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We propose a power series extender method to obtain approximate solutions of nonlinear differential equations. In order to assess
the benefits of this proposal, three nonlinear problems of different kind are solved and compared against the power series solution
obtained using an approximative method. The problems are homogeneous Lane-Emden equation of 𝛼 index, governing equation
of a burning iron particle, and an explicit differential-algebraic equation related to battery model simulations.The results show that
PSEM generates highly accurate handy approximations requiring only a few steps. The main advantage of PSEM is to extend the
domain of convergence of the power series solutions of approximative methods as Taylor series method, homotopy perturbation
method, homotopy analysis method, variational iteration method, differential transform method, and Adomian decomposition
method, amongmany others. From the application of PSEM, it results in handy easy computable expressions that extend the domain
of convergence of high order power series solutions.

1. Introduction

Solving nonlinear differential equations is an important task
in sciences because many physical phenomena are modelled
using such equations. Recently, the generalized homotopy
method (GHM) [1] was proposed as a generalization of the
homotopy perturbation method (HPM). The application of
suchmethod is based on a power seriesmatching that enables
GHM to obtain complex and rich expression impossible to
obtain using HPM. Therefore, using as a guide the main
idea of power series matching, behind GHM, we propose a
power series method extender (PSEM). The key steps of this
proposal are as follows.

(1) First, we apply an approximativemethod to obtain the
coefficients of a power series solution. The approx-
imative method can be one from the literature like
Taylor series method (TSM) [2, 3], power series
method (PSM) [4], homotopy perturbation method
(HPM) [5–11], perturbationmethod (PM), homotopy

analysismethod (HAM), variational iterationmethod
(VIM), differential transform method (DTM), and
Adomian decomposition method (ADM), among
many others.

(2) In the same fashion as GHM [1], we propose a
trial function (TF) that can potentially describe the
qualitative behaviour of the nonlinear problem.

(3) Next, we apply the Taylor series method to a trial
function (TF).

(4) Then, we equate the coefficients of the power series
obtained in steps 1 and 3 to obtain a nonlinear
algebraic equation system in terms of the coefficients
of the TF, which can be solved using symbolic or
numerical methods.

(5) Finally, the approximate solution is obtained by sub-
stituting the calculated coefficients from step 4 into
the proposed TF.
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In order to study the potential of the proposed technique,
three nonlinear problems will be solved and compared versus
numerical methods: homogeneous Lane-Emden equation of
𝛼 index [12], governing equation of burning iron particle
[13], and an explicit differential-algebraic equation related to
battery model simulations [14].

This paper is organized as follows. In Section 2, we
introduce the basic concept of PSEMmethod. In Section 3, we
show the approximation of three nonlinear differential equa-
tions related to different phenomenons in physics. Numerical
simulations and a discussion about the results are provided in
Section 4. Finally, a brief conclusion is given in Section 5.

2. Basic Concept of PSEM Method

In a broad sense a nonlinear differential equation can be ex-
pressed as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑥) = 0, 𝑥 ∈ Ω, (1)

having as boundary condition

𝐵 (𝑢,

𝜕𝑢

𝜕𝜂

) = 0, 𝑥 ∈ Γ, (2)

where 𝐿 and 𝑁 are a linear operator and a nonlinear
operator, respectively, 𝑓(𝑥) is a known analytic function, 𝐵

is a boundary operator, Γ is the boundary of domain Ω,
and 𝜕𝑢/𝜕𝜂 denotes differentiation along the normal drawn
outwards from Ω [8].

Next, we express the solution of (1) as a power series

𝑢 =

∞

∑

𝑘=0

V
𝑘
𝑥
𝑘

, (3)

where V
𝑘
(𝑘 = 0, 1, . . .) are the coefficients of the power series.

It is important to notice that (3) can be obtained by some
approximative method from literature as HPM, HAM, VIM,
DTM, ADM, TSM, and PSM, among others.

