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Fault detection has become extremely important in industrial production so that numerous potential losses caused from equipment
failures could be saved. As a noncontact method, machine vision can satisfy the needs of real-time fault monitoring. However,
image-based fault features often have the characteristics of high-dimensionality and redundant correlation. To optimize feature
subsets and SVM parameters, this paper presents an enhanced artificial bee colony-based support vector machine (EABC-SVM)
approach. The method is applied to the image-based fault detection for the conveyor belt. To improve the optimized capability
of original ABC, the EABC algorithm introduces two enhanced strategies including the Cat chaotic mapping initialization and
current optimum based search equations. Several UCI datasets have been used to evaluate the performance of EABC-SVM and the
experimental results show that this approach has better classification accuracy and convergence performance than the ABC-SVM
and other ABC variants-based SVM. Furthermore, the EABC-SVM can achieve a significant detection accuracy of 95% and reduce
the amount of features about 65% in the conveyor belt fault detection.

1. Introduction

In industrial production, to improve the reliability and reduce
the possible loss due to equipment failures, fault detection
has become extremely important. For example, in modern
coal mining enterprises, the tear fault of conveyor belt has
often occurred due to the impact of falling sharp materials in
operation [1]. If the fault can be detected early, the damage
of transmission devices caused by belts breakdown can be
minimized or even avoided. As a noncontact method, the
machine vision can capture the rich image-based information
of detected regions in real time by the CCD camera deployed
on the equipment.Therefore, image-based fault detection can
satisfy the needs of modem industrial production including
manufacturing processes [2], electrified railways [3], and
defect detection [4].

Generally, the procedure of image-based fault detection
consists of image acquisition, image preprocessing, feature
extraction and analysis, and alarm control. After the images
are acquired, the key step is feature extraction and analysis.

The extracted features usually include colors, textures, shapes,
points, and edges, which are combined into a multidimen-
sional feature vector. However, existing methods cannot fully
utilize the feature vector due to its complex characteristics
including the high-dimensionality and redundant correlation
[5]. Feature selection is an effective approach to eliminate
irrelevant or redundant features by picking a feature subset
from the original features [6]. The selection methods of fea-
ture subset include forward selection, backward elimination,
and bidirectional search [7]. These methods usually start
from an initial subset (empty set or complete feature set) and
generate a new subset by adding or discarding a feature.Then,
the generated feature subset is evaluated by the classification
accuracy.Thus, an efficient global search technique is needed
for the large feature space.

At present, some intelligent optimization algorithms have
been proposed for feature selection, such as the genetic
algorithm (GA) [8], particle swarm optimization (PSO) [9],
ant colony optimization (ACO) [10], and artificial bee colony
(ABC) [6]. These methods can select some informative or
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actual useful feature variables and improve efficiency and
accuracy of the data analysis. Moreover, due to few control
parameters and superior optimization performance, the ABC
algorithm has attracted much attention [11, 12]. In [13],
a hybrid approach based on ABC algorithm and artificial
neural networks (ANN)was presented to select feature subset
effectively. Schiezaro and Pedrini [6] proposed a feature
selection method using the ABC algorithm to classify differ-
ent UCI datasets and the selected feature set could provide
better classification accuracy. In [14], a feature selection
technique based on the ABC and 𝑘-Nearest Neighbor (𝑘-
NN) was employed for image steganalysis. Compared with
ANN and 𝑘-NN classifier, support vector machine (SVM) is
a more powerful classification method due to its excellent
classification accuracy and generalization performance [15,
16].

On the other hand, some variants of ABC algorithm [17]
have been proposed to improve the global search perfor-
mance and the convergence speed, which mainly focus on
the population initialization and the solution search strategy
[18–24]. Zhu and Kwong [21] proposed the gbest-guide
ABC (GABC) algorithm by incorporating the information
of global best solution into the solution search equation
to improve the exploitation. Gao and Liu [22] presented a
modifiedABC (MABC) algorithmby introducing the chaotic
and opposition-based initialization and the best solution of
the previous iteration. To improve the exploitation and keep
the exploration of ABC, Zhang and Liu [19] proposed a novel
ABC (NABC) algorithm by incorporating the global best
solution and the random solution into the search equations
of the onlookers and the employed bees, respectively. He et
al. [20] introduced amodifiedABC (SDABC) algorithm from
three aspects including the search space division initializa-
tion, disruptive selection strategy, and the improved scout bee
phase.

In the paper, an enhanced artificial bee colony-based
support vector machine (EABC-SVM) classifier is proposed
for image-based fault detection. To improve the convergence
of theABC, two enhanced strategies including theCat chaotic
mapping initialization and the current optimumbased search
equations are presented in the enhanced ABC (EABC)
algorithm. The EABC algorithm is employed to optimize the
feature subset and parameters of SVM. In order to assess
EABC-SVM’s capability, six benchmark datasets from UCI
are first used. And then the EABC-SVM is applied to detect
image-based tear fault of the conveyor belt.

