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An adequate reproducibility in the description of tissue archi-
tecture is still a challenge to diagnostic pathology, sometimes
with unfortunate prognostic implications. To assess a possi-
ble diagnostic and prognostic value of quantitiative tissue ar-
chitecture analysis, structural features based on the Voronoi
Diagram (VD) and its subgraphs were developed and tested.

A series of 27 structural features were developed and
tested in a pilot study of 30 cases of prostate cancer, 10
cases of cervical carcinomas, 8 cases of tongue cancer and
8 cases of normal oral mucosa. Grey level images were ac-
quired from hematoxyline-eosine (HE) stained sections by a
charge coupled device (CCD) camera mounted on a micro-
scope connected to a personal computer (PC) with an im-
age array processor. From the grey level images obtained,
cell nuclei were automatically segmented and the geometri-
cal centres of cell nuclei were computed. The resulting 2-
dimensional (2D) swarm of pointlike seeds distributed in a
flat plane was the basis for construction of the VD and its
subgraphs. From the polygons, triangulations and arboriza-
tions thus obtained, 27 structural features were computed as
numerical values. Comparison of groups (normal vs. cancer-
ous oral mucosa, cervical and prostate carcinomas with good
and poor prognosis) with regard to distribution in the values
of the structural features was performed with Student’st-test.

We demonstrate that some of the structural features devel-
oped are able to distinguish structurally between normal and
cancerous oral mucosa (P = 0.001), and between good and
poor outcome groups in prostatic (P = 0.001) and cervical
carcinomas (P = 0.001).

We present results confirming previous findings that graph
theory based algorithms are useful tools for describing tis-
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sue architecture (e.g., normal versus malignant). The present
study also indicates that these methods have a potential for
prognostication in malignant epithelial lesions.
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1. Introduction

Several authors have demonstrated that subjective
grading of malignant lesions is associated with poor
reproducibility and accordingly with reduced prognos-
tic power [1–5], although some indicate the opposite
[6]. Recently, semiquantitative studies of tissue archi-
tecture have shown promising diagnostic and prog-
nostic results [2,4,7–9]. Nevertheless, the problem of
intra- and inter-observer variability persists. Over the
last decades, several studies have quantitatively studied
the relation of structure and function in biological sys-
tems, including pathologically altered tissues [10–15].
In vitro transformation studies have demonstrated that
the addition of carcinogens to contact inhibited ordered
fibroblast monolayer cultures results in loss of contact
inhibition, with cells displaying striking criss-crossing
growth patterns, where the degree of criss-crossing pat-
tern may reflect the extent of oncogenic transformation
[16–19]. Thesein vitro findings are an indication that
the biological status of cells also is expressed in the tis-

1For a complete list describing the structural features, see Ap-
pendix.
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sue architecture. Hence, it is biologically meaningful
to extract structural features from tissues for diagnos-
tic and prognostic purposes, and to do this in a quan-
titative manner might improve the prognostic value in
some tissues [20–32]. Previous findings in transitional
carcinomas of the bladder indicate that graph theory
based methods are useful tools in grading of malignant
lesions [29], but a prognostic value was not demon-
strated.

We have undertaken the present study in order to
develop tools for fast, strictly quantitiative and repro-
ducible tissue architecture analysis in epithelial tissues
(squamous cell carcinomas from the prostate, cervix
and oral cavity and normal oral mucosa) and to eval-
uate the diagnostic and prognostic potential of these
methods in such tissues. By employing graphs such as
the Voronoi Diagram (VD [Figs 1–4]) [33] and its sub-
graphs, the Delaunay Triangulation (DT [Fig. 2]), Min-
imum Spanning Tree (MST [Fig. 5]) [34–38], Ulam
Tree (UT [Fig. 6]) [39] and the Gabriel Graph (GG
[Fig. 7]) [40], the structural manifestations of cellu-
lar interactions in tissues may be quantified [41–47].
A total of 27 structural features were developed, tak-
ing into consideration the shape of individual structural
entities (polygons, triangulations, arborizations), par-
ticularly derived from the VD; clusterings, particularly
from the GG, and studying the order or randomness in
the distribution of pointlike seeds, particularly derived
from the UT and MST.

2. Materials and methods

2.1. Material

The biological material investigated consisted of
8 cases of normal oral mucosa obtained from sur-
plus tissue after plastic surgery on the gingiva in re-
lation to implant surgery, 8 cases of carcinomas of
the tongue, 10 cases of cervical carcinomas and 30
cases of prostate carcinomas. HE stained sections were
made from paraffin embedded tissue blocks fixed in
4% formaldehyde.

2.2. Data acquisition

Grey level images from 5–7µm thick HE stained
sections were digitised using a charged coupled device
(CCD) camera (Philipsr LDH 0670/00 equipped with
a Hamamatsur AC Adaptor, type A3472) mounted on
a Zeiss Axioplan 2 microscope using a Plan-Neofluar
40×/0.75 lens in addition to a Prior HI52V2 micro-
scope stage. The final magnification was 400× at a res-
olution of 876 nm (0.9 micrometers) per pixel.

