefore,

𝑛⨂
𝑗=1

𝑤𝑖𝑗𝑝𝑟𝑗𝑖𝑗 = ( 𝑛∏
𝑗=1

√1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗 ,
√1 − 𝑛∏

𝑗=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗)) . (47)

Thus,

𝑛⨁
𝑖1,𝑖2 ,...,𝑖𝑛=1

( 𝑛⨂
𝑗=1

𝑤𝑖𝑗𝑝𝑟𝑗𝑖𝑗)
= (√1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)),
𝑛∏

𝑖1 ,𝑖2 ,...,𝑖𝑛=1

√1 − 𝑛∏
𝑗=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗)) .
(48)

Therefore,

( 𝑛⨁
𝑖1 ,𝑖2 ,...,𝑖𝑛=1

( 𝑛⨂
𝑗=1

𝑤𝑖𝑗𝑝𝑟𝑗𝑖𝑗))1/∑𝑛𝑖=1 𝑟𝑗
= ((√1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
√1 − (1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗).
(49)

Thus, (45) is maintained.
Thereafter,

0
≤ (√1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗
≤ 1,
0 ≤ √1 − (1 − 𝑛∏

𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗
≤ 1.

(50)

In addition,

((√1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗)2

+ (√1 − (1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗)
2 = (1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1
− 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑝𝑗 + 1 − (1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗 ≤ (1 − 𝑛∏
𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1
− (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗 + 1 − (1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗 = 1,

(51)

thereby completing the proof.

Moreover, DGPFWBM has the following properties.

Theorem 19 (monotonicity). Let 𝑝𝑖 = (𝜇𝑝𝑖 , V𝑝𝑖) (𝑖 =1, 2, . . . , 𝑛) and 𝑞𝑖 = (𝜇𝑞𝑖 , V𝑞𝑖) (𝑖 = 1, 2, . . . , 𝑛) be two

collections of PFNs. If 𝜇𝑝𝑖 ≤ 𝜇𝑞𝑖 and V𝑝𝑖 ≥ V𝑞𝑖 holds for all 𝑖,
then 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑞1, 𝑞2, . . . , 𝑞𝑛) . (52)
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Proof. Let 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑝1, 𝑝2, . . . , 𝑝𝑛) = (𝜇𝑝, V𝑞) and𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑞1, 𝑞2, . . . , 𝑞𝑛) = (𝜇𝑞, V𝑞).
Given that 𝜇𝑝𝑖 ≤ 𝜇𝑞𝑖 , we obtain

(1 − 𝜇2𝑟𝑗𝑝𝑖𝑖 )𝑤𝑖𝑗 ≥ (1 − 𝜇2𝑟𝑗𝑞𝑖𝑖 )𝑤𝑖𝑗 ,1 − (1 − 𝜇2𝑟𝑗𝑝𝑖𝑗 )𝑤𝑖𝑗 ≤ 1 − (1 − 𝜇2𝑟𝑗𝑞𝑖𝑗 )𝑤𝑖𝑗 ,

𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑝𝑖𝑗 )𝑤𝑖𝑗))
≥ 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑞𝑖𝑗 )𝑤𝑖𝑗)) .
(53)

Therefore,

(√1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑝𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ≤ (√1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑞𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
((√1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑝𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗)2

≤ ((√1 − 𝑛∏
𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑞𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗)2 ;
(54)

thus, 𝜇2𝑝 ≤ 𝜇2𝑞. Similarly, we can obtain V2𝑝 ≥ V2𝑞.

If 𝜇2𝑝 < 𝜇2𝑞 because V2𝑝 ≥ V2𝑞, then𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)< 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑞1, 𝑞2, . . . , 𝑞𝑛) ; (55)

If 𝜇2𝑝 = 𝜇2𝑞 and V2𝑝 > V2𝑞, then 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑝1, 𝑝2,. . . , 𝑝𝑛) < 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑞1, 𝑞2, . . . , 𝑞𝑛);
If 𝜇2𝑝 = 𝜇2𝑞 and V2𝑝 = V2𝑞, then 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑝1, 𝑝2,. . . , 𝑝𝑛) = 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑞1, 𝑞2, . . . , 𝑞𝑛).

