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The states generated from the vacuum in two parametric down-conversion crystals with aligned idler beams
are studied. It is shown that after a measurement of the photon number in some of the modes, the emerging
states can be related to SU~2! and SU~1,1! coherent and minimum-uncertainty states.
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I. INTRODUCTION

The entangled nature of the two-mode field generated by
parametric down-conversion has been widely studied and
utilized in a number of fundamental experiments in quantum
optics @1#.

On the other hand, entanglement is a powerful tool con-
cerning both quantum measurement and the generation of
particular system states. In this sense measurement is not
only the way to obtain information but also a way to manipu-
late a system state by means of a proper choice of the mea-
surement and the corresponding selection of its outputs@2#.

In the context of parametric down-conversion it has been
shown how a measurement in the idler mode can be useful to
transfer desirable properties to the state in the signal mode
@3–5#. Specifically, the measurement of the photon number
in the idler mode leads to near-number states in the signal
mode.

Recently parametric down-conversion has been used to
show an interference experiment exhibiting nonclassical fea-
tures@6#. Two nonlinear crystals were pumped coherently to
produce two pairs of signal and idler beams via spontaneous
parametric down-conversion. The signal beams were mixed
at a beam splitter looking for interference. When the two
down-converters are unconnected, the signal field shows no
mutual second-order coherence in complex amplitudes.
However, interference is observed when the two idler beams
are aligned, the idler beam of one of the crystals passing
through the second one. The interference is lost whenever
this connection is blocked.

This behavior has been explained on the basis of the re-
lation between coherence and quantum indistinguishability
@6,7#. When the idler beams are unconnected, there exists the
possibility, in principle, of identifying the path of each signal
photon reaching the beam splitter, knowledge that wipes out
the interference. When the idlers are connected this possibil-
ity can be ruled out, giving rise to interference. The entangle-
ment, which provides the which-path information is then re-
verted into coherence. After the alignment mixing the two
idler beams into a single mode, the same idler state is related
to different photon distribution between the signal fields.
These states are then superimposed, giving rise to coherence.
This occurs despite that the intensity of the idler beam com-

ing from the first crystal is too weak to induce any stimulated
down-conversion in the second one. So, the induced coher-
ence is not due to induced emission. The role of the vacuum
fluctuations in this process also has been discussed@8#.

The purpose of this work is to study how this transforma-
tion of entanglement into coherence is reflected in the field
state. Nonlinear processes are well known as producing non-
classical states of light with interesting properties@9#. Here
we intend to study which states are generated in this arrange-
ment. To this end, we mainly examine the state in the signal
beams when a photon-number measurement has been carried
out in the idler beam. Then, we can both analyze the prop-
erties of the field generated and show which kind of states
can be produced. We will do this when the idler beams are
completely or partially connected. We also extend this analy-
sis to photon-number measurements in the signal modes.

II. COMPLETE COUPLING OF THE IDLER MODES

The situation to be studied is illustrated in Fig. 1, which
shows the two nonlinear crystals, NL1 and NL2, whose idler
modes we will assume are perfectly superimposed and
aligned. A lossless beam splitter, BS, can be inserted in the
idler path between the two crystals to control the degree of
connection between the two idler modes.

In this section we will consider that the beam splitter is
removed. We are then in the best conditions to observe the
induced coherence between the signal modes. If we combine
them by means of a beam splitter a second-order interference
arises, because there would be no way of telling which crys-
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FIG. 1. Outline of the arrangement under discussion illustrating
the definition of the relevant field amplitudes.
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tal emitted the photons recorded after the beam splitter. A
photon-number measurement by means of a detector placed
in the idler beam after the two crystals would not distinguish
whether the emission has taken place in one or the other.
Accordingly, the corresponding probability amplitudes of the
possible processes are added, giving rise to the interference.

Our purpose here is the study of the characteristics and
properties of the field in the signal modes.

