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Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion
is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in
wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using
maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis
of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively
and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion
methods andprincipal component analysis (PCA) fusionmethod.The comparative analysis of the fusion results has been performed
with edge strength (𝑄), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric
(BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the
proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach.

1. Introduction

The development of multimodality medical imaging sen-
sors for extracting clinical information has influenced to
explore the possibility of data reduction and having better
visual representation. X-ray, ultrasound, magnetic resonance
imaging (MRI), and computed tomography (CT) are a few
examples of biomedical sensors. These sensors are used for
extracting clinical information, which is generally comple-
mentary in nature. For example, X-ray is widely used in
detecting fractures and abnormalities in bone position, CT
is used in tumor and anatomical detection, and MRI is used
to obtain information about tissues. Thus, none of these
modalities is able to carry all complementary and relevant
information in a single image. Medical image fusion [1, 2] is
the only possible way to combine and merge all relevant and
complementary information from multiple source images
into single composite image which facilitates more precise
diagnosis and better treatment.

The basic requirements for image fusion [3] are as
follows: first, fused image should possess all possible relevant
information contained in the source images; second, fusion
process should not introduce any artifact or unexpected
feature in the fused image.

Image fusion can be classified into three categories: pixel
level fusion, feature level fusion, and decision or symbol
level fusion [4]. Pixel level fusion [5] deals with information
associated with each pixel and fused image can be obtained
from the corresponding pixel values of source images. In
feature level fusion [6], source images are segmented into
regions and features like pixel intensities, edges, and textures,
are used for fusion. Decision or symbol level fusion [7] is a
high-level fusion which is based on statistics, voting, fuzzy
logic, prediction and heuristics, and so forth. For present
work, we have considered pixel level image fusion due to its
simple computation and understanding.

Spatial and transformdomains [8] are the two fundamen-
tal approaches for image fusion. In spatial domain fusion,
the fusion rule is directly applied to the intensity values of
the source images. Averaging, weighted averaging, principal
component analysis (PCA) [9], linear fusion [10], and sharp
fusion [11] are a few examples of spatial domain fusion
scheme. One of the major disadvantages of spatial domain
fusion method is that it introduces spatial distortions in
the resultant fused image and does not provide any spectral
information. These spatial distortions have been observed in
sharp fusion [11] method for medical images and reported
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in [12]. Since medical images are generally of poor contrast,
the spatial information should be preserved in the medical
images without introducing any distortion or noise. These
requirements of medical images are better preserved in
transform domain fusion.

Therefore, transform domain fusion techniques have
been used for fusion to overcome the limitations of spatial
domain fusion methods. Pyramid and wavelet transforms
[13] have been used for multiscale fusion under category
of transform domain methods. Transform domain fusion is
performed by decomposing source images into transformed
representations followed by application of fusion rules to the
transformed representation. Finally, fused image is obtained
by inverse transformation. Pyramid and wavelet transforms
are the mostly used transforms for image fusion. Several
pyramid transforms like Laplacian pyramid [14], gradient
pyramid [15], contrast pyramid [16], ratio of low pass pyramid
[17], morphological pyramid [18], and FSD pyramid [19] have
been used for image fusion. However, pyramid transform
based fusion methods suffered from blocking effect [20] in
the regions where the input images are significantly different.
Further, pyramid-transform-based fusion methods do not
provide any directional information and have poor signal-
to-noise ratio. In contrast to pyramid transforms, wavelet
transforms have better representation of detailed features of
image; hence, wavelet domain fusion methods provide better
results than pyramid-based fusion methods.

The discrete wavelet transform (DWT) is the most com-
monly used wavelet transform for medical image fusion.
A simple DWT-based medical image fusion, which follows
weighted fusion rule, has been introduced by Cheng et al.
[21]. Another pixel- and region-based multiresolution image
fusion for MRI and CT image is discussed in [22]. Several
literatures on medical image fusion using DWT can be easily
found in [23–30] which use different fusion rules for merg-
ing multimodality medical images. Some advanced wavelet
families such as contourlet transform, curvelet transform,
and nonsubsampled contourlet transform [31] have been
used for medical image fusion and it has been stated that
these advanced wavelet families have better performance
than wavelet transforms. However, these are computationally
costly and require huge memory. Further, the study and
analysis of DWT for medical image fusion has not been
studied well and it still needs attention of researchers.

