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The spatial behavior of a coupled system of wave-plate type is studied. We get the alternative results of Phragmén-Lindel6f type in
terms of an area measure of the amplitude in question based on a first-order differential inequality. We also get the spatial decay

estimates based on a second-order differential inequality.

1. Introduction and Preliminaries

Principle of Saint-Venant type used to be one of the most
popular subjects of applied mathematics and mechanics in
the 1960-1980s. A great number of investigation results have
expanded enormously the classical Saint-Venant principle.
For a review of recent work on Saint-Venant’s principle, one
may refer to the review papers by Horgan [1, 2] and Horgan
and Knowles [3]. A common feature of Saint-Venant-type
theorems is to establish the exponential decay estimates of
energy with axial distance from the near end of a semi-infinite
strip or cylinder. Furthermore, all papers need to impose
a priori decay assumption at infinity. In recent years, the
investigations of Saint-Venant principle are mainly on the
studies of the Phragmén-Lindelof alternative principle. The
classical Phragmén-Lindelof theorem has also extensively
extended by numerous investigation results. It shows that
Phragmén-Lindel6f alternative principle is of theoretical and
applied significance in physics mechanics and other applied
sciences. The spatial behaviour for several types of partial
differential equations and systems has been the subject of
extensive investigating in the literature for close to a century
and a half. These studies were motivated by a desire to for-
mulate Saint-Venant and Phragmén-Lindel6f-type principles.
Roughly speaking, these results assert that the solution of
the problem decays exponentially with distance from the
boundary. For a more complete view for the spatial behavior,
one could refer to [4-8].

A spatial behavior study for the transient heat conduction
was first given by Edelstein [9]. Since then, many works
have been devoted to study the spatial behaviour of parabolic
equations (see [10, 11]). Little attention has been paid to the
study of the hyperbolic equations. Horgan [1, 2] and Horgan
and Knowles [3] point out the paucity of Saint-Venant-
type results for hyperbolic system of the kind describing
elastic wave propagation. The first contribution in hyperbolic
equations concerning the Saint-Venants principle may be
due to Knops and Payne [12]. In recent years, the study
of end decay effects for hyperbolic and quasihyperbolic
equations has grown in a relevant form. It is worth recalling
some recent contributions concerning the spatial behavior of
viscoelasticity equations; one could refer to [13-16].

The biharmonic equation has important applications
in the study of the applied mathematics and mechanics.
Many studies and various methods have been proposed for
researching the spatial behaviour for the solutions of the
biharmonic equations in a semi-infinite strip in R>. We
mention the studies by Knowles [17, 18], Flavin [19], Flavin
and Knops [20], Horgan [21], Payne and Schaefer [22], and
Varlamov [23]. Additional references may be found in the
review papers [1-3]. We note that some time-dependent
problems concerning the biharmonic operator are considered
in the literature; we mention the papers by Lin [10] and Knops
and Lupoli [24] in connection with the spatial behaviour of
solutions for a fourth-order transformed problem associated
with the slow flow of an incompressible viscous fluid along
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a semi-infinite strip. In recent years, Song in his paper [25, 26]
improved the result obtained by Lin in [10] for the time-
dependent Stokes flow.

In this paper, the spatial behavior of solutions of the
fourth-order hyperbolic equations is studied. Growth and
decay estimates are established associating some appropriate
cross-sectional line and area integral measures. The method
of the proof is based on a first-order differential inequality
leading to an alternative of Phragmén-Lindelof type in terms
of an area measure of the amplitude in question. We also
get the spatial decay estimates based on a second-order
differential inequality, and we also indicate how to bound the
total energy.

In the present paper, the comma is used to indicate partial
differentiation and the differentiation with respect to the
direction x; is denoted as, k; thus u , denotes 0u/0x,, and u,
denotes 0u/0t. The usual summation convection is employed
with repeated Greek subscripts & summed from 1 to 2. Hence,

U = Yoy (O /0X,).

2. Formulation

We consider the problem on an unbounded region ), defined
by

Qo = {(x1,%,) | x; >0,0 < x, < h}, (1
where h is a fixed constant, and we introduce the notation
L,={(x;,x,)| x, =2>0,0<x, <h}. (2)

We consider the problem in the time interval [0, T'], where
T is a fixed positive constant.

