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Abstract

Query containment is the most fundamental rela-
tionship between a pair of database queries: a query
Q is said to be contained in a query Q′ if the answer
for Q is always a subset of the answer for Q′, inde-
pendent of the current state of the database. Query
containment is an important problem in a wide
variety of data management applications, including
verification of integrity constraints, reasoning about
contents of data sources in data integration, seman-
tic caching, verification of knowledge bases, deter-
mining queries independent of updates, and most re-
cently, in query reformulation for peer data manage-
ment systems. Query containment has been studied
extensively in the relational context and for XPath
queries, but not for XML queries with nesting.

We consider the theoretical aspects of the prob-
lem of query containment for XML queries with
nesting. We begin by considering conjunctive XML
queries (c-XQueries), and show that containment is
in polynomial time if we restrict the fanout (num-
ber of sibling sub-blocks) to be 1. We prove that for
arbitrary fanout, containment is coNP-hard already
for queries with nesting depth 2, even if the query
does not include variables in the return clauses. We
then show that for queries with fixed nesting depth,
containment is coNP-complete.

Next, we establish the computational complex-
ity of query containment for several practical ex-
tensions of c-XQueries, including queries with union
and arithmetic comparisons, and queries where the
XPath expressions may include descendant edges
and negation. Finally, we describe a few heuristics
for speeding up query containment checking in prac-
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tice by exploiting properties of the queries and the
underlying schema.

1 Introduction

Query containment is a fundamental relationship be-
tween a pair of database queries: in the relational
context, a query Q is said to be contained in a query
Q′ if the answer for Q is always a subset of the
answer for Q′, independent of the current state of
the database. In the context of XML queries with
nesting (or more generally, queries over complex ob-
jects), where answers are trees, we require the an-
swer of Q be embedded in the answer of Q′. This
paper considers the formal aspects of determining
query containment for XML queries with nesting.
We begin by describing the many motivations for
studying query containment.

1.1 Motivation

Originally, query containment was studied for opti-
mization of relational queries [9, 33]. Removing re-
dundant parts of a query reduces the number of joins
performed by the query processor. Determining that
a minimized query is equivalent to the original one
requires a containment test.

More recently, query containment has found sev-
eral applications in systems that need to reason
about contents of data sources, such as data inte-
gration and peer-data management systems. As an
illustration, consider the problem of query answer-
ing in a peer-data management system (PDMS) [21,
35, 32, 23, 4].

A PDMS offers a decentralized architecture for
sharing data among peers, removing the need for a
mediated schema that is required in data integra-
tion systems. Each peer has an associated schema
that represents its domain of interest. In addition,
a peer can contribute actual data. Semantic re-
lationships between peers are described locally by
mappings between pairs (or small sets) of peers.
Note that a PDMS offers a data-sharing architec-
ture that is a strict generalization of data integra-
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Figure 1: A PDMS for the database research domain.
Query containment is needed in order to reformulate a

query on a peer onto its neighbor (e.g., from UW to

DBLP), and to prune redundant reformulations (e.g., one

of the two paths from UW to DB-Projects may result in

a redundant query.)

tion systems [36, 8, 18]. Figure 1 shows a PDMS
for supporting sharing of database-research related
data.

The semantic mappings between peer schemas en-
able reformulating a query over a peer to queries over
its neighbors. Given a query at a peer, the query
processor applies reformulation iteratively to explore
all possible semantic paths in the PDMS, until it
reaches every relevant peer. In Figure 1, the user
has posed a query over the UW peer. The PDMS
has reformulated the input query over the UPenn,
DBLP, and DB-Projects peers. This is the first place
where query containment is needed: query reformu-
lation algorithms, typically based on algorithms for
answering queries using views [20, 25, 21], require
checking query containment.

Continuing with the example, because there are
two paths from UW to DB-Projects, two reformu-
lated queries over DB-Projects have been obtained:
Q′DB−Projects and Q”DB−Projects. Next, the PDMS
will reformulate these two queries over the Stanford
peer. However, one of these two queries may be
redundant in the sense that all the answers it pro-
duces are guaranteed to be produced by the other
query. In recent experiments on the XML-based Pi-
azza PDMS [35], we showed that pruning such re-
dundant queries significantly speeds up query refor-
mulation in a PDMS. Detecting that a reformulated
query is redundant reduces to the problem of query
containment.

Furthermore, it turns out that it is also crucial
to minimize reformulated queries after every refor-
mulation step [35, 16]. As already described, query
minimization involves query containment.

Query containment is also important for seman-
tic caching, which is a current need in several recent
data integration products [14, 1]. Intuitively, check-
ing whether an answer to a new query is already in
the cache amounts to a containment check between
the new query and the cache.

It is important to note that XML is increasingly
being used in the kinds of middleware and data-
sharing applications mentioned above. Therefore
it is important to develop query containment tech-
niques for XML queries. Finally, we note that query
containment has also been used in maintenance of in-
tegrity constraints [19, 15] and knowledge-base ver-
ification [26].

1.2 Related Work

Query containment has been studied in depth for
the relational model, beginning with conjunctive
queries [9, 2], then acyclic queries [38], queries with
union [33], negation [27], arithmetic comparisons
[24, 37, 27, 39, 19], recursive queries [34, 10] and
queries over bags [11, 22].

