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We construct a family of nonradially symmetric exact solutions for the two-component DGH system by the perturbational method.
Depending on the parameters, the class of solutions includes both blowup type and global existence type.

1. Introduction

In this paper, we consider the following two-component
Dullin-Gottwald-Holm (DGH) system:

𝜌
𝑡
+ (𝑢𝜌)

𝑥
= 0,

𝑡 > 0, 𝑥 ∈ R,

𝑚
𝑡
− 𝐴𝑢
𝑥
+ 𝑢𝑚
𝑥
+ 2𝑢
𝑥
𝑚 + 𝛾𝑢

𝑥𝑥𝑥
+ 𝜌𝜌
𝑥
= 0,

𝑡 > 0, 𝑥 ∈ R

(1)

with

𝑚 = 𝑢 − 𝑢
𝑥𝑥
. (2)

Here, 𝑢(𝑡, 𝑥) : [0,∞) × R → R represents the horizontal
velocity of the fluid and 𝜌(𝑡, 𝑥) : [0,∞) × R → [0,∞) is
related to the free surface elevation from equilibrium. 𝑚 is
the momentum density. Moreover, the constants 𝐴 > 0 and
𝛾 ∈ R are linear dispersion parameters.

In fluid dynamic, the investigation of shallow water wave
models is an important subject and has attracted the attention
of many researchers. One of the reasons is that the dynam-
ics of tsunamis behave essentially as shallow water wave.
More precisely, usually caused by earthquake in deep ocean,
tsunamis have relatively small amplitude initially. Further-
more, the wavelength of tsunami is usually as huge as 200
kilometers, which is far greater than the depth of the ocean

which is usually 2-3 kilometers.Thus, the behavior of tsunami
is a large-scale version of shallow water wave.

Two-component DGH system (1) models wave-current
interactions and was derived from the Euler equation with
constant vorticity in shallowwater moving over a linear shear
flow. Its local well-posedness has been established in [1]. It is
known that the system is completely integrable and can be
written as a compatibility condition of two linear systems [1].

For 𝜌 ̸≡ 0 and 𝛾 = 0, system (1) becomes the two-compo-
nent Camassa-Holm (CH) system [2] which describes water
waves in the shallowwater regimewith nonzero constant vor-
ticity. In particular, the CH equation (when 𝜌 ≡ 0) enjoys two
remarkable features, namely, the breaking wave phenomenon
and the present of solutions in the form of peaked solitary
waves or “peakons,” which make the CH system a better
model for shallow water waves than KdV equation. Readers
may refer to [3–7] for more information.

For 𝜌 ≡ 0 and 𝑚 = 𝑢 − 𝛼
2
𝑢
𝑥𝑥
, where 𝛼 is a positive

constant, system (1) becomes the DGH equation [8] which
models unidirectional propagation of surface waves on shal-
low water. The DGH equation is completely integrable with
a bi-Hamiltonian and a Lax pair. Moreover, its solutions
include both theKdV solitons and theCHpeakons as limiting
cases [8]. For more details, readers may refer to [9–15].

This paper concerns the construction of exact solutions
for system (1). In [16], the author constructed exact solu-
tions for the two-component Camassa-Holm system by the
perturbational method. We observe the similarities between
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the two-component Camassa-Holm system and system (1)
and apply the perturbational method to system (1) to obtain
some blowup solutions and solutions which globally exist.
To the best of authors’ knowledge, the construction of exact
blowup solutions of the two-component DGH system in this

paper first appears in the mathematics community. As main
results, we have the following two theorems.
Theorem 1. For the two-component DGH system (1), there
exists a family of solutions given by

𝜌 (𝑡, 𝑥) = √max{𝜌2 (𝑡, 0) − 2 (�̇� + 𝑏
𝛼

𝑎4/3 (3𝑡)
− 𝐴

�̇� (3𝑡)

𝑎 (3𝑡)
) 𝑥 − 3

𝛼

𝑎4/3 (3𝑡)
𝑥2, 0},

𝑢 (𝑡, 𝑥) =
�̇� (3𝑡)

𝑎 (3𝑡)
𝑥 + 𝑏 (𝑡)

(3)

with

𝜌
2
(𝑡, 0)