In [27], the authors studied the analytic property and the
exponential stability of the C,-semigroup associated with the
following coupled system of wave-plate type with thermal
effect:

pithy — Au— plAu, +alv = 0,

PaVy + YAV + alu + mAB = 0, (3)
70, — kAB —mAv, = 0.

The above model can be used to describe the evolution
of a system consisting of an elastic membrane and an elastic
plate, subject to an elastic force that attracts the membrane
to the plate with coefficient a, subject to a thermal effect
(see [28]). Here u and v represent the vertical deflections of
the membrane and of the plate, respectively. 6 denotes the
difference of temperature. The coeflicients p,, p,, t a, y, m, 7,
and k are nonnegative constants.

Their main result obtained in [27] was that the semigroup
associated with the system is analytic. This is to say that
the exponential stability of the associated energy and also
the so-called spectrum determined growth property (SDG
property) of the corresponding semigroup.
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In the present paper, we consider the system (4)-(6) with
the case T = 0. The equations are

pithy — Au— plAu, +alv = 0, (4)

2
Pavye + YA*Y + alu — %Av’t =0, (5)

and the initial boundary conditions are

u(xy,0,t) = v(x,0,t) = v, (x,0,) =0 x, >0, £>0,

u(x,ht)=v(x,ht)=v,(x,ht)=0 x>0, t>0,
u(0,x,,t) = gy (x,t) 0<x,<h, t>0,
v(0,x,5,t) = g, (x,t) 0<x,<h, t>0,
v1(0,x5,1) = g3 (x5t) 0<x,<h, t>0,
u (x1,%5,0) = v(x,%,,0) = u, (x1,x,,0)

=v,(x,%,,0) =0

0<x,<h x,>0.

(6)

Here A is the harmonic operator, and A” is the biharmonic
operator.

In this paper, we consider the classical solutions to the
problem (4)-(6). g;(x,,t) i = 1,2, 3 are prescribed functions
satistying the compatibility:

91(0,8) = g, (h,t) = g1, (0,8) = g, (h, 1) = 0,
9,(0,1) = g, (h,t) = g,,(0,1) = gy, (h, 1) =0,

(7)
95 (0,1) = g5 (h,1) = g3, (0,1) = g3, (h, 1) = 0,

9 (xz,O) =9 (xZ’O) =93 (xz,O) =0.

We will use the Poincare inequality; we recall that the
estimate

jh 2ag< jh < du >2dE (8)

0 w Jo \ dé

is satisfied for smooth functions u(&) such that #(0) = 0 (see

(2]).
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On using the divergence theorem and the initial-bound-
ary conditions (4)-(6), it leads to

t rz
0= J J J u’n (plu’rl’? - pu (xrxq )dA d}’]
0 Jzy JLg
:&JJ u,zr]dA +1JJ' uudA
2 Ja J1 n=t 2 )z )i n=t
¢ t
_J J unu’ldx2d11+J J w, . dx,dn
0Jr, ol
t rz ¢
+ U gt o, dA dn — Jjuu dx,d
#JOJZOJLg)’/I”/I n HOLZ U 1y@X201
t
TH Jo JLZO gt s
t rz
+aJ J J U,V odAdn.
0 Jzy JLg
9)
We can also get
t rz m2
0= Jo LU JLE Yy (PZV,’M TV aapp t Bhaq = Y rxmv) dAdn
=&J J 2 dA +Zj J g
2 )z i, n=t 2 )z i, et
¢ t
_YJ- J- v,aqV,1(xdx2d71+yJ J mev)ladxqu
0Jr, oL,
¢ t
+ Y J-O J-L V,]V)lﬁﬁdxzdr/ — )}J J an,lﬁﬁdxzdﬂ

(10)

Integrating by parts, we can get

t rz
u,v
4[0 JZO jLE g
J J J UV odA dy
t
+J J u, v, dx,dn — J J U, v, dx,dn
0 0JL

20

t z
=J J J UgV qndAdn — J J U,V adA
0 Jzy JL; zy JLg

wdAdny

3
t t
+J J u vldxqu—J J u,v,dx,dn,
0 z EN)
t rz
JJ J VU audAdn
0 Jzy JLg
t rz
=—JJ J it odAdy
0 Jzy JL;
t t
+J J v u,dx,dn J J v, u,dx,dn
0 z zo
(11)

