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Abstract: We introduce in this paper an exact nonlinear formulation of the multiway cut problem. By
simple linearizations of this formulation, we derive several well-known and new formulations for the
problem. We further establish a connection between the multiway cut and the maximum-weighted
independent set problem. This leads to the study of several instances of the multiway cut problem through
the theory of perfect graphs. We also introduce a new randomized rounding argument to study the
sharpness of these formulations. © 1999 John Wiley & Sons, Inc. Networks 34: 102–114, 1999
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1. INTRODUCTION

Given a graphG 5 (V, E) with edge weightce for eache
[ E and a set of terminal nodesT 5 { v1, v2, . . . , vk}
, V, a multiway cut is a set of edges whose removal
disconnects every pair of terminal nodes. Equivalently, this
gives rise to a partition of the node set intok or more
classes, each containing exactly one or none of the terminal

nodes. The edges between nodes in distinct classes will
correspond to the edges in the multiway cut solution. The
problem of finding the multiway cut of minimum total
weight is called the multiway cut problem. WhenT consists
of only two terminals (k 5 2), the problem is the well-
known minimum-cut problem. Fork $ 3, it was shown by
Dalhaus et al. [8] to beNP-hard even on planar graphs.

The casek 5 2 is not the only polynomially solvable
instance of the multiway cut problem. Lova´sz [13] and
Cherkasskij [4] show that whence 5 1 @e [ E andG is
Eulerian then the multiway cut problem is polynomially
solvable. Erdos and Sze´kely [9] showed that a generaliza-
tion of the multiway cut problem is polynomially solvable
when the underlying graphG is a tree. Dalhaus et al. [8]
showed the problem to be polynomially solvable forfixed k
on planar graphs.

A preliminary version of this article appears under the title “Nonlinear
formulations and improved randomized approximation algorithms for mul-
tiway and multicut problems,” E. Balas and J. Clausen (Editors), Proc 4th
Integer Programming and Combinatorial Optimization Conference, LNCS
920, 29–39, Springer-Verlag, Berlin, 1995, pp. 29–39.
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Chopra and Rao [6] and Cunningham [7] investigated the
multiway cut problem using a polyhedral approach. They
derived several valid inequalities and facets. For one par-
ticular formulation of the problem, Cunningham [7] showed
that the value of the minimum multiway cut is at most twice
the value of its linear relaxation. Chopra and Owen [5]
proposed an extended formulation of the problem which
was shown to be tighter than all previously proposed. In
addition, when the underlying graph is a tree, they showed
that the extended formulation is integral. They did not,
however, analyze the tightness of their extended formula-
tion, but relied on computational results to show that their
formulation consistently yields high-quality solutions to the
multiway cut problem.

Regarding approximation algorithms, Dalhaus et al. [8]
proposed an 2(12 1/k) approximation algorithm. Their
approach can also be used to yield slightly improved bounds
for the four-way and eight-way cut problems.

A more general problem that we also consider in the
present paper is themulticut problem.Given a graphG
5 (V, E) with edge weightsce for eache [ E, and a
demand graphH 5 (V(H), E(H)), find a minimum weight
set of edges whose removal disconnects each nodes
[ V(H) from t [ V(H) if ( s, t) [ E(H). If V(H) is a
complete graph onk nodes, the multicut problem reduces to
the multiway cut problem. Regarding approximation algo-
rithms, Garg et al. [10] proposed an algorithm that produces
a multicut whose weight is withinO(log(uV(H)u)) from the
optimal solution.

Our overall goal in this paper is to study theoretically,
using a new randomized rounding argument, the closeness
of the value of the optimal multiway cut and multicut to the
optimal solution value of the formulations proposed in
Chopra and Owen [5]. Furthermore, we show that insights
from the combinatorial approach can be used to sharpen the
LP relaxations for the corresponding problems, using a
simple rounding argument of the underlying fractional so-
lutions. The randomized rounding approach proposed in this
paper has also found applications in several other problems;
see, for instance, Bertsimas et al. [3] and Teo and Bertsimas
[15].

Our contributions and the structure of the paper are as
follows:

1. In Section 2, we express the multiway cut problem as a
continuous nonlinearprogram. The formulation is exact
in the sense that its optimal solution is integral. The fact
that a 0–1 integer program can be expressed exactly as a
compact nonlinear program is not surprising. Ifx is a
0–1 variable, this can be expressed asx(1 2 x) 5 0.
What is of interest is that the constraints of our formu-
lation are linear. The nonlinear formulation provides a
framework for the study of extended formulations. Many
of the known standard and extended formulations and
valid inequalities can be derived from simple lineariza-

tions of the nonlinear formulation. This provides a sys-
tematic way to construct improved extended formula-
tions for the multiway cut problem. In particular, we
derive the extended formulations of Chopra and Owen
[5].

2. In Section 3, we establish a connection between the
multiway cut problem and the independent set problem.
This allows us to derive relaxations for the multiway cut
problem that are stronger than previously known. In
addition, we use the theory of perfect graphs to prove the
integrality of some extended formulations of the multi-
way cut problem that have a special structure. In this
way, we identify new polynomially solvable cases. In
particular, we obtain the integrality result of Chopra and
Owen [5] mentioned above and the result of Erdos and
Székely [9] as a corollary.

3. In Section 4, we analyze the tightness of the proposed LP
relaxations for the multiway cut problem by probabilis-
tically rounding the optimal fractional solution of the
associated linear programs. IfZLP denotes the optimal
objective function value of the linear relaxation, andZIP,
the value of the optimal integer solution, we show that
ZIP # 2(1 2 1/k) ZLP.

4. In Section 5, we show how the techniques developed for
the multiway cut problem apply to the more general
multicut problem. The technique of Dalhaus et al. [8] can
be used to design a 2a(H)(1 2 1/k) approximation
algorithm for the problem. Notice that the bound is a
direct generalization of the bound for the multiway cut
problem. In addition, it is different from the
O(log(uE(H)u)) bound derived by Garg et al. [10]. We
exhibit in this section a natural formulation that attains
the same bound.