Since estimation of decomposition levels for a wavelet
transform [32] has always been challenging and literatures
on multilevel medical image fusion [33] have been a moti-
vation for us to explore DWT for multiscale image fusion,
therefore, in this work, we have used DWT formultimodality
medical image fusion and presented a new multiscale fusion
approach using maximum selection rule. The multiscale
fusion approach provides us flexibility to select appropriate
fused medical image. The experiments have been performed
over several multimodality medical images at multiple scales.
The fusion results have been compared with other state-of-
the-art fusion methods which include several pyramid- and
wavelet-transform-based fusion methods and PCA fusion
method. The quantitative analysis of the fusion results has
been performed with edge strength (Q), mutual information

(MI), entropy (E), standard deviation (SD), blind structural
similarity index metric (BSSIM), spatial frequency (SF), and
average gradient (AG) metrics.

The rest of the paper is organized as follows. Section 2
explains the basics of DWT and its usefulness in image
fusion.Theproposed fusionmethod is explained in Section 3.
Fusion results and evaluations are given in Section 4. Finally,
conclusions of the work are given in Section 5.

2. Wavelet Transform and Image Fusion

Recently, wavelet transforms have emerged as a powerful
signal and image processing tool which provides an efficient
way of fusion usingmultiresolution analysis [34].This section
explains the basics ofDWTand its usefulness in image fusion.

The DWT of a given signal 𝐹(𝑥) is performed by
analysis and synthesis of signal using scaling function 𝜙(𝑥)
and wavelet function 𝜓(𝑥) [35, 36]. The basic equation of
multiresolution theory is the scaling equation

𝜙 (𝑥) = √2∑

𝑘

𝑙 (𝑘) 𝜙 (2𝑥 − 𝑘) , (1)

where 𝑙(𝑘)’s are the approximation or low-pass coefficients
and √2 maintains the norm of the scaling factor by a factor
of two.

The wavelet function 𝜓(𝑥) which is responsible for
computing high-frequency or detailed coefficients is given by

𝜓 (𝑥) = √2∑

𝑘

ℎ (𝑘) 𝜙 (2𝑥 − 𝑘) , (2)

where ℎ(𝑘)’s are the high frequency or detailed wavelet
coefficients.

Signal decomposition is performed using the scaling
coefficients 𝑙(𝑘) and the wavelet coefficients ℎ(𝑘). Forward
wavelet analysis of signal 𝐹(𝑥) at any scale 𝐽 is denoted by

𝐹 (𝑥) = ∑

𝑘

𝐶 (𝑗, 𝑘) 𝜙𝑗,𝑘 (𝑥) +∑

𝑗

∑𝐷(𝑗, 𝑘) 𝜓𝑗,𝑘 (𝑥) , (3)

where 𝐶(𝑗, 𝑘) and𝐷(𝑗, 𝑘) are scaling and wavelet coefficients
at scale 𝐽 and can be computed by following relation:

𝐶 (𝑗, 𝑘) = ∑

𝑘

𝑙 (𝑘 − 2𝑚)𝐶 (𝑗 + 1, 𝑘) ,

𝐷 (𝑗, 𝑘) = ∑

𝑘

ℎ (𝑘 − 2𝑚)𝐶 (𝑗 + 1, 𝑘) .

(4)

Reconstruction of signal can be made by combining scal-
ing and wavelet coefficients, and mathematically, it is repre-
sented by

𝐶 (𝑗 + 1, 𝑘) = ∑

𝑘

𝐶 (𝑗, 𝑘) 𝑙 (𝑚 − 2𝑘) +∑

𝑘

𝐷(𝑗, 𝑘) ℎ (𝑚 − 2𝑘) .

(5)

The forward and backward analysis of signals provides
us the facility to have multiscale signal representations at
varying scales. Further, DWT analysis is capable of providing
three spatial orientations, namely, horizontal, diagonal,and
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Figure 1: 2Ddecomposition process in discretewavelet transform (DWT). (a)DWTdecomposition up to level 3. (b) Two-level decomposition
of Lena image.
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Figure 2: A general image fusion scheme in wavelet domain.

vertical. This can be denoted by the following combination
of scaling and wavelet functions:

𝜙LL (𝑥, 𝑦) = 𝜙 (𝑥) 𝜙 (𝑦) ,

𝜓LH (𝑥, 𝑦) = 𝜙 (𝑥) 𝜓 (𝑦) ,

𝜓HL (𝑥, 𝑦) = 𝜓 (𝑥) 𝜙 (𝑦) ,

𝜓HH (𝑥, 𝑦) = 𝜓 (𝑥) 𝜓 (𝑦) .

