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To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-
HMLP with ℓ

2
-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning.

The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of
the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA),
respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if
the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode.
The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm
through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three
representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform
best in terms of convergence rate and sample efficiency.

1. Introduction and Related Work

Reinforcement Learning (RL) [1–4], a framework for solv-
ing the Markov Decision Process (MDP) problem, targets
generating the optimal policy by maximizing the expected
accumulated rewards. The agent interacts with its environ-
ment and receives information about the current state at each
time step. After the agent chooses an action according to the
policy, the environment will transition to a new state while
emitting a reward. RL can be divided into two classes, online
and offline. Online method learns by interacting with the
environment, which easily incurs the inefficient use of data
and the stability issue. Offline or batch RL [5] as a subfield
of dynamic programming (DP) [6, 7] can avoid the stability
issue and achieve high sample efficiency.

DP aims at solving optimal control problems, but it
is implemented backward in time, making it offline and

computationally expensive for complex or real-time prob-
lems. To avoid the curse of dimensionality in DP, approxi-
mate dynamic programming (ADP) received much attention
to obtain approximate solutions of the Hamilton-Jacobi-
Bellman (HJB) equation by combining DP, RL, and function
approximation [8]. Werbos [9] introduced an approach for
ADP which was also called adaptive critic designs (ACDs).
ACDs consist of two neural networks (NNs), one for approxi-
mating the critic and the other for approximating the actor, so
that DP can be solved approximately forward in time. Several
synonyms about ADP andACDsmainly include approximate
dynamic programming, asymptotic dynamic programming,
heuristic dynamic programming, and neurodynamic pro-
gramming [10, 11].

The iterative nature of the ADP formulationmakes it nat-
ural to design the optimal discrete-time controllers. Al-Tamimi
et al. [12] established a heuristic dynamic programming
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algorithm based on value iteration, where the convergence is
proved in the context of general nonlinear discrete systems.
Dierks et al. [13] solved the optimal control of nonlinear
discrete-time systems by using two processes, online system
identification and offline optimal control training, without
the requirement of partial knowledge about the system
dynamics. Wang et al. [14] focused on applying iterative
ADP algorithm with error boundary to obtain the optimal
control law, in which the NNs are adopted to approximate
the performance index function, compute the optimal control
policy, and model the nonlinear system.

Extensions of ADP for continuous-time systems face
the challenges involved in proving stability and convergence
meanwhile ensuring the algorithm being online and model-
free. To approximate the value function and improve the pol-
icy for continuous-time system, Doya [15] derived a temporal
difference (TD) error-based algorithm in the framework
of HJB. Under a measure of input quadratic performance,
Murray et al. [16] developed a stepwise ADP algorithm in
the context of HJB. Hanselmann et al. [17] put forward a
continuous-time ADP formulation, where Newton’s method
is used in the second-order actor adaption to achieve the
convergence of the critic. Recently, Bhasin et al. [18] built an
actor-critic-identifier (ACI), an architecture that represents
the actor, critic, and model by taking NNs as nonlinearly
parameterized approximators while the parameters of NNs
are updated by least-square method.

All the aforementioned ADP variants utilized the NN
as the function approximator; however, linear parameterized
approximators are usually more preferred in RL, because
they make it easier to understand and analyze the theoretical
properties of the resulting RL algorithms [19]. Moreover,
most of the above works did not learn a model online to
accelerate the convergence rate and improve the sample effi-
ciency. Actor-critic (AC) algorithmwas introduced in [20] for
the first time; many variants which approximated the value
function and the policy by linear function approximation
have been widely used in continuous-time systems since then
[21–23]. By combining model learning and AC, Grondman
et al. [24] proposed an improved learning method called
Model Learning Actor-Critic (MLAC) which approximates
the value function, the policy, and the process model by LLR.
In MLAC, the gradient of the next state with respect to the
current action is computed for updating the policy gradient,
with the goal of improving the convergence rate of the whole
algorithm. In their latter work [25], LFA takes the place of
LLR as the approximation method for value function, the
policy, and the process model. Enormous samples are still
required when only using such a process model to update
the policy gradient. Afterward, Costa et al. [26] derived an
AC algorithm by introducing Dyna structure called Dyna-
MLAC which approximated the value function, the policy,
and the model by LLR as MLAC did. The difference is that
Dyna-MLAC applies the model not only in updating the
policy gradient but also in planning [27]. Though planning
can improve the sample efficiency to a large extent, the model
learned by LLR is just a local model so that the global
information of samples is yet neglected.

Though the above works learn a model during learning
of the value function and the policy, only the local infor-
mation of the samples is utilized. If the global information
of the samples can be utilized reasonably, the convergence
performance will be improved further. Inspired by this idea,
we establish two novel AC algorithms called AC-HMLP and
RAC-HMLP (AC-HMLPwith ℓ

2
-regularization). AC-HMLP

and RAC-HMLP consist of twomodels, the global model and
the local model. Both models incorporate the state transition
function and the reward function for planning. The global
model is approximated by LFA while the local model is
represented by LLR. The local and the global models are
learned simultaneously at each time step. The local model
is used for planning only if the error does not surpass the
threshold, while the global planning process is started at the
end of an episode, so that the local and the global information
can be kept and utilized uniformly.

The main contributions of our work on AC-HMLP and
RAC-HMLP are as follows:

(1) Develop twonovel AC algorithms based on hierarchal
models. Distinguishing from the previous works, AC-
HMLP and RAC-HMLP learn a global model, where
the reward function and the state transition func-
tion are approximated by LFA. Meanwhile, unlike
the existing model learning methods [28–30] which
represent a feature-based model, we directly establish
a state-based model to avoid the error brought by
inaccurate features.

(2) As MLAC and Dyna-MLAC did, AC-HMLP and
RAC-HMLP also learn a local model by LLR. The
difference is that we design a useful error threshold to
decide whether to start the local planning process. At
each time step, the real-next state is computed accord-
ing to the system dynamics whereas the predicted-
next state is obtained from LLR. The error between
them is defined as the state-prediction error. If this
error does not surpass the error threshold, the local
planning process is started.

(3) The local model and the global model are used for
planning uniformly. The local and the global models
produce local and global samples to update the same
value function and the policy; as a result the number
of the real samples will decrease dramatically.

(4) Experimentally, the convergence performance and
the sample efficiency are thoroughly analyzed. The
sample efficiency which is defined as the number
of samples for convergence is analyzed. RAC-HMLP
andAC-HMLP are also compared with S-AC,MLAC,
and Dyna-MLAC in convergence performance and
sample efficiency. The results demonstrate that RAC-
HMLP performs best and AC-HMLP performs sec-
ondbest, and both of themoutperform the other three
methods.

This paper is organized as follows: Section 2 reviews
some background knowledge concerning MDP and the
AC algorithm. Section 3 describes the hierarchical model
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learning and planning. Section 4 specifies our algorithms—
AC-HMLP and RAC-HMLP. The empirical results of the
comparisons with the other three representative algorithms
are analyzed in Section 5. Section 6 concludes our work and
then presents the possible future work.

2. Preliminaries

2.1. MDP. RL can solve the problemmodeled by MDP. MDP
can be represented as four-tuple (𝑋,𝑈, 𝜌, 𝑓):

(1) 𝑋 is the state space. 𝑥
𝑡
∈ 𝑋 denotes the state of the

agent at time step 𝑡.
(2) 𝑈 represents the action space. 𝑢

𝑡
∈ 𝑈 is the action

which the agent takes at the time step 𝑡.
(3) 𝜌 : 𝑋 × 𝑈 → R denotes the reward function. At the

time step 𝑡, the agent locates at a state 𝑥
𝑡
and takes an

action 𝑢
𝑡
resulting in next state 𝑥

𝑡+1
while receiving a

reward 𝑟
𝑡
= 𝜌(𝑥

𝑡
, 𝑢
𝑡
).