2. AN EXACT NONLINEAR FORMULATION
AND ITS LINEARIZATIONS

In this section, we present a continuous nonlinear formula-
tion for the multiway cut problem, prove its validity through
randomization, and linearize it to obtain tighter linear re-
laxations.

Let T 5 { v1, v2, . . . , vk} denote the set of terminal
nodes. Letyj(u) denote the decision variable that nodeu
belongs to the same component asvj in a multiway cut.
Since the edge (u, v) belongs to the multiway cut if and
only if yj(u) andyj(v) are distinct for somej , the following
is clearly a valid nonlinear formulation of the multiway cut
problem:

~NF! ZNF 5 min O
~u,v![E

c~u, v!~1 2 O
j51

k

yj~u! yj~v!!
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subject to O
j51

k

yj~u! 5 1; ; u [ V \T (1)

yj~v j! 5 1; ; j 5 1, . . . , k, v j [ T (2)

yj~v l! 5 0; ; l Þ j , 1 # l ,

j # k, v l [ T (3)

yj~u! # 1; ; u, v [ V (4)

yj~u! $ 0; ; u, v [ V (5)

yj~u! [ $0, 1%; ; u, v [ V. (6)

Let x(u, v) 5 1 2 ¥j51
k yj(u) yj(v), @@ (u, v) [ E. Let

IZMC denote the value of a minimum multiway cut. It is
clear thatIZMC 5 ZNF. Let (NLF) denote the correspond-
ing continuous relaxation of (NF) [i.e., by removing the
integrality constraint (6)]. LetZNLF denote the correspond-
ing optimal value. The following result shows that the
continuous relaxation obtained in this way does not lead to
any deterioration of the optimal solution value:

Theorem 1. IZMC 5 ZNLF.

Proof. Let (x# , y# ) be an optimal solution to Problem
(NLF). Node u is assigned to the component ofv j with
probability y# j(u). Let x be the incidence vector of the
multiway cut obtained. Clearly,

P$edge~u, v! in the multiway cut% 5 1 2 O
j51

k

y# j~u! y# j~v!.

Hence,

E@ x~u, v!# 5 P$ x~u, v! 5 1%

5 1 2 O
j51

k

y# j~u! y# j~v! 5 x# ~u, v!,

so E[¥(u,v)[E c(u, v) x(u, v)] 5 ¥(u,v)[E c(u, v) x# (u, v)
5 ZNLF. The random process always produces a multiway
cut solution, so its expected value cannot be smaller than the
minimum. Hence,IZMC # E[¥(u,v)[E c(u, v) x(u, v)]
5 ZNLF. Since all multiway cuts are feasible in (NLF),
ZNLF # IZMC. Therefore,IZMC 5 ZNLF. ■

Linearizing the previous formulation, we immediately
obtain the extended formulation proposed by Chopra and
Owen [5] using different considerations. In particular, since

yj~u! yj~v! # min~ yj~u!, yj~v!!,

by using the following inequality:

O
j51

k

yj~u! yj~v! # O
j[S

yj~u!

1 O
j¸S

yj~v!, ; S, $1, 2, . . . ,k%,

we obtain the following extended formulation (relaxation)
of the multiway cut problem:

~EF1! ZEF1 5 min O
~u,v![E

c~u, v! x~u, v!

subject to x~u, v! 1 O
j[S

yj~u! 1 O
j¸S

yj~v! $ 1,

; S, $1, 2, . . . ,k%, ~u, v! [ E (7)

and constraints (1)–(5). Here, the edge variables,x(u, v),
are considered the “natural” variables, while the node vari-
ables,yj(u), are viewed as the auxiliary variables.

Even though (EF1) has an exponential number of con-
straints, its linear relaxation can be solved in polynomial
time. This is because the associated separation problem is
solvable in polynomial time (see [5]). If we represent the
product terms in (NLF) by a variable:

zj~u, v! 5 yj~u! yj~v!,

we obtain a second extended formulation:

~EF2! ZEF2 5 min O
~u,v![E

c~u, v! x~u, v!

subject to x~u, v! 1 O
j

zj~u, v! 5 1,

; ~u, v! [ E (8)

zj~u, v! # yj~u!, ; j , ~u, v! [ E (9)

zj~u, v! # yj~v!, ; j , ~u, v! [ E (10)

zj~u, v! $ yj~u! 1 yj~v! 2 1 ; j , ~u, v! [ E (11)

and constraints (1)–(5). Under the condition that the weight
function c is nonnegative, it is easy to see that the con-
straints zj(u, v) $ yj(u) 1 yj(v) 2 1 are redundant.
Chopra and Owen [5] proved that
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Theorem 2 [5]. When the cost function c is nonnegative,
ZEF1 5 ZEF2.

In contrast to (EF1), the formulation (EF2) involves
only polynomially many variables and constraints. In the
sequel, we will assume thatce $ 0 for all e [ E and so we
do not distinguish between (EF1) and (EF2).

Now, we derive a third extended formulation, equivalent
to (EF2), not previously considered. This formulation will
be used in the sequel in the analysis of the tightness of the
formulations considered in this section.

Since¥ j51
k yj(u) 5 1 in (NLF), we can write

x~u, v! 5 O
j51

k

yj~u! 2 O
j51

k

yj~u! yj~v!.

Replacingu by v, we get

x~u, v! 5 O
j51

k

yj~v! 2 O
j51

k

yj~u! yj~v!.

Adding these two equations together yields

2x~u, v! 5 O
j51

k

@ yj~u! 1 yj~v! 2 2yj~u! yj~v!#.

