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Abstract
While estimates of models with spatial interaction are very sen-

sitive to the choice of spatial weights, considerable uncertainty sur-
rounds de�nition of spatial weights in most studies with cross-section
dependence. We show that, in the spatial error model the spatial
weights matrix is only partially identi�ed, and is fully identi�ed under
the structural constraint of symmetry. For the spatial error model, we
propose a new methodology for estimation of spatial weights under
the assumption of symmetric spatial weights, with extensions to other
important spatial models. The methodology is applied to regional
housing markets in the UK, providing an estimated spatial weights
matrix that generates several new hypotheses about the economic and
socio-cultural drivers of spatial di¤usion in housing demand.
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1 Introduction

This paper considers inferences on an unknown spatial weights matrix us-
ing panel data on a given collection of spatial units. In the regional science
and geography literatures, and increasingly in economic applications, spatial
dependence is commonly modeled by a spatial weights matrix, whose ele-
ments represent the direction and strength of spillovers between each pair of
units. The spatial weights matrix provides a convenient way to model struc-
tural spatial dependence.1 The weights represent patterns of interaction and
di¤usion, and thereby provide a meaningful and easily interpretable represen-
tation of spatial interaction (spatial autocorrelation) in spatial dependence
models.
The choice of appropriate spatial weights is a central component of spa-

tial models as it assumes a priori a structure of spatial dependence, which
may or may not correspond closely to reality. Typically, the spatial weights
are interpreted as functions of relevant measures of economic or geographic
distance (Anselin, 1988, 2002), and are therefore driven by the spatial struc-
ture of an application. The choice typically di¤ers widely across applications,
depending not only on the speci�c economic context but also on availability
of data. Spatial contiguity (resting upon implicit assumptions about conta-
gious processes) using a binary representation, is a frequent choice. Further,
in many applications, there are multiple possible choices and substantial un-
certainty regarding the appropriate choice of distance measures.
While the literature contains an implicit acknowledgment of these issues,

most empirical studies treat spatial dependence in a super�cial manner as-
suming in�exible di¤usion processes in terms of a priori �xed spatial weights
matrices (Giacomini and Granger, 2004). Unfortunately, the accuracy of spa-
tial weights a¤ects profoundly the estimation of spatial dependence models
(Anselin, 2002; Fingleton, 2003). Therefore, the problem of choosing spatial
weights is a key issue in most applications.2

1Here "structural" means that spatial dependence is exogenously determined by the
spatial structure of the problem, that is, by the organisation of the observation units in
space. Structural spatial dependence represented by spatial weights is conceptually quite
di¤erent from the main alternative model, where spatial dependence is asumed to be driven
by a �nite number of unobserved common factors that a¤ect all units (regions, economic
agents, etc.). See Bhattacharjee and Holly (2011) for further discussion on the conceptual
and methodological distinction between the two views.

2For example, ethnic networks and trade, spatial demand, risk-sharing in rural
economies, convergence in growth models, and spillovers in housing markets (see Con-
ley, 1999; Fingleton, 2003; Herander and Saavedra, 2005; Holly et al., 2011). See Corrado
and Fingleton (2011) for a recent discussion encompassing the regional studies, urban
economics and economic geography perspectives.
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However, the spatial econometrics literature tells us little about adequate
foundations for these choices. Acknowledging uncertainty regarding speci-
�cation of the weights, Conley (1999) used imperfectly measured economic
distances to obtain asymptotic estimators of the implied spatial autocovari-
ance matrix. Likewise, Pinkse et al. (2002) and Kelejian and Prucha (2004)
developed methods accommodating uncertainty regarding distance measures
and allowing for spatial nonstationarity. Some alternative approaches to
construction of the spatial weights matrix have emerged from the geogra-
phy and regional studies literature. Getis and Aldstadt (2004) use a local
dependence statistic, while Aldstadt and Getis (2006) developed a multidi-
rectional optimum eco-type-based algorithm. The latent variables approach
of Folmer and Oud (2008) is conceptually similar to the multi-factor model
of spatial dependence, but based more closely on latent variables implied by
the speci�c applied context rather than those identi�ed by statistical factor
analysis. None of the above are formal estimators of spatial weights and their
statistical properties remain largely unknown.
We study inferences on an unknown spatial weights matrix consistent with

an observed (estimated) pattern of spatial autocovariances. We show that
the estimation problem is partially identi�ed if no structural assumptions are
made, and fully identi�ed under the assumption of symmetric spatial weights.
Further, we develop an estimator of the spatial weights matrix under suitable
structural constraints. Once these spatial weights have been estimated they
can be subjected to interpretation in order to identify the true nature and
strength of spatial dependence, representing a signi�cant departure from the
usual practice of assuming a priori the nature of spatial interactions. While
our approach builds upon the spatial error model with autoregressive errors,
we discuss extensions to other models of spatial dependence.
An illustration of the proposed methodology and its potential is presented

through a study of regional housing markets in England andWales, where the
aim is to identify the economic and socio-cultural drivers of spatial di¤usion
in housing demand. Whilst the study of spatial di¤usion of demand in the
housing market is in itself not new (for example, in the case of the UK:
Meen, 2001, 2003; Holly et al., 2011; and for the US: Haurin and Brasington,
1996; Fik et al., 2003), the ex post approach to identifying drivers of di¤usion
presented here is novel and the results highlight a striking departure from
consideration exclusively of contiguity or distance measured a priori.
Section 2 describes the econometric framework and the methodology, esti-

mators, their compuation and asymptotic properties. In section 3, we discuss
bootstrap estimation of standard errors and hypothesis tests. Results of a
Monte Carlo simulation study are reported in section 4, followed in section
5 by a real application. Finally, section 6 concludes.
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2 Proposed Estimation Methodology

In this section, we propose methods for estimation of the spatial weights
matrix when spatial dependence is in the form of a spatial error model.
Much of our discussion is in the context of a model where the error process of
spatial di¤usion has an autoregressive structure; we also extend the methods
to the moving average spatial error model and the spatial lag model. The
proposed estimation takes as given a consistent and asymptotically normal
estimator for elements of the spatial autocovariance matrix. In the following
subsections, we discuss the spatial error model together with assumptions,
followed by estimation of the spatial weights matrix implied by the given
(estimated) autocovariance matrix of the spatial errors.

2.1 The Spatial Error Model

At the same time as spatial weights characterise structural spatial depen-
dence in useful ways, their measurement has crucial e¤ect on the estima-
tion of spatial econometric models. While much of the literature assumes a
prespeci�ed spatial weights matrix, the problems with this assumption are
well-known: the choice of weights is frequently arbitrary, there is substan-
tial uncertainty regarding the choice, and empirical results vary considerably
according to the choice of spatial weights. Given a particular choice of the
spatial weights matrix, there are two important and distinct ways in which
spatial interaction is modelled in spatial regression analysis �the spatial error
model and the spatial lag model.
We describe the spatial lag model and two variants of the spatial error

model focussing on an application, presented later in the paper, to spillovers
in regional housing demand. We consider panel data on demand and other
explanatory variables across several markets (regions) over several time pe-
riods. Within the context of estimated demand equations for each of several
regions, we aim to understand how excess demand in any region di¤uses over
space to the other regions.
Our central model is a spatial error model where regional demand (D)

is driven by the e¤ect of several explanatory variables (X) and di¤usion of
excess demand from other regions. The spatial externalities in the form of
demand di¤usion are driven by an unknown spatial weights matrix (W ) and
the strength of spatial spillovers in each region described by spatial autocor-
relation parameters �K . The model and its reduced form are described as
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follows:

Dt = X t:� + ut; t = 1; : : : ; n;

ut = R:W :ut + "t; (1)

=) Dt =X t:� + (I �R:W )�1 :"t;

where there are n time periods (t = 1; : : : ; n) and K regions (k = 1; : : : ; K),
Dt is the K � 1 vector of regional demand in period t,
W is an unknown spatial weights matrix of dimension K �K,
R = diag (�1; �2; : : : ; �K) is a K �K diagonal matrix containing the spatial
autoregression parameters for each region,3 and
"t is the K � 1 vector of independent but possibly heteroscedastic spatial
errors. Since the spatial di¤usion of errors is assumed to be autoregressive,
the model is called a spatial error model with autoregressive errors (SEM-
AR).
Alternatively, the spatial di¤usion of errors can be modelled as a moving

average process (Anselin, 1988), which we call the spatial error model with
moving average errors (SEM-MA):

ut = R:W :"t + "t; (2)

=) Dt =X t:� + (I +R:W ) :"t:

The above formulation of the SEM-AR and SEM-MA models represent
several departures from the literature. First and foremost, we do not assume
a given form of the spatial weights matrix. Indeed, our aim is to estimate
the spatial weights matrix.4

Second, we allow the spatial autoregression coe¢ cients to vary over the
spatial units (regions). This �exibility in spatial spillovers captures an im-
portant dimension of heterogeneity.
Third, the description of the model also allows for heterogeneity in the

regressors as well as their coe¢ cients across the regions, a feature which is
important in applications; that is, we assume a spatial regime model.
Fourth, we allow heteroscedasticity in the idiosyncratic errors across re-

gions. However, all spatial autocorrelation under the model is driven by the

3Here, and henceforth in the paper, diag(a1; a2; : : : ; ak) denotes the diagonal matrix0BBB@
a1 0 : : : 0
0 a2 : : : 0
...

...
. . .

...
0 0 : : : aK

1CCCA.
4It is, however, obvious that the spatial weights matrixW cannot be separately identi-

�ed from the diagonal matrix of autoregressive parameters R, unless further assumptions
are made. In other words, our aim is to identify and conduct inferences on R:W .
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spatial weights matrix and the spatial autoregression parameters. This is the
crucial feature in the setting that allows us to estimate the implied spatial
weights from the observed spatial autocovariances.
Standard models of temporal variation, such as autoregressive or moving

average processes in the temporal dimension, can also be accommodated in
our framework. However, for reasons of expositional simplicity, we abstract
from the issue of temporal dynamics in this paper. In other words, we assume
independence of the joint distribution of the variables over time, but not over
space.
An alternate model popular in the literature is the spatial lag model

(Anselin, 1988):

Dt = R:W :Dt +X t:� + "t; t = 1; : : : ; n;

) Dt = (I �R:W )�1 :X t:� + (I �R:W )�1 :"t: (3)

The choice between the spatial error and the spatial lag models is largely
context speci�c and often quite di¢ cult. Though di¤erent in interpretation,
the two kinds of models are di¢ cult to distinguish empirically (Anselin, 1999,
2002). However, based on a given spatial weights matrix, there are tests that
can help decide between the two models.5

In this paper, we focus on the spatial error model with autoregressive
errors (1). In the context of our application, we �nd this model well suited
to explain housing demand in terms of spatial di¤usion of excess demand
from neighbouring regions, where neighbourhood is de�ned in an abstract
sense. We also discuss the spatial error model with moving average errors
(2) and the spatial lag model (3).

