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Video streaming is predicted to become the dominating traffic in mobile broadband networks. At the same time, adaptive HTTP
streaming is developing into the preferred way of streaming media over the Internet. In this paper, we evaluate how different
components of a streaming system can be optimized when serving content to mobile devices in particular. We first analyze
the media traffic from a Norwegian network and media provider. Based on our findings, we outline benefits and challenges for
HTTP streaming, on the sender and the receiver side, and we investigate how HTTP-based streaming affects server performance.
Furthermore, we discuss various aspects of efficient coding of the video segments from both performance and user perception
point of view. The final part of the paper studies efficient adaptation and delivery to mobile devices over wireless networks. We
experimentally evaluate and improve adaptation strategies, multilink solutions, and bandwidth prediction techniques. Based on
the results from our evaluations, we make recommendations for how an adaptive streaming system should handle mobile devices.
Small changes, or simple awareness of how users perceive quality, can often have large effects.

1. Introduction

Smartphones and tablets have developed into popular devices
for streaming media. For example, YouTube [1] reports that
their traffic from mobile devices tripled in 2011 and that
more than 20% of the global YouTube views took place on
mobile devices. Cisco’s Visual Networking Index [2] ranks
video traffic to be the fastest growing traffic type in mobile
broadband networks, with a predicted 16-fold increase in
mobile video streaming between 2012 and 2017. Such an
increase would imply that video streams will make up two-
thirds of the world’s mobile data traffic by 2017.

The main idea of adaptive streaming over HTTP is to
deliver video by splitting the original stream into inde-
pendent segments of a specified length. The segments

are encoded in multiple qualities (bitrates) and uploaded
to web servers. Segments are downloaded like traditional
web objects, and a client can select bitrates for individual
segments based on, for example, observed resource avail-
ability. Adaptive HTTP streaming has many advantages
compared to traditional streaming techniques, for example,
NAT-friendliness and TCP’s congestion avoidance, as well
as the existing infrastructure’s scalability using caches and
content distribution networks. Furthermore, adaptive HTTP
streaming is supported by major industry actors and has
been implemented in systems such as Microsoft’s Smooth
Streaming [3], Adobe’s HTTP Dynamic Streaming [4], and
Apple’s HTTP Live Streaming [5]. This kind of streaming
is also ratified for an international standard by ISO/IEC,
known as MPEG Dynamic Adaptive Streaming over HTTP
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(MPEG-DASH) [6]. The technology has been used to stream
major events like the 2010 Winter Olympics [3], the 2010
FIFAWorld Cup [7], and the NFL Super Bowl [7] to millions
of concurrent users. Adaptive HTTP streaming is also used
by popular streaming services such as Netflix, HBO, Hulu,
Viaplay, TV2 Sumo, and Comoyo.

Despite the recent popularity, large-scale HTTP stream-
ing solutions are relatively new, and there aremany challenges
left to solve. For example, segmented video streaming causes
a distinct traffic pattern (on/off) different from most HTTP-
based traffic, and TCP’s unicast-nature is not a good match
for the limited resources in mobile broadband networks.
Moreover, mobile devices are heterogeneous, which means
that one quality scheduling algorithm will not provide the
optimal experience for all devices. Also, the bandwidth in
wireless networks, especially mobile broadband networks,
fluctuates more than in fixed networks [8, 9]. In this paper,
we address some of the key challenges in such a streaming
scenario with a main focus on mobile devices. In particular,
we discuss performance related aspects of the entire stream-
ing pipeline, from the sendermachine to the receiving device.
We have evaluated the different components by conducting a
series of simulations and real-world experiments. From the
experimental results, we put forward suggestions for a range
of enhancements to improve streaming performance. As a
worst-case scenario with high workload peaks and a large
number of concurrent users, Section 3 presents an analysis
of user statistics from a large live streaming event. These
statistics demonstrate the benefits of HTTP streaming from
a service provider’s perspective. We then look at how HTTP-
based streaming affects server performance in Section 4,
while Section 5 focuses on video coding and adaptation
with respect to server performance and user perception.
Section 6 provides an analysis of streaming performance
and quality (bitrate) adaptation schemes, whereas Section 7
outlines how HTTP streaming can benefit from bandwidth
aggregation. Section 8 presents ideas and suggestions on how
to improve streaming quality by using bandwidth lookup
services. Finally, Section 10 summarizes and concludes the
work by highlighting the core ideas.

2. Related Work

2.1. HTTP Adaptive Streaming. Video streaming is a
bandwidth intensive service, which typically requires that
providers make large investments in infrastructure. With
cost-effective solutions that reuse existing infrastructure,
HTTP has become the de facto protocol for adaptive
streaming of video content, and adaptive HTTP streaming
is now widely deployed by major systems provided by, for
example, Microsoft [3], Adobe [4], and Apple [5].

With HTTP adaptive streaming, media players are able
to download a segment in a quality (bitrate) that matches
resource availability both in the network and on end systems.
Consequently, the player can trade off quality for a more
robust playout. For example, if the media player selects a
video quality where the bitrate is lower than the current
download rate, the unused bandwidth may serve to fill

the buffers and avoid playout stalls. An adaptation strategy
that aims at the right trade-off must take a multitude of
factors into account.These include average quality, frequency
of quality switches, maximum buffer size, and prediction of
the rate of download for the following segment.

Adaptation strategies for this kind of segmented HTTP
streaming have recently become a hot research topic. For
a wired network scenario, there are several studies on the
effectiveness of rate-adaptation algorithms in the existing
systems of Microsoft, Adobe, and Apple and a variety of less
prominent systems (e.g., [9, 12, 13]).

Concurrently, with these studies of the state of the art,
the search for algorithms that ensure long-term stable quality
has commenced. Researchers have held the view that long-
term stability is beneficial for users’ quality of experience.
A study that has supported this belief was conducted by
Zink et al. [14]. With adaptive HTTP streaming in mind,
Tavakoli et al. [15] conducted a new study on this subject and
found that quality increase yields lower QoE than constant
quality at high bandwidth, while this is not necessarily
the case for constant quality at low bandwidth. Decreasing
quality, however, was found to be generally disruptive toQoE.
Borowiak and Reiter [16] found indications that high activity
in the content decreases quality requirements over time. In
spite of this, we believe that the rule of thumb that targets
long-term constant quality can still be considered valid.