Query containment for XML poses two chal-
lenges: the use of XPath expressions to specify
patterns on the input data, and the nesting struc-
ture of the resulting tree. Several recent works
considered query containment for XPath in isola-
tion. In [30] it is shown that for a simple frag-
ment of XPath that contains descendant axis(//),
wildcards(*), and qualifiers (or branching, denoted
[...]), but without either tag variables or disjunc-
tions, query containment is coNP-complete. If we
drop any one of the constructs *, //, and [...] in the
above case, query containment is in PTIME [3, 31].
In [12] the authors studied XPath containment un-
der a limited use of tag variables and equality test-
ing, and showed the problem is Πp

2-complete in gen-
eral and NP-complete if no disjunction or wildcards
are allowed. Finally, [17] showed that containment
of queries with regular path expressions on general
cyclic graphs is PSPACE-hard. In [35] we describe a
practically-motivated algorithm for containment of
XQuery queries with nesting, but that algorithm is
complete only for queries without nesting.

Containment of queries returning nested struc-
tures has been considered for only the general case of
queries over complex objects [28]. The study shows
that the containment problem can be reduced to the
problem of query simulation; however, the proposed
reduction is not accurate. As we demonstrate, the
algorithm of [28] considers only a subset of the sim-
ulations that a sound algorithm should check. Fur-
thermore, from a practical perspective, we consider
several extensions not addressed in [28], and we show
how the complexity depends on restrictions such as
the nesting depth and fanout in the queries.

1.3 Example

Example 1.1: Figure 2 shows an example of two
XQuery queries, where containment cannot be de-
termined solely based on comparing their respective
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Q: for $group in /group
where $group/gname/text() = “database”
return

< area > {
for $person in $group/person
return

< person >
< name > {$person/text()} < /name >
{for $paper in $group/paper
where $paper/author/text() = $person/text()
return

< paper > {$paper/title/text()} < /paper > }
< /person > }

< /area >

Q’: for $group in /group
return

< area > {
for $person in $group/person
return

< person >
< name > {$person/text()} < /name >
< group > {$group/gname/text()} < /group >
{for $paper in $group/paper
where $paper/author/text() = $person/text()
return

< paper > {$paper/title/text()} < /paper > }
< /person > }

< /area >

Figure 2: The query on the left, Q, is contained in the query on the right, Q′, but not the other way around. We
note that checking XPath containment on this example is not sufficient to establish nested XML query containment.

XPath components. The two queries, Q and Q′,
take an input document consisting of paper and per-
son elements where a person element contains a per-
son name and a paper element contains a title and
author subelements. In the output, the person ele-
ments have a name and paper subelements instead.
Clearly, checking containment of XPath fragments
in every block is not sufficient to establish that Q is
contained in Q′. In addition, one must consider the
structure of the queries, the predicates and returned
values that appear in each block and how the XPath
expressions are spread across the query blocks.

1.4 Our Contributions

We begin by considering a fragment of XML queries,
called conjunctive XML Queries (c-XQueries),
which covers many queries used in practice (analo-
gous to select-project-join queries in SQL). We show
that query containment for this fragment can be
checked in polynomial time if we restrict the fanout
(number of sibling sub-blocks) in the query to be 1.
However, if we allow arbitrary fanout, then query
containment is coNP-hard even for queries with nest-
ing depth 2 and even if the query does not include
variables in the return clauses. Since XPath ex-
pressions in c-XQueries can be modeled as acyclic
conjunctive queries, and containment of unnested
acyclic queries is in PTIME, our result isolates the
exact effect of nesting on the complexity of query
containment.

Next, we show that query containment for c-
XQueries with arbitrary fanout but fixed nesting
depth is coNP-complete. Our technique is based on
considering a finite number of canonical databases
(a technique also used in [24, 17]). Here, the appro-
priate set of canonical databases is obtained by in-
specting a set of canonical answers to the query, each
representing a possible structure for the answer tree.
We note that without restricting the nesting depth

of the query, the number of canonical databases that
need to be inspected can be super-exponential, and
the exact complexity for this case remains open.

Last, we consider several extensions of c-XQueries
that are important in practice. In particular, we con-
sider queries with union, negation, and queries where
the XPath expressions may include descendant edges
(besides wildcards and branching). In each of these
cases we show that even with fanout 1, query con-
tainment is coNP-complete, and that query contain-
ment for queries with fixed nesting depth is still
coNP-complete. We also consider nested queries
with equality predicates on tag variables, and show
that containment is NP-complete for queries with
fanout 1 and Πp

2-complete for queries with arbitrary
fanout but fixed nesting depth. Then, we show that
for queries with arithmetic comparisons on tag vari-
ables, containment is Πp

2-complete both for queries
with fanout 1 and for queries with arbitrary fanout
but fixed nesting depth. Finally, we describe a few
heuristics for speeding up query containment check-
ing in practice by exploiting properties such as car-
dinality knowledge gleaned from the query and the
schema of the underlying XML data. In particular,
these heuristics significantly reduce the number of
canonical databases that actually need to be consid-
ered.

We note that there are two aspects of XQueries
that we do not consider: bag semantics and order.
Our results entail necessary conditions for query con-
tainment in these cases – if containment does not
hold for sets, it certainly does not hold for ordered
lists or bags. Although order is part of the seman-
tics of XQuery, it is less important in data man-
agement applications of XML. In fact, query con-
tainment with ordered lists has not been addressed
even for XPath. Our focus here is on the additional
challenges that arise from adding nesting to XML
queries.

The paper is organized as follows. Section 2 for-
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<project>
<title>Piazza</title>
<member>Alice</member>

</project>
<project>

<title>Tukwila</project>
<member>Bob</member>

</project>

R

projectproject

title member member

BobTukwilaAlicePiazza

title

Figure 3: An XML instance and corresponding tree.

mally defines the problem. Section 3 considers cc-
XQueries, and Section 4 extends the results to c-
XQueries. Section 5 describes our results for exten-
sions of c-XQueries, and Section 6 concludes.