Therefore, 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑝1, 𝑝2, . . . , 𝑝𝑛) ≤𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅(𝑞1, 𝑞2, . . . , 𝑞𝑛) and the proof of Theorem 19 is
completed.

Theorem 20 (boundedness). Let 𝑝𝑖 = (𝜇𝑝𝑖 , V𝑝𝑖) (𝑖 = 1, 2,. . . , 𝑛) be a collection of PFNs. If 𝑝+ = (max𝑖(𝜇𝑖),min𝑖(V𝑖)) and𝑝− = (min𝑖(𝜇𝑖),max𝑖(V𝑖)), then𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝−, 𝑝−, . . . , 𝑝−)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝+, 𝑝+, . . . , 𝑝+) . (56)

Proof. According toTheorem 18, we can obtain

𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝−, 𝑝−, . . . , 𝑝−) = ((√1 − 𝑛∏
𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − (min𝜇𝑖𝑗)2𝑟𝑗)𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
√1 − (1 − 𝑛∏

𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1 − (1 − (1 − (max V𝑖𝑗)2)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗).
𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = ((√1 − 𝑛∏

𝑖1,𝑖2 ,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑗 )𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
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√1 − (1 − 𝑛∏
𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1 − (1 − (1 − V2𝑖𝑗)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗).
𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝+, 𝑝+, . . . , 𝑝+) = ((√1 − 𝑛∏

𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − (max 𝜇𝑖𝑗)2𝑟𝑗)𝑤𝑖𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
√1 − (1 − 𝑛∏

𝑖1 ,𝑖2 ,...,𝑖𝑛=1

(1 − (1 − (1 − (max V𝑖𝑗)2)𝑟𝑗)𝑤𝑖𝑗))1/∑𝑛𝑗=1 𝑟𝑗).
(57)

According toTheorem 19, we can obtain

𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝−, 𝑝−, . . . , 𝑝−)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝑀𝑅 (𝑝+, 𝑝+, . . . , 𝑝+) . (58)

Evidently, the DGPFWBM operator lacks the property of
idempotency.

We extend DGBWGM to PFSs and introduce the dual
generalized Pythagorean fuzzy weighted Bonferroni geomet-
ric mean (DGPFWBGM) operator.

Definition 21. Let 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛) be
a collection of PFNs with their weight vector being

𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying 𝑤𝑖 ∈ [0, 1] and∑𝑛𝑖=1 𝑤𝑖 = 1. If
DGPFWBGM𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

= 1∑𝑛𝑗=1 𝑟𝑗 ( 𝑛⨂
𝑖1 ,𝑖2 ,...,𝑖𝑛=1

( 𝑛⨁
𝑗=1

(𝑟𝑗𝑝𝑖𝑗))∏𝑛𝑗=1𝑤𝑖𝑗) , (59)

where 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑛)𝑇 is the parameter vector with𝑟𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑛); then 𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 is called the
DGPFWBGM

We obtain the following theorem based on Definition 4.

Theorem 22. Let 𝑝𝑖 = (𝜇𝑖, V𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection
of PFNs.The aggregated value by the DGPFWBGM operator is
also PFN and

𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)
= (√1 − (1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − 𝜇2𝑖𝑗)𝑟𝑗)∏𝑛𝑗=1𝑤𝑖𝑗)1/∑
𝑛
𝑗=1 𝑟𝑗 ,(√1 − 𝑛∏

𝑖1 ,𝑖2,...,𝑖𝑛=1

(1 − 𝑛∏
𝑗=1

V2𝑟𝑗𝑖𝑗 )∏𝑛𝑗=1𝑤𝑖𝑗)1/∑
𝑛
𝑗=1 𝑟𝑗). (60)

The proof ofTheorem 22 is similar to that of Theorem 18;
thus, such proof is omitted to save space.

Similar to DGPFWBM, we can obtain the following
properties of DGPFWBGM. The proofs of these properties
are likewise omitted to save space.

Theorem23. Let𝑝𝑖 = (𝜇𝑝𝑖 , V𝑝𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a collection
of PFNs.

