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This paper presents a novel fuzzy deterministic noncontroller type (FDNCT) system and an FDNCT inference algorithm (FIA).
The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the
existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an
intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The
fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and
current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and
notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of
the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for
eliminating them.

1. Introduction

A hybrid electric vehicle (HEV) propulsion system uses a
high-voltage battery and an engine. The engine is located in
front of the vehicle, and the battery is in the back. An HEV
is safe during normal operations. However, it can catch a fire
due to multiple conditions, namely, high temperature of the
engine, a broken battery, leaking fluids, malfunctioning fuel
tank, high temperature of exhaust manifolds, and abnormal
wear of the engine and battery. Accidents increase the
chances of fires. Therefore, it is important to understand the
conditions that lead to potential fires inside the engine and
battery compartments and take actions for eliminating the
impacts. The research described in this paper focuses on this
topic.

According to a recent publication of National Fire Protec-
tion Association (NFPA) [1], there have been nearly 287,000
vehicle fires between 2003 and 2007 in USA. The fires have
claimed numerous lives and caused property damage. Most
of the vehicle fires were due to automotive fluid leaks,
worn-out mechanical components, collisions, and electrical

failures. Engine compartment fires were about 86% of the
reported minor cases and 70% of the major cases. Engine
fires were mainly due to a fuel tank or fuel line malfunctions.
The high-voltage lithium-ion battery fire in a Chevy Volt
passenger HEV [2] is one of the recent examples of battery
fire incidents.

If the temperature and moisture in the engine compart-
ment are high, there is a possibility of a fire. A battery is one
of the main sources of energy in an HEV [3]. If the battery
is not operating efficiently during the charging process, the
voltage does not increase. This indicates a chemical imbal-
ance in the battery. If this pattern continues and the temper-
ature of the compartment increases, the battery could catch
fire. Fuel leaks and mismanaged energy management could
lead to engine fires in an HEV [4]. Excessive charging could
influence the explosion of the battery and a potential fire.
Therefore, it is important to detect and eliminate potential
fires automatically.

During a typical battery charge, voltage of the battery
increases at constant current input, and it decreases after it
reaches the peak voltage point. Typical wet-cell lead acid

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/204752258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in Fuzzy Systems

batteries have an operating temperature between 85◦F and
95◦F. They seem to degrade in performance if the tempera-
ture is greater than 125◦F. At this temperature, there is the
possibility of chemical imbalance and a potential fire hazard.

Based on the earlier discussions, the following data iden-
tifies potential fires: the temperature and moisture percent-
age of the engine compartment, temperature of the battery
compartment, voltage characteristics of the battery during
the charging process, and the characteristics of the current
charge and discharge of the battery. Sensors read data in the
engine and battery compartments.

The sensor readings over a period of time show different
patterns depending on the conditions of the engine and
battery compartments. The synthesis of the data is required
based on the time and pattern of the data. For example, in the
engine compartment, the rate of change of temperature may
increase, decrease, or stay at the same level for a particular
length of time. In this case, the intelligent system must moni-
tor the temperature readings over a time period from the
sensor and analyze the patterns to determine if a potential
fire condition exists. The rate of change can take values
that are greater than zero. In general, subject matter experts
express the data values in subjective terms, namely, low,
medium, and high values. There is no precise definition for
the values of low or high. Therefore, the traditional analytical
techniques lack approaches to handle subjective linguistic
terms. An intelligent system and a new approach are neces-
sary to collect the required data and synthesize them to detect
potential fires and take actions. Moreover, the system must
handle linguistic definitions of the rate of change of values.

Fuzzy logic [5] provides a reasoning mechanism for syn-
thesizing vague and uncertain linguistic parameters. In the
literature, fuzzy logic has been used to detect fires in dry bay
and the engine compartment of an aircraft [6, 7]. However,
they use either rule-based heuristics or analysis of histograms
and images. A network-based fire detection [8] is also in the
literature, but it is mainly for home automation systems.
The related work in [9, 10] uses the traditional Mamdani
fuzzy logic [11] approach for detecting fires. Most of all
the fuzzy logic applications in the literature seem to use the
Mamdani approach for designing a system for fire detection.
The Mamdani approach allows users to express fuzzy rules of
a system using linguistic terms. Therefore, the experts tend
to define the rules using natural language, and it increases
the complexity of a rule base. As the rule base increases, the
memory space and computations required to process them
increase. In addition, they all use output membership func-
tions for approximation, and it requires more memory and
computations.