Now, we propose that the solution for (1) can be written
as a finite sum of functions in the general form [1]

𝑢 = 𝑢
0

+

𝑛

∑

𝑖=0

𝑓
𝑖
(𝑥, 𝑢
𝑖
) , (4)

or

𝑢 =

𝑢
0

+ ∑
𝑛

𝑖=0
𝑓
𝑖
(𝑥, 𝑢
𝑖
)

1 + ∑
2𝑛

𝑗=𝑛+1
𝑓
𝑗
(𝑥, 𝑢
𝑗
)

, (5)

where 𝑢
𝑖
are constants to be determined by PSEM, 𝑓

𝑖
(𝑥, 𝑢
𝑖
)

are arbitrary trial functions, and 𝑛 and 2𝑛 are the orders of
approximations (4) and (5), respectively. We will denominate
(4) and (5) as the trial function (TF).

Next, we calculate the Taylor series of (4) or (5), resulting
in the power series

𝑢 = 𝑢
0

+

𝑛

∑

𝑖=0

𝑃
𝑖,0

+

𝑛

∑

𝑖=0

∞

∑

𝑘=1

𝑃
𝑖,𝑘

𝑥
𝑘

, (6)

𝑢 = 𝑢
0

+

𝑛

∑

𝑖=0

𝑃
𝑖,0

+

2𝑛

∑

𝑖=0

∞

∑

𝑘=1

𝑃
𝑖,𝑘

𝑥
𝑘

, (7)

respectively, where Taylor coefficients 𝑃
𝑘
are expressed in

terms of parameters 𝑢
𝑖
.

Finally, we equate/match the coefficients of power series
(6) or (7) with (3) to obtain the values of 𝑢

𝑖
and substitute

them into (4) or (5) to obtain the PSEM approximation.
It is important to notice that we can separately apply (4)

or (5) to obtain an approximation of (1), where the selection of
the TF depends of the behaviour of the problem under study.
In addition, it is important to remark that if we choose the 𝑓

𝑖

functions to be analytic, then (6) and (7) are convergent series
[15–17].

3. Case Studies

In the present section, we will solve three case studies to
show the utility of the PSEM method to solve nonlinear
differential equations. We know from literature that approx-
imative methods as HPM, PM, HAM (using the ℎ = −1 as
convergence control), VIM, DTM, ADM, TSM, and PSM are
able to generate power series approximate solutions that in
most of the cases are equivalent to the well-known TSM/PSM
solutions. Therefore, the main difference in such cases is
the difficulty of application of the specific approximative
method to the particular case study. For its simplicity of
application, we will use TSM [2] to exemplify the application
of PSEM, although it is possible to use one of the available
approximative methods from literature.

3.1. Homogeneous Lane-Emden Equation of 𝛼 Index. The
Lane-Emden singular equation describes a wide variety of
problems in physics as some aspects related to the stellar
structure, thermal history of spherical cloud of gas, isother-
mal gas spheres, and thermionic currents, among others [12].
The equation is expressed as

𝑦
󸀠󸀠

+

2

𝑥

𝑦
󸀠

+ 𝑦
𝛼

= 0, 0 < 𝑥 ≤ 1, 0 ≤ 𝛼 ≤ 5,

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0,

(8)

where prime denotes differentiation with respect to 𝑥 and 𝛼

represents the index of the equation.
Using the initial conditions of (8) and considering as

expansion point 𝑥
0

= 0, it results the solution of (8) as

𝑦 (𝑥) = 𝑦 (0) +

𝑦
󸀠

(0)

1!

𝑥
1

+

𝑦
󸀠󸀠

(0)

2!

𝑥
2

+

𝑦
󸀠󸀠󸀠

(0)

3!

𝑥
3

+

𝑦
(4)

(0)

4!

𝑥
4

+ ⋅ ⋅ ⋅ ,

(9)

where 𝑦
(𝑚)

(0) (𝑚 = 2, 3, . . .) are unknown constants to be
determined by the Taylor series method.