2.3. Segmentation

Local segmentation was used, and developed from
an algorithm based on the size of the elements to be
detected and their contrast to the background. Thresh-
olding was based on the pixel darkness measured as in-
tegrated optical density (IOD). Any pixel with an IOD
within a given range is turned ON, otherwise OFF. The
algorithms for construction of a continuous area of in-
terest (e.g., cell nucleus) were further based on math-
ematical morphology [48]. From the nuclear profiles,
the geometrical center of gravity was computed. The
resulting data were stored as files of coordinates, where
the coordinates represented a center of gravity. Further
analysis of these raw data with computation of struc-
tural features was done on a Pentiumr based PC run-
ning Windows 98r. Among the software facilities de-
veloped was the possibility to define digitally a sub-
set of pointlike seeds in order to run the analyses in a
limited window of analysis (Fig. 4).

2.4. Building a composite picture

A composite picture consisting of up to 50 fields
of view was constructed by aligning each field of
view according to a simple algorithm developed by
the authors. For composite pictures generated by man-
ual movement of the microscope stage, an algorithm
using the binary mask of segmented nuclei was em-
ployed. One field of vision is composed of a matrix of
512× 512 pixels, i.e., 512 separate columns and rows.
When moving to the left in the visual field, the 128
left columns of the binary image are copied from the
left to the right margin of the screen. The microscope
stage is then moved until the binary mask is congru-
ent to the grey level image. The offset of the move-
ment thus is 384 columns (75% of the field of view),
giving an overlap from one field to another of 25%.
No further correction of the image alignment was per-
formed. For automatic movement of the microscope
stage a predetermined pattern of movement (spiralling)
using the same offset as default was employed. Hereby,
the stage was first moved one offset (384 columns) to
the left, then one offset (384 rows) up, then two off-
sets (768 columns) to the right. Thereafter two offsets
down, then three offsets to the left, then three offsets
up, three followed by four offsets to the right and so
on. The typical number of fields of view to be included
was 25, 36 or 49, which makes up a square compos-
ite picture. For the automatic image acquisition, align-
ment of visual fields relied on the mechanical accuracy
of the microscope stage.
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Fig. 1. A single Voronoi polygon,Vx (Panel A) is defined by the halfplanesH(pxpy) that perpendicularly bisect the lines between a centre point
and its neighbouring pointlike seeds. When we use this rule for every point considered, the area of interest is completely covered by adjacent
polygons, constituting the Voronoi Diagram (VD). Panel B shows the VD for a set of randomly distributed pointlike seeds in a flat plane.

Fig. 2. The Delaunay Triangulation (DT) represents the dual of the VD and is constructed by drawing lines between pointlike seeds in adjacent
Voronoi polygons. The completed construction is a triangular network that covers the whole area. A Delaunay network in two dimensions consists
of non-overlapping triangles where no pointlike seeds in the network are enclosed by the circumscribing circles of any neighbouring triangle.
The VD is shown in blue and the DT in red.

2.5. Space partitioning

Space partitioning in our context is based on the ge-
ometrical center of segmented cell nuclei. Computing
the geometrical centers for each nucleus within a con-
sidered area creates a 2D swarm of pointlike seeds,

from which the VD (Fig. 1) is constructed. All other
graphs employed (DT, MST, GG and UT) are sub-
graphs of the main graph, the VD (Fig. 8). This graph
was chosen as the principle tool for exploring the tissue
structure, as it is considered to be the most informa-
tive [33]. The algorithms for generating these graphs
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Fig. 3. An epithelial island from the part of an oral squamous cell carcinoma (E, Panel C) bordering onto the underlying connective tissue
(S, Panel C). Panel A is a detail from a HE stained section from the invasive front. The corresponding grey level image is shown in Panel B.
Panel C shows Voronoi polygons superimposed on the enlarged grey level image shown in Panel B. The pointlike seed are given as black dots
superimposed on the cell nuclei, and represent the geometrical centre of gravity of each nucleus. Each Voronoi polygon represents the area of
influence of one pointlike seed, which in epithelial tissues roughly correspond to the extension of a cell. Some cell nuclei are missed (white
arrows), but the overall precision in the segmentation is acceptable. The dotted line denotes the basal membrane, which in this case also comprises
a part of the border of the window of analysis. The scale bar is 0.10 mm (400× magnification).

have been presented elsewhere [9,33,39,49] and are
only briefly commented here. The schematic relation-
ships between the VD versus DT and VD versus GG
are shown in Figs 2 and 5, respectively. Figure 3 shows
relationship of the VD to tissue structures. In Panel
A (HE stained section) an epithelial island (E) can be
seen bordering onto the underlying stroma (S). Panel
B is the corresponding grey level images. To the right
the detail is shown in larger magnification, where the
pointlike seeds are superimposed on the cell nuclei,
and Voronoi polygons are constructed to make up the
VD for the considered area. A program for eliminating
border effects in marginal polygons (Fig. 8) was also
developed. The window of analysis was defined digi-
tally, by defining a closed contour with a digitizing pad
and storing the coordinates of the contour. Only point-
like seeds within the contour were included in the anal-
ysis. The coordinates of the part of the contour cross-
ing a marginal polygon were defined as the new edge
in the polygon.

