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The full strain and stress tensor determination in a triaxially stressed single

crystal using X-ray diffraction requires a series of lattice spacing measurements

at different crystal orientations. This can be achieved using a tunable X-ray

source. This article reports on a novel experimental procedure for single-shot

full strain tensor determination using polychromatic synchrotron radiation with

an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns

were collected from a copper micro-bending beam along the central axis

(centroid of the cross section). Taking advantage of a two-dimensional energy-

dispersive X-ray detector (pnCCD), the position and energy of the collected

Laue spots were measured for multiple positions on the sample, allowing the

measurement of variations in the local microstructure. At the same time, both

the deviatoric and hydrostatic components of the elastic strain and stress tensors

were calculated.

1. Introduction

The mechanical properties of micrometre-sized materials,

scaling from 0.1 to 10 mm, are of increasing importance owing

to current developments in micro systems technology, nano-

electromechanical systems and downsized medical devices

such as ‘implantable medical devices’. In the past few decades,

it has been discovered that the mechanical properties might

change if the size of the specimen is reduced to the micrometre

or nanometre scale (Fleck et al., 1994; Stölken & Evans, 1998;

Haque & Saif, 2003; Uchic et al., 2004), driving further

investigations. This includes structure analysis of materials on

the micrometre scale.

Strain analysis at the micrometre level by X-ray diffraction

techniques requires a fixed beam footprint on the sample

during the whole measurement time. Any rotational move-

ment of the sample would change the volume under investi-

gation; therefore, ideally a single-shot experiment is

performed.

Although the basics for determining the full strain tensor

components, both the deviatoric and hydrostatic parts,

conceptually are well understood (Chung & Ice, 1999; Busing

& Levy, 1967; Rollett, 1965), there has been no experimental

realization of a single-shot measurement.

Advances in synchrotron X-ray techniques (Tamura et al.,

2000; Liu et al., 2004) have shown that strain measurements

under a fixed angle of incidence with respect to the sample are

possible. However, one has to rotate the detector angle and
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switch between mono- and polychromatic X-rays in order to

resolve the Laue patterns and determine the full strain tensor.

On the other hand, experiments at BM32 of the European

Synchrotron Radiation Facility (ESRF) (Robach et al., 2012)

used a single-crystal diamond filter to measure the energy

profiles of Laue spots with improved resolution. More

recently, full elastic stress and strain tensor measurements

were performed on a copper through-silicon via with a

combination of mono- and polychromatic X-rays to scan the

energy of Laue spots (Levine et al., 2015). These studies

provide ground breaking results. However, switching and

tuning the X-ray beam is a time-consuming procedure that

does not fully guarantee a fixed footprint of the beam on the

sample, which prohibits the application of this approach for in

situ sub-micrometre full strain measurements.

Energy-dispersive Laue diffraction (EDLD) using poly-

chromatic synchrotron radiation (Send et al., 2012; Abboud et

al., 2014) and a two-dimensional energy-dispersive detector

(Strüder et al., 2001) combined with state of the art focusing

optics (Ulrich et al., 2011) offer outstanding advantages over

the aforementioned techniques. As demonstrated recently

(Abboud et al., 2014), EDLD can be successfully applied to

quantify defects in a single-crystal copper micropillar. Using a

pnCCD detector and a sub-micrometre-focused X-ray beam,

the single-shot-recorded Laue patterns contain both the

intensity distribution and the position and energy information

necessary to calculate the full strain tensor without the need of

any rotation. By following the energy distribution along a

streaked Laue spot, the type of lattice deformation in the

sample was determined. This novel approach was limited by

measuring the position and energy of only two Laue reflec-

tions (linearly dependent), and thus the full strain tensor could

not be calculated.

By measuring at least three inde-

pendent reflections (or the energy of

two independent reflections), EDLD

can be extended to measure the full

strain tensor (Busing & Levy, 1967;

Chung & Ice, 1999). In this article we

report the measurement of the full

strain tensor by EDLD. Here the

experimental technique was tested on a

deformed copper micro-bending beam

where the three-dimensional structure,

i.e. the crystal orientation and the six

unit-cell parameters, was determined.