The above setting is formalised in the following assumptions.
Assumption 1: The number of time periods increases asymptotically (n!
1) while the number of spatial units is �xed (Kn � K < 1).The spa-
tial errors, "t, are iid (independent and identically distributed) across time,
but is potentially heteroscedastic over spatial units. Thus, E

�
"t:"

T
t

�
= � =

diag (�21; �
2
2; : : : ; �

2
K), and �

2
k > 0 for all k = 1; : : : ; K .6

The uncorrelatedness of the idiosyncratic spatial errors across the regions
is a crucial assumption. Assumption 1 ensures that all spatial autocorre-
lation in the model is solely due to spatial di¤usion described by the spatial

5See Baltagi et al. (2003) and Borg and Breitung (2009) for reviews of tests designed
to aid model choice. However, theory is often the best guide to choice between these two
models. This is because, in most empirical applications, spatial lag dependence tends to
be insigni�cant once spatial error dependence is allowed for; and vice versa.

6Here and throughout the paper, T denotes transpose of a vector or matrix.
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weights matrix and the autoregression coe¢ cients. This feature of the model
drives our identi�cation and estimation strategy. Speci�cally, we use the ob-
served (estimated) pattern of spatial autocovariances and variances to infer
on the unknown spatial weights.

Assumption 2: The spatial weights matrix W is unknown and possibly
asymmetric. W has zero diagonal elements and the o¤-diagonal elements
can be positive or negative.
As discussed in the previous section, the literature on spatial modelling

acknowledges substantial uncertainty in the speci�cation of appropriate spa-
tial weights. Practitioners are encouraged to exercise caution in the choice of
the spatial weights matrix, and also to experiment with di¤erent choices. If
the spatial weights are inversely related to some underlying metric distance
between the regions, then the spatial weights matrix would be symmetric. At
the moment, we retain the �exibility of a possibly asymmetric spatial weights
matrix, though symmetry is assumed subsequently (Assumption 4).
Our most signi�cant point of departure from the literature is in the as-

sumption of an unknown spatial weights matrix. We do not impose a non-
negativity constraint on the o¤-diagonal elements ofW ; later we discuss how
negative o¤-diagonal elements can be interpreted. In fact, in an application
related to ours, Meen (1996) �nds evidence of negative interaction between
some pairs of regions.
We will show that the spatial weights matrix is identi�ed by the spatial

autocovariance matrix only upto an orthogonal transformation. Additional
assumptions, such as symmetry of the spatial weights matrix, are therefore
required for full identi�cation and estimation of spatial weights.

Assumption 3: (I �R:W ) is non-singular, where I is the identity ma-
trix.
This is a standard assumption in the literature. It is required for identi�-

cation in the reduced form, and holds under the spatial granularity condition
in Pesaran and Tosetti (2011).7 Under Assumption 3, the reduced form
representation of the SEM-AR model (1) is given by:

Dt = X t:� + ut

= X t:� + (I �R:W )�1 :"t;

where (dropping the time subscript)

E
�
u:uT

�
= (I �R:W )�1 :�: (I �R:W )�1

T

:

7Similar assumptions are needed for ML and GMM estimation of spatial econometric
models with known W ; see, for example, Kelejian and Prucha (1999) and Lee (2004).
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Since all spatial autocovariance under model (1) is driven by the spatial
weights matrixW , we ask the following question: whether, and under what
conditions, would W be identi�ed by the variances and autocovariances of
spatial errors across all the units, that is, by � = E

�
u:uT

�
? Typically, �

is estimated from the data, using either a two-stage procedure, or ML, or
GMM. Then, under suitable conditions that ensure identi�cation, this paper
develops methods to estimate spatial weights matrix implied by the estimate
of the spatial autocovariance matrix �n.

2.2 Identi�cation and Estimation of Spatial Weights

Meen (1996) studied spatial di¤usion in housing starts across regions in Eng-
land under a SEM-AR model by regressing OLS residuals of the regression
relationship for each region on residuals from all the other regions

Dt = X t:� + ut; (First stage regression)but = X t:b�;
bukt = �k:

KX
j=1
j 6=k

wkj:bujt + "kt; (Second stage regressions) (4)

where the second stage regressions are estimated separately for each region.8

The sign and statistical signi�cance of the OLS regression estimates at the
second stage were used to examine the sign and strength of spatial depen-
dence between the regions. This approach was the �rst attempt towards
estimating the unknown spatial weights matrix up to a factor of proportion-
ality (the spatial autoregressive parameter).
This method, however, su¤ers from a serious problem of endogeneity.

Speci�cally, the regression equations at the second stage constitute a system
of simultaneous equations in the �rst stage residuals. Since these residuals
are endogenous to the system, OLS will produce biased and inconsistent esti-
mates of the regression coe¢ cients, which are the spatial weights. Nonethe-
less, the approach of Meen (1996) provides the key insight that the spatial
weights are the true partial e¤ects of regression errors for each ordered pair
of spatial units.
In contrast to Meen (1996), we begin with estimating the spatial error

autocovariance matrix, � = E
�
u:uT

�
, of the underlying structural model,

8Note that, Meen (1996) assumes homogeneity in the spatial autoregression parameter
across the regions. For expositional clarity, we retain heterogeneity in the spatial au-
toregression parameter for the moment. In any case, the autoregression parameter is not
separately identi�able from the spatial weights matrix in our setting.
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potentially using the �rst stage residuals. Then, we use the reduced form of
the second stage regression to estimate the spatial weights matrix (up to a
factor of proportionality) from the spatial autocovariance matrix estimated in
the �rst stage. Our method for estimation of the spatial weights matrix relies
on the structure of the problem: most importantly, the zero diagonal elements
of the spatial weights matrix (Assumption 2) and the diagonal structure of
the covariance matrix (� = E

�
":"T

�
) of the spatial errors (Assumption 1).

The proposed method does not impose a priori any structure on the drivers
of spatial di¤usion.
Before proceeding to estimation, we �rst discuss identi�cation ofW and

uniqueness under the additional assumption of symmetric spatial weights.

Let � = E:�:ET be the spectral decomposition of � = E
�
u:uT

�
, where

� = diag (�1; �2; : : : ; �K) is the diagonal matrix of eigenvalues and the
columns of E = [e1; e2; : : : ; eK ] contain the corresponding eigenvectors.

Proposition 1 (Partial Identi�cation) LetAssumptions 1�3 hold, and
let ��1=2 denote the symmetric square root of � = E

�
u:uT

�
, de�ned as

��1=2 = E:��1=2:ET :

Then,

V = (I �R:W )T :diag

�
1

�1
;
1

�2
; : : : ;

1

�K

�
(5)

is isomorphic to ��1=2, upto an arbitrary orthogonal transformation. That
is,

��1=2 = V:T

for some arbitrary square orthogonal matrix T . In other words, R:W is par-
tially identi�ed by ��1=2 upto an arbitrary orthogonal transformation. Fur-
ther, in the special case when the rows of (I �R:W ) are orthogonal to each
other, there is exact identi�cation, that is,

��1=2 = V :

Proof. By Assumptions 1 and 3, under the SEM-AR model (1), the pop-
ulation spatial autocovariance matrix, � = E

�
u:uT

�
, is positive de�nite, and

therefore so is ��1. Consider the spectral decomposition of ��1,

��1 = (I �R:W )T :��1: (I �R:W )

= V :V T : (6)
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This implies that
��1 = (V :T ) : (V :T )T ;

for any square orthogonal matrix T .
Now, since � is positive de�nite, min (�1; �2; : : : ; �K) > 0 and

��1=2 = diag

�
1p
�1
;
1p
�2
; : : : ;

1p
�K

�
:

Since � = E:�:ET , it follows that, the spectral decomposition of ��1 is given
by:

��1 = E:��1:ET

= E:��1=2:ET :E:��1=2:ET

=
�
E:��1=2:ET

�
:
�
E:��1=2:ET

�T
: (7)

The �rst step holds because E�1 = ET , and the �nal step follows since ��1=2

is a symmetric matrix.
The result follows, since (6) and (7) can both hold if and only if

E:��1=2:ET = ��1=2 = V:T ;

for some orthogonal matrix T .
Further, if the rows of (I �R:W ) are orthogonal to each other, then the
spectral decomposition of ��1 is unique and T is the identity matrix; hence,
the exact equality ��1=2 = V holds.

Since the rows of (I �R:W ) are orthogonal only in very special cases,9

the spatial weights matrix is only partially identi�ed by the spatial autoco-
variance matrix �, because the orthogonal matrix T that links R:W to �
can be arbitrary. Additional structural assumptions are required to uniquely
identify the corresponding orthogonal matrix T .

Assumption 4: The spatial weights matrix is symmetric and the spa-
tial autoregression parameter is the same across all regions; in other words
R:W = �W is symmetric.
Note that a symmetric spatial weights matrix is typically assumed in the

regional studies and geography literatures, with the weights as functions of
metric distances between spatial units. However, this assumption may be un-
reasonable in some applications. Row-standardised spatial weights matrices

9Such as, when the spatial weights matrix is zero, implying no spatial dependence.
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are usually asymmetric by construction; asymmetric spatial weights matri-
ces are also important in the study of asymmetric shocks, network �ows
and core-periphery models. Bhattacharjee and Holly (2008, 2011) discuss
alternate sets of assumptions that may be useful in such situations.

Proposition 2 (Uniqueness) Let Assumptions 1�3 hold. Then, the spa-
tial weights matrix for which Assumption 4 also holds is unique upto pro-
portionality.

