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SUMMARY

We study the performance of various upwind techniques implemented in parabolic �nite element discretiza-
tions for incompressible high Reynolds number ow. The characteristics of an ‘ideal’ upwind procedure are
�rst discussed. Then the streamline upwind Petrov=Galerkin method, a simpli�ed version thereof, the Galerkin
least squares technique and a high-order derivative arti�cial di�usion method are evaluated on test problems.
We conclude that none of the methods displays the desired solution characteristics. There is still need for
the development of a reliable and e�cient upwind method with characteristics close to those of the ‘ideal’
procedure. Copyright ? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the �nite element method using the standard Galerkin procedure for incompressible ows,
there are two major sources of numerical instability. The �rst source of instability is due to an
inappropriate combination of element interpolation functions for the velocity and pressure. This
instability of the formulation is observed even in very low Reynolds number ows. The other
source of instability is due to the presence of the convective term and is observed when the
convective term is dominant.
To remedy the �rst source of numerical instability, the theory of the inf–sup condition for

incompressible media is available, see, e.g. [1; 2]. It is shown that the �nite element method
is optimally convergent if an appropriate combination of �nite element spaces for velocity and
pressure are used to satisfy the inf–sup condition for incompressible media. This condition limits
the combinations of appropriate velocity and pressure interpolation functions. Some methods have
also been proposed to stabilize the �nite element formulation while still using equal-order of
interpolations for the velocity and pressure, see, e.g. [1; 3–6]. In these methods, a numerical
stabilization term is introduced to ‘damp’ the pressure oscillations.
To remedy the second source of numerical instability, upwind methods are employed. Various

upwind techniques have been proposed and are employed in �nite element solutions, including
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the Streamline Upwind=Petrov Galerkin (SUPG) method [7; 8], the Galerkin Least Squares (GLS)
method [9], upwinding based upon bubble functions [3; 10; 11], the Taylor–Galerkin based method
[12; 13] and the High-order Derivative Arti�cial Di�usion (HDAD) method [14]. A few compar-
isons of some of these techniques are available [15], but there is still little understanding as to
how these methods perform comparatively when used in a broad spectrum of solutions.
In solving a high Reynolds number problem, an ‘ideal’ solution scheme would have the following

properties.

1. Property of discretization errors: uniform and optimal convergence of the �nite element solu-
tions to the solution of the mathematical model, and

2. Property of solution of �nite element equations: fast convergence in the iterations to solve the
algebraic �nite element equations for any mesh and up to very high Reynolds number ows.

The second property is clearly necessary in order to have an e�ective solution scheme. Note the
emphasis on obtaining the �nite element solution for any—of course, reasonable—mesh and very
high Reynolds number ows.
The �rst property entails a number of requirements, namely

(1) For any mesh, the method should give a reasonable solution.
(2) The method should give the highest possible (optimal) convergence in discretization errors.
(3) The method should not be ‘too sensitive’ to the mesh used.
(4) For any mesh, an error indicator should be available to evaluate the quality of the solution.
(5) If the error indicator indicates too large an error, re�ning the mesh should result into a good

solution with an acceptable error.
(6) The method should converge to the ‘exact’ solution of the mathematical model.

Considering these requirements, a reasonable solution means that the solution does not contradict
intuition or physical reasoning; for example the direction of ow should be intuitively correct. The
solutions should have no oscillations and as the mesh is re�ned, the overall ow �eld should
continuously change to approach the ‘exact’ solution of the mathematical model. Hence, denoting
the solution obtained using a given mesh by U(mesh), we want to have

U(coarse mesh)⊂U(�ne mesh)⊂U(�ner mesh)⊂ · · ·
The mathematical model we consider in this study is governed by the Navier–Stokes equations.

