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The stability and spatiotemporal dynamics of a diffusive nutrient-algae model are investigated mathematically and numerically.
Mathematical theoretical studies have considered the positivity and boundedness of the solution and the existence, local stability,
and global stability of equilibria. Turing instability has also been studied. Furthermore, a series of numerical simulations was
performed and a complex Turing pattern found. These results indicate that the nutrient input rate has an important influence
on the density and spatial distribution of algae populations. This may help us to obtain a better understanding of the interactions
of nutrient and algae and to investigate plankton dynamics in aquatic ecosystems.

1. Introduction

Diffusive processes are often used to represent the formation
of spatial patterns in biological systems [1]. Pattern formation
in nonlinear complex systems is one of the central prob-
lems of the natural, social, and technological sciences. The
occurrence of multiple steady states and transitions from
one to another after critical fluctuations, the phenomena of
excitability, oscillations, and waves, and the emergence of
macroscopic order from microscopic interactions in various
nonlinear nonequilibrium systems in nature and society
have been the subject of many theoretical and experimental
studies [2, 3]. Plankton plays an important role in ocean
ecology and climate because of their participation in the
global carbon cycle at the base of the food chain [4]. Now,
using the reaction-diffusion equation and patterns to study
the spatiotemporal dynamics of the planktonic ecosystem has
aroused the interest of many researchers.

In recent years, the relationships among nutrients, phy-
toplankton, zooplankton, and fish have become the focus
of researchers [5–8], including the control of phytoplankton
[9, 10], and dynamic analysis of the relationships [11, 12].

Numerous theoretical ecologists have built many models to
reveal the inner relationships among these populations and
to investigate their dynamics. Drago et al. [13] presented a
three-dimensional numericalmodel to analyze the dispersion
of suspended solids and conservative pollutants released into
ambient water and their effect on trophic behavior. Luo [14]
derived and analyzed a mathematical model for interactions
between phytoplankton and zooplankton in a periodic envi-
ronment, where the growth rate and the intrinsic carrying
capacity of phytoplankton are changing with respect to time
and nutrient concentration. James et al. [15] built a model
of the evolution of phytoplankton, zooplankton, and fish to
investigate the mechanisms that trigger plankton blooms.
Alvarez-Vázquez et al. [16] presented a mathematical model
involving nutrients, phytoplankton, zooplankton, organic
detritus, and dissolved oxygen to simulate eutrophication
processes in aquatic media.

The Sanyang wetland is located in Wenzhou, in a sub-
tropical region. It covers an area of 13 square kilometers and
contains many streams. The ratio of water area to land in
the Sanyang wetland is as high as 1.1 : 1. With rapid economic
development in Wenzhou, most rivers and wetlands are in
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a state of eutrophication. Because of eutrophication, nuisance
cyanobacterial blooms have taken place several times in the
Sanyang wetland in recent years.

Recently, more and more researchers have investigated
the dynamics of the planktonic ecosystem bymeans of spatial
patterns [17–24]. Self-organizing spatial patterns appeal to the
theoretical biologist because of the pioneeringwork of Turing
[25]. Many self-organizing spatial patterns have been found
in their research, including patchiness, bands, and spiral
waves. Wang et al. [26] used a reaction-diffusion-advection
model of algae andmussels to demonstrate that youngmussel
beds on soft sediments can display large-scale regular spatial
patterns and banded patterns. Their work is significant to
study spatial patterns. Serizawa et al. [27] presented a min-
imal nutrient-phytoplankton model that can exhibit various
types of spatial patterns, including patchiness. Although the
model is simple, their work is still of interest. Liu et al.
[28] studied a spatially extended nutrient-phytoplankton-
zooplankton-fish reaction-diffusion system and found spiral
waves and spatial chaos patterns. Their work is important
to plankton ecological system. van de Koppel et al. [29]
proposed a simple spatial model of algae and mussels and
found simulated spatial patterns which are consistent with
previous observations. Their works vigorously promote the
study of emergent spatial patterning at larger spatial scales.

The nutrients in the Sanyang wetland comes mainly from
sewage output by nearby residents and wastewater discharges
from industries and businesses. Therefore, the input rate of
nutrients flowing into the Sanyang wetland can be assumed
constant. Many researchers have used 𝑏𝑥 to describe natural
nutrient removal [27, 30, 31]. Therefore, the term 𝑏𝑢 has
been used here to describe the natural removal of nutrients
(mainly in the formof sedimentation) in the Sanyangwetland
because of various complex long-term factors. However, this
term has another important meaning in the mathematical
model. Without this factor, the nutrient concentration will
increase without limit when the algae are completely extinct.
Wenzhou belongs to a subtropical monsoon climate zone and
is perennially windy.Therefore, the effects of wind and waves
on nutrients in the Sanyang wetland must be considered.
Because of wind and wave action, a positive nutrient input
is released into the water from bottom sediments. Ecologists
usually approximate this input by the following sigmoid
function [32]:

𝑓 (𝑥) =
𝑥
2

1 + 𝑥2
. (1)

The Holling 𝐼 functional response function is suitable
for algae, cells, and lower organisms. Many studies have
shown that algae density in the Sanyang wetland is positively
correlated with nutrient concentration within certain limits.
Hence, in this paper, the Holling 𝐼 response function has
been used to describe absorption of nutrients by algae.
In the Sanyang wetland, nutrients are limited, and density
restrictions exist in the algae population. Therefore, it is
suitable to use a logistic growth function to describe algae
population growth in the Sanyang wetland.

Based on this discussion, the following dynamic reaction-
diffusion model has been proposed for nutrients and algae in
the Sanyang wetland:

𝜕𝑢

𝜕𝑡
= 𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V + 𝑑

1
Δ𝑢,

𝜕V
𝜕𝑡

= 𝑟V (1 −
V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V + 𝑑

2
ΔV,

(2)

where 𝑢 and V denote the nutrient concentration and the
algae density. Research has shown that phosphorus is limited
and nitrogen is abundant in this wetland. Therefore, the
main factor affecting algae population growth is phosphorus,
and, in this paper, the nutrient has been assumed to be
phosphorus. Let 𝐼 be the input rate of nutrients flowing
into the water, 𝑎 the maximum growth rate of the algae
population, 𝑒 the efficiency of conversion, 𝑟 the intrinsic
growth rate, 𝑘 the carrying capacity of the algae population,
𝑚 the death rate of the algae population, and 𝑑

1
and 𝑑

2

the diffusion coefficients of nutrients and algae, respectively.
Δ = 𝜕

2
/𝜕𝑥
2
+ 𝜕
2
/𝜕𝑦
2 is the usual Laplacian operator in two-

dimensional space, and 𝐼, 𝑏, 𝑎, 𝑒, 𝑟, 𝑘, and 𝑚 are positive
constants.