This paper is organized as follows. Fundamentals about
the ABC algorithm and SVM are introduced in Section 2.
In Section 3, the proposed EABC-SVM classification method
is given in detail. In Section 4, experimental results are pre-
sented to demonstrate the capability of the EABC-SVMusing
six benchmark datasets from UCI and show the detection
performance applied to the image-based fault detection for
conveyor belt. Finally, the conclusion is drawn in Section 5.

2. Fundamentals

This section will briefly introduce the fundamentals about
artificial colony bee algorithm and support vector machine.

2.1. Artificial Colony Bee (ABC) Algorithm. Artificial bee
colony (ABC) algorithm [25] is an intelligent system inspired
by foraging behavior of a bee colony and widely used to solve
continuous numerical optimization problems. In the ABC
algorithm, the bee colony consists of three kinds of bees:
employment bees, onlooker bees, and scout bees. During
the process of optimization, the position of a food source
represents a possible solution to the optimization problem.
The operation procedure of ABC is an iterative process, as
shown in Algorithm 1, which refers to repeated searches for
the solution with employment bees, onlooker bees, and scout
bees until the maximum cycle number, MAXcycles, or the
allowable minimum error reaches [26, 27]. The details of the
four phases are described as follows.

(1) The Initialization Phase. The population of the ABC algo-
rithm is initialized randomly as

𝑥
𝑖,𝑗
= 𝑥min,𝑗 + rand (0, 1) (𝑥max,𝑗 − 𝑥min,𝑗) , (1)

where 𝑖 = 1, 2, . . . , 𝑆𝑁 is the number of population, 𝑗 =
1, 2, . . . , 𝐷 is the dimension of population, rand(0, 1) is a
random number in [0, 1], and 𝑥min,𝑗 and 𝑥max,𝑗 are the
lower and upper bounds of the 𝑗th optimization parameter,
respectively.

After the population initialization, food sources are
evaluated by the fitness function. The greater the fitness
value, the better quality the food source. For the maximum
optimization problem, the fitness function is the objective
function obj

𝑖
. For the minimum optimization problem, the

fitness function is defined as

fit
𝑖
=
{

{

{

1

1 + obj
𝑖
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𝑖
≥ 0
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(2)

(2) The Employed Bee Phase. In this phase, each employed
bee generates a new food source with the following search
equation:

V
𝑖,𝑗
= 𝑥
𝑖,𝑗
+ 𝜑
𝑖,𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑘,𝑗
) , (3)

where 𝑘 ∈ {1, 2, . . . , 𝑆𝑁}, 𝑘 ̸= 𝑖, and 𝜑
𝑖,𝑗
is a random number

in [−1, 1].
When all employed bees complete the search for new

food sources, the fitness values of new food sources are
calculated and compared to the old ones according to the
greedy selection mechanism of

V
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=
{

{

{

V
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, fit (V
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) > fit (𝑥

𝑖
)
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) .

(4)

(3)The Onlooker Bee Phase. After all employed bees complete
the updated process, they share their information about
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The operation procedure of ABC algorithm
- - Initialization phase - -

(1) Initialize the population of solutions and assign the population to employed bees
(2) while (cycle = MAXcycles) do

- - Employed bee phase - -
(3) for 𝑖 = 1 to SN do
(4) Produce a new solution V

𝑖
for employed bees and calculate its fitness value

(5) Apply the greedy selection mechanism between V
𝑖
and 𝑥

𝑖
, select the better one

(6) If the solution 𝑥
𝑖
does not update, the non-updated number trial

𝑖
= trial

𝑖
+ 1; otherwise trial

𝑖
= 0

(7) end for
- - Onlooker bee phase - -

(8) Calculate the selection probability 𝑝
𝑖

(9) 𝑡 = 0, 𝑖 = 1
(10) while (𝑡 < 𝑆𝑁) do
(11) if random < 𝑝

𝑖
then

(12) 𝑡 = 𝑡 + 1

(13) Produce a new solution V
𝑖
for onlooker bee of the solution 𝑥

𝑖
and calculate its fitness value

(14) Apply the greedy selection mechanism between V
𝑖
and 𝑥

𝑖
, select the better one

(15) If the solution 𝑥
𝑖
does not update, trial

𝑖
= trial

𝑖
+ 1; otherwise trial

𝑖
= 0

(16) end if
(17) 𝑖 = 𝑖 + 1

(18) If 𝑖 = 𝑆𝑁 + 1, 𝑖 = 1
(19) end while (𝑡 = 𝑆𝑁)

- - Scout bee phase - -
(20) if trial

𝑖
> LIMIT then

(21) Replace 𝑥
𝑖
with a new random solution V

𝑖

(22) end if
(23) Memorize the current optimal solution
(24) cycle = cycle + 1
(25) end while (cycle = MAXcycles)

Algorithm 1: The pseudocode of ABC algorithm.

the amounts and the positions of food sources with onlooker
bees. An onlooker bee evaluates all food sources from
employed bees and selects a good one to update the new
solution based on the probability calculated with the roulette
wheel selection scheme in

𝑝
𝑖
=

fit
𝑖

∑
𝑆𝑁

𝑖=1
fit
𝑖

, (5)

where fit
𝑖
is the fitness value of the solution 𝑖.

