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We aimed to derive a kernel function that accounts for the interaction among moving particles
within the framework of particle method. To predict a computationally more accurate moving
particle solution for the Navier-Stokes equations, kernel function is a key to success in the
development of interaction model. Since the smoothed quantity of a scalar or a vector at a spatial
location is mathematically identical to its collocated value provided that the kernel function is
chosen to be the Dirac delta function, our guideline is to derive the kernel function that is closer to
the delta function as much as possible. The proposed particle interaction model using the newly
developed kernel function will be validated through the two investigated Navier-Stokes problems
which have either the semianalytical or the benchmark solutions.

1. Introduction

Numerical methods that are now available for performing flow simulations can be divided
into the Eulerian and Lagrangian two classes. In the Eulerian method, flow equations are
solved at a fixed mesh system. On the contrary, in the Lagrangian method, which can be
subdivided into the mesh-based and meshfree two subgroups, either meshes or particles, on
the other hand, are advected with the fluid flow. The consequence is that in the transport
equations we no longer have a need to approximate the convection terms. Avoidance of
the approximation of convective terms is now known as one of the apparent advantages
of employing the Lagrangian approach. Numerical errors of the cross-wind diffusion type
can, as a result, be well eliminated. There exists another mathematically rigorous arbitrary
Lagrangian-Eulerian (ALE) method [1] which involves the use of Lagrangian and Eulerian
solution steps in the course of moving mesh.
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In the literature, several well-known grid-based methods, such as the marker-and-
cell (MAC) [2], volume-of-fluid (VOF) [3], and level-set [4] methods, have been developed
to predict free surface flows. There existed also a major class of meshfree methods, which
are known as the particle methods. Particle methods deal with the prescribed particles
moving in the Lagrangian sense. As a result, the convection terms can be directly calculated
without incurring any numerical diffusion error. Particle methods can be also separated
into the Eulerian particle method, such as the particle-in-cell (PIC) method [5] and the
Lagrangian particle methods, which include the smoothed particle hydrodynamics (SPHs)
and moving particle semi-implicit (MPS) two classes of meshless methods. SPH method,
introduced firstly by Lucy [6] and Gingold andMonaghan [7] in 1977, was developedmainly
for the simulation of compressible fluid flows based on the interpolation theory through
the introduced kernel function (or smoothing kernel). SPH method was later extended to
simulate also the incompressible free surface flow [8].

Another gridless particle method, called the MPS, was more recently developed to
simulate the incompressible Navier-Stokes fluid flows [9]. The motion of each particle in
this method is calculated through the interaction of its neighboring particles by means of
the kernel (or weight) function. This means that all the spatial derivatives can be calculated
by the deterministic particle interaction without the need of generating meshes in the flow.
This explains why MPS method is gradually becoming effective for use in simulating many
practical problems involving the complicated geometry and complex physics. For the flow
problems with an inflow or an outflow boundary, this method was however found to have
difficulty of tracing a particle easily. In addition, MPS method requires an extra CPU time to
search for all its neighboring points.

The rest of this paper will be organized as follows. In Section 2 we present the Navier-
Stokes and the passive scalar equations, which involve convection and diffusion flux terms.
This is followed by presenting the particle interaction models used for the approximation
of the gradient and Laplacian differential operators. In Section 4 emphasis will be placed on
subject to free surfaces the kernel function used in the particle method. In Section 5, we will
validate the proposed particle model by solving two Navier-Stokes problems. In Section 6,
conclusions will be drawn based on the predicted results.

2. Working Equations

In this study the following Navier-Stokes equations for the motion of an incompressible fluid
flow will be considered in a simply connected domain Ω:

Du

Dt
= −1

ρ
∇p + ν∇2u + f, (2.1)

1
ρ

Dρ

Dt
= −∇ · u, (2.2)

whereDu/Dt = ∂u/∂t + (u · ∇)u. In (2.1), which is the momentum equation, ρ stands for the
density of the investigated flow, ν the kinematic viscosity, and f the gravitational acceleration
vector.
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The following model equation will be considered in the development of kernel
function since it is the key equation in the simulation of momentum equations for the
incompressible fluid flow:

u
∂φ

∂x
+ v

∂φ

∂y
= μ

(
∂2φ

∂x2
+
∂2φ

∂y2

)
. (2.3)

Both of the velocity components u and v and the fluid viscosity μ in (2.3) are assumed
to be the constant values to facilitate the development of the proposed kernel function in
Section 4.