VD: The VD for a set of random distributed point-
like seeds is shown in Fig. 1. When two points,px and
py are in a planeπ, a half-plane, denotedH(pxpy), is
defined by the perpendicular bisector ofpxpy. The lo-
cus of points closer topx than to any other point is
the intersector ofN − 1 perpendicularly oriented half-
planes, whereN is the number of points in the consid-
ered space. Hence,

V (x) =
⋂
x 6=y

H(px,py) (Panel A, Fig. 1).

A single Voronoi polygon is defined by the intersection
(∩) ofN−1 halfplanes in the considered space, i.e., the
center point and its surrounding pointlike seeds (Pa-
nel A, Fig. 1). When applied to every point in the con-
sidered area, this rules gives the VD (Panel B, Fig. 1).

DT: The DT represents the dual of the VD and is
constructed by drawing the lines between the pointlike



J. Sudbø et al. / New algorithms based on the Voronoi Diagram 75

Fig. 4. VD with Voronoi polygons shown in pseudocolours, where the areas selected for analysis represent an epithelial island in the underlying
stroma. Note in particular that border effects of marginal polygons (the polygons in the periphery of the analysis windows) have been eliminated.
The sample is from the invasive front of an oral squamous cell carcinoma of the tongue. The scale bar is 0.5 mm.

Fig. 5. The minimum spanning tree (MST) schematically drawn for the basal cell layers in normal oral mucosa. The MST represents the length
of the shortest paths (or tours) through each point exactly once [37,38,50].

seeds in adjacent Voronoi polygons (Fig. 2). The com-
pleted construction is a triangular network that covers
the considered area. A Delaunay network in two di-
mensions consists of non-overlapping triangles where
no pointlike seeds in the network are enclosed by the
circumscribing circles of any neighbouring triangle.

MST: Consideringn distinct points in ad-dimension-
al space allows for (n − 1)!/2 closed paths (or tours)

through the space. DeterminingL(n,d), the minimum
tour length is possible by defining the smallest constant
α(d) such that

lim sup
n→∞

L(n,d)
d−1
nd·
√
d

6 α(d).

Additionally,β(d) given by
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Fig. 6. The Ulam Tree represents a mathematical object growing in space and time according to specified rules [39]. The UT is generated from
the VD, in such a manner that the “branches” of the tree only traverses polygons that are not traversed by any other branch of the tree. The
structural feature ELH_av (average Edge Length Heterogeneity) is derived from the UT.

Fig. 7. The neighbourhood relation of two points (px andpy) according to the Gabriel graph. Two points,px andpy, are considered as neighbours
if the circle on which they are placed, is empty.pk on the other hand, is not a neighbour to eitherpx or py (Panel A). The Gabriel graph (Panel B)
is similar to the Delaunay Triangulation but contains polygons in addition to triangles.

lim sup
n→∞

L(n,d)
d−1
nd·
√
d

= β(d),

applies to almost all optimal tours in the consideredd-
dimensional space. The above limit fails only for a neg-
ligible subset of tours [37]. Furthermore, the above ap-
proximation applies to any dimension [50]. The solu-
tion to the problem can be reached by several different

computations. For our purpose, the MST was derived
by a decimation of the DT [51].

GG: In a Gabriel graph(Fig. 7, Panel B), pointlike
seeds are connected by an edge only if the circle de-
fined by the diameter connecting the nodes contains no
other pointlike seeds (Panel A, Fig. 7). The two points
(px and py) are neighbours if and only if the circle
(with a center O) on which they are placed is empty.
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Fig. 8. A 2D swarm of pointlike seeds, generated from oral squamous cell epithelium. Several areas for analysis have been cut out digitally. Any
polygon that could be modified by making the area of interest slightly larger (i.e., include additional number of seed peripheral to the considered
swarm of points) are considered as border polygons. Border effects in the peripheral Voronoi polygons (arrows) are obvious. Scale bar 0.25 mm.

Accordingly,px and py (and notpk) are neighbours
(Panel A, Fig. 7). A graph similar to the DT can be con-
structed. However, it differs from the DT in that it con-
tains polygons in addition to triangles (Panel B, Fig. 7).
Cases are matched by comparing the lengths and orien-
tations of the edges associated with each pointlike seed
in one graph with those of every pointlike seed in a sec-
ond graph. The Gabriel graph is particularly sensitive
to subtle differences in the number or relative positions
of pointlike seeds, making it a suitable tool for detect-
ing changes in cellular organization within tissues.