Combining the above computations, we define a function
t t
¢, (z,t) = J J u,nu,ldxzdn + ‘MJ J u)nu)mdxzdn
0Jr, 0JL,

t t
-a J JL u, v dx,dn +y J L V.anV,1ad%,dN

0 z 0 z

n=t
z
‘I’z J- J- VaﬁvaﬁdA
2 )z Jr, n=t
2t rz
m
— dAd
b S veretan
z
—aJ J u, v, dAl  + ¢ (zot)
zo JLg n=t
(12)
We can also get
t rz
jo J;o ng V,ll <P2V,m1 + yv,azxﬁﬁ
(13)

2
+au g, — m? aan) dAdn = 0.
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t rz
JJ J pzv,nv’m,dAdn

0 Jzy JLg

t rz
= L Ln LE PaV,iyV 1y dAdn

J JL P2VayY quzd’?

z

t z
J J PaV,1yVydx,dn + J J P2V v, dA
L L

0 EN) 2o

mZ
J JZU JLE Vi (yv,ococﬁﬁ - Tv,mxr]) dAdﬂ
t
YJ J‘ J Vlzxﬁv locﬁdAdrl
2
L)

2 ot
J VY2V 1028%,d1 + K J JL V12V 2y d%,d1

0oJr, 0

>

n=t

(=]

| 3

v lav loch
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+
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z
t

t
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m tJ~ t
-— V1oV, dx,dn — J J V11V 1sedx,dn,
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EN) 0 20

t rz
J J J 1 1 u,ococ dAdi’]
zy JLg

t t
J J J av,nau)adAdr/+J J av udx,dn
oL

z

t
J- J- avudx,dny.
L

0 JL,

(14)

We now define another function:

t t
¢, (z,1) = - L L PaV, 1V ydx,dn + J J VY2V 102d%,61

it
+ 7'[ J v)uv,z,,dxqu

0JL,

t t
+y J J v,uv,lﬁﬁdxqu +a L JL VU, dx,dy

0Jr,

t rz
- v, v, dAd
.[0 «LO JLE P2 At d

z
- J J pzv)”v’ndA
zy JLg

z

1=t
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t rz
+yj J JL v)la/;v’mﬁdAdq

zy JLg

2 rz
+ — J J ViaV1adA
2 zo JLg n=t

t rz
+ J J J av | 1aUdAdn + ¢, (2p,1).
L

(15)
We define a new function:

o (Z, t) = ¢1 (Z, t) + )‘ﬁbz (Z> t)

t
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4

+ &J J v)zndA

2 )z Ui, n=t

z
J J V)“ﬁv,“ﬁdA

zp JLg n=t
mZ t rz
e L J, 1, veavandan

—/\J J PV v, dA
Lg

U, ,dA

Viy 1,7clA dn

n=t

t rz
+ Ay J J JL v’laﬁv’mﬁdA dn
¢

2 rz
m
+ A— J ViaV1adA
Le

n=t

t rz
+A J J J av gt dAdn + @ (zy,1),
Lg

(16)

where A is a positive constant to be determined later.
From (16), we can easily get

0D (z,t)
0z % J u’z 4%,

Y-

+ j U U dx,
n=t Lz

n=t

t
+u L L u’“num,dxzdn

z

P2 2
*5 JL v, dx,

z

n=t z
t

">
+ - JO JL vmv’andxzdn

z

-a JL U,V adx,

t
. -A L JLZ PzV,an,lquszI
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2
m

+A—J Vi V0%
2k L, Nda ¥ la 2

n=t

t
+ AJ J av 1 U, dx,dn.
L

0 z
17)

Using the Cauchy’s inequality and the inequality (8), we

have
t
N
0 JL

av)“au)adxqu‘

z

Ay (!
< y L L Vi1V, 11a8%201
Aa*? !
+ 2y L L umumdxqu,

a L U,V ,dx,

z

n=t

JL U UG dx,

z
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T4 (18)

n=t

a*h?
+ 2 ), v’“ﬁv,aﬁdxz

z

>

n=t
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SIS

71-2
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2

p A
c
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o | —

<

00|‘<

7T

Combining the above discussions, we obtain
3|
+ —
;4L
‘M t
+ EJ JL umumdxzdn

0 z

P2 2
+ " JL 1/’,7dx2

U U odx,

z

2
> —J uquz
L
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Y
+ = d
L4 Lz Vo ap
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'o—’