(6)

The two-dimensional decomposition process usingDWT
is shown in Figure 1. This can be easily seen that a 2D-
DWT provides multiscale representation at different levels.
Figure 1(a) shows the DWTdecompositions up to level 3, and
Figure 1(b) shows the two level decomposition of Lena image.

This wavelet decomposition is exploited for image fusion
and could be easily understood from Figure 2. The DWT
provides an efficient way for performing image fusion at
multiple scales with several advantages. These are as follows.

Locality.The information of an image is represented bywavel-
et coefficients, which is local in space and frequency.Thus, for
fusion, we can apply fusion rule locally and that would not
affect the other portions of the image.

Multiresolution Analysis. The image can be represented at
different scales, and this allows producing fused images at
multiple levels [33].

EdgeDetection.Wavelet transform can act as local edge detec-
tors. The edges in the image are represented by large wavelet
coefficients at the corresponding locations, while noise is
generally represented by smaller values. Wavelet transform
represents three directional edges: vertical, horizontal, and
diagonal. This property helps in preserving the edges and
implementation of edge-sensitive fusion methods.

Decorrelation. Most of the wavelet coefficients of an image
tend to be approximately decorrelated; that is, dependencies
between wavelet coefficients are predominantly local. Thus,
during the fusion process if there is some change in wavelet
coefficients, then generally this would not affect the other
portions of image. This allows applying fusion rule on
selected wavelet coefficients without affecting other parts of
the image.

Energy Compaction. In wavelet domain, the most essential
information of the image is compressed into relatively few
large coefficients, which coincides with the area of major
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Figure 3: Fusion results for the first set of medical images. (a) CT image, (b) MRI image, (c)–(i) fused images with proposed method from
level 2 to level 8, (j) GP method, (k) CP method, (l) RP method, (m) PCA method, (n) DWT with DBSS method, and (o) SIDWT with Haar
method.

spatial activity (edges, corners, etc.). This property facilitates
the implementation of energy-based fusion rules which
preserve the salient features of images.

3. The Proposed Fusion Approach

The usefulness of DWT made it suitable for medical image
fusion, where one wishes to capture all relevant information
from a single fused image with reduced cost and storage over-
head. The proposed fusion approach follows the framework

shown in Figure 2; decomposition was followed by applica-
tion of fusion rule and reconstruction. We have exploited
the concept ofmultiresolution analysis withmultiscale fusion
approach. The higher the scale is the more the detailed
information is captured from source images to fused image.
Since medical images are of poor contrast, more detailed and
relevant information should be preserved. Thus, by varying
scale, we have flexibility to select appropriate fused image
for further operations. For the proposed fusion scheme, we
vary the scale from minimum to maximum levels. One of
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Figure 4: Fusion results for the second set of medical images. (a) MRA image, (b) T1-MR image, (c)–(i) fused images with proposed method
from level 2 to level 8, (j) GP method, (k) CP method, (l) RP method, (m) PCA method, (n) DWT with DBSS method, and (o) SIDWT with
Haar method.

the important issues is the selection of wavelet for decompo-
sition. Regularity, number of vanishing moment, and finite
support are the few important criteria for selecting mother
wavelet [37]. However, it was shown in [31] that short filter
banks for wavelet decomposition are useful and works well
for fusion. Also, [38] shows the effectiveness of selecting short
length wavelet with a fixed criterion. In both cases, “db3”
wavelet has been found suitable for decomposition; therefore,
we used “db3” wavelet for the proposed fusion scheme.

The proposed fusion approach is based on the maximum
selection scheme as high-valued wavelet coefficients carry
salient information such as edges, boundaries, and contours.

Therefore, the absolute values of wavelet coefficients have
been used for deciding fused wavelet coefficients. For two-
source medical images 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦), the steps of the
proposed fusion scheme are as follows.

(i) Decompose source images using DWT:

𝑊
𝑙

1
(𝑥, 𝑦) = DWT [𝐼1 (𝑥, 𝑦)] ,

𝑊
𝑙

2
(𝑥, 𝑦) = DWT [𝐼2 (𝑥, 𝑦)] ,

(7)

where 𝑊𝑙
1
(𝑥, 𝑦) and 𝑊𝑙

2
(𝑥, 𝑦) are the wavelet coefficients of

source images 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦) at scale 𝑙.
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Figure 5: Fusion results for the third set of medical images. (a) MRI image, (b) CT image, (c)–(i) fused images with proposed method from
level 2 to level 8, (j) GP method, (k) CP method, (l) RP method, (m) PCA method, (n) DWT with DBSS method, and (o) SIDWT with Haar
method.