2 Preliminaries

We begin by defining XML instances and the differ-
ent query language fragments we consider. We then
define containment on instances and on queries.

2.1 XML Instances and XML Trees

In our discussion we model XML instances and ele-
ments as unordered edge-labeled trees. Nodes in the
tree represent XML (sub)elements, and have iden-
tifiers from a domain N , which is disjoint from the
domain of tag constants, T . Edges between nodes
represent nesting relationships, and the labels on the
edges (taken from T ) represent XML tags. The iden-
tifier of the root is <. Note that in the tree represen-
tation, labels on edges leading to leaf nodes corre-
spond to text values in the XML document, while in-
ternal edge labels correspond to XML element tags.
We use edge labeling instead of node labeling to dis-
tinguish tag and node variables. All of our results
also hold in the node-labeled representation.

Example 2.1: Figure 3 shows an XML instance
and its corresponding tree that include information
about projects in a research group. ¤

In the rest of the paper, we use the terms XML
instance and XML tree interchangeably.

2.2 Conjunctive XML Queries

We start by considering a subset of XML queries,
called conjunctive XML queries (c-XQueries). c-
XQueries are similar in spirit to select-project-join
queries in SQL, and therefore already form useful
subset of XQuery.

Syntax: c-XQueries satisfy the following restric-
tions:

• In a c-XQuery, the returned variables are bound
to tag names or text values only. Note that if
an XML query has a variable bound to an XML

Q: for $x in /project return

< group > {
for $s in $x/title/text() return

< projtitle >{$s}< /projtitle > } {
for $t in $x/member/text() return

< name >{$t}< /name > }
< /group >

R

group

nameprojtitle

S T

Figure 4: An example c-XQuery and its head tree.

element, we can easily expand the RETURN
clause according to the schema and transform
the query to a c-XQuery. Henceforth, the term
tag variable will refer to a variable that can be
bound to either a text value or an element tag
(i.e., both types of labels on tree edges).

• XPath expressions in a c-XQuery contain only
child axis (/), wildcards (*) and branching
([...]). In Section 5 we extend our results to de-
cide query containment for more general XML
queries, where there are descendant axis (//)
or negations in XPath expressions, or there are
unions or comparisons in XPath expressions or
WHERE-clause conditions.

• To exclude disjunction, we require that sib-
ling blocks always return distinct tag constants.
Consequently, a block can return a tag variable
only when it has no siblings. Section 5 discusses
containment of disjunctive queries.

A c-XQuery consists of nested query blocks. A
query block may have a set of sub-blocks. The fanout
of a query block is the number of its immediate sub-
blocks. A query with no sub-blocks has a nesting
depth of 1. The nesting depth of a query is 1 plus
the maximal nesting depth of its sub-blocks. The
nesting depth of the query is the depth of its outer-
most block. In the example c-XQuery Q shown in
Figure 4, the outer-most query block has fanout 2
and the nesting depth is 3.

The structure of an XML query and its answers
can be described using the notion of a query head
tree. The nodes of the head tree of Q are the query
blocks of Q, and there is an edge between the node
corresponding to a query block and the node cor-
responding to its parent block. The label of the
incoming edge of a node n in the head tree is the
returned tag of the block corresponding to n in Q
(which can also be a variable). Note that we con-
sider an expression {$s} a query block with empty
for and where clauses and with a return tag of $s;
such nodes will appear as leaves of the head tree.
Figure 4 also shows the head tree of the example
c-XQuery. Note that a head tree is also an XML
instance if its variables are substituted with actual
values.
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For our analysis in Section 3 we define a smaller
fragment of c-XQueries, called constant conjunctive
XML queries (cc-XQueries). A cc-XQuery is a c-
XQuery that does not return tag variables. The head
tree of a cc-XQuery has constant labels only.

Semantics: The semantics of a c-XQuery is an ex-
tension of the semantics of an un-nested conjunctive
query. Specifically, each node n in the answer is
generated by a query block with the same depth as
n. Note that since c-XQuery does not allow dis-
junction, each node has a unique generator. For ev-
ery valid variable substitution in a query block, we
generate an output element with the corresponding
tag. When there is at least one satisfying substitu-
tion, we evaluate the block’s sub-blocks. Note that
a variable substitution of a sub-block is an extension
of that for its parent block. The output element of
the outer-most block of an c-XQuery is the answer
to the query.

We note that a c-XQuery can be evaluated on an
input XML instance in polynomial data complexity
and exponential query complexity.

2.3 Containment of Instances and Queries

An XML tree is a special case of a complex object,
where each record is binary. Hence, we follow the
definition of containment given in [28]. Specifically,
we base XML instance containment on tree homo-
morphism (not necessarily injective). Following [30],
we define an embedding as follows:

Definition 2.2 (Tree embedding). Given two
trees, a node mapping ψ from t1 to t2 is said to be
an embedding from t1 to t2 if

• ψ maps the root of t1 to the root of t2,

• if node n2 is a child of node n1 in t1, then ψ(n2)
is a child of ψ(n1), and the edge between n1 and
n2 has the same label as the edge between ψ(n1)
and ψ(n2). ¤

Definition 2.3 (XML Instance Containment).
Let e and e′ be two XML instances. e is contained in
e′, denoted as e v e′, if the tree of e can be embedded
in the tree of e′. ¤

This definition of XML tree containment has
several desirable properties. First, containment
is reflexive and transitive. Second, it is the
smallest order relation for XML trees which is
a congruence, i.e., e1 v e′1 ∧ · · · ∧ en v
e′n implies <t>e1, . . . , en</t>v<t>e′1, . . . , e

′
n</t>

where <t>e1, . . . , en</t> is an XML instance con-
structed by adding a common parent <t> element
over e1, . . . , en. Third, our containment definition
is consistent with set semantics. An XML instance

R

a

b

a

b

R

a

Figure 5: Two XML instances that contain each other
but are not equivalent.

with multiple copies of its subelement is contained
in the XML instance that has just one copy of each
subelement. From a theoretical perspective, there
are additional justifications for this definition. This
notion of containment has also been used previously
for partial information [7] and or-sets [29], and it
coincides with the simulation relation between com-
plex objects represented as graphs [5, 6].