Proof. Suppose the symmetric spatial weights matrix is not unique. In
other words, let there be two distinct matrices �1W 1 and �2W 2 consistent
with Assumptions 1-4.
Then,

��1 = (I � �1W 1)
T :��1: (I � �1W 1)

= (I � �1W 1) :�
�1: (I � �1W 1) ; (8)

since W 1 is symmetric. Likewise,

��1 = (I � �2W 2)
T :��1: (I � �2W 2)

= (I � �2W 2) :�
�1: (I � �2W 2) (9)

Equations (8) and (9) imply that

(�1W 1 � �2W 2)
T :��1: (�1W 1 � �2W 2) = 0:

But since the LHS is the variance covariance matrix of the random vector

u� = (�1W 1 � �2W 2)u;

the only way this covariance matrix can be zero is

�1W 1 = �2W 2:

That is, the symmetric weights matrix is unique upto proportionality.
Proposition 2 states that, if Assumption 4 holds, there exists a unique

orthogonal matrix T such that

��1=2:T =

�
(I � �W )T :diag

�
1

�1
;
1

�2
; : : : ;

1

�K

��
= Q = ((qij))i;j=1;:::;K :

11



Given T , this relation provides a direct link between the spatial autocovari-
ance matrix � and the spatial weights matrix �W . Speci�cally, since (a)

post-multiplication by the diagonal matrix diag
�
1
�1
; 1
�2
; : : : ; 1

�K

�
transforms

(I � �W )T by multiplying each column by the corresponding diagonal ele-
ment, and (b) byAssumption 2, the elements on the diagonal of (I � �W )T

are all unity, we have

(I � �W )T =

26664
1 q12=q11 : : : q1K=q11

q21=q22 1 : : : q2K=q22
...

...
. . .

...
qK1=qKK qK2=qKK : : : 1

37775 : (10)

Therefore, the condition that the spatial weights matrix is symmetric
(Assumption 4) implies that

qij
qii
=
qji
qjj
; for all i 6= j; i; j = 1; : : : ; K: (11)

Further, note that T consists of K2 real values, and several restrictions
apply to the elements of this matrix. Speci�cally, there are K normalization
restrictions (one for each column of the matrix) andK(K�1)=2 orthogonality
conditions (one for each distinct pair of columns). This leaves K(K � 1)=2
free elements in the matrix.
Hence, if the weights matrix is symmetric, these free elements can be

pinned down by the K(K � 1)=2 constraints relating to the assumption of
symmetry (11).10 This identi�cation is upto a sign transformation on the
columns and rows of T that preserves the orthogonality condition while at
the same time ensuring that the diagonal elements of the transformed matrix
are all positive.
Note that, the implication of Proposition 2 runs only one way. Speci�-

cally, given a spatial autocovariance matrix �, no symmetric spatial weights
matrix consistent with this may exist. However, in the 2-region case (K = 2),
the implication runs both ways and the unique identi�cation of T with any
given � can veri�ed by construction. In this case, any orthogonal matrix can
be expressed as �

cos� � sin�
sin� cos�

�
;

10This constraint is seen even better from the result (Cayley, 1846; Reiersöl, 1963) that
any orthogonal matrix is uniquely associated with a corresponding skew-symmetric matrix:
T = (I �K) (I +K)�1; a skew symmetric matrix has exactly K(K � 1)=2 free elements
that can potentially be �xed by the corresponding symmetry assumptions.

12



which involves a single unknown angle �. While � can take values in [0; 2�],
all unique cases are completely covered in � 2 [0; �]. Denoting the elements
of the symmetric square root ��1=2 as

��
ij
��
; i; j = 1; 2 where 12 = 21,

Assumption 4 can be expressed as

q12
q11

=
q21
q22

=)
�
tan�� 1

tan�

�
=
2 (11:22 + 

2
12)

12: (11 � 22)
;

which has a unique solution within the range � 2 [0; �].

Next, we turn to estimation. SinceW is identi�ed only upto proportional-
ity, we assume without loss of generality that � � 1. Based on Proposition
2 and (11), we propose the following natural estimator for the orthogonal
matrix T corresponding toW :

T n = argmin
T :TT T=I

X
i<j

�
qij
qii
� qji
qjj

�2
; (12)

Q = ((qij))i;j=1;:::;K = �
�1=2
n T

where �n denotes the estimated spatial autocovariance matrix of the spatial
errors u, and the criterion function is optimised over all orthogonal matrices
T . From (10), the corresponding estimators for the heteroscedastic idiosyn-
cratic errors (�i;n; i = 1; : : : ; K) and symmetric spatial weights matrix (W n)
and are uniquely given by:

��1=2n :T n = Qn = ((qij;n))i;j=1;:::;K ;

W n =

26664
0 �q21;n=q22;n : : : �qK1;n=qKK;n

�q12;n=q11;n 0 : : : �qK2;n=qKK;n
...

...
. . .

...
�q1K;n=q11;n �q2K;n=q22;n : : : 0

37775 ; (13)
�k;n =

1

qkk
; k = 1; : : : ; K:

Since the criterion function is (implicitly) expressed in terms of moments,
the estimator is a generalised M-estimator based on complicated moment
conditions. Next, we show consistency and weak convergence of the above
estimator.
The covariance matrix � contains p = K (K + 1) =2 distinct elements,

which we combine into a vector l(p�1). Likewise, the spatial weights matrix
W together with the heteroscedastic variances (�21; �

2
2; : : : ; �

2
K) constitute p
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unknown and free parameters, which we combine into w(p�1). Then, cor-
responding to (12), the true spatial weights matrix and idiosyncratic error
variances (w) are implicitly de�ned by the equation:

G (l; w) =
X
i<j

�
qij
qii
� qji
qjj

�2
= 0; (14)

Q = ��1=2T =

�
(I �W )T :diag

�
1

�1
;
1

�2
; : : : ;

1

�K

��
;

� = E
�
u:uT

�
; (15)

where the parameter space constitutes all positive de�nite matrices �, sym-
metric spatial weights matricesW satisfying Assumptions 2�4, and diag-
onal positive de�nite covariance matrices �.11 Corresponding to G (:; :), we
de�ne the vector of partial derivatives

g =

26664
g1
g2
...
gp

37775 =
26664
@G=@w1
@G=@w2

...
@G=@wp

37775 ;
the Jacobian matrix

J(p�p) =

26664
@2G=@s21 @2G=@s1@s2 : : : @2G=@s1@sp
@2G=@s2@s1 @2G=@s22 : : : @2G=@s2@sp

...
...

. . .
...

@2G=@sp@s1 @2G=@sp@s2 : : : @2G=@s2p

37775 ;
and the cross partial derivatives matrix

H(p�p) =

26664
@2G=@w1@l1 @2G=@w1@l2 : : : @2G=@w1@lp
@2G=@w2@l1 @2G=@w2@l2 : : : @2G=@w2@lp

...
...

. . .
...

@2G=@wp@l1 @2G=@wp@l2 : : : @2G=@wp@lp

37775 :

We make the following assumptions on the moment conditions underlying
(12) and the underlying estimator �n � ln for the spatial error variances and
autocovariances.
11Equivalently, the implicit function G (:; :) can also be stated in terms of � and

all orthogonal matrices T , or � and all skew symmetric matrices S, with T =
(I � S) (I + S)�1.
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Assumption 5 (estimator �n and moment conditions):

(a) G (:; :) is a totally di¤erentiable function such that G (l; w) = 0 de�nes
w uniquely for each l.

(b) The gradient functions gi are continuous with continuous �rst partial
derivatives in an open set containing (l; w).

(c) n1=2 (ln � l)
D�! N (0;
).

(d) Evaluated at the true parameters (l; w), the Jacobian is nonsingular:
jJj 6= 0, and each row of J�1H contains at least one nonzero element.

Assumption 5 is standard. Since the spaial weights matrix is symmet-
ric (Assumption 4), Assumption 5(a) holds for the true parameters l
by Proposition 2 on uniqueness. In addition, we assume that the objective
function is minimised at a unique w corresponding to each l.12 Assumption
5(b) follows from the assumed constraint in (14). Assumption 5(c) is a
property of the underlying estimator of the spatial autocovariance matrix,
and will be generally satis�ed by any estimator based on a two-stage proce-
dure, maximum likelihood or method of moments. Assumption 5(d) is a
standard regularity condition on the smoothness of the implicit function in
the neighbourhood of the true parameter values.

Proposition 3 (Consistency and Asymptotic Normality) LetAssump-
tions 1�5 hold. Then, as n increases, to each �n there corresponds a unique
solution wn to the system of equations g = 0. Further, wn

P ��! w and
n1=2 (wn � w) converges to a p-variate normal distribution with mean zero
and covariance matrix J�1H
HT (J�1)

T , where H and J are evaluated at

the true parameter vector (l; w) and P ��! denotes convergence in outer prob-
ability.

Proof. By Assumption 5(b), the gradient functions gi are continuous
with continuous �rst partial derivatives in an open set containing the true
parameter vector (l; w). Also by Assumptions 5(a) and 5(d), g = 0 and
jJj 6= 0 at (l; w).
12The symmetric spatial weights matrix assumption may be unrealistic in some appli-

cations. Alternatively, Assumption 5(a) can be implied by other structural constraints
on spatial weights and/or idiosyncratic variances (as in Bhattacharjee and Holly, 2008) or
moment conditions (Bhattacharjee and Holly, 2010); for further discussions on appropriate
identifying restrictions, see Bhattacharjee and Holly (2011).
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Also, by the implicit function theorem (Taylor and Mann, 1983, p.225), there
exists an open rectangular region L�	 around (l; w) (with l 2 L and w 2 	)
and a set of p real functions fi such that

w = (w1; w2; : : : ; wp) = (f1 (l) ; f2 (l) ; : : : ; fp (l))

and
gi (l; w) = 0; i = 1; 2; : : : ; p;

whenever (l; w) 2 L�	. Further, the functions fi are continuous and have
continuous �rst order derivatives (@fi=@lj), which are elements of the matrix
�J�1H.
Then, since fi(:)�s are continuous functions in a neighbourhood of (l; w), for
every sequence of random variables xn 2 L such that xn ! x 2 L,

(f1 (xn) ; f2 (xn) ; : : : ; fp (xn))! (f1 (x) ; f2 (x) ; : : : ; fp (x)) :

Further, since by Assumption 5(c), n1=2 (ln � l) converges to a Gaussian
distribution with mean zero, we also have ln

P ��! l (Ser�ing, 1980, p.26, Ap-
plication C). By the extended continuous mapping theorem (Theorem 1.11.1
and Problem 1.11.1, van der Vaart and Wellner, 1996, p.67 and p.70), we
therefore have

wn
P ��! w:

