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Data collaboration between supercomputer centers requires a lot of data migration. In order to increase the efficiency of data
migration, it is necessary to design optimal path of data transmission among multisupercomputer centers. Based on the situation
that the target center which finished receiving data can be regarded as the new source center to migrate data to others, we present
a parallel scheme for the data migration among multisupercomputer centers with different interconnection topologies using graph
theory analysis and calculations. Finally, we verify that this method is effective via numeric simulation.

1. Introduction

The development level of supercomputing is an impor-
tant manifestation of the comprehensive power, which has
become the strategic highland which every country competes
for. A series of challenging problems can be solved in
economic construction, social development, technological
innovation, industrial upgrading, national security, and other
aspects employing supercomputers.

Supercomputing power and storage capacity of super-
computer centers can help enterprises and scientific research
institutions more easily carry out the large-scale data-
intensive computing tasks and have been increasingly applied
in numerous fields, including global climate simulations,
global climate modeling, gene mapping, gamma ray bursts,
financial investment decisions, economic policy simula-
tions, aerospace monitoring and control, and electronic-very
long baseline interferometry [1–7]. In particular, petascale
computing can detail the numerical simulation of multi-
physics, cosmological evolution, molecular dynamics, and
biomolecules [8]. It is important to note that some data-
intensive computing tasks such as large hadron collider
experiment require supercomputer centers to work cooper-
atively. However, supercomputer centers located in different

regions will inevitably result in data migration between
various centers. As for TB or even PB-class data size, the
limited bandwidth of supercomputer centers will inevitably
give rise to longer data migration time which will prolong
the overall task completion time [9, 10]. In the case of
multifiles transfer, time delay can also cause the increase of
data migration time which also can prolong completion time
of the overall task. Therefore, when there is a transmission
task between different centers, an optimizing transmission
path to make data transmission path the shortest will reduce
the time of occupying bandwidth resources and can avoid
effects on the migration of other data which will ultimately
improve the efficiency of supercomputer centers [11].

Data migration among supercomputer centers is a kind
of shortest path problem in graph theory. There are several
classic algorithms for this problem, such as Dijkstra, Floyd,
Bellman-Ford, and SPFA. However, it must be noted that
these algorithms cannot be directly used for searching the
shortest path of data migration for the scenario that the
source node can transfer data with a plurality of nodes
connected to it and that a node which has obtained data
from the previous one can also be used as a source node.
In computer science, a lot of related researches have been
done. Zhu et al. proposed a newmethod called Ap-proximate
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Path Searching (APS) for constructing the broadcast index at
mobile clients with soft arrival times to destinations for this
problem [12]. Ward and Wiegand researched on complexity
results on labeled shortest path problems from wireless
routingmetrics [13]. Xie et al. found alternative shortest paths
in spatial networks [14]. Buchholz and Felko presented a new
approach to model weighted graphs with correlated weights
at the edges. Such models are meaningful in describing
many real world problems like routing in computer networks
or finding shortest paths in traffic models under realistic
assumptions [15]. Sommer has solved the shortest path
queries in static networks [16]. Many other researchers have
also done a lot of work on this issue. However, for shortest
path of data migration among multisupercomputer cen-
ters with different interconnection topologies, the relevant
researches and algorithms are very limited. Therefore, we do
some research work on this issue.

2. Factors of Data Migration

Assume that there are five supercomputer centers located in
different regions (or countries) and they are defined as A, B,
C, D, and E, respectively, of which the distributions are shown
in Figure 1. Data migration needs to be carried out between
each other due to business collaborations. In engineering
practice, factors affecting data migration time are mainly
physical factors, network link factors, transmission protocols
used, and so forth. However, in this paper, we assume that
physical factors and transmission protocols are the same, so
the main factors affecting migration time are network link
factors as follows.

(a) Bandwidth. Network link resource used in supercomputer
centers is provided by network operators instead of private
networks due to the high cost so that the transmission
medium and bandwidth are deterministic.

