Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 619254, 10 pages
http://dx.doi.org/10.1155/2014/619254

Research Article

Hindawi

Optimal Computing Budget Allocation for Ordinal Optimization
in Solving Stochastic Job Shop Scheduling Problems

Hong-an Yang, Yangyang Lv, Changkai Xia, Shudong Sun, and Honghao Wang

Department of Industrial Engineering, Northwestern Polytechnical University, Xian 710072, China

Correspondence should be addressed to Hong-an Yang; yhongan@nwpu.edu.cn

Received 5 January 2014; Revised 21 February 2014; Accepted 22 February 2014; Published 24 March 2014

Academic Editor: Massimo Scalia

Copyright © 2014 Hong-an Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We focus on solving Stochastic Job Shop Scheduling Problem (SJSSP) with random processing time to minimize the expected sum
of earliness and tardiness costs of all jobs. To further enhance the efficiency of the simulation optimization technique of embedding
Evolutionary Strategy in Ordinal Optimization (ESOO) which is based on Monte Carlo simulation, we embed Optimal Computing
Budget Allocation (OCBA) technique into the exploration stage of ESOO to optimize the performance evaluation process by
controlling the allocation of simulation times. However, while pursuing a good set of schedules, “super individuals,” which can
absorb most of the given computation while others hardly get any simulation budget, may emerge according to the allocating
equation of OCBA. Consequently, the schedules cannot be evaluated exactly, and thus the probability of correct selection (PCS)
tends to be low. Therefore, we modify OCBA to balance the computation allocation: (1) set a threshold of simulation times to detect
“super individuals” and (2) follow an exclusion mechanism to marginalize them. Finally, the proposed approach is applied to an
SJSSP comprising 8 jobs on 8 machines with random processing time in truncated normal, uniform, and exponential distributions,
respectively. The results demonstrate that our method outperforms the ESOO method by achieving better solutions.

1. Introduction

Most classical job shop scheduling problems assume that all
the problem data are fixed and known in advance. However,
there are several inevitable stochastic factors in real man-
ufacturing systems, for example, random processing time,
machine breakdowns, and rush orders, among which random
processing time is the most fundamental and representative
uncertain factor. Therefore, research in Stochastic Job Shop
Scheduling Problem (SJSSP) with random processing time
has a great importance in engineering applications. Even
though, research works on SJSSP are fewer than those on
deterministic JSSP because of disadvantage caused by ran-
dom processing time, for example, huge search space, lengthy
computation time, and challenging evaluation of schedules.
In general, three models are used to denote random
processing time: interval number method [1, 2], fuzzy theory
[3-6], and stochastic method. However, the fluctuation and
distribution of random processing time are ignored by the
first two mentioned methods, which leads to the inaccurate
scheduling solutions. For this reason, an increasing number

of researchers use stochastic methods to denote random
processing time. Independent random distributions with a
known mean and variance are used to represent processing
duration variability [7, 8]. Among all processing time dis-
tributions, normal, exponential, and uniform distributions
are commonly found in SJSSP literatures [2, 9-12]. In order
to solve these NP-hard problems, many heuristic algorithms
such as genetic algorithm [13], variable neighbourhood
search [14], and artificial bee colony algorithm [15] are
introduced to solve SJSSP.

However, random processing time of operations con-
tributes to the randomness of completion time for each job
and performance indicators of schedules, which leads to the
difficulty of evaluating feasible schedules in the evolution
of these heuristic algorithms. Stochastic simulation method,
for example, Monte Carlo, which relies on repeated random
sampling to obtain statistic results, has been widely used to
solve performance evaluation [7, 9, 11].

Zhang and Wu [15] proposed that stochastic simulation
definitely increased the computational burden because of
frequent evaluations, especially when used in an optimization

framework. Ho et al. [16] firstly developed Ordinal Optimiza-
tion (OO) theory to obtain good enough solutions through
ordinal comparison while the value of a solution was still very
poor. Due to the fact that Evolutionary Strategy (ES) could
optimize the sampling process in OO theory, Horng et al. [8]
embedded ES in Ordinal Optimization (OO), abbreviated as
ESOO, to search for a good enough schedule of SJSSP using
limited computation time.

Even though ESOO could significantly reduce the com-
putation for SJSSP, the evaluation method in the exploration
stage of ESOO is similar to Monte Carlo Simulation, in which
uniform computation is allocated to each schedule, regardless
of whether or not it should. Thus extra computation is
allocated even after the Probability of Correct Selection
(PCS) has already converged. Therefore, there is potential to
further enhance ESOO’s efficiency by intelligently controlling
evaluation process or by determining the optimal number
of simulation times among different schedules according to
their performances. Chen et al. [17] firstly proposed Optimal
Computation Budget Allocation (OCBA) to enhance the
efficiency of OO by allocating simulation times reasonably.
In the recent years there are many articles about OCBA
[18-20]. In order to optimize the computation allocation in
the evaluation process of solving SJSSP, we firstly propose
an innovative hybrid algorithm of embedding OCBA into
ESOO, abbreviated as ESOO-OCBA.