(4) 𝑓 : 𝑋 × 𝑈 → 𝑋 is defined as the transition function.
𝑓(𝑥
𝑡
, 𝑢
𝑡
, 𝑥
𝑡+1
) is the probability of reaching the next

state 𝑥
𝑡+1

after executing 𝑢
𝑡
at the state 𝑥

𝑡
.

Policy ℎ : 𝑋 → 𝑈 is the mapping from the state space
𝑋 to the action space 𝑈, where the mathematical set of ℎ
depends on specific domains. The goal of the agent is to
find the optimal policy ℎ∗ that can maximize the cumulative
rewards. The cumulative rewards are the sum or discounted
sum of the received rewards and here we use the latter case.

Under the policy ℎ, the value function 𝑉
ℎ
: 𝑋 → R

denotes the expected cumulative rewards, which is shown as

𝑉
ℎ
(𝑥) = 𝐸

ℎ
{

∞

∑

𝑘=0

𝛾
𝑘
𝑟
𝑡+𝑘+1

| 𝑥 = 𝑥
𝑡
} , (1)

where 𝛾 ∈ [0, 1] represents the discount factor. 𝑥
𝑡
is the

current state.
The optimal state-value function 𝑉∗(𝑥) is computed as

𝑉
∗
(𝑥) = max

ℎ

𝑉 (𝑥) , ∀𝑥 ∈ 𝑋. (2)

Therefore, the optimal policy ℎ∗ at state 𝑥 can be obtained
by

ℎ
∗
(𝑥) = argmax

ℎ

𝑉
ℎ
(𝑥) , ∀𝑥 ∈ 𝑋. (3)

2.2. AC Algorithm. AC algorithm mainly contains two parts,
actor and critic, which are stored separately. Actor and critic
are also called the policy and value function, respectively.The
actor-only methods approximate the policy and then update
its parameter along the direction of performance improving,
with the possible drawback being large variance resulting
from policy estimation.The critic-only methods estimate the
value function by approximating a solution to the Bellman
equation; the optimal policy is found by maximizing the
value function.Other than the actor-onlymethods, the critic-
only methods do not try to search the optimal policy in
policy space. They just estimate the critic for evaluating the

performance of the actor; as a result the near-optimality of
the resulting policy cannot be guaranteed. By combining
the merits of the actor and the critic, AC algorithms were
proposed where the value function is approximated to update
the policy.

The value function and the policy are parameterized by
𝑉(𝑥, 𝜃) and ℎ(𝑥, 𝛽), where 𝜃 and 𝛽 are the parameters of the
value function and the policy, respectively. At each time step
𝑡, the parameter 𝜃 is updated as

𝜃
𝑡+1

= 𝜃
𝑡
+ 𝛼
𝑐
𝛿
𝑡

𝜕𝑉 (𝑥, 𝜃)

𝜕𝜃
𝑥 = 𝑥

𝑡
, 𝜃 = 𝜃

𝑡
, (4)

where

𝛿
𝑡
= 𝑟
𝑡
+ 𝛾𝑉 (𝑥

𝑡
, 𝜃
𝑡
) − 𝑉 (𝑥

𝑡
, 𝜃
𝑡
) , (5)

denoting the TD-error of the value function. 𝜕𝑉(𝑥, 𝜃)/𝜕𝜃
represents the feature of the value function. The parameter
𝛼
𝑐
∈ [0, 1] is the learning rate of the value function.
Eligibility is a trick to improve the convergence via

assigning the credits to the previously visited states. At each
time step 𝑡, the eligibility can be represented as

𝑒
𝑡
(𝑥) =

{

{

{

𝜕𝑉 (𝑥, 𝜃)

𝜕𝜃
𝑥
𝑡
= 𝑥

𝜆𝛾𝑒
𝑡−1

(𝑥) 𝑥
𝑡

̸= 𝑥,

(6)

where 𝜆 ∈ [0, 1] denotes the trace-decay rate.
By introducing the eligibility, the update for 𝜃 in (4) can

be transformed as

𝜃
𝑡+1

= 𝜃
𝑡
+ 𝛼
𝑐
𝛿
𝑡
𝑒
𝑡
(𝑥) . (7)

The policy parameter 𝛽
𝑡
can be updated by

𝛽
𝑡+1

= 𝛽
𝑡
+ 𝛼
𝑎
𝛿
𝑡
Δ𝑢
𝑡

𝜕ℎ (𝑥, 𝛽)

𝜕𝛽
, (8)

where 𝜕ℎ(𝑥, 𝛽)/𝜕𝛽 is the feature of the policy. Δ𝑢
𝑡
is a

random exploration term conforming to zero-mean normal
distribution. 𝛼

𝑎
∈ [0, 1] is the learning rate of the policy.

S-AC (Standard AC algorithm) serves as a baseline to
compare with our method, which is shown in Algorithm 1.
The value function and the policy are approximated linearly
in Algorithm 1, where TD is used as the learning algorithm.

3. Hierarchical Model Learning and Planning

3.1. Why to Use Hierarchical Model Learning and Planning.
The model in RL refers to the state transition function and
the reward function. When the model is established, we can
use any model-based RL method to find the optimal policy,
for example, DP. Model-based methods can significantly
decrease the number of the required samples and improve the
convergence performance. Inspired by this idea, we introduce
the hierarchical model learning into AC algorithm so as to
make it becomemore sample-efficient. Establishing a relative
accurate model for the continuous state and action spaces is
still an open issue.
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Input: 𝛾, 𝜆, 𝛼
𝑎
, 𝛼
𝑐
, 𝜎2

(1) Initialize 𝜃, 𝛽
(2) Loop
(3) 𝑒 ←

⇀
1 , 𝜃 ← ⇀

0 , 𝛽 ←
⇀
0 , 𝑥 ← 𝑥

0
, 𝑡 ← 1

(4) Repeat all episodes
(5) Choose Δ𝑢

𝑡
according to𝑁(0, 𝜎

2
)

(6) 𝑢
𝑡
← ℎ(𝑥, 𝛽) + Δ𝑢

𝑡

(7) Execute 𝑢
𝑡
and observe 𝑟

𝑡+1
and 𝑥

𝑡+1

(8) Update the eligibility of the value function: 𝑒
𝑡
(𝑥) = {𝜕𝑉(𝑥, 𝜃)/𝜕𝜃, 𝑥

𝑡
= 𝑥; 𝜆𝛾𝑒

𝑡−1
(𝑥), 𝑥

𝑡
̸= 𝑥}

(9) Compute the TD error: 𝛿
𝑡
= 𝑟
𝑡+1

+ 𝛾𝑉(𝑥
𝑡+1
, 𝜃
𝑡
) − 𝑉(𝑥

𝑡
, 𝜃
𝑡
)

(10) Update the parameter of the value function: 𝜃
𝑡+1

= 𝜃
𝑡
+ 𝛼
𝑐
𝛿
𝑡
𝑒
𝑡
(𝑥)

(11) Update the parameter of the policy: 𝛽
𝑡+1

= 𝛽
𝑡
+ 𝛼
𝑎
𝛿
𝑡
Δ𝑢
𝑡
(𝜕ℎ(𝑥, 𝛽)/𝜕𝛽)

(12) 𝑡 ← 𝑡 + 1

(13) End Repeat
(14) End Loop
Output: 𝜃, 𝛽

Algorithm 1: S-AC.

