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Abstract 

In this paper, we present a generic example to illustrate various points about making 

future predictions ofpopulation performance using a biased performance computer code, 

physical performance data, and critical performance parameter data sampled from the population 

at various times. We show how the actual performance data help to correct the biased computer 

code and the impact of uncertainty especially when the prediction is made far from where the 

available data are taken. We also demonstrate how a Bayesian approach allows both inferences 

about the unknown parameters and predictions to be made in a consistent framework. 

Keywords: Bayesian, Bias correction, Markov chain Monte Carlo, Monte Carlo. 

Introduction 

The challenge we faced recently was to develop a generic example to explain to upper 

management various aspects about prediction of a population's performance in the future. It is 

particularly important that stakeholders, managers and decision makers understand the role of 

various information sources in assessing the future performance of the population of interest. 

With better understanding of the values of these information sources, better decisions can be 
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made regarding the allocation of scarce resources to ensure future predictability. The prediction 

using Bayesian methods integrates performance computer code, physical performance data from 

experiments, and sample data of the computer code input from the population at a few times. 

The following are various aspects ofthe generic example and points that we wanted to 

highlight through the generic example: 

• 	 A computer code models the performance of a system given inputs (critical performance 

parameters) that characterize a system. The code, because it is a model, is necessarily 

biased relative to actual performance. 

• 	 For a given set of input values, the actual performance varies and is described by a 

probability distribution. We want to integrate actual performance data from experiments 

that varied the input values. In the integration, we attempt to correct the bias of the 

computer code relative to actual performance. 

• 	 The input values vary across a population and is described by a probability distribution. 

Moreover, the population's distribution of the input values changes over time. 

Consequently, the population's performance distribution obtained by propagating the 

input distribution through the performance relationship changes over time. 

• 	 Available are input data sampled from the popUlation at different times. We use these 

data to predict the input distribution as it changes over time. 

• 	 Because we use data to estimate the bias of the computer code, performance variation, 

and input distribution parameters as it changes over time, we want to account for the 

uncertainty in the estimation. In predicting into the future, we extrapolate beyond the 

available data and show the increased uncertainty from extrapolation. 

• 	 In using Bayesian methods for estimation and Monte Carlo for propagating input 

distribution through the performance relation, we want to show a consistent and proper 

approach ofhandling uncertainty as it arises in various components ofprediction. 

Next, we introduce the specific example and consider these aspects and points in tum. 
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A Generic Example 

We begin by introducing the generic example. The performance y is a function of a 

critical performance parameter (CPP) x. The true relation betweeny and x is nonlinear. 

Moreover, for a given x, the performance y varies as described by a probability distribution. See 

Figure 1 for a graph of the performance distribution as a function ofx. Note that the performance 

distribution is assumed normal with mean f.J(x) = 4Iog(x) and standard deviation 0.5. 

Notationally, y - Normal(41og(x), 0.52 
). 

(1) 
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Figure 1: True performance y distribution as a function of input x. 

The CPP x varies across the population and is described by a probability distribution. 

Moreover, the CPP distribution changes over time t. See Figure 2 for a graph of the CPP 

distribution as it changes over time. Note that the CPP distribution is assumed normal with mean 

and standard deviation 0.5/3. Notationally, 

(2)x(t) ~ Norma/(8.5 -0.5t,(0.5 /3)2). 
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Figure 2: Critical performance parameter x distribution as a function of time t. 

To calculate the performance y distribution of the population at a given time t, we use 

Monte Carlo as follows. Repeatedly draw an x using Equation 2 and then a y using Equation 1 

with the drawn x. Do this at different times t. See Figure 3 for a graph of the performance y 

distribution of the population at times t equals 0 and 11. Note that the true performance 

distribution as a function of a given value ofx appears as the nonlinear mean (solid curve) with 
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the distribution now depicted as vertical solid lines instead ofthe normal distribution function as 

in Figure 1. 
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Figure 3: Performance y distribution of the population at time t equals 0 and 11 from the CPP x 

distribution of the population, 

It is the performance distribution ofthe population in Figure 3 that we want to estimate 

based on a performance computer code and available actual performance data as well as sampled 