(1) Monotonicity. Let 𝑞𝑖 = (𝜇𝑞𝑖 , V𝑞𝑖) (𝑖 = 1, 2, . . . , 𝑛) be a
collection of PFNs. If 𝜇𝑝𝑖 ≤ 𝜇𝑞𝑖 and V𝑝𝑖 ≥ V𝑞𝑖 holds for all𝑖, then

𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 (𝑞1, 𝑞2, . . . , 𝑞𝑛) . (61)

(2) Boundedness. If 𝑝+ = (max𝑖(𝜇𝑖),min𝑖(V𝑖)) and 𝑝− =(min𝑖(𝜇𝑖),max𝑖(V𝑖)), then𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 (𝑝−, 𝑝−, . . . , 𝑝−)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 (𝑝1, 𝑝2, . . . , 𝑝𝑛)≤ 𝐷𝐺𝑃𝐹𝑊𝐵𝐺𝑀𝑅 (𝑝+, 𝑝+, . . . , 𝑝+) . (62)
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5. Novel Approach to MAGDM with
Pythagorean Fuzzy Information

This section introduces a novel approach to MAGDM under
the Pythagorean fuzzy environment. A typical MAGDM
problem with the Pythagorean fuzzy information can be
described as follows. Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} be a set of alter-
natives and𝐺 = {𝐺1, 𝐺2, . . . , 𝐺𝑛} be a set of attributes with the
weight vector being𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇, thereby satisfying𝑤𝑖 ∈ [0, 1] and∑𝑛𝑖=1 𝑤𝑖 = 1. Several decision makers are orga-
nized to decide over alternatives. For the attribute 𝐺𝑗 (𝑗 =1, 2, . . . , 𝑛) of alternative 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑚), the decision
makers are required to use PFNs to express their preference
information, which can be denoted as 𝑝𝑖𝑗 = (𝜇𝑖𝑗, V𝑖𝑗) (𝑖 = 1,2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛). Therefore, a Pythagorean fuzzy
decision matrix can be obtained by 𝑃 = (𝑝𝑖𝑗)𝑚×𝑛. A novel
approach based on the dual generalized Pythagorean fuzzy
BMaggregation operators is introduced to solve this problem.

Step 1. The two types of attributes are benefit and cost
attributes. Xu and Hu [40] introduced the normalization
regulation for intuitionistic fuzzy decision matrix, which
can be extended to the Pythagorean fuzzy decision matrix.
Therefore, the decision matrix should be normalized by

𝑝𝑖𝑗 = {{{(𝜇𝑖𝑗, V𝑖𝑗) , 𝐺𝑗 ∈ 𝐼1,(V𝑖𝑗, 𝜇𝑖𝑗) , 𝐺𝑗 ∈ 𝐼2, (63)

where 𝐼1 and 𝐼2 represent the benefit and cost attributes,
respectively. Thereafter, a normalized decision matrix can be
obtained.

Step 2. For the alternative 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑚), we utilize the
DGPFWBM operator

𝑝𝑖 = DGPFWBM𝑅 (𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑛) = ((√1 − 𝑛∏
𝑖𝑙1 ,𝑖𝑙2 ,...,𝑖𝑙𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − (1 − 𝜇2𝑟𝑗𝑖𝑙𝑗 )𝑤𝑖𝑙𝑗)))1/∑𝑛𝑗=1 𝑟𝑗 ,
√1 − (1 − 𝑛∏

𝑖𝑙1 ,𝑖𝑙2 ,...,𝑖𝑙𝑛=1

(1 − (1 − (1 − V2𝑖𝑖𝑗)𝑟𝑗)𝑤𝑖𝑙𝑗))1/∑𝑛𝑗=1 𝑟𝑗)
(64)

or the DGPFWBGM operator

𝑝𝑖 = DGPFWBGM𝑅 (𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑛)
= (√1 − (1 − 𝑛∏