Model (2) will be studied under the following nonzero
initial conditions,

𝑢 (𝑥, 𝑦, 0) > 0, V (𝑥, 𝑦, 0) > 0,

(𝑥, 𝑦) ∈ Ω = [0, 𝐿𝑥] × [0, 𝐿𝑦] ,
(3)

and the following zero-flux boundary conditions,
𝜕𝑢

𝜕𝑛
=

𝜕V
𝜕𝑛

= 0, (𝑥, 𝑦) ∈ 𝜕Ω, (4)

where 𝐿𝑥 and 𝐿𝑦 are the size of the system in the 𝑥- and
𝑦-directions and 𝑛 is the outward unit normal vector of the
boundary 𝜕Ω, which is assumed to be smooth.

For the reaction-diffusion nutrient-algae system (2), the
reduced system is an ordinary differential equation of the
form

𝑑𝑢

𝑑𝑡
= 𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V,

𝑑V
𝑑𝑡

= 𝑟V (1 −
V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V.

(5)

Next, the ODE system (5) will be analyzed.

2. Dynamics Analysis of the Reduced
ODE System

2.1. Positivity and Boundedness of the Solutions

Theorem 1. Suppose that 𝑎𝑒𝐿 + 𝑟 −𝑚 > 0 (𝐿 = max{𝑢
(0)
, (𝐼 +

1)/𝑏}) holds; then all the solutions of system (5) with initial
conditions are positive and bounded for all 𝑡 ≥ 0.

Proof. From the first equation of system (5),

𝑑𝑢

𝑑𝑡
= 𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V ≥ −𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V. (6)

It follows that 𝑑𝑢/𝑑𝑡 ≥ (−𝑏 + 𝑢/(1 + 𝑢
2
) − 𝑎V)𝑢.
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Hence, 𝑢
(𝑡)

≥ 𝑢
(0)

exp∫𝑡
0
[−𝑏+𝑢

(𝑠)
/(1+(𝑢

(𝑠)
)
2
)−𝑎V(𝑠)]𝑑𝑠 >

0.
From the second equation of system (5), it can be

determined that

V (𝑡) = V
(0)

exp∫
𝑡

0

[𝑟 (1 −
V
(𝑠)

𝑘
) + 𝑎𝑒𝑢

(𝑠)
− 𝑚]𝑑𝑠 > 0,

𝑑𝑢

𝑑𝑡
= 𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V

≤ 𝐼 − 𝑏𝑢 +
𝑢
2

1 + 𝑢2
≤ 𝐼 + 1 − 𝑏𝑢,

(7)

leading to 𝑑𝑢/𝑑𝑡 ≤ 𝐼 + 1 − 𝑏𝑢.
Then,

𝑢
(𝑡)

≤
𝐼 + 1

𝑏
(𝑢
(0)

−
𝐼 + 1

𝑏
) 𝑒
−𝑏𝑡

≤ max {𝑢
(0)
,
𝐼 + 1

𝑏
} = 𝐿,

𝑑V
𝑑𝑡

= V [𝑟 (1 −
V
𝑘
) + 𝑎𝑒𝑢 − 𝑚] ≤ V [𝑟 (1 −

V
𝑘
) + 𝑎𝑒𝐿 − 𝑚]

= V (𝑎𝑒𝐿 + 𝑟 − 𝑚 −
𝑟

𝑘
V) .

(8)

If 𝑎𝑒𝐿 + 𝑟 − 𝑚 > 0, then, for 𝜀 > 0, there exists 𝑇(> 0) such
that, for any 𝑡 > 𝑇,

V
(𝑡)

≤
𝑘 (𝑎𝑒𝐿 + 𝑟 − 𝑚)

𝑟
+ 𝜀. (9)

Moreover, V(𝑡) = V
(0)

exp∫𝑡
0
[𝑟(1 − V

(𝑠)
/𝑘) + 𝑎𝑒𝑢

(𝑠)
− 𝑚]𝑑𝑠 is

continuous when 𝑡 ∈ [0, 𝑇].
This means that there exists 𝑀(> 0) such that V

(𝑡)
≤

𝑀 (𝑡 ∈ [0, 𝑇]).
Therefore, V

(𝑡)
≤ max{𝑘(𝑎𝑒𝐿+𝑟−𝑚)/𝑟+𝜀,𝑀}when 𝑡 ≥ 0,

and the proof is complete.

2.2. Existence of Equilibria

Theorem 2. System (5) has boundary equilibrium 𝐸
1
= (𝑢, 0)

(extinction of algae population).

Proof. If 𝐸
1
= (𝑢, 0) is the boundary equilibrium of (5), then

𝐼 − 𝑏𝑢 +
𝑢
2

1 + 𝑢
2
= 0 that is,

𝑏𝑢
3
− (𝐼 + 1) 𝑢

2
+ 𝑏𝑢 − 𝐼 = 0.

(10)

Assume the following function:

𝑓 (𝑢) = 𝑏𝑢
3
− (𝐼 + 1) 𝑢

2
+ 𝑏𝑢 − 𝐼. (11)

Obviously,

𝑓 (0) = −𝐼, lim
𝑢→+∞

𝑓 (𝑢) = +∞. (12)

It is easy to establish that the curve of function 𝑓(𝑢)

intersects the 𝑢-axis, and, therefore, the existence of the
boundary equilibrium is guaranteed, which completes the
proof.

Theorem3. System (5) has a unique interior equilibrium𝐸
∗
=

(𝑢
∗
, V∗) (coexistence of nutrients and algae) if 𝑎2𝑘𝑒−𝑟𝐼−𝑟 > 0

and 𝑎𝑘(𝑟 − 𝑚) + 𝑏𝑟 > 0.

Proof. If 𝐸∗ = (𝑢
∗
, V∗) is the interior equilibrium of (5), then

𝐼 − 𝑏𝑢
∗
+

𝑢
∗2

1 + 𝑢∗
2
− 𝑎𝑢
∗V∗ = 0,

𝑟V∗ (1 −
V∗

𝑘
) + 𝑎𝑒𝑢

∗V∗ − 𝑚V∗ = 0.

(13)

Consequently, 𝑢∗ is the positive root of the fourth-degree
equation:

𝑎
2
𝑘𝑒𝑢
∗4

+ [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟] 𝑢
∗3

+ (𝑎
2
𝑘𝑒 − 𝑟𝐼 − 𝑟) 𝑢

∗2

+ [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟] 𝑢
∗
− 𝑟𝐼 = 0,

V∗ =
𝑘

𝑟
(𝑎𝑒𝑢
∗
+ 𝑟 − 𝑚) .

(14)

Consider the following function:

ℎ (𝑥) = 𝑎
2
𝑘𝑒𝑥
4
+ [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟] 𝑥

3

+ (𝑎
2
𝑘𝑒 − 𝑟𝐼 − 𝑟) 𝑥

2
+ [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟] 𝑥 − 𝑟𝐼.