Now,

yj~u! 1 yj~v! 2 2yj~u! yj~v! $ uyj~u! 2 yj~v!u

as long asyj(u), yj(v) # 1. Thus, we get the following
convexprogramming formulation:

~EF3! ZEF3 5 min O
~u,v![E

c~u, v! x~u, v!

subject to 2x~u, v! $ O
j51

k

uyj~u! 2 yj~v!u,

; ~u, v! [ E (12)

and constraints (1)–(5). (EF3) can be turned into a linear
program using the usual technique of introducing extra
variables [i.e., replaceuyj(u) 2 yj(v)u by wj(u, v) and add
the constraintswj(u, v) $ yj(u) 2 yj(v), wj(u, v) $ yj(v)
2 yj(u)].

Theorem 3. When the cost function c is nonnegative, ZEF2

5 ZEF3.

Proof. Let (x# , y# , z#) be an optimal solution to (EF2).
Pick any u, v [ V. Notice thatz# j(u, v) 5 min{ y# j(u),
y# j(v)}. Let A 5 { j : y# j(u) $ y# j(v)} and Ac be the
complement. Now, (x# , y# , z#) must satisfy

x# ~u, v! 1 O
j

z# j~u, v! 5 1 5 O
j

y# j~u!

and

x# ~u, v! 1 O
j

z# j~u, v! 5 1 5 O
j

y# j~v!.

Adding them together we get

2x# ~u, v! 1 2 O
j

z# j~u, v! 5 O
j

y# j~u! 1 O
j

y# j~v!.

Hence,

2x# ~u, v! 5 O
j

@ y# j~u! 2 z# j~u, v!# 1 O
j

@ y# j~v! 2 z# j~u, v!#.

If j [ A, then uyj(u) 2 yj(v)u 5 yj(u) 2 z# j(u, v);
otherwise,uyj(u) 2 yj(v)u 5 yj(v) 2 z# j(u, v). Hence,

2x# ~u, v! 5 O
j[A

@ y# j~u! 2 z# j~u, v!# 1 O
j[Ac

@ y# j~v! 2 z# j~u, v!#

5 O
j

uy# j~u! 2 y# j~v!u.

Any optimal solution to (EF2) is thus a feasible solution to
(EF3).

Now suppose that (x# , y# ) is an optimal solution to (EF3).
Pick anyu, v [ V. Definez# j(u, v) 5 min{ y# j(u), y# j(v)}.
We show that (x# , y# , z#) is feasible for (EF2).

Let A 5 { j : y# j(u) $ y# j(v)} and Ac be the complement.
Then,

O
j

uy# j~u! 2 y# j~v!u

5 O
j[A

@ y# j~u! 2 y# j~v!# 1 O
j[Ac

@ y# j~v! 2 y# j~u!#.

Also,

2 O
j

z# j~u, v! 5 2 O
j[A

y# j~v! 1 2 O
j[Ac

y# j~u!.

Since 2x# (u, v) 5 ¥j uy# j(u) 2 y# j(v)u, it follows that
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2x# ~u, v! 1 2 O
j

z# j~u, v! 5 O
j[A

@ y# j~u! 2 y# j~v! 1 2y# j~v!#

1 O
j[Ac

@ y# j~v! 2 y# j~u! 1 2y# j~u!# 5 2.

So, an optimal solution to (EF3) is feasible for (EF2). ■

By projecting out the auxiliary variables in these ex-
tended formulations, we can derive the standard formula-
tions involving edge variables alone as well as several new
valid inequalities for the multiway cut. This is described in
the next theorem.

Theorem 4. Let L denote a subgraph of G which contains
some terminal nodesv [ T, which we label asv1, . . . , vp,
and at least one nonterminal node w[ V\T. Suppose that
the edges of L can be oriented in such a way that there are
exactly q internally node disjoint paths from eachvj to w,
that is, for all j 5 1, . . . , p, all the paths fromvj to w are
node-disjoint except for the nodesv j and w. Then,

O
e[E~L!

x~e! $ q~ p 2 1!

is a valid inequality for the multiway cut problem which is
contained in the projection of(EF1) onto the space of the
x variables.

Proof. It is not difficult to show that the above inequality
is valid. We prove a stronger result in that it is actually
contained in the projection of (EF1). Consider an orienta-
tion of the edges ofL so that there areq (fixed) internally
disjoint directed paths from each terminal nodev j to w. For
each edge (u, v) oriented fromu to v, let S(u, v) denote the
set of terminal nodes which use this edge along one of their
q paths tow. We have, from (EF1),

x~u, v! $ 1 2 O
vj[S~u,v!

yj~v! 2 O
vj¸S~u,v!

yj~u!.

Note that ifv Þ w thenS(u1, v), S(u2, v) are disjoint, since
the q paths from each terminal node tow are internally
disjoint. LetN1(v), N2(v) denote, respectively, the set of
in-neighbors and out-neighbors ofv under the orientation.
Let u [ N2(v). Note that the set {j : j [ S(v, u)} is
contained inø{ j : j [ S(r , v), r [ N1(v)}. Since ¥j

yj(v) 5 1, and

ø u[N2~v!S~v, u! 5 ø r[N1~v!S~r , v!,

we have

O
r[N1~v!

O
j[S~r,v!

yj~v! 5 O
u[N2~v!

O
j[S~u,v!

yj~v!

5 O
u[N2~v!

~1 2 O
j¸S~v,u!

yj~v!!.

Hence, we have

2 O
r[N1~v!

O
j[S~r,v!

yj~v! 1 O
u[N2~v!

$1 2 O
j¸S~v,u!

yj~v!% 5 0. (13)

On the other hand, each terminal node has degree at leastq,
and for each neighboru of a terminal node,

x~v j, u! $ 1 2 yj~u!.

So,

O
u[N2~vj!

x~v j, u! $ q 2 O
u[N2~v!

yj~u!.

For the nodew, since w has no out-neighbor, and each
terminal has exactlyq internally disjoint paths tow,

O
r[N1~w!

O
j[S~r,w!

yj~w! 5 q O
j

yj~w! 5 q.

By (13),

O
e5~u,v![E~L!

x~u, v!

$ O
e5~u,v![E~L!

$1 2 O
j[S~u,v!

yj~v! 2 O
j¸S~u,v!

yj~u!%

5 qp 1 O
vÞvj,vÞw

~ 2 O
r[N1~v!