Similarly, by a combination of the extended continuous mapping theorem for
weak convergence together with the Delta method and Slutsky�s Theorem (Ser-
�ing, 1980, p.122-124, and p.19), we also have

n1=2 (wn � w)
D�! N

�
0;J�1H
HT

�
J�1

�T�
: (16)

Some quali�cations are required for Proposition 3. First, to avoid mea-
surability concerns, consistency considered here is in terms of outer prob-
ability.13 If there are no measurability issues, outer probability (P �) can
be replaced by probability (P ), and correspondingly convergence in outer
probability can be replaced by convergence in probability.
Second, if 
n is a consistent estimator for 
, the above covariance matrix

can be consistently estimated by substituting J�1H evaluated at (ln; wn) in
place of the population quantity. However, since our estimator is based on
a generic estimated spatial autocovariance matrix �n, we acknowledge that

13The outer probability of an arbitrary set A is de�ned as P � (A) =
inf fE(b) : b is measurable and 1(A) � bg.
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such an estimator for
may not be readily available. In the following section,
we discuss a bootstrap method to estimate the covariance matrix.
Third, the implicit relation (14) is based on functions of moments, which

suggests that e¢ cient GMM-type M-estimation may be possible. However,
this is not straightforward, because the moment equations are complicated
and only implicitly de�ned. While this paper focusses on exploring whether
the spatial weights matrix is identi�ed by the spatial autocovariance matrix
and how the spatial weights can be estimated whenever a suitable estima-
tor for the spatial autocovariance matrix is available, e¢ cient estimation is
retained as a topic for future research.
With regard to the objectives of this paper, Propositions 1�3 show that

the above estimation problem is partially identi�ed, but a consistent and
aymptotically normal estimator can be obtained whenever the estimator for
the corresponding spatial autocovariance matrix is asymptotically Gaussian.

Next, we turn to computation of the optimal solution in (12) within
the space of all orthogonal matrices T . Jennrich (2001, 2004) proposed a
�gradient projection� algorithm for optimising any objective function over
the group of orthogonal transformations of a given matrix. The conditions
necessary for implementing the algorithm are satis�ed in our case: namely
that (a) the objective function is di¤erentiable (Assumption 5(a)), and
(b) there exists a stationary point of the objective function within the class
of orthogonal transformations (Proposition 2). Therefore, we adapt this
algorithm to our case.

For a candidate estimate bV and any orthogonal matrix T , compute Q =bV :T and de�ne
(i) a scalar function of T (our objective function):

f(T ) =
K�1X
i=1

KX
j=i+1

�
qij
qii
� qji
qjj

�2
; (17)

(ii) a gradient matrix

df

dT
= bV T

:G�; G� =
��
g�ij
��
i;j=1;:::;K

; (18)

where g�ii = � 2
q2ii
:
KX
k=1
k 6=i

qik:

�
qik
qii
� qki
qkk

�

g�ij =
2

qii
:

�
qij
qii
� qji
qjj

�
if i 6= j:
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and (iii) a scalar constant

s =
skm �T T :G�� ; (19)

where skm(B) = 1
2

�
B �BT

�
and kBk = tr

�
BT :B

�
denote the skew sym-

metric part and the Frobenius norm respectively of a square matrix B.

Algorithm: Choose � > 0 and a small " > 0, and set T to some arbitrary
initial orthogonal matrix.14

(a) Compute s. If s < ", stop.
(b) Compute G�.
(c) Find the singular value decomposition A:D:CT of T � �G�; set eT =
A:CT .
(d) Compute Q = bV :eT . If any diagonal element of Q is negative, multiply
the corresponding column of eT by �1.
(e) If f(eT ) � f(T ), replace � by

e� = �s2�2� = h2:�f(eT )� f(T ) + s2��i
and go to (c). If f(eT ) < f(T ), replace T by eT and go to (a).
The estimate of T at convergence, T n, is such that all diagonal elements of
the matrix

Qn = bV :T n = ((qij;n))i;j=1;:::;K
are positive. Given this T n, the corresponding estimators of the spatial
weights matrix and spatial error variances are given in (13).

Proposition 4 (Computation) The algorithm is strictly monotone and
stops when it is su¢ ciently close to a stationary point. The return to step
(c) from (e) occurs only a �nite number of times.
Under Assumptions 1�5, the �nal estimate, T n, of the relevant orthogo-
nal matrix is such that Qn has positive diagonal elements, and the estimated
spatial weights matrix W n is symmetric.

Proof. Note that, reversing the sign of each element in a speci�c column of
T reverses the sign of the corresponding diagonal element of Q = bV :T , but
14In our implementations, we choose a set of random orthogonal matrices, including the

identity matrix, to ensure that the algorithm does not get stuck in a local stationary point
that does not optimise the objective function.
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preserves the orthogonality of T . Therefore, step (d) ensures that the diago-
nal elements of Q are positive in each iteration of the algorithm. E¤ectively,
our objective function is

f(T ) =
K�1X
i=1

KX
j=i+1

�
qij
jqiij

� qji
jqjjj

�2
;

which is not a di¤erentiable function when Q has any zero diagonal ele-
ment. However, by Assumption 1 the spatial errors have positive vari-
ances, min (�21; �

2
2; : : : ; �

2
K) > 0, and therefore in large samples the diagonal

elements of Q will be away from zero.15

Therefore, close to each candidate T , f(:) is locally a smooth di¤erentiable
function of T which is bounded below by zero. Hence, a stationary point
exists.
It can be veri�ed easily that G� = df=dT . Following arguments in Jen-
nrich (2001), for su¢ ciently large �, the algorithm is convergent from any
starting value and is converges to a stationary point of f(:) over the group
of all orthogonal matrices. Further, under Assumption 4 (symmetry), the
stationary point is unique and value at the stationary point is zero (Propo-
sition 2). Therefore, under the maintained conditions on �n (Assumption
5), Qn = bV :T n P�!

h
(I � �W )T :diag

�
1
�1
; 1
�2
; : : : ; 1

�K

�i
.

Note that, since the spatial weights matrix W has zero diagonal elements
(Assumption 2), the elements on the diagonal of (I � �W ) must all be
unity. Hence, under the model assumptions, the diagonal elements of Qn

converge in probability to 1
�1
; 1
�2
; : : : ; 1

�K
respectively. In other words, �2k;n > 0

for k = 1; : : : ; K. Further, since the value of the objective function at the
stationary point is zero, the corresponding estimator W n is symmetric.

The algorithm is simple to implement. There are, however, two important
issues. First, the choice of � can be quite critical. If � is too large, the
convergence is very slow; on the other hand, if � is too small, there will
be many returns to step (c) from step (e). However, in practice this does
not turn out to be a problem.16 Second, there could be a problem with the
implementation if Step (d) is executed too many times. This would mean
that we are starting too far from the stationary point, and every time that
one of the negative diagonal elements of Q is corrected for, we are moving

15 This argument can be made more precise by imposing a boundedness assumption on
the spatial error variances.
16In our implementation, we did some trial and error to choose a suitable � before

starting the iterations. Once this choice was made, the convergence was very fast in about
95 per cent of our monte carlo experiments.
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away from the stationary point instead of taking an optimal step along the
gradient; in our implementation, we reduce this problem by choosing multiple
starting values.
The assumption of a symmetric spatial weights matrix (Assumption 4)

may be too restrictive in some applications. First, it is often convenient to
work with row-standardised spatial weights matrices (Anselin, 1999), which
are asymmetric by construction. Second, there are applications where it
is reasonable to expect asymmetric strength of di¤usion between regions.
Third, if we do not assume homogeneity in the autoregression parameter �k
across the regions, the matrix R:W will be asymmetric; such heterogeneity
may be quite natural in many situations, like in a core-periphery structure
or in relation to �ows in a network.
However, the framework developed here is �exible and can admit many

other sets of conditions. Useful constraints in this context could include
setting the row sums of the estimated spatial weights matrix equal to each
other,17 or homoscedasticity in all or some of the spatial error variances,
or constraints on speci�c spatial autocorrelations, or even a combination of
several constaints; see Bhattacharjee and Holly (2008, 2011) for further dis-
cussion on suitable structural and moment restrictions. Alternatively, some
of the optimisation criteria commonly used in factor analysis (quartimax,
orthomax, etc.) could be useful in some spatial applications.
Another interesting feature of the estimator described here is that some of

the estimated spatial weights inW n may be negative. This happens if qij;n >
0 for some i 6= j. When the underlying spatial weights matrix has positive o¤-
diagonal elements, we can have negative estimates of spatial weights because
of sampling variations. However, spatial weights can be negative even in other
situations. For example, in the context of housing demand across regions,
such negative weights would imply that the excess demand in the index region
is negatively related to some of the other regions. This can happen because
of asynchronicity of the underlying housing market cycles in these regions,
as would be expected for example if there are ripple e¤ects (Meen, 1999), or
if the two regions provide substitute housing markets. Meen (1996) explains
negative interaction between regions in a study of housing starts as arising
from planning restrictions in certain regions.
Finally, Meen (1996) emphasized an useful interpretation of the spatial

dynamics within the spatial error model is in terms of an endogenous system
of simultaneous equations where residuals for each region are regressed on
those of the other regions (4). However, unlike usual simultaneous equations

17This would be relevant when all spatial weights are positive and one is interested in
estimating the row standardised spatial weights matrix.
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problems, we consider situations where there are no exogenous variables. In
this sense, this paper is related to prior research on identi�cation in simulta-
neous equations systems based on covariance restrictions (see, for example,
Hausman and Taylor, 1983; Hausman et al., 1987).

3 Extensions and Further Inference

3.1 Row-standardized Spatial Weights Matrix

A notable feature of our estimator W n (or in the more general case, when
Assumption 4 is not imposed, R:W ) is that the covariance pattern in
the errors is determined solely by the product R:W . This observation has
implications for the estimation of the spatial weights. A property of this
estimator, which derives from the underlying spatial error model, is that the
autoregression parameters �k are in general not identi�able separately from
the spatial weights matrix W , so that only the product R:W is usually
estimable, and not the individual components R andW .
Note, however, that the row-standardised spatial weights matrix,W (RS),

can be uniquely estimated as:

W (RS)
n =

0BBBBBBBBBBBBBB@

0 q21;n
KX
k=2

qk1;n

: : :
qK1;n
KX
k=2

qk1;n

q12;n
KX

k=1;k 6=2

qk2;n

0 : : :
qK2;n
KX

k=1;k 6=2

qk2;n

...
...