In order to apply the TSM method [3], it is necessary to
multiply (8) by 𝑥 to avoid the singularity, resulting in

𝑥𝑦
󸀠󸀠

+ 2𝑦
󸀠

+ 𝑥𝑦
𝛼

= 0. (10)
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Next, we derive successively (10) and resolve the system
of equations obtained from the derivatives 𝑦

(𝑚)

(0) (𝑚 =

2, 3, . . .), resulting in

𝑦
󸀠󸀠

= (

1

3

) ((−𝑦 − 𝑥𝛼𝑦
󸀠

) 𝑦
𝛼−1

− 𝑦
󸀠󸀠󸀠

𝑥) ,

𝑦
󸀠󸀠󸀠

= (

1

4

) (−𝛼 (𝑥 (𝛼 − 1) 𝑦
󸀠

+ 2𝑦) 𝑦
󸀠

𝑦
𝛼−2

−𝑦
(𝛼−1)

𝑦
󸀠󸀠

𝛼𝑥 − 𝑦
(4)

𝑥) ,

𝑦
(4)

= (

1

5

) (−3𝑦
(𝛼−2)

𝑦
󸀠󸀠

(𝑥 (𝛼 − 1) 𝑦
󸀠

+ 𝑦) 𝛼

− (𝛼 − 1) 𝛼 (𝑥 (𝛼 − 2) 𝑦
󸀠

+ 3𝑦) 𝑦
󸀠2

𝑦
𝛼−3

−𝑦
(𝛼−1)

𝛼𝑥𝑦
󸀠󸀠󸀠

− 𝑦
(5)

𝑥) ,

.

.

.

(11)

Now, substituting the initial conditions of (8) into (11), it
results in

𝑦
󸀠󸀠

(0) = −

1

3

, 𝑦
󸀠󸀠󸀠

(0)

= 0, 𝑦
(4)

(0)

= (

1

5

) 𝛼,

.

.

.

(12)

From (5), we propose a specific solution for (8) with the
following form:

𝑦 (𝑥) =

𝑦
0

+ 𝑦
1
𝑥
1

+ 𝑦
2
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑦
𝑛
𝑥
𝑛

1 + 𝑦
𝑛+1

𝑥
1

+ 𝑦
𝑛+2

𝑥
2

+ ⋅ ⋅ ⋅ + 𝑦
2𝑛

𝑥
𝑛
, (13)

where 𝑦
𝑖
(𝑖 = 0, 1, 2, . . .) are constants to be determined and

the order 𝑛 is chosen as 2 to obtain a handy approximation.
Next, Taylor series of (13) is

𝑦 (𝑥) = 𝑦
0

+ (𝑦
1

− 𝑦
0
𝑦
3
) 𝑥

+ (𝑦
2

− 𝑦
0
𝑦
4

+ (−𝑦
1

+ 𝑦
0
𝑦
3
) 𝑦
3
) 𝑥
2

+ ( (−𝑦
1

+ 𝑦
0
𝑦
3
) 𝑦
4

+ (−𝑦
2

+ 𝑦
0
𝑦
4

+ 𝑦
3
𝑦
1

− 𝑦
0
𝑦
2

3
) 𝑦
3
) 𝑥
3

+ ((−𝑦
2

+ 𝑦
0
𝑦
4

+ 𝑦
3
𝑦
1

− 𝑦
0
𝑦
2

3
) 𝑦
4

+ (𝑦
4
𝑦
1

− 2𝑦
4
𝑦
0
𝑦
3

+ 𝑦
3
𝑦
2

− 𝑦
2

3
𝑦
1

+𝑦
0
𝑦
3

3
) 𝑦
3
) 𝑥
4

+ ⋅ ⋅ ⋅ .

(14)

Then, we equate coefficients of 𝑥-powers of (9) and
(14) to obtain a system of equations, which can be solved
symbolically, resulting in

𝑦
0

= 1,

𝑦
1

= 0,

𝑦
2

=

𝛼

20

−

1

6

,

𝑦
3

= 0,

𝑦
4

=

𝛼

20

.

(15)

Finally, the PSEMapproximation is obtained by substitut-
ing (15) into (13), resulting in

𝑦 (𝑥) =

1 + (𝛼/20 − 1/6) 𝑥
2

1 + (𝛼/20) 𝑥
2

, 0 < 𝑥 ≤ 1, 0 ≤ 𝛼 ≤ 5.