Hence, at the scale considered, laminar ow is assumed although high Reynolds number condi-
tions are speci�ed. The upwind �nite element solution procedure should be able to solve for the
laminar ow at high Reynolds number for at least two reasons. First, the laminar ow assumption
is generally used in the numerical solution as an initial approximation. Therefore, if the solution
cannot be obtained with this approximation, it is di�cult to continue the iterative solution intro-
ducing appropriate turbulence models. Second, at high Reynolds number, the ow is frequently
only turbulent in certain areas, and is still laminar in the other parts of the uid domain.
When the mesh is very coarse, the method should be able to obtain ‘a reasonable’ solution

even though the actual physical ow might contain instabilities. With a coarse mesh, the solution
will not be able to represent all the physical phenomena, such as boundary layers, backows, or
instabilities, but as the mesh is re�ned, increasingly more physical phenomena should be revealed
in the solution, while the overall ow should be similar to the coarse mesh solution. Eventually,
when the mesh is �ne enough, the method should also be able to solve for an unstable behaviour
of the ow in which case a transient analysis need be used.
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For example, let us consider the driven ow cavity problem, see Figure 1. The domain is
discretized initially into a mesh of 10 × 10 elements. The method should be able to solve the
problem when the Reynolds number is low, such as 10 or 100, without too much di�culty. When
the Reynolds number is greater than 1000, and then much greater than 1000, the iteration might
converge more slowly but an ideal method would still obtain a physically reasonable solution.
Of course, using the coarse mesh, boundary layers and circulation ows near the corners will not
be revealed, but as the mesh is re�ned, these physical phenomena will be presented.
Ideally, the method should be able to solve any Navier–Stokes ow problem as described above

up to a Reynolds number ∼107, because many engineering problems are de�ned at such high
Reynolds numbers.
The objective of this paper is to test some existing upwind methods for parabolic �nite elements

and determine whether the methods satisfy the requirements of the ‘ideal’ scheme discussed above.
Simple Galerkin discretizations using parabolic elements are generally more stable than using linear
elements; however, upwinding is still needed to solve high Reynolds number ows. The methods
that we consider here are the high-order derivative arti�cial di�usion method which is similar
to upwind methods used in �nite di�erence procedures, the Streamline Upwind Petrov=Galerkin
(SUPG) method [7; 8], a simpli�cation thereof, and the Galerkin Least Squares (GLS) technique
[9]. We use four test problems to measure the performance of the methods. Of course, our eval-
uation is by no means all encompassing in that, for example, we only consider four upwinding
procedures, we only solve a few test problems, we do not measure the solution errors, we do
not use specially aligned meshes to minimize these errors, and we solve the problems only with
parabolic elements. However, although these shortcomings are severe, we believe that the study is
valuable in contributing to the comparative evaluation of the existing upwind methods, and might
lead towards ideas to improve the solution schemes.

2. GOVERNING EQUATIONS

Let Vol and (0,T ) be the spatial and temporal domains, and let x∈Vol and t ∈ [0; T ] represent the
associated co-ordinates. Using a Cartesian co-ordinate system and indicial notation, the Navier–
Stokes equations for incompressible ow can be written as

vi; i=0 in Vol× (0; T )
�vi; t + �vi; jvj + p;i − �(vi; j + vj; i);j − fBi =0 in Vol× (0; T )

(1)

where vi; �; p; �, and fBi are the velocity in the xi-direction, uid density, pressure, uid viscosity,
and body force per unit volume in the xi-direction, respectively, and ( );t ; ( );i denote partial
di�erentiations with respect to time and xi-coordinate. The Dirichlet and Neumann type boundary
conditions are imposed at di�erent segments of the boundary S

vi = gi on Su

�ijnj = hi on Sf
(2)

where gi; hi are given functions; �ij is the stress component; nj is the component of the boundary
unit normal vector and Su; Sf are complementary subsets of S. Note that we do not consider the
energy equation because the �nite element solution of the above equations will already reveal
su�ciently the basic characteristics of the solution schemes.
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Figure 1. Schematics of solutions of driven ow cavity problem
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3. FINITE ELEMENT DISCRETIZATIONS