The parametric interaction at the two nonlinear media is
described by the effective interaction HamiltoniansH1 and
H2 ,

Hj5\~gjas j
† ai

†1gj* as jai !, ~2.1!

with j51,2, whereas j andai are the annihilation operators
for the corresponding signal and idler beams, andgj is a
parameter depending on the pump, which is assumed to be
strong, classical, and coherent, and the nonlinear character-
istics of the media. The relation between the inputuc& and
outputuc̄& field states of the whole device is provided by the
unitary transformationT ~it will not be necessary to take into
account explicitly the free propagation of the idler field be-
tween NL1 and NL2!,

T5T2T15exp~2 iH 2t2 /\!exp~2 iH 1t1 /\!, ~2.2!

wheret j are the corresponding interaction times, such that
uc̄&5Tuc&.

We will start considering that the input field is vacuum
uc&5u0&s1u0&s2u0& i . The expression for the output state can
be obtained~since the input state is vacuum! using the dis-
entangling theorem forT2 andT1 @10#, for instance,

Tj5
1

m j
expS n j

m j
as j
† ai

†Dexp@2 lnm j~as j
† as j1ai

†ai !#

3expS 2
n j*

m j
as jai D , ~2.3!

where

m j5coshugj ut j , n j52 i
gj

ugj u
sinhugj ut j . ~2.4!

The output fielduc̄&5Tuc& is in the number basis

uc̄&5 (
m,k50

` Sm1k

k D 1/2 1

m1m2
m11 S n1

m1
DmS n2

m2
D k

3um&s1uk&s2um1k& i . ~2.5!

We can note the symmetry present between the two signal
modes after the alignment of the idler modes.

Now let us assume that a photon-number measurement is
performed in the idler beam,n being the outcome. The state
in the signal mode after this measurementuc̄n& is given by
the projection of the number stateun& i on uc̄&, giving

uc̄n&5 i^nuc̄&5
1

~11uju2!n/2(m50

n S nmD 1/2jmum&s1un2m&s2 ,

~2.6!

wherej5n1 /(m1n2).
It can be seen that this is an SU~2! coherent state@10,11#.

It is a coherent state corresponding to the realization of the
algebra of this group in terms of the bosonic operators

Jx5
1

2
~as1

† as21as1as2
† !,

Jy5
i

2
~as1as2

† 2as1
† as2!, ~2.7!

Jz5
1

2
~as1

† as12as2
† as2!,

being the Casimir operator

J25
N

2 SN2 11D , ~2.8!

with N5as1
† as11as2

† as2 the total photon number in the sig-
nal modes.

Then we have that the state on the signal modesuc̄n& can
be expressed as

uc̄n&5expS u

2
e2 ifas1

† as22
u

2
eifas1as2

† D u0&s1un&s2

5
1

~11uju2!n/2
exp~jas1

† as2!u0&s1un&s2 , ~2.9!

wherej5tan(u/2)e2 if.
It is worth comparing this state with the one that would be

obtained if the idler modes were not superimposed. A similar
photon-number measurement, now in the two idler modes,
would reduce the signal modes to a product of number states
and the second-order interference would be lost. The break-
ing of the connection would lead to the possibility of distin-
guishing the nonlinear crystal where the emission takes
place, and the route followed by the photons incident at the
beam splitter mixing the signal modes. This knowledge
wipes out the interference effect.

The origin of this coherence as indistinguishability is
somewhat reflected in the photon-number probabilities in the
signal modes in~2.6!, which turns out to be binomial, corre-
sponding to the random distribution ofn indistinguishable
particles between the two modes. It occurs in the same terms
that it does in a beam splitter over an incident state ofn
photons in one of the input ports and vacuum in the other.

After that we can express the complete output field before
the measurement as a kind of superposition of SU~2! coher-
ent states,

uc̄&5 (
n50

`
1

m S n

m D nun& i uc̄n&, ~2.10!

where m5m1m2 and n5Am1
2m2

221n2 /un2u. It must be
noted that all the SU~2! coherent statesuc̄n& are character-
ized by the same parameterj since it does not depend on
n.