(16)

3.2. Combustion of a Single Iron Particle. The nonlinear
energy equation for combustion of a single iron particle [13]
is

(1 − 𝜖
1

(𝜃 − 𝜃
∞

)) 𝜃
󸀠

+ 𝜃 − 𝜃
∞

+ 𝜖
2

(𝜃
4

− 𝜃
4

surr) − Ψ = 0,

𝜃 (0) = 1,

(17)

where prime denotes differentiation with respect to 𝜏 and 𝜃 is
the dimensionless temperature.

The values of the parameters are obtained from [13]: 𝜃
∞

=

1.17647, 𝜖
1

= 0.051595, Ψ = 0.98579, 𝜃surr = 0.35294, and
𝜖
2

= 0.002630145546. Using the initial conditions of (17) and
considering the expansion point 𝜏 = 0 yields to the following
Taylor series:

𝜃 (𝜏) = 𝜃 (0) +

𝜃
󸀠

(0)

1!

𝜏
1

+

𝜃
󸀠󸀠

(0)

2!

𝜏
2

+ ⋅ ⋅ ⋅ , (18)

where 𝜃
(𝑚)

(0) (𝑚 = 1, 2, . . .) are unknown constants.
Now, we resolve (17) for 𝜃

󸀠 and calculate the successive
derivatives to obtain 𝜃

(𝑚)

(0) (𝑚 = 1, 2, . . .), resulting in

𝜃
󸀠

= −

𝜃 − 𝜃
∞

+ 𝜖
2

(𝜃
4

− 𝜃
4

surr) − Ψ

1 − 𝜖
1

(𝜃 − 𝜃
∞

)

,

𝜃
󸀠󸀠

= −

𝜖
1
𝜃
󸀠

(𝜃 − 𝜃
∞

+ 𝜖
2

(𝜃
4

− 𝜃
4

surr) − Ψ)

(1 − 𝜖
1

(𝜃 − 𝜃
∞

))
2

−

𝜃
󸀠

+ 4𝜖
2
𝜃
3

𝜃
󸀠

1 − 𝜖
1

(𝜃 − 𝜃
∞

)

.

.

.

(19)
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Then, substituting the initial conditions of (17) into (19),
we get

𝜃
󸀠

(0) = −

𝜃 (0) − 𝜃
∞

+ 𝜖
2

(𝜃 (0)
4

− 𝜃
4

surr ) − Ψ

1 − 𝜖
1

(𝜃 (0) − 𝜃
∞

)

,

𝜃
󸀠󸀠

(0) = −

𝜖
1
𝜃
󸀠

(0) (𝜃 (0) − 𝜃
∞

+ 𝜖
2

(𝜃 (0)
4

− 𝜃
4

surr) − Ψ)

(1 − 𝜖
1

(𝜃 (0) − 𝜃
∞

))
2

−

𝜃
󸀠

(0) + 4𝜖
2
𝜃 (0)
3

𝜃
󸀠

(0)

1 − 𝜖
1

(𝜃 (0) − 𝜃
∞

)

.

.

.

(20)

From (4), we propose a specific solution for (17) as fol-
lows:

𝜃 (𝜏) = 𝜃
0

+ 𝜃
1
exp (𝜃

2
𝜏) . (21)

Next, Taylor series of (21) is

𝜃 (𝜏) = 𝜃
0

+ 𝜃
1

+ 𝜃
1
𝜃
2
𝜏 + (

1

2

) 𝜃
1
𝜃
2

2
𝜏
2

+ ⋅ ⋅ ⋅ . (22)

Then, we equate coefficients of 𝜏-powers of (18) and
(22) to obtain a system of equations, which can be solved
symbolically, resulting in

𝜃
0

=

(𝑘
0
𝑘
2

− 𝑘
2

1
)

𝑘
2

,

𝜃
1

=

𝑘
2

1

𝑘
2

,

𝜃
2

=

𝑘
2

𝑘
1

,

(23)

where 𝑘
0

= 𝜃(0), 𝑘
1

= 𝜃
󸀠

(0), and 𝑘
2

= 𝜃
󸀠󸀠

(0).
Finally, substituting (23) into (21) yields to the PSEM

approximation

𝜃 (𝜏) =

(𝑘
0
𝑘
2

− 𝑘
2

1
)