O
j[S~r,v!

yj~v!

1 O
u[N2~v!

$1 2 O
j¸S~v,u!

yj~v!%)

2 O
r[N1~w!

O
j[S~r,w!

yj~w! $ qp 2 q.

Hence, the result follows. ■

As an example, pick any two nodesvr andvs in T and let
L be any path of length not less than 1 between them. The
theorem implies that

O
e[L

xe $ 1.

If we apply the theorem to every path between every pair of
terminal nodes, we get thepath formulationof the multiway
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cut problem. To describe this formulation, letP(i , j ) be the
set of paths between terminalsvi andv j:

~PF! ZPF 5 min O
e[E

cexe

s.t. O
e[p

xe $ 1; ; p [ P~i , j ! ; v i, v j [ T

0 # xe # 1.

As another example, pick a treeS on G all of whose
leaves are inT and no terminal node is a nonleaf node. Call
such a tree aT-tree. Then, by the theorem, we get

O
e[E~S!

xe $ uSù Tu 2 1,

which are called the tree inequalities. Generating all tree
inequalities gives us another formulation called thetree
formulationthat was considered by Chopra and Rao [6] and
Cunningham [7]. To describe this formulation, let7 be the
set of allT-trees:

~TF! ZTF 5 min O
e[E

cexe

s.t. O
e[E~S!

xe $ uSù Tu 2 1; S[ T

0 # xe # 1.

In the same way, one can derive the odd-wheel inequal-
ities and bipartite inequalities. These are known to be facets
of the multiway cut polytope. (See Chopra and Rao [6]).

2.1. Fractional Extreme Points

The extended formulations considered above are rather
powerful as their projections contain a large collection of
facet-defining inequalities. The following example, taken
from Cunningham [7], shows, however, that there are frac-
tional extreme points in (EF1) and also (EF2).

For the above example, nodes 1, 3, and 5 are the terminal
nodes. We have the following fractional extreme point:

yi~i ! 5 1, yi~i 1 1! 5 yi~i 2 1! 5 zi~i , i 1 1!

5 zi~i , i 2 1! 5 zi~i 2 1, i 1 1! 5
1
2

, i 5 3, 5;

y1~1! 5 1, y1~2! 5 y1~6! 5 z1~1, 2!

5 z1~1, 6! 5 z1~6, 2! 5
1
2
;

andy, z 5 0 otherwise. By this choice ofy, z, x(e) 5 1
2

for

all edges in the graph. Assuming thatc(u, v) 5 2 if the
edge (u, v) is incident to a terminal,c(u, v) 5 1 otherwise,
thenZEF1 5 ZEF2 # 7.5, while it can be easily seen the
cost of any multiway cut is at least 8, that is,IZMC $ 16/
15ZMC.

The computational experiments of Chopra and Owen [5]
showed that the formulations (EF1) and (EF2) consistently
yield high-quality bounds for the multiway cut problems.
The previous example shows that the gap can be as large as
16/15. We generalize the construction of this example to
give an example whose gap is asymptotically close to 10/9.

Define the graphG with nodes denotedv1, v2, . . . , vk

(terminals) andui , j, wherei Þ j , 1 # i , j # k. Note that
we assumeui , j anduj ,i to be indistinguishable. The edge set
of G consists of edges {vi, ui , j} for all j and {ui , j, ui ,k} for
all k Þ j Þ i . Let c(u, v) 5 k 2 1 if (u, v) is incident to
a terminal; otherwise,c(u, v) 5 1. When k 5 3, the
construction reduces to the preceding example.

Let yi(ui , j) 5 1
2
, zi(ui , j, ui ,k) 5 1

2
, zi(ui , j, v i) 5 1

2
for

eachi 5 1, . . . , k. Thus,x(u, v) 5 1
2

for all edges inG.
This yields a fractionalLP solution with cost

ZEF2 5
k~k 2 1!2

2
1

k~k 2 1!~k 2 2!

4
. (14)

On the other hand, consider an optimum multiway cut
solution. LetTi denote the set of nodes in the same com-
ponent as the terminalv i. Let Ai denote the number of nodes
in Ti of the typeui , j for somej , Bi 5 uTi u 2 Ai. Then, there
are exactlyk(k 2 1) 2 ¥ i51

k Ai edges with costk 2 1 in
the cut. Furthermore, there are at least (k 2 2 2 Ai)( Ai)
edges of the type {ui , j, ui ,k} in the cut. For eachui , j, there
are (k 2 2) other neighbors of the typeuj ,k. Hence, there
are at least (k 2 2)¥ i51

k Ai 2 2 ¥ i51
k Bi edges of the type

{ ui , j, uj ,k} in the cut, the last term arising because there are
at most 2Bi edges between the nodes enumerated byAi and
Bi which do not belong to the cut. Note that each edge {ui , j,
ui ,k} in the cut will be counted twice in this way as we vary
over i . Hence, we have

IZMC $ ~k 2 1!~k~k 2 1! 2 O
i51

k

Ai! 1
1
2
$O

i51

k

~k 2 2 2 Ai!

3 ~ Ai! 1 ~k 2 2!O
i51

k

Ai 2 2O
i51

k

Bi} ~15!

5 ~k 2 1!k~k 2 1! 2 O
i51

k

Ai 2 O
i51

k Ai
2

2
2 O

i51

k

Bi. (16)

Since¥i51
k Ti 5 ¥ i51

k ( Ai 1 Bi) 5 k(k 2 1)/ 2, we have
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IZMC $ k3 2

O
i

Ai
2

2
1 o~k3!.

It is easy to see that¥ i Ai
2 is maximized when

● The nodeui , j belongs to eitherTi or Tj.
● Ai Þ Aj if i Þ j .

Hence,

O
i

Ai
2 # 12 1 22 1 · · ·1 ~k 2 1!2 5

k3

3
1 o~k3!.