By measuring changes in energy and

reflection angle of Laue spots with

respect to a reference point we could

measure all lattice parameters of the

unit cell and calculate the full strain

(stress) tensor components at multiple

points along the specimen central axis.

2. Experimental procedure

The EDLD experiment was performed

using the microbeam Laue diffraction setup of the CRG-IF

BM32 beamline at ESRF (Ulrich et al., 2011). The primary

beam provides polychromatic X-ray photons ranging from 5 to

23 keV. With the help of two Kirkpatrick–Baez (KB) mirrors

(Yumoto et al., 2013) (Fig. 1), the beam size was reduced to 0.5

and 0.8 mm (FWHM) in the vertical and horizontal directions,

respectively.

The sample used for the present experiment is a copper

single crystal shaped by means of a focused ion beam (Zeiss

1540XB) following the approach of Moser et al. (2012) and

Kapp et al. (2015). The specimen is shown in Fig. 2. It has a

gauge length of 20 mm in height and widths of 7 and 9 mm at

the center. Prior to this experiment, the sample was milled

with the [361] crystallographic axis parallel to the central axis

and the [841] crystallographic direction parallel to the loading

axis. A Hysitron PicoIndenter PI 85 (Hysitron, Minneapolis,

MN, USA) with a nominal force resolution of 0.1 mN equipped
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Figure 1
(a) A sketch of the geometry of the experimental setup at the BM32 beamline of the ESRF. Two KB
mirrors were used to focus the incident beam onto the sample. The pnCCD detector was mounted
facing down on the sample. (b) The energy spectrum of the X-rays used.

Figure 2
(a) Scanning electron microscopy image of the micro-bending beam of
copper used in the experiment. The sample has been loaded in the [841]
direction. Dots along the dotted line indicate the measurement points. (b)
Sketch of the sample with respect to the incident X-ray beam.



with a doped diamond Berkovich indenter tip was used for the

bending experiment.

An energy-dispersive pnCCD detector was used to acquire

the data. Its active volume is made from a 450 mm weakly

doped n-type silicon. The front side is divided into 384 � 384

pixels, each of 75 � 75 mm in size. The spatial resolution is

limited by the pixel size but can be further reduced by dedi-

cated algorithms (Abboud et al., 2013; Soltau et al., 2014),

while the energy resolution (FWHM) is limited by the elec-

tronic noise and the Fano limit of silicon (Fano, 1947). The

latter is measured to be 136.5 eVat 8040 eV. Further details on

this type of pnCCD are given by Send et al. (2013) and

Abboud et al. (2014).

Laue diffraction patterns were collected in reflection

geometry using the pnCCD installed in a position nearly

perpendicular to the incident beam (Fig. 1). The micro-

bending beam was scanned relative to the focused X-ray beam

from the base upward, as shown in Fig. 2(a), with a step size of

1 mm, starting from below the dashed line (reference

measurement) and following the central axis of the beam. The

last measurement was performed at the edge, 2 mm from

position 14 (Fig. 2a). In total we probed 15 positions using the

single-photon counting mode of the detector, i.e. at each

position 50 000 frames were recorded with a frame rate of 92

frames per second. Fig. 2(b) shows a two-dimensional sketch

of the sample and its position relative to the incident X-ray

beam.

3. Analysis method

After post analysis (noise, offset, event recombination etc.;

Andritschke et al., 2008) of the recorded data, three relevant

parameters were extracted for further analysis. These are the

position coordinates (x, y) and the energy of every recom-

bined (photon) event. Fig. 3(a) shows the energy-integrated

intensity image containing five Laue spots. In Fig. 3(b) an

energy histogram of all events is shown. The copper fluores-

cence originates from the sample, and

the iron and chromium fluorescence

from the detector housing. Peaks

numbered from 1 to 5 represent the

Laue spots’ energy peaks overlaying

the background hump of the primary

X-ray beam.