𝑖𝑙1 ,𝑖𝑙2,...,𝑖𝑙𝑛=1

(1 − 𝑛∏
𝑗=1

(1 − 𝜇2𝑖𝑙𝑗)𝑟𝑗)∏𝑛𝑗=1𝑤𝑖𝑙𝑗)1/∑
𝑛
𝑗=1 𝑟𝑗 ,(√1 − 𝑛∏

𝑖𝑙1 ,𝑖𝑙2,...,𝑖𝑙𝑛=1

(1 − 𝑛∏
𝑗=1

V2𝑟𝑗𝑖𝑙𝑗 )∏𝑛𝑗=1𝑤𝑖𝑙𝑗)
1/∑𝑛𝑗=1 𝑟𝑗) (65)

to aggregate all the attribute values. Therefore, we can obtain
a series of overall values 𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑚) of alternatives.
Step 3. 𝑝𝑖 (𝑖 = 1, 2, . . . , 𝑚) is ranked based on the score
function by Definition 3.

Step 4. The alternative 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑚) is ranked based on
the rank of the corresponding overall values.

6. Numerical Example

We provide a numerical example adopted from [24] and
a few comparative analyses to illustrate the validity of the
new approach. The Civil Aviation Administration of Taiwan
(CAAT) aims to determine the best airline in Taiwan. Hence,

CAAT organizes several experts to form a committee that
will evaluate four major domestic airlines, namely, UNI Air(𝑥1), Transasia (𝑥2), Mandarin (𝑥3), and Daily Air (𝑥4). The
experts are required to evaluate the four airlines using the
following four aspects: (1) booking and ticketing service (𝐺1),
(2) check-in and boarding process (𝐺2), (3) cabin service(𝐺3), and (4) responsiveness (𝐺4). The weight vector of the
attributes is 𝑤 = (0.15, 0.25, 0.35, 0.25)𝑇. For the attribute𝐺𝑗 (𝑗 = 1, 2, 3, 4) of airline 𝑥𝑖 (𝑖 = 1, 2, 3, 4), the experts are
required to utilize the PFN 𝑝𝑖𝑗 = (𝜇𝑖𝑗, V𝑖𝑗) to express their
assessments. Moreover, a Pythagorean fuzzy decision matrix𝑃 = (𝑝𝑖𝑗)4×4 (𝑖, 𝑗 = 1, 2, 3, 4) can be obtained (see Table 1).
We utilize the newly introduced decision-making approach
to solve this problem.
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Table 1: Pythagorean fuzzy decision matrix.

C1 C2 C3 C4𝑥1 (0.9, 0.3) (0.7, 0.6) (0.5, 0.8) (0.6, 0.3)𝑥2 (0.4, 0.7) (0.9, 0.2) (0.8, 0.1) (0.5, 0.3)𝑥3 (0.8, 0.4) (0.7, 0.5) (0.6, 0.2) (0.7, 0.4)𝑥4 (0.7, 0.2) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)

6.1. Decision-Making Process

Step 1. The decision matrix does not require being normal-
ized because all the attributes are benefit attributes.

Step 2. For the alternative 𝑥𝑖 (𝑖 = 1, 2, 3, 4) is utilized to
aggregate the attribute values. Therefore, we can obtain a set
of overall values. In this step, let 𝑅 = (1, 1, 1, 1).

𝑝1 = (0.7543, 0.2324) ,𝑝2 = (0.8424, 0.0004) ,𝑝3 = (0.7664, 0.0211) ,𝑝4 = (0.8387, 0.0131) .
(66)

Step 3. The scores of 𝑝𝑖 (𝑖 = 1, 2, 3, 4) are calculated based
on Definition 3 to obtain 𝑠(𝑝1) = 0.5150, 𝑠(𝑝2) = 0.7103,𝑠(𝑝3) = 0.5869, and 𝑠(𝑝4) = 0.7032. Therefore, the rank of
the overall values is 𝑝2 ≻ 𝑝4 ≻ 𝑝3 ≻ 𝑝1.
Step 4. The alternative 𝑥𝑖 (𝑖 = 1, 2, 3, 4) is ranked based on
the rank of 𝑝𝑖 (𝑖 = 1, 2, 3, 4) to obtain 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1.
Therefore, 𝑥2 is the best alternative. That is, Daily Air is the
best airline in Taiwan.