UT: TheUlam Treerepresents a mathematical object
growing in space and time according to specified rules
[39]. The UT is generated from the VD, in such a man-
ner that the “branches” of the tree only traverses poly-
gons that are not traversed by any other branch of the
tree (Fig. 6).

2.6. Topographical analysis

Applying the 27 algorithms we have developed on
the polygons obtained when constructing the VD and
its subgraphs (space partitioning) we have performed
topographical analysis on tissue specimens from nor-
mal and cancerous epithelium. The number of epithe-
lial cells included in the analysis varied from 1500–

5000. For a more detailed description of the VD-based
algorithms, see Appendix.

2.7. Border effects

Marginal seeds represent a source of error as they
yield polygons with a morphology that deviates from
the population as a whole (Fig. 8). Structural features
derived from marginal polygons are irrelevant, as they
represent a non-representative population, and thus are
a source of errors. Accordingly, we developed software
to eliminate these aberrations (Fig. 4).

2.8. Temporal aspects

Scanning 30–50 fields of view is done in 8–12 min-
utes, depending on whether it is done manually or au-
tomatically. Segmentation requires another 5–10 min-
utes, depending on the number of cells in the specimen.
For computation of structural features, 30–90 seconds
are required, giving a total time expenditure of approx-
imately 14–25 minutes.

2.9. Statistical analysis

Student’st-test was used for comparison of groups.
All P -values were two-tailed, and values less than 0.05
were considered to indicate statistical significance.
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Table 1

Diagnostic value of 10 structural features innormal and malignantly changed oral mucosa

Structural Mean values with ranges given in parentheses

feature¶

Normal oral mucosa Carcinoma of the P -value∗

(n = 8) tongue (n = 8) Student’st-test

RF_av‡ 0.81 0.67 0.01

(0.73–0.87) (0.57–0.76)

RF_dis‡ 0.74 0.67 0.05

(0.66–0.78) (0.56–0.79)

A_dis 0.45 0.39 0.09

(0.37–0.54) (0.33–0.45)

MSTEL_av 5.9† 4.2 0.05

(4.3–6.8) (3.3–4.8)

PTS 0.74 0.69 0.10

(0.66–0.87) (0.54–0.74)

DEL_av‡ 26.8† 25.8 0.001

(25.9–27.3) (4.9–26.7)

ELH_av‡ 0.41 0.32 0.02

(0.33–0.58) (0.23–0.48)

DKNN_av‡ 728† 693 0.03

(703–738) (641–723)

NNRR 32.8 31.9 0.16

(29.1–33.6) (28.4–33.2)

RMPB‡ 15.7† 12.9 0.03

(13.6–17.1) (11.6–14.6)
∗ Two-tailed.
† Measured in pixels.
‡ Structural features for which the differences between groups reaches statistical significance.
¶ See Appendix for an explanation of the separate structural features.
Results from running 10 different form parameters on altogether 16 samples of oral mucosa,
8 cases from normal mucosa and 8 cases with carcinomas of the tongue. Numbers in parentheses
denote the range. 5000 cells were included in the analysis. For a further description of the form
features used, see Appendix.P -value for the best structural feature was 0.001 (DEL_av).

3. Results

A total of 10 of the 27 structural features we inves-
tigated were able to distinguish between normal and
malignantly altered tissue and/or were shown to have a
possible prognostic value (Tables 1–3).

3.1. Normal oral mucosa versus carcinoma of the
tongue (Table 1)

Eight biopsies from assumptively normal oral mu-
cosa (acquired during gingivoplastic procedures in re-
lation to serial extraction of teeth) and 8 cases of oral
carcinomas of the tongue were compared with regard
to values of 10 structural features. Of these, 6 fea-
tures made it possible to distinguish between normal

oral mucosa and carcinoma of the tongue, usually sit-
uated at the lateral border of tongue, bordering onto
the floor of the mouth. This pertains to the features RF
(roundnessfactor, from the VD,P = 0.01), RF_dis
(disorder of the roundness factor disorder derived from
the VD, P = 0.05), DKNN_av (averagedistance to
theK -nearestneighbours,P = 0.03), DEL_av (aver-
age Delaunay Edge Length,P = 0.001), ELH_av (av-
erageedgelengthheterogeneity of the Ulam Tree,P =

0.02) and RMPB (radius of themaximumpercolating
ball, percolating the Delaunay network,P = 0.03).
The ability of these methods to discern normal and can-
cerous oral epithelium points to a diagnostic potential
as they obviously detect structural differences between
normal and malignantly changed mucosa.
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Table 2