3. Particle Interaction Models for Two Differential Operators

Due to the difficulties of applying the grid-based methods to simulate complex flow physics,
particle-based methods become gradually popular in the simulation of incompressible
Navier-Stokes equations subject either to a free surface or an interface. In particle methods,
the differential operators for the mass and momentum conservation equations need to
be replaced by their corresponding particle interaction operators. In other words, partial
differential equations (2.1)-(2.2) written in the continuous context will be transformed to
their corresponding discrete particle interaction equations so that the transport equations
under investigation can be approximated by the chosen moving particles and their
interaction. The degree of success depends on the kernel (or weighting) function for the
particles that are distanced from each other by the user’s prescribed finite length for the
approximation of velocity vectors and pressure in the incompressible fluid flows around
these particles.

Consider a particle at which a physical quantity fi is defined at a position ri. One
can represent fi approximately at each location as follows by virtue of the following kernel
function w(r)

〈
f
(
r
)〉 ·∑

i

w
(∣∣ri − r

∣∣) =∑
i

fiw
(∣∣ri − r

∣∣). (3.1)

It is important to note that the smoothed quantity 〈f〉i for f at ri turns out to be exactly
identical to the local value of fi if the kernel function in (3.1) is the Dirac delta function. This
implies that the chosen kernel function w(r), which should be constrained by the integral
constraint equation

∫
V w(r)dV = 1 shown in (3.1), determines the prediction quality of the

particle methods. One can find different kernel functions in [10].
For a scalar φ at a location rj , its value can be expanded in Taylor series with respect

to the value of φ at ri as follows:

φj = φi +∇φ|ij ·
(
rj − ri

)
+H.O.T. (3.2)

By dropping the higher-order terms shown above, we are led to get the first-order approx-
imated equation φj − φi = ∇φ|ij · (rj − ri). By multiplying the term (rj − ri)

−1 on both hand
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sides of the resulting simplified equation, we can get

∇φ|ij =
(
φj − φi

)(
rj − ri

)
∣∣∣rj − ri

∣∣∣∣∣∣rj − ri

∣∣∣ . (3.3)

Let ∇φ|ij be f . We then substitute it into (3.1) to get the following smoothed representation
of ∇φ, which is denoted by 〈∇φ〉 at the node ij, in a domain with d dimensions

〈∇φ
〉|ij = d

n0

∑
j /= i

φj − φi∣∣∣rj − ri

∣∣∣
(
rj − ri

)
w
(
rj − ri

)
. (3.4)

In the above, n0 denotes the particle number density and it is defined as
∑

j /= i w(|rj − ri|).
Note that ni = n0 is true only under the incompressible flow condition.

One can similarly derive the Laplacian operator for a scalar φ, which has been derived
in [9] as follows

〈
∇2φ

〉
|i =

2d
λn0

∑
j /= i

(
φj − φi

)
w
(∣∣∣rj − ri

∣∣∣), (3.5)

where

λ =

∫
V ′

∣∣∣rj − ri

∣∣∣2w(∣∣∣rj − ri

∣∣∣)dV∫
V ′ w

(∣∣∣rj − ri

∣∣∣)dV . (3.6)

Note that V ′ shown above denotes the volume excluding of a small interval that contains the
point at i. One can also employ the Laplacian operator given below [11]

〈
∇2φ

〉
|ij =

2d
n0

∑
j /= i

φj − φi∣∣∣rj − ri

∣∣∣w
(∣∣∣rj − ri

∣∣∣). (3.7)

The advantage of employing particle methods becomes clear in that all the spatial
derivatives can be calculated from the chosen kernel function without the need of generating
meshes in the physical domain. Much of the computational effort in the generation of a good
quality mesh for performing an accurate numerical simulation in a domain with moving
boundaries is therefore avoided.

Unlike the SPH particle method, calculations of the values for ∇φ and ∇2φ in (3.4),
(3.5), and (3.7) involve only the kernel function w(r). Since the derivative of kernel function
needs not to be calculated in the approximation of differential operators∇ and∇2, numerical
oscillations, which may be generated in the fixed grid Eulerian approach for the cases with
high solution gradients, can be completely avoided. As a result, one has the flexibility to
choose the kernel function that has a slope as steep as the Dirac delta function.
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4. Development of the Kernel Functions

In view of (3.4) and (3.5)–(3.7), we know that the quality of approximating the operators
〈∇φ〉ij and 〈∇2φ〉i depends entirely on the chosen kernel function w(r) and the number of
the prescribed particles. Moreover, the chosen particle locations and the employed kernel
function will determine the subsequent particle location in moving particle methods. For this
reason, the chosen kernel function will be derived below in detail.