6.2. Influence of the Parameter Vector 𝑅 on the Final Result.
The prominent characteristic of the DGPFWBM and the
DGPFWBGMoperators is that they can consider the interre-
lationship among all PFNs. We conduct several comparative
analyses to demonstrate the advantages of the new operators.
Table 2 presents further details.

Table 2 shows that the aggregation operators introduced
in [23–26] cannot consider the interrelationship among
PFNs. Although PFCIA and PFCIG can capture the inter-
relationship among all PFNs, they only focus on changing
the weight vector of the aggregation operators. In addition,
the correlations of the aggregated arguments are measured
subjectively by the decisionmakers. GPFWBM,GPFWBGM,
DGPFWBM, and DGPFWBGM focus on the aggregated
PFNs. The DGPFWBM and DGPFWBGM operators can
consider the interrelationship among all PFNs comparedwith
the GPFWBM and GPFWBGM operators. In addition, the
DGPFWBM and DGPFWBGM operators have a parameter
vector, thereby enabling the aggregation process to be sub-
stantially flexible.

The parameter vector 𝑅 plays a crucial role in the final
result. We may obtain a different ranking result by assigning
different values to 𝑅. We set a different weight vector 𝑅 and
discuss the ranking results. Tables 3 and 4 provide further
details.

Tables 3 and 4 show that the different ranking results can
be obtained by assigning different values in the parameter
vector 𝑅. Therefore, the DGPFWBM and the DGPFWBM
operators are considerably flexible by using a parameter
vector. Table 3 shows that the best alternatives are consistently
the same, although the ranking results are different by using
different parameter vectors. That is, the final results become
increasingly objective by considering the interrelationship
among all the attribute values. The best alternative is consis-
tently 𝑥2 regardless of the parameter vector. Table 4 shows
that the ranking results increase and become steady with
the increase of values in parameter vector 𝑅. These features
of the DGPFWBM and DGPFWBM operators are crucial
in real decision-making problems. Accordingly, we can
assign a weight vector with large values to the DGPFWBM
and the DGPFWBM operators for steady and reliable final
results.

7. Conclusions

PFS is a powerful tool for expressing the fuzziness,
uncertainty, and hesitancy of decision makers. This research
extends the GWBM and GWBGM operators to the
Pythagorean fuzzy environment, as well as introduces the
GPFWBM and the GPFWBGM operators. First, we extend
the GWBM and GWBGM operators, as well as develop
the DGWBM and DGWBGM operators, because the two
operators can only consider the interrelationship between
any two IFNs. The prominent advantage of the DGWBM
and DGWBGM operators is that they can consider the
interrelationship among all the arguments being fused.
Moreover, we extend the GWBGM and DGWBM operators
to the Pythagorean fuzzy environment, as well as develop the
DGPFWBM and DGPFWBGM operators. Thereafter, the
new operators are used as bases to propose a novel approach
to MAGDM with Pythagorean fuzzy information. We apply
the new approach to illustrate its validity to the problem
of selecting the best airline. Moreover, we investigate the
influence of the parameter vector 𝑅 on the ranking results
to show the advantages of the new approach. The limitation
of the DGPFWFBM and DGPFWFBGM operators is that
the calculation process maybe more complicated than the
existing Pythagorean fuzzy aggregation operators as they can
consider the interrelationship between all PFNs. Therefore,
the calculation process of the proposed method to MAGDM
is little more complicated than existing methods. The focus
of future research is to reduce complexity of the calculation
of the proposed method.
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Table 2: Comparison of the different operators.

Aggregation
operators

Whether the operator can
capture the

interrelationship between
any two PFNs

Whether the operator can
capture the

interrelationship between
any three PFNs

Whether the operator can
capture the

interrelationship among all
PFNs

Whether a parameter
vector exists to manipulate

the ranking results

PFWA [23] No No No No
PFWG [23] No No No No
SPFWA [24] No No No No
SPFWG [24] No No No No
PFOWAWAD [25] No No No No
PFEWA [26] No No No No
PFEOWA [26] No No No No
GPFEWA [26] No No No No
GPFEOWA [26] No No No No
PFCIA [28] Yes Yes Yes No
PFCIG [28] Yes Yes Yes No
GPFWBM Yes Yes No Yes
GPFWBGM Yes Yes No Yes
DGPFWBM Yes Yes Yes Yes
DGPFWBGM Yes Yes Yes Yes

Table 3: Ranking results by assigning different values to parameter vector 𝑅 in the DGPFWBM operator.