Note that this definition of containment is not
antisymmetric: e v e′ and e′ v e do not imply e =
e′. As an example, consider the two XML instances
in Figure 5. They contain each other, but are not
equivalent.

The following sections make use of minimal XML
instances that we define as follows:

Definition 2.4 (Minimal XML Instance). An
XML instance e is said to be minimal if the XML
tree of e does not contain a pair of sibling subtrees
(sub-instances) e′ and e′′ anywhere in e such that
e′ v e′′. ¤

Based on the definition of XML tree containment,
we define XML query containment as follows:

Definition 2.5 (XML Query Containment).
Let Q and Q′ be two XML queries. Q is contained
in Q′, denoted as Q v Q′, if for every input XML
instance D, Q(D) v Q′(D). ¤

3 Containment of cc-XQueries

We begin by considering query containment for cc-
XQueries. A cc-XQuery does not return tag vari-
ables, and thus can be viewed as a generalization
of a boolean conjunctive query (i.e, a conjunctive
query with an empty head). Nevertheless, unlike
boolean conjunctive queries, cc-XQueries can return
one of several tree structures, rather than only true
or false. Although cc-XQueries are rarely useful in
practice, we study them for two reasons: first, they
already show some of the important lower bounds
on query containment; and second, they help us ob-
tain insights on the techniques we use to establish
containment, which later carry over to c-XQueries.

Intuitively, given a pair of queries Q and Q′, we
cannot check that for every possible XML input D,
Q(D) v Q′(D). Hence, our goal is to find a finite set
of representative inputs, called canonical databases,
which have the property that Q v Q′ if and only
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Q:for $x in /project return

< group > {
for $y in /project/member
return

< name > {
where $y = “Alice”
return < Alice/ >
where $y = “Bob”
return < Bob/ > }

< /name > }
< /group >

Q’:for $x in /project return

< group > {
for $y in $x/member return

< name > {
where $y = “Alice”
return < Alice/ >
where $y = “Bob”
return < Bob/ > }

< /name > }
< /group >

(a)

R

group

Alice

name name

Bob

R

group group

name name

Alice Bob

(b)

Figure 6: Example 3.1: (a) Q and Q′; (b) the answers
to Q and Q′ on the input XML instance in Figure 3.

if Q(DB) v Q′(DB) for every canonical database
DB.

Our approach is based on considering the differ-
ent canonical answers that can be generated for Q,
and creating a canonical database for each canon-
ical answer. One could conjecture that it suffices
to consider all the answers corresponding to prefix
subtrees (the subtrees that contain the root) of Q’s
head tree. However, the following example refutes
this conjecture.1

Example 3.1: Consider the two cc-XQueries, Q
and Q′, in Figure 6(a). The query Q checks whether
Alice and Bob are in the research group, and groups
them together regardless of their projects. The
query Q′ also checks whether Alice and Bob are in
the research group, but in contrast, groups them ac-
cording to whether they are working on the same
project. Figure 6(b) shows the results of Q and Q′

on the XML instance D of Example 2.1. Q(D) 6v
Q′(D), and thus Q 6v Q′. In contrast, containment
does hold for canonical databases generated for all
prefix subtrees of the head tree. ¤

3.1 Canonical Answers and Databases

The observation leading to our first result is that it
suffices to consider canonical answers that are min-

1Furthermore, since the result in [28] considers only these
subtrees, this example entails that the algorithm of [28] offers
only a necessary condition for query containment, but not a
sufficient one.

imal XML instances and are contained in the head
tree (which is different from being prefix subtrees of
the head tree).

Definition 3.2 (Canonical Answer of a
cc-XQuery). Let Q be a cc-XQuery and H be its
head tree. A canonical answer of Q is a minimal
XML instance CA, such that CA v H. ¤

For each canonical answer we define a canonical
database as follows.

Definition 3.3 (Canonical Database of a
cc-XQuery). Let Q be a cc-XQuery, and CA be
a canonical answer of Q. Q’s canonical database
for CA, denoted as DBCA, is an XML instance, s.t.
for each node N of CA where N ’s generator query
block is q̂n, the following holds: Let p0/p1/ . . . /pn

be a path expression in q̂n, where p0 is an optional
node variable from an ancestor query block. For each
pi, i ∈ [1, n], there is a distinct node, labeled pi, that
is a child of the node for pi−1. If p0 is absent, then
p1 is a child of DBCA’s root. ¤

The number of canonical databases for a cc-
XQuery is the same as the number of canonical an-
swers. The size of a canonical database is polynomial
in the size of its corresponding canonical answer.

For example, Figure 7(a) shows six canonical an-
swers for Q in Example 3.1. Figure 7(b) shows the
corresponding canonical databases. (Note that tag
names are abbreviated.)