In the light of (3.1), we know that the Dirac delta function δ(r), which is constrained
by

∫∞
−∞ δ(r)dr = 1, is an ideal kernel function. Such a function is, unfortunately, not

implementable in computational practice. We have therefore to resort to its corresponding
smoothed delta functionwhen carrying out the simulations based on the particlemethod. The
smoothed function is sometimes called as the nascent delta function δε(r), which is defined
as limε→ 0δε(r) = δ(r). In the literature, one can find other nascent delta functions such as the
Gaussian function, Lorentz line function, impulse function, and sinc function. There exists
also the other class of kernel functions which were developed irrelevantly to the nascent
delta functions. Typical examples include the exponential, cubic spline, and quadratic spline
functions proposed by Belytschko et al. [12] and the kernel functions proposed by Koshizuka
and Oka in 1996 [13] and Koshizuka et al. in 1998 [11].

4.1. Development of Kernel Function for the Pure Diffusion Equation

In this study a new kernel function will be rigorously developed and it will be used
to simulate the incompressible Navier-Stokes equations using the particle methods. The
guidelines of developing the proposed kernel function will be given below. The kernel
function w(r) under current development falls into the category of nascent delta function.
This implies limre → 0w(r, re) = δ(r),, where re is the radius of a small circle. The weight
between two particles that have a distance r apart will be diminished as r ≥ re. For the sake
of accuracy, the kernel function will be developed to retain the following constraint condition
in the Dirac delta function

∫∞

−∞
w
(
r, re

)
dr = 1. (4.1)

Development of the current kernel function starts with representing it in terms of
r/re as

w(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

re
+

b

re

(
r

re

)
+

c

re

(
r

re

)2

+
d

re

(
r

re

)3

+
e

re

(
r

re

)4

; 0 ≤ r ≤ re,

0; re < r.

(4.2)

Derivation of w(r) is followed by imposing the four constraint conditions given by w(r =
re) = (∂w/∂r)|r=re = (∂w/∂r)|r=0 = 0 and

∫ r/re=1
0 w(r)dr = 1/2. These imposed conditions
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Figure 1: Plot of the developed kernel function. (a) cast in r/re coordinate; (b) plotted in xy plane.
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Figure 2: Schematic of the solitary wave propagation problem.

enable us to derive the algebraic equations given below

a + b + c + d + e = 0,

b + 2c + 3d + 4e = 0,

a +
b

2
+
c

3
+
d

4
+
e

5
=

1
2
,

b = 0.

(4.3)

Given the above four equations, one can then easily express a, b, c, d in terms of e as a =
1 − (1/15)e, b = 0, c = −3 + (6/5)e, d = 2 − (32/15)e.

By substituting the resulting kernel function into (3.7) for ∇2φ, one can get the
corresponding discrete equation for the Laplace equation ∂2φ/∂x2 + ∂2φ/∂y2 = 0 based on
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Figure 3: Comparison of the predicted run-up heights of the solitary wave on the right wall.

the particle method

1[
w(h) + 2w

(√
2h
)]

h2

{(
φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi

)
w(h)

+
(
φi+1,j+1 + φi−1,j+1 + φi+1,j−1 + φi−1,j−1 − 4φi

)
w
(√

2h
)}

= 0.

(4.4)

By performing the modified equation analysis on (4.4), we are led to get the following
modified equation:

∂2φ

∂x2
+
∂2φ

∂y2
= −

⎡
⎢⎣ w

(√
2h
)

w(h) + 2w
(√

2h
) ∂4φ

∂x2∂y2
+

1
12

∂4φ

∂x4
+

1
12

∂4φ

∂y4

⎤
⎥⎦h2

−

⎡
⎢⎣ w

(√
2h
)

12
(
w(h) + 2w

(√
2h
))
(

∂6φ

∂x4∂y2
+

∂6φ

∂x2∂y4

)
+

1
360

∂6φ

∂x6
+

1
360

∂6φ

∂y6

⎤
⎥⎦h4 + · · · .

(4.5)

Let w(
√
2h) = (1/4)w(h) the first term on the right hand side of (4.5) turns out to be zero due

to ∂2φ/∂x2 + ∂2φ/∂y2 = 0.
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Figure 4: Continued.
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Figure 4: The predicted free surfaces and pressures at different times. (a) t = 0.5; (b) t = 2.0; (c) t = 4.0;
(d) t = 6.0; (e) t = 8.0; (f) t = 10.0.
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Figure 5: Schematic of the dam break problem.

Provided that re = 2h, where h denotes the grid size, we can easily know from the
following nine-point equation that the resulting approximated equation for (2.3) investigated
at the condition of μ = ∞ has accuracy of the fourth order.