However, in the OCBA [17] deduction we find the
hypothesis that the simulation times of the best individual
outnumber considerably the average ones is not the case in
specific SJSSP environment. As a result, “super individuals,”
which could absorb most of the given computation in each
generation while others could hardly get any simulation
budget, may emerge according to the allocating equation
of OCBA [17]. Thus we make improvements on OCBA
to balance the computation allocation: (1) set a threshold
of simulation times to detect “super individuals,” (2) follow
an exclusion mechanism to isolate them, and (3) allocate
the existing computation budget to the remained individuals
according to the dispatching rules of OCBA. The proposed
modification on OCBA is another contribution of this paper,
which makes ESOO-OCBA suitable to solve SJSSP.

The rest of this paper is organized as follows: Section 2
defines the problem, presents a mathematical equation of
the SJSSP, and improves a model for evaluating schedules.
Section 3 outlines our ESOO-OCBA algorithm for finding
a good enough schedule from the search space of SJSSP.
Section 4 demonstrates the modifications on OCBA that
we made. Section 5 shows and discusses the computational
experiments and the results. Finally, in Section 6, we present
our concluding remarks and discuss several future research
directions.

2. SJSSP Formulation and
Varying Evaluation Model

2.1. SJSSP Formulation. The SJSSP studied in this paper
consists of a set of n jobs, J {J;,/,,...,J,}, and a set of m
machines, M = {M,M,,...,M,,}. Everyjob J; (1 <i < n)

Mathematical Problems in Engineering

consists of h; operations, O; = {0, ;,0;,...,0;;, }, that need
to be processed in sequence. The operation O,;, (1 < h < h;)
denotes the hth operation on job i and O;;, € O; must be
processed by a specified machine M(O;;,) € M. Similarly, the
set of operations that must be processed on each machine, M,
(1 < u < m), is denoted by OM(M,,).

The random processing time of O;;, is denoted by p;;,
which is a random variable following a given probability
distribution function with mean p;, and variance afh. Let
st;;, be the start time of O;;,. The completion time and fixed
due date of job J; € J are denoted by C; and d;, respectively. T;
and E; stand for the tardiness and earliness cost of job J;. Set
t; and e; as the tardiness and earliness penalty per unit time
for job J;, respectively.

Let Q) denote the set of all the feasible and unfeasible
schedules; a feasible schedule S should satisfy both prece-
dence constraint and capacity constraint simultaneously.
Without loss of generality, it is assumed that all data are
integers and no preemption is allowed. The goal of SJSSP is
to find a feasible schedule S € Q) that minimizes the expected
sum of earliness and tardiness costs of all jobs.

Objective function:

MmmenggE{;Cn+a&. 1)
A feasible schedule S € Q) should be subject to
T,=t;xmax (0,C;-d;) i=12,...,n (2)

E;=e;xmax(0,d,-C;) i=12,...,n, (3)

Sti,k +pi,k < Sti,k+1 i= 1,2,...,7’1/\k = 1’2""’hi -1
(4)
for all operations in the set OM(M,,):
Sti,k + pi,k < Stj,l’l V Stj,l’l + pj,h < Sti,k ()
5

i,j=1,2..,nAk=12.. b Ah=12,...,h

-

Constraints (2) and (3) represent the tardiness and earli-
ness cost of each job, respectively. The precedence constraint
(4) ensures that, for each pair of consecutive operations O
and O;j,, of the same job i, operation O;;,, cannot be
processed before operation O is completed. The capacity
constraint (5) ensures that two operations of two different
jobs, J; and J;, O; and O;, in the set OM(M,,) cannot be
processed simultaneously on machine M,,.

2.2. Performance Evaluation Model Improved from the Objec-
tive Function. To obtain a good statistical estimate for a
feasible schedule, a large number of simulation replications
are usually required for each schedule. However, the expected
objective value of a feasible schedule is available only in
the form of a complex calculation via infinite simulated
replications. Although infinite replications of simulation will
make the objective value of (1) stable, this calculating method
actually is intractable.

Mathematical Problems in Engineering

Therefore, depending on the amount of simulated repli-
cations, (1) can be approximated as follows:

. R
min Fy (S) = zl; {Zl [T} (S) + ¢,E; (S)]]» (6)

for a feasible schedule S; L represents the number of its
simulation replications. tiTil(S) and eiEg(S) denote the tar-
diness and earliness costs of job J; on the Ith replication of
S, respectively. F;(S) denotes the average sum of tardiness
and earliness costs of S when the simulation length is L.
Sufficiently large L will make the objective value of (6), F; (S),
sufficiently stable. Let L, = 10° represent the sufficiently large
L [8]. Let F} (S) represent the objective value of S computed
by sufficiently exact evaluation model.

3. ESOO-OCBA Algorithm for SJSSP

3.1. Embedding the OCBA Technique into ESOO. To evaluate
the performance of a feasible schedule S reliably needs a
complex calculation of F; (S), not to even mention the
huge search space of SJSSP. ESOO could significantly reduce
the computation for evaluation process [8]. However, in
ESOO, uniform computation is allocated to each individual,
regardless of whether or not it should. This allocation cannot
meet the different demands of different individuals; thus
computation allocated to each individual may be either
insufficient or redundant.