The open-source LaueTools (Micha,

2010) software was used to associate

the Laue spots with the corresponding

Miller indices. The spatial intensity

distribution of each Laue spot was

fitted with a two-dimensional Gaussian

to find the spot center (xs, ys). Gaussian

fitting was also performed on the

energy histogram of each Laue spot

(10 � 10 pixels) to determine the spot

energy. Bragg angles were then calcu-

lated and all the values are summarized

in Table 1.

3.1. Calculation of unit-cell parameters

The process of calculating the components of the full strain

tensor of a sample using EDLD and a pnCCD is schematically

outlined in the chart of Fig. 4. Using the setup sketched in

Fig. 5, the broad-bandpass microbeam illuminates the copper

sample over an area determined by the beam size, producing

Laue spots. From our knowledge of the Laue spots’ positions

and energies (�Bragg and E), a scattering vector Qlab is defined

for every Laue spot as the difference between the scattering

wavevector kf and the incident wavevector ki, as shown in

equation (1) and in Fig. 5:

Qlab ¼ kf � ki ¼ ð2�=�Þðxex þ yey þ zezÞ; ð1Þ

where � ¼ 2�h- c=E with h- ¼ 6:582� 10�16 eV (Planck

constant) and c ¼ 2:998� 108 m s�1 (speed of light).

At the same time, a reciprocal lattice vector Ghkl is defined

for every set of real lattice planes, with Miller indices (hkl),

using the reciprocal lattice vectors b1, b2 and b3:

Ghkl ¼ hb1 þ kb2 þ lb3: ð2Þ

The magnitude of the scattering vector Qlab is equal to the

magnitude of the reciprocal lattice vector Ghkl through the

relations shown in equation (3):

Qlab ¼
4�

�
sin �Bragg ¼

2E

h- c
sin �Bragg ¼

2�

d
¼ Ghkl; ð3Þ
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Figure 3
(a) Two-dimensional intensity map with five visible Laue spots from the measurement at position 1
(reference) on the sample. (b) Corresponding energy spectrum showing the Laue spots’ energy
distributions and the fluorescence radiation from the sample (Cu) and detector housing (Fe and Cr),
which are taken as background radiation.

Table 1
Measured Laue spot energies and FWHMs, the calculated Bragg angle
(�), and the evaluated Miller indices for the reference position.

Spot No. Energy (eV) FWHM (eV) 2� (�) hkl

1 14608.44 282.68 92.530 (5) 620
2 18143.30 296.79 95.125 (5) 731
3 19079.14 353.12 88.230 (5) 420
4 20389.52 364.50 96.284 (5) 820
5 21360.79 425.78 99.844 (5) 931



where d is the inter-planer spacing distance referred to a

lattice plane (hkl). Moreover, the scattering vector is oriented

perpendicular to the reflecting lattice plane, whereby Qlab

becomes equal to the reciprocal lattice vector of the crystal:

Qlab ¼ Ghkl: ð4Þ

Using equation (4), we calculate the reciprocal unit-cell

vectors (b) by solving equation (5):

b1x b2x b3x

b1y b2y b3y

b1z b2z b3z

0
B@

1
CA ¼

q1x q2x q3x . . .

q1y q2y q3y . . .

q1z q2z q3z . . .

0
B@

1
CA

�

h1 h2 h3 . . .

k1 k2 k3 . . .

l1 l2 l3 . . .