This goal has been pursued by Akhshabi et al. [17], who
developed the client-side AdapTech mechanism to address
the various problems of the 3 main commercial HTTP
adaptive streaming systems. This was also the goal of Jiang
et al. [18] and our own client-side reactive algorithm [10].
Akhshabi et al. [19] proposed also a server-side traffic shaping
to stabilize the oscillation of streams. Miller et al. [20] aim
at a trade-off between startup latency and avoiding quality
switches, while Li et al. [21] observed that streaming with
Microsoft Smooth Streaming led to synchronized quality
swings for multiple streams sharing a bottleneck and devel-
oped PANDA to compensate for this. Houdaille andGouache
[22] apply traffic shaping with the goal of achieving stable
quality.

2.2.WirelessHTTPAdaptive Streaming. Pu et al. [23] propose
a proxy that can perform adaptation between wired and
wireless networks to increase fairness for HTTP adaptive
streaming to wireless clients. The importance of this work
is demonstrated by Mansy et al. [24], who evaluated mobile
HTTP adaptive streaming to variousmobile phone operating
systems. They observed basic differences in delivering of the
same service to different platforms and demonstrated that
they lead to unfairness. Furthermore, Siekkinen et al. [25]
showed results that imply that the bursty nature of HTTP
adaptive streaming can be used for the benefit of power
consumption in wireless network. While Pu et al. [23] use
a proxy server, Havey et al. [26] created a receiver-driven
rate-adaptive algorithm forwireless streaming. Also ourwork
avoids middleboxes for streaming smoothly to mobile clients
[27]. Rebuffering as the single most inhibitive factor to QoE
motivated the approach by Oyman and Singh [28].
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Figure 1: The Comoyo streaming infrastructure.

Figure 2: Heat-map of the geographical IP distribution in the world
(the highest density of clients is in the red areas).There are also some
clients in Russia and Japan outside the shown map.

3. HTTP Streaming: A Providers’ Perspective

To investigate the potential benefits of HTTP streaming for
service providers, we evaluated the behavior of the Smooth
Streaming [3] system used by the Norwegian TV/movie
provider Comoyo. Here, we present results from an analysis
of log files from 8 live-streamed Norwegian premier league
soccer matches (more details can be found in [29]). The
client- and server-side logs were collected on May 23, 2012,
but we have made similar observations on other dates and in
on-demand scenarios.

The Comoyo network infrastructure, illustrated in
Figure 1, is a typical HTTP streaming system for on-demand
and live services. Microsoft’s IIS media server is run on
several machines, which are placed behind a load balancer.
Incoming requests are then distributed across servers,
according to a proprietary scheduler.

The connections to the Comoyo servers originated from
194 different network providers, and we logged 6567 unique
client IP addresses. As expected, the majority of clients were
located in Norway, as depicted in Figure 2. Nevertheless,
users were located worldwide, distributed across 562 cities in
36 countries.

In traditional streaming systems, there has been a one-to-
one ratio between the number of active users and users that
were receiving content directly from the server. Our analysis
of the Comoyo log files shows that this is not the case with
HTTP streaming. Compared to the 6567 unique client IP

addresses we observed, in the client-side logs, only 1328 were
logged at the media servers. Hence, a large amount of the
traffic is handled by existing infrastructure like proxy caches.
This observation is strengthened by the fact that the media
servers provided roughly 22% of the estimated number of
bytes received by clients. In other words, HTTP streaming
reduces the need for providers to make large infrastructure
investments.

An analysis of the client access patterns (Figure 3)
revealed that the vast majority of streams commenced when
the firstmatch started at 17.00UTC (Figure 3(a)). As a result, a
large number of clients wished to access segments at the same
time. Even though the arrival times of viewers are distributed
around the start time of the game, this graph does not show
whether clients follow the streams live or whether late viewers
chose to watch games from their start.

This information can be derived from Figure 3(b), which
shows how much time has passed between availability of a
segment on the server and the time when it was requested
by users of the system. Figure 3(b) shows the CDF only for
the 5 most popular games, each represented by one line, but
the behavior is representative for all games. The figure shows
that about 90% of requests for a particular segment were
served within a 10-second period after that segment became
available; we can therefore conclude that most viewers chose
to follow the games live.

The decision to follow a live stream implies that the
majority of viewers try to access a very small number of
identical segments through concurrent TCP connections.
This is bound to lead to a concentrated on/off workload at
the server. While we have observed this behavior for scenario
of live football streaming, it has also been reported for new
movie releases when release dates have been advertised [30].
Furthermore, Li et al. [21] noticed that streaming sessions
can synchronize implicitly even if they have been started
at arbitrary times. Accordingly, the next section goes into
further details on optimizing the management of concurrent
segment requests.

The client logs revealed that about 99.5% of the clients
experienced quality (bitrate) switching during their stream-
ing session. As shown in Figure 4(a), the number of bitrate
switches during a session varied from a couple to well over
100. Furthermore, more than half of the sessions experienced
at least one buffer underrun with a related playout stall
(Figure 4(b)). Underruns such as these are in most cases
due to inefficient video adaptation. Adaptation algorithms
might, for example, not be designed to properly consider
bandwidth fluctuations. Varying network conditions are a
common phenomenon and especially in wireless mobile
broadband networks.

In summary, our analysis of the Comoyo system shows
the efficiency of adaptive segment streaming. However, some
areas still require improvement. On the sender side, better
solutions are needed for the management of concurrent
segment requests, while, on the receiver side, the number of
quality switches and buffer underruns should be reduced.The
latter challenges are especially important in mobile scenarios
where network availability varies far more than for fixed
networks.
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Figure 4: Session statistics based on client logs.

4. Concurrent Management of Connections

Performance of the server or the sending machine, either
an origin server or a proxy cache, is important to the
overall quality of the streaming service. In this respect,
there are differences between connections to mobile wireless
devices and a machine connected to the wired network. For
instance, mobile providers make heavy use of middleboxes
to distribute more fairly the limited radio resources amongst
the users. Also, smartphone vendors typically set the TCP
receiving buffer size to a small value, to compensate for buffer
bloat introduced by the middleboxes [31]. However, each
device (mobile or middlebox) will speak normal TCP, and
even though the actual transmission might differ, the request
phase will be the same as for a fixed connection. Thus, at

the sending side, it often does not matter whether the client
is mobile or not; the machine serves each request equally.

As an example, consider a live event that is streamed to a
massive crowd equipped with different types of devices and
connected to different types of networks. In this scenario, the
servers experience a massive load. Such a scenario relates to
our observations from Figure 3(b), where the same segment
is served many times over within a very short period of time.
In the live scenario, this happens because all clients want
to be as live as possible and therefore request a segment as
soon as it becomes available. In an on-demand scenario, one
might observe the same pattern after the buffer is filled, but
not necessarily for the same segment. For a single client,
it is well known that a segmented download leads to an
on/off network traffic pattern. Typically, a client downloads
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Figure 5: Observed TCP congestion window for 2-second seg-
ments.

the most live segment and then waits for the next segment
to become available. Figure 5 illustrates how the congestion
window grows during the on-period and shrinks during the
off-period. For the server machines, such accesses might
result in a frequent high-load/idle-load pattern.