Ideally, overall simulation efliciency will be improved if
less computational effort is spent on simulating noncritical
schedules and more is spent on critical schedules. We would
like to improve the PCS in each generation by allocating
computation according to the performance of each schedule.
Therefore, in this paper, OCBA technique is embedded into
the exploration stage of ESOO algorithm to intelligently
determine the optimal number of simulation times L for
different individuals according to their performances.

SJSSP is a NP-hard problem, which reflects the real-
world situations and always suffers from uncertain feature.
Recently, many methods solving SJSSP suffer from lengthy
computation budget, because evaluating the objective of a
schedule is already very time-consuming not to even mention
the extremely slow convergence of the heuristic techniques in
searching through a huge search space. In order to overcome
the drawback of consuming much computation time, we
propose the ESOO-OCBA algorithm. In our ESOO-OCBA
algorithm, OO theory reduces the unbearable computation
and OCBA technique allocates necessary computation to
each individual. The overall scheme of our algorithm is
illustrated by Figure 1.

From the Figure 1, the NP-hard characteristic and the
randomness of SJSSP contribute to many difficulties, for
example, huge search space, performance evaluation prob-
lem, and slow convergence. OO theory contains two fun-
damental Ideas: (1) ordinal comparison, that is, ordinal is
used rather than cardinal optimization in order to reduce the
simulation times in evaluating schedules; (2) goal softening is
used to decrease the degree of searching difficulty. It is proved
that ordinal comparison has an exponential convergence rate

[21, 22] and that goal softening can raise the Probability of
Alignment (PA) exponentially [23].

ESOO-OCBA algorithm consists of two stages. (1) The
exploration stage aims to find a subset of good samples
from the search space, where samples are evaluated by a
crude evaluation model. Evolutionary strategy is employed
in this stage to optimize the sampling process while OCBA
is used to trade off the performance stability and save the
computation of each individual by allocating the simulation
times reasonably. (2) The exploitation stage that consists of
multiple subphases is used to find out the good enough
individual in the good sample subset. Individuals are selected
and eliminated by increasingly accurate evaluation models in
each subphase. The one with the smallest F; (S) in the last

subphase, $*, is the good enough schedule that we seek.

3.2. The Exploration Stage. In exploration stage, we use ES as
a whole frame of sampling process. The number of needed
samples depends on the extent of goal softening, which
decides the number of generations and the number of initial
population. In each generation of ES, each individual could
get a unique crude evaluation model developed from (6)
with different simulation times L allocated by OCBA. The
implementation of exploration stage is as follows [8].

Precedence-Based Representation. We use a precedence-based
presentation to define a chromosome with unpartitioned
permutation of /; repetitions of each job J;. The operations of
the same job should satisfy its precedence constraints to form
an individual standing for a feasible schedule. This encoding
method is employed due to its effectiveness on generating
feasible individuals and on reducing the size of search space.

Initial Population. Each individual of the initial population is
generated with a completely random method to enhance the
variety of the initial population.

Recombination. Generate offspring from the parents by
discrete recombination [24]. Use repair operator to adjust
infeasible schedule when it appears [8].

Mutation. The insertion mutation method is adopted to breed
new offspring. Delete all operations of one random selected
job within a parent chromosome and then reinsert them
into the remained components randomly according to the
precedence constraints [8].

Selection. p + A-selection mechanism is adopted in our
approach. Select the best y individuals from both the u
parents and A offspring, according to the ranking of the
approximate fitness values obtained from the respective crude
evaluation model of each individual.

Termination. The ES is stopped when the number of genera-
tions exceeds what we set; select the best N individuals as the
good sample set according to their performances.

3.3. The Exploitation Stage. In the exploitation stage, we
need to find the best schedule from the N schedules in the

Mathematical Problems in Engineering

Exploration stage: select a good sample subset

] I

i w w i

! . OCBA technique | !

| |

: ,,,,,,, T ,,,,,,, :

: Allocate simulating times L :

I I

Ordinal Cmd? Keep high PCS by OCBA technique Good sample subset
. evaluating S s st [T -
Find evaluating tools comparison model {81,855 Sn} |
|
Evaluate Optimize D e N |
fitness value sampling process | o
Exponential With varying L ! Substage 1 : :
Difficulties in convergence Samplingand | controlled by OCBA C Lo
I by} 1 I
solving SJSSP evolving by ES With increasingly large | % —Qg) H‘i;gh PA glg(r)a{l}tleed by ! 5 !
;] iterative eor

Huge search space Lin every subphase 1 2 ;0 Y | © i
Evaluating method Popsize and number of generations S § i ; X
Slow convergence Objective function e -
The number of with varying - -3
needed samples simulating times L 5 E Pg
allocated by OCBA L 53 i
Accelerate the s e Lo
probability of R o
alignment With sufficient ! Substage 1 Lo
Simplify the Guarantee high confidence large L = L, R H |
difficulties in in containing good enough S !
searching . |
. Satisfy softening level Sufﬁcwgt accurate |
Goal softening |- - - - - -— - - ___ The goal S* evaluating model I
I
I
N I
| 1

Exploitation stage: narrow the
search space step by step

FI1GURE 1: Overall scheme of ESOO-OCBA algorithm for SJSSP.

good sample set obtained in the exploration stage. However,
evaluating each of the N schedules by sufficient accurate
evaluation model (objective function with L = L) costs too
much computation. Thus the exploitation stage is divided into
multiple subphases according to the idea of iterative use of
ordinal optimization [25]. The computational complexity of
exploitation stage can be dramatically decreased, as the size
of the schedule set in each subphase has already been largely
reduced when the evaluation model is more refined.