(15)

It is easy to establish that

ℎ

(𝑥) = 4𝑎

2
𝑘𝑒𝑥
3
+ 3 [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟] 𝑥

2

+ 2 (𝑎
2
𝑘𝑒 − 𝑟𝐼 − 𝑟) 𝑥 + [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟]

= [4𝑎
2
𝑘𝑒𝑥
2
+ 2 (𝑎

2
𝑘𝑒 − 𝑟𝐼 − 𝑟)] 𝑥

+ [𝑎𝑘 (𝑟 − 𝑚) + 𝑏𝑟] (3𝑥
2
+ 1) .

(16)

It is also easy to determine that ℎ(𝑥) > 0 (𝑥 > 0) if 𝑎2𝑘𝑒 −
𝑟𝐼 − 𝑟 > 0 and 𝑎𝑘(𝑟 − 𝑚) + 𝑏𝑟 > 0.

Obviously,

ℎ
(0)

= −𝑟𝐼, lim
𝑥→+∞

ℎ
(𝑥)

= +∞. (17)

It can easily be shown that the curve of function ℎ(𝑥)

intersects the 𝑥-axis only once. Hence, the existence and
uniqueness of the interior equilibrium is guaranteed, and this
completes the proof.

2.3. Local Stability of Equilibria

Theorem 4. The boundary equilibrium 𝐸
1
= (𝑢, 0) of system

(5) is locally asymptotically stable if

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2
< 0, 𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0. (18)
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The Jacobian matrix of system (5) is

𝐽 =
[
[
[

[

−𝑏 − 𝑎V +
2𝑢

(1 + 𝑢2)
2

−𝑎𝑢

𝑎𝑒V 𝑟 −
2𝑟

𝑘
V + 𝑎𝑒𝑢 − 𝑚

]
]
]

]

. (19)

The Jacobian matrix of system (5) at 𝐸
1
= (𝑢, 0) is

𝐽
(𝐸
1
)
=
[
[

[

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2

−𝑎𝑢

0 𝑎𝑒𝑢 + 𝑟 − 𝑚

]
]

]

. (20)

It is clear that the Jacobian matrix 𝐽
(𝐸
1
)
has two eigenvalues:

𝜆
1
= −𝑏 +

2𝑢

(1 + 𝑢
2
)
2
, 𝜆

2
= 𝑎𝑒𝑢 + 𝑟 − 𝑚. (21)

Hence, the equilibrium 𝐸
1
= (𝑢, 0) is locally asymptotically

stable if

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2
< 0, 𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0. (22)

Theorem 5. The interior equilibrium 𝐸
∗
= (𝑢
∗
, V∗) of system

(5) is locally asymptotically stable if −𝑏−𝑎V∗+2𝑢∗/(1+𝑢∗2)2 <
0.

Proof. The Jacobian matrix of system (5) at 𝐸∗ = (𝑢
∗
, V∗) is

𝐽
(𝐸
∗
)
= [

𝐽
11

𝐽
12

𝐽
21

𝐽
22

] =
[
[
[

[

−𝑏 − 𝑎V∗ +
2𝑢
∗

(1 + 𝑢∗
2
)
2

−𝑎𝑢
∗

𝑎𝑒V∗ −
𝑟

𝑘
V∗

]
]
]

]

.

(23)

Moreover,

det (𝜆𝐸 − 𝐽
(𝐸
∗
)
) = 𝜆
2
− tr (𝐽

(𝐸
∗
)
) 𝜆 + det (𝐽

(𝐸
∗
)
) , (24)

where tr(𝐽
(𝐸
∗
)
) = 𝑎

11
− (𝑟/𝑘)V∗, det(𝐽

(𝐸
∗
)
) = (𝑎

2
𝑒𝑢
∗
−

𝑎
11
(𝑟/𝑘))V∗, and 𝑎

11
= −𝑏 − 𝑎V∗ + 2𝑢

∗
/(1 + 𝑢

∗2
)
2.

It can be easily determined that tr(𝐽
(𝐸
∗
)
) < 0 and

det(𝐽
(𝐸
∗
)
) > 0 if 𝑎

11
< 0. This means that the two

eigenvalues of the Jacobian matrix 𝐽
(𝐸
∗
)
have a negative real

part. Therefore, the interior equilibrium 𝐸
∗

= (𝑢
∗
, V∗) is

locally asymptotically stable.

2.4. Global Stability of Equilibria

Theorem 6. Assuming that

𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0, −𝑏 +
√𝑢
2
+ 1 + 𝑢

2 (𝑢
2
+ 1)

< 0, (25)

then the boundary equilibrium 𝐸
1

= (𝑢, 0) of system (5) is
globally asymptotically stable.

Proof. Obviously, 𝑢 satisfies the equation 𝐼−𝑏𝑢+𝑢2/(1+𝑢2) =
0.

To prove the above statement, let us consider the follow-
ing Lyapunov function:

𝑉
(𝑢,V) = ∫

𝑢

𝑢

𝑒 − 𝑢

𝑒
𝑑𝑒 +

1

𝑒
∫

V

0

𝑑𝑓. (26)

It is easy to show that 𝑉
(𝑢,V) ≥ 0 for all 𝑡 ≥ 0.

Differentiating 𝑉
(𝑢,V) along the solutions of system (5),

𝑑𝑉
(𝑢,V)

𝑑𝑡
=

𝑢 − 𝑢

𝑢

𝑑𝑢

𝑑𝑡
+
1

𝑒

𝑑V
𝑑𝑡

=
𝑢 − 𝑢

𝑢
(𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V)

+
1

𝑒
[𝑟V (1 −

V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V]

=
𝑢 − 𝑢

𝑢
[−𝑏 (𝑢 − 𝑢) +

𝑢
2

1 + 𝑢2
−

𝑢
2

1 + 𝑢
2
− 𝑎𝑢V]

+
1

𝑒
[𝑟V (1 −

V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V]

=
(𝑢 − 𝑢)

2

𝑢
[−𝑏 +

1

1 + 𝑢
2

𝑢 + 𝑢

1 + 𝑢2
]

+
1

𝑒
[−

𝑟

𝑘
V2 + (𝑎𝑒𝑢 + 𝑟 − 𝑚) V] .

(27)

Assuming the following function,

ℎ (𝑢) =
1

1 + 𝑢
2

𝑢 + 𝑢

1 + 𝑢2
, (28)

then, ℎ(𝑢) = (1/(1 + 𝑢
2
))((1 − 𝑢

2
− 2𝑢𝑢)/(1 + 𝑢

2
)
2
).

Let ℎ(𝑢) = 0; then, 𝑢 = −𝑢 ± √1 + 𝑢
2.