Using this bound, we haveIZMC $ [(5k3)/6] 1 o(k3).
Thus, IZMC/ZEF2 $ 10/9 asymptotically.

2.2. Connection with Quadratic Zero–One
Programming

To strengthen the formulations further, we can consider
stronger linearizations of the quadratic termsyj(u) yj(v).
The problem of linearizing quadratic terms of this type has
been addressed within the context of unconstrained qua-
dratic zero-one programming problems, leading to the Bool-
ean Quadric polytope (BQP) (see Padberg [14] for a com-
prehensive treatment of the subject). The polyhedron
(BQP) is also called the correlation polytope by some
authors [12]. In this way, all valid inequalities known for the
BQP can easily be converted to valid inequalities for the
multiway cut problem. For instance, we can add the follow-
ing valid inequalities:

● zj(u, u) 1 zj(v, w) $ zj(u, v) 1 zj(u, w),
● zj(u, u) 1 zj(v, v) 1 zj(w, w) $ 1 1 zj(u, v) 1 j(v, w)

1 zj(u, w).

Unfortunately, these valid inequalities do not cut off the
fractional extreme point of Figure 1.

3. RELATION BETWEEN THE MULTIWAY
CUT AND THE INDEPENDENT SET
PROBLEM

In this section, we establish that the multiway cut problem
on G can be solved as an independent set problem on a
related graphI (G). We then use this connection to establish
a new stronger extended formulation for the multiway cut
problem.

We first describe the underlying intuition for our formu-
lation. Consider a multiway cut solutionx. For each termi-
nal vj ( j 5 1, . . . , k), there is a set of nodes inG which
belongs to the same partition as terminalv j. LetEj be the set
of edges induced by these nodes (and terminalv j). Clearly,
the union of these edges (overj ) is the complement of those
edges in the multiway cut solution. We attach a label to
these edges, with labelj assigned to edges in the setEj. We
will construct a new graphI (G) such that nodes in this
graph correspond to the edges (with a label attached) inG.
Furthermore, using edges in a multiway cut solution, and by
selecting the labels appropriately, we can obtain a corre-
sponding independent set inI (G).

Formally, given a graphG, let I (G) denote the graph
with node set

$~u, v, j ! : ~u, v! [ E~G!, j

5 1, 2, . . . ,k%\$~v j, u, i ! : i Þ j , ~v j, u! [ E~G!%.

Note that nodes of the type (vj, u, i ) with i Þ j do not exist
in I (G) since the edge (vj, u) will never be in the same
partition as terminalv i. Let the edge set ofI (G) consist of
edges of the type

$~~u1, w1, i !, ~u2, w2, j !! :

i Þ j ; u$u1, w1% ù $u2, w2%u $ 1%.

Thus, two nodes inI (G) are adjacent if the corresponding
edges inG are adjacent, unless the label attached to the
edges (inG) are identical.

Consider a maximal independent (stable) setI in I (G).
Let Fj 5 {( u, v) [ E(G) : (u, v, j ) [ I }. The edge-
induced subgraphsG[Fj] are node disjoint in the graphG,
sinceI is a stable set. Moreover, by maximality ofI , each
nonterminal node must be a node in one of the subgraphs
G[Fj]. This partition induces a solution to the multiway cut

Fig. 1. An example with fractional extreme points.
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problem and vice versa. For each node (u, v, j ) in I (G), we
assign costsc(u, v). Then, the cost of the multiway cut in
G and the cost of the maximum independent set inI (G) are
related as follows:

IZMC 5 O
~u,v![E~G!

c~u, v! 2 max$c~I ! : I stable set inI ~G!%.

The problem of finding a maximum weight stable set in
I (G) can be formulated as

~IREF! ZIREF 5 max O
~u,v![E

O
j51

k

c~u, v! zj~u, v!

subject to zi~u, v! 1 zj~u, v! # 1,

i Þ j , ~u, v! [ E (17)

zi~u, v! 1 zj~u, w! # 1, i Þ j , ~u, v!, ~u, w! [ E (18)

zj~u, v! [ $0, 1%, ; j , ~u, v! [ E. (19)

Let (REF) denote the linear relaxation of (IREF).
This correspondence has many interesting consequences:

As an example, since the multiway cut for fixedk $ 3 is
NP-hard, we obtain as a direct corollary that the maximum
independent set problem on ak-partite graph (k $ 3) is also
NP-hard.* In addition, many classes of facet-defining ine-
qualities for the stable set problem can be interpreted (via
proper translation) as valid inequalities for the multiway cut
problem.

For instance, a natural way to strengthen (REF) is to
include the maximal clique inequalities (cf. [2]) for the
stable set problem. The maximal cliques inI (G) are of the
form

$~u, w1, 1!, . . . , ~u, wk, k!%,

where (u, wi) [ E(G) or

$~e1, 1!, . . . , ~ek, k!%,

whereei [ {( u, w), (u, v), (v, w)} are edges of a triangle
in G.

Putting all these together, we have the following valid
relaxation for the multiway cut problem:

~IND! ZIND 5 min O
~u,v![E

c~u, v!~1 2 O
j

zj~u, v!!

subject to O
j

zj~u, wj! # 1;

; u, with wj adjacent tou (20)

O
j

zj~ej! # 1; ej edges of a common triangle (21)

0 # zj~u, v! # 1, ; j , ~u, v! [ E. (22)

It is not difficult to see that (IND) is at least as strong as
(EF2) [and, hence, (EF1, EF3)].

Theorem 5. If G is triangle free, then ZIND 5 ZEF2; else,
ZIND $ ZEF2.

Proof. Let (z) be an optimal solution to (IND). Let zj(e)
5 0 if e is incident to a terminalvl with l Þ j . Let yj(u)
5 maxe zj(e) where the maximum is taken over all edgese
incident tou in G, and (e, j ) [ V(I (G)). Let yj(vl) 5 0 if
l Þ j . Then, the solution (z, y) satisfies

O
j51

k

zj~u, v! # 1 ; ~u, v! [ E;

zj~u, v! # min~ yj~u!, yj~v!! ; ~u, v! [ E;

O
j51

k

yj~u! # 1 ; u [ V \T;

yj~v j! # 1 ; j 5 1, . . . , k.