The implementation of exploitation stage in [8] is adopted
in this paper. In each subphase, the objective function
equation (6) with various simulation times L is used as
an increasingly accurate evaluation model, where L ranges
from a given fixed L, (crude model in the first subphase)
to L, (sufficient accurate model in the final subphase). The
remained schedules in the prior subphase are selected and
some of them are eliminated according to their performances.
In the last subphase, the one with the smallest F; (S) is the
good enough schedule S* that we look for.

4. The OCBA Technique and Modifications

4.1. The OCBA Technique. OO theory usually allocates
uniform computation to each schedule, which can hardly
achieve the highest PCS within a given computation. OCBA
technique [17] is employed to improve the PCS by allocating

simulation times to each schedule according to their per-
formances. We define L; as the simulation times allocated
to schedule S; and set T' as the total given simulation times
in each generation (i.e., total given computation). OCBA
provides a recipe of asymptotically optimal allocation of
simulation times among schedules in each generation of the
exploration stage in ESOO-OCBA algorithm:

Li+Ly+---+L,=T, (7)
k 2
L?
Lbzo‘b Z _;, (8)
i=li+b i
L. 0./8,: *
Li _ (il , fori=1,2,....k i#j#b, (9)
Lj \oj/ow;

where o7 is the observation variance of schedule S; which
can be approximated by sample variance and S, is the best
schedule we observed. F; (S;) is the observed performance of
schedule S5 6,; = Fy () — Fp (S)).

4.2. Modifications on OCBA Technique. However, the afore-
mentioned OCBA is observed to be unavailable to solve the
specific SJSSP in our experiments. While pursuing a good
set of schedules in the exploration stage, “super individuals”
may emerge according to (7)-(9), which could absorb most

Mathematical Problems in Engineering

of the given simulation budget in each generation while other
individuals could hardly get any simulation budget.

Without enough simulation times L, most of the average
individuals in each generation cannot be compared with each
other exactly by (6). Therefore, this simulation distortion
phenomenon will absolutely decrease the probability of
correct selection as some inferior schedules may be selected
while some good schedules may be eliminated.

We try to find the root cause of “super individuals” by
dating back to the deduction of the original dispatching (7)-
(9) [17]. After a series of deductions, Chen et al. [17] got (10)
which could express the relationship between L, L;, and L.
In order to simplify (10), Chen et al. [17] assumed L, > L;
according to (8). Therefore (10) could be simplified as (11),
and then the ratio between L; and L ; was deducted from (11)
which was expressed in (9). Consider the following:

8b,iai2/L§
((02/Ly) + (?/L;))™?

_65,1'
P (2((02/Ly) + (62/L)))) '
()
= €X
P\ 2((@2/Ly) + (0/1,))
Sb,jajz./Li.

(oI + (@211,))

3/2°

(10)

_513,1' 8,07 L}
ex :
\2 (o7/L;) (criz/Li)s/2

2 2172 (11)
3/2°
2(AIL)) (o)

However, in our experiments, the performance of indi-
vidual S; can be extremely similar to that of the best individual
Sps thus 8,; = Fp (S;) — Fy (S;) can be remarkably small. In
this condition, according to (9), the simulation times L; of
individual S; will outnumber considerably that of an average
individual S;. Then we can get L, = L; from (8); that is,
the assumption of Chen et al. [17], L, > L, is not the case
in the specific SJSSP environment. As (10) cannot be used
directly in dispatching simulation times for its complexity,
modifications are made on the original dispatching rule
equations (7)-(9) to make the classical dispatching rule
available in SJSSP.

In order to diminish the negative influences from “super
individuals” in each generation, two steps must be taken: (1)
set a threshold of simulation times to detect “super individu-
als” and (2) follow an exclusion mechanism to isolate them.

Deducting from (7)-(9), (12) is used to allocate simulation
times L; to each schedule S;:

of6ij
Li=Tx—
0%5?.
Jj b
k 2Q2
0; 8b,j
x| X 0252 (12)
i=Li#bi#j i
1/2 -
k 2 Q4
o; (Sb)j .
o\ 2 o)
i=1,i#b 9%,

Modifications are made on (12) to realize the mentioned
two Steps. Firstly, we set L, = 10° as the threshold of sim-
ulation times because it is the sufficient simulation times for
evaluation. The individual will be seen as a “super individual”
once it obtains more than L simulation times. Secondly, we
define all the “super individuals” as a set ® and the scale of ®
as num and then pick out ® from the set of all the individuals.
Then from the total given T, deduct the simulation times
which are occupied by “super individuals,” where we set that
each “super individual” occupies L, simulation times. Lastly,
allocate the existing simulation times to the individuals
except for “super individuals” according to the dispatching
rules. Based on these steps, we improve (12) to (13) as follows:

L;=(T-numxLy)

22 k 22
0; 81,,)]' 0; ab,j
22 282
00 | i=vivbit e %50, (13)

2 o4 1/2 -
koo 8b,j
+ 0; Z W +1

i=Li#b " j bi

Equation (13) is one of the main contributions of our
study. It can be used (i) to allocate computation in the
simulation optimization of SJSSP reasonably and effectively
or (ii) to make simple estimates for designing experiments in
solving SJSSP.