A fuzzy noncontroller type of system processes fuzzy
inputs and produces a deterministic output. The output is
nonfuzzy, and it can have multiple deterministic values based
on the rules implication. This type of system is required for
detecting and eliminating potential fires in an HEV. This
paper proposes a novel Fuzzy Deterministic Noncontroller
Type (FDNCT) inference system and an algorithm. The
FDNCT must be simple with less memory and computation
requirements. It must minimize the complexity of future
rule modifications. In addition, it must aid in implementing

a FDNCT chip using simple architecture and minimal num-
ber of logic elements.

The work described in [12, 13] proposes rule reduction
approaches to achieve computational efficiency. On the other
hand, the authors seem to introduce complex algorithms for
reducing the rules and creating a new set of membership
functions from them. The approaches described in [12, 13]
complicate the subject matter experts to define new rules
or modify the existing rules. Conversely, singleton fuzzy set
approaches in [14, 15] provide a model for using real num-
bers in the consequent part of a fuzzy rule and let the fuzzy
inference approximate the output based on the combined
weighted average of all the rule antecedents. However, they
require defining multiple fuzzy singletons or real numbers
to obtain the results. The weighted averages may not be the
output the system is expecting to perform some actions.
Therefore, additional processing or memory is required
before using the output results. The approaches defined in
[16, 17] also follow the similar approximation approaches
and require defining multiple real numbers or fuzzy single-
tons. None of these approaches have approximation methods
for producing a deterministic output using one real number
or a fuzzy singleton, for example, outputting a deterministic
value of 0.25 or 0.5 depending on the implication of the
appropriate rule antecedents.

No simple approach exists in the literature, which is sim-
ilar to the proposed FDNCT for detecting a potential fire and
determining the actions for eliminating it. To fill that void
and the shortcomings of the approaches described in [14–
17], this paper provides the following novel contributions for
detecting and eliminating potential fires in the engine and
battery compartments of an HEV.

(i) FDNCT system and FDNCT inference algorithm
(FIA): the FDNCT and FIA processes fuzzy inputs
and produces a deterministic nonfuzzy output value.

(ii) Intelligent Detection System of Potential Fires
(IDSPF): architecture of the IDSPF based on the pro-
posed FDNCT system and FIA. The FIA produces
the deterministic values of initial, standby, spray, and
notify actions for the IDSPF.

The IDSPF has the following distinct features that differenti-
ate it from the existing literature described in [14–17].

(i) Subject matter experts always express rules using
the Mamdani approach, and the FDNCT system
approach organizes them for inference. Therefore,
there is no change for the experts for adding or modi-
fying rules.

(ii) Linguistic variables represent the rules output,
namely, initial (In), standby (St), and spray (Sp), but,
during the output approximation, the FIA produces
one real number depending on the implication of
rule antecedents. Sections 2 and 3 have the details.

(iii) The FIA is an extension and alternative for the exist-
ing fuzzy singleton inference algorithms described in
[14–17] methods. Sections 2 and 3 have the details.
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(iv) The FDNCT and FIA provide simple architecture
than the existing fuzzy singleton inference algorithms
described in [14–17] methods. The FIA aids in devel-
oping a FDNCT chip using the minimum number of
components (authors’ future work).

The IDSPF continuously monitors the engine and battery
compartments for the incidents of high-temperature, leaked
fluids (moisture) and abnormal voltages during charging of
the battery. It then synthesizes the data using FDNCT and
determines the actions required, namely, spray the fire-extin-
guishing agent, keep the sprayer in standby or initial mode,
and notify passengers using an audible alarm in the passenger
compartment. IDSPF executes the actions to eliminate a
potential fire.