CPP values from the population at various times. Figure 4 displays the mean of the true 
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performance distribution as a solid line. Five actual performance data are available and appear as 

circles around the solid line and are listed in Table 1. The computer code calculated performance 

(17{x) =6.0 + 0.35x) appears as a dashed line. We assume that the computer code can easily be 

run at any x value. Note the bias in the computer code, especially for low x values. Finally, two 

cpp distributions at times 0 and 2 are depicted from right to left, respectively. Each CPP 

distribution is sampled five times with the sampled values appearing as circles. The sampled 

CPP data are listed in Table 2. 
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Figure 4: The mean of the true performance distribution (solid line) and five actual performance 

data (circles), the computer code calculated performance ( dashed line), and two CPP 

distributions at times 0 and 2 with samples of size five each (circles). 
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Table 1: Actual performance y data at certain values of CPP x 

x Y 

7.0 7.428685 

7.5 8.314868 

8.0 7.865882 

8.5 8.283223 

9.0 9.125219 

Table 2: CPP x samples at t=O and t=2 

t=0 

8.418151 


8.445346 


8.640867 


8.453777 


8.323710 


t=2 

7.195434 


7.506274 


7.639724 


7.375526 


7.346231 


Next, we consider analysis of these data as we proceed towards prediction. First, consider 

the actual performance data in Table 1. We assume that these data follow the model 

y ~ Normal(J.L(x),a 2 
), (3) 
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where p(x) is the mean of the performance distribution at x and u 2 is the variance. From Figure 

4, we observe that the computer code ,,(x) as the dotted line is biased high with respect to the 

performance data. Consequently, we want to adjust the computer code by a discrepancy o(x). 

That is, p(x) ~ ,,(x) +o(x). Based on the performance data, we think the discrepancy is linear 

with the form o(x) =Yo + YIX . Consequently, the assumed model for the performance data used 

in the analysis takes the form 

y ~ Normal(6.0 + 0.35x + Yo +YI X , ( 
2 

). (4) 

For the sampled CPP data in Table 2, we assume the following model 

(5)x It ~ Normal().,(t), ,2) 

with ).,(t) =Ko + Kit. That is, at a given time t, the CPP popUlation distribution is normal with 

mean ).,(t) and variance ,2 .This is also the model that generated the sampled CPP data. 

In analyzing these data with the models in Equations 4 and 5, we obtain inferences about 

the parameters Yo' YI' and u 2 in Equation 4 and the parameters Ko' K\, and ,2 in Equation 5. 

We analyze these data using a Bayesian approach, which we describe next. 

Bayesian Analysis 

For the performance data, let e denote the vector ofmodel parameters. Here, 

e' =(Yo,Yo,u 2 ). The Bayesian inferential approach combines prior information about e with 

the information contained in the data. The prior information is described by a prior density 

1r ( e) and summarizes what is known about the model parameters before any data are observed. 

Here, we assume that little is known, and hence we choose diffuse proper prior distributions, 

which allow for the possibility of a wide range of values for the model parameters. The 

information provided by the data is captured by the data sampling model f, (y Ie) known as the 
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likelihood. The combined information is described by the posterior density, 1C (8 Iy). We 

evaluate the posterior density using Bayes' Theorem (Degroot (1970» as 

(6)1C(8 IY) oc f/Y I8)1C(@) 

For the performance data, the likelihood h (y I8) has the form 

5 1 (1 )fy(Y 18) = I1=1 ~21Ca2 exp - 2a2 [Yi -(6.0+0.35Xj +Yo +YIXi)f . 

The prior density 1C (8) has the form 

2
1C(8) =fro (Yo)fY1 (Yl)!c;2 (0- ), 

where fyo(Yo) and frJYl) are Normal(O, I 0002
) densities and fO'2 (0-2) IS an 

InverseGamma(O.OOI, 0.001) density; all these prior densities are proper and diffuse. 

Similarly, for the CPP data, where 8' (Ko,Ko' ,2), the likelihood fx {x I8)has the form 

10 1 (1 2Jfx(xI8)=Il i=1 r:::-;-exp --2[Xj-(KO+Klti )] , 
'12m:2 2, 

where the first five data correspond to the x values at t = 0 and the second five data correspond to 

the x values at t = 2. The prior density 1C (8) has the form 

1C(8) = fKo (KO) fKl (Kt)f,2 (,2), 

where ! .. (Ko) and fff: (K1) are also Normal(O, 10002) densities and f 2 (,2) is also an 
~o I T 

InverseGamma(O.OOI, 0.001) density. 