Prognostic values of 10 structural features incarcinomas of the cervix

Structural Mean values with ranges given in parentheses

feature¶

Cervical carcinomas Cervical carcinomas P -value∗

with good prognosis with poor prognosis Student’st-test

(n = 4) (n = 6)

RF_av 0.74 0.69 0.31
(0.55–0.86) (0.54–0.81)

RF_dis 0.69 0.69 0.24
(0.56–0.78) (0.56–0.78)

A_dis‡ 0.45 0.35 0.02
(0.37–0.54) (0.27–0.41)

MSTEL_av 4.9† 5.2 0.33
(4.3–5.8) (3.3–6.8)

PTS 0.78 0.65 0.14
(0.66–0.87) (0.54–0.74)

DEL_av 26.8† 26.3 0.31
(25.9–27.3) (24.9–27.7)

ELH_av‡ 0.57 0.38 0.02
(0.39–0.68) (0.29–0.43)

DKNN_av 725† 695 0.09
(650–795) (630–740)

NNRR‡ 36.0 30.1 0.03
(30.6–41.2) (28.4–31.9)

RMPB‡ 16.1† 13.9 0.04
(14.6–17.1) (11.6–15.1)

∗ Two-tailed.
† Measured in pixels.
‡ Structural features for which the differences between groups reaches statistical significance.
¶ See Appendix for an explanation of the separate structural features.
Results from running 10 different form parameters on altogether 10 cases of carcinomas of the
cervix, 4 with good (relapse-free survival more than 12 years) and 6 with poor (relapse-free
survival less than 5 years) prognosis when 5000 cells are include in the analysis. The featured
DEL_av and ELH_av display significant differences in the two prognosis groups in this test set.
P -values for the best structural feature are 0.001 (DEL_av and ELH_av).

3.2. Carcinomas of the cervix (Table 2)

Altogether 10 biopsies; 4 with a good (relapse-free
survival more than 12 years) and 6 cases with a poor
(relapse-free survival less than 5 years) prognosis were
examined. A total of 4 structural features made it pos-
sible to distinguish between the two outcome groups.
These were A_dis (areadisorder, from the VD,P =
0.02), ELH_av (P = 0.02), NNRR (number ofnearest
neighbours within arestrictedradius of 75 pixels,
P = 0.03) and RMPB (P = 0.04).

3.3. Carcinomas of the prostate (Table 3)

The values of the same 10 form features as above
when applied to 30 cases of carcinomas of the prostate

(15 cases with good and 15 cases with poor prognosis)
are shown. Altogether 5 structural features made it pos-
sible to distinguish between carcinomas of the prostate
with a good and poor prognosis. These structural fea-
tures were RF_dis (P = 0.01), A_dis (P = 0.02),
DEL_av (P = 0.001), ELH_av (P = 0.02), DKNN
(average distance to the K nearest neighbour, from the
DT, P = 0.01) and RMPB (P = 0.03).

Note in particular that DEL_av and/or ELH_av as
significant descriptors are common to all three sets of
tissues.

4. Discussion

We present data from several tissues that demon-
strate the possible diagnostic and prognostic value of
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Table 3

Prognostic value of 10 structural features incarcinomas of the prostate

Structural Mean values with ranges given in parentheses

feature¶

Prostate carcinomas Prostate carcinomas P -value∗

good prognosis poor prognosis Student’st-test

(n = 15) (n = 15)

RF_av 0.65 0.71 0.31

(0.52–0.78) (0.54–0.81)

RF_dis‡ 0.61 0.74 0.01

(0.53–0.68) (0.63–0.81)

A_dis‡ 0.55 0.35 0.02

(0.37–0.64) (0.27–0.41)

MSTEL_av 5.5† 5.4 0.33

(4.3–6.8) (4.1–6.2)

PTS 0.73 0.65 0.24

(0.63–0.87) (0.54–0.74)

DEL_av‡ 27.1† 25.8 0.001

(25.9–28.3) (24.9–26.7)

ELH_av‡ 0.41 0.32 0.001

(0.33–0.58) (0.23–0.48)

DKNN_av 705† 680 0.11

(650–740) (640–715)

NNRR‡ 29.8 33.8 0.01

(29.1–30.6) (29.4–35.2)

RMPB‡ 13.4† 16.2 0.03

(11.7–14.4) (13.4–17.4)
∗ Two-tailed.
† Measured in pixels.
‡ Structural features for which the differences between groups reaches statistical significance.
¶ See Appendix for an explanation of the separate structural features.
Results from running 10 different form parameters on altogether 30 cases of prostate carcino-
mas, 15 with good (relapse-free survival more than 10 years) and 15 with poor (relapse-free
survival less than 3 years) prognosis.5000 cells were included in the analysis.P -value for the
best structural feature is 0.02 (A_dis and ELH_av).