Before continuing let us use another way to identify the
reduced state after the measurement, which can be useful
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when the state or its properties are not easily recognizable
from its expression in the number basis. It can be used when
the input states are eigenstates of a given set of operators.
The purpose is to use the eigenvalue equations and, by re-
moving the idler mode in terms of the measurement, to re-
duce the problem to a different set of eigenvalue equations
for the signal modes only@5#. In this case the input state is an
eigenstate of the three annihilation operators. Using this fact
we have that the output state must verify the equations

Tas1T
†uc̄&5~m1as11n1n2* as22n1m2ai

†!uc̄&50,

Tas2T
†uc̄&5~m2as22n2ai

†!uc̄&50, ~2.11!

TaiT
†uc̄&5~m1m2ai2n1as1

† 2m1n2as2
† !uc̄&50.

Since we are interested here in a measurement in the idler
mode we can isolate the action of the idler operators

ai
†uc̄&5

1

n1m2
~m1as11n1n2* as2!uc̄&5

m2

n2
as2uc̄&,

ai uc̄&5
1

m1m2
~n1as1

† 1m1n2as2
† !uc̄&. ~2.12!

We can note from the first equation that the relation

S as12 n1
m1n2

as2D uc̄&50 ~2.13!

is verified irrespective of any other condition. With~2.12! we
could obtain the reduced eigenvalue equations for the signal
states after any measurement in the idler mode, simply by
constructing the corresponding measured operator and pro-
jecting over its eigenvectors. Since we are interested in the
measurement of the photon number we can write

ai
†ai uc̄&5

1

m1n2
~n1as1

† 1m1n2as2
† !as2uc̄&

5
1

n1m2
2m1

~n1as1
† 1m1n2as2

† !

3~m1as11n1n2* as2!uc̄&. ~2.14!

Finally, we can project these two equations over a photon-
number state in the idler mode. With the help of~2.13! we
can express the result in different ways. We have, for in-
stance,

~as1
† as11as2

† as2!uc̄n&5nuc̄n&,

S as2† as22as1
† as112

n1
m1n2

as1
† as2D uc̄n&5nuc̄n&,

~2.15!

or also

~as1
† as11as2

† as2!uc̄n&5nuc̄n&,

S m1n2
n1

as2
† as11

n1
m1n2

as1
† as2D uc̄n&5nuc̄n&, ~2.16!

that define an SU~2! coherent state. The first equations in
~2.15! and~2.16! express that, since the idler and signal pho-
tons are produced in pairs, there are as many signal photons
as idler photons have been detected. The other one charac-
terizes the state as coherent SU~2! within the subspace of
total signal photon numbern. This can be seen noting that
~2.13! and the first equations in~2.15! and ~2.16! can be
written as

U~as1
† as11as2

† as2!U
†uc̄n&5nuc̄n&,

Uas1U
†uc̄n&50, ~2.17!

whereU is an SU~2! unitary transformation, specifically that
in ~2.9!, and then we haveU†uc̄n&5u0&s1un&s2 . The second
equation characterizes the output state as a superposition of
SU~2! coherent states with the same parameterj and differ-
ent values of the Casimir operatorJ2. The first expression
fixes in this case its value to (n/2)(n/211).

As we have mentioned, this procedure leading to~2.15! or
~2.16! is especially useful when the expression for the output
state is involved or not easily recognizable. We can find it
useful, for instance, when the input state is coherent,
uc&5uas1&s1uas2&s2ua i& i . We again assume that the photon
number is measured in the output idler beam, giving the
outcomen. Since the input state is also an eigenstate of the
annihilation operators, the procedure followed from~2.11! to
~2.14! can be also applied to this case by simply replacing
0 by as1 ,as2 , anda i in the right-hand side of~2.11!. Fol-
lowing the same steps we arrive at equations defining the
output signal state after the measurementuc̄n,a&, which can
be written in the form

~a8s1
† as18 1a8s2

† as28 1a i8as28 !uc̄n,a&5nuc̄n,a&,

S m1n2
n1

a8s2
† as18 1

n1
m1n2

a8s1
† as28 1a i8as28 D uc̄n,a&5nuc̄n,a&,

~2.18!

whereas18 5as12as18 andas28 5as22as28 are displaced anni-
hilation operators and

as18 5
1

m1
S as12

n1n2*

m2
as2D ,

as28 5
as2

m2
, ~2.19!

a i85
1

m1n2
S a i1

n1
m1

as1* 1
n2

m1m2
as2* D .