J om ocr]dedrl

~

>~ o
2

I
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L
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z
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n=t
(20)

3. Phragmén-Lindelo6f Alternative Results

In this part, we will derive the Phragmén-Lindel6f alternative
results based on a first-order differential inequality.
From the definition of ®(z,t) in (16), we want to give

bounds for items in ®(z,t). Using the Schwarz’s inequality

and the inequality (8), we can easily obtain

t
J J U u dx,dn| <
0Jr

z

hZ t
—J L u’zzquzdn

z

2t .
+ _2J- L u’mdxzdry,

0Jr,
t ahZ t
a L Lz qVadxydn o= J-o J-LZ u22ndx2d17
at (!
g |, | it
t Wt 5
ly Jo JLZ v Vapgdxdn = L LZ vmdxzdn
y t
t3 J-O J-L V1 ppdX,dn,
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at2 t 2
+ o L L u’l”dxqu,

Ap
ViV ndxzdn‘ 5 ;J L v,zmdxzdn

APz 2
=

t
‘Apzj- J-
olJr

z

t
‘AY J‘O J- ocZV ltdederl

z

S = J J; a/s"a/sdxzdﬂ

7}’ L J VlaﬁV,laﬁdxzd’?’

Am? [t AP (¢
8 52 [ i

0Jr, 0

Amz t 2
e J J Van st

(1)

On combining the above computations with (16), we
obtain

oD (z, t) t
|(D (Z, t)l < k (t) Z 7 JO JLZ V,aﬁv,aﬁdxzdfl, (22)
where
oAy
with
ky (1)
A + uh® + 2ah* + yh* + m*h + Ap, i
:y+max<{ +uh® +2a +71/2 +m°h® + Ap,
. Am® £+ 2a8’ + Ap, + akt? e m’
k- 7 %
yH ARPm? Ayh* + al?
kz(t):y+?+2)t + = + = .

(24)
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Using the method proposed in the paper [11], we define a
new function:

M (z,t) = % L u)zndx2

1
+ A_LJ U U dx,
n=t Lz n=t
(25)

+ &J vzrldx2
4 L, n=t

YJ
+ = V o3V apdx,
ot 4l BY.apB

2

m
A—
N 4k J-Lz

Fort > 0,letf be a value of time between 0 and t, at which
function M(z, t) gains its maximum value; that is,

v locv,ltxde

n=t

M(Z,E) = % JL uildxz

1
+ 1 U U 5 dx,
]7:? LZ

z

il
+ = V o3V apdx,
i R
2
m
+A— J V1V 1ad%, }
4k )i, -
(26)
We now define
t* = lim { sup ?(z)}. (27)
Z—00 |0<z<2

From (22), we have

. 0D (z,t") Ay (¢
|@ (2, ") < k(t7) —,  * 7’/ L L VgV apdX,dn.
(28)
From the definition of t*, we have
Ay t
5 L Lz v)“ﬁv’“l;dxzdﬂ
(29)

"
< ZAJ M (z,t)dt <2M M (z,t7).
0

On combining (20), (26), (28), and (29), we get

. W 0D (z,t") Ay (¢
| (2,t")| < k(") —, * Ty Jo JLZ VgV apdX,dn

00 (z,t")

<k(t") +2M M (z,t")

00 (z,t)

< (k(t7) +2At7) %

< (k(t) +2At) %Zz’t)

(30)

The following discussion will be divided into two cases.
Case 1. If there exists a point (z;,t") such that ®(z;,¢*) > 0,

then for all z > z;, ®(z,t") > 0. An integration of (30) leads
to

e ) (31)

(D(Z,t*) > @(zl,t*)exp<m

Case 2. If there does not exist a point (z,,t") such that
D(z,,t") > 0, then for all z > 0, d(z,t*) < 0. We have, from
(30),

~® (z,t") < - (0,t") exp [ (k (t) + 2At) Z] . (32)

From (31), we can getlim, _, . ®(z,t") = oo; that is to say,
for z large enough, we can get

O (z,t") 220 (zp,t"). (33)