Parameter 𝑅 Scores of overall values Ranking results𝑅 = (1, 1, 1, 1) 𝑠 (𝑝1) = 0.5150 𝑠 (𝑝2) = 0.7103 𝑠 (𝑝3) = 0.5869 𝑠 (𝑝4) = 0.7032 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1𝑅 = (2, 2, 2, 2) 𝑠 (𝑝1) = 0.3742 𝑠 (𝑝2) = 0.6487 𝑠 (𝑝3) = 0.4906 𝑠 (𝑝4) = 0.5944 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1𝑅 = (3, 3, 3, 3) 𝑠 (𝑝1) = 0.3657 𝑠 (𝑝2) = 0.6517 𝑠 (𝑝3) = 0.4572 𝑠 (𝑝4) = 0.5584 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1𝑅 = (4, 4, 4, 4) 𝑠 (𝑝1) = 0.3872 𝑠 (𝑝2) = 0.6613 𝑠 (𝑝3) = 0.4417 𝑠 (𝑝4) = 0.5411 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1𝑅 = (5, 5, 5, 5) 𝑠 (𝑝1) = 0.4148 𝑠 (𝑝2) = 0.6743 𝑠 (𝑝3) = 0.4361 𝑠 (𝑝4) = 0.5330 𝑥2 ≻ 𝑥4 ≻ 𝑥3 ≻ 𝑥1𝑅 = (8, 8, 8, 8) 𝑠 (𝑝1) = 0.4870 𝑠 (𝑝2) = 0.6904 𝑠 (𝑝3) = 0.4435 𝑠 (𝑝4) = 0.5303 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3𝑅 = (10, 10, 10, 10) 𝑠 (𝑝1) = 0.5215 𝑠 (𝑝2) = 0.7004 𝑠 (𝑝3) = 0.4550 𝑠 (𝑝4) = 0.5339 𝑥2 ≻ 𝑥4 ≻ 𝑥1 ≻ 𝑥3
Table 4: Ranking results by assigning different values to parameter vector 𝑅 in the DGPFWBGM operator.

Parameter R Scores of overall values Ranking results𝑅 = (1, 1, 1, 1) 𝑠(𝑝1) = −0.9636 𝑠(𝑝2) = −0.6197𝑠 (𝑝3) = −0.5997 𝑠 (𝑝4) = −0.5908 𝑥4 ≻ 𝑥3 ≻ 𝑥2 ≻ 𝑥1𝑅 = (2, 2, 2, 2) 𝑠(𝑝1) = −0.7322 𝑠(𝑝2) = −0.4985𝑠 (𝑝3) = −0.2989 𝑠 (𝑝4) = −0.3209 𝑥3 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥1𝑅 = (3, 3, 3, 3) 𝑠(𝑝1) = −0.5973 𝑠(𝑝2) = −0.4662𝑠 (𝑝3) = −0.1154 𝑠 (𝑝4) = −0.1561 𝑥3 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥1𝑅 = (4, 4, 4, 4) 𝑠(𝑝1) = −0.5155 𝑠(𝑝2) = −0.4324𝑠 (𝑝3) = −0.0206 𝑠 (𝑝4) = −0.0836 𝑥3 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥1𝑅 = (5, 5, 5, 5) 𝑠(𝑝1) = −0.4705 𝑠(𝑝2) = −0.4068𝑠 (𝑝3) = 0.0285 𝑠 (𝑝4) = −0.0491 𝑥3 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥1𝑅 = (8, 8, 8, 8) 𝑠(𝑝1) = −0.4178 𝑠(𝑝2) = −0.3663𝑠 (𝑝3) = 0.3364 𝑠 (𝑝4) = −0.0136 𝑥3 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥1𝑅 = (10, 10, 10, 10) 𝑠(𝑝1) = −0.4056 𝑠(𝑝2) = −0.3538𝑠 (𝑝3) = 0.3477 𝑠 (𝑝4) = 0.3533 𝑥3 ≻ 𝑥4 ≻ 𝑥2 ≻ 𝑥1



Complexity 15

Acknowledgments

This study was partially supported by a key program of the
National Natural Science Foundation of ChinawithGrant no.
71532002.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3,
pp. 338–353, 1965.