. . .
...

q1K;n
K�1X
k=1

qkK;n

q2K;n
K�1X
k=1

qkK;n

: : : 0

1CCCCCCCCCCCCCCA
(20)

Further, R:W is obtained by premultiplying the spatial weights matrix
by a diagonal matrix whose diagonal elements are the spatial autoregressive
parameters for each region. Hence, the estimates of the spatial autoregres-
sive parameters corresponding to the above row-standardised spatial weights
matrix are given by:

�
(RS)
k;n =

KX
l=1;l6=k

qlk;n; k = 1; : : : ; K: (21)
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3.2 Con�dence Intervals

The asymptotic distribution given by (16) can be used to compute standard
errors and con�dence intervals for elements of the estimated spatial weights
matrix. This is done by �rst consistently estimating the asymptotic covari-
ance matrix of the variances and autocovariances of the spatial errors (
),
and then substituting J�1H by its value at the estimated (ln; wn). However,
these standard error estimates tend to have slow convergence and may be
quite poor in small samples. As an alternative, we propose the bootstrap to
construct con�dence intervals around the elements of W n. It is well known
that the bootstrap is valid when the statistics are smooth functions of the
sample moments and the model can be consistently estimated.
While the bootstrap has also been found useful in simultaneous equations

models (Freedman, 1984), its use here is substantially more complicated as
compared to an equation involving only exogenous variables. This is because
the bootstrap DGP (data generating process) has to provide a method to
generate realisations of all the endogenous variables. Further, since our es-
timates of spatial weights are based on the estimated spatial autocovariance
matrix, we require the bootstrap to be valid not only for the estimates of the
regression function but also for estimates of all the spatial variances and au-
tocovariances. Hence, in addition to the moment and smoothness conditions
speci�ed in the literature on bootstrap for SURE, 2SLS and 3SLS estima-
tors, the proposed procedure would require additional conditions necessary
for bootstrapping the spatial autocovariance matrix. In particular, follow-
ing Beran and Srivastava (1985), we require the spatial weights matrix and
the region-speci�c spatial variances to be such that the reduced form spatial
autocovariance matrix is nonsingular and all eigenvalues of the matrix have
unit multiplicity.18 Therefore, we make the following additional assumption.

Assumption 6: We assume the moment and smoothness condtions re-
quired for the validity of the bootstrap under SURE (Rilstone and Veall, 1996)
or under 3SLS estimation (Fair, 2003). Following Beran and Srivastava
(1985), these are conditions that ensure (a) weak convergence of the vector
of reduced form spatial residuals (bu1; bu2; : : : ; buK) to the corresponding vector
of the error terms (u1; u2; : : : ; uK), and (b) existence of �nite fourth order

moments of the error vector (i.e.,
���E�QK

k=1 u
rk
k

���� <1 for every set of non-

negative integers rk such that
PK

k=1 rk = 4). In addition, we assume that
the spatial weight matrix, W , and the spatial variances of the structural

18See Beran and Srivastava (1985) for consequences of the violation of this assumption,
and description of a valid bootstrap procedure in the case of repeated eigenvalues.
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equations, �, are such that the reduced form spatial autocovariance matrix
E
�
u:uT

�
= (I �R:W )�1 :�: (I �R:W )�1

T

has distinct (non-zero) eigen-
values.
Note that, since �2k > 0 for all k = 1; : : : ; K (Assumption 1) and

since the eigenvalues and eigenvectors of the spatial autocovariance matrix
E
�
u:uT

�
= (I �R:W )�1 :�: (I �R:W )�1

T

are continuously di¤erentiable
with respect to E

�
u:uT

�
, the estimator of the spatial weights matrix R:W n

(or �W n) is also a continuously di¤erentiable function of E
�
u:uT

�
. It follows

from Beran and Srivastava (1985) that, under the conditions of Assump-
tion 6, the eigenvalues and eigenvectors of E

�
u:uT

�
possess pivotal statistics

which will validate a bootstrap procedure to estimate the sampling distribu-
tion of spatial weights estimates.

3.3 Testing for a given driver of spatial di¤usion

We have motivated the estimators proposed in this paper based on uncer-
tainty regarding the choice of spatial weights matrices and the arbitrariness
regarding such choice in practice. It is, therefore useful to test the hypothesis
that the observed pattern of spatial autocovariances has been generated by
a hypothesized spatial weights matrix,W 0:

H0 :W =W 0 versus H1 :W 6=W 0: (22)

Under H0, the spatial weights matrix is known. Therefore one can use
standard spatial econometric methods to estimate the unknown parameters
of the spatial error model (Equation 1) and compute the spatial autocovari-

ance matrix b�W 0 =
�
I � bRW 0

��1
:b�:�I � bRW 0

��1T
consistent with the

given spatial weights matrix. Since our proposed estimator is a unique trans-
formation of the estimated spatial autocovariance matrix b�, the above test
of hypothesis is equivalent to testing that b�W 0 is the same as �n.
Therefore, under the assumption of normal spatial errors, we can follow

Ord (1975) and Mardia and Marshall (1984) to obtain MLEs of the unknown
parameters by maximising the log-likelihood

lnL (B;�;RjW 0) = const.�
T

2

KX
k=1

ln�2k+T: jI �RW 0j�
1

2

TX
t=1

"Tt :�
�1:"t;

where "t = (I �RW 0) : (Dt �X tB), B =
�
�
1
: �

2
: : : : : �

K

�
is a ma-

trix whose columns correspond to regression coe¢ cients for each region, and
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� = �2I and R = diag (�1; �2; : : : ; �K) are diagonal matrices containing the
spatial error variances and spatial autocorrelation parameters respectively
for each region. Maximum likelihood estimation in this setup is, in general,
computation intensive unless the spatial autocorrelation parameters, �k, are
known in advance. Alternative GMM based estimation procedures are de-
scribed in Kelejian and Prucha (1999) and Bell and Bockstael (2000). These
GMM procedures are computationally simpler and, for reasonable sample
sizes, almost as e¢ cient as the MLE.

Having obtained the MLE or GMM estimates bR and b�, we can construct
the spatial covariance matrix b�W 0 =

�
I � bRW 0

��1
:b�:�I � bRW 0

��1T
un-

der H0, and then use a wide variety of tests available in the statistical litera-
ture for testing equality of two covariance matrices. In particular, we suggest
the test statistic proposed by Ledoit and Wolf (2002); this test is valid when
the estimated spatial covariance matrix is not full rank and when the number
of regions increases with sample size. This situation may be relevant in many
microeconomic applications where the number of agents increase asymptot-
ically, or if we are interested in �ner spatial aggregation as we accumulate
more data.
The additional assumptions regarding the distribution of the errors and

the nature of asymptotics are as follows.

Assumption 7: The spatial errors, "t, are normally distributed.
Under Assumption 7, we use the Cholesky decomposition of b�W 0 =

DT
W 0
:DW 0, and restate the null and alternative hypotheses (22) as:

H0 : b��W 0
= I versus H1 : b��W 0

6= I; (23)

where b��W 0
=
�
DT
W 0

��1
:b�: (DW 0)

�1. For the above hypotheses, the Ledoit-
Wolf test statistic is given by:

LW =
1

K
:tr
�b��W 0

� I
�2
� K
n
:

�
1

n
:tr
�b��W 0

��2
+
K

n
; (24)

Kn

2
:LW � �2

�
K(K + 1)

2

�
under H0 as T !1

where tr(:) denotes trace of a square matrix. As demonstrated by Ledoit and
Wolf (2002), the test has very good small sample performance.
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3.4 Extensions to other spatial models

3.4.1 Spatial error model with moving average errors

Under the spatial error model with moving average errors (2), the spatial
weights matrix can be estimated in a very similar manner. In this model,
the spatial autocovariance matrix is given by:

� = E
�
u:uT

�
= (I +R:W ) :�: (I +R:W )T

= Z:ZT

= (Z:T ) : (Z:T )T ;

where
Z = (I +R:W ) :diag (�1; �2; : : : ; �K) ;

and T is any orthogonal matrix. Therefore, under the symmetric spatial
weights matrix assumption (Assumption 4), we estimate Qn exactly in
the same way as the SEM-AR model. The estimator for the spatial weights
matrix (assuming, without loss of generality, that � � 1) is now given by:

W (MA)
n =

26664
0 q21;n=q22;n : : : qK1;n=qKK;n

q12;n=q11;n 0 : : : qK2;n=qKK;n
...

...
. . .

...
q1K;n=q11;n q2K;n=q22;n : : : 0

37775 : (25)

3.4.2 Spatial lag model

Estimation of the spatial weights matrix for the spatial lag model (3) is in
principle similar to our main case �the spatial error model with autoregres-
sive errors. However, in this case, one would require a priori an estimator of
the spatial autocovariance matrix of the response variable (D) conditional on
the exogenous regressors (X). This can be obtained by a matrix of partial
variances and covariances: b�D:X . Estimation of this partial autocovariance
matrix is standard in the multivariate statistical analysis literature; see for
example, McDonald (1978).