It can be seen from~2.18! that there is a close relation
between this state and the corresponding one when the input
state was vacuum, which is a particular example of this case
with a5a850. Since

exp~aas2!as2
† exp~2aas2!5as2

† 1a, ~2.20!

their relation can be established by means of the composition
of a unitary and a nonunitary transformation in the form
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uc̄n,a&5N Ds1~as18 !Ds2~as28 !exp~a i8as2!uc̄n,a50&,
~2.21!

where Dj (a8)5exp(a8aj
†2a8*aj) is the unitary displace-

ment operator acting in thej mode andN is a normalization
constant.

Going back to the case with the input vacuum state we
can ask whether a similar result holds if the measurement is
performed in one of the signal modes instead of the idler
mode. Then, let us study which is the state that arises in the
as1 andai modes when we interrupt the second signal beam
with a photodetector. If the result of such a measurement is
n the reduced state in the other two modes is

uc̄n&5s2^nuc̄&

5~12uhu2!~n11!/2(
m50

` S n1m

m D 1/2hmum&s1un1m& i ,

~2.22!

whereh5n1 /(m1m2).
This state can be recognized as an SU~1,1! coherent state

@10#, corresponding to the realization of the algebra of this
group in terms of the bosonic operators

Kx5
1

2
~as1

† ai
†1as1ai !,

Ky5
i

2
~as1ai2as1

† ai
†!, ~2.23!

Kz5
1

2
~as1

† as11ai
†ai11!,

being the Casimir operator

Kz
22Kx

22Ky
25

K

2 SK2 11D , ~2.24!

with K5as1
† as12ai

†ai21.
Then we have that the state~2.22! can be expressed as

uc̄n&5exp~ ḡas1
† ai

†2ḡ* as1ai !u0&s1un& i

5~12uhu2!~n11!/2exp~has1
† ai

†!u0&s1un& i , ~2.25!

whereh5(ḡ/uḡu)tanhuḡu.
This leads to writing the whole output state~2.5! also as a

superposition of SU~1,1! coherent states, all of them charac-
terized by the same parameterh involved in ~2.25!,

uc̄&5 (
n50

`
1

m S n

m D nun&s2uc̄n&, ~2.26!

where nown5n2m1 andm5Am1
2un2u211. It can be noted

that there would be no qualitative difference in this case
between interrupting the first or the second signal modes by
means of a photon-number measurement. If such a measure-
ment is carried out in the first signal mode, giving the out-
comen, we would then have a number stateun& i incident on
the second crystal, giving rise to an SU~1,1! coherent state

T2u0&s2un& i in the output idler and second signal beams. This
fact can be explained by the similar role played by the signal
beams after the alignment of the idlers.

This result could be also derived by the same procedure
followed from ~2.11! to ~2.14! but now particularized to a
measurement in the second signal mode. In this procedure it
appears that the equation

S as12 n1
m1m2

ai
†D uc̄&50 ~2.27!

is satisfied irrespective of any measurement on the field.
Here again, in view of~2.25!, it can be seen that this condi-
tion characterizes the state as a superposition of SU~1,1! co-
herent states with the same parameterh and different values
of the Casimir operator.

With the help of this last relation, the equations defining
the output field conditioned to the measurement of the pho-
ton number in the second signal beam can be written in
different ways. We have

~ai
†ai2as1

† as1!uc̄n&5nuc̄n&,

S as1† as11ai
†ai22

n1
m1m2

as1
† ai

†D uc̄n&5nuc̄n&, ~2.28!

or also

~ai
†ai2as1

† as1!uc̄n&5nuc̄n&,

S m1m2

n1
aias12

n1
m1m2

as1
† ai

†D uc̄n&5~n11!uc̄n&,

~2.29!

both defining the SU~1,1! coherent state~2.25!. This can be
seen by noting that~2.27! and the first equations in~2.28!
and ~2.29! can be written as

U~ai
†ai2as1

† as1!U
†uc̄n&5nuc̄n&,

Uas1U
†uc̄n&50, ~2.30!

whereU is an SU~1,1! unitary transformation, specifically
that in ~2.25!, and then we haveU†uc̄n&5u0&s1un& i .