[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[3] D. Yu and S. Shi, “Researching the development of Atanassov
intuitionistic fuzzy set: using a citation network analysis,”
Applied Soft Computing Journal, vol. 32, pp. 189–198, 2015.

[4] D. J. Yu and H. C. Liao, “Visualization and quantitative research
on intuitionistic fuzzy studies,” Journal of Intelligent & Fuzzy
Systems, vol. 30, no. 6, pp. 3653–3663, 2016.

[5] J. Mao, D. Yao, and C. Wang, “A novel cross-entropy and
entropy measures of IFSs and their applications,” Knowledge-
Based Systems, vol. 48, pp. 37–45, 2013.

[6] P. Liu and F. Teng, “Multiple criteria decision making method
based on normal interval-valued intuitionistic fuzzy general-
ized aggregation operator,” Complexity, vol. 21, no. 5, pp. 277–
290, 2016.

[7] V. Lakshmana, S. Jeevaraj, and G. Sivaraman, “Total ordering
for intuitionistic fuzzy numbers,”Complexity, vol. 21, no. S2, pp.
54–66, 2016.

[8] V. Lakshmana, S. Jeevaraj, and P.Dhanasekaran, “A new ranking
principle for ordering trapezoidal intuitionistic fuzzy numbers,”
Complexity, Art. ID 3049041, 24 pages, 2017.

[9] P. Liu and X. Liu, “Multiattribute group decision making meth-
ods based on linguistic intuitionistic fuzzy power Bonferroni
mean operators,” Complexity, Art. ID 3571459, 15 pages, 2017.

[10] D. Liu, X. Chen, and D. Peng, “Interval-valued intuitionistic
fuzzy ordered weighted cosine similarity measure and its
application in investment decision-making,” Complexity, Art.
ID 1891923, 11 pages, 2017.

[11] P. D. Liu, “Some Hamacher aggregation operators based on
the interval-valued intuitionistic fuzzy numbers and their
application to group decision making,” IEEE Transactions on
Fuzzy Systems, vol. 22, no. 1, pp. 83–97, 2014.

[12] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic,
Neutrosophy, Neutrosophic Set, Neutrosophic Probability, Amer-
ican Research Press, Rehoboth, DE, USA, Third edition, 1999.

[13] P. D. Liu, Y. C. Chu, Y. W. Li, and Y. B. Chen, “Some gener-
alized neutrosophic number hamacher aggregation operators
and their application to group decision making,” International
Journal of Fuzzy Systems, vol. 16, no. 2, pp. 242–255, 2014.

[14] P. D. Liu and G. L. Tang, “Some power generalized aggregation
operators based on the interval neutrosophic sets and their
application to decision making,” Journal of Intelligent Fuzzy
Systems, vol. 30, no. 5, pp. 2517–2528, 2016.

[15] P. Liu and H. Li, “Multiple attribute decision-making method
based on some normal neutrosophic Bonferroni mean opera-
tors,” Neural Computing and Applications, 2016.

[16] P. Liu and G. Tang, “Multi-criteria Group Decision-Making
Based on Interval Neutrosophic Uncertain Linguistic Variables
and Choquet Integral,” Cognitive Computation, vol. 8, no. 6, pp.
1036–1056, 2016.

[17] P. D. Liu, L. L. Zhang, X. Liu, and P. Wang, “Multi-valued
neutrosophic number Bonferroni mean operators with their
applications in multiple attribute group decision making,”
International Journal of Information Technology & Decision
Making, vol. 15, no. 5, pp. 1181–1210, 2016.