0
B@

1
CA
�1

: ð5Þ

Once the reciprocal vectors b1, b2 and b3 have been obtained

from the pnCCD data sets, the corresponding basis vectors can

be calculated using the reverse transformation shown in

equation (6):

a1 ¼ 2�
b2 � b3

b1 � ðb2 � b3Þ
; a2 ¼ 2�

b3 � b1

b1 � ðb2 � b3Þ
;

a3 ¼ 2�
b1 � b2

b1 � ðb2 � b3Þ
:

ð6Þ

3.2. Calculation of full strain and stress tensors

The full strain tensor of a crystal is composed of a deviatoric

and a hydrostatic part as shown in equation (7), where

� ¼ 1
3 trð"ijÞ is the isostatic strain defined as the mean strain

component along the diagonal axis of the full strain tensor

(deviatoric part):

"ij ¼ "
0
ij þ�ij ¼

"011 "012 "013

"021 "022 "023

"031 "032 "033

0
@

1
Aþ � 0 0

0 � 0

0 0 �

0
@

1
A: ð7Þ

The deviatoric term is related to the deformation of the unit

cell at constant volume, while the hydrostatic term corre-

sponds to a change in volume, without angle variation.

Using an approach similar to that adopted by Chung & Ice

(1999), the infinitesimal (Lagrangian) strain components were

directly obtained using

"ij ¼
Tij þ Tji

2
� Iij; ð8Þ

where Iij is the unit matrix and T is the transformation matrix

which maps the unstrained (reference) to the strained vectors

as in equation (9):

Ameas ¼ TAref: ð9Þ

In this form, A is defined, in equation (10), as the transfor-

mation matrix of any vector in the crystal from unit-cell to

Cartesian coordinates given by vu ¼ Av:

A ¼

a1 a2 cos�3 a3 cos �2

0 a2 sin �3 �a3 sin �2 cos �1

0 0 1=b3

0
@

1
Aþ � 0 0

0 � 0

0 0 �

0
@

1
A:
ð10Þ

Here �i and bi are reciprocal lattice parameters and �i and ai

are real lattice parameters of the unit cell in direct space.
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Figure 4
Flow chart for calibrating the position of the detector and calculating the
strain tensor using an energy-dispersive two-dimensional detector. The
chart is an extension of the work of Chung & Ice (1999). Details are
provided in the text.

Figure 5
The experiment geometry. For every Laue spot on the pnCCD, a
scattering vector Qlab is assigned. This vector is described either in the
crystal frame through the Miller indices as Ghkl or in the laboratory-frame
coordinate system by the measured position and energy of the Laue spot.
Angles (’, �,  ) were used to correct the tilt of the detector frame
(Xd;Yd;Zd) with respect to the laboratory frame (X;Y;Z).



3.3. Uncertainties

Uncertainties in calculating the lattice parameters and

strain and stress components originate from two main sources.

The first is the uncertainties in the Bragg angle and the energy

of Laue spots. The second is the residual strain in the refer-

ence point of measurement, i.e. the calibration point.

The scattering angles of the Laue spots were calculated by

measuring the sample-to-detector distance (STD) and the

coordinates of the spots in the detector plane. Respective pixel

positions were extracted from a two-dimensional Gaussian fit

of the Laue spot’s intensity profile. One standard deviation

was considered as the uncertainty value of the Laue spots’

centers, which is on average less than half a pixel, as well as for

the uncertainty calculations of the Laue spots’ energies esti-

mated by equation (12), where the FWHM(E) is obtained

from the Gaussian fit of the energy histogram. For all

measured Laue spots, the standard deviation was on average

less than 150 eV.

To reduce the geometric uncertainties (distances) we follow

the logic presented in Fig. 4. A reference Laue pattern was

recorded and fitted using LaueTools to determine the Miller

indices. By comparing the magnitude and orientation (angle)

of the measured vector (Qlab) with those of the fit (Ghkl), for

every Laue spot, the uncertainty in the STD is reduced to 10�1.

Once the Bragg angle and energy of the Laue spots are fixed,

we solve equation (5) and calculate an initial set of lattice

parameters for the calibration point.