4.3. Implementation of the Modified OCBA. We adopt the
cost-effective sequential approach based on OCBA which is
described as follows [17]: (1) n, simulation replications for
each individual are conducted to get some initial information
about the performance of each individual. As simulation
proceeds, the sample means and sample variances of each
schedule are computed from all the data that are already
collected up. (2) According to this collected simulation
output, an incremental computing budget, A, is allocated to
the set of all the individuals. Ideally, each new replication
should bring us closer to the optimal schedules. (3) This
procedure is continued until the total given T' is exhausted

and then (13) can be improved as follows (T, denotes the
simulation time that has already been consumed):

L;=(T,+A-numxL,)

202 X 0252
] 6b,j « 6b]

252 0252,

050, i=Li#bit ji¢® 00, (14)

X 284 12 !
b] 1
+0; Z 484 +
i=li+b]

The implementation of Optimal Computing Budget Allo-
cation (OCBA) in each generation in the exploration stage of
ESOO.

Step 1. Perform Ith simulation replications for all individuals;
g=0L{=L=--=LJ =n,

Step 2. It Zf:l LY > T, stop.

Step 3. Increase the computing budget (i.e., number of
additional simulation times by L and compute the new budget
allocation, Lngl Lg“ .,Liﬂ,using (14).
Step 4. Perform additional max(0, L“i] o L‘i’) simulations for
schedule, i,i = 1,...,k, g = g + 1. Go to Step 2.

In the OCBA steps above, g is the iteration number and
k is the number of initial population. What needs to be
remarked is the best individual b which may change from
iteration to iteration.

5. Computational Results and Discussion

5.1. SJSSP Test Instance with Three Processing Time Distri-
butions. In order to demonstrate the computational quality
and efficiency of our ESOO-OCBA algorithm, numerical
experiments on SJSSP comprising 8 jobs on 8 machines [8]
have been carried out. (a;, p; ;,» ozh) is given in Table 1, which
is used to denote the operating environment of operation
O; .- a;, denotes the processing sequence of O, p; , and afh
denote the mean and variance of stochastic processing time
D respectively. The due dates d; of each job J; are given
in Table 2. The tardiness penalty per unit time ¢; and the
earliness penalty per unit time e; for each job i are set to 1.
Three distributions of random processing time on the
machines are used to test the computational efficiency and
the obtained schedules quality of our algorithm. The first
distribution is truncated normal distribution with mean
D;y, and variance alh The second distribution is uniform
distribution in the interval [p; , — 3 X 0;),, p;;, + 3 X 0;;,]. The
third distribution is exponential distribution with mean p, .
In the exploration stage of ESOO-OCBA, we set the
number of initial population as ¢ = 1000 and the number
of offspring as A = 2000. In order to compare the efficiency
between ESOO-OCBA and ESOO [8], the same total given
simulation times in each generation of the exploration stage
are set as T = 368 x A, and the number of generations is

Mathematical Problems in Engineering

set as k., = 100. It is well understood that a small initial
simulation time of each individual, n,, can contribute to
more flexibility for better allocation of the computing budget.
Nevertheless, if 7, is too large, we may waste too much
computation budget in simulating nonpromising designs.
Intuitively, if the total computing budget, T, is very large,
the effect of n, should be less important. In the dispatching
process of OCBA technique in each generation, we know that
T is very large and so we set 1, = 33.

In addition, the selection of incremental computing
budget, A, is typically problem-specific. A large A can lead to
waste of computation time to obtain an unnecessarily high
confidence level. Nevertheless, if A is too small, we need
to carry out the budget allocation problem many times. So
according to the total computing budget, T, we set A = 66000.
L, = 10 is set as the threshold for detecting “super individ-
ual” We start from randomly generating p individuals as the
parent population. After an evolution of k,,, generations, we
rank all the remained y + A = 3000 individuals (parents and
offspring) based on their performances and select the best
N = 1000 individuals.

In the exploitation stage of ESOO-OCBA, we adopt all
the parameters used in related works [8]. Table 3 shows the
number of subphases, the simulation length, and the number
of candidate schedules in each subphase. In the last subphase,
we compute the exact object value F; (S) of the Ng = 7
candidate schedules. The one with the smallest Fy (S) is the

good enough schedule §* that we look for.

5.2. Test Results of Modified OCBA. In order to show the
advantages of our modifications on OCBA, we choose a
random generation from the exploration stage of ESOO-
OCBA in solving SJSSP with truncated normal distributed
processing time. We compare our modified OCBA with
classical OCBA [17] by allocating simulation times to all
individuals (A = 2000), respectively. The test results are
shown in Figures 2, 3, and 4.