(ii) Calculate fused wavelet coefficients𝑊𝑙
𝐹
(𝑥, 𝑦) at scale

𝑙 by following the expression:

𝑊
𝑙

𝐹
(𝑥, 𝑦) =

{{

{{

{

𝑊
𝑙

1
(𝑥, 𝑦) , if 󵄨󵄨󵄨󵄨󵄨𝑊

𝑙

1
(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
≥
󵄨󵄨󵄨󵄨󵄨
𝑊
𝑙

2
(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

𝑊
𝑙

2
(𝑥, 𝑦) , if 󵄨󵄨󵄨󵄨󵄨𝑊

𝑙

2
(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
>
󵄨󵄨󵄨󵄨󵄨
𝑊
𝑙

1
(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
.

(8)

(iii) Reconstruct fused image 𝐹𝑙(𝑥, 𝑦) at scale 𝑙 using
inverse DWT:

𝐹
𝑙
(𝑥, 𝑦) = IDWT [𝑊𝑙

𝐹
(𝑥, 𝑦)] . (9)

4. Fusion Results and Discussions

In this section, we have shown fusion results for the proposed
method. The fusion results have been shown for three
sets of medical image pairs of size 256 × 256 shown in
Figures 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b), respectively. The
proposed method has been experimented at multiple scales
varying from level 2 to level 8 (maximum level of scale) for
these medical images. We have performed subjective and
objective comparisons to evaluate fusion results obtained by
the proposed method. To perform subjective comparison,
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Table 1: Quantitative evaluation of fusion results for the first set of medical images.

Fusion method Q MI E SD BSSIM SF AG
Proposed method—level 2 0.7286 2.1396 5.9335 32.9163 0.5251 9.9138 3.7456
Level 3 0.6675 1.6705 6.0177 32.9062 0.5121 10.3127 3.9258
Level 4 0.6097 1.3475 6.1343 32.9446 0.4931 10.4907 4.0249
Level 5 0.5844 1.3666 6.1673 33.7868 0.4856 10.5698 4.0154
Level 6 0.5871 1.3352 6.2107 33.7941 0.4815 10.5912 4.0377
Level 7 0.5862 1.3137 6.2215 33.7733 0.4805 10.5952 4.0422
Level 8 0.5863 1.3204 6.2225 33.7558 0.4799 10.5947 4.0434
GP 0.5784 1.0243 5.4698 19.7350 0.4793 6.6479 2.3911
CP 0.2542 0.9452 1.9243 33.3962 0.5000 14.5826 2.7348
RP 0.2658 0.9901 3.5655 33.1739 0.4794 14.6512 2.9503
PCA 0.6395 2.6305 5.6220 28.3806 0.5371 6.9945 2.6799
DWT with DBSS 0.4269 1.0342 5.5227 22.8441 0.4429 8.7605 3.1299
SIDWT with Haar 0.7014 1.1510 5.3313 25.6650 0.4816 9.4682 3.3500

we have selected gradient pyramid (GP), contrast pyramid
(CP), ratio pyramid (RP), PCA, DWT with DBSS, and
SIDWT with Haar fusion methods which are available on
http://www.metapix.de/ and provided by Rockinger [39].

For objective evaluation of proposed fusion approach
with other state-of-the-art fusion methods, nonreference
metrics are required as no ground truth image is available for
comparison. Therefore, we have used nonreference metrics,
namely, edge strength (Q), mutual information (MI), entropy
(E), standard deviation (SD), blind structural similarity index
metric (BSSIM), spatial frequency (SF), and average gradient
(AG) for objective evaluation of our work.

The illustration of fusion results is separately given in
Sections 4.1 and 4.2 for subjective and objective evaluations,
respectively.

4.1. Subjective Evaluation. The first set of medical images is
brain CT and MRI, shown in Figures 3(a) and 3(b). It can be
easily seen that the CT image shows the edgy structure while
MRI provides information about soft tissues. The results
for proposed multiscale fusion method have been shown in
Figures 3(c)–3(i) from level 2 to level 8. These results show
the variations in contrast of fused image as level progresses.
On comparing the obtained fused images from level 2 to level
8 (shown in Figures 3(c)–3(i)) with GP, CP, RP, and PCA
fused images, which are shown in Figures 3(j)–3(m), it can
be easily concluded that the proposed method outperforms
these fusion methods and has good visual representation of
fused image. The fused images with GP, CP, RP, and PCA
methods are not able to capture the information from CT
and MRI pairs. Further, the proposed method has the better
quality than DWT with DBSS and nearly same with SIDWT
with Haar fusion methods.

