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Abstract. In the present paper, the post-buckling response of an axially stressed clamped-
clamped actuator, modeled as a beam and subjected to a symmetric electrostatic field is 
analyzed. An analytical approximate method, namely the Optimal Homotopy Asymptotic Method 
(OHAM) is applied to the governing nonlinear integro-differential equation. The analytical results 
obtained through the proposed procedure show excellent agreement with numerical solution, 
proving the validity of the proposed procedure, which is simple and easy to use. 

1 Introduction  
Micro electromechanical systems (MEMS) have high 
popularity in industry and engineering, being an 
extension of microelectronics and integrated circuits 
technology. MEMS are intensively used in various fields 
such as wireless communication, automotive, aviation, 
navigation, biomedicine, consumer electronics, and so 
on [1]. There exists a large variety of MEMS, which may 
be classified as pneumatic, thermal, electrical or 
piezoelectric. 

Several experimental or numerical studies have been 
conducted on dynamic behavior of MEMS devices. The 
mathematical study of the MEMS started by the 
pioneering work of Nathanson et al [2]. They considered 
a model of a parallel-plates capacitor of which one plate 
is fixed and their other is a movable mass attached to a 
spring. MEMS resonators have been used as transducers 
in mechanical microsensors [3] or as a flexible 
alternative to conventional large-size resonators [4]. An 
analytical approach and a reduced-order model to 
investigate the behavior of electrically actuated 
microbeam-based MEMS are presented in [5] by Younis 
et al. Nayfeh et al. [6] studied the pull-in instability in 
MEMS resonators and established that characteristics of 
the pull-in phenomenon in the presence of alternate 
current (AC) loads differ from those under purely direct 
current (DC) loads. A new test structure and method for 
measuring residual stresses was presented by Abu-Salih 
and Elata [7]. They showed that a single test structure of 
the proposed design may be used to measure 
compressive and tensile residual stress in a continuous 
wide range. Hu applied three analytical models, namely 
the full-order, the fourth-order and the third-order 
models and the corresponding closed form solutions for 
the pull-in voltages of micro beams subjected to 
electrostatic loads [8]. The electromechanical post-

buckling response of an axial stressed clamped-clamped 
beam actuator subjected to a symmetric electrostatic 
field is analyzed by Yu et al. [9]. Rezazadeh et al [10] 
presented the static and dynamic responses of a fixed-
fixed and cantilever microbeam, using the lumped and 
the distributed models to a DC and a step DC voltage. 
Squeeze-film characteristics of electrostatically actuated 
microbeams under large DC load coupled with small AC 
component are presented for the first three flexural 
modes of vibration of the resonator operating in different 
ambient pressure conditions, by Chaterjee and Pokit 
[11]. Zhu and Espinoza presented in [12] a methodology 
for a coupled-field finite element analysis (FEM) to 
examine the performance of radio frequency MEMS 
switches as a function of temperature. Also, the structure 
of out-of-plane profile was investigated in detail. Beni 
and Heidari investigated the pull-in instability of micro-
beams with a curved grown electrode under action of 
electric force within the framework of von-Karman 
nonlinearity and the Euler-Bernoulli beam theory [15]. 
The effects of geometric parameters such as beam 
lengths, width, thickness, gaps, and size effect are 
discussed in detail through a numerical study. Mojahedi 
et al. [14] studied static pull-in instability of 
electrostatically-actuated microbridges and 
microcantilevers considering different nonlinear effects. 
The nonlinear differential equations are converted by 
means of Galerkin’s decomposition method into 
nonlinear integro-differential equations. In [15], Singh et 
al. studied the linear and nonlinear frequency 
characteristics of non-uniform beam with tip mass using 
the method of multiple scales to obtain the approximate 
solution. The amplitude-voltage response of MEMS 
resonator cantilevers under soft electrostatic actuation is 
studied by Caruntu et al [16]. The electrostatic actuation 
is of the voltage of frequency near half natural frequency 
of the system. It is showed that the instabilities for high 
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amplitudes of the resonator are not captured by the 
method of multiple scales. Daneshpajooh and Moghimi 
Zand used the homotopy analysis method to investigate 
the nonlinear oscillatory behavior of clamped-clamped 
initially curved micro/nano beam, under electrostatic 
force actuation. The influence of initial elevation, input 
voltage, midplane stretching are also examined. The 
effect of squeeze air-film and AC actuation voltage on 
dynamic stability of microswitch actuated 
electrostatically has been investigated in squeeze film 
domain by Harish et al. [19]. Using trajectories in phase 
plane and time history, characteristics of the pull-in 
phenomena have been studied in the presence of DC 
voltage combined with AC component. 