(b) Delay. Delay includes Processing Delay (𝑇𝑝), Transmis-
sion Delay (𝑇𝑡), Propagation Delay (𝑇𝑒𝑤), and Queuing Delay
(𝑇𝑞). 𝑇𝑝 and 𝑇𝑞 are determined by the computing capabil-
ity and the hardware performance of each node (physical
device). 𝑇𝑡 is determined by bandwidth. 𝑇𝑒𝑤 is determined
by length of the link [17, 18]. When the migrated data is 𝑀
bits, the delay is

𝐷(𝑀) = 𝑇𝑝 + 𝑇𝑒𝑤 + 𝑇𝑞 + 𝑇𝑡 = 𝑇𝑝 + 𝑇𝑒𝑤 + 𝑇𝑞 +
𝑀

Bw
, (1)

where𝐷(𝑀) is the total delay. Bw is bandwidth.
The optimal path of data migration among supercom-

puter centers can be obtained when

𝑇 = min (𝐷 (𝑀)) , (2)

where 𝑇 is data migration time.
Supercomputer centers are very advanced in terms of

physical devices (such as network cards), so that 𝑇𝑝 and
𝑇𝑞 can be ignored. Electrical signal transmission speed is
approximately equal to the speed of light and the route
between supercomputer centers is less than 300000 kilome-
ters, so 𝑇𝑒𝑤 depending on the two factors is very short and it

Table 1: Data migration time between any two centers (units:
hours).

A B C D E
A 0 20 240 120 4.8
B 20 0 120 2.4 30
C 240 120 0 12 24
D 120 2.4 12 0 120
E 4.8 30 24 120 0

A

B

C D

E

Figure 1: Distribution of supercomputer centers.

can also be ignored. In this case, the optimal path is mainly
depending on 𝑇𝑡, what is determined by the size of data
migrated and the bandwidth.

It is assumed that data migrated is𝑀 bits and bandwidth
between each other is Bw𝑖; the data migration time deter-
mined by these two parameters is as in Table 1.

3. Optimal Path Planning for Data Migration

3.1. Main Theory. Shortest path problem is a classical algo-
rithm in graph theory, which is intended to find the shortest
path between two nodes in the graph. Therefore, this paper
carries out relevant research using graph theory.

(1) Graph is a data structure consisting of vertices and
edges which is usually expressed as 𝐺(V, 𝑒).

(2) A value𝑤(𝑒) can be assigned to each edge 𝑒 in𝐺(V, 𝑒).
𝑤(𝑒) is called the weight which represents the delay of
each link.

(3) Given two vertices in weighted graph, the path with
the minimum weight is the shortest path between
them [19].
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(4) For weighted graph, the weighted adjacency matrix
can be expressed as

𝑎𝑖𝑗 =

{{{{

{{{{

{

𝑤V𝑖V𝑗 , if (V𝑖, V𝑗) ∈ 𝐸

0, 𝑖 = 𝑗

∞, if (V𝑖, V𝑗) ∉ 𝐸,

(3)

where V𝑖 and V𝑗 represent the vertices of weighted
graph. 𝑤𝑖𝑗 denotes the weight of edge determined by
V𝑖 and V𝑗. 𝑎𝑖𝑗 is the value of this weighted adjacency
matrix. 𝐸 denotes the set of all edges.

3.2. Searching Method: Floyd. Floyd algorithm is the easiest
shortest path algorithm which can obtain the shortest path
between any two nodes in graph. Tomake it more convenient
to discuss the shortest path between supercomputer centers
under a variety of scenarios, this paper takes the Floyd
algorithm as an example. Constructor method of Floyd is as
follows.

Assuming that vertices of weighted graph are 𝑉 =

{V1, V2, . . . , V]}, for 𝑘 = 1, 2, . . . , ],

𝐷
(𝑘)
= (𝑑
(𝑘)

𝑖𝑗
)
]×]

𝑑
(𝑘)

𝑖𝑗
= min {𝑑(𝑘−1)

𝑖𝑗
, 𝑑
(𝑘−1)

𝑖𝑘
+ 𝑑
(𝑘−1)

𝑘𝑗
}

𝑅
(𝑘)
= (𝑟
(𝑘)

𝑖𝑗
)
]×]
,

(4)

where 𝑑(𝑘)
𝑖𝑗

denotes the length of the shortest path in all paths
from V𝑖 to V𝑗. 𝐷

(𝑘) is distance matrix. 𝑅(𝑘) is path matrix and
𝑟
(𝑘)

𝑖𝑗
is the node numbered shortest path to pass from V𝑖 to V𝑗.
𝑅
(]) can be obtained at the same time with 𝐷(]) and the

shortest path between any nodes can be found from 𝑅
(]) [20,

21].