𝑘
2

+ (

𝑘
2

1

𝑘
2

) exp(

𝑘
2
𝜏

𝑘
1

) . (24)

For comparison purposes, we calculate the Taylor series
by substituting 𝜃(0) = 1 and (20) into (18), yielding

𝜃 (𝜏) = 1 + 1.170326453𝜏 − 0.6324114785𝜏
2

. (25)

3.3. Differential-Algebraic Equation Related to Battery Model
Simulation. Next, PSEM will be applied to a nonlinear
equation [14] related to an oversimplified battery model,
which is formulated as follows:

𝑧
󸀠

= −2𝑧 + 𝑦
2

, 𝑧 (0) = 2,

−100 ln (𝑦) + 2𝑧 = 5, 𝑦 (0) = exp (−0.01) ,

(26)

where 𝑧 is the differential variable, 𝑦 is the algebraic variable,
and primes denote derivative with respect to 𝑡.

Using the initial conditions of (26) and considering the
expansion point 𝑡 = 0 yields to the following Taylor series:

𝑧 (𝑡) = 𝑧 (0) +

𝑧
󸀠

(0)

1!

𝑡
1

+

𝑧
󸀠󸀠

(0)

2!

𝑡
2

+

𝑧
󸀠󸀠󸀠

(0)

3!

𝑡
3

+

𝑧
(4)

(0)

4!

𝑡
4

+ ⋅ ⋅ ⋅ ,

𝑦 (𝑡) = 𝑦 (0) +

𝑦
󸀠

(0)

1!

𝑡
1

+

𝑦
󸀠󸀠

(0)

2!

𝑡
2

+

𝑦
󸀠󸀠󸀠

(0)

3!

𝑡
3

+

𝑦
(4)

(0)

4!

𝑡
4

+ ⋅ ⋅ ⋅ ,

(27)

where derivatives 𝑧
(𝑚)

(0) and 𝑦
(𝑚)

(0) (𝑚 = 1, 2, . . .) are
unknown.

Firstly, we apply an implicit derivative with respect to 𝑡 of
the second equation of (26), resulting in

𝑧
󸀠

= −2𝑧 + 𝑦
2

, 𝑧 (0) = 2,

𝑦
󸀠

= (

1

50

) 𝑧
󸀠

𝑦, 𝑦 (0) = exp (−0.01) .

(28)

As before, we calculate the successive derivatives of (28)
and evaluate the resulting equations at 𝑡 = 0, yielding

𝑧 (0) = 𝛾,

𝑧
󸀠

(0) = 𝜁
2

− 2𝛾,

𝑧
󸀠󸀠

(0) = (

1

25

) (𝜁
2

− 50) (𝜁
2

− 2𝛾) ,

𝑧
󸀠󸀠󸀠

(0) =

2

625

(𝜁
2

− 2𝛾) (𝜁
4

+ 1250 + (−𝛾 − 50) 𝜁
2

) ,

𝑧
(4)

(0) =

6

15625

(−

62500

3

+ 𝜁
6

+ (−2𝛾 −

175

3

) 𝜁
4

+ (

200

3

𝛾 + 1250 + (

2

3

) 𝛾
2

) 𝜁
2

)

× (𝜁
2

− 2𝛾) ,

.

.

.

𝑦 (0) = 𝜁,

𝑦
󸀠

(0) =

1

50

(𝜁
2

− 2𝛾) (𝜁) ,

𝑦
󸀠󸀠

(0) =

3

2500

(𝜁) (𝜁
2

− 2𝛾) (𝜁
2

−

2

3

𝛾 −

100

3

) ,
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𝑦
󸀠󸀠󸀠

(0) =

3

25000

(𝜁) (𝜁
2

− 2𝛾) (𝜁
4

+ (−

140

3

−

8

5

𝛾) 𝜁
2

+40𝛾 +

2000

3

+

4

15

𝛾
2

) ,

𝑦
(4)

(0) =

21

1250000

(𝜁) (𝜁
6

+ (−

1240

21

−

18

7

𝛾) 𝜁
4

+ (

26000

21

+

320

3

𝛾 +

52

35

𝛾
2

) 𝜁
2

−

4000

3

𝛾 −

8

105

𝛾
3

−

160

7

𝛾
2

−

200000

21

)

× (𝜁
2

− 2𝛾)

.