Figure 2 shows the general results of the realized allo-
cation by the two analyzed OCBA techniques considering
the different individuals, allocated simulation times, and
performances as comparison criteria. Figure 3 describes the
relation between the simulation times and the individual
performances in detail and also helps to understand the
differences between classical OCBA and modified OCBA.
Figure 4 illustrates the distribution of simulation times of
each individual, demonstrating the improvements of modi-
fied OCBA compared with traditional OCBA in dispatching
simulation times.

In Figure 3, we can see that, with the individual perfor-
mance (objective value) rising, the simulation times allocated
to the better individuals increase under the influence of the
allocation mechanisms in both classical and modified OCBA.
This increment meets the demand of more simulation times
when better individuals need to be evaluated exactly in the
evaluation process.

Also, for most of the individuals, more simulation times
are allocated by our modified OCBA than by classical OCBA.
The reason of this phenomenon lies in the mentioned “super

Mathematical Problems in Engineering 7
TABLE 1: Operation environment vector of SJSSP with 8 jobs and 8 machines.
Ml MZ M3 M4 M5 M6 M7 M8
A 3,70,140 2,80,160 1,90,180 6,50,100 4,40,80 8,60,120 5,70,140 7,50,100
B 1,80,160 2,40,80 3,50,100 5,90,180 4,40,80 7,50,100 6,60,120 8,40,80
I3 1,50,100 2,40,80 3,80,160 5,60,120 4,70,140 6,40,80 8,40,80 7,70,140
N 2,60,120 1,50,100 3,60,120 4,70,140 780,160 5,40,80 6,50,100 8,80,160
Js 4,50,100 3,50,100 2,70,140 1,40,80 750,100 5,60,120 6,90,180 8,60,120
Js 2,60,120 3,80,160 1,90,180 5,70,140 6,50,100 4,40,80 8,80,160 790,180
I; 1,40,80 3,60,120 4,40,80 2,80,160 5,60,120 7,70,140 8,50,100 6,60,120
Js 2,90,180 1,70,140 3,50,100 4,60,120 5,90,180 7,80,160 6,40,80 8,40,80
TABLE 2: Due dates for each job.
]1]1]2]3]4]5]6]7]8
d; 490 510 540 500 540 470 530 560
10° ;
] @

& 2000
£ 1500
=
<= 1000
3
2 500
2 0
106 .
10 ;
) 10! W
Simulation times ®
+ Classical OCBA
+ Modified OCBA

FIGURE 2: 3D view of the comparison between modified OCBA and
classical OCBA.

10° : .
Em% Super individuals

10°

é .

B= 4 -;' i

= 10 s

g 4,

£ v

=

£

w

ny = 33 G te—— e =
o

1
3000 4000 5000 6000 7000 8000 9000

Individual performance

10000

Modified OCBA — 1000
Classical OCBA — 1000
7145:105 - - ny=33

FIGURE 3: Relationship between individual performance and allo-
cated simulation times.

individuals® produced by the classical OCBA dispatching
rules (see (7)-(9)). Besides, for the total of individuals
(A = 2000) in the generation, the only two labeled “super
individuals® absorb 85.75% of the total simulation times,

200 400 600 800 1000 1200 1400 1600 1800 2000

Individual number

Modified OCBA — 1000
Classical OCBA — 1000
— L, =10

FIGURE 4: Distribution of allocated simulation times for individuals.

while all the other individuals are allocated with low share
(14.25%) of total simulation times.

In Figure 4, a more detailed representation of the distri-
bution of simulation times allocated to individuals can be
observed: in the test results of classical OCBA, the simulation
times allocated to different individuals have no apparent
alterations, even if they have a huge performance gap. Itis also
clear that 92.85% of all the individuals (1857 of the total 2000)
are allocated between 33 and 100 simulation times by classical
OCBA. This lack of simulation times leads to a simulation
distortion in the evaluation process, not being able to detect
the variations in different individual performances, which
absolutely decreases the PCS in this generation.

For modified OCBA, 97.85% of all the individuals (1957
of the total 2000) are allocated from 33 to 1000 simulation
times. After we use the threshold L, = 10° to limit the “super
individuals,” a larger portion of the total simulation times are
allocated to average individuals (74.04%). This situation leads
to high performed individuals getting much more simulation
times even if they are slightly better (this effect can be
observed in Figure 3). This improved allocation contributes

8 Mathematical Problems in Engineering
TABLE 3: Number of candidate schedules and simulation times in each subphase.

Subphase i 1 2 3 4 5 6

N; 1000 368 135 50 18 7

L, 1000 2718 7389 20085 54598 100000

i

TaBLE 4: The good enough schedule S*, corresponding F; (S*) obtained by ESOO-OCBA, and the percentage improvements relative to

ESOO.