Obviously, lim
𝑢→0

ℎ(𝑢) = 𝑢/(1 + 𝑢
2
), lim
𝑢→+∞

ℎ(𝑢) = 0.
Therefore, ℎ(𝑢) ≤ ℎ(−𝑢+√1 + 𝑢

2
) = (√𝑢

2
+ 1+𝑢)/2(𝑢

2
+

1).
Then

𝑑𝑉
(𝑢,V)

𝑑𝑡
≤

(𝑢 − 𝑢)
2

𝑢
[−𝑏 +

√𝑢
2
+ 1 + 𝑢

2 (𝑢
2
+ 1)

]

+
1

𝑒
[−

𝑟

𝑘
V2 + (𝑎𝑒𝑢 + 𝑟 − 𝑚) V] .

(29)

Obviously, if 𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0 and −𝑏 + (√𝑢
2
+ 1 + 𝑢)/2(𝑢

2
+

1) < 0, then 𝑑𝑉
(𝑢,V)/𝑑𝑡 < 0 strictly for all 𝑢, V > 0 except the

boundary equilibrium (𝑢, 0), where 𝑑𝑉
(𝑢,V)/𝑑𝑡 = 0.

Therefore, 𝑉
(𝑢,V) satisfies Lyapunov’s asymptotic stability

theorem, and the boundary equilibrium (𝑢, 0) of system (5) is
globally asymptotically stable. This completes the proof.

Remark 7. It is easy to verify that if condition (25) holds, then
condition (18) is true.
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Theorem 8. The positive equilibrium 𝐸
∗
= (𝑢
∗
, V∗) of system

(5) is globally asymptotically stable if −4𝐼(𝐼 + 1)𝑢
∗4

+ (1 − 4𝐼 −

8𝐼
2
)𝑢
∗2

− 4𝐼
2
< 0.

Proof. Obviously, (𝑢∗, V∗) satisfies the equations

𝐼 − 𝑏𝑢
∗
+

𝑢
∗2

1 + 𝑢∗
2
− 𝑎𝑢
∗V∗ = 0,

𝑟 (1 −
V∗

𝑘
) + 𝑎𝑒𝑢

∗
− 𝑚 = 0.

(30)

Now let us construct the following Lyapunov function:

𝑉
(𝑢,V) = 𝑢 − 𝑢

∗
− 𝑢
∗ ln 𝑢

𝑢∗
+
1

𝑒
(V − V∗ − V∗ ln V

V∗
) . (31)

Obviously, 𝑉
(𝑢,V) is continuous for all 𝑢, V > 0.

By simple computation,

𝜕𝑉

𝜕𝑢
= 1 −

𝑢
∗

𝑢
,

𝜕𝑉

𝜕V
=

1

𝑒
(1 −

V∗

V
) . (32)

This shows that the positive equilibrium (𝑢
∗
, V∗) is the

only extremum of the function 𝑉
(𝑢,V) in the first quadrant.

Obviously,

lim
𝑢→0

𝑉
(𝑢,V) = lim

V→0
𝑉
(𝑢,V) = lim

𝑢→+∞
𝑉
(𝑢,V) = lim

V→+∞
𝑉
(𝑢,V) = +∞.

(33)

Equations (32) and (33) show that the positive equilibrium
(𝑢
∗
, V∗) is the global minimum in the first quadrant.
Therefore, 𝑉

(𝑢,V) ≥ 𝑉
(𝑢
∗
,V∗) = 0 for all 𝑢, V > 0.

Differentiating 𝑉
(𝑢,V) along the solutions of model (5),

𝑑𝑉
(𝑢,V)

𝑑𝑡
= (1 −

𝑢
∗

𝑢
)
𝑑𝑢

𝑑𝑡
+
1

𝑒
(1 −

V∗

V
)
𝑑V
𝑑𝑡

=
𝑢 − 𝑢
∗

𝑢
(𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V)

+
1

𝑒
(V − V∗) [𝑟 (1 −

V
𝑘
) + 𝑎𝑒𝑢 − 𝑚]

= −
𝑏

𝑢
(𝑢 − 𝑢

∗
)
2

−
𝑎V∗

𝑢
(𝑢 − 𝑢

∗
)
2

−
𝑟

𝑘𝑒
(V − V∗)2 +

(𝑢 + 𝑢
∗
) (𝑢 − 𝑢

∗
)
2

𝑢 (1 + 𝑢2) (1 + 𝑢∗
2
)

= [
𝑢 + 𝑢
∗

𝑢 (1 + 𝑢2) (1 + 𝑢∗
2
)
−
𝑏 + 𝑎V∗

𝑢
]

⋅ (𝑢 − 𝑢
∗
)
2

−
𝑟

𝑘𝑒
(V − V∗)2

= 𝐻
1
− 𝐻
2
,

𝐻
1
= [

𝑢 + 𝑢
∗

𝑢 (1 + 𝑢2) (1 + 𝑢∗
2
)
−
𝑏 + 𝑎V∗

𝑢
] (𝑢 − 𝑢

∗
)
2

=
− [(𝐼 + 1) 𝑢

∗2
+ 𝐼] 𝑢

2
+ 𝑢
∗
𝑢 − 𝐼 (1 + 𝑢

∗2
)

𝑢∗𝑢 (1 + 𝑢2) (1 + 𝑢∗
2
)

⋅ (𝑢 − 𝑢
∗
)
2

≤
−4𝐼 (𝐼 + 1) 𝑢

∗4
+ (1 − 4𝐼 − 8𝐼

2
) 𝑢
∗2

− 4𝐼
2

𝑢∗𝑢 (1 + 𝑢2) (1 + 𝑢∗
2
) 4 [(𝐼 + 1) 𝑢∗

2
+ 𝐼]

⋅ (𝑢 − 𝑢
∗
)
2

.

(34)

Obviously,𝐻
2
≥ 0. Furthermore, if−4𝐼(𝐼+1)𝑢∗4+(1−4𝐼−

8𝐼
2
)𝑢
∗2

− 4𝐼
2
< 0,𝐻

1
≤ 0, and, therefore, 𝑑𝑉

(𝑢,V)/𝑑𝑡 = 𝐻
1
−

𝐻
2
< 0 strictly for all 𝑢, V > 0 except the positive equilibrium

(𝑢
∗
, V∗), where 𝑑𝑉

(𝑢,V)/𝑑𝑡 = 0.
Therefore, 𝑉

(𝑢,V) satisfies Lyapunov’s asymptotic stability
theorem, and the positive equilibrium (𝑢

∗
, V∗) of system (5) is

globally asymptotically stable. This completes the proof.

3. Stability Analysis in the Presence of
Diffusion and Turing Instability

3.1. Stability Analysis of Equilibria in the Presence of Diffusion

Theorem 9. If 𝑎𝑒𝑢 + 𝑟 −𝑚 > 0, the steady state 𝐸
1
= (𝑢, 0) of

the diffusive system (2) is unstable.

Proof. To investigate the stability of the equilibrium 𝐸
1
, let

us consider the corresponding eigenvalue problem of the
linearized operator around 𝐸

1
.