The organization of the rest of the paper is as follows.
Section 2 presents the FDNCT system model and architec-
ture of the IDSPF. Section 3 describes the FDNCT inference
algorithm (FIA). Section 4 describes an example of an
FDNCT implementation. Section 5 presents the simulation
results of the IDSPF using FDNCT with respect to the single-
ton type of approaches of detecting potential fires. This paper
concludes in Section 6.

2. Intelligent Detection System of
Potential Fires (IDSPFs)

For explaining the proposed IDSPF and FDNCT, this paper
assumes rules and operating points of the engine and
battery compartments of an HEV. The actual rules and the
operation points of the implementation depend on the
expert knowledge about the situation where IDSPF and
FDNCT are applied. Each implementation can have different
operating ranges, but all follow the same approach proposed
in IDSPF and FDNCT.

This section describes the system architecture of the
proposed IDSPF in Section 2.1 and FDNCT system model
in Section 2.2.

2.1. IDSPF Architecture. Figure 1 shows the schematic of
the proposed IDSPF system architecture. Components of the
IDSPF are as follows:

(i) sensors (temperature (two sensors), moisture, volt-
age, and current),

(ii) spray jets (four),

(iii) wireless router,

(iv) intelligent fuzzy processing unit (IFPU):

(a) FDNCT system,

(b) data processor,

(c) data storage,

(d) notification/extinguishing processor,

(v) electronic alarm.

Figure 2 illustrates the process flow of the IDSPF.

(1) The following five sensors monitor the engine and
battery compartments every minute and send data to the
IFPU.

(i) engine compartment:

(a) temperature sensor,

(b) moisture sensor,

(ii) battery compartment:

(a) temperature sensor,

(b) voltage sensor on the battery,

(c) current sensor on the battery.

For faster temperature and moisture data acquisitions, a near
infrared type of detectors [18] can be used. However, this
paper does not suggest a type of sensors to use as long as the
sensors meet the following IDSPF assumptions:

(i) the IDSPF uses predetermined sensors and spray jet
types,

(ii) the moisture sensor sends data in percentages (%),

(iii) the placement and location of the sensors handle
various factors, namely, noise cancellation, ability to
withstand high-temperature environments, sustain
vibration and shock, and sense accurate data,

(iv) spray jets use predetermined fire-extinguishing
agents. It meets the Underwriters Laboratories (UL)
classifiers (http://www.ul.com/), namely, A for cloth,
B for flammable liquids and gases, C for live electrical
equipment, and D for combustible metals,

(v) sensors processes the signal data and converts to
numerical data,

(vi) sensors transmit data using wireless communica-
tions.

(2) The sensors/detectors communicate with the IFPU
using a Wireless Local Area Network (WLAN. The IFPU
receives data from the sensors at the Data Processor and
stores them in the Data Storage (e.g., an external hard drive or
physical memory device). Let Tec be the current temperature
reading from the engine, Mec be the current moisture reading
from the engine,Tbc be the current temperature reading from
the battery compartment, Vbc be the current voltage reading
of the battery, and Ibc be the present reading of the electric
current of the battery.

(3) The data processor calculates the rate of change of
each sensor data and stores them in the data storage every
two minutes. Let RTe be the rate of change of temperature
readings of the engine, RMe be the rate of change of moisture
reading from the engine, RTb be the rate of change of tem-
perature reading from the battery compartment, RVb be the
rate of change of voltage readings of the battery, and RIb be
the rate of change of readings of the electric current of the
battery.
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Figure 1: A schematic of the IDSPF system architecture.

(4) The FDNCT system receives data from the data pro-
cessor and applies FIA. It sends an output back to the data
processor. The FDNCT system implements the proposed FIA.

(5) Based on the readings of the sensors, the data pro-
cessor interacts with the FDNCT system as follows.

(i) Send Tec and Mec to the FDNCT system and receive an
output decision Oc for the engine compartment.

(ii) Send Tbc, Vbc, and Ibc to the FDNCT system and
receive an output decision Oc1 for the battery com-
partment.

(iii) Send RTe and RMe to the FDNCT system and receive
an output decision Orc for the engine compartment.