3.3. Searching Process. According to data migration time
between any two centers as assumed in Table 1, the constraint
network graph with weight 𝑤(𝑒) is shown in Figure 2.

In this way, we can get result after each node
(V1, V2, . . . , V]) insertion through iterative process according
to the constructor method and constraint network graph
with weight 𝑤(𝑒) (𝐷(1) represents 𝑘 = 1, which means that
V1 is inserted. Similarly, 𝐷(2) represents 𝑘 = 2, which means
that V2 is inserted. The rest can be done in the same manner.
Moreover, “=” in the matrix is the element that has changed
after iteration and A, B, C, D, and E are the five nodes). The
corresponding distance matrix and path matrix are

𝐷
(0)
=

[
[
[
[
[
[
[
[

[

0 20 240 120 4.8

20 0 120 2.4 30

240 120 0 12 24

120 2.4 12 0 120

4.8 30 24 120 0

]
]
]
]
]
]
]
]

]

,

𝑅
(0)
=

[
[
[
[
[
[
[
[

[

A B C D E
A B C D E
A B C D E
A B C D E
A B C D E

]
]
]
]
]
]
]
]

]

,

𝐷
(1)
=

[
[
[
[
[
[
[
[

[

0 20 240 120 4.8

20 0 120 2.4 24.8

240 120 0 12 24

120 2.4 12 0 120

4.8 24.8 24 120 0

]
]
]
]
]
]
]
]

]

,

𝑅
(1)
=

[
[
[
[
[
[
[
[

[

A B C D E
A B C D A
A B C D E
A B C D E
A A C D E

]
]
]
]
]
]
]
]

]

,

𝐷
(2)
=

[
[
[
[
[
[
[
[

[

0 20 140 22.4 4.8

20 0 120 2.4 24.8

140 120 0 12 24

22.4 2.4 12 0 27.2

4.8 24.8 24 27.2 0

]
]
]
]
]
]
]
]

]

,

𝑅
(2)
=

[
[
[
[
[
[
[
[

[

A B B B E
A B C D A
B B C D E
B B C D A
A A C A E

]
]
]
]
]
]
]
]

]

,

𝐷
(3)
=

[
[
[
[
[
[
[
[

[

0 20 140 22.4 4.8

20 0 120 2.4 24.8

140 120 0 12 24

22.4 2.4 12 0 27.2

4.8 24.8 24 27.2 0

]
]
]
]
]
]
]
]

]

,

𝑅
(3)
=

[
[
[
[
[
[
[
[

[

A B B B E
A B C D A
B B C D E
B B C D A
A A C A E

]
]
]
]
]
]
]
]

]

,
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𝐷
(4)
=

[
[
[
[
[
[
[
[

[

0 20 34.4 22.4 4.8

20 0 14.4 2.4 24.8

34.4 14.4 0 12 24

22.4 2.4 12 0 27.2

4.8 24.8 24 27.2 0

]
]
]
]
]
]
]
]

]

,

𝑅
(4)
=

[
[
[
[
[
[
[
[

[

A B D B E
A B D D A
D D C D E
B B C D A
A A C A E

]
]
]
]
]
]
]
]

]

,

𝐷
(5)
=

[
[
[
[
[
[
[
[

[

0 20 28.8 22.4 4.8

20 0 14.4 2.4 24.8

28.8 14.4 0 12 24

22.4 2.4 12 0 27.2

4.8 24.8 24 27.2 0

]
]
]
]
]
]
]
]

]

,

𝑅
(5)
=

[
[
[
[
[
[
[
[

[

A B E B E
A B D D A
E D C D E
B B C D A
A A C A E

]
]
]
]
]
]
]
]

]

.