=
∫
𝑡

0
𝑒
∫
𝑠

0

2(�̇�(3𝑟)/𝑎(3𝑟))𝑑𝑟
2𝑏 (𝑠) (�̇� (𝑠) + 3𝑏 (𝑠) (�̇� (3𝑠) /𝑎 (3𝑠))) 𝑑𝑠 + 𝛽

𝑒
∫
𝑡

0

2(�̇�(3𝑟)/𝑎(3𝑟))𝑑𝑟

,

(4)

where 𝑎(3𝑡) is a solution of the equation

𝑎
1/3

(3𝑡) �̈� (3𝑡) = 𝛼 (5)

with initial data

𝑎 (0) š 𝑎
0
> 0,

�̇� (0) š 𝑎
1

(6)

and 𝑏(𝑡) is a solution of the following equation:

�̈� + [6
�̇� (3𝑡)

𝑎 (3𝑡)
] �̇�

+ [
12𝛼

𝑎4/3 (3𝑡)
+
18𝛼�̇� (3𝑡)

𝑎7/3 (3𝑡)
− 6

�̇�
2
(3𝑡)

𝑎2 (3𝑡)
− 18

�̇�
3
(3𝑡)

𝑎3 (3𝑡)
] 𝑏

= [
3𝐴𝛼

𝑎4/3 (3𝑡)
] .

(7)

Here, 𝛼, 𝛽, 𝑎
0
> 0 and 𝑎

1
are constants and can be arbitrarily

chosen.

Theorem 2. (a) If one sets 𝛼 < 0, then solutions (3)–(7) in
Theorem 1 blow up in a finite time 𝑇.

(b) If one sets 𝛼 = 0 and 𝑎
1
< 0, then solutions (3)–(7) in

Theorem 1 blow up in a finite time 𝑇 = −𝑎
0
/𝑎
1
.

(c) If one sets 𝛼 = 0 and 𝑎
1
≥ 0, then solutions (3)–(7) in

Theorem 1 exist globally.
(d) If one sets 𝛼 > 0, then solutions (3)–(7) in Theorem 1

exist globally.

2. Lemmas

It is well known that the solution to the Cauchy problem
of any ODE exists locally and is unique provided that the
given functions are smooth enough. Moreover, we have the
following.

Lemma 3. If 𝑝(𝑡), 𝑞(𝑡), and 𝑔(𝑡) are continuous on [𝑎, 𝑏], then
the differential equation

𝑦

+ 𝑝 (𝑡) 𝑦


+ 𝑞 (𝑡) 𝑦 = 𝑔 (𝑡) (8)

with initial data

𝑦 (𝑡
0
) = 𝑦
0
,

𝑦

(𝑡
0
) = 𝑦


0

(9)

has a unique solution defined for all 𝑡 ∈ [𝑎, 𝑏].

Lemma 4. For the differential equation

𝑎
1/3

(𝑠) �̈� (𝑠) = 𝛼 (10)

with initial data

𝑎 (0) š 𝑎
0
> 0,

�̇� (0) š 𝑎
1
,

(11)

one has the following:

(a) If one sets 𝛼 < 0, then there exists a finite time 𝑇 such
that

lim
𝑠→𝑇
−

𝑎 (𝑠) = 0. (12)

(b) If one sets 𝛼 = 0 and 𝑎
1
< 0, then the solution 𝑎(𝑠)

blows up in the finite time 𝑇 = −𝑎
0
/𝑎
1
.

(c) If one sets 𝛼 = 0 and 𝑎
1
≥ 0, then the solution 𝑎(𝑠)

exists globally.
(d) If one sets 𝛼 > 0, then the solution 𝑎(𝑠) exists globally.

Remark 5. For a proof of Lemma 3, reader may refer to [17];
for a proof of Lemma 4, reader may refer to Lemma 3 of [18].

Remark 6. It is known in [1] that the solutions of the two-
component DGH system blow up in finite time 𝑇 > 0 if and
only if

lim
𝑡→𝑇
−

{inf
𝑥∈R

𝑢
𝑥
(𝑡, 𝑥)} = −∞. (13)
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This typical behavior is illustrated by solutions (3)–(7). More
precisely, from (3)

2
, we have

𝑢
𝑥
(𝑡, 𝑥) =

�̇� (3𝑡)

𝑎 (3𝑡)
. (14)

From Lemma 4 (a), we know (13) happens since 𝑎(𝑡) → 0
+

and �̇�(𝑡) → −√𝑎2
1
− 3𝛼𝑎

2/3

0
< 0 as 𝑡 → 𝑇

−, for some finite
𝑇 > 0.