We want to evaluate the performance of upwind methods when using parabolic element discretiza-
tions. For incompressible ow at low Reynolds number the most e�ective nine-node elements are
the 9=3 (linear pressure interpolation) element and the 9=4-c (bilinear continuous pressure interpo-
lation) element. These discretizations contain the highest possible order of pressure interpolation
while satisfying the inf–sup condition for incompressible analysis (without use of a numerical
factor as employed in stabilized �nite element discretizations), and are therefore excellent can-
didates for high Reynolds number ow solutions. We use the 9=4-c element for the solution of
high Reynolds number ow with the SUPG, simpli�ed SUPG and high-order derivative arti�cial
di�usion upwind methods embedded in the discretizations. On the other hand, for the Galerkin
least squares method we use the usual approach of equal-order interpolations and numerically sta-
bilizing the velocity and pressure components [1]. Hence, we use the nine-node element with all
nodes employed to interpolate the velocity and pressure variables.

3.1. High-order Derivative Arti�cial Di�usion (HDAD) method

The high-order derivative arti�cial di�usion method is considered because the method is very
simple and computationally e�cient. The method for incompressible ows is an extention of the
technique used for compressible ows [14]. In the solution, the two-dimensional quadrilateral 9=4-c
element is employed to discretize the domain.
The solution and weighting functional linear spaces† are

Vh =
{
vh | vh ∈L2(Vol); @(vh)i@xj

∈L2(Vol); i=1; 2; 3; j=1; 2; (vh)1 ∈Q1(Vol(m));

(vh)2;3 ∈Q2(Vol(m)); (vh)i|Su = gi(t); i=2; 3
}

Wh =
{
wh |wh ∈L2(Vol); @(wh)i@xj

∈L2(Vol); i=1; 2; 3; j=1; 2; (wh)1 ∈Q1(Vol(m));

(wh)2;3 ∈Q2(Vol(m)); (wh)i|Su =0; i=2; 3
}

where, as usual, L2(Vol) is the space of square integrable functions in the volume, and Q1(Vol
(m))

and Q2(Vol
(m)) denote the bilinear and biquadratic functions in the reference element m.

The �nite element formulation for the incompressible ow using the high-order derivative arti-
�cial di�usion method is:
Find (p; v1; v2)∈Vh such that for all ( �p; �v1; �v2)∈Wh∫

Vol
�pvi; i dVol= 0∫

Vol
{ �vi(�vi; t + �vi; jvj)− �vi; ip+ �vi; j�(vi; j + vj; i)} dVol

+
∑
m

∫
Vol(m)

�vi; jj�j�|vj|vi; jj dVol(m) =
∫
Vol
�vifBi dVol +

∫
Sf

�vSi f
S
i dS (3)

† Actually, to be precise, Vh is not a linear space, but an a�ne manifold that can be thought of as obtained by translating
the linear space Wh
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Regarding this equation, the boundary traction term in the xi-direction is de�ned as

fSi = {−p�ij + �(vi; j + vj; i)}nj (4)

where nj is the xj-direction cosine of the unit (pointed outward) boundary normal vector. �ij is
the Kronecker delta (i.e. �ij =1 for i= j, and �ij =0 for i 6= j).
The value of �j is de�ned as

�j =
1
9

(∣∣∣∣@xj@r
∣∣∣∣
)3

where r denotes the co-ordinates in the natural co-ordinate system of the element. The characteristic
length is de�ned as ∣∣∣∣@xj@r

∣∣∣∣ =
√(

@xj
@r1

)2
+
(
@xj
@r2

)2

The factor 19 in the �j de�nition is used to obtain full upwinding corresponding to the outer nodes
of the element in one-dimensional ow conditions.
We note that the form of upwinding used in equation (3) is similar to high-order upwinding in

�nite di�erence methods. The upwinding is proportional to the second derivatives of the velocity
components, and is therefore of higher order, but in the form of equation (3), the amount of
upwinding is dependent on the directions of the co-ordinate axes. Our numerical experimentation
showed that this de�ciency appears to be not a serious drawback. However, other forms of HDAD
upwinding can of course be designed, including a scheme that would only apply arti�cial di�usion
in the streamline direction (and perhaps a controlled amount in the cross-direction).