Finally we consider again the case when the input state is
coherent uc&5uas1&s1uas2&s2ua i& i . The same procedure
leads to equations for the reduced stateuc̄n,a& that can be
written as

~a8 i
†ai82a8s1

† as18 2as28 a8 i
†!uc̄n,a&5nuc̄n,a&,

S m1m2

n1
a8s1ai82

n1
m1m2

a8s1
† a8 i

†2as28 a8 i
†D uc̄n,a&

5~n11!uc̄n,a&, ~2.31!

whereas18 5as12as18 andai85ai2a i8 are displaced annihi-
lation operators and

as18 5
1

m1
S as12

n1m2

n2
as2D ,
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a i852
as2*

n2*
, ~2.32!

as28 5
1

m1m2
S a i1

n1
m1

as1* 1
m2

m1n2*
as2* D .

The solution of~2.31! can be written again as the compo-
sition of a unitary and a nonunitary transformation acting to
the output state when the incident one is the vacuum in the
form

uc̄n,a&5N Ds1~as18 !Di~a i8!exp~as28 ai
†!uc̄n,a50&.

~2.33!

III. PARTIAL COUPLING OF THE IDLER MODES

The second-order coherence between the signal modes
originates because of the impossibility of knowing in which
crystal the emission takes place. We have shown how this
fact is reflected in the field state. Any modification of the
arrangement considered in the previous section leading to the
possibility of knowledge about how the emitted photons are
distributed between the two signal modes will wipe out the
second-order interference effect.

One way to do this is by inserting a beam splitter in the
idler beam between the two crystals. This means the possi-
bility of obtaining some information about whether the emis-
sion takes place in NL1 or NL2 by putting a detector at the
output of the beam splitter.

It has been pointed out that it is not necessary that this
measurement is actually made. It is sufficient that after the
insertion of the beam splitter the two photon paths become
distinguishable.

Our purpose here is essentially the same as that followed
in the previous section. We intend to study the effect of the
entanglement and the idler coupling in the state of the field.
We again will do this by asking for the field state after a
number measurement in some of the modes. In the previous
section we showed that the complete connection of the idler
modes gives rise to coherent states@SU~2! and SU~1,1!#,
contrary to the case of idler modes completely decoupled,
which originates number states. In this case of partial cou-
pling we can expect that states somewhat intermediate be-
tween number and coherent states will appear. Their study is
the aim of this section.

We assume that a beam splitter has been placed as is
shown in Fig. 1, coupling the output idler mode of the first
crystal with another mode we will describe by the annihila-
tion operatora0 . Moreover, we will consider that a photode-
tector can be placed at the output of this beam splitter. The
beam splitter will be described by real reflectionr and trans-
mission t coefficients with ap phase change in one of the
reflections. Its action on the field state is given by the unitary
operator

TBS5exp@g~a0
†ai2ai

†a0!#, ~3.1!

where tang5r /t.
The relation between the states enteringuc& and leaving

uc̄& the whole device is now given by the transformation
T5T2TBST1 . We will always consider that the input state is

vacuum in all the modes. The output state, using, for in-
stance, the corresponding disentangling theorems, is given
by

uc̄&5 (
m,n50

`

(
k50

n Sm1k

m D 1/2S nkD
1/2 1

m1m2
k11 S n1

m1
D nS n2

m2
Dm

3tkr n2kun&s1um&s2um1k& i un2k&0 . ~3.2!

Let us start by studying first the case corresponding to a
measurement of the photon number in thea0 andai modes
by means of photodetectors placed at the output of the beam
splitter and at the output idler beam. If the result of such a
measurement isn0 andni , respectively, the state in the sig-
nal modesuc̄ni ,n0

& is given by the projection of~3.2! on

uni& i un0&0 . Although it is not difficult to extract the relevant
information about the field state after this projection, we
think it is more convenient to express the state originated in
terms of an eigenvalue equation as we did in the previous
section. The procedure is the same as followed there but now
the starting point, instead of~2.11!, is

Tas1T
†uc̄&5~m1as11tn1n2* as22tn1m2ai

†2rn1a0
†!uc̄&50,

Tas2T
†uc̄&5~m2as22n2ai

†!uc̄&50, ~3.3!