Taking into account these considerations, the main 
objective of the present paper is to propose an accurate 
procedure to investigate the electromechanical post-
buckling response of an axially stressed clamped-
clamped actuation, subject to a symmetric electrostatic 
field. The analytical approximate solutions are obtained 
through a version of OHAM applied to a nonlinear 
integral-differential equation established in [7] and [9]. 
Our procedure, which is independent of the presence of 
small or large parameters, is based on the construction 
and determination of the linear operator and of the 
auxiliary functions, combined with a convenient way to 
optimally control the convergence of the solution. The 
efficiency of the present procedure is proved, while an 
accurate solution is explicitly analytically obtained after 
only one iteration. 

2 Equation of motion 
In this section, we consider the post-buckling response 
of an axially stressed clamped-clamped actuator, 
modeled as a beam and subjected to a symmetric 
electrostatic field (fig.1).  

 
The effect of residual stress gradients is neglected but 

the residual stress is considered. 
The electromechanical system is governed by the 

following nonlinear integral-differential equation [7], 
[9]: 
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with the boundary conditions 
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EE is the effective modulus in bending, 

E is the Young’s modulus and ν is the Poisson ratio, I is 
the second moment of the beam cross-section, b0 is the 
beam width and h is the beam thickness, L is the length, 
σ is the axial residual stress, ε0 is the permittivity of the 
free space, A=b0h is the cross-sectional area, g is the 
nominal gap and V is the potential of the two fixed 
electrodes. It is assumed that b>>h and x [-L/2,L/2] is 
the horizontal coordinate, while y is the transverse 
coordinate and denotes the post-buckling deflection of 
the beam. The three terms on the left hand side of Eq.(1) 
are the distributed mechanical forces associated with 
bending, axial stress and membrane stretching of the 
beam. The right side of Eq.(1) is the distributed 
electrostatic force. 

Only symmetric modes of the deformed beam are 
considered and any possibility of symmetry and 
microbeam is disregarded. 

The normalized form of the equilibrium equation can 
be expressed as 
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where prime denotes the derivative with respect to s and 
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 The Euler buckling stress is [7], [9] 

)/(4 2*2 ALIEE     (5) 

 The boundary conditions of the beam are 
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 Now, by introducing a new independent variable 
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we transform Eqs. (3) and (6) into the following 
dimensionless form: 
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Fig.1. Clamped-clamped beam subject to an axially residual 
stress and a symmetric electrostatic field. 
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3 Basic ideas of the optimal homotopy 
asymptotic method (OHAM) 
The OHAM was proposed by Vasile Marinca and 
Nicolae Herisanu [19-24].  

To apply OHAM, we consider the nonlinear 
differential equation in the general form 
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subject to the boundary/initial conditions 
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where L is a linear operator, τ denotes independent 
variable, Y(τ) is an unknown function, N[Y(τ)] is a 
nonlinear operator, D is the domain of interest and B is a 
boundary operator. 

By means of OHAM, one constructs a family of 
equations 
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where p [0,1] is an embedding parameter, H(τ,Ci) is a 
nonzero auxiliary function for p  0, Y~ (τ,Ci) is an 
unknown function, Ci, i=1,2,…,s are s unknown 
parameters which will be optimally determined later. For 
p=0 and p=1 it holds 
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Therefore, as p increases from 0 to 1, the solution 
),,(~
iCpY  varies from Y0(τ) to Y(τ), where the initial 

approximation Y0(τ) is obtained from Eq.(1) for p=0: 

0)]([ 0 YL     (16) 

and 

0, 0
0 








d
dYYB     (17) 

Let us consider the solution of Eq.(13) in the form 
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Substituting Eq. (18) into Eq. (15) and equating the 
coefficients of po and p1, we obtain the governing 
equation of the initial approximation Y0(τ) given by 
Eq.(16) with the boundary/initial conditions (17) and 
then the governing equation of the first (and last) 
approximation Y1, i.e. 
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where Nm(Y0(τ)) is the coefficient of pm obtained 
expanding  ),,(~

iCpYN  in series with respect to the 
embedding parameter p: 
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In our case, we consider only a single iteration and 
therefore we need to choose m=0. 