.

.

(29)

where 𝛾 = 𝑧(0) and 𝜁 = 𝑦(0).
From (4), we propose a specific solution for (26) as

follows:

𝑧 (𝑡) = 𝑧
0

+ 𝑧
1
exp (𝑧

2
𝑡) + 𝑧
3
exp (𝑧

4
𝑡) ,

𝑦 (𝑡) = 𝑦
0

+ 𝑦
1
exp (𝑦

2
𝑡) + 𝑦

3
exp (𝑦

4
𝑡) .

(30)

Finally, we calculate the fourth-order Taylor series of
(30), equate the resulting coefficients of the same 𝑡-powers
with respect to (27), and solve the two systems of equations,
resulting in the following PSEM approximation:

𝑧 (𝑡) = 0.4608270703 + 1.539992595 exp (−1.963069736𝑡)

− 0.0008196648996 exp (−4.040101111𝑡) ,

𝑦 (𝑡) = 0.9600410114 + 0.02960275048 exp (−1.964621532𝑡)

+ 0.0004060718378 exp (−4.030998609𝑡) .

(31)

For comparison purposes, we calculate the Taylor series
by substituting (29) into (27), yielding

𝑧 (𝑡) = 2 − 3.019801327𝑡 + 2.960601222𝑡
2

− 1.932657483𝑡
3

+ 0.9438075192𝑡
4

,

𝑦 (𝑡) = 0.9900498337 − 0.05979507603𝑡 + 0.06042854745𝑡
2

− 0.04184548412𝑡
3

+ 0.02284265412𝑡
4

.

(32)

4. Numerical Simulation and Discussion

For all case studies, we used built-in numerical routines from
Maple 15 for comparison purposes. The Fehlberg fourth-
fifth order Runge-Kutta method with degree four interpolant
(RKF45) was used [18, 19]. The command was setup with a
tolerance of absolute error (A. E.) of 10

−12.

We obtained a highly accurate rational approximate
solution (16) for the singular second order Lane-Emden
equation [12] (8) as depicted in Figures 1 and 2 for 𝛼 =

[1, 2, 3, 4, 5]. Thus, the PSEM method may be useful for such
kind of problems with singularities.

Additionally, we solved the nonlinear energy equation
for combustion of a single iron particle [13] (17) obtaining a
highly accurate approximation (24) as depicted in Figures 3
and 4. In the same figures, we can observe the Taylor series
solution (25), noticing the higher precision of the proposed
solution.

Finally, we approximated a simplisticmodel [14] related to
a battery model simulation that is represented as a nonlinear
differential-algebraic equation of index 1 (26). The PSEM
approximation (31) is in good agreement to numerical results
(RKF45) for a large period of time, as depicted in Figure 5;
in contrast, we can observe in the same figure the poor
convergence of the Taylor series solution. As a matter of
fact, if we calculate the asymptotic behaviour of (26), we will
conclude that the approximation keeps its high accuracy for
a very large period of time. On one side, setting the 𝑧

󸀠

(𝑡) = 0

in (26) and solving the system, it results in that the stable
equilibrium point is 𝐸

1
= [𝑧
∞

= 0.4608356746, 𝑦
∞

=

0.9600371604]. On the other side, we calculate the limit when
𝑡 → ∞ of (31), resulting in 𝐸