Several trade-offs and potential performance enhance-
ments originated from these observations.We have evaluated
both server-side and client-side modifications. The modifi-
cations were evaluated using the well-known ns-2 network
simulator, because we could not deploy them in a real-world
experiment in the running system of any of our partners.
Thus, we perform the evaluation in a lab environment with
limited resources.The setup is similar to a one-server version
of the infrastructure in Figure 1, where clients access the
server over a 100Mbps bottleneck link (we have found similar
trends when testing with a 1 Gbps bottleneck link, with only
the total number of clients scaled up; see [32] for details).The
delays (RTTs) between the clients and the server are normally
distributed with an average of 55ms and a variance of 5ms;
these values correspond well to those observed for ADSL
access networks [33]. The router queue follows the rule of
thumb of setting the size to one bandwidth delay product
(BDP) and is configured as a drop tail queue, which is one
of themost commonly used queuing strategies. Furthermore,
we modeled client arrivals as a Poisson process with an
average interarrival time: 𝜆 = number of clients/segment
duration. This means that all clients join the stream within
the first segment duration (the segment duration is fixed to 2
seconds; see Section 5.1). This models the case when people
are waiting in front of a “Your stream starts in . . .” screen for
the start of stream so that they do not miss the beginning. To
evaluate the performance of the server, we used liveness and
packet loss as main metrics. Liveness measures the duration
in time that the client lags behind the live stream (in terms

of display latency, after a segment is made available on the
server).

In Figures 6, 7, and 8, the liveness is shown as a snapshot
of the client at the end of a 20-minute stream, and it includes
initial startup latency and potential stalls. Every experiment
was run 10 times with slightly different client interarrival
times. The plots show the average value with the error bars
as the minimum and maximum values (which in most cases
are too small to be seen).

4.1. Performance of TCP Congestion Control. Running on
top of TCP, the performance of HTTP streaming is heavily
influenced by the TCP congestion control algorithm. In
this section, we therefore evaluate how the most common
versions cope with the on/off traffic pattern.

Figure 6 shows the achieved average liveness and
the number of packet drops across all clients for the
evaluated congestion control algorithms. Although the
server bandwidth of 100Mbps should provide enough
bandwidth for smooth playout for around 200 clients,
the liveness graph shows that this is not the case. As the
clients number grows, the liveness decreases due to multiple
playout stalls. The reason for this inefficiency is found in
the overflowing of the router queue. When the queue is full,
incoming data packets are discarded (Figure 6(b)) and must
be retransmitted. We also observe that the more aggressive,
loss-based variants of TCP congestion control algorithms,
like Cubic and Bic, generate the highest losses and have
the worst liveness. This is due to higher competition for
the resources during the on-periods, resulting in higher
loss rates. An interesting congestion control alternative is
Vegas, which backs off before the bottleneck queue overruns.
We see that Vegas also performs better than Cubic in
terms of liveness and can cope with an increased number
of clients better. However, Vegas has been shown [34] to
perform badly when competing with loss-based congestion
controls. Therefore, unless the majority of traffic through
the bottleneck consists of TCP connections using Vegas, one
must consider the deployment of Vegas very carefully. In
the remaining experiments, we therefore use default Linux
congestion control (Cubic) [35].

4.2. Requests Distributed over Time. In Section 3, we
observed that a competition for resources occurs at the
server because clients often download a segment as soon
as it becomes available. This type of segment request
synchronization leads to reduced performance since many
clients hit the on-periods at the same time, while the
off-periods leave the machine idle.

To avoid this synchronization, we propose to distribute
the requests over one segment duration. There are several
ways to achieve this, but we aim for no additional load
on the server. With our approach, the clients check the
media presentation description for the most recent segment
following the start of a session. After that, a new segment
is assumed to be produced for every segment duration.
When the segment duration has passed, the next segment is
requested. Since the initial time for availability of a segment
differs between clients, the requests stay distributed over time.
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Figure 6: Performance of alternative TCP congestion control algorithms.

In our experiment, the requests are exponentially
distributed over the entire segment duration. The results
show that distributed requests increase the liveness when the
number of clients is small, while it remains largely unchanged
with a larger number of clients (Figure 7(a)). However, the
number of packet losses is lower for distributed requests
(Figure 7(b)), providing a better utilization of network
resources.

4.3. Limited Congestion Window. Both live and on-demand
scenarios display similar on/off patterns, and, in this case, a
fast download of a segment prolongs the wait period. Hence,
there is no need for the client to download a segment as
quickly as possible, as long as it is downloaded in time for
playout. Furthermore, TCP’s bandwidth sharing is fair for
long running data transfers. However, for short transfers,
the sharing can become unfair. To reduce this unfairness,
we have explored the effects of limiting the server-side TCP
congestion window. The limited congestion window can
lead to longer download times, thereby reducing off-periods
and resulting in a behavior similar to TCP pacing [36] or
server-based traffic shaping [19]. To avoid playout stalls due
to congestion window limitation, we chose a congestion

window that would allow for a segment to be easily down-
loaded in one segment duration [32].The congestion window
limit was set to 20 TCP segments, which equals a bandwidth
3 times larger than the average bitrate of the stream (to
account for bitrate variance). Figure 8(a) shows that this
approach improves the average liveness. Furthermore, from
Figure 8(b), we observe a significant reduction in the number
of dropped packets. This reduction also indicates a lighter
load on the bottleneck router, resulting in a more efficient
resource utilization.

In summary, simple changes to server parameters like
TCP congestion control and the client-side request strategy
can lead to increased performance in terms of both better
liveness and video quality (see [32] for more details).

5. Video Coding for Mobile Streaming

The choices with respect to video coding strongly influence
the quality of the received video. For example, the length
of the segments affects the encoding efficiency and the
adaptation points, and the parameters used to code video
in different qualities often determine the visual quality of
the video. Furthermore, as each segment is wrapped with
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Figure 7: Performance of regular versus distributed requests.

metadata, the size of the container determines the effective
payload used for video, that is, again impacting the perceived
quality. In this section, we discuss various trade-offs in this
context.

5.1. Segment Lengths. Video segment duration influences the
performance ofmedia streaming in several ways, fromquality
adaptation frequency and number of requests and files to
handle to coding efficiency and liveness of streams. Different
systems use different segment lengths that typically vary from
2 to 10 seconds; for instance, Microsoft uses 2–4 seconds in
Smooth Streaming, while Apple recommends segment length
of about 10 seconds. The duration of segments has been
discussed briefly before [9], but here we give an evaluation
of efficiency from the network perspective and the perceived
user experience.