In (EF2), we can increase the value ofy to ensure equality
at constraints (1)–(3). In this way, the modified (z, y) is
clearly feasible in (EF2) with the same objective value as
ZIND. Hence,

ZEF2 # ZIND.

On the other hand, ifG does not contain any triangles, the
constraints in (EF2) imply that

O
j51

k

zj~u, wj! # O
j51

k

yj~u! 5 1.

Hence,ZIND # ZEF2. ■

Consider the example as shown in Figure 1. Recall that

yi~i ! 5 1, yi~i 1 1! 5 yi~i 2 1! 5 z1~i , i 1 1!

5 z1~i , i 2 1! 5 z1~i 2 1, i 1 1! 5
1
2
, i 5 1, 3, 5.

* We believe that this result is known but we have not been able to
locate any reference in the literature.
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This fractional optimal solution violates the triangle in-
equality

z1~2, 6! 1 z3~2, 4! 1 z5~4, 6! # 1.

Hence, (IND) can be strictly stronger than those formula-
tions considered in the previous section.

In general, the clique constraints for the independent set
problem cannot be separated in polynomial time (unlessP
5 NP). In this case, because of the specific nature ofI (G),
we can separate the clique constraints inI (G) in polynomial
time. Hence, (IND) is solvable in polynomial time via the
ellipsoid algorithm.

Theorem 6. (IND) is solvable in polynomial time.

Proof. For each nodeu in G, the inequalities

O
j

zj~u, wj! # 1, ; wj adjacent tou,

are satisfied if and only if the inequality is satisfied by a
single choice ofwj. In particular, choose

wj 5 argmax$ zj~u, w! : w adjacent tou%.

Similarly, the inequalities corresponding to the triangles can be
checked by verifying only for the caseej 5 argmax{zj(e),
zj( f ), zj(g)}. ■

It follows directly from the theory of perfect graphs ([2])
that

Theorem 7. If I (G) is a perfect graph, formulation(IND)
for the multiway cut problem is integral.

Note that fork 5 2 (i.e., for thes-t cut problem)I (G) is
bipartite and is therefore a perfect graph. Thus, (IND) is
always integral in this case.

Other valid inequalities for the multiway cut problem can
be constructed from facets for the independent set problem.
For example, the well-known odd-cycle inequalities for the
stable set problem translate to

O
i51

l

zj~i!~ei! # uCu/ 2, (23)

whereC 5 {( ei, j (i ))} i51
l is an odd cycle inI (G). It is well

known (see [11]) that the odd-cycle inequalities can be
separated in polynomial time.

3.1. Polynomially Solvable Cases of the
Multiway Cut Problem

Chopra and Owen [5] showed that (EF2) is integral when
the underlying graphG is a tree. We show that this result is
a direct corollary of Theorem 7. We will need some defi-
nitions and terminology from graph theory. LetG andH be
two distinct graphs, each containing a clique of sizek. Let
K1 andK2 be cliques of sizek in G andH, respectively. By
gluing G and H together on ak-clique, we obtain a new
graph L with V(L) 5 (V(G)\V(K1)) ø (V(H)\V(K2))
ø V(K), whereK is a clique of sizek, andf1: V(K1)3 V(K)
andf2: V(K2)3 V(K) are 1–1 maps, withe 5 (u, v) [ E(L)
if and only if

u, v¸V~K!, ~u, v! [ E~G! ø E~H!, or

u, v both inV~K!, or

v [ V~K!, u [ V~G!\V~K!, ~u, f1
21~v!! [ E~G!, or

v [ V~K!, u [ V~H!\V~K!, ~u, f2
21~v!! [ E~H!.

Theorem 8 [5]. Formulation (EF2) is integral when G is
a tree.

Proof. Since G does not contain any triangles, (EF2)
coincides with the formulation (IND). It suffices, then, to
show thatI (G) is perfect. IfG corresponds to a star onn
1 1 nodes, thenI (G) is a completen-partite graph and
therefore perfect. Since all treesG are formed by “gluing”
star graphs on cut-edges,I (G) is formed by clique-gluing of
complete multipartite graphs. Since clique-gluing opera-
tions preserve perfection (cf. [2]),I (G) is perfect, whenG is
a tree. Therefore, (IND) and, hence, (EF2) is tight in this
instance. ■

This result is interesting, as the multiway cut problem
over trees has an important generalization which arises in
biomathematics. The generalized multiway cut problem in-
troduced in Erdos and Sze´kely [9] is as follows: Given a
graphG 5 (V, E) and a partialk-coloring of the nodes, that
is, a subsetV9 # V and a functionf : V9 3 {1, . . . , k},
find an extension off to V such that the total weight of edges
with different colored endpoints is minimized. Erdos and
Székely [9] contains a nice illustration of how this problem
arises naturally in the study of evolutionary trees. They also
constructed a polynomial time dynamic programming algo-
rithm for the generalized multiway cut problem on trees. In
(EF2), this amounts to setting

yf~u!~u! 5 1, yj~u! 5 0 otherwise,

for eachu in V9. Since faces of an integral polytope are also
integral, the generalized multiway cut problem is also
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solved by the modified version of (EF2) whenG is a tree.
Using this notion of a generalized multiway cut, it follows
directly (see Erdos and Sze´kely [9]) that if the set of
terminalsV(H) in G intersects every cycle inG then by
splitting the terminals into multiple terminals with the same
colors (see Fig. 2 for the splitting operation) we can trans-
form the multiway cut problem onG to a generalized
multiway cut problem on a forest. Hence, the multiway cut
problem is solvable in polynomial time if the terminals
intersect every cycle inG.

In the rest of this section, we exploit the stronger formu-
lation (IND) to improve on these results.