TaiT
†uc̄&5~ tm1m2ai1rm1a02n1as1

† 2tm1n2as2
† !uc̄&50,

Ta0T
†uc̄&5~2rm2ai1ta01rn2as2

† !uc̄&50.

The procedure leads to the following equations verified by
the reduced state in the signal modes:

~as1
† as11as2

† as2!uc̄ni ,n0
&5~ni1n0!uc̄ni ,n0

&,

S as2† as22as1
† as112

tn1
m1n2

as1
† as2D uc̄ni ,n0

&

5~ni2n0!uc̄ni ,n0
&. ~3.4!

These equations can be solved foruc̄ni ,n0
& by getting the

associated recurrence relation or by using the SU~2! commu-
tation relations. In terms of the angular momentum operators
~2.7! and ~2.8! we can write~3.4! in the form

Nuc̄ni ,n0
&5~n01ni !uc̄ni ,n0

&,

~Jz2jJ1!uc̄ni ,n0
&5

n02ni
2

uc̄ni ,n0
&, ~3.5!

where J15Jx1 iJy5as1
† as2 , and j5ujuexp(idj)

5tn1 /(m1n2). Taking into account the commutation relations

@Jz ,J1#5J1 , @N,J1#50, ~3.6!

we have

Jz2jJ15exp~jJ1!Jzexp~2jJ1!, ~3.7!

and then
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exp~jJ1!Nexp~2jJ1!uc̄ni ,n0
&5~n01ni !uc̄ni ,n0

&,

exp~jJ1!Jzexp~2jJ1!uc̄ni ,n0
&5

n02ni
2

uc̄ni ,n0
&,

~3.8!

which give the solution as

uc̄ni ,n0
&5N exp~jJ1!un0&s1uni&s2

5N expS tn1
m1n2

as1
† as2D un0&s1uni&s2 , ~3.9!

whereN is a normalization constant.
The meaning of the first equation in~3.4! is again clear

since the signal and idler photons are produced in pairs. The
second one is very similar to the corresponding one in~2.15!,
but now it only defines an SU~2! coherent state in two par-
ticular cases, namely,ni50 or n050.

In the ni50 case the state in the signal modes given by
~3.9! is the number stateun0&s1u0&s2 . The result of the mea-
surement shows that no photons have been generated in the
second medium which gives complete information concern-
ing the photons’ path.

The casen050 also gives a coherent state as can be seen
comparing~3.9! with ~2.9! or ~3.4! with ~2.15!. This case
corresponds to an~accidental! erasure of the photon path
information provided by the detector at the output of the
beam splitter. If it turns up that no photons are registered by
this detector once again there is no information available
about where theni photons have been emitted and we return
to the situation of the previous section.

In the general caseniÞ0, n0Þ0, these expressions also
show that in the limitt→0 the state tends to be a number
state with the corresponding loss of second-order coherence.
This can be related with the increasing degree of knowledge
about the number of photons emitted by each crystal. When
t50 the two idler beams are completely decoupled, giving a
number state in the signal modes and the interference van-
ishes. On the other hand, whent51 no photons can be reg-
istered at the output of the beam splitter and we get then the
same states obtained in the previous section.

Next we show that these states~3.9! that are no longer
coherent are nevertheless closely related with another par-
ticular set of states that are the minimum uncertainty states
of the SU~2! operators~2.7!. From ~3.5! it can be seen@12#
that the stateucmin&, obtained fromuc̄ni ,n0

& by means of an
SU~2! transformation~that is, the action of a beam splitter!,

ucmin&5exp~2 iuJx!exp~2 idJz!uc̄ni ,n0
&, ~3.10!

verifies the eigenvalue equation

~Jx1 ilJy!ucmin&5 i
ni2n0
2

Al221ucmin&, ~3.11!

where the parameters in these equations are defined as
l5A11uju2/uju, d5dj1p/2, and lcosu51. This equa-
tion shows that the statesuc̄ni ,n0

& arising in the arrangement
we are studying are closely related with the minimum uncer-

tainty states of the SU~2! operators@13#. These states have
found application in the context of interferometric measure-
ment because the SU~2! operators are what is measured
there. The minimum character of these states, and their
squeezing controlled by the parameterl, is relevant con-
cerning the accuracy of interferometric measurements@12#.
We can note that the parameters characterizing these states
do not depend on the result of the measurement as far as
l,u, andd depend only onj.