2
= [𝑧
∞

= 0.4608270703, 𝑦
∞

=

0.9600410114]. Therefore, the high proximity among 𝐸
1

and 𝐸
2
exhibits the high accuracy of the proposed PSEM

approximation for the rank 𝑡 ∈ [0, ∞).
The PSEM method was able to calculate approximations

with a larger domain of convergence in comparison to the
TSM results. The reason can lie in the fact that the trial
function of PSEM technique may potentially contain more
information than the Taylor power series. As long as the
Taylor series of the proposed TF exist, we can propose a wide
variety of series of functions as: trigonometric, hyperbolic,
integrals, among many others. However, further research is
required to propose a methodology to choose the optimal
TF. At the moment, users of the method should keep in
mind proposing a TF that may potentially reproduce the
behaviour of the exact solution. Finally, it is important
to remark that as the TF is a finite sum or division of
analytic functions, as shown in (4) or (5), therefore such
sum is convergent [15–17]; additionally, we will require only
a finite number of terms of the Taylor expansions (6) or
(7) to obtain the coefficients of the trial functions (4) or
(5). Finally, it is important to remark that PSEM can be
easily combined with HPM, PM, HAM, VIM, DTM, and
ADM, among many others. Furthermore, we can select the
approximativemethoddepending on its facility of application
to the specific case study. Therefore, PSEM is a powerful
malleable technique that can be applied in combination
with many of the approximative methods reported in litera-
ture.

5. Conclusions

This work introduced PSEM as a useful tool with high
potential to solve nonlinear differential equations. We were
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Figure 1: RKF45 solution for (8) (symbols) and its approximate
PSEM solution (16) (solid line) for different 𝛼 values.
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Figure 2: Absolute error (A. E.) of (16) with respect to numerical
(RKF45) solution for (8).

able to obtain accurate and handy approximations for differ-
ent types of problems: homogeneous singular Lane-Emden
equation, nonlinear energy equation for combustion of a
single iron particle, and differential-algebraic system related
to battery model simulation. It is important to remark on
the high flexibility, applicability, and power of this novel
method. A key point that should be remarked is that the user
should propose a finite sum of division of analytic functions
(trial function) that may be chosen according to the nature
of the nonlinear problem under study. Further research
is required to solve other kinds of problems: nonlinear
fractional differential equations, nonlinear partial differential
equations, and nonlinear boundary valued problems, among
others.
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Figure 3: RKF45 solution for (17) (solid circles), its approximate
PSEM solution (24) (solid line), and its Taylor series solution (25)
(diagonal crosses).
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[12] A. Akyüz-Daşcıoğlu and H. Çerdiůk-Yaslan, “The solution
of high-order nonlinear ordinary differential equations by
Chebyshev series,” Applied Mathematics and Computation, vol.
217, no. 12, pp. 5658–5666, 2011.

[13] M. Bidabadi and M. Mafi, “Time variation of combustion
temperature and burning time of a single iron particle,” Inter-
national Journal of Thermal Sciences, vol. 65, pp. 136–147, 2013.

[14] R. N. Methekar, V. Ramadesigan, J. C. Pirkle Jr., and V. R. Sub-
ramanian, “Aperturbation approach for consistent initialization
of index-1 explicit differential-algebraic equations arising from
batterymodel simulations,”Computers&Chemical Engineering,
vol. 35, no. 11, pp. 2227–2234, 2011.

[15] D. G. Zill, A First Course in Differential Equations with Mod-
eling Applications, Cengage Learning, Boston, Mass, USA, 10th
edition, 2012.

[16] W. Belser, Formal Power Series and Linear Systems of Meromor-
phic Ordinary Differential Equations, Springer, 1999.

[17] M. Oberguggenberger and A. Ostermann,Analysis for Comput-
er Scientists: Foundations, Methods, and Algorithms, Springer,
2011.

[18] W. H. Enright, K. R. Jackson, S. P. Nørsett, and P. G. Thomsen,
“Interpolants for Runge-Kutta formulas,” ACM Transactions on
Mathematical Software, vol. 12, no. 3, pp. 193–218, 1986.

[19] E. Fehlberg, “Klassische runge-kutta-formeln vier ter und nied-
rigerer ordnung mit schrittweitenkontrolle und ihre anwend-
ung auf waermeleitungsprobleme,” Computing, vol. 6, pp. 61–71,
1970.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