4 Monte Carlo Study

This section investigates the performance of the proposed estimators of the
spatial weights matrix under autoregressive (13) and moving average (25)
spatial error processes, and compares the performance with that of the resid-
ual regression estimator (Meen, 1996). The design of the Monte Carlo study
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is similar to Baltagi et al. (2003) and calibrated to the study of �-convergence
across the 9 census regions in the U.S.
Barro and Sala-i-Martin (1992) studied convergence in the U.S. over the

period 1963 to 1986 using data on per capita gross state product for 48 U.S.
states They estimated a cross-section regression of the form

yi = �+ �:xi + "i; i = 1; : : : ; 48;

where y denotes the average growth rate in per capita income over the 23
years, x denotes the log of per capita income in 1963, and � < 0 measures
the strength of convergence. While estimating similar regression equations
across di¤erent time periods, Rey and Montouri (1999) observe signi�cant
spatial autocorrelation among the states.
Using data on per capita state domestic product reported in Barro and

Sala-i-Martin (1992), we estimated separate regression equations for states
within the 9 di¤erent census regions and �nd evidence of heterogeneity in the
rate of �-convergence across the regions; there is stronger convergence in the
contiguous regions South Atlantic, East South Central, East North Central
and West North Central as compared to the other regions. Further, there is
heterogeneity in the initial levels of per capita income between the southern
states and the non-southern states. Given this descriptive analysis, we set
up a simulation model incorporating heterogeneity across the census regions,
both in the rate of convergence and in initial income, and model the spatial
autocorrelation using a spatial weights matrix approximately consistent with
�rst-order contiguity.
The model is set up as follows. Spatial panel data yit and xit are generated

for the 9 census regions for T periods of time according to the DGP

yit = �i + �i:xit + uit; i = 1; : : : ; 9; t = 1; : : : ; T;

where the regression coe¢ cients vary across the regions. The regressor x
is independently distributed as N (�i; 0:15

2) with di¤erent means across the
regions. We choose the parameter values based on our descriptive analysis
and regression results (Table 1).
The spatial errors, ut, in each period of time t are modelled as (a) a spatial

autoregressive process (ut = �:W :ut + "t) and (b) a spatial moving average
process (ut = �:W :ut+"t). In both cases, the pattern of spatial interactions is
generated by a spatial weights matrix (approximately a �rst-order contiguity
matrix) between the 9 census regions (Table 2A). This spatial weights matrix
(�W ) is chosen to ensure that both (I � �W ) and (I + �W ) are strictly
diagonally dominant and has no repeated eigenvalues.
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Table 1: Region-speci�c parameters19

Regions �i �i �i
NENG 0:047 �0:011 2:25
MATL 0:047 �0:011 2:25
SATL 0:073 �0:024 2:00
ESC 0:073 �0:024 2:00
WSC 0:047 �0:011 2:00
ENC 0:073 �0:024 2:25
WNC 0:073 �0:024 2:00
MTN 0:047 �0:011 2:25
PAC 0:047 �0:011 2:25

The idiosyncratic error term, "it, is independently and identically distrib-
uted as N (0; �2"), where the parameter value for �

2
" (= 3:0e-9) is chosen to

approximately match the trace of the resulting spatial autocovariance matrix
to that of the independent error OLS regression estimates.
We generate data from the above DGP for various sample sizes (n =

25; 50; 100) and estimate the parameters using maximum likelihood SURE
estimates. The estimates of the spatial weights matrix are computed using
both the above SURE estimator of the spatial autocovariance matrix (our
proposed estimator), and regression of the SURE residuals (Meen, 1996).
Since SURE performs poorly in many applications where the number of
equations is large, we also repeat the analysis for the three contiguous re-
gions Middle Atlantic, South Atlantic and East South Central; each of these
regions is �rst order contiguous with the other two. The reported results are
based on 1000 Monte Carlo replications of the above simulation scheme.
The estimated spatial weights matrix for the spatial error autoregressive

model, W n, based on n = 100 and averaged over the 1000 Monte Carlo
replications are presented in the bottom panel of Table 2 (Table 2 B), along
with 95 per cent con�dence intervals (2.5 and 97.5 bootstrap percentiles).
None of the zero spatial weights in Table 2 A have signi�cantly positive or

negative estimates in Table 2 B; the estimates of all the true positive weights
are signi�cantly positive at least at the 10 per cent level (in fact, most are
signi�cant at 1 per cent level). The average bias across the 81 elements in the
spatial weights matrix is 0:0011 and the average RMSE (root mean squared
error) is 0:0511. This is very good, particularly since we are estimating a
large number of spatial weights.

19NENG: New England; MATL: Middle Atlantic; SATL: South Atlantic; ESC: East
South Central; WSC: West South Central; ENC: East North Central; WNC: West
North Central; MTN : Mountain; PAC: Paci�c.
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Table 2: Spatial Weights Matrix (Actual and Simulations)20

A. Spatial Weights Matrix (Actual), �W
NENG MATL SATL ESC WSC ENC WNC MTN PAC

NENG 0 0:25 0 0 0 0:167 0 0 0
MATL 0:25 0 0:25 0:125 0 0:125 0 0 0
SATL 0 0:25 0 0:25 0 0 0 0 0
ESC 0 0:125 0:25 0 0:125 0:125 0 0 0
WSC 0 0 0 0:125 0 0 0:125 0:167 0:167
ENC 0:167 0:125 0 0:125 0 0 0:125 0 0
WNC 0 0 0 0 0:125 0:125 0 0:167 0:167
MTN 0 0 0 0 0:167 0 0:167 0 0:167
PAC 0 0 0 0 0:167 0 0:167 0:167 0

B. Estimated Symmetric Spatial Weights Matrix, �W n

NENG MATL SATL ESC WSC ENC WNC MTN PAC
NENG 0
MATL 0:261��

(:17;:34)
0

SATL �0:003
(-:10;:09)

0:244��
(:16;:32)

0

ESC 0:001
(-:09;:10)

0:129��
(:03;:23)

0:252��
(:14;:35)

0

WSC 0:001
(-:11;:10)

0:001
(-:10;:12)

0:000
(-:10;:10)

0:127��
(:03;:23)

0

ENC 0:168��
(:06;:27)

0:123�
(:01;:22)

0:002
(-:09;:11)

0:125�
(:02;:23)

�0:002
(-:10;:10)

0

WNC 0:000
(-:08;:10)

0:001
(-:10;:12)

0:000
(-:10;:11)

0:002
(-:11;:10)

0:128�
(:03;:23)

0:122��
(:02;:21)

0

MTN 0:002
(-:10;:10)

�0:004
(-:09;:09)

�0:002
(-:08;:10)

�0:001
(-:10;:10)

0:167��
(:07;:27)

�0:001
(-:09;:09)

0:164��
(:06;:26)

0

PAC 0:001
(-:08;:10)

0:001
(-:10;:09)

0:006
(-:08;:12)

�0:004
(-:10;:09)

0:171��
(:06;:26)

0:000
(-:12;:10)

0:173��
(:07;:28)

0:170��
(:08;:27)

0

In Table 3, we report average bias, standard deviation and root mean
squared errors (RMSE) for the two estimators of the spatial weights matrix.
Similar statistics for the SURE regression estimates are also reported. Results
are presented both for the spatial error model with autoregressive errors (see
also Table 2) and for the spatial error model with moving average errors.

20Abbreviations for the regions are as in Table 1.
Estimates reported are averages based on 1000 Monte Carlo simulations with T = 100.
Figures in parentheses are 95 per cent con�dence intervals based on percentiles from the
Monte Carlo simulations.
��,�, +: Signi�cant at 1 per cent, 5 per cent and 10 per cent level respectively.
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The results show that the residual regression based estimator is biased and
inconsistent. The proposed estimator based on the SURE-estimated spatial
autocovariance matrix performs quite well even for reasonably small sample
sizes; even with 9 regions (36 unique elements in the spatial weights matrix)
the average bias and RMSE for a sample size of n = 50 are quite reasonable.
The performance improves quite substantially with sample size.

Table 3: Monte Carlo Results �
Performance of the Proposed Estimator

9 Regions 3 Regions
T = 25 T = 50 T = 100 T = 25 T = 50 T = 100

SEM�AR Model
Regression Coeff.

�Average bias �1:39e-7 7:11e-6 �3:75e-6 2:07e-5 7:51e-5 3:87e-5
�Average RMSE 0:0081 0:0047 0:0030 0:0063 0:0045 0:0028

Spat.Err.Std.Dev.
�Average bias 5:68e-4 2:33e-4 1:14e-4 1:70e-4 6:95e-5 4:82e-5
�Average RMSE 7:05e-4 3:67e-4 2:31e-4 4:47e-4 2:95e-4 2:15e-4

Spat. Wts. Matrix
Proposed estimator

�Average bias �7:24e-3 �3:49e-3 �5:33e-4 �5:14e-3 �2:30e-3 �3:07e-5
�Average std. dev. 0:1391 0:0753 0:0489 0:0897 0:0585 0:0410
�Average RMSE 0:1393 0:0754 0:0489 0:0898 0:0586 0:0410

Residual regression est.
�Average bias 0:0271 0:0284 0:0292 0:0850 0:0876 0:0887
�Average std. dev. 0:2236 0:1388 0:0937 0:1307 0:0939 0:0661
�Average RMSE 0:2326 0:1507 0:1101 0:1568 0:1285 0:1107

SEM�MA Model
Regression Coeff.

�Average bias �1:39e-7 7:11e-6 �3:75e-6 2:07e-5 7:51e-5 3:87e-5
�Average RMSE 0:0081 0:0047 0:0030 0:0063 0:0045 0:0028

Spat.Err.Std.Dev.
�Average bias 1:17e-4 7:49e-5 3:66e-5 8:36e-5 4:62e-5 2:92e-5
�Average RMSE 4:29e-4 3:00e-4 2:07e-4 4:17e-4 2:25e-4 2:04e-4

Spat. Wts. Matrix
Proposed estimator

�Average bias �4:51e-3 �2:21e-3 �1:45e-3 �8:06e-3 �3:08e-3 �2:52e-3
�Average std. dev. 0:1113 0:0697 0:0470 0:1126 0:0876 0:0391
�Average RMSE 0:1114 0:0697 0:0470 0:1127 0:0879 0:0391
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5 Spillovers in Regional Housing Demand

Substantial literature on the UK housing market has accumulated over the
past three decades; research highlights sluggish growth in supply, mismatch
between demand and supply at least in a localised context (by locality and
type of housing), an extremely low and declining price-elasticity of supply,
low response of demand to price signals, geographically varying price e¤ects
(spatial heterogeneity) and spatial dependence (Meen, 2003; Barker, 2003).
Attempts have been made to explain spatial di¤usion by neighbourhood con-
ditions21 (Meen, 2001; Cheshire and Sheppard, 2004; Gibbons, 2004; Gibbons
and Machin, 2005), social interaction and segregation (Meen andMeen, 2003)
and heterogenous e¤ect of common shocks (Holly et al., 2011).
The above literature abounds in implicit acknowledgement of the strong

spatio-temporal dependence in features of regional or local housing markets.
However, barring some notable exceptions,22 what is distinctly missing in the
literature is adequate understanding of the reasons behind spatial or spatio-
temporal interactions. To examine this issue, we employ an economic model,
combining a traditional �supply and demand�model of housing markets with
a micro-founded model of search and bargaining in local housing markets.
Our focus lies in applying the methods proposed in this paper to estimate
the implied spatial weights matrix for housing demand, and thereby provide
new inferences regarding the nature of spatial di¤usion across the di¤erent
regions of England and Wales.