The preexisting works are mainly aimed at the problems
with continuous states but discrete actions. They approx-
imated the transition function in the form of probability
matrix which specifies the transition probability from the
current feature to the next feature. The indirectly observed
features result in the inaccurate feature-based model. The
convergence rate will be slowed significantly by using such an
inaccurate model for planning, especially at each time step in
the initial phase.

To solve these problems, we will approximate a state-
based model instead of the inaccurate feature-based model.
Moreover, we will introduce an additional global model for
planning. The global model is applied only at the end of each
episode so that the global information can be utilized asmuch
as possible. Using such a global model without others will
lead to the loss of valuable local information.Thus, likeDyna-
MLAC, we also approximate a local model by LLR and use
it for planning at each time step. The difference is that a
useful error threshold is designed for the local planning in
our method. If the state-prediction error between the real-
next state and the predicted one does not surpass the error
threshold, the local planning process will be started at the
current time step. Therefore the convergence rate and the
sample efficiency can be improved dramatically by combining
the local and global model learning and planning.

3.2. Learning and Planning of the Global Model. The global
model establishes separate equations for the reward function
and the state transition function of every state component by
linear function approximation. Assume the agent is at state
𝑥
𝑡
= {𝑥
𝑡,1
, . . . , 𝑥

𝑡,𝐾
}, where𝐾 is the dimensionality of the state

𝑥
𝑡
; the action 𝑢

𝑡
is selected according to the policy ℎ; then

all the components {𝑥
𝑡+1,1

, 𝑥


𝑡+1,2
, . . . , 𝑥



𝑡+1,𝐾
} of the next state

𝑥


𝑡+1
can be predicted as

𝑥


𝑡+1,1
= 𝜂
𝑡,1

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

𝑥


𝑡+1,2
= 𝜂
𝑡,2

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

.

.

.

𝑥


𝑡+1,𝐾
= 𝜂
𝑡,𝐾

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
) ,

(9)

where 𝜂
𝑡,𝑖
= (𝜂
𝑡,𝑖1
, 𝜂
𝑡,𝑖2
, . . . , 𝜂

𝑡,𝑖𝐷
)
T
, 1 ≤ 𝑖 ≤ 𝐾, is the param-

eter of the state transition function corresponding to the 𝑖th
component of the current state at time step 𝑡, with 𝐷 being
the dimensionality of the feature 𝜙(𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
).

Likewise, the reward 𝑟
𝑡+1

can be predicted as

𝑟


𝑡+1
= 𝜍
𝑡

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
) , (10)

where 𝜍
𝑡
= (𝜍
𝑡1
, 𝜍
𝑡2
, . . . , 𝜍

𝑡𝐷
) is the parameter of the reward

function at time step 𝑡.
After 𝜂

𝑡,1
, 𝜂
𝑡,2
, . . . , 𝜂

𝑡,𝐾
and 𝜍 are updated, the model can

be applied to generate samples. Let the current state be
𝑥
𝑡
= (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝑘
); after the action 𝑢

𝑡
is executed, the

parameters 𝜂
𝑡+1,𝑖

(1 ≤ 𝑖 ≤ 𝐾) can be estimated by the gradient
descent method, shown as

𝜂
𝑡+1,1

= 𝜂
𝑡,1

+ 𝛼
𝑚
(𝑥
𝑡+1,1

− 𝑥


𝑡+1,1
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

𝜂
𝑡+1,2

= 𝜂
𝑡,2

+ 𝛼
𝑚
(𝑥
𝑡+1,2

− 𝑥


𝑡+1,2
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

.

.

.

𝜂
𝑡+1,𝐾

= 𝜂
𝑡,𝐾

+ 𝛼
𝑚
(𝑥
𝑡+1,𝐾

− 𝑥


𝑡+1,𝐾
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
) ,

(11)

where 𝛼
𝑚

∈ [0, 1] is the learning rate of the model.
𝑥
𝑡+1

is the real-next state obtained according to the system
dynamics, where 𝑥

𝑡+1,𝑖
(1 ≤ 𝑖 ≤ 𝐾) is its 𝑖th component.

(𝑥


𝑡+1,1
, 𝑥


𝑡+1,2
, . . . , 𝑥



𝑡+1,𝐾
) is the predicted-next state according

to (9).
The parameter 𝜍

𝑡+1
is estimated as

𝜍
𝑡+1

= 𝜍
𝑡
+ 𝛼
𝑚
(𝑟
𝑡+1

− 𝑟


𝑡+1
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
) , (12)

where 𝑟
𝑡+1

is the real reward reflected by the system dynamics
while 𝑟

𝑡+1
is the predicted reward obtained according to (10).
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3.3. Learning and Planning of the Local Model. Though the
local model also approximates the state transition function
and the reward function as the global model does, LLR is
served as the function approximator instead of LFA. In the
local model, a memory storing the samples in the form of
(𝑥
𝑡
, 𝑢
𝑡
, 𝑥
𝑡+1
, 𝑟
𝑡+1
) is maintained. At each time step, a new

sample is generated from the interaction and it will take the
place of the oldest one in the memory. Not all but only L-
nearest samples in thememorywill be selected for computing
the parameter matrix Γ ∈ R(𝐾+1)×(𝐾+2) of the local model.
Before achieving this, the input matrix𝑋 ∈ R(𝐾+2)×𝐿 and the
output matrix 𝑌 ∈ R(𝐾+1)×𝐿 should be prepared as follows:

𝑋 =

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
1,1

𝑥
2,1

⋅ ⋅ ⋅ 𝑥
𝐿,1

𝑥
1,2

𝑥
2,2

⋅ ⋅ ⋅ 𝑥
𝐿,2

.

.

.
.
.
.

.

.

.
.
.
.

𝑥
1,𝐾

𝑥
2,𝐾

⋅ ⋅ ⋅ 𝑥
𝐿,𝐾

𝑢
1

𝑢
2

⋅ ⋅ ⋅ 𝑢
𝐿

1 1 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑌 =

[
[
[
[
[
[
[
[
[

[

𝑥
2,1

𝑥
3,1

⋅ ⋅ ⋅ 𝑥
𝐿+1,1

𝑥
2,2

𝑥
3,2

⋅ ⋅ ⋅ 𝑥
𝐿+1,2

.

.

.
.
.
.

.

.

.
.
.
.

𝑥
2,𝐾

𝑥
3,𝐾

⋅ ⋅ ⋅ 𝑥
𝐿+1,𝐾

𝑟
2

𝑟
3

⋅ ⋅ ⋅ 𝑟
𝐿+1

]
]
]
]
]
]
]
]
]

]

.

(13)

The last row of 𝑋 consisting of ones is to add a bias
on the output. Every column in the former 𝐾 + 1 lines of
𝑋 corresponds to a state-action pair; for example, the 𝑖th
column is the state-action (𝑥

𝑖
, 𝑢
𝑖
)
T
, 1 ≤ 𝑖 ≤ 𝐿. 𝑌 is composed

of 𝐿 next states and rewards corresponding to𝑋.
Γ can be obtained via solving 𝑌 = Γ𝑋 as

Γ = 𝑌𝑋
T
(𝑋𝑋

T
)
−1

. (14)

Let the current input vector be [𝑥
𝑡,1
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
, 1]

T; the
output vector [𝑥

𝑡+1,1
, . . . , 𝑥



𝑡+1,𝐾
, 𝑟


𝑡+1
]
T can be predicted by

[𝑥


𝑡+1,1
, . . . , 𝑥



𝑡+1,𝑘
, 𝑟


𝑡+1
]
T
= Γ [𝑥

𝑡,1
, . . . , 𝑥

𝑡,𝑘
, 𝑢
𝑡
, 1]

T
, (15)

where [𝑥
𝑡,1
, . . . , 𝑥

𝑡,𝐾
] and [𝑥



𝑡+1,1
, . . . , 𝑥



𝑡+1,𝐾
] are the current

state and the predicted-next state, respectively. 𝑟
𝑡+1

is the
predicted reward.