From (16), we get

z
D(z,t) <2 ﬂj J U2 dA
2 zo JLg i =t
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2 ot" oz DYl 1Y * .
m Clearly, if lim, , ., ®(z,t") = 0, we can easily get from
"k Jo J-zo J-LE n? cnlA (16) that
z
-a J J u v dA 1 o
e n=t -0 (z,t") > = i} J J utdA
2 2 )z L 'l —
* n=t
t z
-2 J J J paVayVandAdy 1 (®
0 Jz Jig + 3 J j U U dA
z z L n=t
- )LJ JL Pavi1V,,dA " oo
Zy —t*
¢ n=t + MJ J J U nth oy @A dn
R 0 Jz L
+AjjjvavadAd o
v, ZOLg’lﬁ’lﬂ n +&JJV2dA
2 )z D =t
m* (* !
+ /\—k J J ViaViadA o
2k Jo Ji n=t* + Y J J VgV apdA
. 2 ) L ’ ’ n=t*
t z
+A J J J av it dA dn]» . i (t (o
0 7z Tl +—J J J VoV @A dn
k an”an
(34) 0 Jz
t" roo
Following the same procedure as in deriving (20), we + ,\yJ J J V1oV 1apdAdn
easily get 0 Je e T (37)
2 roo
z m
@ (Z, t*) < 3 & j J u2 dA +A2_ J; JL V,locv,lotdA }
2 )z i, " n=t* £ n=t*
z L]p (¥ 2
+lj J u u dA Zg{fj J w, dA
2 zo JLg o =t z Lg n=t
" + IJOOJ u, u,dA
+ U U o, dA d 5 ata
l"l J,() JZO J'Lg AN, r] 2 z LE ;1:[
L P2 r J VzndA + % J J vzndA
2o JLg nt® z JLg n=t
z 35 «
+ X j j chﬁvtxﬁdA ( ) + g J J VuﬁvaﬁdA
2 zy JLg ’ ’ n=t* z L n=t*
mZ t" rz /\mz 00 J
+— dAd +A— J j ViaV1adA
k JO ‘[Zo ‘[Li v’“nvwm 71 2k z LE Aatle ’T:t*
£oE = F(z,t).
+ Ay J J J V1agY 1(xﬁdA dn (1)
0 Jzp Ly 7T
m (* Summarizing all the results above, we conclude the following
+A— ViaVi1gdA
2k )z, L et theorem.
=F (2t") Theorem 1. Let (u, v) be classical solution of the initial bound-
ary value problems (4)-(6); then, either
On combining (31) and (35), we get
Z1 4 * * . Zl 4 * *
—— |F (2t ) 2O (z,t ). 36 1 ——— | F, (z,t ) > O(z,t 38
(i ) ez 0E). G Jmep( ARGz 06r) 6y



Abstract and Applied Analysis

is satisfied or the ‘energy” function F,(z,t) satisfies the esti-
mates

F,(z,t) <F,(z,t") < —®(0,¢") exp [~ (k (t) + 2At) 2]

< -0 (0,1) exp [ (k (1) + 2At) 2],
(39)

where t* is a value (see (27)) belonging to (0,t].

4. Spatial Decay Estimates

In this part, we can give the spatial decay estimates based on
a second-order differential inequality.
We add some conditions on the solutions
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We now tackle the item

t oo
a J J J exp (—wn) v, u ,dAdn
L

0Jz

0Jz

t oo
=-a J J J exp (~wn) v g, o dA dny
Lg

t
-a J J exp (—wn) v, u, dx,dn
0o Jr

z

0 Jz

t
-a J J exp (—wn) v, u, dx,dn
0o Jr

z

z

t oo
=-a J J J exp (~wn) v gou,,dA dn
Lg

t oo
+aw J J exp (—wn) vy udA dn
Lg

o
+aJ J exp (~wt) v g udA
L

t oo
=a J J J exp (~wn) v gouudAdn
L

t
+a J J exp (—wn) v, udx,dn
L

(42)
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t
-a J J exp (—wn) v, u,dx,dn
0o Jr

z

t
+a J J exp (~wn) vy, udx,dn.
0oJr

z

(43)