tissue architecture analysis by VD-based algorithms.
However, it should be kept in mind that we have tested
out a large number of putatively informative structural
features (27) on a limited number of objects (56). Test-
ing out such a large number of structural features on
a limited number of objects statistically is not with-
out pitfalls [52]. The interpretations from this prelim-
inary study must therefore be cautious, and a limited
number (2–4) of structural features (e.g., DEL_av and
ELH_av) should be applied to an independent test set
with a number of objects considerably larger than the
number of features explored [52]. Furthermore, these
methods have to be tested out in a series of different
tissues, to avoid the serious problem of over-fitting,
where selected features characterise well the samples
in specific training data, but not the general classes

(e.g., prostatic carcinomas, but not all carcinomas).
Over-fitting typically occurs when the number of fea-
tures analyzed is high in relation to the number of sam-
ples considered [52].

The main graph in our context (VD) encompasses a
number of subgraphs, such as the DT, MST, UT and
GG, and is generally regarded as the most informa-
tive graph [33]. The VD is generated from the point-
like seeds representing the centres of gravity within
cell nuclei of the considered tissues. The Voronoi poly-
gon represents the region of influence of each seed.
A priori, this does not have any direct biological corre-
late. However, in epithelial tissues, with only sparse in-
tercellular substance, it roughly corresponds to the so-
mata of the epithelial cells. The shape and size of cells
is a structural feature of considerable interest in tradi-
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tional histological assessment of pathologically altered
tissue, e.g., carcinomas. This relationship breaks down
when we consider the stromal tissue, with abundance
of intercellular substance (Panel C, Fig. 3). Thus, the
algorithms we have developed directly derived from
the VD we believe are best suited for tissues with a
minimum of intercellular substance, as in epithelial tis-
sues, although graph theory based methods could be
applied to any tissue. Also, there is no reason that other
features based on, e.g., the MST or UT should have
such limitations.

The segmentation algorithms we developed per-
formed with an acceptable level of precision (Panel
C, Fig. 3). The algorithms represent a compromise of
speed and precision. For the calculations, a minimum
number of 1000–1500 cells were included. We have
chosen such a fairly large number of objects to be in-
cluded in the analysis, as preliminary runnings of com-
putations indicated that the values of the structural fea-
tures did not stabilise until at least 1000–1500 objects
were included, the exact number depending on which
tissue was analysed. The imaginary flat plane we con-
sider in fact represents a 3-dimensional entity. Depend-
ing on the thickness of the sections considered some
cell nuclei might be below or above the focal plane
and therefore missed in the segmentation. However, for
the sections thickness we have employed (5–7µm),
this has not been a major problem (Fig. 3). However,
several observer note that in the most aggressive car-
cinoma of the oral cavity, the epithelial cells border-
ing onto the underlying stroma show a distinct blurring
of their structural features, with a typically glossy ap-
pearance of the somata and nuclei (M. Bryne, personal
communication). It is conceivable that because of this,
a considerable number of nuclei in the area of interest
could escape segmentation, with a resultant error in the
estimation of the structural features. If this is abundant,
a distinct prognostic group of lesions might be missed,
at least with the HE staining procedures. In our study,
however, this was not a prominent feature, and the pre-
cision in the segmentation is acceptable (Fig. 3).

A particular point of interest when investigating the
invasive front of carcinomas, are the border effects,
that tend to have a dominant effect when the epithelial
islands become small and numerous (Fig. 8). In par-
ticularly aggressive lesions, the gross structures of the
invasive front of carcinomas tend to disintegrate, with
multiple small fingerlike projections into the underly-
ing stroma. In sections, these projections will present
as small epithelial islands, consisting of a very limited
number of cells. This poses a possible problem with re-

gard to border effects, as these will become dominant
in small cluster of cells, perhaps eliminating them en-
tirely. Again, these cases may be of particular prognos-
tic interest.

Only structural features of the epithelial tissue have
been investigated in this study. Most likely, the tumor-
host response will result in structural alterations of di-
agnostic and prognostic value also in the underlying
stroma. Such features could be the amount of inflam-
matory response, which can easily be assessed by our
methods. However, current algorithms do not detect
the specific nature of subepithelial lymphocyte infiltra-
tion. New methods for segmentation of immunohisto-
chemically stained cell nuclei [53,54] might contribute
to shedding more light on biological information con-
tained in the pattern of inflammatory response.

Twenty-nine structural features based on algorithms
derived from the Voronoi Diagram or its subgraphs on
different sets of epithelial tissues, 10 of which were
demonstrated to have a diagnostic or prognsotic po-
tential. The ultimate test for these methods will be to
employ a limited number of structural features (e.g.,
DEL_av and ELH_av) on an independent test set [52].

Appendix

1) A_dis Area disorder. The Area denotes the area of a
singleVoronoi polygon, measured in pixels. Area
disorder reflects the variation in the polygons as-
sociated with considered population of pointlike
seeds:

A dis = 1− 1

1 + Area sd
Area av

.