3.2. Streamline Upwind=Petrov–Galerkin (SUPG) method

The SUPG method was originally proposed for the bilinear element [7]. We use the method
here for the quadratic 9=4-c element. Some authors extended the SUPG technique for use with a
quadratic element by using di�erent de�nitions of the SUPG parameter � for corner, mid-face and
centre nodes of the element [12; 16]. However, this approach leads to a complicated formulation.
The �nite element formulation that we use with the SUPG upwinding is:
Find (p; v1; v2)∈Vh such that for all ( �p; �v1; �v2)∈Wh∫

Vol
�pvi; i dVol= 0∫

Vol
{ �vi(�vi; t + �vi; jvj)− �vi; ip+ �vi; j�(vi; j + vj; i)} dVol

+
∑
m

∫
Vol(m)

�vi; kvk�{�vi; t + �vi; jvj + p; i − �(vi; j + vj; i); j − fBi } dVol(m)

=
∫
Vol
�vifBi dVol +

∫
Sf

�vSi f
S
i dS (5)

The value of � is de�ned as

�= h�(Ree)=2V
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Figure 2. Impinging uid ow over a slip-wall problem

Figure 3. Meshes used for the impinging uid ow over a slip-wall problem: (a) uniform; (b) distorted

where h is the characteristic length of the element, and

Ree = �Vh=�

V =
√
v21 + v

2
2

�(Ree) =

{
Ree=3; Ree63

1; Ree¿3

3.3. Simpli�ed SUPG (S-SUPG) procedure

In this solution we also use the 9=4-c element. The �nite element formulation for the incom-
pressible ow using the simpli�ed SUPG technique is:
Find (p; v1; v2)∈Vh such that for all ( �p; �v1; �v2)∈Wh∫

Vol
�pvi; i dVol= 0∫

Vol
{ �vi(�vi; t + �vi; jvj)− �vi; ip+ �vi; j�(vi; j + vj; i)} dVol

+
∑
m

∫
Vol(m)

�vi; kvk�{�vi; jvj − fBi } dVol(m) =
∫
Vol
�vifBi dVol +

∫
Sf

�vSfi f
S
i dS (6)
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The de�nition of � is as for the SUPG method. The reasoning for using this method is that the
convective term in the stabilization is dominant and the pressure and di�usive terms might not be
needed. Also, the transient term should not be needed since the upwinding is used to stabilize the
spatial solution variation.

3.4. Galerkin Least Squares (GLS) method

In this method, the 9-node (9=9-c) element is employed to discretize the domain with the usual
9-node interpolation of the velocity and the same 9-node interpolation for the pressure. The solution
and weighting functional linear spaces‡ are

Vh =
{
vh | vh ∈L2(Vol); @(vh)i@xj

∈L2(Vol); i=1; 2; 3; j=1; 2;

(vh)1;2;3 ∈Q2(Vol(m)); (vh)i|Su = gi(t); i=2; 3
}

Wh =
{
wh |wh ∈L2(Vol); @(wh)i@xj

∈L2(Vol); i=1; 2; 3; j=1; 2;

(wh)1;2;3 ∈Q2(Vol(m)); (wh)i|Su =0; i=2; 3
}

The �nite element formulation for the incompressible ow using the Galerkin least squares
method is:
Find (p; v1; v2)∈Vh such that for all ( �p; �v1; �v2)∈Wh∫

Vol
�pvi; i dVol +

∑
m

∫
Vol(m)

�p; i�{�vi; t + �vi; jvj + p; i
−�(vi; j + vj; i); j − fBi } dVol(m) = 0∫

Vol
{ �vi(�vi; t + �vi; jvj)− �vi; ip+ �vi; j�(vi; j + vj; i)} dVol

+
∑
m

∫
Vol(m)