(5)

The shortest path of data migration between any two
supercomputer centers can be obtained from the distance
matrix. Route of data migration between any two supercom-
puter centers can be traced from the path matrix. As we can
see from thematrix𝑅(5), to find the shortest path fromA toD,
we first get to the node |B|. Then we search the shortest path
from B to D and find it can be direct to D, so the migration
path is A → B → D. We can see from the matrix 𝐷(5) that
the shortest path is 22.4:

𝐷
(5)
=

[
[
[
[
[
[
[
[

[

0 20 28.8 |22.4| 4.8

20 0 14.4 2.4 24.8

28.8 14.4 0 12 24

22.4 2.4 12 0 27.2

4.8 24.8 24 27.2 0

]
]
]
]
]
]
]
]

]

,

𝑅
(5)
=

[
[
[
[
[
[
[
[

[

A B E |B|1 E

A B D |D|2 A
E D C D E
B B C D A
A A C A E

]
]
]
]
]
]
]
]

]

.

(6)

A

B

C D

E

24
0

120

12
0

120

24

12

30

2.
4

20

4.
8

Figure 2: Constraint network graph with weight 𝑤(𝑒).

4. Application Model

We can easily obtain the shortest path between any two nodes
from the searching process above. That is, if one supercom-
puter center is fixed, the other supercomputer center which
can perform large-scale data-intensive computing tasks with
it is also determined. However, the algorithm above cannot
be applied to searching the shortest path when the data is
distributed from one node to all nodes.

4.1. TSP Model That Does Not Return to the Source Node.
Typically, data migration between supercomputer centers
is interpreted as selecting a node as the source node and
migrating data to other supercomputer centers from this
source node and each node can be routed through only once.
This scenario is TSP (Traveling Salesman Problem) model
that does not return to the source node [22, 23]. TSP is a
problem that given a list of cities and the distances between
each pair of cities, what is the shortest possible route that visits
each city exactly once and returns to the origin city?There has
been a lot of research work in this field to solve the optimal
data migration path problem based on the TSP model. This
paper will no longer investigate for this scenario. Taking
Figure 2 as example, if source node is 3 (C), the shortest path
is 39.2 and migration path is C→ D→ B→ A→ E.

4.2. Data Migration in Parallel. The scenario introduced in
Section 4.1 is typical, but it does not consider the case when a
node is migrating data with another node; it can also migrate
data with other nodes at the same time. Moreover, a node
which has obtained data from the previous node can also be
used as the source node and all the source nodes can migrate
data with a plurality of nodes connected to it in parallel.
In order to solve this problem well, this paper presents an
optimal path algorithm, which is as follows.

Definition 1. 𝑉 = {V1, V2, . . . , V𝑛}; 𝑉 is the set of nodes.
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Table 2: Shortest path and migration path obtained by enumeration method in case 1.

Source point A B C D E
Shortest path 28.8 24.8 28.8 27.2 27.2

Migration path A→ E→ C B→ D→ C C→ D→ B D→ B→ A→ E E→ A→ B→ D
A→ B→ D B→ A→ E C→ E→ A D→ C E→ C

function[result, routes] = parallel(start, results)
count = size (results, 1);
arrived = [start, start, 0];
while size(arrived) ∼= count

temp = Inf;
from = 0;
to = 0;
for index = 1:count

if ismember(index, arrived(:, 2)) == 0
for index2 = 1:size(arrived, 1)

if results(arrived(index2, 2), index) < temp
temp =

results(arrived(index2, 2), index);
from = arrived (index2, 2);
to = index;

end
end

end
end
results(to,:) = results(to,:) + temp;
arrived = [arrived;[from to temp]];

end
result = max(arrived(:,3));
routes = [arrived((2:count), 1), arrived((2:count), 2)];

Algorithm 1

Definition 2. 𝐴𝑘 is the set of nodes reached at step 𝑘, and 𝐴𝑘
denotes the nodes not reached yet, 𝑘 ∈ {1, 2, . . . , 𝑛 − 1}.

Definition 3. 𝑤𝑘V𝑖V𝑗 is weight between V𝑖 and V𝑗 at step 𝑘.

Definition 4. 𝑉𝑘
𝑠
is the source node of step 𝑘 and𝑉𝑘

𝑒
is the end

node of step 𝑘.