Γ is estimated according to (14) at each time step; there-
after the predicted-next state and the predicted reward can
be obtained by (15). Moreover, we design an error threshold
to decide whether local planning is required. We compute
the state-prediction error between the real-next state and the
predicted-next state at each time step. If this error does not

surpass the error threshold, the local planning process will
be launched. The state-prediction error is formulated as

𝐸𝑟
𝑡
= max{



𝑥


𝑡+1,1
− 𝑥
𝑡+1,1

𝑥
𝑡+1,1



,



𝑥


𝑡+1,2
− 𝑥
𝑡+1,2

𝑥
𝑡+1,2



, . . . ,



𝑥


𝑡+1,𝐾
− 𝑥
𝑡+1,𝐾

𝑥
𝑡+1,𝐾



,



𝑟


𝑡+1
− 𝑟
𝑡+1

𝑟
𝑡+1



} .

(16)

Let the error threshold be 𝜉; then the local model will
be used for planning only if 𝐸𝑟

𝑡
≤ 𝜉 at time step 𝑡. In

the local planning process, a sequence of locally simulated
samples in the form of (𝑥

𝑡,1
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
, 𝑥


𝑡+1,1
, . . . , 𝑥



𝑡+1,𝐾
, 𝑟

)

are generated to improve the convergence of the same value
function and the policy as the global planning process does.

4. Algorithm Specification

4.1. AC-HMLP. AC-HMLP algorithm consists of a main
algorithm and two subalgorithms. The main algorithm is
the learning algorithm (see Algorithm 2), whereas the two
subalgorithms are local model planning procedure (see
Algorithm 3) and global model planning procedure (see
Algorithm 4), respectively. At each time step, the main algo-
rithm learns the value function (see line (26) in Algorithm 2),
the policy (see line (27) in Algorithm 2), the local model (see
line (19) in Algorithm 2), and the global model (see lines
(10)∼(11) in Algorithm 2).

There are several parameters which are required to be
determined in the three algorithms. 𝑟 and 𝜆 are discount
factor and trace-decay rate, respectively. 𝛼

𝑎
,𝛼
𝑐
, and𝛼

𝑚
are the

corresponding learning rates of the value function, the policy,
and the global model.𝑀 size is the capacity of the memory.
𝜉 denotes the error threshold. 𝐿 determines the number of
selected samples which is used to fit the LLR. 𝜎2 is the
variance that determines the region of the exploration. 𝑃

𝑙
and

𝑃
𝑔
are the planning times for local model and global model.

Some of these parameters have empirical values, for example,
𝑟 and 𝜆. The others have to be determined by observing the
empirical results.

Notice that Algorithm 3 starts planning at the state 𝑥
𝑡

which is passed from the current state in Algorithm 2, while
Algorithm 4 uses 𝑥

0
as the initial state. The reason for using

different initializations is that the local model is learned
according to the L-nearest samples of the current state 𝑥

𝑡
,

whereas the global model is learned from all the samples.
Thus, it is reasonable and natural to start the local and global
planning process at the states 𝑥

𝑡
and 𝑥

0
, respectively.

4.2. AC-HMLPwith ℓ
2
-Regularization. Regression approach-

es inmachine learning are generally represented asminimiza-
tion of a square loss term and a regularization term. The ℓ

2
-

regularization also called ridge regress is a widely used regu-
larization method in statistics and machine learning, which
can effectively prohibit overfitting of learning. Therefore, we
introduce ℓ

2
-regularization to AC-HMLP in the learning of

the value function, the policy, and the model. We term this
new algorithm as RAC-HMLP.
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Input: 𝛾, 𝜆, 𝛼
𝑎
, 𝛼
𝑐
, 𝛼
𝑚
, 𝜉,𝑀 size, 𝐿, 𝜎2, 𝐾, 𝑃

𝑙
, 𝑃
𝑔

(1) Initialize: 𝜃 ← ⇀
0 , 𝛽 ←

⇀
0 , Γ ← ⇀

0 , 𝜂
1
, 𝜂
2
, . . . , 𝜂

𝐾
←

⇀
0 , 𝜍 ← ⇀

0

(2) Loop
(3) 𝑒

1
←

⇀
1 , 𝑥
1,1
, . . . , 𝑥

1,𝑘
← 𝑥
0,1
, . . . , 𝑥

0,𝑘
, 𝑡 ← 1, number ← 0

(4) Repeat all episodes
(5) Choose Δ𝑢

𝑡
according to𝑁(0, 𝜎

2
)

(6) Execute the action: 𝑢
𝑡
= ℎ(𝑥, 𝛽) + Δ𝑢

𝑡

(7) Observe the reward 𝑟
𝑡+1

and the next state: 𝑥
𝑡+1

= {𝑥
𝑡+1,1

, ..., 𝑥
𝑡+1,𝑘

}

%Update the global model
(8) Predict the next state:

𝑥


𝑡+1,1
= 𝜂
𝑡,1

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

𝑥


𝑡+1,2
= 𝜂
𝑡,2

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

.

.

.

𝑥


𝑡+1,𝐾
= 𝜂
𝑡,𝐾

T
𝜙 (𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

(9) Predict the reward: 𝑟
𝑡+1

= 𝜍
𝑡

T
𝜙(𝑥
𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

(10) Update the parameters 𝜂
1
, 𝜂
2
, . . . , 𝜂

𝐾
:

𝜂
𝑡+1,1

= 𝜂
𝑡,1
+ 𝛼
𝑚
(𝑥
𝑡+1,1

− 𝑥


𝑡+1,1
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

𝜂
𝑡+1,2

= 𝜂
𝑡,2
+ 𝛼
𝑚
(𝑥
𝑡+1,2

− 𝑥


𝑡+1,2
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

.

.

.

𝜂
𝑡+1,𝐾

= 𝜂
𝑡,𝐾

+ 𝛼
𝑚
(𝑥
𝑡+1,𝐾

− 𝑥


𝑡+1,𝐾
) 𝜙 (𝑥

𝑡,1
, 𝑥
𝑡,2
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
)

(11) Update the parameter 𝜍: 𝜍
𝑡+1

= 𝜍
𝑡
+ 𝛼
𝑚
(𝑟
𝑡+1

− 𝑟


𝑡+1
)𝜙(𝑥
𝑡,1
, 𝑥
𝑡,2
, ..., 𝑥
𝑡,𝐾
, 𝑢
𝑡
)

%Update the local model
(12) If 𝑡 ≤ 𝑀 size
(13) Insert the real sample (𝑥

𝑡
, 𝑢
𝑡
, 𝑥
𝑡+1
, 𝑟
𝑡+1
) into the memory𝑀

(14) Else If
(15) Replace the oldest one in𝑀 with the real sample (𝑥

𝑡
, 𝑢
𝑡
, 𝑥
𝑡+1
, 𝑟
𝑡+1
)

(16) End if
(17) Select L-nearest neighbors of the current state from𝑀 to construct𝑋 and 𝑌
(18) Predict the next state and the reward: [𝑥

𝑡+1
, 𝑟


𝑡+1
]
T
= Γ[𝑥

𝑡
, 𝑢
𝑡
, 1]