When the form of the posterior density in Equation 6 is well known, the distributional 

form of the posterior can be obtained in closed form. For more general forms of the posterior 

density, we can use recent advances in Bayesian computing to approximate the posterior 
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distribution via Markov chain Monte Carlo (Gelfand and Smith (1990), Casella and George 

(1992), Chib and Greenberg (1995)). That is, Markov chain Monte Carlo (MCMC) algorithms 

produce samples from the joint posterior distribution of 0 by sequentially updating each model 

parameter conditionally on the current values of the other model parameters. These samples of 

the posterior of 0 are easy to work with making predictions, which are functions of 0 . 

To analyze the performance and CPP data, we used WinBUGS (Spiegelhalter, Thomas, 

Best, and Lunn (2004)). See the Appendix for the two WinBUGS codes for analyzing the 

performance and CPP data, respectively. We used WinBUGS to generate 10,000 draws of 0. 

See Figure 5 for the traces as these samples were draws and Figure 6 for smoothed posterior 

densities using the R "densityO" function (R Core Development Team (2004)) from these draws. 

Note that Figure 6 show how informative the data are because the prior densities (not shown) are 

essentially flat or uniform in the regions displayed. 
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Figure 5: Traces ofposterior draws for (a) Yo, (b) Yl' (c) 0'", (d) Ko' (e) Kl' and (f) 1:' • 
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Prediction 

We next consider several kinds ofprediction. We begin with the prediction of 

performance y at a given CPP value x. From Equation 4, we have the computer code biased 

corrected performance model at a given CPP value x when we know YI'(T2) exactly. In this 

case, we only know (Yo, Y1' (T 2) with uncertainty as described by the joint posterior distribution as 

characterized by the draws generated by WinBUGS described in the previous section. It turns out 

that the draws are actually easier to work with in calculating predictions. For a given x, 

repeatedly take a (Yo'YI'(T2) draw, calculate 6.0+ 0.35x + Yo + Y1x and then draw a 

Normal(6.0+ 0.35x+ Yo + Y1X,(T2)to obtain a draw from the y predictive distribution. 

Consequently, using the 10,000 draws of (Yo' YI , (T 2) generated by WinBUGS, we obtain 10,000 

draws from the predictive distribution of performance y. See Figure 7 for the performance 

predictive distribution at x 7.5 and x = 8.5 appearing as smoothed densities plotted as dashed 

lines. The true performance y densities using the exact values of (Yo' Yl' (T 2) are plotted as solid 

lines. Note there is little difference between the predictive and true densities for these values ofx 

where the performance data were taken. 
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Figure 7: Performance y predictive distribution ( dashed line) at x=8.5 on the left and x=7.5 on 

right with true performance distribution as a solid line. 
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In contrast, see Figure 8, which displays the performance predictive distribution at x = 3 

appearing as the smoothed density plotted as a dashed line that is much more disperse and shifted 

slightly to the right of the true performance density plotted as a solid line. The shift results from 

the bias correction of the computer code not being perfect. The increased spread of the predictive 

distribution results in part from the uncertainty of the parameters rl ,U 2) , but mostly from 

extrapolating at x = 3, which is far from where the performance data were taken (7 to 9 as listed 

in Table 
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Figure 8: Performance y predictive distribution (dashed line) at with true performance 

distribution as a solid line. 

Over the CPP x range from 3 to 8.5, we see in Figure 9 a plot of the 0.025, 0.5 (median), and 

0.975 quantiles of the true performance distribution as solid lines. That is, between the upper and 

lower solid lines contain 95% of the true performance distribution. Also, a plot of the 0.025, 0.5 

(median), and 0.975 quantiles of the predictive performance distribution are displayed as dashed 
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lines. Note how the predictive distribution becomes more dispersed in regions away from where 

the performance data were collected and the bias (comparing the middle dashed and solid lines) 

resulting from the imperfect bias correction of the computer code. Also note that the computer 

code appears as the dotted line. 
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Figure 9: 0.025, 0.5, and 0.975 quantiles of the true performance distribution as solid lines, those 

of the predictive performance distribution as dashed lines and the computer code as a dotted line. 
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Similarly, for the predictive distribution of the CPP x population distribution at a given t, 

based on Equation 5, repeatedly take a (Ko,Kp ,2) draw, calculate Ko + KIt and then draw a 