(4) The Scout Bee Phase. If the food source 𝑥
𝑖
cannot be

further updated through a predetermined number of trials
LIMIT, the employed bee is converted to scout bee, which
abandons the old food source and searches the new one using
(1).

Among the operation procedure, there are some draw-
backs in the ABC algorithm. Firstly, due to the randomness
of the initialization equation (1), the diversity of initial pop-
ulation may be limited, which would affect the convergence
efficiency. Secondly, in the phases of employed bee and
onlooker bee, the new solution is searched out around the
current solution according to (3) by moving the current
solution near to or away from another random solution of
the population. However, the generation process does not

consider the current optimal solution as a guidance of the
search. So the search strategy is considered to have good
exploration but poor exploitation capacity [21]. To overcome
these drawbacks, an enhanced ABC algorithm is proposed in
Section 3.1 in detail.

2.2. Support Vector Machine (SVM). The SVM classifier is
briefly described as follows. Given the training set 𝑇 =
{(𝑥
1
, 𝑦
1
), . . . , (𝑥

𝑙
, 𝑦
𝑙
)}, where 𝑥

𝑖
∈ 𝑅
𝑛 and 𝑦

𝑖
∈ {−1, 1},

𝑖 = 1, . . . , 𝑙, the goal is to find a separating hyperplane and
classify the training data into two categories accurately based
on the principle of margin maximization [28]. The following
optimization problem is constructed:

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖
2
+ 𝐶

𝑙

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
((𝑤 ⋅ 𝜙 (𝑥

𝑖
)) + 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

(6)

where 𝑤 and 𝑏 are the normal vector and the offset of the
separating hyperplane, respectively; 𝐶 > 0 is the penalty
parameter of error term 𝜉; 𝜙(⋅) is the mapping function
that makes sample 𝑥

𝑖
mapped onto a high-dimension space.



4 Mathematical Problems in Engineering

Equation (6) can be translated to the following Lagrange dual
problem:

min
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(7)

The Lagrange multipliers 𝛼
𝑖
∈ (0, 𝐶) are obtained from (7),

and thenwe can construct the classification decision function
𝑓(𝑥) as follows:

𝑓 (𝑥) = sign(
𝑙

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
(𝜙 (𝑥
𝑖
) ⋅ 𝜙 (𝑥)) + 𝑏) . (8)

Generally, 𝐾(𝑥
𝑖
, 𝑥) = (𝜙(𝑥

𝑖
) ⋅ 𝜙(𝑥)) is defined as the

kernel function. This paper mainly discusses the Gaussian
kernel function because the Gaussian kernel can approximate
most kernel functions if the kernel parameter is chosen
appropriately [29]. Its form is expressed as follows:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp (−𝛾 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩

2

) , (9)

where 𝛾 is the kernel parameter.
The parameters of SVM with the Gaussian kernel func-

tion refer to the penalty parameter 𝐶 and the kernel
parameter 𝛾, which should be optimized by the user. The
optimal SVM parameters have important influence on the
classification performance.

3. Methodology

In this section, the enhanced artificial bee colony-based
support vector machine (EABC-SVM) classifier is proposed,
which can effectively improve the classification accuracy
by feature selection and parameters optimization for SVM
simultaneously.

3.1. Enhanced Artificial Bee Colony. To solve the above
drawbacks of the ABC algorithm, two enhanced strategies are
introduced as follows.

(1) The Cat Chaotic Mapping Based Initialization. Similar to
other intelligent algorithms, the initialized population plays
an important role in convergence to the global optimal solu-
tion of the ABC algorithm. As one of the useful initialization
techniques, the chaotic mapping method can generate the
random sequence with the ergodicity and nonperiodicity.
Currently, the chaotic maps mainly include the Logistic
mapping function, the Tent mapping function, and the Cat
mapping function. According to the analysis on chaotic char-
acteristics of the mapping functions [30], the Cat mapping
function has better ergodic uniformity and does not easily fall
into theminor cycle comparedwith othermapping functions.
So this paper will employ the Cat mapping function to

Global optimal 
solution

x2

Xi
Vi Xk1 Xk2

x1

Xbest

Figure 1: The principle of the current optimum based search.

initialize the population.The Cat mapping function is shown
as

𝑧
𝑖+1
= (𝑧
𝑖
+ 𝑦
𝑖
)mod 1

𝑦
𝑖+1
= (𝑧
𝑖
+ 2𝑦
𝑖
)mod 1,

(10)

where 𝑖 = 0, 1, 2, . . . , 𝑙, 𝑙 is the iteration number of the Cat
chaotic sequence, 𝑧