T

(19) Update the parameter Γ: Γ = 𝑌𝑋
T
(𝑋𝑋

T
)
−1

(20) Compute the local error:
𝐸𝑟
𝑡
= max{|(𝑥

𝑡+1,1
− 𝑥
𝑡+1,1

)/𝑥
𝑡+1,1

|, |(𝑥


𝑡+1,2
− 𝑥
𝑡+1,2

)/𝑥
𝑡+1,2

|, . . . , |(𝑥


𝑡+1,𝐾
− 𝑥
𝑡+1,𝐾

)/𝑥
𝑡+1,𝐾

|, |(𝑟


𝑡+1
− 𝑟
𝑡+1
)/𝑟
𝑡+1
|}

(21) If 𝐸𝑟
𝑡
≤ 𝜉

(22) Call Local-model planning (𝜃, 𝛽, Γ, 𝑒, number, 𝑃
𝑙
) (Algorithm 3)

(23) End If
%Update the value function

(24) Update the eligibility: 𝑒
𝑡
(𝑥) = {𝜙(𝑥

𝑡
), 𝑥
𝑡
= 𝑥; 𝜆𝛾𝑒

𝑡−1
(𝑥), 𝑥

𝑡
̸= 𝑥 }

(25) Estimate the TD error: 𝛿
𝑡
= 𝑟
𝑡+1

+ 𝛾𝑉(𝑥
𝑡+1
, 𝜃
𝑡
) − 𝑉(𝑥

𝑡
, 𝜃
𝑡
)

(26) Update the value-function parameter: 𝜃
𝑡+1

= 𝜃
𝑡
+ 𝛼
𝑐
𝛿
𝑡
𝑒
𝑡
(𝑥)

%Update the policy
(27) Update the policy parameter: 𝛽

𝑡+1
= 𝛽
𝑡
+ 𝛼
𝑎
𝛿
𝑡
Δ𝑢
𝑡
𝜙(𝑥
𝑡
)

(28) 𝑡 = 𝑡 + 1

(29) Update the number of samples: number = number + 1
(30) Until the ending condition is satisfied
(31) Call Global-model planning (𝜃, 𝛽, 𝜂

1
, . . . , 𝜂

𝑘
, 𝜍, 𝑒, number, 𝑃

𝑔
) (Algorithm 4)

(32) End Loop
Output: 𝛽, 𝜃

Algorithm 2: AC-HMLP algorithm.
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(1) Loop for 𝑃
𝑙
time steps

(2) 𝑥
1
← 𝑥
𝑡
, 𝑡 ← 1

(3) Choose Δ𝑢
𝑡
according to𝑁(0, 𝜎

2
)

(4) 𝑢
𝑡
= ℎ(𝑥

𝑡
, 𝛽
𝑡
) + Δ𝑢

𝑡

(5) Predict the next state and the reward: [𝑥
𝑡+1,1

, . . . , 𝑥
𝑡+1,𝐾

, 𝑟
𝑡+1
] = Γ
𝑡
[𝑥
𝑡,1
, . . . , 𝑥

𝑡,𝐾
, 𝑢
𝑡
, 1]

T

(6) Update the eligibility: 𝑒
𝑡
(𝑥) = {𝜙(𝑥

𝑡
), 𝑥
𝑡
= 𝑥; 𝜆𝛾𝑒

𝑡−1
(𝑥), 𝑥

𝑡
̸= 𝑥}

(7) Compute the TD error: 𝛿
𝑡
= 𝑟
𝑡+1

+ 𝛾𝑉(𝑥
𝑡+1
, 𝜃
𝑡
) − 𝑉(𝑥

𝑡
, 𝜃
𝑡
)

(8) Update the value function parameter: 𝜃
𝑡+1

= 𝜃
𝑡
+ 𝛼
𝑐
𝛿
𝑡
𝑒
𝑡
(𝑥)

(9) Update the policy parameter: 𝛽
𝑡+1

= 𝛽
𝑡
+ 𝛼
𝑎
𝛿TDΔ𝑢𝑡𝜙(𝑥𝑡)

(10) If 𝑡 ≤ 𝑆

(11) 𝑡 = 𝑡 + 1

(12) End If
(13) Update the number of samples: number = number + 1
(14) End Loop
Output: 𝛽, 𝜃

Algorithm 3: Local model planning (𝜃, 𝛽, Γ, 𝑒, number, 𝑃
𝑙
).

(1) Loop for 𝑃
𝑔
times

(2) 𝑥
�̃�
← 𝑥
0
, �̃� ← 1

(3) Repeat all episodes
(4) Choose Δ𝑢

�̃�
according to𝑁(0, 𝜎)

(5) Compute exploration term: 𝑢
�̃�
= ℎ(𝑥

�̃�
, 𝛽
�̃�
) + Δ𝑢

�̃�

(6) Predict the next state:
𝑥


�̃�+1,1
= 𝜂
�̃�,1

𝑇
𝜙 (𝑥
�̃�,1
, 𝑥
�̃�,2
, . . . , 𝑥

�̃�,𝐾
, 𝑢
�̃�
)

𝑥


�̃�+1,2
= 𝜂
�̃�,2

𝑇
𝜙 (𝑥
�̃�,1
, 𝑥
�̃�,2
, . . . , 𝑥

�̃�,𝐾
, 𝑢
�̃�
)

.

.

.

𝑥


�̃�+1,𝐾
= 𝜂
�̃�,𝐾

𝑇
𝜙 (𝑥
�̃�,1
, 𝑥
�̃�,2
, . . . , 𝑥

�̃�,𝐾
, 𝑢
�̃�
)

(7) Predict the reward: 𝑟
�̃�+1

= 𝜍
𝑡

T
(𝑥
�̃�,1
, 𝑥
�̃�,2
, . . . , 𝑥

�̃�,𝐾
, 𝑢
𝑡
)

(8) Update the eligibility: 𝑒
�̃�
(𝑥) = {𝜙(𝑥

�̃�
), 𝑥
�̃�
= 𝑥; 𝜆𝛾𝑒

�̃�−1
(𝑥), 𝑥

�̃�
̸= 𝑥}

(9) Compute the TD error: 𝛿
�̃�
= 𝑟
𝑡+1

+ 𝛾𝑉(𝑥


�̃�+1
, 𝜃
�̃�
) − 𝑉(𝑥

�̃�
, 𝜃
�̃�
)

(10) Update the value function parameter: 𝜃
�̃�+1

= 𝜃
�̃�
+ 𝛼
𝑐
𝛿
�̃�
𝑒
�̃�
(𝑥)

(11) Update the policy parameter: 𝛽
�̃�+1

= 𝛽
�̃�
+ 𝛼
𝑎
𝛿
�̃�
Δ𝑢
�̃�
𝜙(𝑥
�̃�
)

(12) If �̃� ≤ 𝑇

(13) �̃� = �̃� + 1

(14) End If
(15) Update the number of samples: number = number + 1
(16) End Repeat
(17) End Loop
Output: 𝛽, 𝜃

Algorithm 4: Global model planning (𝜃, 𝛽, 𝜂
1
, . . . , 𝜂

𝑘
, 𝜍, 𝑒, number, 𝑃

𝑔
).

The goal of learning the value function is to minimize the
square of the TD-error, which is shown as

min
𝜃

{

number
∑

𝑡=0


𝑟
𝑡+1

+ 𝛾𝑉 (𝑥


𝑡+1
, 𝜃
𝑡
) − 𝑉 (𝑥

𝑡
, 𝜃
𝑡
)


+ ℓ
𝑐

𝜃𝑡


2

} ,

(17)

where number represents the number of the samples. ℓ
𝑐
≥ 0

is the regularization parameter of the critic. ‖𝜃
𝑡
‖
2 is the ℓ

2
-

regularization which penalizes the growth of the parameter
vector 𝜃

𝑡
, so that the overfitting to noise samples can be

avoided.