Distribution The good enough schedule S

ESOO-OCBA ESOO [8] % improvement CPU-T (s)

O41 071 051 011 Oy 055 051 Oy Oz Oy
OS,I O4,3 02,3 O7,3 O7,4 O7,5 O7,6 08,1 02,4 O4,4
OS,Z 01,4 OI,S 01,6 O7,7 O4,5 O3,2 OZ,S 03,3 O4,6

Truncated normal L

2089 2280 8.38 392.12

Uniform

03,7 OS,7 OS,8 03,8

2452 2778 11.74 405.22

O71 O41 OSI O7,2 OS,I O4,2 O7,3 O3,2 OS,Z O7,4

Exponential

oo:oo
oo:oo
oo:oo
oo;oo
oo:oo
o0
oo:oo
oo:oo

5 O3

0,
4,7 Oss

O,

Os4 O27 087 OIS Ozs 016 Oss O17 Oss
O15 Os6 Os7 Oss

2590 2683 3.47 381.17

to a reliable evaluation which guarantees a high PCS in each
generation, at the same time reflecting the whole idea of
OCBA which essentially is better individuals are allocated
with more simulation times.

5.3. Test Comparisons and Performance Evaluation. In this
section, we show the test results of the proposed ESOO-
OCBA algorithm and demonstrate the schedule quality
comparing with the ESOO algorithm [8]. The following
computational results are conducted in Visual C++ 2010 on
a Dual-Core E6600/2 GB RAM/Windows XP.

Because of the random nature of the considered problem
we also have repeated the simulation process for 10 simulation
runs. We have found that after the 10 simulation runs the
result changes a little. Table 4 shows the best objective values,
the best schedule performance obtained by ESOO-OCBA
and ESOO, respectively. The processing sequence of the
best schedules is showed in the table; O; ; denotes the jth
operation on job i. Data from truncated normal distribution,
uniform distribution, and exponential distribution are all
showed in Table 4. As can be observed, our ESOO-OCBA
algorithm outperforms the ESOO algorithm for these three
distributions in the quality of the results.

In order to compare our algorithm ESOO-OCBA, we
adopt the same total simulation times as ESOO. However,
because of the computational burden caused by the embed-
ded OCBA technique, the overall consumed CPU times in
our experiments are slightly longer than the consumed by
ESOO (within 6 minutes), but still short enough to apply our
algorithm in real time.

Also, as we can see from Figure 5, the convergence rate in
the exploration stage of ESOO-OCBA is significantly faster
than that in ESOO. Here in ESOO-OCBA and ESOO random
processing time is obtained from truncated normal distribu-
tion. This result demonstrates that introducing OCBA into
ESOO algorithm really improves the efficiency of ESOO.

6. Conclusion

To cope with the computationally intractable SJSSP, we
firstly embed OCBA technique into the exploration stage
of ESOO algorithm to further enhance ESOO’s efficiency
by intelligently allocating simulation times according to
individual performance. However, “super individuals,” which
lead to a simulation distortion in the evaluation process,
may emerge according to the classical OCBA. Then we set
a threshold to constrain the simulation times allocated to

Mathematical Problems in Engineering

Convergence rate comparison

(truncated normal distribution)
3800 r r r r r

3600
3400
3200
3000 -
2800
2600
2400
2200

2000 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Generations

Best individual performance

— ESOO
—— ESOO-OCBA

FIGURE 5: Convergence rate comparison between ESOO-OCBA and
ESOO.

“super individuals,” by which more simulation times can be
allocated to other average individuals. The improvements
on classical OCBA optimize the simulation times allocation
mechanism, which guarantee a high probability of correct
selection in each generation of the evolution in exploration
stage.

The proposed algorithm ESOO-OCBA is applied to a
SJSSP comprising 8 jobs and 8 machines with random pro-
cessing time in truncated normal, uniform, and exponential
distributions. The simulation test results obtained by ESOO-
OCBA are compared with ESOO algorithm, demonstrating
that our algorithm has superior performances in the aspect
of schedule quality, and our modifications on OCBA are more
reasonable in allocating computation in the evaluation.

The future research on SJSSP can be conducted from the
following aspects.

(1) It is worthwhile to consider other types of random-
ness in job shops, for example, rush orders and
machine breakdowns.

(2) Itis worthwhile to consider a new global computation
allocation mechanism (i.e., the breadth versus depth
approach [26]) as OCBA technique only allocates
the computation within each generation. Ideally, the
total computation can be largely reduced by allocating
computation globally.

Conflict of Interests
The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors gratefully appreciate the suggestions and detailed
experiment data from Shih-Cheng Horng. This research
has been supported by the Graduate Starting Seed Fund
of Northwestern Polytechnical University (no. Z2014105),

the National Natural Science Foundation, China (no.
50705076), and the Programme of Introducing Talents of
Discipline to Universities (B13044).

References

[1] A. W. J. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C.
R. Spieksma, “Interval scheduling: a survey, Naval Research
Logistics, vol. 54, no. 5, pp. 530-543, 2007.

[2] D. Lei, “Interval job shop scheduling problems,” International
Journal of Advanced Manufacturing Technology, vol. 60, no. 1-4,
pp. 291-301, 2012.

[3] T. Itoh and H. Ishii, “Fuzzy due-date scheduling problem with
fuzzy processing time,” International Transactions in Opera-
tional Research, vol. 6, no. 6, pp. 639-647, 1999.

[4] D. Lei, “A genetic algorithm for flexible job shop scheduling
with fuzzy processing time,” International Journal of Production
Research, vol. 48, no. 10, pp. 2995-3013, 2010.