(iv) Send RTb, RVb, and RIb to the FDNCT system and
receive an output decision Orc1 for the battery com-
partment.

The data processor normalizes the sensor readings data before
sending it to FDNCT system using the appropriate numbers
shown in Table 2.

(6) The data processor determines the appropriate actions
based on the values of Oc, Ooc1, Orc, and Orc1. The actions
are to keep the spray jets in their default state, spray the fire
extinguishing agent, keep the spray jets in a standby mode,
and alarm the passengers about a potential vehicle fire. The
deterministic output from the FDNCT system enhances the
decision process of the IDSPF to take actions quickly.

(7) The notification/extinguishing processor executes the
actions recommended by the data processor.

2.2. FDNCT System Model. The FDNCT is an extension and
alternative for the existing fuzzy singleton inference algo-
rithm described in [14–17]. The FDNCT system has a mod-
ified fuzzifier. The fuzzy inference of the FDNCT replaces
the singleton inference algorithm. This section describes the
proposed FDNCT system model used in the IDSPF for the
engine (1) and battery (2) compartments of an HEV. The
model is as follows:

Ri
en : if Te is Li and M is Mi then O is ki, (1)

where Ri
en is the ith rule of m rules, that is, (1 < i < m)

of a potential fire in the engine compartment. Te and M
are the normalized engine temperature and moisture sensor
data instance of the engine compartment, respectively. Li and
Mi are the associated linguistic input membership functions
or the fuzzy sets for the temperature and moisture data,
respectively, where i = 1 to 3, respectively. O is the output.
ki is the deterministic values i = 1 to 3, k1 = 1 (initial (In)),
k2 = 2 (standby (St)), k3 = 3 (spray (Sp)) if ki ≥ 2 (notify
(Nt)):

Ri
ba : if Tb is Ai and I is Bi, and V is Ci, then O is ki,

(2)
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Figure 2: An outline of the IDSPF operation process.

Table 1: Unique number per unique output linguistic variable.

Variable Assigned number

In 1

St 2

Sp 3

Table 2: Normalization maximum numbers.

Variable Maximum number Variable Maximum number

Te 225 RTe 100

M 100 RM 100

Tb 125 RTb 100

V 13 RV 13

I 5 RI 5

where Ri
ba is the ith rule of m rules, that is, (1 < i < m)

of a potential fire inside the battery compartment. Tb, I ,
and V are the normalized engine temperature, current, and
voltage sensor data instance of the battery compartment,
respectively. Ai, Bi, and Ci are the associated linguistic input
membership functions or the fuzzy sets where i = 1 to 3,
respectively. O is the output. ki is deterministic values i = 1
to 3, k1 = 1 (initial (In)), k2 = 2 (standby (St)), k3 = 3 (spray
(Sp)) if ki ≥ 2 (notify (Nt)).

The IDSPF uses both the rate of change of input values
(normalized) and the actual values (normalized) to deter-
mine the correct actions for a potential fire event

Li =Mi = Ai = Bi = {low, medium, high
}

,

Ci = {no change, decrease, increase
}
.

(3)

To simplify computation and to reduce processing, the
linguistic input membership functions use a triangular cha-
racteristic curve. Figure 3 illustrates the triangular mem-
bership characteristic curve. The membership functions of
temperature, current, and moisture inputs use the simple
linguistic terms, namely, low, medium, and high. However,
the names for the voltage variable are decrease, increase, and
no change. In Figure 3, s, c, and e on the x-axis are the start,
center, and end range of a fuzzy set, respectively. μF(a) on the
y-axis is the membership grade, and a is the input value to be
fuzzified. The membership grade of a is zero at s and e, but at
c the membership grade of a is 1. The values between s and
e have different grades of membership based on the position
of a and the triangle.

Unlike the approaches in the literature, the FDNCT uses
no output membership functions or singletons, but the input
membership functions are represented in (3) as fuzzy sets.
Table 4 illustrates the normalized ranges used for the mem-
bership functions. Figure 4 illustrates the membership curves
for the inputs, namely, Te, Tb, and I . Figure 5 illustrates the
membership curve for the input, namely, V .
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Table 3: FDNCT example values.