3.2 Query Containment Algorithm

Our first result shows that to test query contain-
ment, it suffices to consider only canonical databases
constructed from the canonical answers. In the fol-
lowing theorem, DBCA (DB′CA) refers to the canon-
ical database of Q(Q′) corresponding to the canoni-
cal answer CA. The following theorem gives several
equivalent characterizations of query containment.
For complete proofs of the theorems in this paper,
see [13].

Theorem 3.4 (Containment of cc-XQueries).
Let Q and Q′ be two cc-XQueries. The following
three conditions are equivalent:

1. Q v Q′;

2. for every canonical database DB of Q,
Q(DB) v Q′(DB);

3. for every canonical answer CA of Q, (a) CA
is a canonical answer of Q′; and (b) DB′CA v
DBCA. ¤

The proof of the above theorem is based on
two important properties of canonical answers and
canonical databases.
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Figure 7: Example 3.1: (a) Q’s canonical answers; (b) Q’s canonical databases.

Lemma 3.5. Let Q be a cc-XQuery and D be
an XML instance. There exists a unique canoni-
cal answer CA of Q, such that Q(D) v CA and
CA v Q(D). ¤

Lemma 3.6. Let Q be a cc-XQuery, CA be a canon-
ical answer of Q, DBCA be the canonical database
for CA of Q, and D be an XML instance. CA v
Q(D) if and only if DBCA v D. ¤

Proof sketch for Theorem 3.4:
(1) ⇒ (2): Follows from the definition.

(2) ⇒ (3): Consider a canonical answer CA and its
canonical database, DBCA. According to Lemma
3.6, CA v Q(DBCA). Since condition (2) holds,
Q(DBCA) v Q′(DBCA). Putting the above two
containments together, we have CA v Q′(DBCA).
This implies that (a) holds. Applying Lemma 3.6
again gives DB′CA v DBCA. Hence, (b) holds.

(3) ⇒ (1): To show Q v Q′, we need to show
for every XML instance D, Q(D) v Q′(D). Ac-
cording to Lemma 3.5, there exists a unique canon-
ical answer CA of Q, such that Q(D) v CA and
CA v Q(D). According to Lemma 3.6, DBCA v D.
Since conditions (a) and (b) hold, DB′CA v DBCA.
So DB′CA v D. Applying Lemma 3.6 again gives
CA v Q′(D). Based on containment transitivity,
Q(D) v Q′(D). ¤

The third condition of Theorem 3.4 is of practical
importance, and will become useful in the complex-
ity analysis. The condition states that we do not
actually have to evaluate the two queries on each of
the canonical databases. Instead, it suffices to check
tree embedding on each pair of canonical databases,
which can be done in polynomial time in the size of
the canonical databases.

However, as the following analysis shows, the
number and sizes of canonical databases, determined
by the number and sizes of canonical answers, are
quite large. Let m be the largest fanout of a query
block in Q, and let d be the nesting depth of Q. We
can show that the maximal size of Q’s canonical an-

swers is Θ(m · 2
m·

(
2·

·
m·(2m)

)

) (which is a tower of
exponents with d − 1 levels), while the number of

canonical answers is similar, but d levels tall. How-
ever, this is only a temporary setback. We will show
that there is no need to consider so many canonical
answers.

3.3 Effect of the Fanout

In this section, we show that the fanout of the
queries has a significant impact on the complexity
of query containment. A cc-XQuery is said to be
linear if the fanout of each query block is at most 1.
We show the following:

Theorem 3.7 (Containment for linear
cc-XQueries). Let Q and Q′ be cc-XQueries.
If either of them is linear, testing Q v Q′ is in
PTIME. ¤

We note that this is the only case in which nest-
ing does not add to the complexity of containment
in comparison to similar queries without nesting. As
we will soon see, the restriction on the fanout is cru-
cial for obtaining polynomial-time complexity.

Proof sketch: The proof of Theorem 3.7 is based
on the following observations. First, to check that
Q v Q′, where Q is a linear cc-XQuery, the number
of canonical answers we need to consider is equal
to the nesting depth of Q, denoted as d, and the
sizes of canonical answers are bounded by d. Sec-
ond, as entailed by the third part of Theorem 3.4,
for each such canonical answer we need to perform
an embedding test on the corresponding canonical
databases, which can be done in polynomial time in
the sizes of the canonical databases, bounded by the
sizes of the queries. Specifically, the time complexity
is O(d · |Q| · |Q′|). ¤

The following theorem shows that the restriction
on the fanout is critical. The following lower bound
is proved by a reduction from the complement of
3SAT.

Theorem 3.8 (coNP-Hardness). Testing con-
tainment of cc-XQueries with nesting depth 2 and
arbitrary fanout is coNP-hard. ¤

3.4 cc-XQueries with Fixed Nesting Depth

In this section we show that for cc-XQueries with
any fixed nesting depth, query containment is in
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coNP. Hence, we obtain the following result:

Theorem 3.9 (coNP-Completeness). Let Q and
Q′ be cc-XQueries. If either of them has a fixed nest-
ing depth, testing Q v Q′ is coNP-complete. ¤

The key observation behind Theorem 3.9 is to fur-
ther reduce the number of canonical answers (and
hence of canonical databases) we need to consider.
As we show below, it suffices to consider kernel
canonical answers.

Definition 3.10 (Kernel Canonical Answer).
Let Q be a cc-XQuery. Let d be the nesting depth
of Q and c be the maximum number of path steps in
a query block of Q. A canonical answer CA of Q
is called a kernel canonical answer if the following
hold: (1) the root node has a single child, and (2)
suppose N is a node in CA and p is a path from N
to a leaf; at most cd − 1 siblings of N are roots of
paths that are the same as p. ¤

In the following lemma, DBKCA (DB′KCA) refers
to the canonical database of Q(Q′) corresponding to
the canonical answer KCA.