The second set of medical images is magnetic resonance
angiogram (MRA) and T1-MR image which is shown in
Figures 4(a) and 4(b). The comparison of proposed fusion
results with GP, CP, RP, PCA, DWT with DBSS, and SIDWT
with Haar fusion methods, shown in Figures 4(c)–4(o),
clearly implies that the fused images with proposed method

have better quality and contrast in comparison to other fusion
methods.

Similarly, on observing the third set of medical images
(CT and MRI) and fusion results for these images which are
shown in Figures 5(a)–5(o), one can easily verify the fact that
again the proposedmethod has been found superior in terms
of visual representation over GP, CP, RP, PCA, DWT with
DBSS, and SIDWT with Haar fusion methods.

4.2. Objective Evaluation. For objective evaluation of the
fusion results, shown from Figures 3–5, we have used seven
nonreference fusion metrics: edge strength (Q) [40], mutual
information (MI) [41], entropy (E) [9, 12, 27], standard
deviation (SD) [12, 27], blind structural similarity index
metric (BSSIM) [33], spatial frequency (SF) [9, 33], and
average gradient (AG) [27]. These metrics are well defined in
the literature and are used excessively for objective evaluation
of fusion results. Higher values of these metrics imply better
fused result. We have computed the values of fusion results
and tabulated them in Tables 1–3 for fusion results shown in
Figures 3–5, respectively.

On observing Table 1, one can easily observe that the
fusionmeasures for proposedmultiscale fusionmethod from
level 2 to level 8 have higher values of fusion measures than
any of the GP, CP, RP, PCA, DWT with DBSS, and SIDWT
with Haar fusion methods. However, the proposed fusion
method from level 2 to level 8 has lesser values of SF than
CP and RP fusion methods. Also, the proposed method has
lesser values of BSSIM than PCA fused image. For these cases,
we have performed an overall comparison in Table 1 and it
simply states that the proposed multiscale fusion method has
better performance for the first set of medical images.

Similarly, observation of Table 2 yields that the proposed
fusion method form level 2 to level 8 has higher values of
fusionmeasures than other fusionmethods except values ofQ
for PCA and SIDWT with Haar fusion methods and value of
BSSIM for PCA fusion method. However, an overall compar-
ison again shows the superiority of the proposed multiscale
fusion scheme for the second set of medical images.
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Table 2: Quantitative evaluation of fusion results for the second set of medical images.

Fusion method Q MI E SD BSSIM SF AG
Proposed method—level 2 0.5716 4.1388 6.6049 69.0531 0.6744 27.4395 9.1392
Level 3 0.5607 3.9468 6.5807 69.1204 0.6731 27.5336 9.2222
Level 4 0.5581 3.8518 6.5658 69.1764 0.6718 27.4915 9.1901
Level 5 0.5572 3.8099 6.5218 69.3058 0.6758 27.4752 9.1523
Level 6 0.5568 3.8101 6.5220 69.2432 0.6753 27.4637 9.1471
Level 7 0.5561 3.8052 6.5210 69.2423 0.6753 27.4587 9.1388
Level 8 0.5559 3.8046 6.5222 69.3186 0.6751 27.4539 9.1360
GP 0.5726 3.7534 6.2998 46.0875 0.6938 20.3984 6.2247
CP 0.4355 3.4739 5.8564 47.8375 0.6394 23.2630 7.7518
RP 0.4296 3.5713 5.8947 47.9619 0.6326 23.9939 7.9823
PCA 0.6270 6.5147 6.0242 57.8031 0.7220 20.8370 6.6609
DWT with DBSS 0.4981 2.9846 5.9870 53.5355 0.6302 25.5900 7.8574
SIDWT with Haar 0.6130 3.3325 5.8210 54.3584 0.6614 25.8574 7.8436

Table 3: Quantitative evaluation of fusion results for the third set of medical images.