Let G be a graph that can be obtained via node gluing of
triangles and edges (see Fig. 3 for an example). We call
such graph atriangular cactus.

Lemma 9. If G is a triangular cactus, I(G) is perfect.

Proof. We only sketch the main idea of the proof. We
proceed by induction, using the fact thatG is built up by
node gluing of edges and triangles. The case whenG is a
triangle or an edge is trivial. Suppose now thatG is formed
by node gluing of 2 triangular cactiG1 andG2 at the node
v. Let M be a node-induced subgraph ofI (G). Let H(M) be
the corresponding set of labeled edges inG. Let q(M)
denote the size of a maximum clique inM. We only need to
show that the chromatic number ofM is at mostq(M). All
the labeled edges inH(M) that are incident tov induce a
complete multipartite subgraph inI (G) which can be col-
ored using at mostq(M) colors. With these nodes colored,
the problem reduces to that of two smaller coloring prob-
lems onM ù I (G1) and M ù I (G2). It follows from the
induction hypothesis that each of these two problems can be
colored using at mostq(M) colors. ■

Theorem 10. If the set of terminals T in G intersects every
cycle of length greater or equal to4, then the multiway cut
problem is solvable in polynomial time.

Proof. By splitting terminals as in Erdos and Sze´kely [9]
(see also Fig. 2), the multiway cut problem in the above
theorem can be transformed to a generalized multiway cut
problem on triangular cactus. Hence, the theorem follows
immediately from Lemma 9. For details, we refer the read-
ers to the original proof in [9]. ■

4. TIGHTNESS OF THE LP RELAXATIONS

In this section, we analyze the tightness of the various LP
relaxations proposed in the previous sections. Note that the
technique of Cunningham [7] implies a bound of 2 for these
formulations, but his analysis uses the result of Lova´sz’s
multiflow theorem. On the other hand, Dalhaus et al. [8]
proposed a 2-approximation algorithm for the multiway cut
problem. We show that the technique of Dalhaus et al. can
be suitably extended to analyze the LP relaxations obtained
above. This is achieved via a suitable randomized rounding
extension of their heuristic. The rounding approach, coupled
with better combinatorial approximation algorithms for the
4- and 8-terminal cut problems, led naturally to new and
tighter LP relaxations for the corresponding problems.

Randomized Rounding Heuristic H.

1. Solve the relaxation (EF3), obtaining an optimal solu-
tion (x# , y# ).

2. Generate a random numberU, uniformly between 0 and 1.

3. For each nodeu and j , setyj(u) to 1 if U # y# j(u) and
0 otherwise. In this way, setsSj (not necessarily disjoint)
are generated,j 5 1, . . . , k, such thatSj contains
terminal nodevj but not v i for i Þ j [recall thatyj(v i)
5 0 if i Þ j ]. Computec(d(Sj)). Let Smax 5 argmax
c(d(Sj)).

4. The proposed solution is the set of edges in
D5ø j :SjÞSmax

d~Sj!.

Fig. 3. Triangular cactus.

Fig. 2. Splitting of terminals.
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Clearly, the solution is feasible for the multiway cut
problem. LetZH be the value of the heuristic.

Theorem 11. For c $ 0, IZMC # E[ZH] # 2(1 2 1/k)ZEF3.

Proof. Clearly, the value of the multicutD is

c~D! # ~1 2 1/k!O
j

c~d~Sj!!.

Since

P$~u, v! [ d~Sj!% 5 P$~ yj~u! 5 1, yj~v! 5 0! ø ~ yj~u!

5 0, yj~v! 5 1!% 5 P$min~ y# j~u!, y# j~v!! # U

# max~ y# j~u!, y# j~v!!% 5 uy# j~u! 2 y# j~v!u,

we have

E@O
j

c~d~Sj!!# 5 O
j51

k O
~u,v![E

c~u, v! P$~u, v! [ d~Sj!%

5 O
j51

k O
~u,v![E

c~u, v!uy# j~u! 2 y# j~v!u.

From (EF3), we know that

O
j51

k

uy# j~u! 2 y# j~v!u # 2x# ~u, v!.

Hence,

E@O
j

c~d~Sj!!# # 2 O
~u,v![E

c~u, v! x# ~u, v!.

Therefore,

E@ZH# 5 E@c~D!# # ~1 2 1/k! E@O
j

c~d~Sj!!#

# 2~1 2 1/k! ZEF3. ■

Using the conditioning method (see Alon and Spencer
[1]), we can make Step 2 of the randomized heuristic
deterministic. So, we obtained an approximation algorithm
that delivers a multiway cut at most twice the optimal.
Another easier way to obtain a deterministic 2-approxima-
tion algorithm is to find, for eachj , a minimum cut con-
taining the terminalv j but not the other terminals, this time
among the sets {vj, u1, u2, u3, . . . } with the nodes ordered
(in nonincreasing order, breaking ties arbitrarily) according
to the value ofyj(ui). Dalhaus et al. [8] constructed directly
a combinatorial algorithm to approximate the multiway cut

problem, also within a bound of 2(12 1/k). However, our
result is a little stronger in that the bound on the heuristic
solution is in terms of the linear programming relaxation
and not the optimal integer solution.

4.1. The Case k 5 4

Dalhaus et al. [8] showed that the approximation bound3
2

can be improved further to4
3

for the 4-terminal cut problems.
By a randomized version of their heuristic, we propose next
a linear relaxation attaining the same worst-case bound of4

3
for the 4-terminal cut problem:

~4T! Z4T 5 min O
~u,v![E

c~u, v! x~u, v!

subject to 2x~u, v! $ O
i52

4

uy1~u! 1 yi~u! 2 y1~v! 2 yi~v!u;

; ~u, v! [ E (24)

and constraints (1)–(4). Note that the above relaxation is
valid only for the casek 5 4. In this regard, it is less
general than the formulation in (EF3). Furthermore, this
convex programming problem is essentially a linear pro-
gram. We keep this form as it makes the following analysis
more transparent. LetIZ4T be the corresponding optimal
integer programming value.