The feature acquires the value of 0 if all poly-
gons have the same area and tends towards
1 otherwise. The entire population except the
marginal polygons is considered.

2) DEL_av Average Delaunay Edge Length. This fea-
ture sums up the edge length of the edges of
the DT’s and divides it by the number of non-
marginal seeds.

3) DEL_dis Delaunay Edge Length disorder. This fea-
ture considers the standard deviation (sd) in the
lengths of the edges of the Delaunay triangles
linking non-marginal seeds:

DEL dis = 1− 1

1 + DEL sd
DEL av

.
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4) DENS This feature represents the density of the en-
tire population, except for the marginal poly-
gons, which are eliminated:

DENS=
Polygonnb
Area sum

.

Polygon_nb denotes the number of polygons.
5) DEP_av Average Delaunay Edge Probability. One

edge of the DT belongs to two triangles, each
being associated with an overlapping circle.

DEP av = 1− d1 + d2

r1 + r2√
3

.

Here,d1 denotes the distance of the first vertex
to its nearest neighbour.d2 denotes the distance
of the second vertex to its nearest neighbour.r1
is the radius of the first circle associated with the
two triangles sharing the considered edged1. r2
is the radius of the first circle associated with
the two triangles sharing the considered edged2
(Panel B, Fig. 2).

√
3 is a normalization factor

with respect to the triangular lattice.
6) DEP_dis Delaunay Edge Probability disorder. This

feature denotes the disorder of the abovemen-
tioned Delaunay edge probability, and is given
by the following equation:

DEP dis = 1− 1

1 + DEP sd
DEP av

.

7) DFRAC_av This feature denotes theaverage frac-
tal dimension of the Ulam Trees, more precisely
an application of the Hausdorff fractal dimen-
sion which express the properties of topological
defects in the tree structure, e.g., as related to
a highly regular tree. Consider a closed contour
(e.g., Ulam Tree) within a 3-dimensional space,
on which two points,x andy, are placed. The
Ulam Tree may be viewed as projected onto a 2-
dimensional flat plane with a unit of length cor-
reponding to the size of a pixel. The mean value
of the area A covered by traversing inN steps
from x to y along branches of the tree is given
byA∼ r2 wherer is given by the equation

r =

]√
|x− y|2

[
.

The quantityr effectively expresses the radius
of the circle or square that has the same area as

the projection of the traversed part of the tree
projected onto the 2D plane where ][ denotes the
mean values for all the possible contours within
the considered space.x andy are expressed as
vectors.
The Hausdorff dimension of the Ulam Tree is
given by the general equation

DH =
1
∆

[56].

A value of ∆ 6= 1 indicates that the contour is
fractal, i.e., how fuzzy the contour is.
The algorithm for computing∆ is fairly simple.
From the projection of the tree on a 2D plane
(with pixels as the unit of length), one defines the
upper, lower, left and right margins of the pro-
jected tree, which yields a rectangle with sides
lx, ly. Ther accordingly is defined as

r =
√
lx · ly,

logN = logk +
1

∆ · logr
.

N can be derived from the number of near-
est neighbouring distances required to build the
Ulam Tree within a square wherepx andpy lies
on two opposing margins of the square.

8) DKNN_av Average distance to theK nearest neigh-
bours.K was set to 16 after preliminary simula-
tions showed that normal oral mucosa was statis-
tically different from carcinomas of the tongue
with regard to this feature (Table 1). Concidering
theK nearest neighbours of a seed (according to
the Delaunay neighbourhood), if all of them are
non-marginal seeds, DKNN represents the sum
of the distances to those neighbours. DKNN_av
represents the average of DKNN over all the
population whereK neighbourhood does not
contain any marginal seeds.

9) DKNN_dis Disorder of the DKNN.

DKNN dis = 1− 1

1 + DKNN sd
DKNN av

.

10) DRT Divergence from the Regular Tree. Trans-
posing the tree into a matrix,M , quantitates the
neighbourhood from the Ulam tree, composed of
two orthogonal properties which are the integra-
tion and the topological properties of the tree.
The integration property is the number of points
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added to the tree at a given level of expansion,
while the topological property is the number of
simple, double, triple etc junctions in the tree.

DRT =
∑
x

∑
y |Mpxy −Mrefxy|

Wx
.

Hence, the DRT is the sum of the weighted abso-
lute differences between all the elements of the
actual tree matrix (Mp) and a theoretical tree ref-
erence (Mref) [51].

11) ELH_av This is the average edge length hetero-
geneity of the UT’s. ELH is representative of the
intrinsic node to node distance variations in the
current tree [39].