From thenetwork point of view, we know that the length of
a segment is tied up with the efficiency of congestion control,
as outlined in Section 4. To explore the effects of segment
duration, we used the same setup to run simulations with the
industry standard 2- and 10-second segments.

The trace of a congestion window for the 10-second
segments is plotted in Figure 9. Compared to the 2-second
segment scenario in Figure 5, we see that the window size
oscillates with a lower frequency relative to the segment size.

Note here that 10-second segments are 5 times longer in
duration, but, due to increased compression efficiency, they
are not necessarily 5 times larger in size. Nevertheless, longer
duration segments are larger than shorter ones and therefore
require more time to download. Prolonged download (on)
and idle (off) periods provide TCPwithmore time to reach its
operating state. Figure 9 also exhibits the characteristic curve
of Cubic [35] when it probes for available bandwidth, which
the limited time of the 2-second scenario (Figure 5) does not
allow.

Concerning performance, Figure 10 portrays the liveness
and packet drops for a live stream. Our experiments show
better liveness for the 2-second scenario, in part due to the
distribution of client arrivals across one segment duration.
Client arrival times are generally higher for the 10-second seg-
ments, increasing the average startup times and decreasing
the liveness. Both scenarios lose liveness in a similar manner
as the number of clients increases.

Figure 10(b) is surprising. Although Figure 9 shows that
10-second segments allow each TCP stream to leave slow
start and enter congestion avoidance mode, this is not
the case for 2-second segments (Figure 5), and although
the queue length is identical to one BDP in both cases,
we can see from Figure 10(b) that the 10-second segments
lead to a higher packet loss rate for a smaller number of
clients. For the case where client requests are distributed
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Figure 8: Performance of a limited TCP congestion window.

over the entire segment duration, both Esteban et al. [37]
and Kupka et al. [32] showed that longer segments lead to
higher average quality, which would contradict this finding.
However, Figure 3(b) shows that live requests concentrate
right after a segment becomes available. The result is more
competitions and a queue that is full when sized at the BDP.
Consequently, we argue for 2-second segments as the better
alternative for the live streaming scenario.

While short segment lengths are beneficial with respect
to bandwidth adaptation, our studies on perceived quality
of video streams show that there is a perceptual limit to
how far segment durations can be reduced. From the user
perspective, very short segments may introduce rapid quality
changes as the stream adapts to the available bandwidth.
To study the relation between perceived video quality and
frequent segment switches, we ran a series of subjective
tests for different quality adaptation techniques. Specifically,
we explored the flicker effect [38], an artifact that mimics
the visual consequence of frequent bitrate adaptation. A
total of 28 assessors took part in the subjective evaluation
tests, which were conducted in a mobile scenario. Assessors
rated the quality of 12-second-long videos presented on 3.5-
inch iPhones with 480 × 320 resolution screens. We used
4 different video sequences, selected to include contents
with both high and low motion and spatial detail. The
tests included 3 different adaptation techniques: compression,

resolution, and frame rate. Video compression was imple-
mented with the H.264 encoder’s quantization parameter
(QP), using compression rates that ranged from QP12 (best
quality) to QP40 (worst quality). The resolution was set to
480 × 320 pixels or downscaled to 240 × 160 or 120 × 80
pixels, and the frame rate was varied from 30 fps to 3 fps.
Videos were presented with quality changes occurring at
regular intervals, between 0.2 and 3 seconds. Flicker sessions
were also compared to sessions with constant high or low
quality. Following each video presentation, assessors were
first asked whether they perceived the video quality to be
stable. Following this step, they were prompted to give an
acceptance score for the video quality using the ITU-T P.910
Absolute Category Rating (ACR) method [39]. P.910 ACR
defines a 5-point assessment scale with the labels excellent,
good, fair, poor, and bad. Video sequences must be randomly
ordered for each test subject.

To illustrate our findings, mean acceptance scores from
the subjective assessments are plotted in Figure 11. Each
subfigure refers to one test series and demonstrates the
acceptance of scaling with one adaptation technique. Each
series included constant-quality reference videos at both the
highest quality (HQ) and lowest quality (LQ) for each content
type.The references were part of the randomly ordered series.
The 𝑥-axis of all subfigures shows the time between quality
changes in seconds.
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ments.

Figure 11(c) reveals that adaptation in the temporal
dimension is considered acceptable for all periods with frame
rates at or above 15 fps. On the other hand, the flicker effect
is quite pronounced for frequent quality changes in the
spatial dimension, as seen in Figure 11(a) for compression
and Figure 11(b) for resolution. Nevertheless, the influence of
spatial flicker on perceived quality diminishes as the periods
increase; that is, the time between quality changes grows.
Important in the context of adaptive TCP streaming is the
observation that sessions are rated worse than sessions where
the quality is kept constantly low when the quality is changed
more frequently than once every second. When segment
switches occur at intervals that are 1 second or less frequently,
mean acceptance scores for many quality shift levels are
higher than the constant low quality. At 2 seconds and above,
this trend is more or less established, with most quality shifts
rated higher than those kept at a stable but low quality level.
Figure 11(d) illustrates that this holds true across different
content types as well.

Combined, the studies on segment duration from both
the network and the user perspective highlight the benefits
of 2-second segments. Shorter durations lead to unaccept-
able quality ratings, poor coding efficiency, and high load
in terms of requests. Longer segments increase encoding
efficiency and reduce the number of requests but give longer
response times for adaptation with the liveness going down.
The industry’s standard range of 2–10 seconds will, from
our experience, yield reasonable network efficiency, yet our
studies favor the lower part of the range.

5.2. Perception and Video Adaptation. While the rate of qual-
ity adaptations may influence perceived video quality due to
the resulting flickering, the reduced quality of a downscaled
video stream is also bound to affect the subjective experience.

Adjustments to the compression ratio, resolution, or frame
rate give rise to distinct visual artifacts, so it follows that they
are not perceived in the same manner. When choosing an
adaptation technique, providers benefit from knowing how
acceptance can vary between the resulting quality reductions.
Using the same subjective studies presented in Section 5.1,
we ran further analyses with the ratings for presentations
where the video quality was kept constant. Thus, we ignored
the effect of quality switches (flicker) but kept the range
of parameters for changes in resolution, frame rate, and
compression ratios. These analyses are considered to be a
prestudy for future investigations that will include quality
adaptations inmore than one dimension, as well as additional
quality levels. Here, we present our initial suggestions for
perceptually preferable quality adaptation schemeswithin the
trade-offs recommended for mobile devices by Akamai [40],
Apple [41], and Microsoft [42].