[18] P. Liu, “The Aggregation Operators Based on Archimedean t-
Conorm and t-Norm for Single-Valued Neutrosophic Numbers
and their Application to Decision Making,” International Jour-
nal of Fuzzy Systems, vol. 18, no. 5, pp. 849–863, 2016.

[19] R. R. Yager, “Pythagorean membership grades in multicriteria
decision making,” IEEE Transactions on Fuzzy Systems, vol. 22,
no. 4, pp. 958–965, 2014.

[20] X. Gou, Z. Xu, and P. Ren, “The Properties of Continuous
Pythagorean Fuzzy Information,” International Journal of Intel-
ligent Systems, vol. 31, no. 5, pp. 401–424, 2016.

[21] X. L. Zhang and Z. S. Xu, “Extension of TOPSIS to multiple
criteria decision making with pythagorean fuzzy sets,” Interna-
tional Journal of Intelligent Systems, vol. 29, no. 12, pp. 1061–1078,
2014.

[22] D. Yu, “A scientometrics review on aggregation operator
research,” Scientometrics, vol. 105, no. 1, pp. 115–133, 2015.

[23] R. R. Yager and A. M. Abbasov, “Pythagorean membership
grades, complex numbers, and decision making,” International
Journal of Intelligent Systems, vol. 28, no. 5, pp. 436–452, 2013.

[24] Z. Ma and Z. Xu, “Symmetric Pythagorean Fuzzy Weighted
Geometric/Averaging Operators andTheir Application inMul-
ticriteria Decision-Making Problems,” International Journal of
Intelligent Systems, vol. 31, no. 12, pp. 1198–1219, 2016.

[25] S. Z. Zeng, J. P. Chen, and X. S. Li, “A hybrid method for
Pythagorean fuzzy multiple-criteria decision making,” Interna-
tional Journal of InformationTechnology&DecisionMaking, vol.
15, no. 2, pp. 403–422, 2016.

[26] H. Garg, “A New Generalized Pythagorean Fuzzy Information
Aggregation Using Einstein Operations and Its Application to
Decision Making,” International Journal of Intelligent Systems,
vol. 31, no. 9, pp. 886–920, 2016.

[27] X. Peng and H. Yuan, “Fundamental properties of Pythagorean
fuzzy aggregation operators,” Fundamenta Informaticae, vol.
147, no. 4, pp. 415–446, 2016.

[28] X. D. Peng and Y. Yang, “Pythagorean fuzzy choquet integral
based MABAC method for multiple attribute group decision
making,” International Journal of Intelligent Systems, vol. 31, no.
10, pp. 989–1020, 2016.

[29] C. Bonferroni, “Sulle medie multiple di potenze,” Bolletino
Matematica Italiana, vol. 5, pp. 267–270, 1950.

[30] S. Sykora,MathematicalMeans and Averages: Generalized Hero-
nian Means, Library, SykoraS. Stans, 2009.

[31] Z. S. Xu and R. R. Yager, “Intuitionistic fuzzy bonferroni
means,” IEEE Transactions on Systems, Man, and Cybernetics B:
Cybernetics, vol. 41, no. 2, pp. 568–578, 2011.

[32] M. Xia, Z. Xu, and B. Zhu, “Geometric Bonferroni means with
their application inmulti-criteria decisionmaking,”Knowledge-
Based Systems, vol. 40, pp. 88–100, 2013.

[33] D. J. Yu, “Intuitionistic fuzzy geometric Heronian mean aggre-
gation operators,” Applied Soft Computing Journal, vol. 13, no. 2,
pp. 1235–1246, 2013.

[34] B. Zhu and Z. S. Xu, “Hesitant fuzzy Bonferroni means for
multi-criteria decision making,” Journal of the Operational
Research Society, vol. 64, no. 12, pp. 1831–1840, 2013.

[35] B. Zhu, Z. Xu, andM.Xia, “Hesitant fuzzy geometric Bonferroni
means,” Information Sciences. An International Journal, vol. 205,
pp. 72–85, 2012.



16 Complexity

[36] D. Yu, “Hesitant fuzzy multi-criteria decision making methods
based on Heronian mean,” Technological and Economic Devel-
opment of Economy, 2015.
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