Lemma 3.11. Let Q and Q′ be two cc-XQueries.
The containment Q v Q′ holds if and only if for
each kernel canonical answer KCA of Q, (1) KCA
is a canonical answer of Q′; and (2) DB′KCA v
DBKCA. ¤

Proof sketch: Let CA be the canonical answer
with the minimal size that violates DB′CA v DBCA.
We show CA must be a kernel canonical answer.
First, the root of CA must has a single child. Oth-
erwise, we split it and obtain a set of subtrees, each
of which is a canonical answer. At least one of them
also violates DB′CA v DBCA, contradicting that
CA has the minimal size.

Second, for every node in CA, each conjunct in
its generator query block introduces no more than
one distinct node to the canonical database. Thus,
the size of DBCA is bounded by the size of CA times
the maximum number of conjuncts in a query block
of Q. On the other hand, considering that CA is
minimal, DBCA needs to be at least a certain size
in order to guarantee that DB′CA 6v DBCA, and for
all canonical answers with a smaller size, denoted

as C̃A, DB′
C̃A

v DB
C̃A

. This size of DBCA is de-

termined by the fanout of CA. Considering the up-
per bound and the minimum requisite for the size of
DBCA, we show that the fanout of CA is bounded,
and CA is a kernel canonical answer. ¤

Now we examine the time complexity of the algo-
rithm derived from Theorem 3.4(3), by analyzing the
number and sizes of kernel canonical answers. Let
m be the maximum fanout, and b be the number

of query blocks in Q. In a kernel canonical answer,
the fanout of each node is no more than bcd, since
there are no more than cd outgoing edges contain-
ing a common path pattern, and there are at most b
different path patterns in the query. Hence the size
of the canonical answer is in O((bcd)d). Consider a
specific node N in the canonical answer. There are
no more than m candidate labels for the edge lead-
ing to N . So the number of kernel canonical answers

is in O(m(bcd)d

). Hence, the time complexity of the

algorithm is in O(m(bcd)d

).

Corollary 3.12. Testing containment for cc-
XQueries with fixed nesting depth is in coNP. Test-
ing containment for cc-XQueries with arbitrary nest-
ing depth is in coNEXPTIME. ¤

Proof sketch: Given two cc-XQueries Q and Q′,
to check Q 6v Q′, we need to guess a kernel canoni-
cal answer of Q, denoted as KCA; construct Q′ and
Q’s canonical databases for KCA, denoted as DB ′

and DB; and check whether DB′ 6v DB. When the
nesting depth is fixed, the size of a kernel canon-
ical answer is polynomial in the size of Q. Thus,
constructing canonical databases and checking con-
tainment both take polynomial time. Hence, query
containment is in coNP. When the nesting depth is
arbitrary, the size of a kernel canonical answer is
exponential in the nesting depth, thus query con-
tainment is in coNEXPTIME. ¤

From Corollary 3.12 and Theorem 3.8 we obtain
Theorem 3.9.

Finally, we note that the complexity of query
containment for cc-XQueries with arbitrary nesting
depth remains an open problem.

4 Containment of c-XQueries

We now consider general c-XQueries, which may re-
turn tag variables. A tag variable can be set to any
value in T , and therefore the number of candidate
answers to a given query is infinite. Consequently,
the algorithms for cc-XQueries do not apply directly.

There are two key points underlying our algo-
rithm for checking containment of c-XQueries. First,
we consider canonical answers that may contain vari-
ables. As we will see, the number of such canon-
ical answers is the same as we had in Section 3.
Second, we check query containment by applying a
more elaborate procedure for each canonical answer.
Specifically, we apply a condition called query simu-
lation [28] to a pair of indexed conjunctive queries
that we create for each canonical answer. Since
query simulation, albeit more elaborate, is also in
polynomial time, we are able to show that the com-
plexity results for c-XQueries are, for the most part,
the same as for cc-XQueries.
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4.1 Simulation of Indexed Queries

We begin by explaining indexed conjunctive queries
and the condition of query simulation, both
from [28]. We represent indexed conjunctive queries
using a datalog-like notation, as follows.

Q(Ī1; . . . ; Īm; V̄ ) : −X1R1Y1, . . . , XnRnYn

The body of the indexed conjunctive query is similar
to that of an ordinary conjunctive query (except that
we writeXRY instead of R(X,Y )), but the head has
a set of tuples of index variables, Ī1, . . . , Īm, in addi-
tion to the head variables V̄ . An indexed conjunctive
query produces a nested structure: the tuples V̄ of
the answer are grouped first by the index variables
Ī1, then by Ī2, etc., and finally by Īm.

Example 4.1: Consider queryQ in Figure 4. Given
the head tree shown in the same figure as the canon-
ical answer CA, the indexed conjunctive query for
CA is the following (note that XPath tag names are
abbreviated):

IQCA(X;W,Y ;S, T ) : −<pX, XtW, WSV,
XmY, Y TZ

Note that the last XML instance shown in Figure
7(a), denoted as CA′, is also a canonical answer of
Q by applying variable isomorphism. The indexed
conjunctive query for CA′ is the following:

IQCA′(X;Y1, Y2; ∅) : −<pX, XmY1, XmY2,
Y1aZ1, Y2bZ2

By applying Theorem 4.4, which we will describe
shortly, we can justify that the query Q′ in Example
3.1 is contained in the above query Q, but not the
other way around. ¤

Query simulation is a generalization of query con-
tainment for indexed conjunctive queries. Simula-
tion reduces to query containment when the queries
contain no index variables. Formally, simulation is
defined as follows.