Normal(Ko + K1X, ,2) to obtain a draw from the x predictive distribution. Consequently, using the 

10,000 draws of (Ko,K!, ,2) generated by WinBUGS, we obtain 10,000 draws from the 

predictive distribution of CPP x. See Figure 10 for the performance predictive distribution at t 

oand t 2 appearing as smoothed densities plotted as dashed lines. The true CPP x densities 

using the exact values of (Ko' K]" 2) are plotted as solid lines. Note there is little difference 

between the predictive and true densities for these values of t where the CPP data were taken. 

Contrast this with Figure 11, which displays the CPP predictive distribution at t = 11 appearing 

as the smoothed density plotted as a dashed line that is much more disperse and shifted slightly 

to the left of the true CPP density plotted as a solid line. The increased spread of the predictive 

distribution results in part from the uncertainty of the parameters (Ko' K] , ,2) , but mostly from 

extrapolating at t 11, which is far from where the CPP data were taken (0 and 2 as listed in 

Table 2). 



19 

'" <Xl '" 0 

o 

'" 
0 "" 

LD 

Z'Z' 
'u; 


c; 

u; <r 

c; 

<]) 
 0 <]) 

o C)0 

N 

0 
 I.(> 

o 

OJ o 
0 o 

5 6 7 8 9 10 11 12 6,0 6.5 7.0 7.5 8.0 8.5 9.0 

Y x 
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20 

C> 
N 

'P 

C> 

, , , \ , 
/ ,,l' , 

/ ,10 
,,/ \,o , 

/ 
/, 

I 

~/ 
"" .... _C> 

o 

2 3 4 5 

Figure 11: CPP x predictive distribution at t=11 as a dashed line with true distribution as a solid 

line. 

Now~ we can put this all together by generating the predictive distribution of the 

population performance y at various times t. By the population performance y distribution, we 

mean the CPP x population distribution propagated through the performance y distribution. That 

is, we obtain a sample by first drawing an x according to Equation 4 and then drawing a y 

according to Equation 5. These true performance y population distributions at times t 0,2, and 

11 appear in Figures 12 and 13 as solid lines. We obtain various versions ofpredictive 

distributions by using the predictive distribution of the CPP x population and/or the predictive 

distribution of the performance y. The dashed line is the predictive distribution obtained from 

both the predictive performance and CPP population distributions. That is, we take draws from 

2the joint posterior distributions of (lCo,lCl' T 2) and (ro, rl'( ). Then, we use these posterior values 

in Equations 4 and 5 to obtain a draw from the predictive distribution. The dotted line is the 
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predictive distribution from the predictive performance distribution and true CPP popUlation 

distribution. Finally, the dotted-dashed line is the predictive distribution from true performance 

distribution and the predictive CPP population distribution. 

In Figure 12, we see little difference between the true population performance 

distribution and the various predictive distributions at times t = 0 and t 2. The predictive 

distributions, which account for different scenarios of uncertainty, are necessarily more 

dispersed, Le., more uncertain. Recall that the predictions are made where the performance and 

CPP data were taken. In Figure 13, there is a more striking difference between the true 

population performance distribution and the various predictive distributions at times tIl, 

which is far from where the performance and CPP data were taken. Note the dramatic increase in 

uncertainty by using the predictive performance distribution as seen by the dashed and dotted 

lines. Also notice that the predictive CPP population distribution does not add much to the 

overall uncertainty (dashed line versus the dotted line) when the predictive performance 

distribution is used. 
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Figure 12: Predictive distributions ofperformance y distribution ofpopulation at t=0 on the left 

and t=2 on the right: solid line is true performance distribution, dashed line is predictive 

distribution from both estimated performance and CPP popUlation distributions, dotted line is 

predictive distribution from estimated performance distribution and true CPP popUlation 
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distribution, dotted-dashed line is predictive distribution from true performance distribution and 

estimated CPP population distribution. 
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Figure 13: Predictive distributions of performance y distribution ofpopulation at t=11: solid line 

is true performance distribution, dashed line is predictive distribution from both estimated 

performance and CPP population distributions, dotted line is predictive distribution from 

estimated performance distribution and true CPP population distribution, dotted-dashed line is 

predictive distribution from true performance distribution and estimated CPP population 

distribution. 