3. Proofs of Theorems 1 and 2

The terms “perturbational solution” and “perturbation
method” originate in [19].The term “perturbational solution”
is used to emphasise the existence of drifting term 𝑏(𝑡) in
the velocity of the form 𝑢(𝑡, 𝑥) = 𝑐(𝑡)𝑥 + 𝑏(𝑡). The term
“perturbation method” is used to emphasise that it is able to
handle the solutions, where the velocity has a drifting term
𝑏(𝑡). More precisely, the approach is explained as follows.

First, substitute the velocity form 𝑢 = 𝑐(𝑡)𝑥+𝑏(𝑡) into the
second equation of system (1). As 𝑢 is linear in 𝑥, we see that
the effect of some terms becomes irrelevant. One of the key
properties of the first equation of system (1) is that one is able
to express 𝜌2(𝑡, 𝑥) in terms of 𝜌(𝑡, 0), 𝑏, 𝑐, 𝑥, and 𝑥

2. Another
key property of system (1) is that one is able to transform the
second equation into a system of 𝜌2(𝑡, 𝑥). Hence, one obtains
a relation in 𝜌

2
(𝑡, 0), 𝑏, 𝑐, 𝑥, and 𝑥

2.
Second, set the coefficients of 1, 𝑥, and 𝑥

2, which are
functions of 𝑡, to be zero.Then, one can obtain threeODEs.As
the ODE induced by the term 𝑥

2 depends only on 𝑐, one can
apply a backward analysis. More precisely, we use the Hubble
transformation 𝑐 = �̇�/𝑎 to determine 𝑐. Then, the ODE
induced by the term 𝑥 depends only on 𝑏 and 𝑎 and is linear
in 𝑏. Thus, 𝑏 can be determined by classical theories in ODE.
Finally, the ODE induced by the term 1 depends on 𝜌

2
(𝑡, 0),

𝑏, and 𝑎 and is a first-order ODE in 𝜌
2
(𝑡, 0). Thus, a solution

can be solved by the integral factormethod. As 𝜌2(𝑡, 𝑥) can be
expressed in terms of other determined solutions, a complete
family of exact solutions is thus constructed. The detailed
mathematics are implemented as follows.

First, we set

𝑢 (𝑡, 𝑥) = 𝑐 (𝑡) 𝑥 + 𝑏 (𝑡) = 𝑐𝑥 + 𝑏. (15)

Then, (1)
2
becomes

−𝜌𝜌
𝑥
= [ ̇𝑐 + 3𝑐

2
] 𝑥 + [�̇� + 3𝑏𝑐 − 𝐴𝑐] . (16)

It follows that

−
1

2
(𝜌
2
)
𝑥
= [ ̇𝑐 + 3𝑐

2
] 𝑥 + [�̇� + 3𝑏𝑐 − 𝐴𝑐] . (17)

Integrating the above equation, one obtains

𝜌
2
(𝑡, 𝑥) = 𝜌

2
(𝑡, 0) − [ ̇𝑐 + 3𝑐

2
] 𝑥
2

− 2 [�̇� + 3𝑏𝑐 − 𝐴𝑐] 𝑥.

(18)

On the other hand, from (1)
1
, one has

𝜌
𝑡
+ 𝑢𝜌
𝑥
+ 𝑢
𝑥
𝜌 = 0, (19)

𝜌𝜌
𝑡
+ 𝑢𝜌𝜌

𝑥
+ 𝑢
𝑥
𝜌
2
= 0, (20)

1

2
(𝜌
2
)
𝑡
+ 𝑢

1

2
(𝜌
2
)
𝑥
+ 𝑢
𝑥
𝜌
2
= 0. (21)

Substituting (15) and (18) into (21) and grouping the coeffi-
cients of 𝑥2, 𝑥, and 1, respectively, one gets

−
1

2
[
𝑑

𝑑𝑡
( ̇𝑐 + 3𝑐

2
) + 4𝑐 ( ̇𝑐 + 3𝑐

2
)] 𝑥
2 (22)

− [�̈� + 6�̇�𝑐 + 4𝑏 ̇𝑐 + 6𝑏𝑐 ̇𝑐 + 6𝑏𝑐
2
− 𝐴 ̇𝑐 − 3𝐴𝑐

2
] 𝑥 (23)

+[
1

2

𝑑

𝑑𝑡
𝜌
2
(𝑡, 0) + 𝑐𝜌

2
(𝑡, 0) − 𝑏 (�̇� + 3𝑏𝑐 − 𝐴𝑐)] = 0. (24)

We then set the coefficients to be zero and solve the ODEs
step by step.