In what follows we briefly discuss the kinds of states that
arise when the photon-number measurement is performed in
other pairs of modes. We will try to show whether their prop-
erties are similar to those encountered before.

Now we assume that the two detectors have been placed
at the output signal modes. When the outcomes of such
photon-number measurement aren1 andn2 for the first and
second signal modes, respectively, the state in theai and
a0 modes is given by the solution of the equations

~ai
†ai1a0

†a0!uc̄n1 ,n2
&5~n11n2!uc̄n1 ,n2

&,

S a0†a02ai
†ai12

t

m2r
ai
†a0D uc̄n1 ,n2

&5~n12n2!uc̄n1 ,n2
&,

~3.12!

which are formally the same as in~3.4!, so we need not
discuss their properties further.

If the measurement is performed in the modesas2 and
a0 , giving n2 andn0 , respectively, we have that the state in
theai , as1 modes is defined by

~ai
†ai2as1

† as1!uc̄n2 ,n0
&5~n22n0!uc̄n2 ,n0

&,

S ai†ai1as1
† as122

tn1
m1m2

as1
† ai

†D uc̄n2 ,n0
&

5~n01n2!uc̄n2 ,n0
&. ~3.13!

Here again these equations can be solved by means of a
recurrence relation or by using the SU~1,1! commutation re-
lations. In terms of the corresponding operators~2.23! and
~2.24! we can write~3.13! in the form

Kuc̄n2 ,n0
&5~n02n221!uc̄n2 ,n0

&,

~Kz2hK1!uc̄n2 ,n0
&5

n01n211

2
uc̄n2 ,n0

&, ~3.14!

where K15Kx1 iK y5as1
† ai

† , and h5uhuexp(idh)
5tn1 /(m1m2). From the commutation relations

@Kz ,K1#5K1 , @K,K1#50, ~3.15!

we have

Kz2hK15exp~hK1!Kzexp~2hK1!, ~3.16!

and then
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exp~hK1!Kexp~2hK1!uc̄n2 ,n0
&5~n02n221!uc̄n2 ,n0

&,

exp~hK1!Kzexp~2hK1!uc̄n2 ,n0
&5

n01n211

2
uc̄n2 ,n0

&,

~3.17!

giving the solution

uc̄n2 ,n0
&5N exp~hK1!un0&s1un2& i

5N expS tn1
m1m2

as1
† ai

†D un0&s1un2& i . ~3.18!

It can be seen by comparing~3.13! with ~2.28! or ~3.18! with
~2.25! that these states are defined similarly to the SU~1,1!
coherent states. They coincide whenn050 or n250. The
reason for this is similar to that discussed earlier.

We can ask whether these states, whenn0Þ0 and n2
Þ0, can be related with minimum uncertainty states for the
SU~1,1! operators~2.24!. We can define the stateucmin&, re-
lated touc̄n2 ,n0

& by means of an SU~1,1! transformation

ucmin&5exp~2 iuKy!exp~2 idKz!uc̄n2 ,n0
&, ~3.19!

which verifies the eigenvalue equation@14#

~Ky1 ilKz!ucmin&5 i
n21n011

2
A11l2ucmin&, ~3.20!

where the parameters in these equations are defined as
l5A12uhu2/uhu, d5dh , andlsinhu51.

Then, these equations show that the statesuc̄n2 ,n0
& in the

ai , as1 modes in this case are related by means of an
SU~1,1! transformation with minimum uncertainty states for
theKy , Kz operators.