The linearization of system (2) at steady state 𝐸
1
= (𝑢, 0)

can be expressed as

𝜕𝑍

𝜕𝑡
= (𝐷Δ + 𝐽

(𝐸
1
)
)𝑍, (35)

where 𝑍 = (𝑢, V)𝑇,𝐷 = diag(𝑑
1
, 𝑑
2
), and

𝐽
(𝐸
1
)
=
[
[

[

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2

−𝑎𝑢

0 𝑎𝑒𝑢 + 𝑟 − 𝑚

]
]

]

. (36)
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From the above, the linearized result of system (2) around 𝐸
1

is

𝜕𝑢

𝜕𝑡
= 𝑑
1
Δ𝑢 + [

[

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2

]

]

𝑢 − 𝑎𝑢V,

𝜕V
𝜕𝑡

= 𝑑
2
ΔV + (𝑎𝑒𝑢 + 𝑟 − 𝑚) V,

𝜕𝑢

𝜕𝑛

𝜕Ω
=

𝜕V
𝜕𝑛

𝜕Ω
= 0.

(37)

The corresponding characteristic equation of (37) can be
obtained as

𝑑
1
Δ𝑢 + [

[

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2

]

]

𝑢 − 𝑎𝑢V = 𝜆𝑢,

𝑑
2
ΔV + (𝑎𝑒𝑢 + 𝑟 − 𝑚) V = 𝜆V,

𝜕𝑢

𝜕𝑛

𝜕Ω
=

𝜕V
𝜕𝑛

𝜕Ω
= 0,

(38)

where 𝜆 is an eigenvalue of (38) and the corresponding
eigenvector is (𝑢, V). If V ̸= 0, then 𝜆 is an eigenvalue of the
operator 𝑑

2
Δ+ (𝑎𝑒𝑢 + 𝑟 −𝑚) with a homogeneous Neumann

boundary condition. Therefore, 𝜆 must be real. In the same
way, 𝜆 is also real if 𝑢 ̸= 0. Hence, all eigenvalues of (38) are
real. Let𝜆max be the largest eigenvalue. Consider the principal
eigenvalue �̂� of the following equation:

𝑑
2
ΔV + (𝑎𝑒𝑢 + 𝑟 − 𝑚) V = 𝜆V,

𝜕V
𝜕𝑛

𝜕Ω
= 0.

(39)

From the above equation, �̂� > 0 and the associated
eigenvector V̂ > 0 if 𝑎𝑒𝑢 + 𝑟 − 𝑚 > 0. It is claimed here that
�̂� is also an eigenvalue of (38). In fact, �̂� > 0 is taken to be a
solution of

𝑑
1
Δ𝑢 + [

[

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2

]

]

𝑢 − 𝑎𝑢V = �̂�𝑢,

𝜕V
𝜕𝑛

𝜕Ω
= 0;

(40)

then (𝑢, V) = (�̂�, V̂) satisfies (38) with 𝜆 = �̂�. Therefore, �̂� > 0

is an eigenvalue of (38). Hence, 𝜆max ≥ �̂� > 0, and the steady
state 𝐸

1
of the diffusive system (2) is unstable.This completes

the proof.

Theorem 10. If −𝑏 + 2𝑢/(1 + 𝑢
2
)
2
< 0 and 𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0,

the diffusive system (2) is stable at 𝐸
1
.

Proof. In the case −𝑏 + 2𝑢/(1 + 𝑢
2
)
2
< 0 and 𝑎𝑒𝑢 + 𝑟 −𝑚 < 0,

let (�̂�, V̂) be the principal eigenvector of (38) corresponding
to the largest eigenvalue 𝜆max.

If V̂ ̸= 0, then 𝜆max is also an eigenvalue of (39).Therefore,
𝜆max < 0 can be obtained if 𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0 holds.

If V̂ = 0, then �̂� ̸= 0. Hence, 𝜆max is an eigenvalue of

𝑑
1
Δ𝑢 + [

[

−𝑏 +
2𝑢

(1 + 𝑢
2
)
2

]

]

𝑢 = 𝜆𝑢,

𝜕𝑢

𝜕𝑛

𝜕Ω
= 0.

(41)

Obviously, the largest eigenvalue of (41) is −𝑏 + 2𝑢/(1 +

𝑢
2
)
2. Therefore, 𝜆max < 0 if −𝑏 + 2𝑢/(1 + 𝑢

2
)
2
< 0. Therefore,

the diffusive system (2) is stable at 𝐸
1
if −𝑏 + 2𝑢/(1 + 𝑢

2
)
2
< 0

and 𝑎𝑒𝑢 + 𝑟 − 𝑚 < 0. This completes the proof.

To prove Theorem 12, let us introduce the following
lemma [33].

Lemma 11. Consider the following equation:

𝜕𝑢

𝜕𝑡
= 𝑑
1
Δ𝑢 + 𝐹

1
(𝑢, 𝑤) , 𝑡 > 0, 𝑥 ∈ Ω

𝜕𝑤

𝜕𝑡
= 𝑑
2
Δ𝑤 + 𝐹

2
(𝑢, 𝑤) , 𝑡 > 0, 𝑥 ∈ Ω

𝜕𝑢

𝜕𝑛
=

𝜕𝑤

𝜕𝑛
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω

𝑢 (0, 𝑥) ≥ 0, 𝑤 (0, 𝑥) ≥ 0, 𝑥 ∈ Ω.

(42)

Let (�̃�, 𝑤) be a steady state of (42); that is, 𝐹
1
(�̃�, 𝑤) =

𝐹
2
(�̃�, 𝑤) = 0.
If 𝜃
1
− 𝜃
4
< 0, 𝜃

2
≥ 0, 𝜃

3
≥ 0, 𝜃

2
𝜃
3
− 𝜃
1
𝜃
4
> 0, where

𝜃
1
=

𝜕𝐹
1

𝜕𝑢

𝑢=�̃�, 𝑤=𝑤
𝜃
2
= −

𝜕𝐹
1

𝜕𝑤

𝑢=�̃�, 𝑤=𝑤
,

𝜃
3
=

𝜕𝐹
2

𝜕𝑢

𝑢=�̃�, 𝑤=𝑤
𝜃
4
= −

𝜕𝐹
2

𝜕𝑤

𝑢=�̃�, 𝑤=𝑤
,

(43)

then (�̃�, 𝑤) is uniformly asymptotically stable. Furthermore, if
𝜃
2
𝜃
3
− 𝜃
1
𝜃
4
< 0, then (�̃�, 𝑤) is unstable.

Theorem 12. The following conclusions hold.