Step two required correcting for the relative tilts (’, �,  )

between the detector plane and the laboratory-frame coordi-

nate system as shown in Fig. 5. In this step we initiated a set of

random tilt angles and incremented the tilt in steps of

0.001 rad, where in each step we reduce the difference

between the calculated and literature values of the lattice

parameters of copper. The tilt angles were calculated to be

�0.01, �0.01 and �0.04 rad. The transformation matrix M of

equation (11) was used to correct all vectors measured in the

laboratory-frame coordinate system:

M ¼

cos ’ � sin ’ 0

sin ’ cos ’ 0

0 0 1

0
B@

1
CA

�

cos � 0 � sin �

0 1 0

sin � 0 cos �

0
B@

1
CA

�

1 0 0

0 cos � sin 

0 sin cos 

0
B@

1
CA; ð11Þ

SD ¼ FWHMðEÞ=2:35 ð12Þ

(SD being the standard deviation). The

uncertainties discussed above must be

propagated through the analysis in

order to estimate uncertainties for the

unit-cell parameters and the compo-

nents of the strain and stress tensors.

The uncertainties of the evaluated

stress tensor components contain

uncertainties of the elastic constants for

copper at room temperature, given by

c11 ¼ 169:1� 0:2 GPa, c12 ¼ 122:2 �
0:3 GPa and c44 ¼ 75:41� 0:05 GPa

(Ledbetter & Naimon, 1974). The

calculated error bars are shown along-

side the strain and stress values in Figs. 6

and 7.

Strain in the sample at the position of

the calibration point is the second

source of uncertainty and would

certainly add a systematic offset to the

evaluated strain values in all of the

following measurements. In order to

determine this offset, we simulated the

consequence of an artificial strain added
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Figure 6
(a) Normal strain components "xx; "yy; "zz, plotted as a function of distance along the central axis.
The uncertainties are one standard deviation. The sawtooth pattern can be interpreted as the
presence of a strain gradient along the central axis (see Fig. 8). (b) The strain pattern translated to
the normal stress components, showing a similar response. The right-hand y axis shows the corrected
stress values after taking into account the uncertainty in the calibration measurement. The last stress
value is around 100 MPa.

Figure 7
(a) Shear strain and (b) stress tensor components are plotted as a function of distance along the
central axis.



to the calibration point by multiplying the lattice vectors with

a constant factor, thereby resulting in a slight increase in

volume of the unit cell (volumetric strain). As an example, a

strain of �a=a ¼ 10�3 (present at the calibration point) would

increase the stress amplitude of any subsequent measurement

points by approximately one order of magnitude. As it turned

out during data analysis, the calibration point that was used in

the calculation was not strain free. Hence the relative stress

values must be corrected to obtain their correct magnitudes.

3.4. Euler angle transformation

The crystallographic orientation of the measured sample is

calculated in the laboratory-frame coordinate system and is

transformed into the crystal-frame coordinate system by a

three-axis Euler angular rotation following the (’Euler, �Euler,

 Euler) convention described by Goldstein (1980). The unit

cell is first aligned with the [100], [010] and [001] directions

along the x, y and z axes of the laboratory-frame coordinate

system, respectively. With steps of 10�5 radians, the unit cell is

rotated counterclockwise by ’ about the z axis (taking xyz to

x1 y1 z), then rotated counterclockwise by � about x1 (x1 y1 z

to x1 y2 z2) and, finally, counterclockwise by  about z2 (x1 y2

z2 to x3 y3 z2). All rotations are described by the matrix E

given in equation (13):

E ¼

cos cos ’ cos sin ’ sin sin �
� cos � sin ’ sin þ cos � cos ’ cos 

� sin cos ’ � sin sin ’ cos sin �
� cos � sin ’ cos þ cos � cos ’ cos 

sin � sin ’ � sin � cos ’ cos �

0
BBBBBBBB@

1
CCCCCCCCA
ð13Þ

where the inverse is

E�1¼

cos cos ’ � sin cos ’ sin � sin ’
� cos � sin ’ sin � cos � sin ’ cos 

cos sin ’ � sin sin ’ � sin � cos ’
þ cos � cos ’ sin þ cos � cos ’ cos 

sin � sin sin � cos cos �

0
BBBBBBBB@

1
CCCCCCCCA
:

ð14Þ

The resulting Euler angles are (�1.2545, 0.9551, 2.0479) �

10�5 rad, respectively. The rotation matrix E�1 is used to

transfer vectors from the laboratory frame into the crystal

frame of reference.