[5] M. Sakawa and R. Kubota, “Fuzzy programming for multiob-
jective job shop scheduling with fuzzy processing time and
fuzzy duedate through genetic algorithms,” European Journal of
Operational Research, vol. 120, no. 2, pp. 393-407, 2000.

[6] J. Wang, “A fuzzy robust scheduling approach for product devel-
opment projects,” European Journal of Operational Research, vol.
152, no. 1, pp. 180-194, 2004.

[7] J. C. Beck and N. Wilson, “Proactive algorithms for job shop
scheduling with probabilistic durations,” Journal of Artificial
Intelligence Research, vol. 28, pp. 183-232, 2007.

[8] S.-C. Horng, S.-S. Lin, and E-Y. Yang, “Evolutionary algorithm
for stochastic job shop scheduling with random processing
time,” Expert Systems with Applications, vol. 39, no. 3, pp. 3603
3610, 2012.

[9] A. Azadeh, A. Negahban, and M. Moghaddam, “A hybrid
computer simulation-artificial neural network algorithm for
optimisation of dispatching rule selection in stochastic job
shop scheduling problems,” International Journal of Production
Research, vol. 50, no. 2, pp. 551-566, 2012.

[10] J. Gu, X. Gu, and M. Gu, “A novel parallel quantum genetic
algorithm for stochastic job shop scheduling,” Journal of Mathe-
matical Analysis and Applications, vol. 355, no. 1, pp. 63-81, 2009.

[11] Y. Yoshitomi and R. Yamaguchi, “A genetic algorithm and
the Monte Carlo method for stochastic job-shop scheduling,”
International Transactions in Operational Research, vol. 10, no.
6, pp. 577-596, 2003.

[12] R. Zhou, A. Y. C. Nee, and H. P. Lee, “Performance of an ant
colony optimisation algorithm in dynamic job shop scheduling
problems,” International Journal of Production Research, vol. 47,
no. 11, pp. 2903-2920, 2009.

[13] J. Gu, M. Gu, C. Cao, and X. Gu, “A novel competitive co-
evolutionary quantum genetic algorithm for stochastic job shop
scheduling problem,” Computers & Operations Research, vol. 37,
no. 5, pp. 927-937, 2010.

[14] M. Zandieh and M. A. Adibi, “Dynamic job shop scheduling
using variable neighbourhood search,” International Journal of
Production Research, vol. 48, no. 8, pp. 2449-2458, 2010.

[15] R.Zhang and C. Wu, “An artificial bee colony algorithm for the
job shop scheduling problem with random processing times,’
Entropy, vol. 13, no. 9, pp. 1708-1729, 2011.

[16] Y. C. Ho, Q. C. Zhao, and Q. S. Jia, Ordinal Optimization: Soft
Optimization for Hard Problems, Springer, New York, NY, USA,
2007.

10

[17] C.-H. Chen, J. Lin, E. Yiicesan, and S. E. Chick, “Simulation
budget allocation for further enhancing the efficiency of ordinal
optimization,” Discrete Event Dynamic Systems: Theory and
Applications, vol. 10, no. 3, pp. 251-270, 2000.

[18] C. H. Chen and L. H. Lee, Stochastic Simulation Optimization:
An Optimal Computing Budget Allocation, World Scientific,
River Edge, NJ, USA, 2010.

(19] S. C. Horng, E Y. Yang, and S. S. Lin, “Apply PSO and OCBA
to minimize the overkills and re-probes in wafer probe testing,”
IEEE Transactions on Semiconductor Manufacturing, vol. 25, no.
3, pp. 531-540, 2012.

[20] S. C. Horng, S. Y. Lin, L. H. Lee, and C. H. Chen, “Memetic
algorithm for real-time combinatorial stochastic simulation
optimization problems with performance analysis,” IEEE Trans-
actions on Cybernetics, vol. 43, no. 5, pp. 1495-1509, 2013.

[21] L. Dai, “Convergence properties of ordinal comparison in
the simulation of discrete event dynamic systems,” Journal of
Optimization Theory and Applications, vol. 91, no. 2, pp. 363-
388, 1996.

[22] X. Xie, “Dynamics and convergence rate of ordinal comparison
of stochastic discrete-event systems,” IEEE Transactions on
Automatic Control, vol. 42, no. 4, pp. 586-590, 1997.

[23] L. H. Lee, T. W. E. Lau, and Y. C. Ho, “Explanation of

goal softening in ordinal optimization,” IEEE Transactions on
Automatic Control, vol. 44, no. 1, pp. 94-99, 1999.

[24] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies—a com-
prehensive introduction,” Natural Computing, vol. 1, no. 1, pp.
3-52,2002.

[25] M. Deng and Y.-C. Ho, “Iterative ordinal optimization and its
applications,” in Proceedings of the 36th IEEE Conference on
Decision and Control, pp. 3562-3567, San Diego, Calif, USA,
December 1997.

[26] X. Lin and L. H. Lee, “A new approach to discrete stochas-
tic optimization problems,” European Journal of Operational
Research, vol. 172, no. 3, pp. 761-782, 2006.

Mathematical Problems in Engineering

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