Fusion method Q MI E SD BSSIM SF AG
Proposed method—level 2 0.4967 4.0205 5.3671 61.9143 0.7500 23.5420 6.3747
Level 3 0.4873 3.5976 5.4120 61.8504 0.7343 24.0667 6.7283
Level 4 0.4861 3.2489 5.5064 61.5818 0.7091 24.2196 6.1282
Level 5 0.4818 3.0343 5.4945 61.0913 0.7004 24.2190 6.7798
Level 6 0.4768 2.8660 5.6753 61.2172 0.6516 24.0972 6.7355
Level 7 0.4745 2.7483 5.6970 61.7318 0.6372 24.0472 6.6961
Level 8 0.4757 2.7412 6.3419 63.5084 0.5174 24.0370 6.7847
GP 0.5228 3.1159 5.7497 49.6324 0.6742 17.0952 4.4506
CP 0.6475 3.2326 4.5518 55.1066 0.7453 23.8488 6.3681
RP 0.6313 3.6672 4.8964 55.8167 0.7522 24.9349 6.6187
PCA 0.3722 3.8902 4.6139 51.7377 0.7968 12.4883 3.3413
DWT with DBSS 0.4386 3.0704 5.2558 54.1881 0.7076 21.0803 5.8365
SIDWT with Haar 0.6097 3.5023 5.0878 54.2085 0.7667 20.3357 5.4552

Moreover, Table 3 shows the goodness of the proposed
fusion method for the third set of medical images except Q
and BSSIM fusion measures. But again by the same criteria
chosen forTables 1 and 2, the proposedmultiscale fusion from
level 2 to level 8 has better performance thanGP, CP, RP, PCA,
DWT with DBSS, and SIDWT with Haar fusion methods.

4.3. Combined Evaluation. Since the subjective and objective
evaluations separately are not able to examine fusion results,
we have combined both, subjective and objective evaluations.
The values of fusion measures for fusion results of the first
set of medical images (Figure 3) are shown in Table 1. The
observations from Table 1 show the variations in the values of
SF for CP and RP fusion methods and BSSIM for PCA fusion
method. The proposed method from level 2 to level 8 has
lesser value of thesemeasures; however, qualitative evaluation
of the proposed fusion method from Figure 3 clearly proves
the superiority of the proposedmethod over CP, RP, and PCA
fusionmethods as these are not able to merge edge and tissue
information from source CT and MRI images.

Again, Table 2 shows the higher values of Q for PCA and
SIDWT with Haar fusion method and value of BSSIM for

PCA fusionmethod, than the proposed fusion scheme for the
second set of medical images. However, from Figure 4, it can
be easily seen that the proposedmethodprovides better visual
representation than any of these fusion methods. Hence,
combined evaluation shows the goodness of the proposed
multiscale fusion approach.

The fusion measures of Figure 5 are given in Table 3 for
the third set of medical images. The measures show the
variations in the value of Q and BSSIM for the proposed
method, and the proposed method has lesser values of Q
than GP, CP, RP, and SIDWT with Haar fusion methods
and lesser values of BSSIM than RP, PCA, and SIDWT with
Haar fusion methods. However, qualitative analysis of fusion
results shown in Figure 5 clearly shows that GP, CP, RP, and
SIDWT with Haar fusion methods have failed to incorporate
the features of the source CT andMRI images into one image.

Thus, this combined evaluation for fusion results shown
in Figures 3–5 with fusion measures tabulated in Tables 1–
3 clearly proves the superiority of the proposed multiscale
fusion approach over GP, CP, RP, PCA, DWTwith DBSS, and
SIDWT with Haar fusion methods.
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5. Conclusions

In this work, we have proposed a newmultiscale image fusion
approach for multimodal medical images in wavelet domain
and usedDWT for proposed fusionmethod.Themultimodal
medical images are fused at multiple scales from level 2
(minimum) to level 8 (maximum) scales with maximum
fusion rule. The multiscale image fusion method enables the
selection of appropriate fused image with better flexibility.
To show the effectiveness of the proposed work, we have
performed subjective evaluation and objective evaluation of
the proposed fusion method with gradient pyramid (GP),
contrast pyramid (CP), ratio pyramid (RP), PCA, DWT
with DBSS, and SIDWT with Haar fusion methods. The
comparative analysis of the fusion results has been performed
with edge strength (Q), mutual information (MI), entropy
(E), standard deviation (SD), blind structural similarity index
metric (BSSIM), spatial frequency (SF), and average gradient
(AG) fusion metrics. Since the subjective and objective
evaluations are separately not sufficient for analysis of fusion
results, we have performed combined evaluation which
proved the superiority of the proposed multiscale fusion
approach over GP, CP, RP, PCA, DWT with DBSS, and
SIDWT with Haar fusion methods.
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