5.1 The Data

The empirical analysis covers housing markets in England and Wales over a
48-month period April 2001 to March 2005. The spatial units of analysis are
the ten government o¢ ce regions in England and Wales (Figure 1). Monthly
data on local housing markets at 3-digit postcode level were obtained from
Hometrack, an independent property research and database company in the
UK.23 The variables included are:
21Such as crime rates, schooling, transport infrastructure and quality of public services.
22See, for example, Meen (1996) and Holly et al. (2011).
23The Hometrack data are based on monthly responses to a questionnaire by about

3,500 major estate agents in the UK. The data are rather unique in providing information
on time on the market and degree-of-overpricing, both of which have important roles in
our analysis. We benchmark this information with data from other sources. In particular,
we augment the Hometrack data with quarterly information on sales price and number of
sales by type of property, for each county and local/ unitary authority, collected from HM
Land Registry of England and Wales.
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Figure 1: Government O¢ ce Regions (GORs) in England and Wales

� Average number of views;

� Average time on the market (TOM); and

� Average �nal to listing price ratios (reciprocal of degree-of-overpricing).

Additional regional spatio-temporal data on supply, demand, neighbour-
hood characteristics and market conditions were collected (see Appendix 1).
Data were also collected for other variables useful in interpreting the esti-
mated spatial weights.

5.1.1 Structural Equations

The structural equations of our model of housing markets24 include four rela-
tionships in the four endogenous variables �namely, prices, demand, degree-
24For further details on the model, see Bhattacharjee and Jensen-Butler (2005).
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of-overpricing and time on the market. Demand is endogenously determined
but supply is exogenous.25 In equilibrium, supply (St) is related to demand
(Dt) as

Dt � (1� �t) :St; (26)

where �t denotes the vacancy rate.
The realised value (price) (Vt) of housing properties follows a rental ad-

justment model (Hendershott, 1996), relating change in realised value (price)
(Vt) of housing properties to deviations of the vacancy rate from the natural
vacancy rate and deviations of the realised value from its natural (equilib-
rium) level. Then, assuming that natural value is �xed in the short run, we
have:

� lnVt = 1� ln(1� �t�1) + 2� lnVt�1 + �1t
= 1� lnDt�1 + 2� lnVt�1 � 3� lnSt�1 + �1t; (27)

0 < f1; 2g < 1; 3 = 1:
Demand is modelled as a function of realised value, housing market con-

ditions and neighbourhood characteristics. The market conditions include
economic activity (Yt; local and economy-wide income, unemployment, pro-
ductivity and interest rates) and the neighbourhood characteristics include
socio-economic variables (Xt; quality of education and public services, de-
mographics, etc.). Hence, change in demand is explained by change in local
(neighbourhood characteristics), change in price, and change in (local) in-
come or other indicators of local market conditions.

� lnDt = �1�Xt + �2� lnVt + �3� lnYt + �2t; (28)

where �2 < 0 is the price elasticity and �3 > 0may be regarded as the income
elasticity.
If vacancy rates were perfectly observed, the above three relationships

(Equations (26), (27) and (28)) would become recursive and the structural
relationships could be easily estimated. However, data on vacancy rates for
the residential housing market in the UK are not available at a high level of
temporal disaggregation. Therefore, we use microeconomic features of the
housing markets, speci�cally the degree-of-overpricing (DOPt) and time-on-
the-market (TOMt), to identify the wedge between demand and supply.

25Housing supply has changed only marginally over time for each region under study.
We assume that supply in each region is exogenously determined by planning, land use
and other local constraints.

32



Following Anglin et al.(2003),

� lnDOPt = �1�Xt + �2� lnYt + �3:� lnDt � �4� lnVt + �4t; (29)

�4 = 1:

and

�TOMt = �1� lnYt + �2� lnDOPt � �3� lnDt + �4� lnSt + �5t; (30)

�4 = �3:

The system comprising the above four simultaneous equations (Equations
(27), (28), (29) and (30)) is overidenti�ed. The four endogenous variables
(� lnVt, � lnDt, � lnDOPt and �TOMt) are measured in �rst di¤erences,
and tests indicate that each of these variables are stationary over time in
each of the 10 regions under consideration, as well as in a panel. Hence,
we estimate the relationships simultaneously using a 3SLS method, where
the spatial autocovariance matrix estimated from the residuals incorporates
unrestricted spatial interaction across the di¤erent regions.
In the �rst stage of our estimation procedure, we obtain predictions of

the endogenous variables in the model from estimated regression models in-
cluding the exogenous variables (supply, neighbourhood characteristics and
market conditions) and lagged endogenous variables (lagged demand and
prices). Following Bound et al. (1995), we check the F -statistics of the �rst
stage regressions for each of the endogenous variables in our model, and ver-
ify that the instruments in our estimated model are well-speci�ed; all these
F -statistics are in excess of 200.
At the second stage, we use these predictions to obtain estimates of the

four structural equations individually for each region, using measures of de-
mand (average number of views per week), realised value (price), degree-of-
overpricing, time on the market, neighbourhood characteristics (un�t houses,
access to education, and crime detection rates) and indicators of market con-
ditions (claimant counts and average household income). This allows for
heterogeneity in the relationships across the regions, both in the sense of
intercept (spatial �xed e¤ects) and slope heterogeneity, and in the choice of
indicators for neighbourhood characteristics and market conditions.
In the third stage, we estimate our structural equations separately for

each region using 3SLS, and estimate the spatial autocovariance matrix for
the demand equation from the second-stage residuals.
The estimates of the structural equations are consistent with a priori ex-

pectation and qualitatively very similar to the second stage SURE estimates
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reported in Bhattacharjee and Jensen-Butler (2005). The results are not re-
ported here since we are more interested in analysing the spatial errors from
the demand equation; however, we brie�y discuss the estimates.
We �nd substantial heterogeneity in the coe¢ cients and in the speci�-

cation of the relationships across the various regions. For the demand rela-
tionship, which is our main focus in this paper, the coe¢ cient of the price
variable is negative (signi�cantly for most regions), but with substantial slope
heterogeneity. Neighbourhood characteristics have an important e¤ect on de-
mand, where share of un�t houses is negatively related to demand in most
of the regions, and access to education and crime detection have positive
e¤ects. Similarly, market conditions (claimant counts and average household
income) have the expected signs (negative and positive respectively).

5.2 Spatial Di¤usion of Demand

The spatial autocovariance matrix of demand is estimated from the second-
stage residuals of the demand equation. Separate equations are estimated for
each region, and we allow spatial errors in demand to be contemporaneously
correlated across the regions. This is consistent with the spatial regime model
allowing heterogeneity in the demand relationship. Further, we allow for
spatial autocorrelation in the regression errors, and use the estimated spatial
autocovariance matrix to estimate the implied matrix of spatial weights,W n

(13).
The spatial autocovariance matrix across the 10 regions (Table 4 A) and

the corresponding spatial autocorrelation matrix (Table 4 B) indicate strong
spatial spillovers. In particular, housing demand in the three spatially con-
tiguous regions Greater London, the South East and East of England are
strongly correlated. Likewise, the strong correlation between North West
and North East appear to be related to geographical distances and contigu-
ity. However, there are also signi�cant correlations between Yorkshire and
Humberside and the South East, and similarly between East Midlands and
the South West. These patterns indicate that spatial patterns in demand
are not necessarily related to simple notions of contiguity and geographical
distance.
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Table 4: Estimated Error Spatial Autocorrelation Matrix
(autocovariances in parentheses)26

E EM L NE NW SE SW W WM YH
E 1:00

(0:0102)

EM 0:575
(0:0047)

1:00
(0:0066)

L 0:568
(0:0036)

0:471
(0:0024)

1:00
(0:0039)

NE 0:673
(0:0129)

0:436
(0:0067)

0:356
(0:0042)

1:00
(0:0360)

NW 0:583
(0:0064)

0:417
(0:0037)

0:351
(0:0024)

0:799
(0:0166)

1:00
(0:0120)

SE 0:673
(0:0051)

0:513
(0:0031)

0:602
(0:0028)

0:503
(0:0071)

0:370
(0:0030)

1:00
(0:0056)

SW 0:428
(0:0025)

0:499
(0:0024)

0:366
(0:0013)

0:451
(0:0050)

0:436
(0:0028)

0:392
(0:0017)

1:00
(0:0034)

W 0:420
(0:0048)

0:299
(0:0027)

0:288
(0:0020)

0:450
(0:0097)

0:474
(0:0059)

0:412
(0:0035)

0:343
(0:0023)

1:00
(0:0128)

WM 0:465
(0:0054)

0:353
(0:0033)

0:274
(0:0019)

0:479
(0:0104)

0:333
(0:0042)

0:517
(0:0044)

0:409
(0:0027)

0:483
(0:0062)

1:00
(0:0130)

YH 0:487
(0:0065)

0:470
(0:0051)

0:461
(0:0038)

0:449
(0:0113)

0:482
(0:0070)

0:560
(0:0056)

0:467
(0:0036)

0:514
(0:0077)

0:452
(0:0069)

1:00
(0:0177)

In order to understand the nature of spatial di¤usion in terms of spatial
weights, we use our estimator W n (13) to estimate the symmetric spatial
weights matrix under the assumption of a spatial error model with autore-
gressive errors (1). These estimates, reported in the top panel of Table 5
(Table 5A), measure the spatial contribution of demand in other regions to
the determination of housing demand in each individual region. Put dif-
ferently, the elements in a row corresponding to the index region represent,
within the context of the estimated spatial autoregressive model, the contri-
butions of idiosyncratic excess demand from other regions to excess demand
in the index region. The corresponding estimated row-standardised spatial
weights matrix is reported in the lower panel of Table 5 (Table 5B). Bootstrap
95 percent con�dence intervals for each element of the spatial weights ma-
trix, based on 200 bootstrap resamples, and the estimates of region-speci�c
standard deviations of the spatial errors are also reported in Table 5A. The
bootstrap con�dence limits are used to identify statistically signi�cant spatial
weights in Table 5A.