𝑖
, 𝑦
𝑖
∈ (0, 1), and mod is the modulus

operator. When 𝑧
0
∈ (0.25, 0.5, 0.75), 𝑦

0
∉ (0.25, 0.5, 0.75),

and vice versa. And then the new initialized equation of
population is expressed as

𝑥
𝑖,𝑗
= 𝑥min,𝑗 + 𝑦𝑖,𝑗 (𝑥max,𝑗 − 𝑥min,𝑗) . (11)

(2)TheCurrentOptimumBased Search Equations.To improve
the search efficiency, many studies have been conducted to
modify the search equation, most of which introduced the
current optimal solution to search process [21–23]. However,
since the guidance of the current optimal solution, the
search process may cause an “oscillation” phenomenon [24].
Therefore, to overcome the defect of the above method,
we introduce two search equations for employed bees and
onlooker bees, respectively, in (12) and (13).The equations can
take full advantage of the current optimal solution and the
random solutions of population based on the characteristics
of different search phases:

V
𝑖,𝑗
= 𝑥
𝑖,𝑗
+ 2 ⋅ rand (0, 1) ⋅ (𝑥best,𝑗 − 𝑥𝑖,𝑗) , (12)

V
𝑖,𝑗
= 𝑥
𝑖,𝑗
+ 𝜑
𝑖,𝑗
(𝑥
𝑘1,𝑗
− 𝑥
𝑘2,𝑗
) , (13)

where 𝑥best,𝑗 is the current optimal solution, the indices 𝑘1
and 𝑘2 are random integers chosen from {1, 2, . . . , 𝑆𝑁} that
are different from the index 𝑖, and 𝜑

𝑖,𝑗
is a random number in

[−1, 1].
The principle of the current optimum based search is

shown in Figure 1. In the employed bee phase, each employed
bee can find out a better solution around the current optimal
solution 𝑥best with (12). That is, all employed bees will move
toward the space centered on 𝑥best, as the dotted circle in
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C 𝛾 f1 f2
. . . fN

Penalty parameter C ∈ [2−5, 210]

Gaussian kernel parameter 𝛾 ∈ [2−10 , 25]

Features selected probability fi ∈ [0, 1], fi > 0.5, feature

i is selected fi ≤ 0.5, feature i is not selected; and

Figure 2: Optimization parameters.

Figure 1. In the onlooker bee phase, two different current
solutions, 𝑥

𝑘1
and 𝑥

𝑘2
, are randomly selected and must be

located in the dotted circle because they come from the
employed bees. In this way, the onlooker bees can complete
the search of the global optimal solution in a fairly small
solution space with (13).Therefore, the different foraging pro-
cesses of employed bees and onlooker bees can be simulated
well with the two search equations. As a result, employed
bees can implement the directional search with the guidance
of current optimal solution, and onlooker bees will further
complete thewide range search in the confined solution space
provided by employed bees. A detailed convergence analysis
of the EABC algorithm based on the Markov chain theory is
presented in the Appendix.

3.2. EABC-SVM Classifier

3.2.1. Classifier Initialization. The classifier initialization
involves two parts: the optimization parameters and the
fitness function. The optimization parameters are expressed
as the combination of SVM parameters (𝐶, 𝛾) with the
Gaussian kernel function and the selection probability on
each feature, as shown in Figure 2.

The fitness function is used to evaluate the selected
feature subsets and SVM parameters. Two factors that are
usually considered include the classification accuracy and
the number of selected features [8]. The fitness function is
defined as (14). When the classification accuracy is high and
the number of selected features is small, the fitness value will
be large:

fit = 𝑤 ⋅ Acc + (1 − 𝑤) ⋅ (1 +
𝑛𝑓

∑

𝑖=1

𝐹
𝑖
) . (14)

In (14), 𝑤 is a predefined weight, Acc is the classification
accuracy, and 𝑛

𝑓
is the total number of features; “𝐹

𝑖
= 1”

represents that feature 𝑖 is selected while “𝐹
𝑖
= 0” represents

that feature 𝑖 is not selected. The weight 𝑤 can be adjusted to
balance between classification accuracy and feature selection.
In general, 𝑤 can be chosen from 0.7 to 0.9 according to the
different datasets.

3.2.2. Classifier Architecture. The architecture of the pro-
posed EABC-SVM classifier is shown in Figure 3. The main
implemented steps can be described as follows.

Current 
optimum based 

search
Chaotic mapping 

initialization

Parameters 
optimization

Feature 
selection

Dataset

EABC

SVM
Feature 
subset

Training set

Testing set Output 
classifier

Fitness 
function

accuracy

Classification 
accuracy

n-fold CV 

Figure 3: The architecture of proposed EABC-SVM system.