(1) If

−𝑏 − 𝑎V∗ +
2𝑢
∗

(1 + 𝑢∗
2
)
2
< 0, (44)

then the positive constant solution 𝐸
∗

= (𝑢
∗
, V∗) of

system (2) is uniformly asymptotically stable.
(2) If

−𝑏 − 𝑎V∗ +
2𝑢
∗

(1 + 𝑢∗
2
)
2
>

𝑘

𝑟
𝑎
2
𝑒𝑢
∗
, (45)

then the positive constant solution 𝐸
∗

= (𝑢
∗
, V∗) of

system (2) is unstable.
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Proof. Consider

𝐹
1
(𝑢, V) = 𝐼 − 𝑏𝑢 +

𝑢
2

1 + 𝑢2
− 𝑎𝑢V,

𝐹
2
(𝑢, V) = 𝑟V (1 −

V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V,

𝜃
1
= −𝑏 − 𝑎V∗ +

2𝑢
∗

(1 + 𝑢∗
2
)
2
, 𝜃

2
= 𝑎𝑢
∗
,

𝜃
3
= 𝑎𝑒V∗, 𝜃

4
=

𝑟

𝑘
V∗.

(46)

Obviously, 𝜃
1
− 𝜃
4
< 0, 𝜃

2
> 0, 𝜃

3
> 0, 𝜃

2
𝜃
3
− 𝜃
1
𝜃
4
> 0 if

−𝑏 − 𝑎V∗ + 2𝑢
∗
/(1 + 𝑢

∗2
)
2
< 0.

Applying Lemma 11, the first conclusion of Theorem 12
follows.

On the other hand, if −𝑏 − 𝑎V∗ + 2𝑢
∗
/(1 + 𝑢

∗2
)
2

>

(𝑘/𝑟)𝑎
2
𝑒𝑢
∗, it can easily be established that 𝜃

2
𝜃
3
− 𝜃
1
𝜃
4

=

𝑎
2
𝑒𝑢
∗V∗ − (𝑟/𝑘)V∗[−𝑏 − 𝑎V∗ + 2𝑢

∗
/(1 + 𝑢

∗2
)
2
] < 0. Therefore,

𝐸
∗ of system (2) is unstable by Lemma 11. This completes the

proof.

Theorem 13. If

−𝑏 − 𝑎V∗ +
1

√1 + 𝑢∗
2

1

1 + (√1 + 𝑢∗
2
− 𝑢∗)

2
< 0, (47)

then the positive equilibrium 𝐸
∗

= (𝑢
∗
, V∗) of system (2) is

globally asymptotically stable.

Proof. To prove Theorem 13, it is necessary to construct a
Lyapunov function. Define

𝐻
(𝑢,V) = ∫

𝑢

𝑢
∗

𝜉 − 𝑢
∗

𝜉
𝑑𝜉 +

1

𝑒
∫

V

V∗

𝜂 − V∗

𝜂
𝑑𝜂,

𝐻
1
(𝑡) = ∬

Ω

𝐻
(𝑢,V)𝑑Ω.

(48)

Obviously, 𝐻
(𝑢,V) ≥ 0, 𝐻

(𝑢,V) = 0 if and only if
(𝑢, V) = (𝑢

∗
, V∗). Calculating the derivative of𝐻

1
(𝑡) along the

solutions of model (2),

𝑑𝐻
1
(𝑡)

𝑑𝑡
= ∬
Ω

(
𝜕𝐻

𝜕𝑢

𝜕𝑢

𝜕𝑡
+
𝜕𝐻

𝜕V
𝜕V
𝜕𝑡

) 𝑑Ω

= ∬
Ω

{(𝐼 − 𝑏𝑢 +
𝑢
2

1 + 𝑢2
− 𝑎𝑢V + 𝑑

1
Δ𝑢)

𝜕𝐻

𝜕𝑢

+ [𝑟V (1 −
V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V + 𝑑

2
ΔV]

⋅
𝜕𝐻

𝜕V
}𝑑Ω

= ∬
Ω

{(𝐼 − 𝑏𝑢 +
𝑢
2

1 + 𝑢2
− 𝑎𝑢V)

𝜕𝐻

𝜕𝑢

+ [𝑟V (1 −
V
𝑘
) + 𝑎𝑒𝑢V − 𝑚V]

𝜕𝐻

𝜕V
}𝑑Ω

+∬
Ω

(𝑑
1
Δ𝑢

𝜕𝐻

𝜕𝑢
+ 𝑑
2
ΔV

𝜕𝐻

𝜕V
)𝑑Ω

= ∬
Ω

(𝑢 − 𝑢
∗
)
2

𝑢
[

𝑢 + 𝑢
∗

(1 + 𝑢2) (1 + 𝑢∗
2
)
− 𝑏 − 𝑎V∗]𝑑Ω

−
𝑟

𝑘𝑒
∬
Ω

(V − V∗)2 𝑑Ω

− 𝑑
1
∬
Ω

𝑢
∗

𝑢2
[(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
)

2

]𝑑Ω

−
𝑑
2

𝑒
∬
Ω

V∗

V2
[(

𝜕V
𝜕𝑥

)

2

+ (
𝜕V
𝜕𝑦

)

2

]𝑑Ω

= 𝐼
1
− 𝐼
2
− 𝐼
3
− 𝐼
4
.

(49)

Obviously, 𝐼
2
≥ 0, 𝐼
3
≥ 0, and 𝐼

4
≥ 0.

Consider the following function:

𝑓 (𝑥) =
𝑥 + 𝑢
∗

1 + 𝑥2
(𝑥 ≥ 0) . (50)

Then, 𝑓

(𝑥) = (−𝑥

2
− 2𝑢
∗
𝑥 + 1)/(1 + 𝑥

2
)
2. Because

lim
𝑥→0

𝑓(𝑥) = 𝑢
∗
, lim
𝑥→+∞

𝑓(𝑥) = 0, then

𝑓 (𝑥) ≤ 𝑓 (−𝑢
∗
+ √𝑢∗

2
+ 1) =

√𝑢∗
2
+ 1

1 + (−𝑢∗ + √𝑢∗
2
+ 1)
2
,

𝐼
1
= ∬
Ω

(𝑢 − 𝑢
∗
)
2

𝑢
[

𝑢 + 𝑢
∗

(1 + 𝑢2) (1 + 𝑢∗
2
)
− 𝑏 − 𝑎V∗]𝑑Ω

≤ ∬
Ω

(𝑢 − 𝑢
∗
)
2

𝑢
(−𝑏 − 𝑎V∗ +

1

√1 + 𝑢∗
2

⋅
1

1 + (√𝑢∗
2
+ 1 − 𝑢∗)

2
)𝑑Ω.

(51)

Therefore, if −𝑏 − 𝑎V∗ + (1/√1 + 𝑢∗
2
)(1/(1 + (√1 + 𝑢∗

2
−

𝑢
∗
)
2
)) < 0, 𝐼

1
< 0, which is equivalent to 𝑑𝐻

1
(𝑡)/𝑑𝑡 < 0.

Thus, 𝐻
1
(𝑡) satisfies Lyapunov’s asymptotic stability the-

orem, and the positive equilibrium (𝑢
∗
, V∗) of system (2) is

globally asymptotically stable. This completes the proof.