Variable Normalized μ1 μ2 μ3 max μ Index Coefficient

Te 0.71 0 0.26 0.28 0.28 2 2

M 0.75 0 0.15 0.38 0.38 3 3

Tb 0.68 0 0.35 0.2 0.35 2 2

V 0.6 0 0.58 0 0.58 2 1.5

I 0.77 0 0.09 0.43 0.43 3 2.5

Table 4: Range values of input membership functions.

Input fuzzy set/membership
function name

Normalized range values

s c e

Low, no change −0.4 0 0.4

Medium, decrease 0.1 0.5 0.8

High, increase 0.6 1 1.4

Table 5: Rules developed using the Mamdani approach for the
engine compartment.

Te (temperature)
M (moisture)

Low Medium High

Low ln ln St

Medium ln St Sp

High ln St Sp

Before fuzzifying the inputs, the input values are normal-
ized based on the maximum numbers for a given variable
as shown in Table 2. The fuzzifier of the FDNCT maps the
nonfuzzy inputs of Te, Tb, M, I , and V into their suitable
membership grades based on (3), Table 4, Figures 4 and 5.
This process is known as fuzzification. The process uses (4)
for calculating the membership grades:

μF(a) = {0 | a ≤ s or a ≥ e}
= {1 | a = c}

=
{
a− s

c − s
| s ≤ a ≤ c

}

=
{
s− a

c − s
| c ≤ a ≤ e

}
.

(4)

Fuzzy inference process of the FDNCT depends on the
if-then rules defined in (1) and (2). Subject matter experts
express the rules of potential fire detection and the action for
eliminating them using Mamdani approach. For simplifying
the rules, linguistic names are provided for each of the
expected output, namely, In for the initial status of the
sprayer, St for keeping the sprayer in standby mode, Sp for
spraying the fire extinguishing agent from the sprayer, and
Nt for sending alarm notification for the passengers. Tables
5 and 6 represent the Mamdani rule sets for the engine and
battery compartments, respectively. The Mamdani approach
requires defining membership functions for each output.
The singleton model approaches in the literature use real

µ
F

(a
)

s e
a

c

1

0.75

0.5

0.25

Figure 3: A triangular membership characterization curve.

numbers as the outputs, but they are not deterministic
outputs. In contrast with the existing singleton model in
the literature, the proposed FDNCT system uses no output
membership function, instead it calculates the deterministic
output value ki based on the implication of the rules in a
novel way using FDNCT inference algorithm (FIA). Section 3
describes the FIA for the engine and battery compartments to
determine the deterministic output value ki.

3. FDNCT Inference Algorithm (FIA)

This section describes the proposed FIA. The model is
expressed as shown in (5). Let k be the expected output of
the FDNCT system, J be the output matrix based on the m
rules of the FDNCT system, xi be the ith row number of the
output of the J matrix, and yi j be the jth column number of
the ith row of the output of the J matrix, where i = 1 to n
rows and j = 1 to m columns of the output matrix J . The
FIA assumes that rule implication aggregation uses fuzzy OR
operator:

k = J
(
xi, yi j

)
. (5)

The value of xi can be calculated using (6). Let I1 be the
value of the first input variable of the FDNCT system and μp1

and ap1 be the corresponding membership grade and output
coefficient of the pth linguistic input membership function
(fuzzy set), respectively, where p = 1, 2, . . . ,n linguistic input
membership functions of the first input variable. The value
of μp1 can be calculated using (4).

Let V be the vector of membership grades (μ) of
membership functions of the 1st input variable and Va

be the vector of output coefficients of the corresponding
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Table 6: Rules developed using the Mamdani approach for the battery compartment.