{� �vi; t + � �vi; kvk − �( �vi; k + �vk; i); k} � {�vi; t + �vi; jvj + p; i

−�(vi; j + vj; i); j − fBi } dVol(m) =
∫
Vol
�vifBi dVol +

∫
Sf

�vSi f
S
i dS (7)

The value of � was de�ned in References [9; 17]

�= h�(Ree)=2�V

where

Ree =mh�Vh=4�

V =
√
v21 + v

2
2

�(Ree) =
{
Ree; Ree¡1
1; Ree¿1

‡ See footnote 1
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Figure 4. Solution of impinging uid ow over a slip-wall using the 9=9-c element with the GLS method: (a) streamlines;
(b) pressure in case 1; (c) pressure in case 2

and mh=1=12 for quadratic elements, see [15]. Hence, with this de�nition, maximum upwinding
is reached when �Vh=�=36, whereas in the SUPG method when �Vh=�=3.
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Figure 5. Convergence curves for the impinging uid ow over a slip-wall problem, case 1: (a) pressure error in L2-norm;
(b) velocity error in L2-norm

4. NUMERICAL TESTS

In this section we study the performance of the discretization and upwind methods summarized
in the previous section. First, we apply the methods to the solution of a problem, for which
we have the exact analytical solution, and we estimate the convergence rates of the methods.
Then we consider three problems to solve high Reynolds number ows. To solve the nonlin-
ear equations, we use the Newton–Raphson method and allow a maximum of 35 iterations to
reach the solution. We report the number of iterations required to solve the problems at di�er-
ent Reynolds numbers and report the largest Reynolds number for which the methods yield the
solutions.
The problem solutions can of course also be sought using the Galerkin method without up-

winding, and depending on the problem, convergence in the solution of the algebraic equations

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)



ON UPWIND METHODS FOR PARABOLIC FINITE ELEMENTS 327

Figure 6. Convergence curves for the impinging uid ow over a slip-wall problem, case 2: (a) pressure error in L2-norm;
(b) velocity error in L2-norm

is obtained for some reasonably high Reynolds number ows. However, the converged solutions
show oscillations and we do not include the results in this paper.

4.1. Convergence study problem

We consider the problem described in Figure 2. The problem consists of a jet impinging upon
a wall with a controlled body force. The uid is assumed to slip on the wall. The body force
functions are

fB1 = 5x1x
8
2 + 10x1x

3
2 + 60�x1x

2
2

fB2 = 0

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)
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Figure 7. Driven ow cavity problem

and the uid density is �=1. The exact solution for this problem is

v1 = −5x1x42 ; v2 = − 1
2 + x

5
2 ; p= 1

2x
5
2 − 1

2x
10
2 + 5�x

4
2

Two cases are solved. In case 1, we consider a di�usion dominated problem for which �=10.
In this case, the Reynolds number is Re=0·5025, based on the maximum velocity and the length
of the domain. In case 2, we consider a pure convection problem with �=0. We perform the
convergence study using 8× 8; 16× 16 and 32× 32 uniform and distorted meshes, see Figure 3
for the coarsest meshes used. The �ner meshes are obtained by simply subdividing the elements
of the coarser mesh. The errors measured are: the error in the calculated pressure in the L2-norm,
‖p − ph‖L2 , and the velocity error using the L2-norm, ‖v − vh‖L2 . The solutions of the problem
using the GLS method using the �nest mesh are shown in Figure 4.
The results of the convergence study for case 1 are shown in Figure 5 and for case 2 in Figure 6.
For the di�usion dominated problem, the measured orders of convergence of all discretizations

are the same and agree with a theoretical error analysis,

‖p− ph‖0 ∼ c1h2 (8)

and

‖v − vh‖0 ∼ c2h3 (9)

where c1 and c2 are constants. Futhermore, we notice that the convergence constants c1 and c2
are almost the same using the HDAD, SUPG and GLS procedures.
Note that using distorted element meshes does not change the order of convergence. However,

the convergence constants in equations (8) and (9) are changed.
In the pure convection case, the numerical study shows that the orders of convergence of

the velocity are less than in the di�usion-dominated case. The 9=4-c element discretization with