Finally, when we measure the photon number in the first
signal and idler modes, with outcomesn1 and ni , respec-
tively, the state in theas2 anda0 modes is given by

~a0
†a02as2

† as2!uc̄n1 ,ni
&5~n12ni !uc̄n1 ,ni

&,

S a0†a01as2
† as212

t

rn2
a0as2D uc̄n1 ,ni

&5~n11ni !uc̄n1 ,ni
&.

~3.21!

Following the same previous procedure in terms of the cor-
responding SU~1,1! operators for these modes we can write
the equations foruc̄n1 ,ni

& in the form

Kuc̄n1 ,ni
&5~n12ni21!uc̄n1 ,ni

&,

~Kz1hK2!uc̄n1 ,ni
&5

n11ni11

2
uc̄n1 ,ni

&, ~3.22!

whereK25Kx2 iK y5as2a0 andh5t/(rn2), giving the so-
lution

uc̄n1 ,ni
&5N exp~hK2!uni&s2un1&0

5N expS t

rn2
as2a0D uni&s2un1&0 . ~3.23!

Here again we can ask whether there is a relation between
these states~now spanned by a finite number of photon-
number states! and some special SU~1,1! states. Two cases
should be distinguished: namely,uhu.1 and uhu,1. When
uhu,1 we can define the state

ucmin&5exp~2 iuKy!exp~ idKz!uc̄n1 ,ni
&, ~3.24!

which verifies the eigenvalue equation

~Ky1 ilKz!ucmin&5 i
n11ni11

2
A11l2ucmin&, ~3.25!

wherel5A12uhu2/uhu, d5dh , andlsinhu521. Then, af-
ter an SU~1,1! transformation we get minimum uncertainty
for theKy , Kz operators. This is the same situation we found
before and we arrive at the same stateucmin&.

The other caseuhu.1 is different. In this case we can
define in the same terms

ucmin&5exp~2 iuKx!exp~ idKz!uc̄n1 ,ni
&, ~3.26!

which verifies the eigenvalue equation

~Kx2 ilKy!ucmin&52 i
n11ni11

2
A12l2ucmin&, ~3.27!

where now we havel5Auhu221/uhu, d5dh2p/2, and
lcoshu51. In this case we get SU~1,1! minimum uncertainty
states for theKx , Ky operators, whose properties have been
studied recently@14# .

Finally we want to mention that it is not difficult to extend
this analysis to the case when the input states are arbitrary
coherent states instead of vacuum. In such a case we can get
similar results to those in Sec. II. The states, arising from a
number measurement, verify eigenvalue equations that are
linear and quadratic in the annihilation and creation opera-
tors and therefore would be related with those studied here
by means of unitary and nonunitary displacement operators.

IV. CONCLUSIONS

We have analyzed the field states generated from the
vacuum in two parametric down-converters whose idler
beams are aligned. To this end we have derived eigenvalue
equations for the field state conditioned to the result of a
photon-number measurement in some of the modes. The
conversion of entanglement into coherence in this arrange-
ment is reflected in the appearance of SU~2! coherent states
in the signal modes. These states appear in addition to the
SU~1,1! coherent states associated with these nonlinear pro-
cesses.

We have also studied how these states are modified after
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the insertion of a beam splitter in the idler path controlling
the degree of connection of the two crystals. We have found
that the states conditioned to a photon-number measurement
are closely related with SU~2! and SU~1,1! minimum uncer-
tainty states. Therefore, it seems that this process can provide
a source for the generation of this kind of states.
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pañol de Educacio´n y Ciencia and the kind hospitality from
the Optics Department of the Palacky´ University.

@1# J. Perˇina, Z. Hradil, and B. Jurcˇo, Quantum Optics and Fun-
damentals of Physics~Kluwer, Dordrecht, 1994!.

@2# P. H. S. Ribeiro, S. Pa´dua, J. C. Machado da Silva, and G. A.
Barbosa, Phys. Rev. A51, 1631~1995!.

@3# Y. Yamamoto, S. Machida, M. Imoto, M. Kitagawa, and G.
Björk, J. Opt. Soc. Am. B10, 1645~1987!.

@4# G. S. Agarwal, Quantum Opt.2, 1 ~1990!.
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