Theorem 12. IZ4T #
4
3

Z4T.

Proof. Let (x, y) be an optimal solution toZ4T. We
generate randomly cuts of the formF(1, i ), which separates
terminalsv1, v i from the other two terminals, in the fol-
lowing way:

● F(1, i ) 5 A. GenerateU randomly on [0, 1].
● If y1(u) 1 yi(u) $ U, thenF(1, i ) 4 F(1, i ) ø { u}.

Repeat for allu.

Note that the edge (u, v) is in the cutsetF(1, i ) only when

y1~u! 1 yi~u! $ U, y1~v! 1 yi~v! , U; or

y1~v! 1 yi~v! $ U, y1~u! 1 yi~u! , U.

Let d(S) denote the set of edges in the cut setS:

E@c~d~F~1, i !!!# 5 O
~u,v!

c~u, v!

3 uy1~u! 1 yi~u! 2 y1~v! 2 yi~v!u.

Now, since the union of any two of the three cuts generated
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is a valid 4-terminal cut, by taking the minimumZH of the
three feasible solutions, we have

ZH #
2
3 O

i52

4

E~c~d~F~1, i !!! #
4
3

Z4T. ■

Remark. Similarly, the combinatorial approximation algo-
rithm for the 8-way-cut problem [8] can be turned into an
LP formulation with equivalent bound to the 8-way-cut
problem.

5. THE MULTICUT PROBLEM

The results in the previous section have natural extensions
to the more general multicut problem. The technique of
Dalhaus et al. [8] can be extended to yield a 2a(H)(1
2 1/k) approximation algorithm for the multicut problem,
wherea(H) denotes the size of the maximum independent
set in the demand graphH. In contrast, Garg et al. [10]
designed anO(loguV(H)u) approximation algorithm for this
problem. Neither bound dominates the other. The former
can be much better in a dense graph, as in the case of the
multiway cut problem, whereH is a clique. The bound
obtained by Garg et al. [10] is via a natural linear relaxation
of the multicut problem, based on a multicommodity flow
formulation. In this section, we introduce a different linear
formulation for the multicut problem, which can be viewed
as the LP counterpart for the extension of Dalhaus et al.’s
combinatorial algorithm:

~M2! ZM2 5 min O
~u,v![E

c~u, v! x~u, v! (25)

subject to 2a~H! x~u, v! 1 O
j

zj~u, v! $ O
j[S

yj~u!

1 O
j¸S

yj~v!; ~u, v! [ E, S, V~H! (26)

zj~u, v! # yj~u!, ; j , ~u, v! [ E (27)

zj~u, v! # yj~v!, ; j , ~u, v! [ E (28)

O
j

yj~u! # a~H!, ; u [ V (29)

yj~sj! 5 1; ; j (30)

yj~v! 5 0; if ~v, sj! [ E~H! (31)

0 # x~u, v!, yj~u! # 1, ; j , ~u, v! [ E. (32)

Let IZM denote the value of an optimal multicut solution.

Theorem 13. ZM2 # IZM. ZM2 can be computed in poly-
nomial time.

Proof. Consider the incidence vectorx of any multicut
solution. Letyj(u) 5 1 if nodeu andvj [ V(H) lie in the
same component in the multicut. Letzj(u, v) 5 yj(u) yj(v).
If u, v lie in the same componentC, then

O
j[S

yj~u! 1 O
j¸S

yj~v! 5 uV~H! ù Cu 5 O
j[V~H!

zj~u, v!.

If u, v lie in two different componentsC1 andC2, then@
S , V(H):

O
j[S

yj~u! 1 O
j¸S

yj~v! # 2a~H!.

Hence,

2a~H! x~u, v! 1 O
j

zj~u, v! $ O
j[S

yj~u! 1 O
j¸S

yj~v!

is a valid inequality. Clearly,¥j yj(u) # a(H) is also a
valid inequality. Since

max$O
j[S

yj~u! 1 O
j¸S

yj~v! : S, A%

is solvable in polynomial time (see [5]), we can solve (M2)
in polynomial time by the ellipsoid method. ■

We next apply the same randomized rounding heuristic
H to the optimal solution of (M2):

Theorem 14. IZM # E[ZH] # 2a(H)S1 2
1

uV~H!uDZM2.

Proof. Let (x# , y# , z#) be an optimal solution to (M2).
Then,

E@O
j

c~d~Sj!!# 5 O
j

O
~u,v![E~G!

c~u, v!uy# j~u! 2 y# j~v!u

# O
~u,v![E~G!

c~u, v!$ O
j[T~u,v!

~ y# j~u! 2 z# j~u, v!!

1 O
j¸T~u,v!

~ y# j~v! 2 z# j~u, v!!

# 2a~H! O
~u,v![E~G!

c~u, v! x# ~u, v!

5 2a~H! ZM2.
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By discarding the setSmaxwith the maximum cut, we obtain
a multicut solutionD9 such that

E@ZH# 5 E@c~D9!# # ~1 2 1/k! E@O
j

c~d~Sj!!#

# 2a~H!S1 2
1

uV~H!uDZM2. ■

6. CONCLUDING REMARKS

In this paper, we proposed several new reformulations for
multiway cut and multicut problems. We showed that these
formulations are derived from a tight nonlinear formulation.
By reducing the multiway cut problem to the maximum
independent set problem, we also bring the tools of perfect
graph theory to bear on several solvable instances of the
multiway cut problems. Furthermore, we show that the
well-known Dalhaus et al. algorithm can be used in a
randomized rounding framework to analyze the worst-case
behavior of these formulations. Several problems are left
open in the paper; for instance, we have not been able to
close the gap between the upper-bound 2 and the worst-case
example which attains a bound of 10/9 asymptotically.
Furthermore, we have not been able to analyze whether the
stronger formulation (IND) yields a better bound in this
case.

The research of one of the authors (D.B.) was partially sup-
ported by a Presidential Young Investigator Award DDM-
9158118.
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