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)
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Table I. Number of iterations required to solve the
driven ow cavity problem with di�erent Reynolds

numbers using di�erent upwind methods

Re HDAD SUPG S-SUPG GLS

400 8 8 7 8
1000 7 8 6 8
2000 6 7 6 6
3000 5 6 5 5
4000 4 ∗ 5 6
5000 4 5 4
6000 4 4 4
7000 4 4 4
8000 4 4 4
9000 5 4 4
10 000 ∗ 4 4
11 000 5 4
12 000 5 4
13 000 5 4
14 000 6 5
15 000 6 4
16 000 6 4
18 000 13 4
20 000 ∗ 4
22 000 4
24 000 4
26 000 5
28 000 ∗
Note: Newton–Raphson method is used with convergence
tolerance= 10−6; the (∗) denotes iteration not converged

Figure 8. Solution of the driven ow cavity problem with Re=5000 using the 9=4-c element with high-order derivative
arti�cial di�usion method: (a) pressure contours; (b) velocity vectors

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)
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Figure 9. Solution of the driven ow cavity problem with Re=5000 using the 9=4-c element with simpli�ed SUPG method:
(a) pressure contours; (b) velocity vectors

Figure 10. Solution of the driven ow cavity problem with Re=5000 using the 9=9-c element with GLS method:
(a) pressure contours; (b) velocity vectors

the high-order derivative arti�cial di�usion method gives almost an order of convergence of 3.
The SUPG and GLS methods give almost the same orders of convergence, around 2, and the
simpli�ed SUPG method gives less than 2. Notice that, in this case, the use of distorted meshes
results in better convergence rates for all methods because the mesh distortions favour the ow
solution.
For the pressure variable, the discretizations using the HDAD, SUPG and GLS procedures give

as good orders of convergence as in the di�usion-dominated problem, and in some cases even
better values. Using the simpli�ed SUPG method the order of convergence is, however, less than
in the di�usion-dominated problem.

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)
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Figure 11. Solution of the driven ow cavity problem with Re=15 000 using the 9=4-c element with simpli�ed SUPG
method: (a) pressure contours; (b) velocity vectors

Figure 12. Solution of the driven ow cavity problem with Re=15 000 using the 9=9-c element with GLS method:
(a) pressure contours; (b) velocity vectors

4.2. Driven ow cavity problem

To compare the performance of the upwind methods described in the previous section in the
solution of high Reynolds number ows, we consider the driven ow cavity problem. In comparing
the methods, we increase the Reynolds number and focus on how high the Reynolds number can
be before convergence is no longer reached in the allowed (35) number of iterations. We also
measure how many iterations are required to solve the problem at di�erent Reynolds numbers.
The problem considered is described in Figure 7. The no-slip boundary condition is imposed on

the left, lower and right boundaries. On the upper boundary, we impose the condition v1 = 1; v2 = 0
distributed as shown in Figure 7. The domain is discretized into a uniform mesh of 20 × 20
elements. The Reynolds number of the problem is calculated based on the imposed velocity and
the width of the domain. Zero pressure is prescribed at the lower left corner and a steady-state

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)
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Figure 13. The ‘S’-shaped channel ow problem

Figure 14. The mesh used for the ‘S’-shaped channel ow problem

analysis is carried out. We perform runs with increasing Reynolds numbers as given in Table I
and record the number of iterations. The Newton–Raphson method is used to solve the nonlinear
equations with the convergence tolerance on the normalized norms of residuals in the velocities
and pressure (Rv= ‖�vh|=‖vh‖; Rp= ‖�ph|=‖ph‖) equal to 10−6. To reach the solutions for the
Reynolds numbers listed in Table I, we start from zero pressure and velocities as initial condition,
and use the converged solution of the lower Reynolds number case as the initial condition for the
next higher Reynolds number problem.
The solutions of the problem for Re=5000 using di�erent upwind methods are shown in