Remark 14. It is easy to verify that if condition (47) holds,
then condition (44) is true.

3.2. Turing Instability. To analyze the spatial system and how
a small heterogeneous perturbation of a homogeneous steady
state develops over a long time period, small space- and
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time-dependent perturbations for 𝐸∗ of system (2) will be
considered:

𝑢 = 𝑢
∗
+ 𝜀 exp (𝐾𝑧𝑖 + 𝜆𝑡) ,

V = V∗ + 𝜏 exp (𝐾𝑧𝑖 + 𝜆𝑡) ,

(52)

where 𝜀, 𝜏 are small enough and 𝐾 is the wave number.
Substituting (52) into (2) yields its characteristic matrix:

𝐴 = [
𝐽
11
− 𝑑
1
𝐾
2

𝐽
12

𝐽
21

𝐽
22
− 𝑑
2
𝐾
2
] . (53)

Correspondingly, 𝜆
1
and 𝜆

2
are the roots of the following

characteristic equation:

𝜆
2
− tr
𝐾
𝜆 + Δ

𝐾
= 0, (54)

tr
𝐾

= 𝐽
11

+ 𝐽
22

− (𝑑
1
+ 𝑑
2
)𝐾
2, Δ
𝐾

= 𝑑
1
𝑑
2
𝐾
4
− (𝑑
1
𝐽
22
+

𝑑
2
𝐽
11
)𝐾
2
+ 𝐽
11
𝐽
22
− 𝐽
12
𝐽
21
.

The roots of (54) yield the dispersion relation:

𝜆
1,2

(𝐾) =
tr
𝐾
± √(tr

𝐾
)
2

− 4Δ
𝐾

2
.

(55)

As is well known, Turing instability means that the stable
equilibrium point is driven to become unstable by the local
dynamics and diffusion of species.The stability conditions for
𝐸
∗of system (5) are tr

0
= 𝐽
11

+ 𝐽
22

< 0 and Δ
0
= 𝐽
11
𝐽
22

−

𝐽
12
𝐽
21

> 0. It is clear that tr
𝐾
< tr
0
< 0.Therefore, the stability

of equilibrium 𝐸
∗ of system (2) changes with the sign of Δ

𝐾
.

It is easy to establish that Δ
𝐾
< 0 for𝐾

1

2
< 𝐾
2
< 𝐾
2

2, where

𝐾
1,2

2
= ((𝑑

1
𝐽
22
+ 𝑑
2
𝐽
11
)

∓√(𝑑
1
𝐽
22
+ 𝑑
2
𝐽
11
)
2

− 4𝑑
1
𝑑
2
(𝐽
11
𝐽
22
− 𝐽
12
𝐽
21
))

⋅ (2𝑑
1
𝑑
2
)
−1

.

(56)

If 𝐾
1,2

2 has positive values, then the range of instability
for 𝐸
∗ can be obtained, which is called the Turing space.

To illustrate the Turing space, the dispersion relations cor-
responding to several values of the bifurcation parameter 𝐼
are plotted in Figure 1. The other parameters come from the
actual monitoring data from the Sanyang wetland from 2012
to 2013 and from the literature:

𝑎 = 0.6, 𝑏 = 0.015, 𝑒 = 0.28, 𝑟 = 0.533,

𝑘 = 1, 𝑚 = 0.24, 𝑑
1
= 0.1, 𝑑

2
= 1.4.

(57)

In Figure 1, the green line corresponds to the critical
Turing value, 𝐼∗ = 0.006195. When 𝐼 = 0.0055 < 𝐼

∗ (the
yellow line in Figure 1), Turing instability occurs, whereas
when 𝐼 = 0.008 > 𝐼

∗ (the red line in Figure 1), the Turing
instability decays.

Re
(𝜆
)

0

−0.1

−0.2

−0.3

0.5 1 1.5 2

K

Figure 1: Variation of the dispersion relation of model (2) around
𝐸
∗. The yellow line corresponds to 𝐼 = 0.0055, the green to 𝐼

∗
=

0.006195, and the red to 𝐼 = 0.008.

0.5
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0.1
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t

Figure 2: Time-sequence diagram of nutrients and algae. The red
line corresponds to nutrients and the blue line to algae.

4. Numerical Simulations

On the basis of actual monitoring data from the Sanyang
wetland from 2012 to 2013, the following parameter set
is considered: 𝐼 = 0.008, initial value (𝑢(0), V(0)) =

(0.1, 0.1), 𝑡 = 40, and other parameter values as given
in (57). To verify the feasibility and correctness of the
theoretical results, numerical simulations were performed. It
is obvious from Figures 2 and 3 that the interior equilibrium
𝐸
∗
= (0.02462459569, 0.5574801727) of system (5) is locally

asymptotically stable.
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Figure 3: Phase trajectories of nutrients and algae beginning at different initial levels.

To investigate more thoroughly how the input rate 𝐼 of
nutrients flowing into the water affects the spatiotemporal
dynamics of system (2), spatial distribution diagrams of the
system are generated for various values of 𝐼. All these numer-
ical simulations employ the zero-flux boundary conditions
and a discrete two-dimensional domain with 𝐿

𝑥
= 𝐿
𝑦
= 200.

The spatial step size is ℎ = 1/3, and the temporal step size is
𝜏 = 0.01.The initial value of system (2) is placed at the interior
equilibrium 𝐸

∗
= (𝑢
∗
, V∗), and the initial perturbation is

0.0005 space units per time unit. As is well known, in such
numerical simulations, the spatial distributions of predator
and prey are always of the same type.Therefore, it is necessary
to analyze the spatial distribution of only one of these. Here,
the spatial distribution of the algae population is considered.
Some snapshots have been extracted and are shown in red
(blue) corresponding to the high (low) value of algae density
V when the value of 𝐼 increases from 0.005 to 0.006.

Figure 4 shows the process of pattern formation in system
(2) with 𝐼 = 0.0055 and other parameters fixed as in (57).

From Figure 4, it is clear that the algae population
pattern takes a long time to settle down, beginning with
a uniform state (𝑢

∗
, V∗) = (0.7722029183, 0.7931146159)

(Figure 4(a)). After 40000 iterations, the spatial distribution
of the algae population consists mainly of a number of spots
and interconnected stripes (Figure 4(b)). The remaining four
images consist of blue/red spots on a red/blue background.
These are referred to here as “hot spots” and “cold spots” [34].
The hot spots are isolated zones with high algae density and
low nutrient concentration, whereas the cold spots represent
the opposite case. Figures 4(c) and 4(d) show some isolated
“cold spots,” whereas Figures 4(e) and 4(f) contain some
isolated “hot spots” and stripes.