Over time t from 0 to 11 years, we see in Figure 14 a plot of the 0.025,0.5 (median), and 

0.975 quantiles of the true performance distribution as solid lines. That is, between the upper and 

lower solid lines contain 95% ofthe true performance distribution. Also, a plot of the 0.025, 0.5 

(median), and 0.975 quantiles ofthe predictive performance distribution obtained by propagating 
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the predictive CPP distribution are displayed as dashed lines. Note how the predictive 

distribution becomes more dispersed in regions away from where the CPP and performance data 

were collected and the bias (comparing the middle dashed and solid lines) resulting from the 

imperfect bias correction of the computer code. 
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Figure 14: 0.025,0.5, and 0.975 quantiles ofthe true performance distributiony as solid lines 

and those of the predictive performance distribution as dashed lines over time t in years. 

Discussion 

In this paper, we have provided a generic example to illustrate various points about 

making future predictions ofpopulation performance when there are a biased performance 

computer code, actual performance data, and critical performance parameter data sampled from 

the population at various times. Some of the key aspects of the illustration is how the actual 
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performance data help to correct the biased computer code and the impact of uncertainty 

especially when the prediction is made far from where the available data were taken. Finally, we 

demonstrated how a Bayesian approach allows both inferences about the unknown parameters 

and predictions to be made in a consistent framework, i.e., probability distributions are 

propagated through subsequent probability distributions. 

We believe that the generic example exhibits the features found in real applications. In 

real applications, there are likely multiple performance parameters, whose population joint 

distribution can be characterized by a multivariate probability distribution. The computer code 

itself may need to be modeled nonparametrically when running the computer code is expensive. 

Nevertheless, both the computer code and discrepancy can be modeled using Gaussian stochastic 

processes (Kennedy and O'Hagan (2001)). 

Finally, the generic example can also be carried further to assess the impact of the 

additional information. For example, if more data can be taken, where should they be taken and 

what is their impact on reducing uncertainty. 
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Appendix WinBUGS Code 

WinBUGS code for performance data 

model 

{ 


for( i in 1 : N) { 


junk[i]<-ind[i] 


y.p[i] - dnorm(mu[i],inversesigma2) 

mu[i] <- 6+0.35*x.p[i]+gammaO + gamma1 *x.p[i] 

} 

inversesigma2 - dgamma(O.OOI,O.OOl) 

sigma <- 11 sqrt(inversesigma2) 

garnmaO - dnorm(0.0,1.OE-6) 

gamma1 - dnorm(0.0,1.0E-6) 

} 

http:http://www.R-project.org


't • __ 

26 

Data 

listeN 5) 

Inits 

list(gammaO=O,gammal =0, inversesigma2 1) 

WinBUGS performance data input file 

x.p[] 

1 7.07.428685 

27.58.314868 

3 8.07.865882 

4 8.5 8.283223 

59.09.1252 

END 

WinBUGS code for performance data 

model 

{ 

fore i in 1 : N) { 

junk[i]<-ind[i] 

x.O[i] - dnorm(lambda.O[i],inversetau2) 

lambda.O[i] <- kappaO+kappal *t.O[i] 

} 

fore i in 1 : N) { 

x.2[i] ~ dnorm(lambda.2[i],inversetau2) 

lambda.2[i] <- kappaO+kappal *t.2[i] 

} 
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inversetau2 - dgamma(O.OOl,O.OOl) 

tau <- 11 sqrt(inversetau2) 

kappaO - dnorm(0.0,1.0E-6) 

kappal ~ dnorm(0.0,1.0E-6) 

} 

Data 

listeN 5) 

Inits 

list(kappaO=O,kappal =0, inversetau2 1) 

WinBUGS CPP data input file 

ind[J x.O{] x.2[] t.O[] t.2{] 

18.418151 7.19543402 

28.4453467.50627402 

3 8.640867 7.63972402 

48.4537777.37552602 

58.3237107.34623102 

END 


