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Abstract

Recent experiments (Yacoby et al., Phys. Rev. Lett. 77 (1996) 4612; Solid State Commun. 101 (1997) 77; M. Rother
et al., ICPS-24, Th-P137) have shown non-universal conductance quantization in one-dimensional wires that are fabricated
using the cleaved edge overgrowth technique (L.N. Pfeiffer et al., Microelectronics J. 28 (1997) 817). In one of the papers
(Yacoby et al., Phys. Rev. Lett. 77 (1996) 4612), it was speculated that the origin of the reduced conductance lies in the
interface between the one-dimensional wire and the two-dimensional electron gas regions, which serve as ohmic contacts
and thermal reservoirs. Here we report the results of a systematic study of such 2D-1D interfaces. By embedding a 2D-1D
interaction section region of controllable length inside an otherwise isolated wire, we were able to study the properties of
the coupling between these two subsystems. Our results show that 2D—1D interface is in fact the origin of the non-universal
conductance. © 2000 Elsevier Science B.V. All rights reserved.
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One-dimensional electronic systems, the so-called
Luttinger-liquids, are expected to show unique trans-
port properties as a consequence of the Coulomb
interaction between carriers [1-7]. In contrast to
Fermi liquid theory [8—12], the Luttinger model pre-
dicts that even the weakest impurity embedded in an
otherwise perfectly clean 1D wire will completely
suppress its conductance at zero temperature. Fur-
thermore, the tunneling conductance into such a per-
fect wire will also be completely suppressed at zero
temperature.

* Corresponding author.

One of the fingerprints of a clean non-interacting
1D conductor is its quantized conductance in mul-
tiples of the universal value gy = 2¢?/h. This quantiza-
tion results from an exact cancellation of the increas-
ing electron velocity and the decreasing density of
states as the carrier density increases [13—16]. There-
fore, as subsequent 1D electronic subbands are filled
with electrons the conductance increases in a series
of plateaus (or steps) with values equal to gy mul-
tiplied by the number of occupied wire modes. Sur-
prisingly, the inclusion of interactions does not alter
this prediction. Early papers [4-7], considering in-
finitely long wires, did in fact predict quantization
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of conductance with a renormalized, non-universal,
value of g = v - gy, where v = (1 4 U/Ep)~"/2. Here,
U is the strength of the Coulomb interaction between
neighboring electrons and Ey is the Fermi energy.
Later works [17—19], however, considered a more re-
alistic wire of finite length that is connected to large,
Fermi-liquid like, reservoirs at both ends. In the clean
limit, the contact resistance to the reservoirs dominates
the conductance and the universal value, gg, is re-
stored. Oreg and Finkelstein [20] have further demon-
strated that if one calculates the conductance due to
the self-consistent electric field in the wire rather than
the external electric field, the universal value is re-
stored even for the infinite wire case. In contrast to
these theoretical predictions, recent papers [21-23],
using wires that were fabricated by the cleaved edge
overgrowth method [24] showed that the contribution
of each one-dimensional channel to the overall con-
ductance is not universal and smaller than the con-
ductance quantum. This non-universal conductance
is measured with short wires, much shorter than the
1D back-scattering length. In these two-terminal mea-
surements, however, the combined contribution of the
one-dimensional channel and the unavoidable inter-
faces between this channel and the 2D reservoirs at its
two ends was determined. Here we present results of
measurements designed to address the origin of this
puzzling observation. We embedded a 2D—1D interac-
tion region (IR) of controllable length within an other-
wise isolated 1D wire in order to study the properties
of the coupling between these two subsystems.

The geometry of the devices under study is
illustrated in Fig. 1. A substrate, containing a
two-dimensional electron gas (2DEQG) in a single-side
doped GaAs quantum well is epitaxially grown on
a [100] GaAs surface. The 2DEG has a carrier
density ny ~ 2.5 x 10" cm™2, and a mobility of
~ 4 x 10° cm?/V s. The substrate is then cleaved in
situ and a 2nd modulation doping sequence is over-
grown on the [011] cleaved edge. This procedure
results in high-quality one-dimensional (1D) elec-
tronic channels propagating along the cleaved edge.
These channels, existing throughout one cleaved edge
of the 2D plane, are coupled to the adjacent 2DEG
(see Fig. 1b).

The length of a cleaved edge overgrowth wire
(CEO-W) that is measured is defined by a gate which
is pre-patterned on the top surface of the structure
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Fig. 1. (a) The geometry of the device under study (see text)
(b) Conduction band profile in the Y direction at the quantum
well level and in a non-gated region. The 2DEG and the first 1D
mode are also shown. (c¢) Dispersion relation for electrons in the
2DEG and 1D wire. The Fermi wavevector of the two systems is
indicated.

prior to the cleave and overgrowth steps (see Fig.
la). A negative voltage applied to this gate depletes
the 2DEG from underneath it, leaving only the wire
to connect the two 2DEG sections. Thus, the width of
the gate defines a length, L, over which the 1D wire
is isolated from the adjacent 2DEG. By increasing the
voltage beyond depletion of the 2DEG one can con-
trol the number of occupied 1D modes in this region.