Tb (temperature)

I-V (current and voltage)

Low,
increase

Low,
decrease

Low,
no change

Medium,
increase

Medium,
decrease

Medium,
no change

High,
increase

High,
decrease

High,
no change

Low ln ln St ln ln St ln ln St

Medium ln St Sp ln St Sp ln St Sp

High St St Sp St St Sp St St Sp
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Figure 4: Input membership characteristic curves for the inputs Te, Tb, and I .
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Figure 5: Input membership characteristic curve for the input V .

membership functions. Let z be the index of maximum μ,
that is, μmax 1 (8) of the 1st input variable in V

xi = Va(z), (6)

V
(
p
) =

(
μp1(I1)

)
, (7)

μmax 1 = max
(
V
(
p
))
. (8)

The value of yi j can be calculated using (9). Let Il be the
value of lth input variable of the FDNCT system where l = 2
to X inputs, μpl and apl be the corresponding membership
grade and output coefficient of the pth linguistic input mem-
bership function (fuzzy set) of the lth input, respectively,
where p = 1, 2, . . . ,n linguistic input membership functions.
The value of μpl can be calculated using (4).

Let Wl be the vector of membership grades (μ) of
membership functions of the lth input. Let Wal be the vector
of output coefficients of the corresponding membership

functions of the lth input. Let zl be the index of maximum
μ, that is, μmax l (11) of the lth input in Wl:

yi j =
X∑

l=2

Wal(zl), (9)

Wl
(
p
) =

(
μpl(Il)

)
, (10)

μmax l = max
(
Wl(1),Wl(2), . . . ,Wl

(
p
))
. (11)

The FIA implementation procedure is as follows.

Step 1. Arrange fuzzy if-then rules in a matrix format as
shown in Tables 5 and 6. Let J be the n × m output matrix
consisting of all the outputs for the unique combinations of
the membership functions, where n is the number of rows
and m is the number of columns. As shown in Table 6,
the assumption is that J can have only one linguistic input
membership variable associated with an output per row and
multiple linguistic input variables per column. The experts
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Table 7: Battery compartment rule matrix with numerical outputs, linguistic inputs, and output coefficients.

Tb (temperature)
I-V (current and voltage)

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

[0.5] [0.5] [0.5] [1.5] [0.5] [2.5] [3.5] [0.5] [3.5] [1.5] [3.5] [2.5] [6.5] [0.5] [6.5] [1.5] [6.5] [2.5]

1 [1] 1 1 2 1 1 2 1 1 1

2 [2] 1 2 3 1 2 3 1 2 3

3 [3] 2 2 3 2 2 3 2 2 3

express linguistic variables as low, high, increase, and so
forth.

Step 2. Identify unique linguistic outputs in J and assign
unique numbers starting from 1. Let λ be the total number of
unique outputs. Tables 5 and 6 illustrate the result of this step
for the outputs as shown in Table 1. Replace all the linguistic
output variables in J with the assigned unique numbers
1, 2, 3, . . . , λ. Let αi j be the assigned output number for the
ith row and jth column of J .

Step 3. For each input in J , assign a unique number to each
unique linguistic input variable using an increment of one
starting from one. Table 7 illustrates an example assignment.

Step 4. Let ϑj be the total number of linguistic input variables
in the jth column that have no output coefficients and θj
be the total number of linguistic input variables that have
output coefficients. Let ai be the output coefficient of a lin-
guistic input variable, where i is 1 to θj . Determine delta
output coefficient ξj using (12) and assign it to all the lin-
guistic input variables that have no output coefficients in
the jth column. If any of the remaining columns have any
linguistic input variables in the same positions as the jth
column, then assign their output coefficients with the output
coefficients of the corresponding linguistic input variables in
the jth column. For example, assume that the 1st column
has low and high linguistic input variables and 0.33 and
1.35 are the output coefficients of low and high linguistic
variables, respectively. Assume that 3rd column has low and
medium, and 4th column has medium and high linguistic
input variables. In this situation, the low variable in 3rd
column gets 0.33, and the high value in the 4th column gets
1.35. Repeat Step 4 for all the remaining columns to make
sure all the linguistic input variables have output coefficients.
After performing all the assignments, the final matrix looks
as shown in Figure 6 and Table 7:

ξj = j −∑θj
i=1 ai

ϑj
| j = 1, 2, 3, . . . ,m columns. (12)