In this respect, Figure 12 depicts scores and statistics for
the different quality adaptation schemes, arranged from the
highest to lowest mean acceptance score. As seen from the
figure, median andmean acceptance scores are below neutral
for all adaptations with compression ratio at QP32 or above,
frame rate at 10 fps or below, and resolution at 240× 160 pixels
or below.These findings imply that video quality adaptation at
these levels is generally perceived as unacceptable for mobile
devices with 480 × 320-pixel screens.

When it comes to frame rate, McCarthy et al. [43]
suggested that 6 fps is sufficient for acceptable video quality,
yet our data set does not provide support for this threshold.
We found mean acceptance scores below neutral even at
15 fps. This decrease in acceptability scores could be related
to the larger screens of today’s mobile devices and possibly
to an increase in the use and familiarity of watching mobile
video. Judging from the implemented levels of compression
and resolution and the results shown in Figure 12, we surmise
that their thresholds in our setting are located around QP32
and 240 × 160 pixels. These acceptance thresholds for each
adaptation technique define the lowest quality without a
noteworthy reduction of average user satisfaction.

The only four levels with mean acceptance scores better
than neutral are all different levels of compression adaptation,
ranging from QP12 to QP28. Slightly below neutral follows
frame rate adaptation at 15 fps. Going by these results, we
can assume that QP compression is the adaptation technique
that provides the most acceptable downscaled video quality.
However, with severely limited bandwidth, these compres-
sion ratios may not yield sufficiently low bitrates, in which
case it would be advisable to reduce the frame rate. Resolution
adaptation appears to be the last resort, only to be applied
under extremely poor conditions.

Furthermore, our results show that quality adaptations do
not operate uniformly across video contents. We found both
the spatial and temporal characteristics of different contents
to interact with the applied adaptation technique. In the
spatial domain, the quality acceptance for video contents
with complex textural details was more negatively affected by
resolution adaptations compared to contents low in spatial
complexity. The quality ratings also seem to reflect a higher
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Figure 10: Performance of different segment lengths.

visibility of compression artifacts in video with smooth or
simple texture than in video with complex texture.

As for frame rate adaptation, videos with fast or unidi-
rectional motion were rated lower than content with slow
or nonorientable motion. In addition, people will likely not
expect artificial movements to be as smooth as true-life
movements. The interaction between compression artifacts
and content characteristicsmay contribute to discrepancies in
the actual acceptance of flicker for different video materials.
With this in mind, it would be prudent for service providers
to consider the type of video content before applying an
adaptation technique.

All in all, for the best subjective experience, it is important
to consider both the required downscaling and the type of
content. With sufficient bandwidth available, compression
adaptation is perceived to be more acceptable than both
resolution and frame rate adaptation. However, if low bitrates
are called for, or the content at hand is high in textural details,
frame rate adaptation may be a more viable alternative.

5.3. Media Container Overhead at Low Bitrate Streaming.
Mobile wireless networks like 3G typically have lower avail-
able bandwidths compared to wired networks. This means
that video data must be available in lower bitrates for mobile
devices. Regardless of which media container format is used,
much of the overhead is proportional to the presentation

unit rate, not the media bitrate. The presentation unit rate is
usually (the exception is adaptation in the temporal domain,
which involves reducing the bitrate through the presentation
unit rate) constant across different quality levels, so this
implies that the relative overhead of the container format
is often higher for low bitrate videos. Consequently, the
container overhead constitutes more of the stream bitrate
in mobile scenarios characterized by low bitrate streams. In
turn, less bandwidth is available for the audio and video data.
Container stream overhead could be reduced by lowering
the video frame rate or the audio sample rate, but, in our
experience, this is rarely done.

The most common container formats used in adaptive
bitrate streaming over HTTP areMPEG-2 Transport Streams
(TS) [44] and the ISO base media file format (BMFF) [45]
(often referred to as “fragmentedMP4”when used in the con-
text of segmented streaming). MPEG-2 TS is the container
format used by Apple’s HTTP Live Streaming format [5]; it is
popular on both iOS and Android devices, and, combined,
these contribute to the vast majority of mobile streaming
devices today. Both the MPEG DASH [6] and Microsoft
Smooth Streaming systems [3] support the far more efficient
fragmented MP4 container, but MPEG DASH has not yet
been widely adopted by the industry.

In Figure 13, we plot the relative overhead of these
containers as a function of the elementary stream bitrate for
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Figure 11: Mean acceptance scores for adaptation frequencies using (a) compression, (b) resolution, and (c) frame rate adaptation. (d) shows
the impact of content type for the compression case.

a stream with 50 presentation units per second (same rate
used for interlaced video in Europe). It is clear from this figure
that fragmented MP4 has very little overhead. The overhead
per presentation unit is only 32 bits when the contained
media streams have fixed sample duration (fixed number of
frames per second for video, or fixed number of samples per
presentation unit for audio). We also see that, compared to
the MP4 format, the relatively high overhead of MPEG-2 TS
makes it unsuited for low bitrate streaming.

Another observation, not shown in Figure 13, is the
low applicability of the MP4 format for low latency (live)
streaming. MP4 is optimized for random access; therefore, it
has a mandatory index where the byte offset to every frame
is stored. Because the index can only be written after the
encoded size of every frame in the segment is known, MP4
carrieswith it a delay equal to the segment duration.However,
in adaptive streaming, each segment typically contains only a
single random access point (a keyframe) at the beginning of
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Figure 12: Box plot of acceptance scores for compression, resolution, and frame rate adaptations. The central box spans the interquartile
range, with minimum and maximum scores illustrated by “whiskers” to the left and right. Within the box, the bold line corresponds to the
median, whereas the dotted line represents the mean acceptance score. The resulting bitrates are also included for each step. The first bitrate
is when using I-frames only, which is used in the subjective assessments in order to maintain focus on the given quality parameters and avoid
irrelevant artifacts. A real-world scenario would include interframe coding (like IBB∗ used in the second bitrate) giving a lower rate (we did
not observe any visual difference between the I∗ and IBB∗ videos); these rates are comparable to the rates observed in the Comoyo analysis
given in Section 3.
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Figure 13: Relative media container overhead as a function of the
elementary stream bitrate in a stream with 50 presentation units per
second.

a segment (typically two seconds in duration). Accordingly,
random access within a segment is pointless. Instead of an
index, live streaming latency can be reduced by using a
container format that precedes each frame with its encoded
size in bytes. This way, the segment can be transmitted while
it is being encoded, and the receiver can access the data
concurrently [46].