The update for the parameter 𝜃 of the value function in
RAC-HMLP is represented as

𝜃
𝑡+1

= 𝜃
𝑡
(1 −

𝛼
𝑐

number
ℓ
𝑐
) +

𝛼
𝑐

number

number
∑

𝑠=0

𝑒
𝑠
(𝑥) 𝛿
𝑠
. (18)

The update for the parameter 𝛽 of the policy is shown as

𝛽
𝑡+1

= 𝛽
𝑡
(1 −

𝛼
𝑎

number
ℓ
𝑎
)

+
𝛼
𝑎

number

number
∑

𝑠=0

𝜙 (𝑥
𝑠
) 𝛿
𝑠
Δ𝑢
𝑠
,

(19)

where ℓ
𝑎
≥ 0 is the regularization parameter of the actor.
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F

w

Figure 1: Pole balancing problem.

The update for the global model can be denoted as

𝜂
𝑡+1,1

= 𝜂
𝑡,1
(1 −

𝛼
𝑚

number
ℓ
𝑚
) +

𝛼
𝑚

number

⋅

number
∑

𝑠=1

𝜙 (𝑥
𝑠,1
, . . . , 𝑥

𝑠,𝐾
, 𝑢
𝑠
) (𝑥
𝑠+1,1

− 𝑥


𝑠+1,1
)

𝜂
𝑡+1,2

= 𝜂
𝑡,2
(1 −

𝛼
𝑚

number
ℓ
𝑚
) +

𝛼
𝑚

number

⋅

number
∑

𝑠=1

𝜙 (𝑥
𝑠,1
, . . . , 𝑥

𝑠,𝐾
, 𝑢
𝑠
) (𝑥
𝑠+1,2

− 𝑥


𝑠+1,2
)

.

.

.

𝜂
𝑡+1,𝐾

= 𝜂
𝑡,𝐾

(1 −
𝛼
𝑚

number
ℓ
𝑚
) +

𝛼
𝑚

number

⋅

number
∑

𝑠=1

𝜙 (𝑥
𝑠,1
, . . . , 𝑥

𝑠,𝐾
, 𝑢
𝑠
) (𝑥
𝑠+1,𝐾

− 𝑥


𝑠+1,1
)

(20)

𝜍
𝑡+1

= 𝜍
𝑡
(1 −

𝛼
𝑚

number
ℓ
𝑚
) +

𝛼
𝑚

number

⋅

number
∑

𝑠=1

𝜙 (𝑥
𝑠,1
, . . . , 𝑥

𝑠,𝐾
, 𝑢
𝑠
) (𝑟
𝑠+1

− 𝑟


𝑠+1
) ,

(21)

where ℓ
𝑚
≥ 0 is the regularization parameter for the model,

namely, the state transition function and the reward function.
After we replace the update equations of the parameters

in Algorithms 2, 3, and 4 with (18), (19), (20), and (21), we will
get the resultant algorithm, RAC-HMLP. Except for the above
update equations, the other parts of RAC-HMLP are the same
with AC-HMLP, so we will not specify here.

5. Empirical Results and Analysis

AC-HMLP and RAC-HMLP are compared with S-AC,
MLAC, andDyna-MLAC on two continuous state and action
spaces problems, pole balancing problem [31] and continuous
maze problem [32].

5.1. Pole Balancing Problem. Pole balancing problem is a low-
dimension but challenging benchmark problem widely used
in RL literature, shown in Figure 1.

There is a car moving along the track with a hinged pole
on its top.Thegoal is to find a policywhich can guide the force

to keep the pole balance.The system dynamics is modeled by
the following equation:

�̈� =
𝑔 sin (𝑤) − V𝑚𝑙�̇� sin (2𝑤) /2 − V cos (𝑤) 𝐹

4𝑙/3 − V𝑚𝑙cos2 (𝑤)
, (22)

where 𝑤 is the angle of the pole with the vertical line. �̇� and
�̈� are the angular velocity and the angular acceleration of the
pole. 𝐹 is the force exerted on the cart. The negative value
means the force to the right and otherwise means to the left.
𝑔 is the gravity constant with the value 𝑔 = 9.81m/s2.𝑚 and
𝑙 are the length and the mass of the pole, which are set to𝑚 =

2.0 kg and 𝑙 = 0.5m, respectively. V is a constantwith the value
1/(𝑚 + 𝑚

𝑐
), where𝑚

𝑐
= 8.0 kg is the mass of the car.

The state 𝑥 = (𝑤, �̇�) is composed of 𝑤 and �̇� which are
bounded by [−𝜋, 𝜋] and [−2, 2], respectively.The action is the
force 𝐹 bounded by [−50N, 50N]. The maximal episode is
300, and the maximal time step for each episode is 3000. If
the angle of the pole with the vertical line is not exceeding𝜋/4
at each time step, the agent will receive a reward 1; otherwise
the pole will fall down and receive a reward −1. There is also
a random noise applying on the force bounded by [−10N,
10N]. An episode ends when the pole has kept balance for
3000 time steps or the pole falls down.The pole will fall down
if |𝑤| ≥ 𝜋/4. To approximate the value function and the
reward function, the state-based feature is coded by radial
basis functions (RBFs), shown as

𝜙
𝑖
(𝑥) = 𝑒

−(1/2)(𝑥−𝑐𝑖)
T
𝐵
−1
(𝑥−𝑐𝑖), (23)

where 𝑐
𝑖
denotes the 𝑖th center point locating over the grid

points {−0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6} × {−2, 0, 2}. 𝐵 is a
diagonal matrix containing the widths of the RBFs with 𝜎2

𝑤
=

0.2 and 𝜎2
�̇�
= 2.The dimensionality 𝑧 of 𝜙(𝑥) is 21. Notice that

the approximations of the value function and the policy only
require the state-based feature. However, the approximation
of the model requires the state-action-based feature. Let 𝑥 be
(𝑤, �̇�, 𝑢); we can also compute its feature by (23). In this case,
𝑐
𝑖
locates over the points {−0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6} ×

{−2, 0, 2} × {−50, −25, 0, 25, 50}. The diagonal elements of 𝐵
are 𝜎2
𝑤
= 0.2, 𝜎2

�̇�
= 2, and 𝜎

2

𝐹
= 10. The dimensionality 𝑧

of 𝜙(𝑤, �̇�, 𝑢) is 105. Either the state-based or the state-action-
based feature has to be normalized so as to make its value be
smaller than 1, shown as

𝜙
𝑖
(𝑥) =

𝜙
𝑖
(𝑥)

∑
𝑧

𝑖=1
𝜙
𝑖
(𝑥)

, (24)

where 𝑧 > 0 is the dimensionality of the feature.
RAC-HMLP and AC-HMLP are compared with S-AC,

MLAC, and Dyna-MLAC on this experiment. The parame-
ters of S-AC, MLAC, and Dyna-MLAC are set according to
the values mentioned in their papers. The parameters of AC-
HMLP and RAC-HMLP are set as shown in Table 1.

The planning times may have significant effect on the
convergence performance. Therefore, we have to determine
the local planning times 𝑃

𝑙
and the global planning times 𝑃

𝑔

at first. The selective settings for the two parameters are (30,
300), (50, 300), (30, 600), and (50, 600). From Figure 2(a), it
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Table 1: Parameters settings of RAC-HMLP and AC-HMLP.