It should be emphasized that Y0 and Y1 are governed 
by the linear Eqs. (16) and (19) with the boundary/initial 
conditions given by Eqs.(17) and (20), respectively. The 
convergence of the solution (18) depends upon the 
auxiliary function H(τ,Ci). There are some possibilities 
to choose the function H and it is important to mention 
that H(τ,Ci) must follow the terms appearing in Eq.(19). 
Therefore, we try to choose H(τ,Ci) so that in Eq. (19) 
the product H(τ,Ci)N0[Y0(τ)] be of the same shape with 
the terms which appear into N0[Y0(τ)]. 

If the sum (18) is convergent at p=1, one has 
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The Eq.(22) is the approximate solution of the first 
order. 

Inserting Eq. (22) into Eq.(11), we obtain the residual 
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If R(τ,Ci)=0, then ),(~
iCY  will be the exact solution, 

but this rarely happens to nonlinear problems. The 
convergence-control parameters Ci, i=1,2,…s, may be 
optimally identified via various methods, like 
minimizing the square residual error, using: 
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Alternatively, the system of algebraic equations 
necessary to identify the unknown convergence-control 
parameters may be obtained imposing the conditions 

0),(...),(),( 21  isii CRCRCR  (25’) 

or by using the Galerkin method, the collocation method, 
the Ritz method, the Kantorovich method and so on. For 
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more details see [20], [21]. 
With these optimal values of the convergence-control 

parameters known, the first-order approximate solution 
(22) is well determined. 

4 Application of OHAM to post-buckling 
deformation of MEMS 
We use the basic ideas of the OHAM by considering 
Eqs. (8) and (9). We may choose the linear operator in 
the form 
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We mention that, generally, the choosing of the linear 
operator is not unique. Taking into account (26), the Eqs. 
(16) and (17) become, respectively: 
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The nonlinear operator N[Y(τ)] is obtained from Eqs. 
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such that substituting Eq. (29) into Eq. (30), we obtain 
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Having in view that within Eq. (31) we can found a 
trigonometric function and that the auxiliary function 
H(τ,Ci) must follow the terms appearing in Eq. (31), then 
we may choose the function H in the following forms: 
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and so on, where iC , iC , iC  and *
iC are unknown 

parameters at this moment. 
If we choose only the expression (33) for H(τ,Ci), 

then using (31), (33) and (19) we can obtain the equation 
in the first approximation Y1: 
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No secular terms in Y1 requires 
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The solution of Eq. (37) can be written as 
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The first-order approximate solution of Eqs. (8) and 
(9) is obtained from Eqs. (29), (39) and (22): 
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4 Numerical example 
In order to show the validity of the proposed procedure, 
we consider the following values of the parameters 
which are involved in Eq.(8):  
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Applying the described procedure for minimizing the 
residual, the optimal values of the convergence-control 
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so that the approximate solution of Eqs.(8) and (9) can 
be obtained in the form: 
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Fig.2. Approximate solution (43) of Eqs. (8) and (9)  
 

 
Fig.3. Residual (23) of the approximate solution (43) 
 

In fig.2 we present the approximate solution (43) of 
Eqs. (8) and (9) obtained through OHAM while in fig.3 
it is presented the residual (13) obtained for the 
approximate solution (43). It can be observed the 
accuracy of the solution, since the obtained residual is 
less than 0.005. 

5 Conclusions 
In this study we proposed an analytical approximate 
solution to the electromechanical post-buckling response 
of an axially stressed clamped-clamped actuator, 
modeled as a beam, subjected to a symmetric 
electrostatic field.  

Our procedure is valid even if the nonlinear 
differential equation does not contain any small or large 
parameters. In the construction of the proposed 
homotopy appear some distinctive concepts such as the 
auxiliary function H(τ,Ci) and several convergence-
control parameters Ci whose optimal values ensure a fast 
convergence of the solution.  

The example presented in this work lead to the 
conclusion that the obtained results are quite accurate 
after the first iteration. This technique is effective, 
explicit and accurate for a nonlinear integral-differential 
equation. Our construction of homotopy is different from 
other approaches, especially in what concerns the linear 
operator L and the auxiliary convergence-control 
function H.  

As it was demonstrated, the proposed method is 
straightforward, concise, and can be applied to other 
nonlinear problems. 
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