Definition 4.2 (Query Simulation). Let Q and
Q′ be two indexed conjunctive queries, each with m
sets of index variables. We say that Q′ simulates Q
to depthm, denoted by Q ¹m Q′, if for any database
the following holds:

∀Ī1.∃Ī
′
1 . . . ∀Īm.∃Ī

′
m.[∀V̄ .

(Q(Ī1; . . . ; Īm; V̄ )⇒ Q′(Ī ′1; . . . ; Ī
′
m; V̄ ′))] ¤

In [28] it is shown that query simulation can be
checked by establishing a simulation mapping be-
tween Q and Q′. In our context, where the body

of the conjunctive query is acyclic, finding a simula-
tion mapping can be translated into a tree embed-
ding problem, where the sizes of trees are polynomial
in the sizes of the queries. Thus, checking simula-
tion is PTIME in the size of the indexed conjunctive
queries.

4.2 Query Containment Algorithm

In general, a c-XQuery may have an infinite number
of candidate answers, given all the possible substitu-
tions to the tag variables. Recall that a head tree of
a c-XQuery may contain tag variables. When creat-
ing canonical answers, we treat the variables as con-
stants. Hence, we can still represent all candidate
answers with a finite number of canonical answers.

Given a canonical answer CA, we create an in-
dexed conjunctive query, which is a generalization
of the canonical database, as defined below.

Definition 4.3 (Indexed conjunctive query for
a canonical answer). Let Q be a c-XQuery and
CA be a canonical answer with depth d. Q’s indexed
conjunctive query for CA, denoted as IQCA, has the
form

IQCA(Ī1; . . . ; Īd−1;V ) : −X1R1Y1, . . . , XnRnYn,

and is constructed in two steps. Let N be a node of
CA on level k, k ∈ [1, d], and let q̂n be N ’s generator
query block in Q. First, if there exists any node M ,
which may be N ’s ancestor, descendant, or N itself,
where the incoming edge of M is labeled by a tag
constant c from T , the generator query block of M
returns a tag variable T , and T also occurs in q̂n,
we substitute T with c in q̂n. Second, we compose
IQCA as follows:

• If k < d, then Īk includes every fresh node vari-
able and tag variable of q̂n.

• If k = d, then V̄ includes the returned tag vari-
able in q̂n, if any.

• Let p0/p1/ . . . /pn be a path expression in q̂n,
where p0 is an optional node variable from an-
cestor query blocks. The body of IQCA con-
tains X0p1X1, X1p2X2, . . . , Xn−1pnXn, where
Xk, k ∈ [1, n] are distinct node variables, X0 is
an inherited node variable for p0, or < if p0 is
absent.

We can now show how to test query containment
for c-XQueries. The following theorem shows that it
suffices to check query simulation on pairs of indexed
conjunctive queries generated from the canonical an-
swers. In the theorem, IQCA (IQ′CA) refers to Q’s
(Q′’s) indexed conjunctive query for CA.
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Theorem 4.4. Let Q and Q′ be two c-XQueries.
The containment Q v Q′ holds if and only if for ev-
ery canonical answer CA of Q, (1) CA is a canoni-
cal answer of Q′ (modulo tag variable isomorphism);
and (2) IQCA ¹ IQ′CA. ¤

Together with the insights into kernel canonical
answers from Section 3, we obtain the following com-
plexity results, which show that the introduction
of output tag variables does not make the contain-
ment problem harder. (Note that the first bullet
has a slightly stronger condition than in Theorem
3.7. Here, we require that Q has fanout 1, rather
than either Q or Q′ does.)

Theorem 4.5. Let Q and Q′ be c-XQueries.

• If Q has a maximal fanout 1, then query con-
tainment is in PTIME.

• For arbitrary fanout, if either Q or Q′ has
fixed nesting depth, then containment is coNP-
complete.

• Otherwise, containment is in coNEXPTIME. ¤

4.3 Containment Checking in Practice

Containment checking for general nested queries is
hard; however, as query sizes in practice tend to
be relatively small, query containment can be em-
ployed in application. Furthermore, we can dras-
tically reduce the number of canonical answers for
containment checking by analyzing the cardinality
of elements in the query answer. In this section, we
illustrate the effectiveness of this technique based on
the example query in Section 1. Our discussion here
is meant to suggest possible optimizations that we
have found promising. The effect of these techniques
still needs to be verified by a thorough experimen-
tal evaluation. We also note that the techniques do
not decrease the upper bound of the computational
complexity.

The intuition behind our technique is that
given the query structure and the underlying XML
database schema, we can infer the cardinality of el-
ements in the query answer. Canonical answers vio-
lating the cardinality constraints do not need to be
considered by our algorithm. Specifically, we prune
the canonical answers for containment checking ac-
cording to the following three rules. Suppose we are
testing whether Q is contained in Q′. Let p̂ be a
query block in Q and t be its tag name.

1. (= 1): If the schema implies that the variables
in the FOR clause of p̂ will have exactly one
binding, then we only need to consider those
canonical answers where t occurs exactly once
within its parent element. This observation also
applies if the FOR and WHERE clauses of p̂ are

empty. Consider the two queries in Figure 2 for
example; to test Q′ v Q, we only need to check
those canonical answers in which every person
element contains exactly one name subelement.

2. (≥ 1): A schema can imply that t will occur
at least once under its parent element. In the
above example, if the schema indicates that ev-
ery group has one or more person subelements,
we only need to check those canonical answers
in which every area contains at least one person
subelement.