26E: East of England; EM : East Midlands; L: Greater London; NE: North East;
NW : North West; SE: South East; SW : South West; W : Wales; WM : West Midlands;
Y H: Yorks & Humberside.
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Table 5: Estimated Spatial Weights Matrix27

A. Symmetric Spatial Weights Matrix, �W n

E EM L NE NW SE SW W WM YH
E 0
EM :145��

(:08;:36)
0

L :148�
(:01;:28)

:079
(-:10;:16)

0

NE :191�
(:05;:33)

:009
(-:15;:17)

�:039
(-:17;:07)

0

NW :095+
(-:02;:30)

:044
(-:08;:25)

:041
(-:18;:18)

:412��
(:28;:57)

0

SE :201��
(:10;:30)

:078
(-:14;:19)

:194��
(:08;:35)

:094
(-:08;:24)

�:085�
(-:30;-:01)

0

SW :007
(-:15;:10)

:147�
(:01;:29)

:054
(-:12;:20)

:061
(-:15;:16)

:062
(-:08;:22)

:004
(-:17;:21)

0

W :031
(-:14;:18)

�:017
(-:20;:12)

:001
(-:13;:22)

:022
(-:06;:20)

:119�
(:01;:30)

:045+
(-:03;:16)

:022
(-:15;:16)

0

WM :056
(-:06;:12)

:018
(-:14;:19)

�:045
(-:12;:13)

:126��
(:02;:24)

�:066
(-:20;:09)

:132+
(-:01;:28)

:092
(-:06;:21)

:146�
(:02;:26)

0

YH :004
(-:32;:26)

:079+
(-:06;:20)

:083
(-:08;:19)

�:014
(-:14;:21)

:113+
(-:01;:31)

:141��
(:03;:25)

:095
(-:03;:26)

:143
(-:10;:32)

:074
(-:09;:33)

0

c�k :063
(:05;:07)

:062
(:04;:07)

:048
(:04;:05)

:109
(:08;:11)

:067
(:04;:07)

:049
(:04;:06)

:047
(:03;:05)

:090
(:07;:11)

:089
(:06;:09)

:098
(:06;:11)

B. Row-Standardised Spatial Weights Matrix, W (RS)
n

28

E EM L NE NW SE SW W WM YH
E 0 0:16 0:17 0:22 0:11 0:23 0:01 0:04 0:06 0:00
EM 0:25 0 0:14 0:02 0:08 0:13 0:25 �0:03 0:03 0:14
L 0:29 0:15 0 �0:08 0:08 0:38 0:10 0:00 �0:09 0:16
NE 0:22 0:01 �0:04 0 0:48 0:11 0:07 0:03 0:15 �0:02
NW 0:13 0:06 0:06 0:56 0 �0:12 0:08 0:16 �0:09 0:15
SE 0:25 0:10 0:24 0:12 �0:11 0 0:01 0:06 0:16 0:18
SW 0:01 0:27 0:10 0:11 0:11 0:01 0 0:04 0:17 0:17
W 0:06 �0:03 0:00 0:04 0:23 0:09 0:04 0 0:28 0:28
WM 0:10 0:03 �0:09 0:24 �0:13 0:25 0:17 0:27 0 0:14
YH 0:01 0:11 0:11 �0:02 0:16 0:20 0:13 0:20 0:10 0

Several elements in the estimated symmetric spatial weights matrix (Table
5A) are signi�cantly di¤erent from zero, either positive or negative. The

27Abbreviations for the regions are as in Table 4.
+, �, ��: Signi�cant at 10 per cent, 5 per cent and 1 per cent level respectively.

28Figures in bold in the estimated row-standardised spatial weights matrix correspond
to the symmetric spatial weights that are statistically signi�cant at the 5% level.
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Figure 2: Spatial network of GORs on implied topological plane
(Distances inversely proportional to absolute values of estimated spatial weights)

corresponding elements in the row-standardized matrix (Table 5 B) are also
numerically large, suggesting a signi�cant contribution from some regions
to demand in the index region. Our main �nding is that the nature of
spatial di¤usion in regional housing markets is more complicated than what
can be modeled using a single and simple notion of distance. In particular,
we �nd several explanations, singly or in combination, for the pattern of
observed spatial di¤usion; these include geographic contiguity or distance,
inter-regional economic interactions, and social interactions and segregation.
Thus, the topographical representation implied by these estimated spatial
weights (Figure 2) look very di¤erent from the map of England and Wales
(Figure 1).
First, contiguity or distance explains a number of the signi�cant posi-

tive spatial weights. These include: spatial weights between Greater Lon-
don, South East and the East of England; the East of England and East
Midlands; the North West with North East and Wales; and Wales and West
Midlands. Tentative explanations can be o¤ered. Greater London, the South
East and East can be regarded as substitutes in the choice of housing loca-
tion. Hence, idiosyncratic shocks to housing demand in one of these regions
can also a¤ect demand in the other two regions. It is, however, interesting to
note that the spatial weights between several pairs of contiguous regions are
not statistically signi�cant, and some other signi�cant weights relate to non-
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contiguous regions. In other words, many signi�cant spatial weights appear
to be driven by reasons other than geographic distance or contiguity. The
Ledoit-Wolf test (24) for the �rst-order contiguity spatial weights matrix also
rejects the speci�ed driver of spatial di¤usion in demand at the 1 per cent
level of signi�cance. This evidence also supports the view that there is more
to the nature of spatial dependence than what can be explained by simple
geographic distances.
Second, some of the strong positive spatial interactions operate along ma-

jor inter-region transport links. Signi�cant positive spatial weights between
Yorkshire and Humberside and the South East, and between the North East
and both West Midlands and the East of England, appear to be related to
fast transport links. This is in line with evidence on the e¤ect of commuting
time on housing demand (Gibbons and Machin, 2005).
Third, the housing markets in some regions, like East Midlands and the

South West appear to be related to the core-periphery relationship. These
two regions lie on the periphery of the two most prominent urban housing
markets �(Greater) London and Birmingham (West Midlands). Thus, an
external shock may a¤ect the periphery di¤erently, and in some senses uni-
formly, compared to the core regions. Also, these two regions are socially
and culturally quite closely related, having very similar per capita income
levels and deprivation, ethnicity and political views (voting patterns).
Finally, Table 5 A indicates a signi�cant negative spatial interaction be-

tween the South East and the North West, which suggests two possibilities.
First, the housing markets in these two regions could be segmented along so-
cial or ethnic dimensions, implying that while one region may be attractive
for certain social groups, these groups may be less attracted to housing mar-
ket in the other region. Second, they may be related to the �ripple e¤ects�
phenomenon, whereby sharp changes in housing markets in the South East
and London slowly spread over time to other parts of the country. This could
imply that di¤erent regions may be on di¤erent (and possibly asynchronous)
housing cycles.
In summary, the application identi�es signi�cant and interpretable spa-

tial relationships in demand between government o¢ ce regions in England
and Wales, based on an estimate of the symmetric spatial weights matrix.
We �nd that while contiguity and geographic distance explain the strength of
inter-region interactions to some extent, other factors such as socio-cultural
distances and transport infrastructure are also important. More complete
analysis of these e¤ects would require several candidate spatial weights matri-
ces re�ecting the drivers suggested by the current work, and then to formally
examine the explanatory power of corresponding spatial weights.
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6 Conclusion

The paper shows that estimation of an unknown spatial weights matrix con-
sistent with an observed pattern of spatial autocovariances is a partially
identi�ed problem. Further, we propose a methodology for estimation of the
spatial weights matrix, based on a given estimator for the spatial autocovari-
ance matrix and suitable structural constraints. The methodology has the
important advantage that it does not assume any speci�c distance measure
or spatial weights, neither do we make any a priori assumption about the
nature of spatial di¤usion. This �exible approach to studying spatial di¤u-
sion represents a departure from the literature. We discuss various features
of the estimator including its large sample properties, outline a bootstrap
procedure for computing standard errors, and propose a test for a speci�ed
driver of spatial di¤usion. Monte Carlo simulations demonstrate the superior
small-sample performance of the proposed estimators.
The proposed methodology is used to study spatial di¤usion in hous-

ing demand between government o¢ ce regions in England and Wales. The
spatial weights matrix is estimated under an assumption of symmetric spa-
tial weights, and tentative explanations for signi�cant spatial weights are
advanced.
The nature and strength of di¤usion in the di¤erent regions appears to

be driven by a combination of factors including contiguity or distance, pe-
ripherality, as well as social, ethnic, and national composition representing
cultural distance, none of which are a priori obvious. Besides, some spatial
weights are negative, implying substitution e¤ects or �ripple e¤ects�. Thus,
the proposed approach provides substantial information about the nature
of spatial di¤usion and the functioning of regional housing markets, and is
potentially useful for the evaluation of region-speci�c housing policies.
The work suggests several extensions and paths of future research. In the

context of our application to housing demand, further analyses using spatial
weights matrices which incorporate the drivers of spatial di¤usion identi�ed
in this paper may be useful, and likewise analyses at a lower level of spatial
disaggregation. At the methodological level, potential future work include:
e¢ cient M-estimation under structural constraints expressed in terms of mo-
ments, and extending our methodology to the context of spatio-temporal de-
pendence. An alternative estimation strategy based on moment restrictions
has been proposed in Bhattacharjee and Holly (2008), and Bhattacharjee and
Holly (2010) extend the methodology to the case where spatial dependence
may be driven by both structural reasons and unobserved factors. Bhat-
tacharjee and Holly (2011) also demonstrate the use of all the three methods
in an application to decision making in a monetary policy committee. Exten-
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sion of the methodology to other models of spatial interaction will enhance
the usefulness of the methodology. Similar analyses can help understand
spatial interaction in other applications, such as the study of convergence
across regions, and more generally in applied microeconomic studies of cross-
sectional dependence.

Appendix 1: Sources of spatio-temporal data

Other than Hometrack, sources for regional spatio-temporal data were:

� Supply: Housing stock (Source: O¢ ce of the Deputy Prime Minister
(ODPM) and the O¢ ce of National Statistics (ONS);

� Demand: Proportion of Local Authority and RSL dwellings having
low demand (Source: ODPM); Property transactions (Source: HM
Land Registry and Inland Revenue); Supply minus vacant housing
(Source: ODPM); Average number of views per week (Source: Home-
track);

� Neighbourhood characteristics: Percentage of un�t houses (Source:
ODPM); Crime rates (Source: ODPM); Crime detection rates (Source:
Home O¢ ce); Percentage of university acceptances to applications (Source:
Universities and Colleges Admissions Service (UCAS)); Percentage of
population of 16-24 year olds attending university (Source: UCAS);
Best value performance indicators (Source: ODPM); and

� Market conditions: Average weekly household income (Source: ONS);
unemployment rate (Source: Labour Force Survey (LFS)); Proportion
of population claiming income support (Source: ONS).
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