Step 1. From (22), we get

𝑑

𝑑𝑡
( ̇𝑐 + 3𝑐

2
) + 4𝑐 ( ̇𝑐 + 3𝑐

2
) = 0. (25)

Letting

𝑐 (𝑡) =
�̇� (3𝑡)

𝑎 (3𝑡)
, (26)

one has

̇𝑐 + 3𝑐
2
= 3

�̈� (3𝑡)

𝑎 (3𝑡)
(27)

and hence (25) becomes

3

...
𝑎 (3𝑡)

𝑎 (3𝑡)
+
�̇� (3𝑡) �̈� (3𝑡)

𝑎2 (3𝑡)
= 0 (28)

or

3𝑎 (3𝑡)
...
𝑎 (3𝑡) + �̇� (3𝑡) �̈� (3𝑡) = 0. (29)

Multiplying the above equation by 𝑎
−2/3

(3𝑡) on both sides,
one can reduce (29) to the following equation for 𝑎(3𝑡) ̸= 0:

𝑎
1/3

(3𝑡) �̈� (3𝑡) = 𝛼 (30)

with initial data

𝑎 (0) š 𝑎
0
> 0,

�̇� (0) š 𝑎
1
.

(31)

Here, 𝛼 can be arbitrarily chosen.

Step 2. From (23), we get

�̈� + 𝑓
1
(𝑡) �̇� + 𝑓

2
(𝑡) 𝑏 = 𝑓

3
(𝑡) , (32)
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where

𝑓
1
(𝑡) = 6𝑐 = 6

�̇� (3𝑡)

𝑎 (3𝑡)
,

𝑓
2
(𝑡) = 4 ̇𝑐 + 6𝑐 ̇𝑐 + 6𝑐

2

=
12𝛼

𝑎4/3 (3𝑡)
+
18𝛼�̇� (3𝑡)

𝑎7/3 (3𝑡)
− 6

�̇�
2
(3𝑡)

𝑎2 (3𝑡)
− 18

�̇�
3
(3𝑡)

𝑎3 (3𝑡)
,

𝑓
3
(𝑡) = 𝐴 ̇𝑐 + 3𝐴𝑐

2
=

3𝐴𝛼

𝑎4/3 (3𝑡)
.

(33)

Note that, by Lemma 3, the solution of (32) exists as far as
𝑎(3𝑡) exists and is not zero.

Step 3. From (24), we obtain

𝐹

(𝑡) + 2𝑐𝐹 (𝑡) = 𝐺 (𝑡) , (34)

where

𝐹 (𝑡) fl 𝜌
2
(𝑡, 0) ,

𝐺 (𝑡) fl 2𝑏 (�̇� + 3𝑏𝑐 − 𝐴𝑐) .

(35)

The solutions of (34) are

𝐹 (𝑡) =
∫
𝑡

0
𝜇 (𝑠) 𝐺 (𝑠) 𝑑𝑠 + 𝛽

𝜇 (𝑡)
, (36)

where

𝜇 (𝑡) = 𝑒
∫
𝑡

0

2𝑐(𝑟)𝑑𝑟 (37)

and 𝛽 is an arbitrary constant.
Substituting (36) back into (18), we obtain solutions (3)

and (4).
The proof of Theorem 1 is completed.
The proof of Theorem 2 follows directly from Lemma 4.

4. Conclusion

Exact solutions of differential equations play an important
role in the proper understanding of qualitative features of
many phenomena and processes in various areas of natural
science. They graphically demonstrate and allow unraveling
the mechanisms of many complex nonlinear phenomena
such as spatial localization of transfer processes, multiplicity
or absence steady states under various conditions, existence
of peaking regimes, and many others. It is significant that
many equations of physics, chemistry, and biology contain
empirical parameters or empirical functions. Exact solutions
allow researchers to design and run experiments, by creating
appropriate natural conditions, to determine these parame-
ters or functions.

In this paper, we constructed a family of exact solutions
for two-component DGH system (1) by the perturbational
method. The family of solutions depends on two classes of
ODEs which their existence of solutions is analyzed. We also
classified the parameters of the ODEs which lead to both

finite time and global solutions of the original family of exact
solutions. The typical behavior that the solutions of the two-
component DGH system blow up in finite time if and only if
the derivative of 𝑢with respect to the spatial variable becomes
unbounded in finite time is illustrated by the exact solutions
of Theorem 1.

We expect that the perturbational method for construct-
ing exact solutions of nonlinear PDEs can be applied to more
systems in the future.
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