Figure 5 shows two patterns obtained from system (2)
at 300000 iterations. When 𝐼 = 0.005, the homogeneous
state is (𝑢

∗
, V∗) = (0.7498330425, 0.7860636982), and

the spot pattern is made up of “hot spots” around the
edge (Figure 5(a)). However, with 𝐼 = 0.006, (𝑢∗, V∗) =

(0.7860324719, 0.7974736497), and the spot-stripe pattern
consists of a certain number of “hot spots” and stripes
(Figure 5(b)).

By comparing Figures 5(a), 4(f), and 5(b), it is apparent
that the algae population density increases with 𝐼 within
certain limits. Moreover, as the value of 𝐼 increases, the
spatial distribution of the algae population becomes relatively
intensive and the distribution relatively wide.

5. Discussion and Conclusions

In this paper, a reaction-diffusion nutrient-algae model has
been used to investigate the interaction between nutrients
and algae mathematically and numerically. Mathematical
theoretical work has examined the positivity and bounded-
ness of solutions and the existence and stability of equilibria.
Local and global stability analyses of equilibria in the pres-
ence of diffusion have also been performed. Mathematical
analysis indicated that all solutions of the reduced ODE sys-
tem are positive and bounded under some certain conditions
and that theODE system always has boundary equilibrium. If
−𝑏+2𝑢/(1+𝑢

2
)
2
< 0 and 𝑎𝑒𝑢+𝑟−𝑚 < 0, then the nonspatial

system and the diffusive system are stable at 𝐸
1
. When −𝑏 −

𝑎V∗ + 2𝑢
∗
/(1 + 𝑢

∗2
)
2

< 0, the interior equilibrium 𝐸
∗

=

(𝑢
∗
, V∗) is always stable, regardless of whether the system

is an ODE or a PDE system. Theorem 12 gives the stability
condition of the positive constant solution 𝐸

∗
= (𝑢
∗
, V∗) of

system (2). However, when 0 < −𝑏 − 𝑎V∗ + 2𝑢
∗
/(1 + 𝑢

∗2
)
2
<

(𝑘/𝑟)𝑎
2
𝑒𝑢
∗, the stability of𝐸∗may vary. In this paper, only the

positive constant solution𝐸∗ of system (2) is discussed. Other
questions remain to be answered: whether system (2) has
other nonnegative constant solutions or nonconstant positive
steady states; if there are positive solutions, what is their exact
multiplicity and how stable are any positive solutions.

Numerical simulations have indicated that the input
rate 𝐼 of nutrients flowing into the water has an important
influence on the density and spatial distribution of the algae
population. The spatial distribution of the algae population
becomes relatively intensive and the distribution relatively
wide as 𝐼 increases.These results may help to provide a better
understanding of the interactions of nutrients and algae and
the variations in the spatial distribution of algae over time.
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Figure 4: Spatial patterns obtained with model (2) for 𝐼 = 0.0055. Other parameters are fixed as in (57). Number of iterations: (a) 0; (b)
40000; (c) 55000; (d) 60000; (e) 80000; (f) 300000.
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Figure 5: Hot-spot patterns (a) and hot spots-stripe patterns (b) obtained withmodel (2) for (a) 𝐼 = 0.005; (b) 𝐼 = 0.006, at 300000 iterations.
Other parameters are fixed as in (57).

This research is also expected to contribute to exploring the
mechanisms of eutrophication.
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“Mathematical analysis of a three-dimensional eutrophication
model,” Journal of Mathematical Analysis and Applications, vol.
349, no. 1, pp. 135–155, 2009.

[17] C. A. Klausmeier, “Regular and irregular patterns in semiarid
vegetation,” Science, vol. 284, no. 5421, pp. 1826–1828, 1999.

[18] W. M. Wang, Y. Z. Lin, L. Zhang, F. Rao, and Y. Tan, “Complex
patterns in a predator-preymodel with self and cross-diffusion,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 16, no. 4, pp. 2006–2015, 2011.

[19] R. K. Upadhyay, N. Kumari, and V. Rai, “Wave of chaos in a
diffusive system: generating realistic patterns of patchiness in
plankton-fish dynamics,” Chaos, Solitons & Fractals, vol. 40, no.
1, pp. 262–276, 2009.

[20] J. Zhao, M. Zhao, and H. Yu, “Complex dynamical behavior
of a predator-prey system with group defense,” Mathematical
Problems in Engineering, vol. 2013, Article ID 910349, 8 pages,
2013.

[21] A.D. Barton, S.Dutkiewicz, G. Flierl, J. Bragg, andM. J. Follows,
“Patterns of diversity in marine phytoplankton,” Science, vol.
327, no. 5972, pp. 1509–1511, 2010.

[22] J. von Hardenberg, E. Meron, M. Shachak, and Y. Zarmi,
“Diversity of vegetation patterns and desertification,” Physical
Review Letters, vol. 87, no. 19, Article ID 198101, 4 pages, 2001.

[23] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de
Koppel, “Self-organized patchiness and catastrophic shifts in
ecosystems,” Science, vol. 305, no. 5692, pp. 1926–1929, 2004.

[24] J. L. Zhao, M. Zhao, and H. Yu, “Effect of prey refuge on the
spatiotemporal dynamics of a modified Leslie-Gower predator-
prey system with Holling type III schemes,” Entropy, vol. 15, no.
6, pp. 2431–2447, 2013.

[25] A. M. Turing, “The chemical basis of morphogenesis,” Philo-
sophical Transactions of the Royal Society of London B: Biological
Sciences, vol. 237, no. 641, pp. 37–72, 1952.

[26] R. H. Wang, Q. X. Liu, G. Q. Sun, Z. Jin, and J. van de Koppel,
“Nonlinear dynamic and pattern bifurcations in a model for
spatial patterns in young mussel beds,” Journal of the Royal
Society Interface, vol. 6, no. 37, pp. 705–718, 2009.

[27] H. Serizawa, T. Amemiya, and K. Itoh, “Patchiness in aminimal
nutrient—phytoplankton model,” Journal of Biosciences, vol. 33,
no. 3, pp. 391–403, 2008.

[28] Q.-X. Liu, G.-Q. Sun, Z. Jin, and B.-L. Li, “Emergence of
spatiotemporal chaos arising from far-field breakup of spiral
waves in the plankton ecological systems,” Chinese Physics B,
vol. 18, no. 2, pp. 506–515, 2009.

[29] J. van de Koppel, M. Rietkerk, N. Dankers, and P. M. J. Herman,
“Scale-dependent feedback and regular spatial patterns in
youngmussel beds,”TheAmerican Naturalist, vol. 165, no. 3, pp.
E66–E77, 2005.

[30] Y. P.Wang,M. Zhao, C. J. Dai, and X. Pan, “Nonlinear dynamics
of a nutrient-plankton model,” Abstract and Applied Analysis,
vol. 2014, Article ID 451757, 10 pages, 2014.

[31] A. M. Edwards, “Adding detritus to a nutrient-phytoplankton-
zooplankton model: a dynamical-systems approach,” Journal of
Plankton Research, vol. 23, no. 4, pp. 389–413, 2001.
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