Step 5. Let ϑk be the total number of linguistic input variables
in the kth row that has no output coefficients and θk be the
total number of linguistic input variables that have output
coefficients. Let ai be the output coefficient of a linguistic
input variable where i is 1 to θk. Determine delta output
coefficient ξk using (13) and assign it to all the linguistic
input variables that have no output coefficients in the kth
row. Since a row can have only input variable, repeat Step 5

1
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3
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1 (1) 1 1 2

2 (2) 1 2 3
3 (3) 1 2 3
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Figure 6: Engine compartment rule matrix with numerical out-
puts, linguistic inputs, and output coefficients.

for all the remaining rows to make sure that all the linguistic
input variables have output coefficients. After performing all
the assignments, the final matrix looks as shown in Figure 6
and Table 7:

ξk = k −∑θk
i=1 ai

ϑk
| k = 1, 2, 3, . . . ,n rows. (13)

Step 6. As shown in (14), let N be the total number of
inputs of an FDNCT system. Let Ii be the vector of all
the numerically assigned linguistic input variables of the
ith input (Step 3), where i = 1, 2, 3, . . . ,N . Let λi be the
total number of linguistic input variables of the ith input.
Let ai be the output coefficient of the ith linguistic input
variable. Based on (14), the engine and battery compartment
linguistic input variables of the IDSPF can be represented as
(15) and (16), respectively. We have

Ii(N)(N) = (1, 2, . . . , λi)(a1, a2, . . . , aN ) | i = 1, 2, 3, . . . ,N ,
(14)

ITe(3) = (1, 2, 3)(1, 2, 3),

IM(3) = (1, 2, 3)(1, 2, 3),
(15)

ITb(3) = (1, 2, 3)(1, 2, 3),

II(3) = (1, 2, 3)(0.5, 3.5, 6.5),

IV (3) = (1, 2, 3)(0.5, 1.5, 2.5).

(16)

The output matrix J (Figure 6 and Table 7), (15), and
(16) serve as the knowledge for inferring the output of an
FDNCT system in the IDSPF. The following equations serve
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as the FIA engine: (4), (5), and (9). Section 4 describes the
application of FIA using an example.

4. FIA Example

This section describes the application of FIA using an exam-
ple of the inputs of IDSPF.

Example 1. We have the following steps.

Step 1. Let Te is 160◦ Fahrenheit, M is 75%, Tb is 85◦ Fahren-
heit, I is 3 amperes, and V is 10 volts. Normalize the inputs
by dividing the value of the inputs using the appropriate
number shown in Table 2 and rounding it to two decimal
points. The table expresses the maximum operating point per
variable used in the IDSPF implementation. The normalized
values are as follows:Te = 0.71,M = 0.75,Tb = 0.68, I = 0.6,
V = 0.77.

Step 2. Calculate the μ of each input value using (4) for
all its corresponding input membership functions. Find the
maximum value of μ value for each input, and find the
associated output coefficients from (15) and (16). The calcu-
lated values are as shown in Table 3.

Step 3. Based on the values of the coefficient column in
Table 3, the FDNCT output values of the engine and battery
compartments can be calculated using (5). From Table 3,
the inputs of the engine compartment are Te and M. The
corresponding output coefficients are xi = 2 and yi j = 3;
based on (5) and Figure 6 the value of k is 3; that is, spray
the sprayer, and since k is >2, send the alarm notification
to the passenger compartment. Similarly, for the battery
compartment, xi = 2 and yi j = 1.5 + 3.5 = 5 (5th column).
Based on (5) and Table 7, the value of k is 2; that is, keep the
sprayer in the standby mode.

5. Simulation Results

The authors simulated the performance of the FIA and sin-
gleton approaches using a computer software, namely, Mat-
lab and Simulink, and a set of normalized input data for the
engine and battery compartments. Table 8 illustrates a small
set of the bigger set of sample data used for the simulation.
The data is generated using the random() function in the
Matlab library. In the future work, a fuzzy chip will be imple-
mented to test the approach in a real set up.