Figures 8–10. In the solutions, the high-order derivative arti�cial di�usion method gives the
largest pressure gradient and the GLS method gives the smallest pressure gradient. This is to
be expected since the GLS method contains an arti�cial di�usion in the pressure term. Fig-
ure 8(a) shows that the HDAD method solution contains slight pressure oscillations. The ve-
locity solution of the high-order derivative arti�cial di�usion method is similar to the solution
of the GLS method. The simpli�ed SUPG method gives a narrow banded velocity solution,
see Figure 9(b).
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Table II. Number of iterations required to solve the
‘S’-shaped channel problem with di�erent Reynolds

numbers using di�erent upwind methods

Re HDAD SUPG S-SUPG GLS

50 5 6 5 5
250 5 8 5 5
500 5 ∗ 5 6
750 5 5 ∗
1000 ∗ 5
1500 5
2000 6
2500 6
3000 4
3500 5
4000 5
5000 9
6000 8
7000 16
8000 9
9000 6
10 000 4
15 000 7
20 000 ∗
Note: Newton–Raphson method is used with convergence
tolerance= 10−6; the (∗) denotes iteration not converged

Figure 15. Solution of the “S”-shaped channel ow problem with Re=250 using the 9=4-c element with high-order
derivative arti�cial di�usion method: (a) pressure contours; (b) velocity vectors

The solutions of the problem for Re=15 000 using the simpli�ed SUPG and GLS methods are
shown in Figures 11 and 12. Note the signi�cant di�erence in the solutions obtained. As we see
from Table I, the GLS method is the last method to fail as the Reynolds number is increased.

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 47, 317–340 (2000)



334 D. HENDRIANA AND K. J. BATHE

Figure 16. Solution of the “S”-shaped channel ow problem with Re=250 using the 9=4-c element with SUPG method:
(a) pressure contours; (b) velocity vectors

Figure 17. Solution of the “S”-shaped channel ow problem with Re=250 using the 9=4-c element with simpli�ed SUPG
method: (a) pressure contours; (b) velocity vectors

4.3. S-shaped channel ow

Like for the driven ow cavity problem, this problem is considered to study the performance of
the upwind methods. We focus on establishing how high the Reynolds number of the problem can
be for a solution still to be obtained, and how many iterations are required for the solution. The
problem considered is described in Figure 13. The no-slip boundary condition is imposed on the
walls of the channel. At the inlet, we impose the velocity with a parabolic pro�le and maximum
unit velocity at the centre. At the outlet, zero tractions are imposed. The Reynolds number is
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Figure 18. Solution of the “S”-shaped channel ow problem with Re=250 using the 9=9-c element with GLS method: (a)
pressure contours; (b) velocity vectors

Figure 19. Solution of the “S”-shaped channel ow problem with Re=15 000 using the 9=4-c element with simpli�ed
SUPG method: (a) pressure contours; (b) velocity vectors

calculated based on the maximum inlet velocity and the height of the channel at the inlet. The
mesh used is shown in Figure 14.
A steady-state analysis is performed for each Reynolds number considered. The Reynolds num-

ber is increased as given in Table II. This table also gives the iterations required to solve the
problem using the di�erent upwind methods. The Newton–Raphson method is used to solve the
nonlinear �nite element equations and the convergence tolerance on the residual of normalized
velocities and pressure is 10−6. Like for the driven ow cavity problem, in solving the problem
with a certain Reynolds number, we use the solution of the lower Reynolds number as the initial
condition.
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Figure 20. The curved-channel ow problem

Figure 21. The mesh used for the curved-channel ow problem

Table III. Number of iterations required to solve
the curved channel ow problem with di�erent
Reynolds numbers using di�erent upwind methods

Re HDAD SUPG S-SUPG GLS

50 4 6 5 4
500 4 4 4 4
5000 4 5 4 5
50 000 4 ∗ ∗ ∗
500 000 3
5 000 000 3

Note: The Newton–Raphson method is used with conver-
gence tolerance=10−6; the (*) denotes iteration not con-
verged