If we define a new function

E(z,t) = P12w .[o J JL exp (—wn) ui,dA dn
z 3
J- J- exp (—wt) u,u ,dA
L
w t roo
+— J J J exp (—wn) u u dAdn
2 Lg o
1 (e}
+ = j j exp (—wt) u u dA
2 L e
t oo
+tu J J J exp (—wn) gt o, dA dn

z L

t oo
+ 22 J J J exp (—wn) vildA dn
L
E (44)
xp (~wt) v,v,dA

t oo
+ J JL exp (~wn) v opv (pdAdn
£
+ Y JOO j exp (—wt) v 45V ,gdA
2 L B ap

mz t oo
+7,[ j J exp (~wn) v gV aydAdn

z 3

0 Jz

t oo
+aw J J J exp (—wn) v, udA dy
L

[e¢]
+a J J exp (~wt) v 4 udA,
z L

on combining (44), (42), and (43), we can easily get

E(z,t) = - J: L exp (~wn) u,u,dx,dn
t

-+

1],

+ )/J

_n
k

exp (~wn) u,u,,dx,dn

[=}
—

z

exp (—wn vomv)ladxzdn

(=}
b

z

exp (~wn) v, v, ppdx,dn

z

S
S

t

J exp (—wn) v, v, dx,dn

0 Z

s
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t
ta J J exp (~wn) v, u, dx,dn

0Jr,

-

-a J J exp (~wn) v, udx,dn.
0Jr

z

(45)

Using the Cauchy inequality, we obtain

t o0
aw J J J exp (—wn) v, udA dr]‘
L

0Jz

<ﬂj
8 Jo

2 2 2 t o0
+ 22 wh J J J exp (—wn) u u dAdy,
0 Jz L

ym?

J JL exp (—wn) v v (gdAdn
:

z

(46)
aj J exp(—wt)v,‘mudA’
L

z

,y (e}
< 3 J J exp (—wt) v 4V (gdA
z L
2a° W
yr?

J- J- exp (—wt) u  u dA.
Le

z

If we choose suitable a such that

a*h?
<
2

my

| —

on combining (44)-(46), we have
t roo
E(zt) > A7 J J- J‘ exp (—wn) uzrldA dn
4 Jo )z i, ’
J J exp (~wt) uu,dA
L
w t oo
+— J J J exp (—wn) u u dAdny
4 L o
1 (9]
+ - J J exp (—wt) u u dA
4 L o
Y t oo
+3 J J LE exp (~wn) t g, th o, dA diy
. LE exp (—wn) v,zndA dn
2
J J exp (~wt) v,v,dA

z L

t oo
Ml J J J exp (—wn) v g (pdAdn
Lg
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+ijj exp (—wt) v 45V ,gdA
4 z LE o Lafp

m2 t oo
+— J J J exp (~wn) v 4V 0 dA dn.
L

2k 0 Jz
(48)
We define
Fan=| EGod
t oo
=— J J J exp (—wn) u,u,dAdn
0 Jz L
t oo
—u J J J exp (~wn) u,u,,dAdn
0 Jz L
t oo
- YJ J J exp (—win) v g,V dA dry
0 Jz LE
(49)

t oo
+y J J J exp (~wn) v, v, zsdAdy

z L
m2 t roo
e J J JLE exp (~wn)v,v,,dAdy
t oo
ta J J J exp (~wn) v,u,dAdn
Lg
t oo
-a J J J exp (~wn) v,,udAdy.
0 Jz L
On combining (44) and (49), we also have

t oo
F(z,t) = pw J J LE (& - z) exp (~wy) u’zndAdq

2 0 Jz
(™
+ = J J (& - z) exp (~wt) u,u ,dA
z LE
w t roo
+= j J J (& - 2) exp (~wn) uu,dAdn
2 Jo )z i, o
1 (o)
+ = J J (& -2)exp (—wt)u u, dA
2 z L o

+u Jt JOO JLz (& - 2) exp (~wn) u g1t o, dA dn

L[] et

1

ro JL (& —z)exp (~wt) v,v,dA

3

S

t roo
J J J (& — 2) exp (~wn) v 45V 4pdAdy
0 Jz

NI‘<

JOO L (& -2)exp (- W) V48V apdA
z 3

2 Jt J'OO J (& —2)exp (~wn) v v 0y dAdn

0Jz

>\~|§

+aw J-t J-z J- (£ - 2) exp (-wn) v 4 udAdn

0

JOOJ (€ — z) exp (—wt) v y udA.
Lg
(50)