6. Quality Adaptation Schemes

In Section 3, we discussed frequent quality changes and
playout stalls due to buffering. Efficient quality adaptation
schemes are essential for avoiding quality degradations
caused by fluctuating network availability. These investi-
gations were performed in wired networks. However, the
network conditions for mobile devices are very different.

Therefore, in order to develop an adaptation algorithm
for the mobile scenario, we have performed a comparison of
commercial adaptive HTTP streaming solutions in commer-
cial 3G networks [13] using six discrete quality levels (ranging
from 250 to 3000 kbit/s). For every segment downloaded
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faces which has several active network connections.

for a given streaming client, Figure 14 plots the quality level
index as a function of time on a bus route in Oslo (Norway).
Large differences between the tested systems can be observed,
and our experiments show that the existing solutions all
have shortcomings like frequent switches and playout stalls.
Apple’s and Adobe’s players represent two opposites. Apple’s
player [5] aims to avoid buffer underruns at all costs, resulting
in low average quality. This means that Apple sacrifices
high average quality for stable quality. In Figure 14, Apple’s
player uses most of the available bandwidth, but, due to
the pessimistic behavior, downloads of many high-quality

segments are started but later stopped in favor of a low quality
segment (thus, wasting a lot of bandwidth). Adobe [4], on
the other hand, strictly follows the available bandwidth. The
player always picks the quality level that most closelymatches
the current bandwidth. This leads to rapid oscillations in
quality and almost no protection against buffer underruns
(since the buffer is usually empty).The best performer among
the commercial media players in our mobile streaming
scenario is Microsoft’s player [3]. It has fairly good average
quality and not too frequent switches between quality levels.
Thus, Microsoft’s solution falls somewhere between Apple
and Adobe, but there is still potential for better utilization of
the available bandwidth, a reduction of quality changes and
underruns.

In this respect, based on our investigations [10], potential
new quality adaptation algorithms for mobile scenarios can
be improved using the following recommendations.

(a) Choose Quality Layers Conservatively While Filling the
Buffer. To avoid buffer underruns, the quality scheduler
should limit quality selection based on the estimated available
bandwidth until the buffer is sufficiently full. In other words,
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path with standard deviation over multiple measurements.

when the buffer fill level is low, the quality scheduler should
try to avoid draining the buffer by only picking quality levels
whose bitrates are slightly lower than the estimated download
bandwidth.

(b) Sample Network Throughput More Frequently Than Once
per Segment, and Estimate by Moving Average of Samples.
When estimating the download bandwidth, an exponentially
weighted moving average of several recent measurements
that are sampled more frequently than once per segment
reduces the impact of observations made from a single

segment’s download time. This smoothens out the rapid
bandwidth fluctuations that could otherwise occur and
reduces unnecessary oscillations in quality.

(c) Prepare for Temporary Network Outages.This recommen-
dation implies that larger buffers should be used so that data
can be available for longer outages. This means that we, for
example, can use the available bandwidth above the playout
rate (or trade off some quality) to prevent buffer underruns,
have a more stable video quality, and continue playback, even
during network outages.

(d) Require Longer Prefetched Times for Higher Quality Layers.
The buffer fullness thresholds for switching between quality
levels should be scaled according to the bitrate difference
between levels. Since the visual quality gain increases approx-
imately logarithmic with the bandwidth invested, requiring a
longer temporal buffer for higher quality layers emphasizes
the reduced quality gain of consuming bandwidth for a
higher quality layer compared to that of ensuring long-term
availability of lower quality layers.

(e) Establish Asymmetric Thresholds for Switching Up and
Down. The thresholds for switching between quality levels
should take into account whether the quality switch is
towards lower or higher quality.

(f) Prevent Switching Up Right after Reducing Quality. After a
drop in quality, the quality scheduler should for a short period
prohibit switches to higher qualities.This reduces the number
of quality fluctuations.

Our implementation of these recommendations is
Algorithm 1, a buffer-based reactive algorithm.

Algorithm 1 (reactive algorithm). The buffer-based reactive
algorithm selects the video bitrate based on the number of
seconds of video that are preloaded in the buffer. Given the
average bitrate𝑅

𝑖
for quality layer 𝑖 of a video and 𝐵 a number

of seconds we want to buffer, we establish the requirement
𝑇
𝑁
= 𝐵 ⋅ (𝑅

𝑁
− 𝑅
1
)/(𝑅
2
− 𝑅
1
) for quality layer 𝑁, where

𝐵 = 10 s.
The algorithm starts always at quality layer 1 and increases

in steps of 1 layer to layer 𝑖 if 1.2𝑇
𝑖
are buffered and decreases

immediately to layer 𝑗 if the buffer falls to 𝑇
𝑗
. After a quality

drop, increasing is blocked for 2𝐵.
For better protection against oscillations and playout

interruptions, the quality level is capped to a level 𝑖 if 𝑅
𝑖
is

the highest rate that is supported by the recently available
bandwidth 𝑟(𝑡). It is computed as 𝑟(𝑡) = 0.9𝑟(𝑡 − 1) + 0.1𝑟

𝑡
,

where 𝑟
𝑡
is the last 1-second sample.

To experimentally evaluate the quality differences
between the different algorithms, we performed video
streaming experiments on various commute routes in
Oslo (Norway) using bus, tram, underground, and ferry
(recorded datasets are available [8]). In Figure 14, we have
implemented Algorithm 1 and evaluated its performance in
a mobile scenario, denoted by “our algorithm” in the last
plot. When using this algorithm, we found the performance
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Figure 18: Observed 3G and WiFi download rates while traveling by tram in Oslo. WiFi was only available at the marked spots.

with respect to quality scheduling to be most similar to
Microsoft’s algorithm. However, the figure also shows that
we achieve better protection against buffer underruns due
to a larger buffer, more intelligent quality switches, and
better bandwidth utilization. This resulted in higher quality
of experience for the users. Nevertheless, as the number
of users streaming video to mobile devices increases, the
competition for the scarce network resources also increases.
In our real-world experiments [10], we did not observe
many competing users in the commute vehicles. In theory,
the recommendations presented above should improve the
situation in this scenario too since it targets bitrate oscillation
problems, but, as shown for wired networks, the commercial
algorithms struggle to share resources in a stable and fair
manner [17, 47]. Thus, new experiments with a large number
of concurrent users should be performed to see if further
adjustments need to be done.

7. Bandwidth Improvements Using Multilink

Wireless networks often provide unreliable and low band-
widths, especially when users are on the move. One way to
alleviate this problem is to increase the available bandwidth
by aggregating multiple physical links into one logical link.
Such a solution would be available to a large share of users,
as most mobile devices on the market today are multihomed.
For example, smartphones and tablets are equippedwith both
WLAN and 3G/4G interfaces, as shown in Figure 15.