At step 𝑘, we have

𝑤
𝑘−1

V𝑘
𝑠
V𝑘
𝑒

= min {𝑤𝑘−1V𝑘
𝑖
V𝑘
𝑗

} , V𝑘
𝑖
∈ 𝐴
𝑘−1
, V𝑘
𝑗
∈ 𝐴𝑘−1

𝐴
𝑘
= 𝐴
𝑘−1

∪ {V𝑘
𝑒
} ,

𝐴𝑘 = 𝐴𝑘−1 − {V𝑘
𝑒
}

𝑤
𝑘

V𝑘
𝑒
V𝑘
𝑗

= 𝑤
𝑘−1

V𝑘
𝑒
V𝑘
𝑗

+ 𝑤
𝑘−1

V𝑘
𝑠
V𝑘
𝑒

, V𝑘
𝑗
∈ 𝐴𝑘.

(7)

Shortest path can be obtained when all nodes have
reached (𝑉 = 𝐴

𝑛−1). Of course, shortest path and migration
path can be obtained through enumerationmethod when the
number of nodes is small. In order to verify the correctness
of this algorithm, we compared the results with that of

enumeration. Taking Figure 2 as example, the shortest path
obtained by enumeration is shown in Table 2 with each node
as the source point.

However, as the number of nodes increases, the difficulty
of enumeration will increase rapidly.The proposed algorithm
can easily obtain the shortest path results, but it is likely
to have mistakes. So we developed a function using this
algorithm to simplify the calculation which has been tested
in MATLAB. Function is as Algorithm 1.

For example, selecting 3 (C) as resource point, the simu-
lation result is shown in Figure S.1 in SupplementaryMaterial
available online at http://dx.doi.org/10.1155/2016/5018213.

Result shows that shortest path is 28.8 and data migration
path is {C → D → B, C → E → A}. By comparison, the
simulation result is the same as the result of enumeration, so
the correctness of the algorithm is verified.

It can be concluded that this algorithm is accurate and
friendly (machine-executable). Although the time complex-
ity is𝑂(𝑛2), the algorithm is feasible in solving these complex
problems.

4.3. Data Migration among Nonfully Connected Centers. The
above discussion is a perfect case, in which all nodes are
connected to each other. If the nodes given are not connected
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Table 3: Shortest path and migration path obtained by enumeration method in case 2.

Source point A B C D E
Shortest path 40.8 60.8 48.8 60.8 36

Migration path A→ E→ C→ D B→ A→ E→ C→ D C→ E→ A→ B D→ C→ A→ E→ B E→ A→ B
A→ B C→ D E→ C→ D

A

B

C D

E

12
0

120

12

20

24

4.
8

Figure 3: Entire constraint network graph.

to each other, can this algorithm still be used in searching
shortest path? In order to verify the correctness of this
algorithm in this case, this paper similarly takes Figure 2 as an
example. We assume that links between node A and node C,
node B and node C, node B and nodeD, and node B and node
E are removed (of course, you can remove any links between
the nodes); then the entire constraint network graph is shown
in Figure 3.

First, get the shortest path and the migration path
through enumeration method just as in Section 4.2. The
results are shown in Table 3.

Second, get the shortest path and the migration path
through simulation.

Finally, compare the two sets of results and determine
whether the results are identical.

In addition, setting 3 (C) as the resource point, the
simulation result is shown in Figure S.2 in Supplementary
Material.

Result shows that the shortest path is 48.8 and the data
migration path is {C → E → A → B, C → D}. By
comparison, the simulation result is the same as the result
of enumeration, so this algorithm can be used in searching
shortest path in this case.

4.4. Data Migration When Nodes Are Increasing. It is easy
to find out the shortest path when the number of nodes
is small. However, as the number of nodes increases, what
will be the result? In order to verify that this algorithm
can be applied to an arbitrary weighted graph, we carried

A

B

C D

E

12
0

120

12

20

24

4.
8

F

H

I

J

G

5

32

16

124

48

64

12

10

32

Figure 4: Entire constraint network graph of 10 nodes.

out further experiments. You can randomly determine the
number of nodes and the weight between them. For example,
we randomly determine ten nodes and the weight between
them and the entire constraint network graph just as in
Figure 4.