The solutions of the problem for Re=250 using di�erent upwind methods are shown in
Figures 15–18. Notice that all upwind methods give very similar pressure and velocity solutions.
The solutions of the problem for Re=15 000 using the simpli�ed SUPG method is shown in

Figure 19. As we can see from Table II, the simpli�ed SUPG method fails last as the Reynolds
number is increased.
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Figure 22. Solution of the curved channel ow problem with Re=5000 using the 9=4-c element with high-order
derivative arti�cial di�usion method: (a) pressure contours; (b) velocity vectors

Figure 23. Solution of the curved channel ow problem with Re=5000 using the 9=4-c element with SUPG method:
(a) pressure contours; (b) velocity vectors

4.4. Curved channel ow

Unlike the other test problems, this problem does not contain any singularity. The problem
considered is described in Figure 20. The no-slip condition is imposed on the upper and lower
wall boundaries. At the inlet, we impose the velocity with a parabolic pro�le and the maximum
velocity at the centre is unity. At the outlet, we impose zero tractions. The Reynolds number is
calculated based on the maximum inlet velocity and the height of the channel at the inlet. The
mesh used is shown in Figure 21.
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Figure 24. Solution of the curved channel ow problem with Re=5000 using the 9=4-c element with simpli�ed SUPG
method: (a) pressure contours; (b) velocity vectors

Figure 25. Solution of the curved channel ow problem with Re=5000 using the 9=9-c element with GLS method:
(a) pressure contours; (b) velocity vectors

We solve for the steady-state response and increase the Reynolds number as given in Table III,
and record the number of iterations.
Like for the other problems, the Newton–Raphson method is used to solve the nonlinear equa-

tions with the convergence tolerance on the velocities and pressure equal to 10−6. To reach the
solutions for the Reynolds numbers listed in Table III, we start from zero pressure and velocities
as initial condition and use the converged solution of the lower Reynolds number case as the
initial condition for the next higher Reynolds number problem.
The solutions of the problem with Re=5000 using di�erent upwind methods are shown in

Figures 22–25. Note that all upwind methods give very similar pressure and velocity solutions.
The solution of the problem for the Reynolds number 5 000 000 using the high-order deriva-

tive arti�cial di�usion method is shown in Figure 26. As we see from Table III, the high-order
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Figure 26. Solution of the curved channel ow problem with Re=5000 000 using the 9=4-c element with high-order
derivative arti�cial di�usion method: (a) pressure contours; (b) velocity vectors

derivative arti�cial di�usion method is the only method to solve the problem when the Reynolds
number is very large.

5. CONCLUSIONS

The aim in this study was to evaluate some upwind techniques when used in parabolic �nite
element discretizations. We �rst described the characteristics of an ‘ideal’ upwind procedure and
then reviewed and evaluated four upwind techniques: the high-order derivative arti�cial di�usion
(HDAD) method, the SUPG technique, a simpli�cation thereof, and the GLS method.
All methods performed quite well in a convergence study using a simple problem for which the

exact solution is available. In the di�usion-dominated case, the L2-norm orders of convergence in
pressure and velocity were two and three, respectively. In the convection dominated case, the
L2-norm order of convergence in pressure remained two (except using the simpli�ed SUPG
method), whereas the velocity order of convergence decreased with di�erent amounts for the meth-
ods to values between two and three. Of course, di�erent convergence constants were measured
for the techniques.
Three other test problems were solved. In each case the Reynolds number was increased in

steps and we measured how many iterations were required for solution at a given Reynolds num-
ber and how high the Reynolds number could be for solution. The methods performed di�erently
in the problem solutions with no method clearly outperforming the others. None of the methods
tested could solve all high Reynolds number problems with the meshes used and hence no method
showed characteristics close to the ‘ideal’ solution scheme. Indeed, the measured solution char-
acteristics were rather far from the desired qualities which underlines the need for further major
advances in the �eld.
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