Following the Schwarz inequality, we can easily get
t oo
F(z,t) > pw j j J (&-2z)exp (—u)ﬂ) ui,dA dn
Le
P
+ J J (€& - z) exp (~wt) uu ,dA
z L
w t oo
+ — J j J (E_ Z) exp (—wn)u(xu“dAdn
4 L o
1 [ee]
+ = J J (& —2)exp (—wt)u u, dA
4 L o
7 t oo
+5= J J J (€ = 2) exp (~wn) u g1 o, dAdn
2 L e
t roo
. P I J I (& —z)exp (—wn) vzndA dn
0Jz JrL; ’
P
+ = J J (& -2)exp (~wt) v,v,dA
4 L T
t roo
Mad 4 J J J (& — 2) exp (—wn) v 5V opdAdn
Le

i
+ = - —wt dA
. L (& -2)exp(—w )V oY o

m” [ (*®
Tk Jo J L{ (€ - 2) exp (-wn) v o,y dA dry
(51)
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and we also get

OF (z,t)

3 =-E(z,t), (52)

*F(z,t) _ pw [*
52 2 TJ- J-L exp (—wrn) u)zndAdq

z

. J exp (~wt) u,u ,dx,
L

w t
+ — J- J- exp (—wn) u 4u dx,dn
4 L e

z

1
+ = J exp (—wt) u u dx,
4 )L e

t
+ g J JL exp (~wh) gt o, dx,d1

, (53)
ks L L exp (—wrn) vi]dxqu

z

J exp (—wt) v, v, dx,
L

z

¢
+ - L L exp (—wn) v 4 qgdx,dn

4 z
+ % JL exp (—wt) v)“ﬁv,“ﬂdxz

2 ot
+ e Jo JLZ exp (—wn) VoV an@%2A1.

3

Our goal in this part is to derive a differential inequality
for the energy F(z, t) of the form

0*F oF

32 Ny, nF=z0

V1,7, > 0. (54)

From the definition of F(z,t) in (49), using the Schwarz
inequality and (52), we can get

J J J exp (~wn) u,u,dAdn
Lg

t
ptj J J exp (~wn) u,u,,dAdn

0

t
Jj J exp (~wn) v g, v 1, dA dn

0

.<

m2 t oo
_ TJ J JLi exp (~wn)v,v,,dAdny

0 Jz

Abstract and Applied Analysis

t roo
+ta J- J- J- exp (~wn) v,u,dAdy
0Jz L

4

t roo

-a J J- J- exp (—wn) v, udAdny
0Jz L

< (k) 3%

(55)

where k, is a positive constant.
In order to give a bound for F, we only need to give a

bound for y jot LOO JL£ exp(—wn)v,,v13d A dn. We know that

t oo
y J J JL exp (~wn) v, v, zsdAdy
€

0 Jz

t 0O
=-y Jo J JL exp (~wn) v g,v,sdAdn (56)
¢

z

t
-y L L exp (~wn) v, v, dx,dn.

z

Using the Schwarz inequality (52) and (53), we obtain

oF 0*F
+ 382,

(57)

(=kz) —

t oo
‘y J J L exp (—wn) v, v, 5pdAdy| <
;

0Jz

with k, and k; being all positive constants.
A combination of (55) and (57) leads to the result

oF  0°F
F< (_kl —kz) a_Z + k3a_,22

(ky + k,)/k; and y, = 1/k;, we can get the

(58)

If we sety, =
result (54).
Inequality (54) may be rewritten as

<i_a><M+bF(z,t)>zo, (59)
0z

0z
where a = (\|y? + 4y, + 11)/2,b = (\[y? + 4y, — y1)/2.
From (59), we have
9 [e (M +bF (2, t))] > 0. (60)
0z 0z

Integrating (60) with respect to z from z to co,we obtain

OF (z,t)
0z

We can easily get

+bF (z,1) < 0. (61)

F(z,t) < F(0,t)e . (62)

Theorem 2. Let (u, v) be classical solution of the initial bound-
ary value problems (4)-(6); the solutions satisfy conditions
(40). One can get the decay estimates

F(z,t) < F(0,t)e™. (63)
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