For example, setting 3 (C) as the resource point, the
simulation result is shown in Figure S.3 in the Supplementary
Material. Result shows that shortest path is 55 and data
migration path is {C → D → B → F → H → G, C →

E → A, D → J → I}. But what we have to note is that it
will be very troublesome if we still use enumeration method
directly just as in Sections 4.2 and 4.3 to verify the result, so
we borrowed calculating process of Floyd. Searching shortest
path in accordance with the process described in Section 3.2
and the result is as follows:

𝐷
(10)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 20.0 28.8 32.0 4.8 25.0 51.0 35.0 52.8 56.8

20.0 0 24.0 12.0 24.8 5.0 31.0 15.0 47.0 43.0

28.8 24.0 0 12.0 24.0 29.0 |55.0| 39.0 48.0 44.0

32.0 12.0 12.0 0 36.0 17.0 43.0 27.0 36.0 32.0

4.8 24.8 24.0 36.0 0 29.8 55.8 39.8 48.0 52.0

25.0 5.0 29.0 17.0 29.8 0 26.0 10.0 42.0 38.0

51.0 31.0 55.0 43.0 55.8 26.0 0 16.0 16.0 12.0

35.0 15.0 39.0 27.0 39.8 10.0 16.0 0 32.0 28.0

52.8 47.0 48.0 36.0 48.0 42.0 16.0 32.0 0 4.0

56.8 43.0 44.0 32.0 52.0 38.0 12.0 28.0 4.0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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A
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C D

E

12
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120

20

24
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20

24
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24
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48
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(a) Entire constraint network graph-simplified (b) Entire constraint network graph with time

Figure 5: Entire constraint network graph removed paths between the nodes having reached.

𝑅
(10)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

A B E B E B B B E E

A B D D A F |F|3 F F F

E D C D E D |D|1 D D D

B B C D C B |B|2 B J J
A A C C E A A A I I

B B B B B F |H|4 H H H

H H H H H H |G|5 H J J
F F F F F F G H G G
E J J J E J J J I J
I G D D I G G G I J

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(8)

Result shows that the shortest path C → G has the
largest weight and the corresponding data migration path
is {C → D → B → F → H → G}. As the goal
is to achieve data migration from node C to all the other
nodes, this path {C → D → B → F → H → G}
with the largest weight is certainly one of the paths we need.
After determining this path, the entire constraint network
graph shown in Figure 4 can be simplified to Figure 5(a) (the
paths between the nodes that have already been reached are
removed). For simplification of calculation, we changed the
form of Figure 5(a) into Figure 5(b) and marked the arrival
time of data at nodes (as shown in the box).

We have determined one path above ({C → D → B →

F → H → G}), so there are 4 nodes A, E, I, and J not having
been reached. As shown in Figure 5(b), it is easy to calculate
the shortest path to the rest of the nodes and the shortest path
is {C→ E→ A, D→ J→ I}. After the two steps mentioned
before, each node has been reached, and the shortest data
migration path from node C to all the other nodes is {C →

D → B → F → H → G, C → E → A, D → J → I}. In
addition, the weights of the migration paths are, respectively,
{55, 28.8, 48}, so the shortest path is the largest one which is

55. By comparing with the result obtained by the simulation,
the two results are the same. So this algorithm can be used in
searching the shortest path when datamigration is in parallel,
and it can be applied to arbitrary weighted graphs.

5. Conclusions and Further Work

Based on graph theory calculations we present a parallel
method to migrate data among multisupercomputer centers
with different interconnection topologies when supercom-
puter centers are required to work cooperatively. Specifically,
this paper gives a method of node selection, a method of
searching the shortest path and migration path. At last, the
correctness of this method has also been verified. It is worth
mentioning that this method can provide a good reference
for data migration between different supercenters. The cal-
culation process is given in this paper. However, how load
balancing of data transmission link, large datamigration, and
multiple and fewer files impact on data migration time and
migration path selection is not considered. What is more,
some other factors for data transfers across data centers in
reality such as the availability of the data and the security
issues are also not taken into account. Therefore, according
to the actual application of the actual circumstances, we will
take into account all influence factors above to explore more
accurate optimal path selection next.
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