Step 1 (preparing the dataset). The feature dataset discards
the feature elements with the selected probability of “𝑓

𝑖
<

0.5” and becomes the actually used feature subset. And then
the feature subset is divided into the training set and the
testing set. Meanwhile, the training set is used to train the
SVMmodel by 𝑛-fold cross validation (CV).

Step 2 (training the classifier). The SVM classifier is trained
with the training set and the initialized parameters (𝐶, 𝛾).The
optimal classifier parameters and feature subset are evaluated
with the fitness function.

Step 3 (testing the classifier). The testing set is used to
verify the trained SVM classifier and feature subset for
their performance of classification. Finally, the output SVM
classifier and the regulation of feature selection are obtained.

4. Experimental Results and Analysis

The numerical experiments were performed in a PC with
Intel Pentium (R) G630, 2.7 GHz CPU, 2G RAM, 32-bit Win-
dows 7 operating systems. The development environment is
MATLAB R2010a. The simulation toolbox of SVM is Libsvm
[31]. In the experiment, the SVM classifier with the Gaussian
kernel function was used, in which the searching range of
parameter 𝐶 is [2−5, 210] and that of parameter 𝛾 is [2−10, 25].

4.1. UCI Datasets. To examine the capability of the proposed
EABC-SVM, we used the UCI benchmark datasets [32]
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for classification and compare the results with the original
ABC and other four ABC variants including GABC [21],
MABC [22], NABC [19], and SDABC [20]. For the ABC,
GABC, MABC, NABC, SDABC, and EABC algorithms, the
parameters were set as follows: size of employed bee 𝑆𝑁 =
50, size of onlooker bee 𝑆𝑁 = 50, maximum number of
iterations MAXcycles = 30, and control parameters LIMIT =
10. For the GABC algorithm, 𝐶 = 1.5; for the MABC
algorithm, 𝐾 = 300. The experiment adopted six real world
datasets: Breast Cancer Wisconsin (WDBC), Ionosphere,
Musk1, Sonar, Vehicle, and Wine. Their number of classes,
number of instances, and number of features (dimensions)
are shown in Table 1.

For the above six different datasets, the range of each
feature value was scaled to the range of [−1, +1]. In the
experiment, the 10-fold cross validation method was used
to divide the dataset into the training set and the testing
set. Each experiment was run 20 times and then the average
accuracy was taken.

Table 2 shows the results of optimal accuracy (Opt Acc),
average accuracy (Ave Acc), standard deviation of accuracy
(Acc SD), 𝑝 value for 𝑡-test, and selected feature dimensions
(average ± standard deviation) from the experiment of each
dataset with the comparison of ABC-SVM and EABC-SVM.
The EABC-SVM method yields the higher classification
accuracy in six datasets, especially in Musk1 and Vehicle.
Meanwhile, the standard deviation of accuracy of EABC-
SVM method is smaller than that of ABC-SVM method in
each dataset, which means the EABC-SVM is more stable.
Moreover, the independent sample 𝑡-test was implemented
to verify whether the difference is significant or not.Through
the 𝑝 value for 𝑡-test, the proposed EABC-SVMmethod out-
performs ABC-SVM for six datasets under 95% confidence
levels. In addition, the EABC-SVM method can select fewer
features with smaller standard deviation than the ABC-SVM.
Due to fewer features and higher accuracy, EABC-SVM is
capable of selectingmore appropriate features with the global
search.

In order to illustrate convergence of EABC-SVM, the
convergence curves are showed in Figure 4. From the figure,
we see that EABC-SVM can reach optimal solution with
fewer iterations thanABC in six datasets.Meanwhile, for each
dataset, the initial solution in EABC-SVM is superior to that
in ABC-SVM, which further verifies the ergodicity of the Cat
chaotic mapping function.

Tables 3 and 4 show the experimental comparisons
including the classification accuracy and the selected feature
dimensions (average ± standard deviation) of our proposed
EABC-SVM with other ABC variants-SVM. From Table 3,
we can find that EABC-SVM yields higher classification
accuracy in 6 datasets than other four ABC variants-SVM.
For the feature selection, as shown in Table 4, EABC-SVM
can produce a moderate-sized feature subset, while NABC-
SVM has fewer features in five datasets. Thus, the proposed
method can perform better feature selection with high classi-
fication accuracy, which is suitable for the redundant feature
reduction and classification application, such as the image-
based dataset. In particular, when the redundant dimensions

Table 1: UCI datasets.

Number Dataset Classes Instances Dimensions
1 WDBC 2 569 30
2 Ionosphere 2 351 34
3 Musk1 2 476 166
4 Sonar 2 208 60
5 Vehicle 4 846 18
6 Wine 3 178 13

of feature vectors are very large, the reduced effect is more
apparent and the classification accuracy would be improved
greatly.