12) HA_av Average area of holes within the consid-
ered area. Concidering the empty circles associ-
ated with each DT, a triangle is set to be a hole if
a ball of the current radius is able to go through
at least one edge of the triangle (i.e., the radius
of the percolating ball is equal to or less than at
least one of the edges of the triangle). The num-
ber of DTs that can be percolated by the ball is
the average number of DT’s belonging to the de-
fined holes within the architecture. Considering
a Voronoi Edge (VE, denotedls) and the Delau-
nay edge that it bisects (lg), let r1 andr2 be the
radius of the circles associated with the vertices
of VE. If the length ofls is smaller than or equal
to bothr1 andr2, then the two DT’s associated
with the vertices of VE and accordingly belong
to the same hole.

13) HA_dis Disorder of the whole area of the holes:

HA dis = 1− 1

1 + HA sd
HA av

.

14) MSPDG Minimal step percolating the Delaunay
network (PPDG). MSPDG is the length of the
minimum step required to be able to move with-
out interruption from neighbour to neighbour in
a Delaunay network that comprises at least 50%
of the entire network.

15) MSTEL_av Average Minimum Spanning Tree
Edge Length. The MST is a tree that spans the
entire population in such a way that the sum of
the Euclidian edge length is minimal [49,55].

16) MSTEL_dis Edge length disorder of the mini-
mum spanning tree:

MSTEL dis = 1− 1

1 + MSTEL sd
MSTEL av

.

17) NNRR_av Average number of neighbours within
a restricted radius. Considering a circle of which
radius is set to 75 pixels around one seed, NNRR
is the number of other seeds (neighbours) lying
within the circle. NNRR_av is the average num-
ber of seeds over all the population located at
least at 75 pixels from the border of the analysis
window.

18) NNRR_dis Disorder in the Number of Neigh-
bours within a Restricted Radius.

NNRR dis = 1− 1

1 + NNRR sd
NNRR av

.

Considering a circle of which radius is set to 75
pixels around one seed, NNRR is the number of
other seeds (neighbours) lying within the circle.
NNRR_dis is the disorder in the number of seeds
over all the population located at least at 75 pix-
els from the border of the analysis window.

19) PTS probability of topological stability. The cen-
ter of gravity of the nuclei are stored as coordi-
nates. For a small error tolerance (one pixel in
diameter), we move at random all the pointlike
seeds and rebuild the graph. As long as one seed
keeps the same neighbourhood as without any
disorder, the local PTS is computed to be 1, oth-
erwise it is computed to be zero. At each step in
the simulation (with one pointlike seed moved
one pixel in any direction) the PTS represents
the number of seeds that kept (after disorder is
introduced) the same neighbourhood as initially.
The more the PTS is close to 1, the more stable
the graph is to a random alteration. The closer
the PTS is to zero the less valid local topology is,
only statistics can then be computed about local
topology. The marginal polygons are not consid-
ered.

20) PTS_avAverage of 10 runs of the PST computa-
tion.

21) PTS_dis is the PTS disorder, given by the equa-
tion

PTSdis = 1− 1

1 + PTS sd
PTS av

.

22) RMPB Radius of the Maximum Percolating Ball.
Considering the empty circles associated with
each DT, a triangle is set to be a hole if the ra-
dius of its associated empty circle is below the
current threshold. If a ball of the current radius is
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able to go through one edge of the DT, then the
neighbouring triangle can be associated to the
same hole as the considered triangle. The RMBP
is the value of the radius of the biggest ball that is
able to percolate the Delaunay network. In other
terms, it is the maximum allowed radius to ob-
tain a hole that is larger in area than 50% of the
area of all the holes.

23) RF_av Average Roundness Factor, given as

RF av =
4π

perimeter2
.

This equals the roundness factor of one polygon
average RF is the average over the entire popu-
lation except for the marginal polygons.

24) RF_dis Roundness Factor disorder.

RF dis = 1− 1

1 + RF sd
RF av

.

This features acquires the value of 1 if all the
RF’s are the same and tends towards zero other-
wise. The entire population except the marginal
polygons were considered.

25) WGC Weighted global compacity. Consider one
Voronoi vertex and its associated three Delau-
nay seeds (Fig. 2). To each of these seeds corre-
sponds a set of nearest neighbours located at dis-
tanced1,d2,d3 etc. If r is defined as the radius
of the considered Delaunay circle, the compacity
is defined as follows:

WGC =
d1 + d2 + d3 · · ·dn

9r2
.

The weighted compacity (WC) is equal to C
multiplied by the area of the DT. By doing this,
one takes into account the possibility that two
different DT’s can have exactly the same propor-
tions, but different size and accordingly repre-
sent two differents structural entities. Only con-
sidering the unweighted compacity does not take
this possibility into consideration. Only consid-
ering the WGC is the average WC over all non-
marginal polygons.

26) WGC_av Average Compacity.

WGC av =

n∑
i=1

d1 + d2 + d3
9r2 · n .

27) WGC_dis This represents the disorder of the Com-
pacity, and is given by the equation

WGC dis = 1− 1

1 + C sd
C av

.
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