3. (≤ 1): If the schema indicates a certain element
occurs at most once under its parent element,
the set of canonical answers can be constrained
similarly to the previous case.

Applying all three techniques to the example in
Figure 2 demonstrates the effect of pruning. Testing
whether Q′ v Q without applying the above tech-
niques requires considering 71 canonical answers.
The first rule prunes 68 of them, and the second rule
prunes one more, leaving us with only two canonical
answers to be considered.

5 Extensions to c-XQuery

The previous section established the basic com-
plexity results on query containment for conjunc-
tive XML queries with nesting. This section dis-
cusses several extensions of c-XQueries that occur
frequently in applications.

Union and Disjunction: Union can be introduced
into XML queries when two sibling query blocks re-
turn XML objects with the same tag. This happens
when either two sibling query blocks return the same
tag constant, or when at least one of the siblings re-
turns a tag variable, which may be instantiated to
the same value returned by the other sibling. This
form of union does not affect the complexity of the
problem.

Disjunctions in the query’s XPath expression or
WHERE-clause is another way of expressing certain
types of unions. This case can be translated into the
above cases, but with an exponential blowup in the
size of the resulting queries. We refer to queries with
disjunctions as d-XQueries. We prove the following
result.

Theorem 5.1. Let Q and Q′ be d-XQueries. Query
containment is coNP-complete in each of the follow-
ing cases:

• Q has nesting depth of 1,

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth.

If Q is a c-XQuery, then the complexity results of
Theorem 4.5 still apply. ¤
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Table 1: Complexity Results for Containment of Nested XML Queries
With With With

Nesting cc-XQueries c-XQueries With With Descendant Equi-join Arithmetic
Type Union Negation Edges (//) on Tags Comparisons

Fanout=1 PTIME PTIME coNP coNP coNP NP Πp
2

Arbitrary Depth complete complete complete complete complete
Arbitrary Fanout coNP coNP coNP coNP coNP Πp

2 Πp
2

Fixed Depth complete complete complete complete complete complete complete
General in coNEXPTIME

Recall that without union, containment is in poly-
nomial time for the first two cases above. This re-
sult is analogous to the relational case, where con-
tainment for conjunctive queries and containment
for queries with unions are both NP-complete, while
containment for disjunctive queries (when union can
occur anywhere in the query) is Πp

2 complete. The
complexity of the first two cases also increases when
we consider negation and descendant edges.

Negation: We consider XQueries where predicates
in XPath expressions can contain the “not” opera-
tor (e.g. person[not paper]). This type of negation
is similar in spirit to “NOT EXISTS” in SQL. We
refer to such queries as c-XQueries¬. We show the
following result:

Theorem 5.2. Let Q and Q′ be c-XQueries¬.
Query containment is coNP-complete in each of the
following cases:

• Q has nesting depth of 1,

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth. ¤

Descendant Edges: We refer to c-XQueries in
which the XPath expressions contain the descen-
dant axis (//) as c-XQueries//. Recall that wild-
cards(*) and branching([...]) are already allowed in
c-XQueries. In [30] it is shown that containment
of XPath expressions with //,* and [...] is coNP-
complete. The following theorem shows that nesting
with fixed depth does not increase the complexity of
containment.

Theorem 5.3. Let Q and Q′ be c-XQueries//.
Query containment is coNP-complete in each of the
following cases:

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth.

If the number of // in Q is fixed, then the complexity
results of Theorem 4.5 still apply. ¤

Equi-join Predicates: We consider equi-join pred-
icates on tag variables. They result in cyclic queries,
where simulation mapping becomes NP-complete
[28]. We refer to c-XQueries with equi-join predi-
cates on tag variables as c-XQueries=.

Theorem 5.4. Testing containment of c-
XQueries= with maximal fanout 1 is NP-complete.
Testing containment of c-XQueries= with arbitrary
fanout but a fixed nesting depth is Πp

2-complete. ¤

Arithmetic Comparisons: We consider arith-
metic comparisons on tag variables. We assume the
comparison predicates are interpreted over an or-
dered and dense domain, and we consider the pred-
icates < and ≤. We refer to queries with arithmetic
comparisons as c-XQueries≤. In [37] it is shown that
containment of cyclic queries with arithmetic com-
parisons is Πp

2-complete. We show the following.

Theorem 5.5. Let Q and Q′ be c-XQueries≤.
Query containment is Πp

2-complete in each of the fol-
lowing cases:

• Q has maximal fanout of 1, and

• Q has a fixed nesting depth. ¤

6 Conclusions

XML data is being increasingly used in applica-
tions that require integration and sharing of multiple
data sources. At several levels, these applications
need to reason about the relationship between pairs
of queries, either for query reformulation, semantic
caching, or various optimization methods. Thus far,
in the context of XML, query containment has only
been considered for queries expressed as XPath ex-
pressions. However, in practice, XQueries are com-
mon, and they contain multiple levels of nesting.
This paper fills this important gap, by establishing
the theoretical underpinnings for XML queries with
nesting.

Our results are summarized in Table 1. Our main
result is that query containment is coNP-complete
for queries with bounded nesting depth, under a
variety of conditions. If we consider queries with
maximal fanout of 1, then we are able to obtain
polynomial-time results in some cases. We have also
considered several important practical extensions of
the basic conjunctive query language. The main
open gap in the complexity analysis is the case of
queries with arbitrary nesting depth. In future work,
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we are interested in extending our containment al-
gorithms to algorithms for answering queries using
views. In addition, we would like to perform an em-
pirical evaluation of our containment algorithms and
to develop optimizations for common cases.
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