In a series of steps, we implemented a solution for
multilink bandwidth aggregation in order to increase the
throughput of data transfer over HTTP [48]. The first step
involved modifying our streaming client and adjusting the
algorithms for adaptive streaming. Secondly, by dividing

video segments into smaller, logical subsegments, with the
range retrieval request-feature of HTTP/1.1, it was possible
to request specific parts of a file. The subsegment requests
were then distributed across the available interfaces, with the
size of each subsegment determined by the estimated link
capacity.

The size of a subsegment has large impact on perfor-
mance; if a slow link is allocated an excessively large share
of a segment, performance might be worse than for a single
link solution. For example, the segment may not be ready
when it is supposed to be played out, causing a deadline
miss and playback interruption. For further improvements
in performance, we used HTTP pipelining to minimize the
idle time of a link. Subsegment size and request distribution
algorithms are discussed in more detail in [49].

Several experiments were run in order to evaluate the
potential gain of bandwidth aggregation in the context of
adaptive video streaming, with performance evaluated for
both on-demand and live streaming. Our client devices
were connected to public wireless networks, as well as fully
controlled networks, where we introduced different levels of
bandwidth and latency heterogeneity. The measured perfor-
mance showed a substantial quality increase with bandwidth
aggregation, along with a drop in the number of playout stalls
[49].

The potential gain in terms of video segment quality of an
example experiment is shown in Figure 16. Here, the mobile
device was concurrently connected to both WLAN and 3G
networks where the average throughput was measured to
be 287 kB/s and 167 kB/s and the average RTT to be 30ms
and 220ms, respectively, for the two types of networks. Each
segment consisted of two seconds of video (following findings
presented in Section 5.1). For on-demand streaming, a buffer
and startup delay of two segments were used. With live
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Figure 19: Performance of a reactive algorithm implemented as proposed in Section 6 versus a predictive algorithm using bandwidth
geolookups.The experiments are performed using both a 3G scenario and a network switching scenario as described in Section 7. To compare
the algorithms on equal terms, one is tested in the real-world setting and the other is simulated using the exact same bandwidth trace.
Experiments where the simulated and the real-world algorithms are switched are presented in [10, 11] with similar results.
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streaming, there was no buffer and segments were skipped
if the client lagged too far behind the broadcast. As shown
in the figure, when we added the second link, the number of
requested and downloaded high-quality segments was at least
doubled; moreover, we observed significantly fewer playout
stalls compared to the fastest of the single links.

From this, we see that bandwidth aggregation can be used
to increase the performance of video streaming on mobile
devices, provided that the scheduling of segments over the
different networks is correctly implemented, that is, taking
into account the characteristics of the different interfaces.
However, bandwidth aggregation comes with a cost, such as
reduced battery life. We are currently working on a more
dynamic aggregation approach, where the extra link(s) will
be enabled only when needed.

8. Bandwidth Prediction

In Figure 14, we showed that there are large differences
between quality adaptation algorithms for on-demand sce-
narios.However, with a few changes, the quality of experience
can be significantly improved.With our enhanced algorithm,
we touched on the concept of bandwidth prediction using
an exponentially weighted moving average. This was a very
short-term prediction, only to be used for the next seg-
ment to be downloaded. However, if an accurate long-term
prediction would be possible, for example, while streaming
on a commute route, the buffering and quality adaptation
choices could be greatly improved. Looking at our bandwidth
measurements for the commute routes in Oslo, for example,
the tram in Figure 17, we see that the observed bandwidth
at a given location can be fairly predictable as the different
measurements have a very little variance. Thus, if this can
be used for long-term predictions, the likelihood of buffer
underruns can be reduced, and we can smooth out the
quality because we have a larger buffer time window to cancel
out bandwidth fluctuations and outages. For example, in a
commute scenario, we may easily collect information about
the following:

(i) the duration of the streaming session, for example,
how much time the tram takes from A to B (this can
easily be logged for repeated trips, or retrieved from
public traffic services),

(ii) the geographical position as a function of time for
the duration of the streaming session (e.g., through
positioning data recorded on previous streaming
sessions on a receiver equipped with a GPS or similar
device),

(iii) the bandwidth for a given geographical position,
for example, building a bandwidth lookup database
through crowd-sourcing, where the video application
reports back its position and achieved bandwidth.

Commute routes are usually highly deterministic, with
respect to both geographical path and duration. When
streaming video while commuting, this kind of long-term
planning is possible using a location-based bandwidth
lookup service for bitrate planning [10, 50]. Subsequently,

Singh et al. [51] proposed a similar geopredictive service as a
network coverage map service.

To evaluate such a service, we built a time-location-
bandwidth database for multiple commute routes and used
this for long-term planning of adaptive HTTP streaming
sessions. Our predictive quality adaptation algorithm cal-
culates the predicted amount of data along the path and
downloads segments in a quality according to the average
bitrate; that is, the highest (stable) quality level that does
not result in a buffer underrun is selected. To cope with
prediction errors due to, for example, network congestion, the
predictive algorithm is combined with a reactive algorithm
based on the recommendations in Section 6. The predictive
algorithm is explained in Algorithm 2.

Algorithm 2 (predictive algorithm). The predictive algorithm
requires a planned commuting route as input. It then queries
the location-based bandwidth lookup service for predictions
along the planned route in samples of 100 meters.

Based on the query response, the client calculates a sched-
ule that selects for every subsequent segment the highest
quality level that could be used for the rest of the trip without
any buffer underrun; that is, it builds an increasing step
function of quality layers.

Segments are downloaded in playout order. For each
downloaded video segment, the client measures and logs
throughput, current position, and buffer fill level. If buffer fill
levels are lower than planned, it compares with the reactive
algorithm (Algorithm 1without the cap) and selects the lower
quality layer of either planned layer or layer chosen by
the reactive algorithm. The client reports its samples to the
lookup service in batches.

For every segment to be downloaded, the results of the
reactive and predictive algorithms are compared, and the
lowest quality level is chosen. The combination of these
two algorithms gives a more stable quality. The predictive
algorithmprevents the reactive algorithm from scaling up the
quality too soon, while the reactive algorithm prevents buffer
draining. Finally, in order to support deviations from the
predicted path and travel duration, as well as live streaming,
our system recalculates the adaptation plan for every segment
downloaded. By doing this, we are continually updating the
adaptation parameters (buffer fill level, current bandwidth,
geographical position, current time, etc.), which allows the
adaptation plan to self-correct aswe are progressing along our
travel path.