Figure 7 illustrates the performance of the FDNCT over
singleton approach for one sample data over 20 iterations of
the engine compartment of an HEV. The FDNCT takes at
an average of 0.09 seconds to perform one action for the
engine compartment, whereas the singleton approach takes
an average of 0.12 seconds. The FDNCT approach reduces
approximately 25% of time than that of the singleton
approach.

Figure 8 illustrates the performance of the FDNCT over
singleton approach for one sample data over 20 iterations
of the battery compartment of an HEV. The FDNCT takes
an average of 0.11 seconds to perform one action for the

Table 8: Sample data snapshot used for the engine and battery com-
partments.

Tb/Te M, I V

0.08 0.14 0.14

0.16 0.27 0.27

0.18 0.32 0.32

0.18 0.32 0.32

0.18 0.32 0.32

0.25 0.44 0.44

0.31 0.54 0.54

0.35 0.62 0.62

0.38 0.67 0.67

0.40 0.70 0.70

0.40 0.70 0.70

0.38 0.67 0.67

0.35 0.61 0.61

0.30 0.53 0.53

0.25 0.43 0.43

0.18 0.32 0.32

0.18 0.32 0.32

0.11 0.19 0.19

0.03 0.05 0.05

Te : engine temperature, Tb : battery temperature, I : battery current, and V :
battery voltage.
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Figure 7: Elapsed time for executing one data sample for the engine
compartment using the FDNCT and singleton approach.

battery compartment whereas the singleton approach takes
an average of 0.19 seconds. The FDNCT approach reduces
approximately 42% of time more than that of the singleton
approach.

The main benefits from the FDNCT approach are to
develop a fuzzy chip with minimizing the number compo-
nents, and to produce deterministic outputs with a simple
and minimum number of fuzzy rules. The elapsed time
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Figure 9: Action output for the battery compartment using the
FDNCT and singleton approach.

advantage of the FDNCT over the singleton approach is
secondary.

Figure 9 illustrates the action outputs using the FDNCT
and singleton approach for 20-sample data of the battery
compartment of an HEV. The FDNCT outputs deterministic
values whereas the singleton approach outputs nondeter-
ministic values. The FDNCT has crisp outputs when com-
pared to singleton approach. The deterministic outputs are
necessary for the noncontroller type of applications. Similar
results were obtained for the engine compartment simu-
lation too. Based on Figure 9, it is seen that the FDNCT
approach takes spraying actions (i.e., action output = 3) for
iterations numbers 6 through 17. However, the singleton
approach takes a very different action for each of the itera-
tions, and it never takes the spraying action throughout the
simulation. The singleton approach seems not to detect a
potential fire even if the potential fire situation exists.

6. Conclusion

The IDSPF is a noncontroller type of system that uses fuzzy
inputs and produces a deterministic output. The IDSPF uses
the consequent parts of the fuzzy rules as a detection of
a potential fire and the deterministic output as an action
for eliminating the potential fire. For noncontroller type of
systems, when compared with the fuzzy singleton approach,
the FDNCT and FIA provide simple solutions with a reduced
number of computations. The FDNCT produces a deter-
ministic output without using an output fuzzy set or a mem-
bership function. The FIA and FDNCT work well with most
of the noncontroller type applications that use fuzzy inputs
and require a deterministic output. The FIA is an exten-
sion and alternative to the fuzzy singleton algorithm. The
weighted average approach of the traditional Mamdani sin-
gleton method requires more processing and is more time
consuming as the number of fuzzy rules increases. Therefore,
the proposed FDNCT and FIA provide a system and an algo-
rithm that requires less storage space and are more efficient
to synthesize fuzzy inputs and to produce a deterministic
output.

The authors of this paper intend to implement IDSPF
and develop an FDNCT fuzzy chip using a hardware descrip-
tion language (HDL) in their future work. The new approach
allows using minimal.

Disclaimer

Reference herein to any specific commercial company, prod-
uct, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United
States Government or the Department of the Army (DoA).
The opinions of the authors expressed herein do not neces-
sarily state or reflect those of the United States Government
or the DoA and shall not be used for advertising or product
endorsement purposes.
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