4. Results and discussion

The method introduced by Chung & Ice (1999) and Busing &

Levy (1967) is applied to EDLD and is illustrated in an

example on a deformed copper sample. The reciprocal lattice

vectors (a1; a2; a3) are calculated at the reference point

[position 1 in Fig. 2(a)] by solving the overdetermined matrix

of equation (5) and transforming the obtained basis into real-

space coordinate. The result is reported in equation (15):

a1; a2; a3 ¼

1:2476 2:1491 2:6153

�1:9080 2:7412 �1:3481

�2:7985 �0:9146 2:0755

0
@

1
A Å: ð15Þ

The magnitudes of the lattice parameters (Å) and the

corresponding cell angles (�) are shown in equation (16):

ja1j ¼ 3:6095 ð8Þ ja2j ¼ 3:6013 ð15Þ ja3j ¼ 3:6007 ð10Þ

da2;a3a2;a3 ¼ 89:8821 ð365Þ da3;a1a3;a1 ¼ 89:8828 ð43Þ da1;a2a1;a2 ¼ 89:9532 ð5Þ

2
4

3
5:

ð16Þ

The values in equation (16) verify the cubic symmetry and

show that the lattice parameters of copper can be obtained

with an accuracy of �a=a ¼ 10�3 (Davey, 1925; Wyckoff,

1963). This deviation in the lattice parameters at the calibra-

tion point needs to be taken into account as discussed in x3.3.

The unit-cell parameters are calculated at different positions

along the microbeam axis. These values are then used in the

calculation described in x3.2, resulting in the full strain and

stress tensors. As an example, the strain at position number 2

is given in equation (17), presented in the crystal-frame

coordinate system:

" ¼
�0:203 ð8Þ �0:320 ð17Þ 0:249 ð26Þ

�0:320 ð17Þ 1:890 ð33Þ 2:722 ð42Þ

0:249 ð26Þ 2:722 ð42Þ 1:290 ð18Þ

2
4

3
5� 10�3: ð17Þ

The isostatic term is calculated to be � ¼ 0:978� 10�3.

Figs. 6 and 7 show all the calculated strain and stress tensor

components taken along the central axis of the copper canti-

lever along with the calculated uncertainties. Before inter-

preting the data, we need to highlight points that affect,

qualitatively and quantitatively, the strain and stress values:

(1) The collected Laue spots have a spectral distribution

between 14.6 and 21.3 keV. This means that different reflec-

tions probe different depths inside the sample. Moreover, the

incident X-ray beam was oriented at an angle of 40� with

respect to the sample. Therefore, the penetration depth is

around 5 mm beneath the surface and the sampled volume,

given by the path of the X-ray beam through the sample, is
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Figure 8
A simplified sketch of the bending beam and two glide planes (one with
positive and one with negative Burger’s vectors). The dotted line shows
the expected location of the neutral axis, and the crosses show the
measurement points, i.e. possible deviation from the neutral axis.



approximately 16 mm. As a result, the strain and stress tensor

values would be an average of the sampled volume.

(2) The X-ray beam was centered in the middle of the

micro-bending beam by performing a cross-sectional scan of

the sample and detecting its edges by the excited fluorescence

photons by means of an energy-dispersive point detector. This

process was repeated every time the sample was translated

along its microbeam parallel to the neutral axis. This means

that drifts of the X-ray beam from the neutral axis are

expected and the scan follows the central axis instead (Fig. 8).

(3) The presence of strain in the calibration point would

lead to an offset of the absolute stress values.