In our real-world experiments, again using public trans-
portation in Oslo, we used a commercial 3G network for
downloading data and combined this with a WiFi network
(Eduroam) where this was available along the route. The
bandwidth measurements for one of several routes that we
used in our experiments are presented in Figure 18. We
traveled the route, which leads from the main university
campus in Oslo to the city center, by tram. The 3G network
was available the entire path whereasWiFi was only available
in proximity of the University of Oslo and Oslo University
College. We see from the bandwidth plot that the 3G
download rate in a particular location is highly predictable,
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as the variance in observations is quite small. The variance
for the secondWLAN spot is slightly higher as the tram goes
by the access point at speed, and the time to connect and the
signal strength varied between the experiments.

Figure 19(a) compares our predictive algorithm (the com-
bination of the reactive and the predictive algorithms as
described above) with our reactive algorithm (described in
Section 6). To be able to directly compare the two quality
adaptation algorithms on exactly the same bandwidth data,
one of the two results had to be simulated based on observed
bandwidth. We can see that the quality is significantly more
stable with the predictive algorithm. Moreover, we avoid
the visually disruptive quality jumps [38] that the reactive
algorithm had to make to avoid buffer underrun.

Looking at Figure 18, we also see that other networks
were available along the path. As a further enhancement,
we combined the predictive adaptation algorithms with the
multilink solution presented in Section 7 [11]. Multiple test
runs were performed to make sure the system discovered
areas with higher bandwidth networks. Figure 19(b) shows
an example of the video quality when the client switched
between networks (selecting the predicted best one), using
the same tram ride and video. The high-speed WLAN
was available at the start of the ride, which resulted in a
significant higher video quality than with only 3G. With the
predictive scheduler, the media player was allowed to stream
at quality level 5 (1500 kbps) for most of the trip, compared
to level 4 (1000 kbps) when only 3G was used. The higher
bandwidth of the WLAN enabled the client to receive more
data, building up a bigger buffer and requesting data in a
higher quality. With respect to handover performance, we
have plotted the throughput for the streaming sessions from
Figure 19(b) in Figure 19(c). From the plots, we can observe
that the handover time is minimal and that the client receives
data without significant idle periods. These results show the
potential of combining transparent handover with a location-
based, adaptive video streaming system.

However, there are still many challenges to solve. The
most important of these are the following.

(i) Wireless links have a major influence on round-trip
times. Depending on configuration, 3Gnetworksmay
suffer from considerable buffer bloat, while this has
not been observed for WiFi access networks. This
can lead to delay variances between 3G and WiFi
networks on the scale of several seconds.

(ii) We perform handover to WiFi when it is available.
However, authentication takes time, and a moving
receiver may leave coverage after a very short period.
Since throughput on the WiFi link depends strongly
on proximity to the base station, it might actually be
situation-dependent whether 3G or WiFi yields the
higher data rate within the WiFi coverage area.

(iii) Our prediction method depends on a predictable
vehicle speed, because frequent GPS measurements
drain the receiver’s battery. However, neither the
history of tram movement nor the public transport
company’s real-time update system provides enough
details for predicting WiFi coverage strength. This

information may be acquired from a 3G positioning
system.

9. Discussion

With this paper, we have summarized development steps that
have led to the development of our algorithm for predictive
streaming to wireless receivers overmultiple access networks.
In a market where HTTP adaptive streaming increasingly
dominates the streaming infrastructure, we based this work
exclusively on this kind of streaming system.

We argue based on existing work that the currently
applied rule of thumb is still valid, which favors long-term
stable quality as long as buffer underrun events can be
avoided. However, we acknowledge that recent studies show
that the situation is not quite as simple for lower bitrates and
thus requires more research. For this work, we chose to aim
for long-term constant quality in HTTP adaptive streaming
in spite of this.

Although there are frequent discussions about the need
for live streaming over an HTTP adaptive streaming infras-
tructure, we found in analyzing traces of a commercial
provider that this user requirement is commercially rele-
vant and that it leads to an undesirable number of buffer
underruns and bitrate switches in clients. To understand
this situation better, we investigated the interaction between
HTTP adaptive streaming and TCP in a bottleneck situation
where a big number of HTTP adaptive streams competed
with each other. We found that a variety of application-
layer methods can reduce this competition, but we could not
avoid transient congestion without modifying mechanisms
in the transport layer. An option at the transport layer that
we proposed in this paper relies on congestion window
limitations; other promising approaches could be found in
work by Esteban et al. [37] and work by Nazir et al. [52].
These results promise that the transport layer can interact
in beneficial ways with HTTP adaptive streaming, but the
interaction with other kinds of traffic needs to be investigated
in future research.

At the application layer, we showed in terms of interaction
with TCP that long (10-second) segments are not more
beneficial than short (2-second) segments. We could also
conclude that 2-second segments are sufficient for avoiding
the fact that users perceive quality changes as flicker, thereby
avoiding severe quality reduction. Looking atmultiple scaling
dimensions, we found that quantization strength is themeans
of reducing quality and leads toweaker quality reduction than
the other scaling dimensions and could thereby develop an
application-layer adaptation strategy.

The first strategy that we presented in this work was
a client-side reactive algorithm that is conservative in its
avoidance of buffer underruns and trying to avoid quality
switches. We compared these results with the algorithms
found in commercial players, which is the typical approach
in related work.The abundance of existing research proposals
would warrant a comparison among them, but, in this work,
we aimed instead at an improvement of our algorithm under
the assumption of two additional infrastructure elements:
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multiple access networks and a centralized bandwidth lookup
service.

We developed a predictive algorithm for HTTP adaptive
streaming that interacts with a bandwidth lookup service
by planning bandwidth for well-known commuting routes.
Our approach combines this with the knowledge of available
bandwidth in different networks and can plan handover
between them to achieve the best possible plan for HTTP
adaptive streaming.This field of research is highly promising,
but our results are of course limited to routes that can be
preplanned, whereas an exploitation of a bandwidth lookup
service for arbitrary movements of the receiver would be
desirable. Furthermore, energy efficiency is a limitation of
this scheme and should therefore be a topic of future research
as well.

10. Conclusion

Adaptive HTTP streaming is frequently used to deliver video
to mobile devices. However, compared to fixed connections,
the bandwidth in mobile broadband networks fluctuates
more. Also, mobile devices are more heterogeneous than, for
example, TV sets and desktop computers, for example, with
respect to processor, screen size, and resolution. In this paper,
we have presented the research steps that we have undertaken
so far towards a solution for HTTP adaptive streaming to
wireless receivers that can make use of multiple wireless
networks anduse a bandwidth lookup service to plannetwork
availability. While this work presents a considerable number
of results that have advanced the state of the art, we present
also a variety of open questions that range from challenges in
understandingQoE inHTTP adaptive streaming scenarios to
prediction of resource availability for freely moving wireless
receivers.
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