Parameter Symbol Value
Time step 𝑇

𝑠
0.1

Discount factor 𝛾 0.9
Trace-decay rate 𝜆 0.9
Exploration variance 𝜎

2 1
Learning rate of the actor 𝛼

𝑎
0.5

Learning rate of the critic 𝛼
𝑐

0.4
Learning rate of the model 𝛼

𝑚
0.5

Error threshold 𝜉 0.15
Capacity of the memory 𝑀 size 100
Number of the nearest samples 𝐿 9
Local planning times 𝑃

𝑙
30

Global planning times 𝑃
𝑔 300

Number of components of the state K 2
Regularization parameter of the model ℓ

𝑚
0.2

Regularization parameter of the critic ℓ
𝑐

0.01
Regularization parameter of the actor ℓ

𝑎
0.001

is easy to find out that (𝑃
𝑙
= 30,𝑃

𝑔
= 300) behaves best in these

four settings, with 41 episodes for convergence. (𝑃
𝑙
= 30, 𝑃

𝑔
=

600) learns fastest in the early 29 episodes, but it converges
until the 52nd episode. (𝑃

𝑙
= 30, 𝑃

𝑔
= 600) and (𝑃

𝑙
= 30, 𝑃

𝑔
=

300) have identical local planning times but different global
planning times. Generally, the more the planning times, the
faster the convergence rate, but (𝑃

𝑙
= 30, 𝑃

𝑔
= 300) performs

better instead. The global model is not accurate enough at
the initial time. Planning through such an inaccurate global
model will lead to an unstable performance. Notice that (𝑃

𝑙
=

50, 𝑃
𝑔
= 300) and (𝑃

𝑙
= 50, 𝑃

𝑔
= 600) behave poorer than (𝑃

𝑙

= 30, 𝑃
𝑔
= 600) and (𝑃

𝑙
= 30, 𝑃

𝑔
= 300), which demonstrates

that planning too much via the local model will not perform
better. (𝑃

𝑙
= 50,𝑃

𝑔
= 300) seems to converge at the 51st episode

but its learning curve fluctuates heavily after 365 episodes, not
converging any more until the end. Like (𝑃

𝑙
= 50, 𝑃

𝑔
= 300),

(𝑃
𝑙
= 50, 𝑃

𝑔
= 600) also has heavy fluctuation but converges

at the 373rd episode. Evidently, (𝑃
𝑙
= 50, 𝑃

𝑔
= 300) performs

slightly better than (𝑃
𝑙
= 50, 𝑃

𝑔
= 300). Planning through the

global model might solve the nonstability problem caused by
planning of the local model.

The convergence performances of the fivemethods, RAC-
HMLP, AC-HMLP, S-AC, MLAC, and Dyna-MLAC, are
shown in Figure 2(b). It is evident that our methods RAC-
HMLP and AC-HMLP have the best convergence perfor-
mances. RAC-HMLP and AC-HMLP converge at the 39th
and 41st episodes. Both of them learn quickly in the primary
phase, but the learning curve of RAC-HMLP seems to be
steeper than that of AC-HMLP. Dyna-MLAC learns faster
than MLAC and S-AC in the former 74 episodes, but it
converges until the 99th episode. Though MLAC behaves
poorer than Dyna-MLAC, it requires just 82 episodes to
converge. The method with the slowest learning rate is S-
AC where the pole can keep balance for 3000 time steps
for the first time at the 251st episode. Unfortunately, it con-
verges until the 333rd episode. RAC-HMLP converges fastest
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Figure 2: Comparisons of different planning times and different
algorithms.

which might be caused by introducing the ℓ
2
-regularization.

Because the ℓ
2
-regularization does not admit the parameter

to grow rapidly, the overfitting of the learning process can
be avoided effectively. Dyna-MLAC converges faster than
MLAC in the early 74 episodes but its performance is not
stable enough embodied in the heavy fluctuation from the
75th to 99th episode. If the approximate-local model is dis-
tinguished largely from the real-local model, then planning
through such an inaccurate local model might lead to an
unstable performance. S-AC as the only method without
model learning behaves poorest among the five.These results
show that the convergence performance can be improved
largely by introducing model learning.

The comparisons of the five different algorithms in
sample efficiency are shown in Figure 3. It is clear that the
numbers of the required samples for S-AC, MLAC, Dyna-
MLAC, AC-HMLP, and RAC-HMLP to converge are 56003,



10 Computational Intelligence and Neuroscience

S-AC
MLAC
Dyna-MLAC

AC-HMLP
RAC-HMLP

50 100 150 200 250 300 350 4000
Training episodes

0

1

2

3

4

5

6

N
um

be
r o

f s
am

pl
es

 to
 co

nv
er

ge

×104

Figure 3: Comparisons of sample efficiency.

35535, 32043, 14426, and 12830, respectively. Evidently, RAC-
HMLP converges fastest and behaves stably all the time,
thus requiring the least samples.Though AC-HMLP requires
more samples to converge than RAC-HMLP, it still requires
far fewer samples than the other three methods. Because S-
AC does not utilize the model, it requires the most samples
among the five. Unlike MLAC, Dyna-MLAC applies the
model not only in updating the policy but also in planning,
resulting in a fewer requirement for the samples.

The optimal policy and optimal value function learned by
AC-HMLP after the training ends are shown in Figures 4(a)
and 4(b), respectively, while the ones learned by RAC-HMLP
are shown in Figures 4(c) and 4(d). Evidently, the optimal
policy and the optimal value function learned by AC-HMLP
and RAC-HMLP are quite similar, but RAC-HMLP seems to
have more fine-grained optimal policy and value function.

As for the optimal policy (see Figures 4(a) and 4(c)),
the force becomes smaller and smaller from the two sides
(left side and right side) to the middle. The top-right is the
region requiring a force close to 50N, where the direction
of the angle is the same with that of angular velocity. The
values of the angle and the angular velocity are nearing the
maximum values 𝜋/4 and 2.Therefore, the largest force to the
left is required so as to guarantee that the angle between the
upright line and the pole is no bigger than 𝜋/4. It is opposite
in the bottom-left region where a force attributing to [−50N,
−40N] is required to keep the angle from surpassing −𝜋/4.
The pole can keep balance with a gentle force close to 0 in the
middle region.Thedirection of the angle is different from that
of angular velocity in the top-left and bottom-right regions;
thus a force with the absolute value which is relatively large
but smaller than 50N is required.

In terms of the optimal value function (see Figures 4(b)
and 4(d)), the value function reaches a maximum in the
region satisfying −2 ≤ 𝑤 ≤ 2. The pole is more prone to
keep balance even without applying any force in this region,

resulting in the relatively larger value function. The pole is
more and more difficult to keep balance from the middle to
the two sides with the value function also decaying gradually.
The fine-grained value of the left side compared to the right
onemight be caused by themore frequent visitation to the left
side. More visitation will lead to a more accurate estimation
about the value function.

After the training ends, the prediction of the next state
and the reward for every state-action pair can be obtained
through the learnedmodel.The predictions for the next angle
𝑤, the next angular velocity �̇�, and the reward for any possible
state are shown in Figures 5(a), 5(b), and 5(c). It is noticeable
that the predicted-next state is always near the current state
in Figures 5(a) and 5(b). The received reward is always larger
than 0 in Figure 5(c), which illustrates that the pole can
always keep balance under the optimal policy.