4.2. Image-Based Conveyor Belt Fault Dataset. In this section,
we use EABC-SVM to implement feature selection and
parameters optimization for SVM, and then the fault detec-
tion of the conveyor belt is used for empirical analysis. Firstly,
the visualmonitoring system of conveyor belt was established
to acquire the image-based belt fault signal and create a fault
feature dataset. The schematic diagram of monitoring system
is shown as in Figure 5. A series of CCD cameras and light
sources were installed at the bottom of the conveyor belt for
image acquisition, and then the images were transmitted to
the industrial computer for online fault detection. According
to the failure analysis of conveyor belt in [1], the fault dataset
is classified into four different types, which include normal,
rope fracture, scratches, and tear as shown in Figure 6.

The dataset comprises 180 gray belt images with size of
640 × 480 and each class has 45 images. Due to the irregular
shape of the scratches or tear, we extracted the gray histogram
features and texture features as the basis of fault detection.
Figure 7 illustrates the flowchart of image preprocessing,
feature extraction, and analysis. First, the belt image was
enhanced with the Gaussian filter, and then the belt fault
features were extracted. The details are shown as follows.

(i) Gray Histogram. The image in the tearing part of
belt has a much lower gray value than that in
the background. So we chose the first 30 grayscale
histogram values as features. Figure 8 shows the
grayscale histogram for each image of Figure 6. From
Figure 8, we can find that the first 30 grayscale values
have obvious difference corresponding to the different
fault images.

(ii) Texture Features. As a good texture descriptor, gray
level cooccurrence matrix (GLCM) can reflect the
grayscale difference of the direction and adjacent
interval effectively. As it is described in [33], the
GLCM in this paper was calculated in four different
directions of 0∘, 45∘, 90∘, and 135∘ and the interpixel
distance 𝑑 = 4 to improve the computational effi-
ciency. The corresponding energy, entropy, contrast,
and correlation were then selected to describe the belt
texture.

On the above feature extraction process, the size of feature
vector is 30 + 16 = 46. Next, the EABC-SVM method
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Table 2: Experimental results for EABC-SVM and ABC-SVMmethod.

Dataset Method Opt Acc Ave Acc Acc SD 𝑝 value for 𝑡-test∗ Selected dimensions

WDBC ABC-SVM 96.13 94.57 1.05
<0.001 13.70 ± 1.73

EABC-SVM 98.24 97.25 0.71 12.15 ± 1.42

Ionosphere ABC-SVM 95.44 93.93 1.24
<0.001 14.95 ± 1.80

EABC-SVM 96.30 95.63 0.38 12.55 ± 0.86

Musk1 ABC-SVM 92.65 87.20 2.98
<0.001 83.40 ± 3.17

EABC-SVM 95.59 93.04 1.70 76.30 ± 3.10

Sonar ABC-SVM 89.90 87.86 1.20
<0.001 29.00 ± 2.73

EABC-SVM 93.27 91.54 0.78 26.80 ± 1.69

Vehicle ABC-SVM 80.26 77.06 2.23
<0.001 12.00 ± 1.52

EABC-SVM 85.58 85.30 0.50 10.50 ± 0.81

Wine ABC-SVM 98.88 95.86 1.73
<0.001 6.20 ± 1.08

EABC-SVM 100 99.07 1.04 5.95 ± 0.59
∗Confidence level: 95%.

Table 3: Classification accuracy of the proposed EABC-SVM and other ABC variants-SVM.

Dataset Methods
EABC-SVM GABC-SVM MABC-SVM NABC-SVM SDABC-SVM

WDBC 97.25 ± 0.71 94.92 ± 2.06 96.09 ± 0.94 96.22 ± 0.97 96.01 ± 1.06
Ionosphere 95.63 ± 0.38 94.27 ± 1.43 94.52 ± 0.48 94.47 ± 2.15 94.00 ± 1.60
Musk1 93.04 ± 1.70 90.18 ± 2.58 92.27 ± 1.82 91.35 ± 1.78 87.69 ± 2.15
Sonar 91.54 ± 0.78 87.98 ± 2.03 88.70 ± 2.01 88.25 ± 2.40 88.10 ± 0.92
Vehicle 85.30 ± 0.50 78.34 ± 2.55 79.41 ± 2.74 81.53 ± 2.36 78.84 ± 2.23
Wine 99.07 ± 1.04 98.74 ± 0.59 98.79 ± 0.67 98.57 ± 0.70 98.55 ± 0.99

Table 4: Selected feature dimensions of the proposed EABC-SVM and other ABC variants-SVM.