To study the interaction of current carriers in a
wire with the adjacent 2DEG we split the gate in
two (gates A and B in Fig. 1a), creating an 2D-1D
overlap region of controllable length, 7, between the
wire and a 2DEG. With this device, there are three
distinct regions along the wire: In the two long sec-
tions |x| > W/2 + L the wire is coupled to the adjacent
2DEGs. These regions are the source and drain. The
two regions W/2 < |x| < W/2 4 L are isolated wires.
The number of channels in each wire is controlled in-
dependently by gates A and B. The region |x| < W/2
is the interaction region (IR). Here 1D modes are cou-
pled to the 2DEG between the two gates. Current is
injected from the source into an isolated wire of length
L, electrons are then allowed to interact with an ad-
jacent, floating, 2DEG in the IR for a length W be-
fore proceeding into another wire and finally into the
drain. Since the gates have an electrostatic influence
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Fig. 2. Conductance, in units of the conductance quantum 2e2/h,
of an isolated 2 um long wire, g; (solid line) and the conduc-
tance of two isolated single mode wires combined in series with
a W ~ 2 pm long interaction region, g, (dashed line) plotted
against the applied gate voltage. The conductance from the in-
teraction reagion into both single mode wires, g, is also shown
(dashed line). Inset: Graphical illustration of the measurement
scheme.

on the wire, the potential along the wire is lower in
the IR — where the gate is absent. The electrons thus
also interact with the smooth resultant static 1D po-
tential dip of length . While this trough is estimated
to be deep enough to change the number of 1D chan-
nels in the IR, it has a smooth shape (due to a large
distance of ~ 0.5 um between the gates and the wire).
The overall influence of this electrostatic potential on
back scattering in our device is thus minor.

The behavior of such a device is shown in Fig. 2.
The conductance of each individual L ~ 2 pm long
wire, g, when the other gate is not activated, exhibits
clear conductance plateaus as a function of gate volt-
age with a plateau height of g; ~ 0.8gg, as shown by
the solid line in this figure. With both gates activated,
we measure the overall conductance, ¢g,, of the two
single mode isolated wires plus the IR. For a relatively
long IR, of W ~ 10 um, g, equals half the conduc-
tance of each individual gatewire; g, ~ 0.4gy ~ % g1
(not shown). This indicates complete thermalization
in the IR, leading to ohmic combination of the two

resistors in series, resulting in half the conductance
for the combined system.

The same measurement with a shorter IR, W ~
2 um, renders a very different result, as shown in
Fig. 2. Under the same conditions, namely when both
isolated wires support a single mode, the overall con-
ductance nearly equals the conductance of each iso-
lated wire in spite of the presence of the IR (g, ~
0.75g9 ~ 0.94¢; at a temperature, 0 = 300 mK). This
clearly demonstrates ballistic 1D transport through a
2 pm long IR where the wire overlaps with a 2DEG.
For an intermediate IR length of W ~ 6 um we find
g2 ~ 0.6go ~ 0.75¢g; (not shown) — indicating partial
back scattering.

The conductance from the 2DEG of the IR into
the single mode wires on both sides, g,,, equals 2g;
for W ~ 10 pum (not shown). This result is again the
ohmic combination of the two wires — now in parallel
— resulting in twice the conductance. For W ~ 2 um,
the value of the measured conductance, g,, (again
when both wires support only one mode) is much
smaller; g,, ~ 0.22g; (see Fig. 1).

We model the behavior of our device within a
Buttiker—Landauer scattering approach. The coupling
of the 2DEG to the wire at the drain and source re-
gions, |x| > L + W/2, is modeled by assuming a max-
imal emissivity o = ¢;/go ~ 0.8. The shorter length
of the IR is modeled by a smaller emissivity — 7).
Here T1(W) is the transmission probability from the
2DEG into each branch of the 1D dispersion of the
first channel (+KP). Assuming symmetric coupling
of the 2DEG to both sides, the scattering matrix of
the junction may be written in terms of o and 7. One
finds for the measured quantities; g, = (1 — %T 1)90
and g,, = 2T ago. The two measured values are both
in excellent agreement with this model using 7 ~
0.13 for W ~ 2 um. The value of « is deduced from
g1, which is measured independently.

The reduction of g, compared to g is a consequence
of 1D backscattering that is mediated by the 2DEG in
the IR. An electron in the wire that was scattered into
the 2DEG has an equal probability to scatter back into
either direction in the 1D (+K[P) therefore loses on
average all its momentum (assuming fast relaxation
in the 2DEG). At first glance it would seem that 1D
backscattering might be modified by the presence
of the 2DEG even without charge transfer between
the two subsystems. However, e—e scattering that
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involves momentum exchange without charge transfer
can not occur because the 2D Fermi momentum, k2P,
is smaller than the one in the 1D wire (see Fig. 1b
and c). This excludes this scattering mechanism to
first order. The smallness of k2P also leads to poor
screening of the disorder potential at wave vectors
relevant to 1D back scattering. Therefore, the addi-
tional back scattering induced by the IR is mostly
due to transmission charge transfer between the two
subsystems. Our results thus indicate a mean free
path for scattering between the 2DEG and the 1D,
bpep ~ 6 um (for W~ 6 um T7 ~ %).

Since this new length scale is comparable to the
back scattering length inside a CEO-W, an analy-
sis of the 2D-1D interface is called for — as was
suggested in previous work [21]. Using a Boltzmann
equation approach, the authors derived an expression
for the conductance of an ideal, single channel, wire
which is coupled to 2DEGs at its ends; g; = go(1 +
2bpeip/ls) "2, where Iy is the 1D back-scattering
length at the two ends, namely in the 2D-1D over-
laps region. In view of the above discussion, we as-
sume that /g is not very different from the back scat-
tering length inside an isolated CEO-W, which was
previously found to be ~ 20 um [21]. One finds an
expected conductance of g; ~ 0.79¢gy — in excellent
agreement with the observed value.

In conclusion, we have shown results of a system-
atic study of CEO-W 2D-1D interface. By embedding
a 2D-1D overlap section of controllable length inside
an isolated wire, we were able to study the properties
of the coupling between the two systems. We find a

scattering mean free path of ~ 6 um. Our results show
that the origin of the non-universal conductance [21]
lies in the 2D-1D interface.
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