5.2. Continuous Maze Problem. Continuous maze problem
is shown in Figure 6, where the blue lines with coordinates
represent the barriers.The state (𝑥, 𝑦) consists of the horizon-
tal coordinate 𝑥 ∈ [0, 1] and vertical coordinate 𝑦 ∈ [0, 1].
Starting from the position “Start,” the goal of the agent is
to reach the position “Goal” that satisfies 𝑥 + 𝑦 > 1.8. The
action is to choose an angle bounded by [−𝜋, 𝜋] as the new
direction and then walk along this direction with a step 0.1.
The agent will receive a reward −1 at each time step. The
agent will be punished with a reward −400 multiplying the
distance if the distance between its position and the barrier
exceeds 0.1. The parameters are set the same as the former
problem, except for the planning times. The local and global
planning times are determined as 10 and 50 in the same
way of the former experiment. The state-based feature is
computed according to (23) and (24) with the dimensionality
𝑧 = 16. The center point 𝑐

𝑖
locates over the grid points

{0.2, 0.4, 0.6, 0.8} × {0.2, 0.4, 0.6, 0.8}. The diagonal elements
of 𝐵 are 𝜎

2

𝑥
= 0.2 and 𝜎

2

𝑦
= 0.2. The state-action-based

feature is also computed according to (23) and (24). The
center point 𝑐

𝑖
locates over the grid points {0.2, 0.4, 0.6, 0.8} ×

{0.2, 0.4, 0.6, 0.8}×{−3, −1.5, 0, 1.5, 3}with the dimensionality
𝑧 = 80.The diagonal elements of𝐵 are 𝜎2

𝑥
= 0.2, 𝜎2

𝑦
= 0.2, and

𝜎
2

𝑢
= 1.5.
RAC-HMLP and AC-HMLP are compared with S-AC,

MLAC, and Dyna-MLAC in cumulative rewards. The results
are shown in Figure 7(a). RAC-HMLP learns fastest in the
early 15 episodes,MLACbehaves second best, andAC-HMLP
performs poorest. RAC-HMLP tends to converge at the 24th
episode, but it really converges until the 39th episode. AC-
HMLP behaves steadily starting from the 23rd episode to the
end and it converges at the 43rd episode. Like the former
experiment, RAC-HMLP performs slightly better than AC-
HMLP embodied in the cumulative rewards −44 compared
to −46. At the 53rd episode, the cumulative rewards of
S-AC fall to about −545 quickly without any ascending
thereafter. Though MLAC and Dyna-MLAC perform well
in the primary phase, their curves start to descend at the
88th episode and the 93rd episode, respectively. MLAC and
Dyna-MLAC learn the local model to update the policy
gradient, resulting in a fast learning rate in the primary phase.
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(c) Optimal policy of RAC-HMLP learned after training
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(d) Optimal value function of RAC-HMLP learned after training

Figure 4: Optimal policy and value function learned by AC-HMLP and RAC-HMLP.

However, they do not behave stably enough near the end of
the training. Too much visitation to the barrier region might
cause the fast descending of the cumulative rewards.

The comparisons of the time steps for reaching goal are
simulated, which are shown in Figure 7(b). Obviously, RAC-
HMLP and AC-HMLP perform better than the other three
methods. RAC-HMLP converges at 39th episode while AC-
HMLP converges at 43rd episode, with the time steps for
reaching goal being 45 and 47. It is clear that RAC-HMLP
still performs slightly better than AC-HMLP. The time steps
for reaching goal are 548, 69, and 201 for S-AC, MLAC,
andDyna-MLAC. Among the fivemethods, RAC-HMLP not
only converges fastest but also has the best solution, 45. The
poorest performance of S-AC illustrates that model learning
can definitely improve the convergence performance. As in
the former experiment, Dyna-MLAC behaves poorer than
MLAC during training. If the model is inaccurate, planning
via such model might influence the estimations of the value
function and the policy, thus leading to a poor performance
in Dyna-MLAC.

The comparisons of sample efficiency are shown in
Figure 8. The required samples for S-AC, MLAC, Dyna-
MLAC, AC-HMLP, and RAC-HMLP to converge are 10595,
6588, 7694, 4388, and 4062, respectively. As in pole balancing
problem, RAC-HMLP also requires the least samples while
S-AC needs the most to converge. The difference is that

Dyna-MLAC requires samples slightly more than MLAC.
The ascending curve of Dyna-MLAC at the end of the
training demonstrates that it has not converged.The frequent
visitation to the barrier in Dyna-MLAC leads to the quick
descending of the value functions. As a result, enormous
samples are required to make these value functions more
prone to the true ones.

After the training ends, the approximate optimal policy
and value function are obtained, shown in Figures 9(a) and
9(b). It is noticeable that the low part of the figure is explored
thoroughly, so that the policy and the value function are very
distinctive in this region. For example, inmost of the region in
Figure 9(a), a larger angle is needed for the agent so as to leave
the current state. Clearly, the nearer the current state and the
low part of Figure 9(b), the smaller the corresponding value
function. The top part of the figures may be not frequently
or even not visited by the agent, resulting in the similar value
functions.The agent is able to reach the goal onlywith a gentle
angle in these areas.

6. Conclusion and Discussion

This paper proposes two novel actor-critic algorithms, AC-
HMLP and RAC-HMLP. Both of them take LLR and LFA to
represent the local model and global model, respectively. It
has been shown that our new methods are able to learn the
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Figure 5: Prediction of the next state and reward according to the global model.
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Figure 6: Continuous maze problem.

optimal value function and the optimal policy. In the pole
balancing and continuous maze problems, RAC-HMLP and
AC-HMLP are compared with three representative methods.
The results show that RAC-HMLP and AC-HMLP not only
converge fastest but also have the best sample efficiency.

RAC-HMLP performs slightly better than AC-HMLP in
convergence rate and sample efficiency. By introducing ℓ

2
-

regularization, the parameters learned by RAC-HMLP will
be smaller and more uniform than those of AC-HMLP, so
that the overfitting can be avoided effectively. Though RAC-
HMLPbehaves better, its improvement overAC-HMLP is not
significant. Because AC-HMLP normalizes all the features to
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Figure 7: Comparisons of cumulative rewards and time steps for reaching goal.
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Figure 8: Comparisons of different algorithms in sample efficiency.

[0, 1], the parameters will not change heavily. As a result, the
overfitting can also be prohibited to a certain extent.

S-AC is the only algorithm without model learning. The
poorest performance of S-AC demonstrates that combining
model learning and AC can really improve the performance.
Dyna-MLAC learns a model via LLR for local planning and
policy updating. However, Dyna-MLAC directly utilizes the
model before making sure whether it is accurate; addition-
ally, it does not utilize the global information about the
samples. Therefore, it behaves poorer than AC-HMLP and

RAC-HMLP. MLAC also approximates a local model via
LLR as Dyna-MLAC does, but it only takes the model to
update the policy gradient, surprisingly with a slightly better
performance than Dyna-MLAC.

Dyna-MLAC andMLAC approximate the value function,
the policy, and the model through LLR. In the LLR approach,
the samples collected in the interaction with the environment
have to be stored in the memory. Through KNN or𝐾-d tree,
only 𝐿-nearest samples in the memory are selected to learn
the LLR. Such a learning process takes a lot of computation
and memory costs. In AC-HMLP and RAC-HMLP, there is
only a parameter vector to be stored and learned for any of the
value function, the policy, and the global model. Therefore,
AC-HMLP and RAC-HMLP outperform Dyna-MLAC and
MLAC also in computation and memory costs.

The planning times for the local model and the global
model have to be determined according the experimental
performance.Thus, we have to set the planning times accord-
ing to the different domains. To address this problem, our
future work will consider how to determine the planning
times adaptively according to the different domains. More-
over, with the development of the deep learning [33, 34],
deepRL has succeeded inmany applications such asAlphaGo
and Atari 2600 by taking the visual images or videos as
input. However, how to accelerate the learning process in
deep RL through model learning is still an open question.
The future work will endeavor to combine deep RL with
hierarchical model learning and planning to solve the real-
world problems.
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Figure 9: Final optimal policy and value function after training.
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