Dataset Methods
EABC-SVM GABC-SVM MABC-SVM NABC-SVM SDABC-SVM

WDBC 12.15 ± 1.42 10.10 ± 2.34 10.10 ± 1.58 8.70 ± 2.00 19.30 ± 2.66
Ionosphere 12.55 ± 0.86 14.20 ± 2.36 13.75 ± 3.75 13.95 ± 3.00 12.40 ± 1.98
Musk1 76.30 ± 3.10 78.20 ± 3.76 79.60 ± 4.03 73.5 ± 4.41 89.45 ± 4.42
Sonar 26.80 ± 1.69 27.05 ± 2.25 26.85 ± 2.73 25.05 ± 2.65 35.20 ± 2.20
Vehicle 10.50 ± 0.81 11.80 ± 1.50 11.90 ± 1.61 10.00 ± 1.22 13.35 ± 1.68
Wine 5.95 ± 0.59 5.00 ± 1.14 4.70 ± 1.05 4.35 ± 0.65 8.20 ± 1.21

was employed to reduce the number of features and detect
the fault types. The 180 samples were divided into training
set (25 × 4 = 100) and testing set (20 × 4 = 80) ran-
domly. Moreover, the 5-fold cross validation method was
used in the training phase. Table 5 gives the final results
of EABC-SVM and another ABC-related method about
the feature selection and classification accuracy. Results in
Table 5 show that EABC-SVM can achieve high classifi-
cation accuracy of 95.0%, while the MABC-SVM yields
the same classification accuracy. Moreover, the proposed
EABC-SVM selected merely 16 features and the obtained
features only cost 34.78% (16/46) of the memory needed
for the original 46 features. The selected array of feature
variables includes 4, 8, 13, 15, 21, 22, 25, 32, 34, 37, 38,
41, 43, 44, 45, and 46, in which 7 features belong to

Table 5: Fault detection results of EABC-SVM and other ABC-
related methods.

Methods 𝐶 𝛾
Selected

dimensions Accuracy (%)

ABC-SVM 540.3200 2.1327 21 92.50
GABC-SVM 515.1092 3.6465 17 93.75
MABC-SSVM 544.7164 2.4870 23 95.00
NABC-SVM 805.7588 1.8308 12 91.25
SDABC-SVM 855.1585 2.4785 12 91.25
EABC-SVM 267.3419 1.1891 16 95.00

gray histogram and 9 features belong to GLCM texture
features.
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Figure 4: Convergence curves for ABC-SVM and EABC-SVMmethod.
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Figure 5: Schematic diagram of monitoring system.
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Figure 6: Fault types of conveyor belt.
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Figure 7: Flowchart of feature extraction and analysis.

The confusion matrix of fault detection for EABC-SVM
is shown in Figure 9. Each row represents the predicted
class (output), and each column represents the actual class

(target). The number in 𝑖th row and 𝑗th column represents
the rate of samples whose target is the 𝑖th class that is
classified as 𝑗th class. From Figure 9, we find that the faults
of rope fracture and tear can be detected to be completely
correct as 100% accuracy, while other two types between
normal and scratches would be easily misclassified. Because
of nonuniform illumination and dusts in real environment,
the detection results of these two classes are influenced at
different levels. So how the two classes can be recognized
effectively remains one of our future tasks.
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Figure 8: Grayscale histogram for each image of Figure 6.

5. Conclusions

In this paper, we proposed an enhanced ABC (EABC)
algorithm to search for the optimal feature subset and
parameters of SVM simultaneously.The experimental results
demonstrate that the proposed EABC-SVM approach has
better classification accuracy and convergence performance
than ABC-SVM and other four ABC variants-SVM on six
UCI datasets. Furthermore, the EABC-SVM approach was
applied to the image-based fault detection for the conveyor
belt. Through the combination of gray histogram and GLCM
texture features, the EABC-SVM can achieve a significant
classification accuracy of 95% and reduce the amount of
feature storage about 65%.

The proposed EABC algorithm has the following char-
acteristics: (1) the algorithm possesses two enhanced strate-
gies including the Cat chaotic mapping initialization and
current optimum based search equations to improve the
convergence speed and global optimization performance; (2)
the algorithm is employed to optimize the feature subset
and parameters for SVM simultaneously, which can improve
overall classification accuracy and reduce the computation
complexity.
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Figure 9: Confusion matrix of EABC-SVM for fault detection.

Further research plan is to (1) reduce the belt image noise
and optimize fault features to increase the detection accu-
racy and robustness and (2) take some other classification
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problems with a high number of feature variables to test and
extend the proposed EABC-SVM approach.

Appendix

Convergence Analysis of the EABC Algorithm

According to the enhanced strategies described in the paper,
the convergence of the EABC algorithm will be analyzed
based on the Markov chain theory. Herein, we will theo-
retically prove that the EABC algorithm can converge in
probability to the global optimum.

Definition A.1 (convergence in probability [34]). Let the set
{𝑋
𝑡
, 𝑡 > 0, 𝑡 = 1, 2, . . .} be a population sequence generated

with a population-based stochastic algorithm; the stochastic
sequence {𝑋

𝑡
} weakly converges in probability to the global

optimum, if and only if

lim
𝑡→∞
𝑝 {𝑋
𝑡
∩ 𝑋
∗
̸= Φ} = 1, (A.1)

where 𝑋∗ is the set of the global optima of an optimiza-
tion problem. Convergence in probability of a population
sequence {𝑋

𝑡
} means that the probability of the individual

population from {𝑋
𝑡
} converging to the global optimum

approximates to 1 with the increase of iteration number 𝑡.The
convergence of EABC algorithm is proved in Lemma A.2 as
follows.