φi+1,j+1 + φi−1,j+1 + φi−1,j+1 + φi+1,j−1 + 4φi+1,j + 4φi−1,j + 4φi,j+1 + 4φi,j−1 − 20φi,j

6h2
+O

(
h4
)
= 0.

(4.6)

Note that (4.6) is derived under the condition of

3a +
(
2
√
2 − 1

2

)
b +

(
2 − 1

4

)
c +

(√
2 − 1

8

)
d +

(
1 − 1

16

)
e = 0. (4.7)

The resulting five free parameters can then be uniquely determined from (4.3)–(17) and
(4.7) as a = (480

√
2 − 705)/(512

√
2 − 745), b = 0, c = (−960√2 + 1515)/(512

√
2 − 745),

d = −210/(512√2 − 745), e = 480(
√
2 − 600)/(512

√
2 − 745).

In summary, the kernel function developed for simulating the pure diffusion equation
in this study is given as follows:

w(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

480
√
2 − 705

512
√
2 − 745

1
re

+
−960√2 + 1515

512
√
2 − 745

1
re

(
r

re

)2

+
−210

512
√
2 − 745

1
re

(
r

re

)3

+
480

√
2 − 600

512
√
2 − 745

1
re

(
r

re

)4

; 0 ≤ r ≤ re,

0; re < r

(4.8)

under the condition given below

w
(√

2h
)
=

1
4
w(h). (4.9)
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Figure 6: Continued.
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Figure 6: Comparison of the predicted free surfaces by theMPS and the level set methods at different times
for the case with Re = 500. (a) t = 0.0; (b) t = 0.5; (c) t = 1.0; (d) t = 1.5; (e) t = 2.0; (f) t = 2.5.

Note that the kernel function w(r) = re/r − 1 given in [13] has an infinitely large magnitude
as the value of r approaches zero. The newly developed kernel function shown in Figure 1,
on the other hand, has its local maximum value at r = 0. It is also worthy to mention that the
currently developed kernel function applied to predict the pure diffusion equation satisfies
the following constraint condition, which is also embedded in the delta function

∫ r/re=1

r/re=−1
w(r)dr = 1. (4.10)

5. Numerical Results

5.1. Solitary Wave Propagation

Study of the solitary wave propagation in a rectangular channel has received a considerable
attention since the resulting analysis can provide engineers with useful information about
the wave loading on the structures [14]. The problem under consideration is schematic in
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Figure 7: Continued.
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Figure 7: Comparison of the predicted free surfaces by theMPS and the level set methods at different times
for the case with Re = 500. (a) t = 0.0; (b) t = 0.5; (c) t = 1.0; (d) t = 1.5; (e) t = 2.0; (lf) t = 2.5.

Figure 2 where the undisturbed water height is d and the channel width is 16d. Above the
undisturbed water level, the crest of the investigated solitary wave is given by [15]

y = d +H sech2

⎡
⎣
√

3H
4d3

x

⎤
⎦. (5.1)

Here, H(= 2) and d(= 10) denote the initial wave height and the still water depth,
respectively. Initially, the velocities are given by

u =
√
gd

H

d
sech2

⎡
⎣
√

3H
4d3

x

⎤
⎦,

v =
√
3gd

(
H

d

)3/2(y
d

)
sech2

⎡
⎣
√

3H
4d3

x

⎤
⎦ tanh

⎡
⎣
√

3H
4d3

x

⎤
⎦,

(5.2)
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where g(= 9.81) is the gravitational acceleration. In the current study, the initial distance
between the neighbor particles is 0.8, and 3482 particles were used in the computation. For
the wave propagating towards the right wall, the predicted run-up height on the right wall in
Figure 3 is compared with the result given in [15]. The computed wave pressures at different
times are shown in Figure 4.

5.2. Dam Break Flow

The investigated dambreak problem is schematic Figure 5, where L(= 1) denotes the height
and the width of the stillwater in the tank. The computed results were compared with the
results in [16]. Figures 6(a)–6(f) show the results for the fluid flow with Re = 500. Figures
7(a)–7(f) are the results predicted in the case with Re = 1000. The red lines stand for the
simulated free surfaces, and they are compared with those shown in [16].

6. Concluding Remarks

The idea of developing the proposed particle interaction model is to develop the kernel
function which accommodates the property

∫ r/re=1
r/re=−1 w(r)dr = 1 embedded in the smoothed

Dirac delta function. To justify the proposed kernel functions for simulating the realistic flow,
we investigate two well-known benchmark problems for the validation sake. The predicted
results of the dam break problem and the solitary wave problem clearly show that the
solution predicted by the particle interaction model using the proposed kernel function can
capture well the motion of the fluid flow subject to free surface.
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