(4) In the micro-bending beam, dislocations are piled up at

the neutral axis. In such pileup, the shear stress on the leading

dislocation of the pileup is the globally applied shear stress (at

maximum, half of the global normal stress) multiplied by the

number of dislocations. This can exceed the global (and local)

normal stresses.

(5) For micro-sized samples, the sample geometry (length

and aspect ratio) causes an increase in the yield stress of the

material. Although the nature of this effect is still under

discussion, there have been many reports in the direction of

pronounced hardening and strong size effects in single crystals

(Kiener et al., 2008).

Figs. 6 and 7 show the change of the strain and stress along

the central axis. The stress figures are presented with a double

y axis. The left one is directly calculated from the strain, while

in the right axis the residual strain in the calibration point was

taken into account as discussed in x3.3.

Taking into account points 1–5 mentioned above, the strain

amplitudes in Figs. 6(a) and 7(a) can be explained to be

changing as the X-ray beam position with respect to the

neutral axis changes. This scenario is sketched in Fig. 8. The

neutral axis is defined as the line where the strain (and

consequently stress) is equal to zero. However, slip systems,

which are part of the underlying dislocation mechanism for the

deformation (Kapp et al., 2015) of these microbeams, lead to

formation of dislocations at either side of the bending beam.

Most of these dislocations will be trapped and only a minority

will penetrate to the other side, because the neutral axis of the

beam acts as a strain interface for dislocation motion. This

trapping effect produces large strain gradients of opposite

signs which are visible as fluctuations (up and down trends) of

the strain and consequently the stress values in Figs. 6(b) and

7(b).

On the other hand, closer to the free surface of the sample,

i.e. away from the central axis, dislocations are trapped, and

increases in the values of the strain and stress magnitudes are

seen at the last scan positions in Figs. 6 and 7, where the stress

shoots to above 100 MPa. All the stress values obtained are

below the tensile strength of pure copper, measured to be

between 224 and 314 MPa (Goodfellow Catalogue, 1993–

1994).

5. Summary and conclusions

We have described and demonstrated a new measurement

technique by applying polychromatic microbeam X-ray

diffraction to determine the crystallographic orientation of a

strained single-crystalline copper micro-bending beam. Using

a two-dimensional energy-dispersive detector, the EDLD

method allows for simultaneous measurement of diffraction

peak angles and energies without any rotation of the sample

with respect to the incident beam.

In this particular example, the calibration point was not

strain free. In the optimal case, this can be bypassed by

selecting an unstrained position on the sample surface which

leads to an accurate data interpretation.

Relative to a reference measurement point on the sample,

one is able to determine all components of the full strain

tensor in a single-shot experiment. The strain and stress tensor

component variations along the bending beam show strain

gradients due to heterogeneous distributions of dislocations

along the central axis.

Presently, the experimental uncertainty is limited by the

relatively small number of collected Laue spots and the

precision in determining their position and energy. While the

first can be improved by collecting a larger number of spots (in

this case a larger detector module would solve the problem),

the later depends on the energy resolution and position

resolution of the detector. The energy resolution of the

pnCCD is already at the theoretical limit of what is possible

with silicon (Fano limit). On the other hand, the precision in

determining the centroid of the Laue spots increases by

improving the peak fitting routines and implementing sub-

pixel event position reconstruction. Another improvement of

the spatial resolution would be to use digital image correlation

techniques (Petit et al., 2015), which bypass the need for the

exact position of the Laue spots’ centers.

One can also improve the resolution by reducing the

sampling volume of the probed specimen by reducing the

sample thickness.

Measuring the full strain tensor in a single-shot non-

destructive experiment provides numerous advantages for the

analysis of technical materials and devices. Stresses and strains

are the primary causes of structural failure. The possibility to

realize a fast two-dimensional screening procedure of imper-

fection in single- and polycrystalline samples by means of a

nanobeam X-ray source allows us to determine, for example,

the early stages of crack formation, whisker growth and

delamination in composite materials.

The method introduced is robust and appropriate for in situ

applications and can be extended to polycrystalline materials

with high spatial resolution.
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