Lemma A.2. Suppose that {𝑋
𝑡
, 𝑡 > 0, 𝑡 = 1, 2, . . .} is the

population sequence generated with the EABC algorithm; then,

(i) the set {𝑋
𝑡
, 𝑡 > 0, 𝑡 = 1, 2, . . .} is a finite homogeneous

Markov chain on the state space;
(ii) the set {𝑋

𝑡
, 𝑡 > 0, 𝑡 = 1, 2, . . .} converges in probability

to the global optimum.

Proof. (i) Let 𝑋
𝑘
= {𝑥

𝑘

1
, 𝑥
𝑘

2
, . . . , 𝑥

𝑘

𝑆𝑁
} denote the popula-

tion (i.e., food source position) generated with the EABC
algorithm in the 𝑘th iteration, and 𝑆𝑁 is the number of
population. The dimension of 𝑥

𝑖
is usually finite in the

optimization problem, and its value is set to 𝑚. So the state
space of {𝑋

𝑡
, 𝑡 > 0, 𝑡 = 1, 2, . . .} is finite, and its size is𝑚 × 𝑆𝑁

in each iteration.The search equations of new food sources in
the EABC algorithm are independent of the iteration time 𝑡
and dependent only on the current state𝑋

𝑘
(𝑥best,𝑥𝑘1, or𝑥𝑘2)

that is based on (12) and (13). Thus, the stochastic sequence
{𝑋
𝑡
, 𝑡 > 0, 𝑡 = 1, 2, . . .} is a finite homogeneous Markov

chain.
(ii) Since the best food source would be retained in each

iteration of the EABC algorithm, the optimal fitness sequence
fit(𝑋
𝑡
) = max fit(𝑥𝑡

𝑖
), 𝑖 = 1, 2, . . . , 𝑆𝑁, is nondecreasing, and

the property is shown as follows:

fit (𝑋
𝑡+1
) ≥ fit (𝑋

𝑡
) , ∀𝑡 > 0, 𝑡 ∈ {1, 2, . . .} . (A.2)

Let 𝑋∗ denote the set of the global optima, and then the
sequence of optimal population is 𝐼 = {𝑖 | 𝑥𝑡

𝑖
∩ 𝑋
∗
̸= Φ}.

Let 𝑝
𝑖𝑗
(𝑡) = 𝑝(𝑋

𝑖

𝑡
→ 𝑋

𝑗

𝑡+1
) denote the transition

probability from the state 𝑖 to 𝑗 in a step iteration,𝑝
𝑖
(𝑡) denote

the probability of 𝑋
𝑡
in the state 𝑖, and then the probability

of 𝑋
𝑡+1

in the state 𝑗 ∉ 𝐼 based on Markov chain theory is
𝑝
𝑡+1
= ∑
𝑖∈𝐼
∑
𝑗∉𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡) + ∑

𝑖∉𝐼
∑
𝑗∉𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡).

Define 𝑝
𝑡
= ∑

𝑖∉𝐼
𝑝
𝑖
(𝑡) = ∑

𝑖∉𝐼
∑
𝑗∈𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡) +

∑
𝑖∉𝐼
∑
𝑗∉𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡), and then 𝑝

𝑡+1
=

∑
𝑖∈𝐼
∑
𝑗∉𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡)+𝑝

𝑡
− ∑
𝑖∉𝐼
∑
𝑗∈𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡).

Suppose 𝑖 ∈ 𝐼, 𝑗 ∉ 𝐼, and then fit(𝑋𝑗
𝑡+1
) < fit(𝑋𝑖

𝑡
); this

contradicts the property in (A.2).
In this case, ∑

𝑖∈𝐼
∑
𝑗∉𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡) = 0; that is, 𝑝

𝑡+1
= 𝑝
𝑡
−

∑
𝑖∉𝐼
∑
𝑗∈𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡).

For 𝑖 ∉ 𝐼, 𝑗 ∈ 𝐼, then ∑
𝑖∉𝐼
∑
𝑗∈𝐼
𝑝
𝑖
(𝑡)𝑝
𝑖𝑗
(𝑡) ≥ 0, so 0 ≤

𝑝
𝑡+1
≤ 𝑝
𝑡
; that is, lim

𝑡→∞
𝑝
𝑡
= 0.

We can get lim
𝑡→∞
𝑝{𝑋
𝑡
∩ 𝑋
∗

̸= Φ} =

lim
𝑡→∞

∑
𝑖∈𝐼
𝑝
𝑖
(𝑡) = 1− lim

𝑡→∞
∑
𝑖∉𝐼
𝑝
𝑖
(𝑡) = 1− lim

𝑡→∞
𝑝
𝑡
=

1.
From (A.2), the EABC algorithm converges in probability

to the global optimum.
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